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The determination of production-shipment policies for a vendor-buyer system is dealt within this paper. The main objective is to
derive the optimal replenishment lot size and shipment policy for an EPQ inventory model with multiple deliveries and rework.
This inventory model contains two decision variables: the replenishment lot size and the number of deliveries. Previous researches
solve this inventory model considering both variables to be continuous. However, the number of deliveries must be considered as
a discrete variable. In this direction, this paper solves the inventory model considering two cases: Case 1: the replenishment lot size
as a continuous variable and the number of shipments as a discrete variable and Case 2: the replenishment lot size and the number
of shipments as discrete variables. The final results are two simple and easy-to-apply solution procedures to find the optimal values
for the replenishment lot size and the number of deliveries for each case.

1. Introduction

A key challenge in the inventory management in any orga-
nization is to answer the following simple question: How
many products to order?This question is responded to by the
traditional economic order quantity (EOQ) inventorymodel.
It is well known that the EOQ inventory model was derived
by Harris [1] in 1913. Later, the economic production quantity
(EPQ) inventory model was proposed by Taft [2] in 1918. It is
worthy to mention that since then, several extensions to both
inventory models have been derived by several scholars, that
is, Taleizadeh et al. [3], Chen [4], and Pal et al. [5], just to
name a few recent researches. In Cárdenas-Barrón et al. [6]
Ford Whitman Harris is named as the founding father of the
inventory theory.

Recently, Chiu et al. [7] and Chiu et al. [8] determine
the optimal replenishment lot size and shipment policy
for an EPQ inventory model with multiple deliveries and

rework. We have read the papers by Chiu et al. [7] and
Chiu et al. [8] with substantial interest and we have found
that their inventory model contains two decision variables:
the replenishment lot size and the number of deliveries.
The works of Chiu et al. [7] and Chiu et al. [8] solve the
inventorymodel considering both variables to be continuous.
However, the number of deliveries must be considered to be a
discrete variable.We think that the researchers that have been
attracted by works of Chiu et al. [7] and Chiu et al. [8] may
be interested in knowing the solution procedure that gives
the optimal solution to the decision variables according to
its nature. In this direction, this paper solves their inventory
model considering two cases: Case 1: the replenishment lot
size as a continuous variable and the number of shipments as
a discrete variable and Case 2: the replenishment lot size and
number of shipments as discrete variables. To solve both cases
we use the algebraic method of completing perfect squares
and the result of Garćıa-Laguna et al. [9]. The algebraic
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method of completing perfect squares has been used amply by
many scholars since 1996 (Grubbström [10], Omar et al. [11],
Wee et al. [12], and Yang and Wee [13]). Conversely, Chiu et
al. [7] consider both decision variables to be continuous and
then use the classical optimization technique (differential cal-
culus) to determine the replenishment lot size and shipment
policy for an extended EPQ model with delivery and quality
assurance issues. It is important to point out that Chiu et al.
[8] derive the same inventory problem of Chiu et al. [7] using
the algebraic method of completing perfect squares and they
also considered both variables to be continuous.

Recently, Treviño-Garza et al. [14] solve optimally a
family of inventory models that deal with an EPQ for an
integrated vendor-buyer system considering that the pro-
duction system creates defective products. Taleizadeh et al.
[15] propose EPQ inventory model with rework of defective
items when multishipment policy is used. Their inventory
model determines optimally the selling price, the lot size,
and the number of shipments. Sana [16] develops an EOQ
inventory model for conforming and nonconforming quality
products in which the nonconforming products are sold at a
reduced price. Pal et al. [17] derive an EPQ inventory model
to determine the optimal buffer for a stochastic demand
considering preventive maintenance. Pal et al. [18] propose
an EPQ inventory model for an imperfect production system
that takes into account that defective items are reworked
after the regular production time. Das Roy et al. [19] develop
an economic production lot size model for a manufacturing
system that produces defective items. These defective items
are accumulated and then reworked. This inventory model
also permits shortages with partial and full backordering.

2. Optimizing the Replenishment Lot Size and
the Number of Shipments

This section presents the optimizing procedure of the replen-
ishment lot size and the number of shipments for the
inventory problem given in Chiu et al. [7] and Chiu et al. [8].

