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In-building measurement-based radio propagation modeling using a
geostatistical interpolation technique

By

Melissa Eugenia Diago Mosquera

Executive Summary

Channel modeling can enhance communication efficiency through an accurate design to
deliver higher quality to mobile users inside buildings. Clear processes and methodologies
that can provide a high level of confidence in the design of indoor radio propagation systems
are thus required. With the deployment of wireless communication and the need to
accommodate for the shorter signal range, millimeter-wave (mmWave) enabled networks
will have a high density of base stations. In such a dense network, interference is an
important factor affecting network performance. In this way, accurate channel modeling
combined with more spectrum availability is essential to achieve the ongoing demands faced
by wireless carriers. Therefore, it is important to explore suitable in-building mathematical
propagation modeling approaches that can accurately make predictions and support the
ever-growing consumer data rate demands of modern communication systems. The
research here report is aimed at providing solid theoretical and empirical foundations of
how radio waves behave in practical wireless channels; validating the improvement in
predictions when Kriging is included for path loss modeling not only in indoor scenarios,
such as offices, classrooms, long corridors, libraries, and rooms but also in complex scenarios
as is a stadium. In order to quantify the accuracy of the proposed methodology, it is
compared with several traditional models described in the literature. Extensive path loss
measurements were collected at different frequencies and heights providing the empirical
basis for the three-dimensional (3D) Kriging-aided model. Through numerous studies during
this doctoral research, It was found that this method significantly improves the accuracy as
it considers all the singularities and site-associated features that are implicit in measured
samples. The findings of this doctoral research lay a good foundation for a greater
understanding of mmWave channel propagation, but mainly provide one of the most
accurate methods for indoor 3D modeling, using few measurements and low computational
complexity, yielding a practical and fast solution.
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Chapter 1
Introduction

The concept of using radio propagation models for delivering data or voice communications
inside buildings started to become an attractive idea many years ago, since more users
demanded better services anytime, anywhere, and especially at locations where they spent
most of their time: indoors. For this reason, deep knowledge of how radio waves behave in
a practical wireless channel is required for effective planning and deployment of radio access
networks in indoor environments for new fifth and sixth generation (5G, 6G) standards.
Therefore, there is a promising field of study to fill gaps in the wireless industry to deliver
service indoors. This field needs a clear methodology with guidelines that provide a high
level of confidence in the design of indoor radio propagation systems, especially for small
cells.

1.1 Context and Motivation

The widespread use of mobile communications, since its initial implementation in the early
1980s, has led not only to an increase of personal communication systems but also to large
demands of grade of service (GoS) of mobile users, stressing the coverage to handle more
consumers with heterogeneous GoS levels. These users, on average, spend approximately
90% of their time indoors, where they are mobile network subscribers of small cells. In this
way, an efficient radio access—constructed by accurate channel modeling—combined with
more spectrum availability is essential to achieve the ongoing demands faced by wireless
carriers [1]. Therefore, it is important to explore suitable in-building mathematical
propagation modeling approaches which can accurately make predictions, avoiding
undesirable effects—e.g., interference, which may result to a low Signal to Interference plus
Noise Ratio (SINR), throughput, and in some cases a total disruption of service [2]—and
support ever-growing consumer data rate demands of modern 5G and 6G communication
systems.

Engineers need processes and methodologies to provide a high level of confidence in the
design of indoor radio propagation systems, considering that the efficiency of those
approaches depend on the prediction level of the signal strength behavior according to
probabilistic distributions, to obtain realistic values of signal strength, at least above certain
thresholds that guarantee enough coverage in a certain area and minimize outage zones.
Therefore, the scientific community has inspired to work towards understanding and
predicting indoor radio wave propagation performance through path loss models to help
radio network engineers to achieve efficient radio coverage estimation, determine the
optimal base station (BS) location, select the most suitable antenna, and perform
interference feasibility studies; understanding how wireless signals are affected over
distance due to penetration losses through walls and floors and multipath propagation.
According to [3], the following approaches outline the importance of an accurate channel
modeling:
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1. The in-building radio propagation phenomena, complex by nature, can be characterized
with channel models.

2. The range of a wireless communication system can be calculated assessing the expected

coverage—path loss map—inside a building, including the expected range of antennas

and their potential locations.

Signal strength /path loss can be predicted more accurately everywhere in a building.

4. Channel performance predictions can be made quickly, e.g., signal-to-noise-ratio (SNR),
received signal power, among others.

5. Signal strength predictions can be useful for areas where measurements cannot be made.

w

Indoor radio propagation models for small cells must be explored with a higher degree of
accuracy due to the indoor channel differs considerably from the outdoor. Besides,
numerous attempts to characterize and estimate received signal in indoor environments
have been reported. Particularly reported measurements—in these environments—exhibit
fluctuations as a result of radio propagation effects, e.g., fast fading and shadowing.

1.2 Problem Statement

In channel modeling the accuracy and efficacy trade-off of the designed model is essential.
Purely empirical models are not accurate enough to be employed in all types of buildings,
their accuracy depends not only on the measurement results but also on the similarity of the
measured and predicted environment; and purely physical models still need a good amount
of computational resources, requiring a large quantity of building details and therefore
becoming unviable for practical radio prediction work. In hybrid models, measurement-
based methods, rigorous tuning, and validation stages are included, taking advantage from
empirical and physical models [4]-[6]. The possibility to collect large amounts of data from
measurement campaigns can be very limited for practical designs. Venues often permit data
collection campaigns having restrictions on measurement areas, test antenna location
placements, available times, and dates to conduct the measurements, etc. Nevertheless, with
a careful design of the measurement campaign, valuable information can be extracted and
used in channel modeling. Kriging, as a linear interpolation technique, shows its potential to
estimate measurements in such situations, by significantly improving the results with few
available samples as is reported in numerous studies [7]-[9]. Also, it allows us to extract as
much information as possible from existing sources and explore the accuracy and efficacy
trade-off of the desired model.

Numerous studies that only consider two-dimensional effects in indoor path loss models
have been reviewed [3]. However, these reports do not analyze the effects of parameters that
include a third dimension, e.g., the antenna height of transmitter or receiver, where there is
a study niche to fill gaps. The path loss consists of three major components: median path loss,
shadowing, and fast fading [10]. These components depend on both the relative position of
the elements of a wireless system and the obstructions in the channel. The median path loss
is predicted by any standard path loss model, such the classical single slope path loss model.
Fast fading results from rapid signal variations on the scale of half-wavelength and is often
removed by filtering. For indoor channels, shadowing occurs due to the large variability of



Chapter 1
Introduction

obstructions present in the venue, which results in a received power that fluctuates
randomly over time. Only median path loss modeling cannot be used to estimate shadowing,
but it is empirically known that shadowing has a spatial correlation. Therefore, it can be
estimated by applying an appropriate weighted average to the observation dataset in the
framework of spatial statistics or by including a method of linear geostatistics that minimizes
the variance of estimation errors under the constraint of unbiased estimation [11] instead of
the most classical assumption of shadowing as a random variable as is reported in [12]-[14].

Considering the problem description, the following research questions is formulated: How
to accurately predict radio coverage inside complex environments such as buildings without
excessive computational resources or excessive building information?

1.3 Proposal and Objectives

In order to design an indoor channel model with an outstanding trade-off between accuracy
and efficacy, the research proposed in this thesis is inspired by the novel approach of the
measurement-based radio propagation modeling method. With the aim of presenting a
complete methodology to predict three-dimensional (3D) coverage in indoor environments
with Kriging as part of the post-processing stage, clear guidelines are included in this
doctoral thesis, reducing the cost of measurement campaigns, time-consuming, and
computational complexity, as well as improving the design work with the use of suitable
antenna locations and types.

This proposed solution aims to develop 3D in-building measurement-based radio
propagation models for narrowband channels in the ultra-high frequency (UHF), super high
frequency (SHF) and extremely high frequency (EHF) bands for small cells based on Kriging.
This general objective will be achieved through:

= Designing a 3D in-building measurement-based radio propagation model.

= Developing a methodology to validate the model designed, where the post-processing
includes Kriging.

* Performing measurement campaigns in UHF, SHF and EHF bands including different
types of indoor antennas to enhance predictions.

= Achieving 3D path loss predictions, through the radio propagation model designed for
the environments selected.

= Developing guidelines to the design and deployment of indoor small cells.

1.4 Main Contributions

The principal contribution of this doctoral research is to provide one of the most accurate
methods for indoor 3D modeling (considering the error reported by the studies when
predicting path loss), using few measurements and low computational complexity, which
allows the algorithm to be implemented as part of radio propagation software tools for
modeling and designing indoor wireless systems, providing a practical and fast validated
solution. Helping radio network engineers to achieve efficient radio coverage estimation;
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estimating measurements in situations where the possibility to collect large amounts of data
from measurement campaigns is very limited; and performing channel design with Kriging
as an effective tool to improve modeling accuracy.

This doctoral research presents an opportunity of taking advantage of the combination of
both the design of mathematical models and the geostatistical interpolation technique of
Kriging, which allows us to predict signal strength inside buildings for environments that are
often complicated to model, including three-dimensional scenarios. Presenting a clear
methodology with guidelines to perform coverage and path loss predictions in indoor
scenarios, thanks to the measurement-based model proposed and the use of suitable
antenna locations and types to enhance predictions.

Motivated by the need of people communication and continuous improvements for wireless
communication services. This experimental assessment contributes not only to the academic
sector but also to the commercial sector, offering the opportunity of analyzing the indoor
signal reception quality that allows homologating new mobile equipment or indoor
performance technology in small cells. Thus, the research in the telecommunications field
leads to the achievement of strategic approaches to science and technology, providing
economic and social benefits.

1.5 Methodology

Inspired by the practical approach of the measurement-based method to predict path loss
and considering the remarkable benefits of including Kriging to calculate unmeasured
values. The methodology proposed to predict path loss in this thesis, first, takes into account
the availability of radio measurements to provide the empirical basis of the mathematical
model prosed. Then, the path loss is extracted from the received signal-strength
measurements according to the link budget of the radio channel, providing a set of samples
that will be divided into tuning and testing datasets. Through the tuning dataset, it will be
possible to train the Kriging-aided model to estimate unmeasured values and calculate the
path loss at specific locations selected as unmeasured samples, i.e., the testing dataset.
Finally, the error of the predictions is quantified once the values predicted are compared to
the real measured values.

