Show simple item record

dc.contributor.advisorMontesinos, Alejandro
dc.creatorCamacho, Alejandra
dc.date.accessioned2018-12-13T19:26:01Z
dc.date.available2018-12-13T19:26:01Z
dc.date.created2018-10-28
dc.identifier.citationCamacho, A. (2018). Implementation of a transient approach for the mass and energy balance in an electric arc furnace. M. Sc. Tecnológico de Monterrey.en_US
dc.identifier.urihttp://hdl.handle.net/11285/632437
dc.description.abstractOn this work, an implementation of a transient approach for the mass and energy balance in an electric arc furnace is presented. Real operation conditions were included, such as the dynamic material and energy additions and continuous inlets and outlets. Also, several inherent phenomena were characterized, such as the melting rate of scrap, the chemical reaction mechanisms and the residence time of bubbles in the slag. With all these elements, the estimation of the distribution of mass and energy flows at any time of the “heat” process was performed. The main contributions of this work are to provide a prediction of mass and energy distribution at any time of the EAF process, and to be a guideline for a dynamic optimization model which can be useful to improve the efficiency of the furnace by operation protocol modifications, therefore, the net cost per ton of liquid steel can be reduced.en_US
dc.description.tableofcontentsDedication ............................................................................................................................................. I Acknowledgements ............................................................................................................................. II Abstract ............................................................................................................................................... III List of figures ......................................................................................................................................IV List of tables ........................................................................................................................................VI Chapter I Introduction ...................................................................................................................... 1 1.1 Background .......................................................................................................................... 2 1.1.1 Steel industry ................................................................................................................ 2 1.1.2 Types of melting process ............................................................................................. 3 1.1.3 Electric arc furnace and process description .......................................................... 4 1.2 Problem statement and context ......................................................................................... 7 1.3 General objective ................................................................................................................. 8 1.4 Specific objectives ................................................................................................................ 8 1.5 Scope ...................................................................................................................................... 9 1.6 Justification ........................................................................................................................ 10 Chapter II State of the art ............................................................................................................... 12 2.1 Mass and energy balance model .......................................................................................... 12 2.2 Melting rate ........................................................................................................................ 15 2.3 Reaction mechanisms ........................................................................................................ 18 2.4 Minimization of Gibbs free energy: Gases .................................................................... 21 2.5 Slag foaming ....................................................................................................................... 22 Chapter III Methodology ................................................................................................................ 26 3.1 Assumptions and considerations ..................................................................................... 28 3.2 Elements for the structure of the model ........................................................................ 32 3.2.1 Structure of the melting rate module ..................................................................... 34 3.2.2 Chemical kinetics structure...................................................................................... 37 VIII 3.2.3 Bubbles residence time: structure ........................................................................... 40 3.2.4 Gases equilibrium structure ..................................................................................... 41 3.2.5 Estimation of continuous spillage of slag ............................................................... 42 3.2.6 Estimations of air infiltration and off gases .......................................................... 43 3.2.7 Estimation of Temperatures .................................................................................... 44 3.2.8 Cooling system losses estimation ............................................................................. 46 3.3 Collection of data ............................................................................................................... 46 3.4 Adjustments of the model................................................................................................. 47 Chapter IV Results ........................................................................................................................... 49 4.1 Description of the MEB model with transient approach ............................................ 49 5.3 Simulations ......................................................................................................................... 54 4.2.1 Melting of scrap ......................................................................................................... 54 3.2.8 Reaction velocity in the slag zone and sensitivity analysis .................................. 56 4.2.3 Mass accumulation profile and global distribution .............................................. 61 4.2.4 Temperatures estimation .......................................................................................... 62 4.2.6 Energy accumulation profile and global distribution .......................................... 65 5.2 Summary of conclusions ................................................................................................... 68 5.2 Contributions ..................................................................................................................... 70 5.3 Recommendations and future work ............................................................................... 70 Appendices ......................................................................................................................................... 72 Appendix A. Slag viscosity correlations .................................................................................... 72 Appendix B. Operational data .................................................................................................... 74 B.1 Operation data ................................................................................................................... 74 Appendix C. Useful properties for the energy balance .......................................................... 78 Appendix D. Energy balance schemes for each zone .............................................................. 81 References .......................................................................................................................................... 82en_US
dc.format.extent98en_US
dc.format.mediumTextoen_US
dc.language.isoengen_US
dc.publisherInstituto Tecnológico y de Estudios Superiores de Monterreyesp
dc.relation.ispartof266632-CONACYT-SENER-S0019201401en_US
dc.rightsOpen Accessen_US
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subject1 CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRAen_US
dc.titleImplementation of a transient approach for the mass and energy balance in an electric arc furnace.en_US
dc.typeTesis de Maestría / Master Thesisen_US
dc.contributor.mentorTrejo, Eder
dc.publisher.institutionInstituto Tecnológico y de Estudios Superiores de Monterreyen_US
dc.subject.keywordMass and energy balanceen_US
dc.subject.keywordTransienten_US
dc.subject.keywordElectric arc furnaceen_US
dc.subject.keywordmass balanceen_US
dc.subject.keywordenergy balanceen_US
dc.contributor.institutionCampus Monterreyen_US
dc.contributor.institutionCampus Monterreyen_US
dc.contributor.institutionCampus Monterreyen_US
dc.subject.disciplineIngeniería y Ciencias Aplicadas / Engineering & Applied Sciencesen_US
dc.description.degreeMaster of Science in Energy Engineeringen_US
dc.audience.educationlevelPúblico en general/General publicen_US
refterms.dateFOA2018-12-04T00:00:00Z
dc.relation.impreso2018-11-28


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Open Access
Except where otherwise noted, this item's license is described as Open Access