2.1. The Replenishment Lot Size and Shipment Policy for an
Extended EPQ Model with Delivery and Quality Assurance
Issues (Chiu et al. [7] and Chiu et al. [8]). Chiu et al. [7] and
Chiu et al. [8] derived the following long-run average costs
𝐸[𝑇𝐶𝑈(𝑄)]:

𝐸 [𝑇𝐶𝑈 (𝑄)] =
𝐶𝜆

(1 − 𝜑𝐸 [𝑥])
+

(𝐾 + 𝑛𝐾1) 𝜆

(1 − 𝜑𝐸 [𝑥])𝑄

+
𝐶
𝑅
𝐸 [𝑥] (1 − 𝜃) 𝜆
(1 − 𝜑𝐸 [𝑥])

+
𝐶
𝑆
𝐸 [𝑥] 𝜑𝜆

(1 − 𝜑𝐸 [𝑥])
+𝐶
𝑇
𝜆

+
ℎ𝑄𝜆

2𝑃1 (1 − 𝜑𝐸 [𝑥])
[(2𝐸 [𝑥] − (𝐸 [𝑥])2

−𝜑 (𝐸 [𝑥])
2
) (1− 𝜃)] + ℎ𝑄𝜆

2𝑃 (1 − 𝜑𝐸 [𝑥])
+ (1− 1

𝑛
)

⋅ [
ℎ𝑄 (1 − 𝜑𝐸 [𝑥])

2
−
ℎ𝑄𝜆

2𝑃
−
ℎ𝑄𝐸 [𝑥] (1 − 𝜃) 𝜆

2𝑃1
]

+
ℎ1 (𝐸 [𝑥])

2
𝑄𝜆 (1 − 𝜃)2

2𝑃1 (1 − 𝜑𝐸 [𝑥])
+ (

1
𝑛
)
ℎ2𝑄

2
(1−𝜑𝐸 [𝑥])

+ (1− 1
𝑛
)
ℎ2𝑄𝜆

2𝑃
+
ℎ2𝑄

2
[(1− 1

𝑛
)
𝐸 [𝑥] 𝜆 (1 − 𝜃)

𝑃1
] ,

(1)

where the notation is as follows.

Parameters

𝐶: production cost ($/unit),
𝐶
𝑅
: rework cost ($/unit),

𝐶
𝑆
: disposal cost per scrap product ($/unit),

𝐶
𝑇
: delivery cost per product shipped to customers

($/unit),
𝐾: setup cost per cycle ($/cycle; $/lot; $/run),
𝐾1: fixed delivery cost per shipment ($/shipment),
ℎ: holding cost ($/unit/time unit),
ℎ1: holding cost for each reworked product
($/unit/time unit),
ℎ2: holding cost for each item kept by customer
($/unit/time unit),
𝜆: demand rate (units/time unit),
𝑃: production rate (units/time unit),
𝑃1: reworking rate (units/time unit),
𝑥: a proportion of defective items; it is assumed to be
a random variable with a known probability density,
𝐸(𝑥): expected value of 𝑥,
𝜃: a proportion of the imperfect quality products is
scrap; it is assumed to be known and constant,
𝜃1: a proportion of reworked products fails and be-
comes scrap; it is assumed to be known and constant,
𝜑: overall scrap rate per cycle; 𝜑 = 𝜃 + (1 − 𝜃)𝜃1,
𝑈(𝑎, 𝑏): indicates uniform distribution with range
(𝑎, 𝑏).

Variables

𝑄: the replenishment lot size (units),
𝑛: the number of shipments.

The detailed derivation of each term in 𝐸[𝑇𝐶𝑈(𝑄)] can be
found in Chiu et al. [7]. Note that they consider only one
variable (𝑄). Conversely, this paper considers the long-run
average costs with two decision variables: 𝑄 and 𝑛, where Q
is a continuous variable and 𝑛 is a discrete variable. Hence
𝐸[𝑇𝐶𝑈(𝑄, 𝑛)] is rewritten as follows:

𝐸 [𝑇𝐶𝑈 (𝑄, 𝑛)] = 𝜇1𝑄+
𝜇2
𝑄
+𝜇3, (2)
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where the constants 𝜇1, 𝜇2, and 𝜇3 are given by

𝜇1 =
1
2
{

𝜆

(1 − 𝜑𝐸 (𝑥))
[ℎ {[

𝐸 (𝑥)