Atthe beginning of the research, the path loss was modeled according to a classic single slope
model, i.e.,, the median path loss, plus the shadowing. Where the shadowing was considered
as the variable to be predicted using Kriging. However, during the doctoral stay, one of the
objectives was to analyze if the accuracy improved when using Kriging to predict the
complete path loss and not only the shadowing, this approach was assessed in [15]. Where,
based on the experimental measurements, when Kriging was included to interpolate and
predict unmeasured path loss, the predictions were more accurate, reducing the error by
more than 60%. Therefore, it was a milestone in the research and the methodology followed
changed. Now, the variable to interpolate according to Kriging was the path loss extracted
instead of shadowing. In order to overview the overall methodology employed in the
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following chapters, Fig. 1.1 and Fig. 1.2 illustrate the channel model methodology employed
in Chapters 3 to 6 and 7 to 8, respectively.

Measurement campaign (Chapters 3to 6)
Path loss extraction L= Py — Lix + Gex + Gpx — Lix — B

Tuning dataset Testing dataset

* nande

Model tunin,
g l, Median path loss, L5,

Shadowing extraction Ly=L—Lsg
Shadowing generation g - Kriging, I, = TN 4, - L
Find variogram model — Estimate weights (4;) — Predict Lg
Estimated path loss L=1Lgs+10nlogyo(d/dg) + e + L
Validation - Quantify Error >> Accuracy

Fig. 1.1 Channel model methodology when shadowing is predicted through Kriging.

Measurement campaign (Chapters 7 to 8)
Path loss extraction
Tuning dataset Testing dataset

Path loss generation - Kriging, L = Z{L(P A - L
Find variogram model — Estimate weights (4;) — Predict L

Validation — Quantify Error >> Accuracy

Fig. 1.2 Channel model methodology when the complete path loss is predicted through Kriging.

1.6 Thesis Outline

This thesis provides comprehensive research on how radio waves behave in practical
wireless channels, validating the improvement in predictions when Kriging is included for
path loss modeling yielding an accurate, practical and fast solution. Chapters 2 to 8 are
organized according to the qualified published papers, which summarize the findings in the
timeline of the PhD under the objectives and the research question (this format was
approved by the doctoral committee and the leader of the Doctoral Program in Engineering
Sciences). Chapter 2 surveys the state of the art of indoor path loss models and is dedicated
to the publication [3]. Then, the complete indoor mathematical model proposed is presented
in Chapter 3, as well as the validation of the accuracy of the model, which is complemented
by Chapter 4. Later, Chapter 5 aims to suggest enough quantity of training data to guarantee
accurate predictions. In line with the objectives, the methodology and the model proposed
are employed for 3D millimeter-wave (mmWave) path loss predictions in Chapters 6 and 7.
In addition, Chapter 8 has been included to characterize the path loss of a complex scenario
and validate the benefits of employing the proposed model for predictions. Finally, in
Chapter 9 the conclusions, contributions and future work are presented. The objectives of
Chapters 3 to 8 are summarized as follows:



Chapter 1
Introduction

Chapter 3 is dedicated to the publication [16], where the selection of the following three
approaches are studied: variogram function, tuning dataset method and tuning dataset
size. Besides, 57 indoor scenarios are considered to validate if ordinary Kriging is the
best linear unbiased predictor. To finally test the accuracy of the mathematical
measurement-based model proposed, which predicts the unmeasured shadowing
according to the ordinary Kriging technique, against a classic linear interpolation and the
traditional assumption of shadowing as a normally distributed variable.

Chapter 4 presents the research article [17], where the Kriging-aided path loss model is
employed for an Outdoor-to-Indoor (O2I) scenario at 3.5 GHz. And the accuracy of the
model is validated when it is compared to the results of the following standard models:
3GPP, ITU-R, WINNER+ and COST231.

Chapter 5 corresponds to the publication [18] where the question of how do you know
you select enough tuning dataset from measurements to guarantee model prediction
accuracy? is answered through the useful cost function that has been suggested in this
study.

Chapter 6 is dedicated to the article [19], where the first 3D indoor analysis is achieved
considering the proposed model and radio measurements at 28 GHz, including two
different receiver heights to provide the empirical basis for the 3D path loss model.
Furthermore, the spatial structure of shadowing is investigated through the three
variography tools in order to understand which one provides the best accuracy.
Chapter 7 presents the article [20], which validates the improvement in predictions when
Kriging is employed at 28 and 60 GHz and provides a better understanding on long indoor
corridors when the effect of corners and three different receiver heights are considered.
Chapter 8 corresponds to the publication [21], where the seating area of a stadium is
characterized at mmWave frequencies to validate the effectiveness of the Kriging-aided
model proposed.



Chapter 2

Bringing It Indoors: A Review of Narrowband Radio Propagation
Modeling for Enclosed Spaces

2.1 Summary of the Chapter

Over the years indoor radio propagation systems have evolved, motivating engineers and
researchers to provide continuous improvements for wireless communication services. To
overcome all the challenges in channel modeling for in-building scenarios deep knowledge
of how wireless signals are affected over distance is needed, as well as the best and most
accurate way to characterize them. In this chapter, state-of-the-art in indoor narrowband
channel models is presented, considering their disadvantages, and proposing a new
taxonomy to analyze them.

The purpose of this part of the research is to introduce the main propagation characteristics
for wireless communications in indoor scenarios, review mathematical models proposed for
this type of venue over more than 30 years and, finally, suggest remarks for indoor radio
propagation modeling.

2.2 Full Article
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ABSTRACT Small cells are now widely deployed indoors to address hot-spot areas where capacity
uplift is needed. This deployment leads to the increase of wireless networks as a challenge to service
demands of personal communication systems, which has inspired the scientific community to work towards
understanding and predicting in-building radio wave propagation performance. Despite this, only a few
reviews have attempted to overview channel modeling for specific indoor environments and even fewer
outline remarks that include a methodology for designing and planning indoor radio systems. Consequently,
a comprehensive survey of indoor narrowband channel models is presented, spanning more than 30 years of
continuous research to overview and contrast significant developments including their disadvantages, and
proposing a new taxonomy to analyze them. Finally, remarks on indoor radio propagation modeling with a

vision for future research opportunities are presented.

INDEX TERMS Indoor channel models, indoor radio wave propagation, wireless propagation.

I. INTRODUCTION

The widespread use of mobile communications, since its
initial implementation in the early 1980s, has led not only
to an increasing wealth of this technology but also to a
reasonable increase in grade of service (GoS) demands of
mobile users, thereby stressing the coverage to handle more
users with heterogeneous GoS levels. According to the Cisco
Visual Networking Index (VNI) report published in [1],
by 2022, global mobile devices will grow from 8.6 billion
in 2017 to 12.3 billion by 2022.

Considering the challenges of this explosive growth and
the fact that people (mobile network subscribers initially),
on average—according to the United States Environmental
Protection Agency, EPA—spend approximately 90% of their
time indoors [2], in-building wireless performance takes a
fundamental place on network operation management for
allowing coverage all the time, everywhere. The adaptation
of this mobile technology to in-building scenarios is what
makes it flexible and robust, responding to the changing needs

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiayi Zhang

VOLUME 8, 2020
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of people and businesses to deliver a satisfactory in-building
experience to mobile users.

From the early stages of 5G planning to the detailed evo-
lution of 5G requirements, it has been clear that small cells
are a key component for making the path to 5G practical
and profitable. A small cell is a radio access point with
low radio frequency power output, footprint and range. It is
operator-controlled and can be deployed indoors or outdoors.
Small cells complement the macro network to improve cov-
erage, add targeted capacity, and support new services while
improving user experience [3].

In order to deliver higher quality to mobile users inside
buildings, small cells have been deployed to address hot-spot
areas where an increase in capacity is needed. This has led
to a growing interest among wireless engineers for under-
standing and predicting how radio waves propagate inside
buildings and other enclosed spaces. As this rise of mobile
communications continues, it is valuable to have processes
and methodologies that can provide a high level of confidence
in the design of indoor radio propagation systems. Therefore,
it is important to explore in-building mathematical propaga-
tion models with a high degree of accuracy, understanding
how wireless signals are affected over distance due to wall
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and floor penetration losses and multipath effects. Some key
points that outline the importance of accurate channel mod-
eling are:

o The in-building radio propagation phenomena, complex
by nature, can be characterized with appropriate channel
models that include key propagation effects.

o The range of a wireless communication system can be
estimated assessing the expected coverage—path loss
map—inside a building, including potential antenna
locations and their expected coverage range.

« Signal strength/path loss can be predicted more accu-
rately everywhere in a building or enclosed space.

o Channel performance predictions can be made quickly,
e.g., signal-to-noise ratio (SNR), received signal power,
carrier-to-interference ratio (C/I), etc.

« Signal strength predictions can be useful for areas where
measurements cannot be made.

Propagation modeling challenges are shown Fig. 1, accord-
ing to Aragoin-Zavala [4, Ch. 5]. For indoor deployments,
the following challenges are identified:

o Parameter limitations—approximations that are neces-
sary to describe a system using mathematical concepts
within a computational development—due to the large
variability that exists in indoor radio propagation.

o Model parameter calibration that depends on specific
building characteristics that otherwise could not be
modeled.

o High complexity in considering propagation effects
inside buildings, having in mind that in many cases it
is hard to separate them and characterize those individ-
ually.

o Conditions under which radio measurements were per-
formed at different times. Since measurements are used
for both model tuning and validation, it is expected to
have a scenario under similar conditions.

103876

A. RELATED LITERATURE REVIEWS PUBLISHED

In 2002, Iskander and Yun [5] focused on deterministic pre-
diction models for path loss based on ray-tracing techniques.
The authors briefly discussed efforts to characterize walls of
complex structures and develop equivalent ray-tracing mod-
els for windows and metal-framed structures, considering
venues such as office and factory buildings. One year later,
Sarkar et al. [6] reviewed available information on various
propagation models for both indoor and outdoor. They high-
lighted that the distance/power model is the main propagation
modeling approach for path loss, adding wall and floor atten-
uation factors to the path loss computation.

Later, in 2008, Anusuya et al. [7] surveyed different chan-
nel models used to characterize indoor wireless systems,
and they concluded that the efficiency of a model is mea-
sured by computational complexity whereas its accuracy can
be measured by estimating its prediction error. In contrast,
Neskovic et al. [8] mentioned that in order to increase sys-
tem efficiency, mutual interference should be avoided, thus
favoring coexistence as a result of suitable techniques for the
prediction of indoor electromagnetic propagation.

By 2009, Neskovic et al. [8] and Trinchero and
Stefanelli [9] focused their works on analyzing the technical
literature to summarize and classify the most important
methods for the prediction of electromagnetic propaga-
tion inside buildings. Smulders [10] addressed the statis-
tical characterization—one of the classifications made by
Neskovic et al.—of indoor radio channels operating in the
60 GHz frequency band. Phillips et al. [11] reviewed path loss
prediction methods, works from 1940 to 2013, although not
focusing on indoor environments but subdividing the models
into apriori (six categories) and active measurement models
(four categories).

Considering that underground mines and tunnels are
enclosed spaces, Forooshani ef al. in 2013 [12] and Hrovat
etal. in 2014 [13], focused their surveys on these approaches,
highlighting the implications of the physical environment
(thick concrete walls), antenna placement and radiation char-
acteristics on wireless communication system design.

In the review paper presented by Deb e al. in 2017 [14],
different path loss models are discussed for indoor femto-
cells, assuming that the mobile users in that region exclu-
sively access services delivered by femtocells. Additionally,
the authors performed a comparative analysis of indoor path
loss models at 2 GHz, where they considered the effect of
two types of walls: light walls made of glass, plastic, etc.
and heavy walls made of concrete and brick. They concluded
that the most suitable in-building path loss model could be
selected depending on frequency range, building structure,
and wall and floor type.

To summarize this section, a survey of model classification
and important annotations reported in the literature is given
in Table 1.

The related works in Table 1 agree with the idea that at a
specific location, the signal path for indoor environments is
created by a much larger number of indirect components than
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TABLE 1. Propagation model classification.

Review

Iskander & Yun,
2002 [5]

Sarkar et al., 2003
[6]

Anusuya et al.,
2008 [7]

Neskovic et al.,
2009 [8]

Trinchero &
Stefanelli, 2009
[9]

Phillips et al.,
2013 [11]

Forooshani et al.,
2013 [12]

Hrovat et al., 2014
[13]

Deb et al., 2017
[14]

Hemadeh et al.,
2018 [15]

Propagation model classification

1. Deterministic
1.1. Empirical
1.2. Theoretical
1.3. Site-specific

1.  Empirical (statistical)

1. Deterministic

1. Statistical (empirical)

1. Deterministic
1.1. Ray methods
1.2. Integral methods
1.3. Differential equation
methods

1. Apriori

1.1. Theoretical/Foundational
Models

1.2. Basic Models
1.3. Terrain Models
1.4. Supplementary Models
1.5. Stochastic Fading Models
1.6. Many-Ray Models

1. Theoretical

1. Empirical

1. Empirical (statistical)

2. Physical
2.1. Deterministic
2.2. Stochastic

Statistical

Site-specific
(deterministic)

Statistical
Site-specific

Theoretical

Heuristic
2.1. Empirical models.
2.2. Statistical models.
Hybrid

Active measurement
2.1. Explicit mapping
2.2. Partition models
2.3. Iterative Heuristic

Refinement
2.4. Active Learning and
Geostatistics

Measurement-based
Deterministic

Semi-Empirical
(theoretical)

. Analytical
3.1. Propagation-based
3.2. Correlation-based

Scenario

Terrestrial wireless
communication systems

Indoor and outdoor
environments

Wireless indoor
environment

Macrocell, microcell and
indoor wireless
communication channels

Indoor environment

Wireless communication
systems

Underground mines
Tunnels

Indoor environment
covered by femtocell

Millimeter wave wireless
communication systems

Contributions

Schemes to increase
computational efficiency and
accuracy are discussed.

An impulse response
characterization for the
propagation path is presented.

Advantages and disadvantages
are discussed.

. Period of more than 60
years was covered.

L] New taxonomy for path
loss models.

Period from 1920 to 2012.

Comparative analysis between:

COST 231, MWF, WINNER II

NLOS and ITU-R P models.

L] Frequency bands: 28, 38,
60 and 73 GHz.

O Measurement campaigns

in the case of an outdoor environment. Therefore, the indoor
signal level is more fluctuating than the outdoor one, and
thus, more difficult to predict. Multipath results from multiple
reflections caused by obstacles and is more severe inside
buildings. The received signal arrives as a random and unpre-
dictable set of reflections and/or direct waves, each one with
its own degree of attenuation, phase and delay. Consequently,
multipath leads to variations in the received signal strength
over frequency and antenna location.

Phillips et al. [11] believe that measurement-based meth-
ods and rigorous—comparative—validation are needed;
moreover, that the future of wireless path loss prediction
will be active measurement designs that attempt to extract
information from measurements and not only from theoret-
ical predictions. In particular, geostatistical approaches that
favor robust sampling designs and explicitly model the spatial
structure of measurements are mentioned to be promising.

Additionally, Phillips et al. [11] state that theoretical mod-
els provide valuable physical insights about electromag-
netic propagation. However, since most of these models are
based on non-realistic assumptions, they need to be evalu-
ated through experiments. Although the cost and effort for
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are conducted.

conducting measurements increase in complex environments,
the measurement-based approach has proven to be useful and
productive.

B. PAPER OUTLINE

This paper provides a comprehensive survey of indoor chan-
nel models found in the literature, spanning more than
30 years of continuous research. The objectives of this survey
are:

« to introduce the main propagation characteristics for
wireless communications in indoor scenarios;

« tosurvey the available in-building mathematical models
in the literature and propose a new taxonomy to analyze
them, providing a complete and updated overview; and

e to outline remarks for indoor radio propagation
modeling.

The remainder of this paper is organized as follows, noting
that the reviewed literature is limited to narrowband systems.
In Section II, the main theory to study the indoor propagation
phenomena is covered. A thorough explanation and review
of in-building radio wave propagation models is presented in
Section III, as well as a new classification for indoor path
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loss models is introduced. Concluding remarks are presented
in Section IV. Finally, in section V, research opportunities and
future developments are discussed.

Il. INDOOR RADIO WAVE PROPAGATION

In order to understand the nature of the models that will be
presented, several definitions need to be highlighted, under-
lying the theory that introduces the basic concepts of indoor
radio propagation.

A. PATH LOSS AND PROPAGATION MECHANISMS

The path loss between a pair of antennas is the ratio of the
transmitted power to the received power, usually expressed
in decibels. It includes all the possible elements of loss asso-
ciated with interactions between the propagating wave and
any objects between transmitting and receiving antennas. As a
result of radio wave propagation over a channel, the radio sig-
nal is attenuated due to path loss, as well as fading processes
occur [16].

The basic components for performing an analysis of a wire-
less communication system are illustrated in Fig. 2 (consid-
ering the losses and gains in the system). In order to quantify
link performance, a link budget of the system is required,
taking into account the basic elements shown in Fig. 2.

Received power: Prx

Path loss: L

Transmit power:

oy

Electrical energy flows

Antenna gain: Antenna gain: Grx

Feeder loss: Feeder loss: Lrx

FIGURE 2. Elements of a wireless communication system.

The mechanisms behind electromagnetic wave propaga-
tion are diverse but can generally be attributed to: reflec-
tion, refraction, diffraction and scattering [17, Ch. 3]. The
path between transmitter and receiver inside buildings can
be either line-of-sight (LOS) or non-line-of-sight (NLOS).
When radio systems do not have a LOS path and the presence
of walls and floors causes severe diffraction loss and multiple
reflections from various objects, the electromagnetic waves
travel along different paths of varying lengths. The interaction
between these waves causes multipath fading at a specific
location, and field strength decrease as the distance between
the transmitter and receiver increases.

1) REFLECTION, REFRACTION AND DIFFRACTION

When a propagating electromagnetic wave impinges upon
an object that has very large dimensions compared to the
wavelength of the propagating wave, reflection and refraction
occur (illustrated in Fig. 3). As a result, two new waves are
produced, each with the same frequency as the incident wave.
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FIGURE 3. Propagation mechanisms: Reflection, refraction and
diffraction.

The reflected wave arises from the surface of the floor and
roof, from walls, windows and furniture in an enclosed space.

When reflection occurs, the wave may also be partially
refracted. Reflection and refraction coefficients are func-
tions of the material properties of the medium and gener-
ally depend on wave polarization, angle of incidence and
frequency of the propagating wave.

Wall and floor materials have a strong influence on the
propagation losses and, thus, in the amount of signal that can
be received after going deeper into a building as a result of
refraction.

In NLOS propagation, a signal transmitted through a wire-
less medium reaches the receiver via one or more indirect
paths, each having different attenuations and delays. NLOS
propagation is responsible for coverage behind walls and
other obstructions inside buildings—shadow regions—and
this is possible thanks to diffraction that occurs when the
radio path between the transmitter and receiver is obstructed
by a surface with sharp edges, i.e., a door or a wall edge
represented in Fig. 3. The waves produced by the obstructing
surface are present throughout space and even behind the
obstacle, giving rise to propagation into the shadow region.

2) SCATTERING

Similar to reflection, scattering occurs when the wave is
reflected, but in this case, the surface consists of irregularities
with dimensions that are smaller compared to the signal
wavelength and where the number of obstacles per volume
unit is large, such as a rough surface like the one shown
in Fig. 4. Therefore, the reflected wave becomes scattered
from many positions on the surface, broadening the scattered
energy [4, Ch. 4], and it increases the energy radiated in other
directions. Scattering can become much more significant as
frequency increases, such as in the millimeter-wave band
for 5G.

3) WAVEGUIDING

This effect is the result of reflections and refractions given in
areas such as corridors or other narrow gaps between walls,
which wind up carrying the wave along the waveguide to
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Energy radiated:in

Reflected wave

other directions

FIGURE 4. Scattering: rough surface.

the receiver. Waveguiding depends on incident angles, mate-
rial types and distances between walls, and it produces the
so-called waveguiding gain [4, Ch. 4], increasing penetration
depth along corridors.

In [18], parameters affecting large-scale path loss includ-
ing waveguiding were analyzed. Under certain conditions,
stronger constructive interference can be produced resulting
in a better waveguiding effect in the corridor, especiallywith
an increase in transmitter height from 1.6 m to 2.3 m.

B. FAST FADING AND SHADOWING

Multiplicative noise arises from median path loss, shadowing
and fast fading processes (Fig. 5) that a wave propagated
from the transmitter antenna to the receiver antenna suffers
in the propagation link. These processes depend on both the
relative position of the elements of a wireless system and the
obstructions in the channel. Fast fading results from rapid
signal variations on the scale of half-wavelength and is often
removed by filtering.

Shadowing + Median pathloss

Fast fading + Shadowing + Median pathloss

| |

a [FedianpatfilossT) (Shadowinay CFestfadingn ' 4 '/
V Path

Antenna Tx Antenna Rx

FIGURE 5. Path loss process.

For indoor channels, shadowing occurs due to the large
variability of obstructions present in the venue, which results
in a received power that fluctuates randomly over time.
This behavior is described by a zero-mean log-normally dis-
tributed random variable.

Statistical characterization of the received signal variations
for both fading and shadowing is useful in the design of
transceivers. Thus, knowledge of large-scale variations is
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useful in power control techniques and in the evaluation of
the coverage service area, as stated in [19].