𝑃1
] [2−𝐸 (𝑥) (1 + 𝜑)]

⋅ (1− 𝜃) + 1
𝑃
}+

ℎ1 [𝐸 (𝑥)]
2
(1 − 𝜃)2

𝑃1
]+ (ℎ2 − ℎ)

⋅ [(1−𝜑𝐸 (𝑥)) − 𝜆( 1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)](

1
𝑛
)

+ (ℎ2 − ℎ) 𝜆(
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)+ℎ (1

−𝜑𝐸 (𝑥))} > 0,

𝜇2 =
𝜆 (𝐾 + 𝑛𝐾1)

(1 − 𝜑𝐸 (𝑥))
> 0,

𝜇3 = [
𝜆

(1 − 𝜑𝐸 (𝑥))
] {𝐶+𝐶

𝑇
+ [𝐶
𝑅 (1− 𝜃) + 𝜑 (𝐶𝑆

−𝐶
𝑇
)] 𝐸 (𝑥)} .

(3)

It is important to remark that the total cost 𝐸[𝑇𝐶𝑈(𝑄, 𝑛)] is a
mixed integer nonlinear optimization problem when the lot
size (𝑄) is a continuous variable and the number of shipments
(𝑛) is a discrete variable. On the contrary, the total cost
𝐸[𝑇𝐶𝑈(𝑄, 𝑛)] is an integer nonlinear optimization problem
when both variables (𝑄 and 𝑛) are considered to be discrete
variables.

To optimize the total cost 𝐸[𝑇𝐶𝑈(𝑄, 𝑛)] a sequential
optimization procedure of two stages is applied. First stage
optimizes the replenishment lot size (𝑄) by the algebraic
method of completing perfect squares (see, e.g., Cárdenas-
Barrón [20]). Second stage optimizes the number of ship-
ments (𝑛) using the result of Garćıa-Laguna et al. [9].

Stage I (Optimizing the Replenishment Lot Size (𝑄)). In the
research work of Cárdenas-Barrón [20] it was demonstrated
by the algebraic method of completing perfect squares that a
function of type 𝜇1𝑄 + 𝜇2/𝑄 is always minimized for 𝑄 =

√𝜇2/𝜇1, which attains the minimum at 𝑓(𝑄) = 2√𝜇1𝜇2
where 𝑄 is a continuous variable and 𝜇1 and 𝜇2 are both
greater than zero. Consequently, the replenishment lot size
(𝑄) is

𝑄 = √
𝜇2
𝜇1

= (2𝜆 (𝐾+ 𝑛𝐾1)

⋅ (𝜆 [ℎ{[
𝐸 (𝑥)

𝑃1
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𝑃
}
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2
(1 − 𝜃)2
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]+ (1−𝜑𝐸 (𝑥)) {(ℎ2 − ℎ)
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𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)](

1
𝑛
)

+ (ℎ2 − ℎ) 𝜆(
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)

+ℎ (1−𝜑𝐸 (𝑥))})
−1

)

1/2

.

(4)

And the minimal total cost is
𝐸 [𝑇𝐶𝑈 (𝑛)] = 2√𝜇1𝜇2 +𝜇3

= 2(1
2
{

ℎ𝜆
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𝑃1
]
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𝑃
]+ (ℎ2 − ℎ)

⋅ [(1−𝜑𝐸 (𝑥)) − 𝜆( 1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
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𝑛
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1/2

+𝜇3
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)](

1
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𝜆ℎ1 [𝐸 (𝑥)]

2
(1 − 𝜃)2

(1 − 𝜑𝐸 (𝑥)) 𝑃1
+ (ℎ2 − ℎ) 𝜆(

1
𝑃

+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)+ℎ (1−𝜑𝐸 (𝑥))} [(𝐾
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2𝜆

(1 − 𝜑𝐸 (𝑥))
√𝑓
𝑛
+ 𝜇6 +𝜇3,

(5)

where

𝑓
𝑛
= 𝐾1𝜇4𝑛 +

𝐾𝜇5
𝑛
,

𝜇4 = (
1

(1 − 𝜑𝐸 (𝑥))
)