Common fading models have been characterized in terms
of multipath effects related to Nakagami-m, Rayleigh, and
Rician distributions [20], [21]. The Fisher-Snedecor F dis-
tribution has been recently proposed as a more accurate
and mathematically-tractable composite fading model than
these traditional established models to describe the combined
effects of shadowing and multipath fading in wireless com-
munications [22]-[24].An example of this is reported in [25],
where Yoo et al. found that the F distribution can provide
a better fit to the experimental data obtained for device-
to-device communications within an open office area and
an outdoor environment at 5.8 GHz, as compared with the
well-established KG model.

C. PARAMETERS AFFECTING RADIO PROPAGATION
INSIDE BUILDINGS
According to recommendation ITU-R P.1238-10 [26] prop-
agation impairments in an indoor radio channel are caused
mainly by:
« Reflection from, and diffraction around, objects (includ-
ing walls and floors) within the rooms.
o Transmission loss through walls, floors and other obsta-
cles.
o Channeling of energy, especially in corridors at high
frequencies.
« People mobility and objects in the room, including pos-
sibly one or both ends of the radio link.
o Temporal and spatial variations of basic transmission
loss.
o Multipath effects from reflected and diffracted compo-
nents of the wave.
« Polarization mismatch due to random alignment of the
mobile terminal.
The impact of various parameters affecting radio wave
propagation inside buildings is shown in Fig. 6 and is
discussed in the next subsections.

1) INDOOR BUILDING GEOMETRY
The extent of coverage inside a building is well-defined
by its geometry, and the limits of the building itself affect
propagation of signals [26]. The building wall structure fre-
quently has several layers, setting up multipath interference
and associated resonances within the structure. These can be
analyzed by treating each layer as a section of a transmission
line, with a characteristic impedance determined by the wave
impedance, the frequency and the angle of incidence [4].
The attenuation introduced by a single layer in the build-
ing only slightly reduces the received power. However, the
accumulation of such effects has the potential to produce
significant radio shadows and may result in other propa-
gation mechanisms affecting in-building radio propagation.
Table 2 shows some relevant works that have considered
indoor building geometry as a key component to analyze
significant effects on propagation.
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TABLE 2. Relevant works that consider indoor building geometry.

Depending on measured received locations through glass door and interior walls showed
power losses from 8.8 to 35.5 dB through two composite walls and a loss of 2.5 dB through

The quantity and position of the metallic studs within the composite wall are important
factors to determine the penetration loss.

Walls are discretized into finite-size building blocks and a finite-difference time-domain
(FDTD) approach is used to compute their electromagnetic response in a periodic
arrangement as well as in corner and terminal locations.

When shelves and books are included against internal walls, reflected paths are attenuated
to such an extent that diffraction around the corners of the concrete shaft is observed to
dominate propagation into the shadow regions.

The inclusion of metal window frames perturbs specular reflection from the glass.

Six different multi-floor building structures that have a stone block type outer wall and are

Indoor building Year Frequency | Contribution
Glass door;
Composite walls (with studs) 2002 60 GHz a glass door.
[28].
Inhomogeneous periodic walls 2008 1.0 GHz
[29]
Glass windows; Drywall; y
Concrete corners [30]. 2011 1.8GHz
. 900MHz
Multi-floor [31]. 2013 2 4GHz

Short and long corridors;
Wood, glass and mixed doors;
Gypsum walls;
Textile-wood-glass walls,
divisions and metallic cubicles
[32].

2018 915MHz

Parameters
affecting radio
propagation
in-building

Losses Indoor bui!ding Diffraction

geometry

Reflection

Refraction
Obstacles
properties

Antenna
parameters

Human body
as an obstacle

FIGURE 6. Parameters affecting indoor radio propagation.

2) OBSTACLE PROPERTIES
The constitutive parameters of building materials are
frequency-dependent, even for relatively uniform walls, due
to the specific molecular structure of the materials used. For a
lossy medium—highly conductive—or for very high frequen-
cies, the skin surface depth is small, thus most of the current
stays on the surface of the material and the penetration depth
is small. Therefore, a window with metallization will have
a high current on its surface near an antenna but will allow
little wave penetration. Conversely, even a highly conductive
material that is thinner than its skin depth will still allow
energy to pass through.

According to ITU-R recommendations, propagation pre-
diction models may need the information on the complex
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generally described as university, hospital and office type buildings are considered.

The attenuation in short corridors is lower than in long corridors, with the variation of
around 3 dB and peaks up to 7.96 dB.

permittivity of building materials and of building structures
as basic input data (ITU-R P.2040 [27]). Consequently, all
possible obstacle properties need to be considered between
the transmitter and receiver antenna. In Table 3, some relevant
works that take into account these parameters are described
in detail.

3) ANTENNA PARAMETERS

A wireless system design aims at delivering optimal signal
distribution to all areas inside a building. This power distribu-
tion among propagation modes is governed by the position of
the transmitter antenna [38]. Over the years, researchers have
studied antenna performance and techniques to overcome
some restrictions for wireless indoor system design that have
been identified, as depicted in Table 4.

For several decades, multiple-input multiple-output
(MIMO) antenna technologies have been considered as a
promising next-generation technology due to its ability to
offer adaptive beamforming gains and spatial multiplexing,
substantially increasing capacity for wireless links and espe-
cially inside buildings where rich multipath can contribute
to higher gains. Therefore, studies that consider this technol-
ogy have been reported, such as in [39], where the authors
survey three new multiple antenna technologies that can
play key roles in beyond 5G networks: cell-free massive
MIMO, beamspace massive MIMO, and intelligent reflecting
surfaces. The advantages of cell-free massive MIMO systems
in terms of their energy and cost efficiency are quantified
in [40].

4) THE HUMAN BODY AS AN OBSTACLE

The movement of people and objects within a room causes
temporal variations of the indoor propagation characteris-
tics. This variation, however, is very slow compared to the
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TABLE 3. Relevant works that consider electromagnetic properties.

Obstacle and property Year Frequency | Contribution
. Slab wall and complex The patterns of the local mean power distribution for the complex wall cases are quite
wall. 2004 90MHz different from that of the slab and effective wall cases. The areas covered by power contours
L] Permittivity [33]. with same power levels are also different by as much as 40% to 50%.
= Single floor.
Temperature and 2008 2.4 GHz A direct influence of relative humidity on signal attenuation is identified.
relative humidity [34].
The effects of reflective (metallic) insulation on indoor digital television (DTV) signal
L] Metallic. 2011 70,200, and | reception in rural houses were investigated. Simulation results indicated that under NLOS
. Reflective insulation [35]. 600 MHz conditions, the presence of reflective insulation may significantly degrade indoor signal
reception and causes a large variation of signal level inside a house.
L] Solid concrete block wall;
S]:;’ll'ty conerete block A maximum attenuation of around 50 dB is observed for windows.
Red ,bri ok vyl Difference in the polarization responses for the windows can be observed. Reasons for the
Plasterboard w’all‘ Range from | diversity in the results are different composition and structure of the glasses, different metal
Til £ ’ 2018 400 MHz to coating material (conductivity and thickness), and a difference in the number of coated
tie rool, 2.7 GHz glasses.
Slate roof; . . . . .
. Due to the largest total thickness, the highest delay is found for cavity concrete block, while
Modern windows. . .
.. the small thickness of slates and plasterboard results in low delay.
= Conductivity;
L] Thickness [36].
L] Plaster slabs(wall); Range from
Aluminum plates (wall). 2019 26 to 40 The deduced incident angle highly depends on the material permittivity.
. Permittivity [37]. GHz

TABLE 4. Relevant works that consider antenna parameters.

Parameter Year Frequency Contribution
Polarization [41]. 2007 10.5GHz Horizontal polarization mitigates the effects of rays reflected from the human body.
A method is investigated for evaluating the MEG of mobile antennas in LOS street microcells
M ffecti . with low base station antennas.
ean effective gain
(MEG) [42] & 2008 2.1975 GHz The proposed statistical distribution model is valid and effective in both estimating the MEG
) values of mobile antennas and designing the LOS street microcell systems with low base station
antennas.
Location [43]. 2008 1800 MHz Crmcal regions are identified, where a new transmitter should be placed to provide a better
signal for indoor coverage.
Signal attenuation can be reduced by using antennas with suitable radiation patterns at
Range from2 | - :
. ppropriate locations.
Radiation pattern [44]. | 2013 GHz to 6 . . . . . N
GHz While omnidirectional antennas offer better signal coverage in NLOS tunnel regions, directional
antennas perform better in LOS regions.
. The authors provide the elevation and azimuth angular spreads for the measurements done in an
Elevation; 2.52-2.54 . . . .
Azimuth [45] 2017 GHy band urban macro-cellular and urban micro-cellular in an outdoor-to-indoor (O2I) environment and
study their dependence on the user equipment (UE) height.
Loc;atlon; L (S50 Azimuth angle is considered at the receive side, where the directional horn antenna was rotated
Azimuth angle [18]. 2018 22 GHz . . o .
over azimuth angles in 10° azimuth steps.
The attenuation introduced by brick (5.24 dB for V-V and 5.54 dB for H-H) and solid block
Polarization: vertical— wall (4.32 dB for V-V and 4.36 dB for H-H) is not very significant and there is no advantageous
. : Range from larization f fth terial
vertical (V-V) and polarization for any of these materials.
. . 2018 400 MHz to . .. . . o
horizontal-horizontal 27 GHz Plasterboard introduces negligible attenuation with no polarization dependence.
(H-H) [36]. ) Strong polarization dependence of the attenuation is observed with significant transmission
losses.
Radiation pattern; 2020 3to4 GHz An analysis of the effect that the radiation pattern of the antenna element that makes up the base
MIMO [46]. band station array has on the structure of multi-user MIMO channels is presented.

data rate likely to be used and can, therefore, be treated as
virtually a time-invariant random variable [26]. Apart from
people in the vicinity of the antennas or in the direct path,
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the people mobility in offices and other locations in and
around the building has a negligible effect on propagation
characteristics.
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TABLE 5. Relevant works that consider human body effects.

Considerations

Human body shadowing was studied when a person periodically
crosses the link about 0.7 m from the receiving antenna for the radio
links.

The receiver was moved along the front part of the body. Thirty-
three different positions were measured on the chest, legs and arms.

Two different pairs of planar antennas were used, namely, CPW-fed
planar inverted cone antennas (PICA) and miniaturized CPW-fed
tapered slot antennas (TSA).

The spectrum analyzer used for measurements supports signaling
mode, in which it can be set to record or stop automatically by
signals captured, which can be used to reduce the influence of the
human body. Despite this, the signaling mode is disabled so the
influence of the human body can be investigated.

The body shadowing parameter was computed as the value of mean
number of persons per m?.

Measurements were performed around a wicket gate of Kamiooka
Station, where about 140,000 people passed through it a day. Many
human bodies move in the measuring environment, and since there

Human body effect Year | Frequency Accuracy
Excess loss due to
scatt?rmg. blockage 2006 245 GHz Fading values: 8 dB - 10
and fades dB
due to motion [51]
Reflections Standard deviation o
ey i [ 7] 2010 3-10 GHz (path loss): 8 dB (PICA)
¥ parts and 6.7 dB (TSA)
Human body influence Power level decreases
depending on specific 2010 | 3.5GHz N Se8
. from 2 to 5 dB.
locations [53]
900 Mean error (path loss):
1806 2100 900 MHz - 0.8 dB,
Body shadowing [54] 2014 and 2’400 1800MHz — 1.96 dB,
MH 2100 MHz — 1.49 dB and
? 2400 MHz -0.56 dB
The RMS error of the
propagation loss
Multlpl§ hum‘an body 47 GHz and estimation model (with
shadowing of 2019 66.5 GHz human body effects) and
. J

multipath [55] the measured value

improved by about 1 dB

on average

Many researchers have quantified the human body effect as
an obstacle in radio propagation for indoor. Seesai et al. [47],
observed that body shadowing leads to lower signal strength
and more delay time, directly impacting high data rate appli-
cations for signal transmission. When the direct path is shad-
owed by a person, the attenuation generally increases by more
than 20 dB [48]. In the project COST action 231, the authors
proposed a stochastic model which reproduces a succession
of realistic typical human movements performed in a random
manner [49].

Other results confirm that human bodies are significant
obstacles (and reflectors) for millimeter-wave propagation
(60GHz). The movements within the channel cause a prob-
lematic “‘shadowing effect,” especially when the direct path
is obstructed. For 2.45, 5.7 and 62 GHz, the propagation
channel is at risk from temporal fades caused by people’
s movement [50], where density and mobility are essential
parameters to be considered.

Efforts have been made to develop models that account
for human body effects. Ghaddar er al. [41] demon-
strated that the presence of the human body might
be approximated by a conducting circular cylinder at
microwave frequencies. To validate the model, vertically- and
horizontally-polarized continuous wave measurements were
performed at 10.5 GHz between two fixed terminals inside
a room along with the presence of an obstacle—person or
metallic cylinder—moving along predetermined parallel and
perpendicular crossing paths with respect to the LOS direc-
tion. Results indicate that there is a strong correlation between
the effects of the human body and those of a conducting circu-
lar cylinder. Table 5 summarizes characteristics and outcomes
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is nothing constructed between the transmitting and receiving
sounds, only the human body obstructs the distance between the
transmitting and receiving sounds.

reported in the literature about the indoor path loss models
that consider human body effects.

Ill. INDOOR RADIO WAVE PROPAGATION MODELS
Interference management is at the heart of a suitable wireless
propagation prediction, and it is essential for maintaining a
desirable throughput while minimizing the impact of inter-
ference. The goal of channel modeling is to provide accurate
mathematical representations of radio propagation to be used
in radio link and system simulations for the system deploy-
ment modeling.

In order to meet indoor design demands in an efficient
way, many models have been proposed for ensuring system
performance, since predictions will be closely related to real
values. As a result of this review process, Fig. 7 shows a
new classification for indoor channel models, grouping them
into two major categories and six subcategories that provide a
complete and updated overview. Various types of indoor envi-
ronments represent hotspot areas to provide radio coverage on
public or private buildings, e.g., residential venues, airports,
schools, libraries, universities, shopping centers, restaurants,
offices, hotels, factories, tunnels, etc. Most of these buildings
are considered in the surveyed models and they are reported
as target areas in the relevant works stated for empirical,
physical, hybrid and outdoor-to-indoor models.

A. GENERAL CASES

1) EMPIRICAL MODELS

These models are based on measurements and observations
that are made under different conditions to obtain valuable
and building-specific information. Their accuracy depends
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indoor Specific cases outdoor

In radiating cables

FIGURE 7. Indoor path loss models classification.

not only on the results of measurements but also on the sim-
ilarity of the environment (measured vs. predicted). Model
parameters are tuned with measurements to account for build-
ing or site details that otherwise could not be obtained.

Empirical models characterize wave propagation in terms
of the distance between transmitter and receiver antenna,
operating frequency, antenna heights and angles, number of
walls and floors, etc. These models mainly focus on finding
path losses from measured data only.

Numerous empirical modeling approaches consider refer-
ence models to provide an initial mathematical base, e.g., both
the distance power-law model and distance-dependent path
loss models are classical references, as the Okumura-Hata is
for outdoor. In the case of the distance-dependent path loss
model not only the distance between the antennas is taken into
account—such as the power-law model [17, Ch. 3]—but also
a reference distance (located in the far-field of the radiating
antenna [56, Ch. 3]) is considered. Table 6 shows a summary
of empirical models published in the literature. Including a
specific reference model on each case. Additionally, the stan-
dard deviation of the prediction error, o, is presented as a
metric for comparison between measured and modeled data.

According to [32], theoretical models have a high pre-
diction error percentile (average error is the difference
between calculated and measured attenuation in [32]), mainly
the one-slope model with values between 12% and 27%.
Log-distance and ITU models have a better performance
for indoor, with different obstacles and corridors considered.
An exception for this high error behavior is the empirical
model proposed by Morocho-Yaguana et al. where the atten-
uation error is decreased by approximately 10 dB, meaning
that the analyzed models have been optimized.
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2) PHYSICAL MODELS
Physical models are based on Maxwell’s equations to
describe the behavior of the electromagnetic field, consider-
ing the propagation mechanisms involved. The results pro-
vided by physical models are therefore deterministic, i.e., if
simulation characteristics remain unchanged the predictions
yield the same or very similar results. Although physical
models have higher accuracy than empirical, they have the
disadvantage of a heavy computational load. Moreover, this
high accuracy strongly depends on the accuracy and avail-
ability of building databases of the simulated scenarios.
Table 7 summarizes some of the most popular physical
models published in the literature, where their principal char-
acteristics are highlighted.

3) HYBRID MODELS

Hybrid models take advantage of the accuracy of physical
models and the carefully calibrated radio measurements car-
ried out in empirical models, thus combining the best of
both approaches. On this basis, propagation models that com-
bine measurements to adjust parameters that depend on spe-
cific building characteristics and consider physical principles
for modeling radio wave propagation are known as hybrid
models.

According to [26], detailed information of the building
structure is necessary for the calculation of indoor field
strength, such as in models for indoor prediction based on
the uniform geometrical theory of diffraction (UTD) and
ray-tracing techniques. These hybrid models combine empir-
ical elements with the theoretical electromagnetic approach
of UTD. The hybrid method contemplates direct, single-
diffracted and single-reflected rays, and can be extended
to multiple diffractions or multiple reflections as well as
combinations of diffracted and reflected rays. By including
reflected and diffracted rays, the basic transmission loss pre-
diction accuracy is significantly improved.

Table 8 summarizes relevant hybrid indoor models found
in the literature.

B. SPECIFIC CASES

1) OUTDOOR-TO-INDOOR (02l) MODELS

Since 1998, Durgin ef al. had in mind that measurements
and models may aid the development of O2I residential
communication wireless systems [84]. The high penetration
loss of signals arriving from outdoors limits the range of the
covered area inside a building and emphasizes the need for
Heterogeneous Networks (HetNet) [85] in providing cover-
age for obstructed environments.

In accordance with the Small Cell Forum [86], HetNets are
defined as “multi-x environment — multi-technology, multi-
domain, multi-spectrum, multi-operator and multi-vendor.
A HetNet must be able to automate the reconfiguration of its
operation to deliver assured service quality across the entire
network, and be flexible enough to accommodate changing
user needs, business goals and subscriber behaviours”. Small
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TABLE 6. Relevant works with empirical indoor models.
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Model Name | Frequency | Target area | Attenuation Ref model Antennas o Considerations ]
Ericsson [ .
Multiple ) Added isolation | Only Four  breakpoints ~ are
. Business . included and both an upper
Breakpoint 900 MHz between the propagation - -
office and a lower bound on the
Model (1988) floors of 10dB measurements .
[57] path loss are considered.
Focuses on the physical
900 - 1700 Multi storey Distance properties of walls and
MHz office 6dB per floor power law Rx - Dipole - floors  located between
Keenan-Motley construction model transmitting and receiving

Model (1990)
[58], [59]

Attenuation
Factor Model
(1992) [60]

ITU-R Indoor
Model (1997)
[61]

Tuan Empirical
Indoor Model
(2003) [62]

Barbosa Indoor
Model (2005)
[63];

Empirical RMS
delay spread
model (2017)
[65]

Morocho-
Yaguana
Empirical
Model (2018)
[32]

antennas.

P’: Path loss; S: Path loss at 1m, n: power law index, d:

floor of the building, k: number of floors traversed.

Office

914 MHz building

12.9dB - 16.2dB
per floor

Distance-
dependent
path loss
model

P' 4+ kF = S + 10nlog,,d

distance between transmitter and receiver, F: signal

Tx -
Omnidirectional
quarter-wave
monopole

Rx — Omni
discone

5.8dB

attenuation provided by each

The effect of building type
as well as the variations
caused by obstacles are
considered.

— d
PL(d) = PL(d,) + 10nlog,o (d ) + FAF

_ 4m
PL(d) = 20logy, ( i

o

d
)+prF+q><AF

PL: mean path loss, n: mean path loss exponent, d,: reference distance, FAF: Floor Attenuation Factor.

p: number of soft partitions, g: number of concrete walls between transmitter and receiver. To predict path loss contours for a transmitter
and receiver located in the same wing of an office building where individual office cubicles are separated by cloth-covered plastic

dividers).

900 MHz - Rfe;ld?ntlal;

100 GHz e
commercial

1.8 - 2GHz:
residential 4n*
dB; office
15+4(n+1) dB;
commercial 6+3
(n+1)
900MHZ:
office: 9dB 1
floor; 19dB 2
floors; 24dB 3
floors;

Distance
power law
model

Only floor loss is accounted
for explicitly and the loss
between points on the same
floor is included implicitly
by changing the path loss
exponent.

*n: number of floors

d
Leotar = L(d,) + Nlogyo (d_) + Lf(")
o

N: distance power loss coefficient, L(d,): basic transmission loss at 1 m, and assuming free-space propagation L(d,) = 20 log;o(f) —
28 where f'is in MHz, Lg: floor penetration loss factor, n: number of floors between base station and portable terminal.

900 MHz -
5.7 GHz

University
campus

Horn
directional
antennas

6.08 dB at
2.45GHz

Key propagation
mechanisms are considered
through measurements and
key parameters can be
tuned using measurements.