⋅ [ℎ𝜆𝐸 (𝑥) (
𝜑

𝑃
+
(1 − 𝐸 (𝑥)) (1 − 𝜃)

𝑃1
)

+ℎ2𝜆 (1−𝜑𝐸 (𝑥)) (
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)

+ℎ (1−𝜑𝐸 (𝑥))2 +
ℎ1𝜆 [𝐸 (𝑥)]

2
(1 − 𝜃)2

𝑃1
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𝜇5 = (ℎ2 − ℎ) [(1−𝜑𝐸 (𝑥)) − 𝜆(
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)] ,

𝜇6 = (
𝐾

(1 − 𝜑𝐸 (𝑥))
)

⋅ [ℎ𝜆𝐸 (𝑥) (
𝜑

𝑃
+
(1 − 𝐸 (𝑥)) (1 − 𝜃)

𝑃1
)

+ℎ2𝜆 (1−𝜑𝐸 (𝑥)) (
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)

+ℎ (1−𝜑𝐸 (𝑥))2 +
ℎ1𝜆 [𝐸 (𝑥)]

2
(1 − 𝜃)2

𝑃1
]

+𝐾1 (ℎ2 − ℎ) [(1−𝜑𝐸 (𝑥))

− 𝜆(
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)] .

(6)

It is worthy to mention that the function 𝑓
𝑛
has the same

mathematical form 𝛾1𝑛+𝛾2/𝑛 but in this function the decision
variable 𝑛 is discrete, and obviously 𝑛 must be greater or
equal than one. In the work of Garćıa-Laguna et al. [9] it was
showed that when 𝑛 is discrete and 𝛾1 and 𝛾2 are greater than
zero, then function of type 𝛾1𝑛 + 𝛾2/𝑛 attains its minimum
when 𝑛 is given as follows:

𝑛 = ⌈−0.5+√0.25 +
𝛾2
𝛾1
⌉ (7)

or

𝑛 = ⌊0.5+√0.25 +
𝛾2
𝛾1
⌋ .

(8)

It is important to remember that ⌈𝜔⌉ and ⌊𝜔⌋ are the smallest
integer greater than or equal to 𝜔 and the largest integer less
than or equal to 𝜔, respectively. Clearly, it is easy to see that
⌈𝜔⌉ = ⌊𝜔 + 1⌋ if and only if 𝜔 is not a discrete value. In this
circumstance the minimization problem has a single solution
for 𝑛 which is 𝑛∗ = 𝑛 (given by either of the two expressions
in (7) and (8)). Otherwise, theminimization problem has two
solutions for 𝑛 that are 𝑛∗ = 𝑛 and 𝑛∗ = 𝑛 + 1.

Considering the result of (7) and (8), then the solution to
the discrete variable (𝑛) is as follows:

𝑛 = ⌈−0.5+√0.25 +
𝐾𝜇5
𝐾1𝜇4

⌉ (9)

or

𝑛 = ⌊0.5+√0.25 +
𝐾𝜇5
𝐾1𝜇4

⌋ . (10)

It is obvious that 𝜇4 > 0 and therefore 𝛾4 = 𝐾1𝜇4 is always
greater than zero. However, 𝛾5 = 𝐾𝜇5 can be positive, zero,
or negative because the following term (ℎ2 −ℎ)[(1−𝜑𝐸(𝑥)) −
𝜆(1/𝑃 + 𝐸(𝑥)(1 − 𝜃)/𝑃1)] can be positive, zero, or negative.
When 𝛾5 takes positive values then the optimal solution for 𝑛
is given by (9) or (10). On the contrary, for zero and negative
values of 𝛾5, it is easy to see that 𝛾1𝑛 + 𝛾2/𝑛 attains its global
minimum value at 𝑛 = 1.