L=k + Gy +kylogf +kslogR +n, (k4P1 + ksP2) + kemy

Gg: antenna gains, f: operational frequency, R: propagation distance, P1 and P2: associate with the angle of incidence to a wall, n,, my:

number of walls and floors.

5 floors
- building of a
university

Distance-
dependent
path loss
model

Rx - monopole 6.05dB

An  empirical  function
(based on Padé
approximant) is used, as
well as a factor that
describes the sign
randomness.

In [64], the authors
employed this model at 2.6
and 3.5 GHz.

d
PL = PL, + 10y logy, (d_) +x0 + f(ny, a,b)
o

PL,: free space propagation from the transmitter to a 1 m reference distance, y: path loss exponent, x: normalized random variable, o:
standard deviation of the measured data, f(n,, a, b): function of the number of floors (n,,) between the transmitter and the receiver and
of the adjustment parameters a and b.

Indoor stair;
corridor;
office

2.5-
2.69 GHz

Distance-
dependent
path loss
model

Tx and Rx -
omnidirectional
monopole
antennas

The RMS delay spread is
described as a linear
function of the path loss,
and a normal stochastic
variable is introduced.

d
PL(d) = PL(d,) + 10nlog,, (—) +CH+X,

n: path loss exponent, C: constant, X,: shadowing effect.

University
campus

915 MHz

3dB-7.96 dB
for short (<22m)
and long
corridors (>22m)

Distance-
dependent
path loss
model

d,
Average
Tx and Rx - mcasurc.d
Yagi attenuation
data error
of 2.5%

Loss  coefficients  for
structures, shapes,
materials and obstacles
typical of a campus
environment are provided.

CF': correction factor.

Liotar = CF + nlogd + X,
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TABLE 7. Relevant works with physical indoor models.

|
Model Name | Frequency | Target area | Complexity | Ref model Antennas [ Considerations J
I Two principal
mechanisms: ~ attenuation
Hotel and Validation with due to walls and
852 MHz office 40 min Ray optic mﬁ:asur:cments 44dB(d < diffraction from cbs_tacles
building methods using dipole 30m) near the floor and in the
Honchz_arenko- antennas plenum, with additional
Bertoni Model diffraction around the
(1992) [66] corners, are considered.

Ray-Tracing
Site-Specific
Model (1994)
[67]

Multichannel
Coupling
Prediction
(2000) [68]

AZB Algorithm
for Efficient
Ray Tracing
(2000) [69]

Lee Ray-
Tracing Model
(2001) [70]

Ray-tracing
model (2019)
[71]

PGMM model
[72]
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By = ) B e
[

ET: total field at a receiving site, Ei: field magnitude, Wi: phase of the i ray.
Deterministic model that
is based on the theory of

Paralletl. ) sz vl oz o electromagnetic wave
4and 1.3 University computing to . Omnidirectional propagation.
allow Ray-tracing L <5dB . . .
GHz campus multiple biconical This algorithm predicts
workstations antennas multipath impulse
responses  based  on
building blueprints.

B = Eofufuti@| [r@o ] [ r@we
7 k

E;: complex field amplitude of the i" ray at the receiver, E,: reference field strength, f,;: field amplitude radiation pattern of the transmitter

antenna, fy;: field amplitude radiation pattern of the receiver antenna, L;(d): path loss distance dependence for the i multipath
component, I'(6j;): reflection coefficient, T(6);): transmission coefficient, e~/kd; propagation phase factor due to path length (k =
2m/2).
The Mcc method
transforms the
propagation problem into
a linear system of coupled
channels. The coupling
coefficients that build the
Commercial interaction matrix of the
Office . Multi-channel base station for channels depend only on
1890 Mz buildings 20 min Coupling (MCC) | wireless B the geometry of the
telephones environment. Once these
coupling coefficients are
calculated the unknown
power in the channels is
casily  calculated  for
different transmitter
configurations.

Pg = capPu

Pg: power leaving the channel f at element Ay, F,: power leaving at element A; the channel a, cqp: energy coming from element A;
reaches element A by transmission, reflection or scattering at element 4;.

The Angular Z-Buffer

From 3 h to .
Third floor of | 10 min by ) 679dp— | (AZB) model is based on
950 MHz - . Ray-tracing - geometrical optics (GO)
a building using AZB 8.33dB B
algorithm and the uniform theory of
& diffraction (UTD).

F(0) = (RODE 0,996 + T, 6)E (0, )9) S22

E: transmitted field, 7: distance between the transmitter antenna and the observation point, Eg(6,$) and Ey4 (6, $): parallel and
perpendicular components of the normalized radiation pattern of the transmitter antenna, 6 and ¢: spherical coordinates of the
observation point referred to the coordinate system associated with the antenna, Ty and T,: parallel and perpendicular transmission
coefficients.

Propagation effects such
as reflection, transmission

52GHz University - ?aﬁ lajlunchmg '(l;x N idirectional and diffraction are
campus echniques mnidirectional considered  via  UTD
principles.
B = Eofufulys(@) {]_[ &[]%]] E,Axsl,sl')}e—md
I k l

Lgs: free space path loss, l?,: reflection coefficient for the ;" reflection, 'f’k: transmission coefficient for the ™ transmission, EIAI: the
diffraction coefficient and the spreading attenuation for the /* diffraction, e ~/#%: propagation phase factor (8 = 2/ and d represents
the unfolded path length).

The ray-tracing model
X3D  in  simulation

Reysising, software WI was applied,

Al fos 30 and 90 and the resulting data was
space reference GHz: post  processed  and
5,31 and 90 Con:ldorg distance (CI) Directional <2dB (LOS) | compared with
(University - antennas <5dB measurement results.
GHz path loss model : .

campus) . 5 GHz: Omni- (NLOS) Agreement between

and the floating- P . .
intercept (FI) directional simulation and
antennas measurement results was

it o il generally  good  for

average path loss, using
both CI and FI models.

d
PL¢,(f,d) = FSPL(f,d,) + 10nlog;o (d—) + X,
o

PLg(d) = a + 108 logyo(d) + X,
FSPL: free-space path loss at 1 m, X,': zero mean random variable with standard deviation o.

a: floating-intercept, f: slope of the line on the log scale, X, zero mean random variable.
A normalized power

Indoor Normalized *For validation .
28 GHz conference - power weighted Tx — Omni- - “’e‘gh“’d GMM (PGMM)
N . S was introduced to model
scenario gaussian directional

the channel multipath
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TABLE 7. (Continued.) Relevant works with physical indoor models.

mixture model
(PGMM)

Rx Horn
antenna

components (MPCs).
With MPC power as a
weighted  factor, the
PGMM can fit the MPCs
in accordance with the
cluster-based channel
models.

M¢
3d — d 3d d j
Hnrrnt,l - z FR3x (eRx,l' ¢Rx,l)Al,mF73:x (ng,lr ¢Tx,l)e]2ﬂfd'l'm
m=1

l€{1,2,...L}, L: number of the clusters, t: time, M,: number of MPCs in the /" cluster, Tx and Rx: the transmitting and receiving ends,

d

F3% and F3%: transmitting and the receiving antenna responses, Aim: polarization matrix, fz;,,: Doppler frequency, n, and
n,: transmitting and receiving antenna index, H3%, ;: sum of the M, channel MPCs in the /" cluster.

1t

cells—in most cases, for indoor environments—have moved
from being a relatively niche technology to fill gaps in cover-
age and capacity to the central enabler of the emerging HetNet
and of 5G. This is the context for the publication of Small Cell
Forum’s Release 7 [87], which provides a detailed technique
for deploying the HetNet and self-optimizing network (SON)
and for laying the groundwork for 5G.

SON network functions are widely recognized as key
enablers of small cells. Therefore, in the Small Cell Forum’s
Release 9 [88], the main focus described is SON functionality
and performance with special attention to interoperability
between small cells and macrocells.

021 models characterize signal propagation inside build-
ings coming from an external base station, as illustrated in
Fig. 8. O2I modeling becomes very relevant especially in
situations where indoor coverage is desired at a reduced cost
and capacity demands do not justify the deployment of an
indoor cell. A summary of the most important O2I models
are stated in Table 9.

FIGURE 8. 021l specific case.

Lee et al. [89] investigated the multipath dispersion charac-
teristics of O2I propagation in the angular and delay domains.
This study is based on field measurement data conducted
at 32 GHz in two different office building sites: traditional
building and thermally-efficient building.

103886

Building

Antenna T

Incident wave (from indoor)

FIGURE 9. 120 specific case.

2) INDOOR-TO-OUTDOOR (I20) MODELS

Due to the fact that the deployment of femtocells over
macrocells—Fig. 9—is currently considered as an attractive
solution for extending the coverage area for indoor users,
the interference to macrocell subscribers is a key parameter
to consider for deploying these systems. To estimate this
interference and to consequently ensure optimum network
design and operation, studies in propagation 120 models are
needed.

In an effort to evaluate the effects of architectural layouts
on 120 channels Hamid ef al. [96] developed a model that can
be utilized to characterize this type of channel for femtocell
deployments in large buildings—e.g. corporate offices—as
well as residential houses. The channel model for the for-
mer was performed using exhaustive measurements at an
academic facility with a large number of rooms. For the
latter, ray-tracing was employed due to the challenges of per-
forming extensive measurements at a statistically large num-
ber of different residential houses. By using complementary
approaches in [97], Allen et al. did not focus their work on
characterizing the channel but on facilitating femtocell net-
work deployment through two empirical 120 path loss models
derived from continuous-wave (CW) power measurements.
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TABLE 8. Relevant works with hybrid indoor models.

Model Name | Frequency | Target area | Ref model Antennas () Considerations J
Distance- From 20 8 dB Adlelonal phen(‘)n}ena suggestgd by
dependent path . physical models is incorporated in the

. . Tx and Rx — (conventional .
University loss model; angle- e model, but still the
900 MHz omnidirectional model) to 6.7dB . ..
campus dependent of straightforwardness of the empirical
. . | antennas (proposed . .

Reduced- attenuation factor; model) approach is retained. The model does

Complexity UTD not take account of reflected rays.

UTD Model

(1998) [73]

Measurement-
Based
Prediction MbP
(2006) [74]

Hybrid
Parabolic
Equation-
Integral
Equation
Indoor Model
(2007) [75]

Novel large-
scale path loss
mode (2015)
[76]

Time-Variant
Fading
Statistics
Model (2015)
[77]

M
PLy(d, ¢) = —10log Z (PL(dw)PL,(d) X |D(dm, P, din, 1) 1?) + PL, (d)

m=1

M: number of corners in the building database, D(dm, G d' s (b’m): diffracted fields, (d,,, ¢,,): coordinates of the corner relative to
the transmitter, (d',,, ¢',,) coordinates of the receiver relative to the corner.