In many situations of the real life the replenishment lot
size (𝑄) could be an integral value too. If we constrain the
replenishment lot size to be a discrete variable then applying
the previous result ((7) and (8)) the replenishment lot size (𝑄)
is given by

𝑄 = [
[
[
[

−0.5+(0.25+ 2𝜆 (𝐾+ 𝑛𝐾1) (𝜆 [ℎ{[
𝐸 (𝑥)

𝑃1
] [2 − 𝐸 (𝑥) (1 + 𝜑)] (1 − 𝜃) + 1

𝑃
}+

ℎ1 [𝐸 (𝑥)]
2
(1 − 𝜃)2

𝑃1
]

+ (1−𝜑𝐸 (𝑥))

⋅ {(ℎ2 − ℎ) [(1 − 𝜑𝐸 (𝑥)) − 𝜆(
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)](

1
𝑛
)+ (ℎ2 − ℎ) 𝜆(

1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)+ℎ (1 − 𝜑𝐸 (𝑥))})

−1

)

1/2

]
]
]
]

(11)

or

𝑄 =

[
[
[

[

0.5+(0.25+ 2𝜆 (𝐾+ 𝑛𝐾1) (𝜆 [ℎ{[
𝐸 (𝑥)

𝑃1
] [2 − 𝐸 (𝑥) (1 + 𝜑)] (1 − 𝜃) + 1

𝑃
}+

ℎ1 [𝐸 (𝑥)]
2
(1 − 𝜃)2

𝑃1
]+ (1−𝜑𝐸 (𝑥))

⋅ {(ℎ2 − ℎ) [(1 − 𝜑𝐸 (𝑥)) − 𝜆(
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)](

1
𝑛
)+ (ℎ2 − ℎ) 𝜆(

1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)+ℎ (1 − 𝜑𝐸 (𝑥))})

−1

)

1/2]
]
]

]

.

(12)
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A lower bound for the total cost 𝐸[𝑇𝐶𝑈(𝑄)] can be obtained
straightforwardly. The lower bound is derived just consid-
ering both variables (𝑄 and 𝑛) to be continuous variables.
Therefore, the lower bound is given by

LB = [√ 2𝜆
(1 − 𝜑𝐸 (𝑥))

]

⋅ (√𝐾1 (ℎ2 − ℎ) [(1 − 𝜑𝐸 (𝑥)) − 𝜆(
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)]

+(
𝐾

(1 − 𝜑𝐸 (𝑥))
[ℎ𝜆𝐸 (𝑥) (

𝜑

𝑃
+
(1 − 𝐸 (𝑥)) (1 − 𝜃)

𝑃1
)

+ℎ2𝜆 (1−𝜑𝐸 (𝑥)) (
1
𝑃
+
𝐸 (𝑥) (1 − 𝜃)

𝑃1
)

+ℎ (1−𝜑𝐸 (𝑥))2 +
ℎ1𝜆 [𝐸 (𝑥)]

2
(1 − 𝜃)2

𝑃1
])

1/2

)+𝜇3.

(13)

The above lower bound is usable only when (ℎ2 − ℎ)[(1 −
𝜑𝐸(𝑥)) − 𝜆(1/𝑃 + 𝐸(𝑥)(1 − 𝜃)/𝑃1)] is greater or equal than
zero. If (ℎ2 − ℎ)[(1 − 𝜑𝐸(𝑥)) − 𝜆(1/𝑃 + 𝐸(𝑥)(1 − 𝜃)/𝑃1)] is
negative then the lower bound is just the𝐸[𝑇𝐶𝑈(𝑄)] given by
(2). It is important to mention that this lower bound (13) can
be attained just for the case when 𝑄 is a continuous variable
and 𝑛 is a discrete variable if and only if 𝑛 = √𝐾𝜇5/𝐾1𝜇4 is
an integer value. On the contrary, for the case when both 𝑄
and 𝑛 are considered to be discrete variables then this lower
bound (13) can be attained when the optimal solutions for
both variables, 𝑄 and 𝑛, are discrete values, in other words,
when 𝑄 given by (4) is a discrete value and at the same time
𝑛 given by 𝑛 = √𝐾𝜇5/𝐾1𝜇4 is a discrete value too. It is
important to mention that the lower bound for the total cost
obtained by (13) or (2) is just for Case 1. Obviously, the lower
bound for the total cost for Case 2 is the total cost for Case 1.

2.2. Solution Procedure to Find the Replenishment Lot Size
(𝑄) and the Number of Shipments (𝑛). Here, two cases are
considered: Case 1: the replenishment lot size (𝑄) being
continuous and the number of shipments (𝑛) being discrete
and Case 2: the replenishment lot size (𝑄) being discrete
and the number of shipments (𝑛) being discrete. Based on
the previous results that were obtained in Section 2.1, the
following two solution procedures are proposed.

Case 1: The Replenishment Lot Size (𝑄) Being Continuous and
the Number of Shipments (𝑛) Being Discrete

Solution Procedure for Case 1

Step 1. Compute (ℎ2−ℎ)[(1−𝜑𝐸(𝑥))−𝜆(1/𝑃+𝐸(𝑥)(1−𝜃)/𝑃1)].

If (ℎ2 − ℎ)[(1−𝜑𝐸(𝑥)) − 𝜆(1/𝑃 +𝐸(𝑥)(1− 𝜃)/𝑃1)] ≤ 0
then set 𝑛 = 1 and compute𝑄 using (4) and go to Step
4; else go to Step 2.

Step 2. Compute the integral value for 𝑛.

If−0.5+√0.25 + 𝐾𝜇5/𝐾1𝜇4 is not a discrete value then
𝑛
∗
= 𝑛.

Else, 𝑛∗ = 𝑛 and 𝑛∗ = 𝑛 + 1, where 𝑛 is computed
using (9) or (10).

Step 3. Given the discrete value of 𝑛 then compute the
continuous value for the lot size 𝑄 using (4).

Step 4. Compute the total cost using (2) or (5).

It is important to remark that if there exist two solutions
for 𝑛 then there are two optimal solutions for the inventory
problem. For each solution of 𝑛 do Steps 3 and 4 and
report the two optimal solutions. A flow diagram for solution
procedure of Case 1 is given in Figure 1.

Case 2: The Replenishment Lot Size (𝑄) Being Discrete and the
Number of Shipments (𝑛) Being Discrete

Solution Procedure for Case 2

Step 1. Compute (ℎ2−ℎ)[(1−𝜑𝐸(𝑥))−𝜆(1/𝑃+𝐸(𝑥)(1−𝜃)/𝑃1)].

If (ℎ2 − ℎ)[(1−𝜑𝐸(𝑥)) − 𝜆(1/𝑃 +𝐸(𝑥)(1− 𝜃)/𝑃1)] ≤ 0
then set 𝑛 = 1 and compute 𝑄 using (11) or (12) and
go to Step 4; else go to Step 2.

Step 2. Compute the integral value for 𝑛.

If−0.5+√0.25 + 𝐾𝜇5/𝐾1𝜇4 is not a discrete value then
𝑛
∗
= 𝑛.

Else, 𝑛∗ = 𝑛 and 𝑛∗ = 𝑛 + 1, where 𝑛 is computed
using (9) or (10).

Step 3. Given the discrete value of 𝑛 then compute the
discrete value for the lot size 𝑄 using (11) or (12).

Step 4. Compute total cost using (2).

Here, it is important to notice that if two solutions for 𝑛
exist then there are two solutions. For each solution of 𝑛 do
Steps 3 and 4 and choose the solution with the minimal total
cost.The flow diagram of the solution procedure for Case 2 is
given in Figure 2.

The example of Chiu et al. [7] and Chiu et al. [8] is
solved with the proposed solution procedures. The data for
the example is shown in Table 1 and the solutions are given in
Table 2.

Now,we illustrate the situationwhen (ℎ2−ℎ)[(1−𝜑𝐸(𝑥))−
𝜆(1/𝑃+𝐸(𝑥)(1−𝜃)/𝑃1)] is lower and equal to zero. Consider
that the value ofℎ is 98 and the other values for the parameters
are the same as given in Table 1. The value of (ℎ2 − ℎ)[(1 −
𝜑𝐸(𝑥)) − 𝜆(1/𝑃 + 𝐸(𝑥)(1 − 𝜃)/𝑃1)] is negative and it is equal
to −12.53271429. Then by applying the proposed solution
procedures we obtain the following.

For Case 1: the replenishment lot size (𝑄) being contin-
uous and the number of shipments (𝑛) being discrete, the
optimal solution is

𝑄 = 1110.748506; 𝑛 = 1 and 𝐸[𝑇𝐶𝑈] =

519292.08791321.
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Figure 1: Flow diagram of solution procedure for Case 1.

For Case 2: the replenishment lot size (𝑄) being discrete
and the number of shipments (𝑛) being discrete, the optimal
solution is

𝑄 = 1111; 𝑛 = 1 and 𝐸[𝑇𝐶𝑈] = 548596.14413939.