Distance- Path loss is predicted in areas where
g);:jl 1111[1(2)1:18:m dependent path E;nzng;i;f L From 8.43 dB other indoor models fail to do so. MbP
1800 MHz loss model; o . (K&M) to 1.96 tunes variations with the
office directional indoor
ikt Keenan—Motley et dB (MbP) measurements that are used as part of
(K&M) model the modeling process.

Lso = ky + 10nlogr + k,r
Lsg = Ly +20logr + n,a, + nsar
Lso: median path loss, k; and k,: parameter to tune using the signal strength measurements, n,, and n;: number of trespassed walls and
floors, a,, and a;: wall and floor factors to tune.

Indoor Parabolic wave
2.45 GHz scenario OHe Wav - - No validations
equation (PE)
(rooms)

N
E =E)+ Z G k§AgES;
j=1

E, l-O: incident electric field, Ag;: Dielectric constant, ij: Green function, §;: total surface.

Close-in free LOS: The results show that novel large-scale
Corridor space reference 10.4dB (C)9.9 | path loss models provided are simpler
open-pla,n distance (CI); dB (CIF) 9.5 dB and more physically-based compared
28 and 73 and close(i- floating-intercept Tx and Rx — horn (ABG) to previous 3GPP and ITU indoor
GHz Tl (e (FI) path loss antennas NLOS: propagation models that require more
— model; alpha- 12.5dB (Cl) model parameters and offer very little
beta-gamma 11.9 dB (CIF) additional accuracy and lack a
(ABG) model 11.6 dB (ABG) physical basis.

d
PL¢(f,d) = FSPL(f,d,) + 10nlogy, (d ) + X,

0

PLep(f,d) = FSPL(f,d,) + 10n (1 +b (f ; f)) log1s (di) + X, CF

d
PLyge(f,d) = 10alog,, (d_) + B + 10y log,, (
(4

b: intuitive model-fitting parameter that represents the slope of linear frequency dependency of path loss, f,: fixed reference frequency
that serves as the balancing point or center of the linear frequency dependency of the path loss exponent (n).

f ABG
—_— X,
1 GHZ) + 4o

a and y: coefficients that describe the distance and frequency dependence on path loss, : optimized offset parameter that is devoid of
physical meaning, X,“5¢: shadowing or large-scale signal fluctuation.
The transitions between the fading

Hidden Markov states by means of a hidden Markov

. . Model; geometry- model parameterized from
University based second- Tx and Rx — measurements are characterized.
3.8 GHz gg;nﬁizs order statistics; custom-made - The investigated environment was
building) distance- dipole antennas located on the first floor of an office
dependent path building and consisted of typical
loss model offices along a corridor separated by

brick or plasterboard walls.

d _
L=A0+nlog10(d—)+5
(4

Ao: deterministic path-loss at the reference distance d, = 1 m, §: mean shadowing, 7: path loss exponent.
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TABLE 8. (Continued.) Relevant works with hybrid indoor models.

Measurement-
based spatio-
temporal
statistical
channel model
(2015) [78]

Optimized Ray
Tracing Path
Loss Model
(2017) [79]

Ray-tracing-
based
simulation
(2017) [80]

Extended S-V
model (2017)
[81]

Wireless sensor
network model
(2018) [82]

mmWave path
loss model
(2019) [83]

60 GHz
70 GHz

Large office
rooms,
shopping
mall, and
station
scenarios

Power decay and
shadow fading
model

Tx — Horn antenna
Rx — Bicone
antenna

~1 dB (empty
office)

~ 2 dB (station
scenarios)

The proposed framework covered not
only specular but also diffuse signals
to provide a complete description of
the channel. The validity of the model
was demonstrated by means of
pathloss and delay spread.

Py: initial path!

loss, By: power decay factor, ¢: normal

Ray-tracing

@, = Poexp(=7,/Bo)§
random variable, 7;: delay time.

From 11.47 dB

The accuracy of ray-tracing for
estimating the path loss for indoor

deterministic N . (N ray model) S .
2.4 GHz Wide corridor | ray model; path Tx-Router Cisco to 10.96 dB NLOS propagation 1s imp rqved using
. Rx - Tablet . this approach. The ray-tracing model
loss model (link (modified ray- . :
budget) tracing model) is modified to have a better agreement
with measured data.
P
PL(nray+Diff+s) =10 lOg 10 ( : ) + Lepstein(N) + PLS
r—-nray

P;: transmitted power, Pr_p,qy: received power for an N ray model, Leyseein (N): three glass partitions (Epstein Peterson method), PLj:

path loss due t

26 GHz

0 scattering.

Center hall
(university)

Third dimension
(3D) ray-tracing

Tx and Rx —
Customized
biconical antennas
(3 types of virtual
antenna array
topology MIMO)

Mean error of
3.5dB

The 3D ray-tracing simulator is
calibrated based on the provided
indoor measurement results and it is
observed that the measurement and the
ray-tracing-based simulation results
have reached a good agreement.

PL

W
=—101lo i [H()I?
= 810 N, )
=1

H(f;): channel transfer function, Ny: number of the measured frequency points.

60 GHz

Office
environment

Extended Saleh-
Valenzuela (S-V)
model

Tx and Rx — horn
antennas

The measured channel has been
modeled based on an angular extended
S-V model. The authors found that
azimuth departure angles are highly
related to antenna position and the
measurement environment, while the
elevation departure angles are more
related to antenna height difference.

Bt b 60) = ) ADCOE = TO, b, = 02,00, — OF)
i

h(t, @ty O¢x): Channel impulse response for the channel model in multiple-input single-output, ¢, and 6,,: azimuth and elevation angles
at the Tx, A® and C®: channel coefficient and channel gain for the i cluster, T(i),CDEQ and @EQ: time-angular coordinates of the i

cluster.

2.4 GHz and
900 MHz

University
campus
(laboratory)

Two-ray ground
reflection model;
distance-
dependent path
loss model

Tx and Rx —
dipole antennas

RMSE:

3.76 (50cm
from Tx at 2.4
GHz); 5.05
(50cm from Tx
at 900 MHz)

Frequency and three-dimensional link
trajectory are considered as key
parameters in evaluating path loss.
The authors highlighted the effect of
height on path loss exponent by means
of wvarious measurements taken
indoors.

PL = 48.64 + 10nlog(f) + 10nlog(d) — nlog(h,) — nlog(h,) + X,

h¢ and h,.: heights of the transmitter and receiver, X,;: is determined by studying the theoretical values and the path loss measurements.

73 GHz

University
and airport
environments

Close-in reference
distance model
(CIM); floating-
intercept model
(FIM)

Tx and Rx —
directional horn
antenna

Results show that the path loss
exponent estimated from the CIM is
very close to that of the free-space
path loss model, while the FIM
provides a Dbetter fit to the
measurement data.

d
PL¢y(d) = PL(d,) + 10nlog,, (—) + X,

d,

PLpy = @+ 108 log,0(d) + X,

PL(d,): close-in free space path loss, d,: close-in free space reference distance, X,: normal random variable with mean 0 dB and standard
deviation o. a: floating intercept, 3: linear slope.
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TABLE 9. Relevant works with 021 models.

Model Name Frequency | Target area | Ref model Antennas Penetration loss | Considerations J
Penctration loss Tx - The direct path as well as those
model; loss Omnidirectional radio waves propagating through

Department attenua;tion (d to buildin, the structural openings along the
8.45 GHz. sto?c model: <=150m) an(% 17.2dB walls are considered. Measured

Taga-Miura propagation loss directional (d = propagation loss is about 20 dB

Model (2002) model 300 m) larger than predicted at positions

[90] beyond 120 m.

Ly = Loyt + Lpn + Lip
Loy outdoor propagation loss, L, building penetration
Loss, L;,: indoor propagation loss
Residential The BWA penetration model is
houses: COST 231 model; 3-3.5dB (wooden | based on measurements for

Broadband 2.53 and o derr; distance- and stucco walls); various buildings in USA,

Wircloss Access 2.48 GHz apartment dependent path 1.2 dB (window considering the impact of wall

oss mode wal material, angle of incidence an

(BWA) Cgm lex 1 del 1 ial le of incid d

Penetration P receiver antenna height.

Model (2004) L = Loye + Le + Ly (1 — cosv)? + n,, L;

out- Path loss from the transmitter to the external wall, at the same height as the receiver, L,: path loss through the external wall at
[ L h loss from th i h 1 wall, at th height as the receiver, Ly: path loss through th 1 wall
normal incidence (v = 0), L,: additional external wall loss incurred at grazing incidence (v = 7/2), L;: loss per internal wall, n,,:
number of crossed internal walls.
10 dB *there is no A penetration loss prediction
810 MHz Tx and Rx — frequency formula is proposed, which %s
) 2.2,4.7 and Urban area COST 231 model | Dipoles (sleeve | dependence of the genvded from measurements.fltl:s

Ichitsubo— 8.45 GHz antennas) penetration loss in p?g;ag;)trilorr:]le:ss:r:rrlngrllti]o(z)rst irei

Okamoto

Outdoor-to- the band evaluated | 7 i1 4ings. RMSE: 7.7 dB

Indoor Model ALoss = a-d — G- h+ ag - log(f) + ajos - LOS + W

(2009) [92]

ALoss: building penetration loss, d: perpendicular distance to the inside from the nearest window, h: height of the receiver from
ground level, W: difference between Loss(out) and Loss(in) at the window, a: penetration distance coefficient (distance attenuation),
Gy: floor height gain, a;: frequency coefficient, @;o5: LOS coefficient.

Through a hybrid time-domain

Island Time-domain parabolic equation/FDTD

environment parabolic method for site-specific venues,

300 MHz *Only equation/finite- ) . radio wave propagation was

Hybrid simulation — difference time- modeled in a geo-based O2I

TDPE/EDTD of no domain (FDTD) scenario. Far lower

Site-Specific measurements | method computational cost than with a

Model (2018) pure FDTD solution is obtained.
[93] N-1

w20 = Y AGIuCH .2 fe 2
k=0

A(fi,): Spectrum of the radiating signal, u(x,y, z, f;): field for the 3-D Parabolic Equation, e ~#™/kt: phase factor.

Tx and Rx -
- *
Statistical 021 Universi Fourier resolution la)::f:;saznay ;30611 125(; d:l ds Statistical models for path loss,
Model (2019) 27.85 GHz ty techniques, T gly dep delay spread, and angular spread
campus Rx — omni and on the angle .
[94] measurements o . are provided.
directional of incidence
antennas
The transmitter was placed on
the rooftop of a building to
emulate a base station and the
receiver was moved in the
corridors on different floors in
Spatial-temporal another building to emulate user
Modern :
. channel Tx and Rx - equipment.
3.5 GHz business . -
Cl based o impulse response array antennas Based on measurement results,
u;tTrf- ase (CIR) model the lifted-superposed Laplace
mode h‘/’rl ) distribution (LS-Laplace)
gf)lmelitspz;\rlaﬁm function and lifted-superposed
Wi Ul . . .
normal distribution (LS-Normal)
A;;S/EPS (2019) function to model the APS and
[95] EPS are proposed, respectively.