3. Discussion

When applying the solution procedure for Case 1, we get the
same solution as Chiu et al. [7] and Chiu et al. [8] but in a
simple manner. On the other hand, the solution procedure of
Chiu et al. [7] rounds the value of the number of shipments
(𝑛). This action could provide us with a nonoptimal value for
the number of shipments (𝑛). Although Chiu et al. [8] fix the
previous mentioned shortcoming, their solution procedure
requires to evaluate the total cost twice (one for each 𝑛) in
order to compute the number of shipments (𝑛). Moreover,
it is important to mention that Chiu et al. [7] and Chiu
et al. [8] do not consider the situation when (ℎ2 − ℎ)[(1 −
𝜑𝐸(𝑥)) − 𝜆(1/𝑃 + 𝐸(𝑥)(1 − 𝜃)/𝑃1)] ≤ 0. Also, they do
not solve the inventory problem when both variables are
discrete. Furthermore, both solutions procedures proposed in
this paper are easy to implement in a spreadsheet and do not
require any computational effort. These are some important
advantages that our paper has with respect to Chiu et al. [7]
and Chiu et al. [8].

Table 1: Data for the example.

Parameter From Chiu et al. [7]
and Chiu et al. [8]

𝐶 100
𝐶
𝑅 60

𝐶
𝑆 20

𝐶
𝑇 0.1

𝐾 20000
𝐾1 2000
ℎ 20
ℎ1 40
ℎ2 80
𝜆 3400
𝑃 60000
𝑃1 2100
𝑥 Uniform (0, 0.3)
𝐸(𝑥) 0.15∗

𝜃 0.1
𝜃1 0.1
𝜑 = 𝜃 + (1 − 𝜃)𝜃1 0.19
∗Remember that for a uniform distribution with range (a, b) the expected
value is defined as 𝐸(𝑥) = (𝑎 + 𝑏)/2.
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Figure 2: Flow diagram of solution procedure for Case 2.

Table 2: Results for the example.

Instance Q continuous and n discrete
Solution procedure for Case 1

Q and n discrete
Solution procedure for Case 2 Lower bound

Instance 1
Example from Chiu et al. [7]
and Chiu et al. [8]

Q = 1735.12899
n = 3

E[TCU] = 485540.66029

Q = 1735
n = 3

E[TCU] = 485540.66058

LB = 485540.6485389 for Case 1
(given (13))

LB = 485540.66029 for Case 2
Instance 2
Special Case
(x = 0 then 𝐸(𝑥) = 0)

Q = 2385.34012
n = 5

E[TCU] = 425862.39472

Q = 2385
n = 5

E[TCU] = 425862.39559

LB = 425847.28209 for Case 1
(given (13))

LB = 425862.39472 for Case 2
Note that Chiu et al. [7] reported for the special case that the replenishment lot size is 2018 units and that the number of shipments is 3 with a total cost of
427938. The reader can notice that the solution for the special case reported by Chiu et al. [7] is erroneous.

4. Conclusions

Themain and new contribution of this paper is to present two
easy-to-apply solutions procedures to determine jointly both
the optimal replenishment lot size and the optimal number
of shipments for the inventory model proposed by Chiu et al.
[7] and Chiu et al. [8].The solution procedures are developed
for solving two cases: Case 1: the replenishment lot size (𝑄)
being continuous and the number of shipments (𝑛) being
discrete and Case 2: the replenishment lot size (𝑄) being
discrete and the number of shipments (𝑛) being discrete.
The proposed solution procedures are simple and require

no tedious computational effort. Furthermore, the proposed
solution procedures discriminate between the situation in
which there is a single solution and when there are two
solutions for each discrete variable. Chiu et al. [7] considered
the decisions variables (𝑄 and 𝑛) to be continuous and then
round up the decision variable number of shipments (𝑛).This
could give us a nonoptimal value for 𝑛. Our paper improves
and complements Chiu et al. [7] and Chiu et al. [8] research
works since it treats both variables according to their nature.
The readers who are interested in this paper may also refer to
the research works of Cárdenas-Barrón et al. [21–23]. Finally,
this paper can be extended in several ways. For example,
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one can consider stochastic demand, shortages with full or
partial backordering, and deteriorating rate, just to name a
few future researches.
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