L

hz,6,9) = ) a8~ 1,6 - ¢,6 ~ 6))

=1

h(z, 0, ¢): spatio-temporal channel impulse response (CIR) model, L: number of signal propagation paths, a;e/*': complex gain,
7,: excess delay, ¢, and 6;: azimuth and elevation angle of the /" path, §(, 8, ¢): n impulse at the excess delay of 0 ns and incident
angle of (0°, 0°) in the joint space-and time domain.
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Leaky feeder

Incidentwave, S|,

Long corridor

Front view
FIGURE 10. Radiating cable used in a building.

When field prediction for indoor base stations or access
points is needed both inside and around the building, e.g.,
for interference assessment and for fingerprinting localiza-
tion purposes, the model proposed by Degli-Esposti et al.
in [98] can deliver predictions with good accuracy, based
on a combination of a two-parameters propagation formula
and a multi-wall model. The model is validated versus both
ray-tracing and measurements in different environments,
which exhibits good performance in all cases at a small
fraction of the ray-tracing computation time.

3) MODELS FOR PROPAGATION IN RADIATING CABLES
Radiating cables or leaky feeders are an alternative solution
to provide coverage in challenging enclosed spaces such as
tunnels, large corridors or underground mines, as shown in
Fig. 10. The cable is leaky, it has gaps or slots in its outer con-
ductor to allow the radio signal to leak into or out of the cable
along its entire length, functioning as an extended antenna,
making it well adapted to long narrow indoor environments
such as corridors, elevators or tunnels [99].

Models for propagating cables have many contributions in

wireless systems, some of which are as follows:

« Provide coverage in a small indoor environment: mea-
surements carried out along a corridor in frequencies
from 262 MHz to 1226 MHz showed that the leaky
feeder is appropriate for coverage in thin indoor envi-
ronments, which can contribute to the strengthening of
the received signal [100].

« Contain signal strength in a better way than a distributed
antenna system: in [101], Stamopoulos et al. made a
comparison of the use of both systems—radiating cable
and distributed antenna system (DAS)—to provide cov-
erage in a building and it is clear from their analysis that
the radiating cable contains signal strength in a better
way than a distributed antenna system. This is due to
the characteristics of the radiating cable to provide more
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uniformly distributed coverage, avoiding leakage peaks
arising from particular antennas in DAS.

o Enable real time localization: in [102]
Moschevikin et al. and in [103] Serezhina et al. studied
the possibilities to use leaky feeders also for Time-of-
Flight (ToF) based real time localization in such linear
topologies, like tunnels, but possibly also for two dimen-
sions (2D) localization. As a general result, leaky feeders
might be useful for ToF-based localization using Chirp
Spread Spectrum Technologies. However, in [102] they
realized that additional signal processing and filtering is
required to eliminate the additional variations from the
different propagation speeds in the cable and in the air,
and the different available propagation paths.

Table 10 summarizes considerations of radiating cable

models reported in the literature.

C. INDOOR RADIO PROPAGATION RESEARCH PROJECTS
A general description of COST 231, WINNER II and 3GPP
projects are presented below in order to mention the principal
projects that were conducted to obtain results about indoor
radio propagation modeling.

1) COST 231 [49]

Based on empirical and physical propagation models,
the COST 231 project presented adjusted models that were
based on propagation measurements, including:

« Empirical models: one-slope model (1SM), multi-wall
model (MWM) and linear attenuation model (LAM).

« Physical models: ray launching model (RLM) and image
approach method (IAM).

o Frequency: 850, 1800 and 1900 MHz.

o Target areas: office buildings, shopping centers and fac-
tories.

« Antennas: Omnidirectional.

o Considerations: the indoor environments were divided
into four categories (dense, open, large and corridor) and
internal walls are made of thin wood panel.

This model has been suggested in cases where a LOS path
exists between a building facade and the external antenna,
i.e., single floor propagation. For NLOS, the model relates
the loss inside a room to the loss measured outside of it,
on the side nearest to the wall of interest, i.e., multi-floor
propagation.

Fig. 11 and Fig. 12 summarize the results (standard devia-
tion of prediction error) for the adjusted models taking mea-
surements conducted by Alcatel, TUW and VTT in [49]. The
advantage of the MWM and the physical models—IAM and
RLM—was most clearly seen in the case when the transmitter
and receiver were on different floors. The performance of
the 1SM and LAM is poor because they only consider the
distance and not the number of penetrated floors.

2) WINNER Il [107]
The generic WINNER II channel model follows a geometry-
based stochastic channel modeling approach, which allows
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TABLE 10. Relevant works with models for propagation in radiating cables.

Model Name | Frequency | Reference model Penetration loss o Considerations |
Distance power !aw . 1.88 dB (corridor): Coupllng and longltudmgl losses of the cable
2.0 GHz model; propagation 9.9 dB (brick wall) are considered. Propagation around the cable
; 1.98 dB (room) L .
loss (link budget) termination is not clearly specified.
Zhang Model

(2001) [104]

P.=P—aZ—L.—L,—L,—10nlog,, D

P, and P;: received and transmitted power, Z: distance along the cable to the nearest point to the receiver, a: attenuation per unit
length of the cable, L.: coupling loss referenced to Im radial distance from the cable, L,: variability in coupling loss, L, loss factor

due to blockage, D: distance between the cable and the receiver.

Friis transmission
formula; Keenan-
Motley model

5 dB (complex

850 MHz wall)

Carter Model

(2006) [105] S0(PA, Lint, Ly, Ly, f, VX, H,v7) = PA —

The radiating cable is modeled as a line source
and waves are spread in a cylindrical surface.
A radiating cable straight section is
considered.

1.65dB -2.14 dB

Lint * L + Gy[0,(Vy Ly, x, H), Ly f, v5| = Lyg[Ly, 1 (H, Yy, Ly, ), ]

PA: power applied to the driven end of the whole leaky coax run, L;,,: internal loss of the leaky coax at the frequency f; L,, and Ly:
length of the vertical and horizontal segment of the leaky coax, V,: vertical distance from phone to the midpoint of the vertical leaky
coax segment, x: horizontal distance along the leaky coax to the point nearest the phone, H: horizontal distance from phone to
closets point of the horizontal segment of leaky coax, vs: velocity factor of the leaky coax .

Paths from the rays
that are

The modeling of some key propagation
mechanisms—reflections, refraction losses,
radiating cable paths and cable termination—

900 - dicul d d that are present in a practical indoor
Sesefia— 2500 MHz perpendicular to - 22dB-4.6dB environment has been incorporated.
Aragon— cable axis; distance . . .
- 1 del This model considers situations where there
Castafion power law mode .
are cable bends and accounts for propagation
Model (2013) S
[106] around the cable termination.
Prrotar = B(do) + P-(d1)R; + B.(d2)R;
R; and R,: empirical coefficients. The distances of reflected signals in walls W, and W, are d, and d, respectively. Meanwhile, there
is a direct ray that travels from the radiating cable to the receiver where its distance is d,,.
Single floor propagtion Multi-floor propagation
12 14
12 ”'zu.e 116 1LE
10,9
10 9.5 mm,} 10 10,2 tq_ s
89 10 4. = 5
85 84 | I 6 v
7.8 P ! | s 1
a |
47 4 | | |
T 4.4 42 14 3 42 ‘ |
=] 2 | 1
: , I |
2 15M MWM LAM 1AM RLM
Propagation Model
0 = 3rd-dth floor: 856 MHz ® 3rd.5th floor : 856 MHz = 3rd-7th floor: 856 MHz
1SM MWM LAM RLM

Propagation Model

mVTT: 856 MHz = TUW: 1800MHz VIT: 1800MHz  m Alcatel: 1900 MHz

FIGURE 11. Standard deviation of prediction errors for single floor
propagation.

the creation of an arbitrary double directional radio channel
model. The channel models are antenna-independent, i.e., dif-
ferent antenna configurations and different element patterns
can be inserted. The channel parameters are determined
stochastically, based on statistical distributions extracted
from channel measurements.
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® 3rd-4th floor: 1BO0MHz © 3rd-5th floor: 1800MHz ® 3rd-7th floor: 1800MHz

FIGURE 12. Standard deviation of prediction error for multi-floor
propagation reported by VTT.

Due to several measurement campaigns carried out in the
WINNER 1II project, the background for the parameterization
of the propagation scenarios for LOS and NLOS conditions
is provided. The developed models are based on both litera-
ture and extensive measurement campaigns. Clustered delay
line (CDL) models with fixed large-scale and small-scale
parameters were created for calibration and comparison of
different simulations. The WINNER II project considered the
following characteristics:
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o Frequency: 2 — 5 GHz.

« Reference models: 3GPP/3GPP2 spatial channel models
and IEEE 802.11n.

o Target areas: indoor office, large indoor hall, indoor-to-
outdoor and outdoor-to-indoor scenarios.
« Antennas: different array of antennas.

The path loss models proposed in [107] include four fitting

parameters:

o A includes the path-loss exponent.

o B is the path-loss intercept.

o C describes the path loss frequency dependence.

« X is an optional, environment-specific term, e.g., wall
attenuation in indoor NLOS scenario).

3) 3GPP

The last technical report about the study on channel model
for frequencies from 0.5 to 100 GHz reported by the 3GPP
project in [108] considered:

o Reference projects: METIS (Mobile and wireless
communications Enablers for the Twenty-twenty Infor-
mation Society), MiWEBA (Millimetre-Wave Evolu-
tion for Backhaul and Access), ITU-R M, COST2100,
IEEE 802.11, NYU WIRELESS, Fraunhofer HHI,
5G mmWave Channel Model Alliance, mmMAGIC
(Millimetre-Wave Based Mobile Radio Access Network
for Fifth Generation Integrated Communications) and
IMT-2020 5G promotion association.

o Target areas: office environments, shopping malls and
indoor industrial scenarios.

Due to several measurement campaigns carried out in the
3GPPP project, the background for the propagation scenar-
ios for LOS and NLOS conditions is provided. The models
proposed are based on measurement campaigns.

Besides, in this report, the path loss incorporating O2I
building penetration loss was modeled, taking into account
material penetration losses with standard deviations of 4.4 dB
for low loss model and 6.5dB for high loss model. The
composition of low and high loss is a simulation parameter
that should be determined by the user of the channel models
and is dependent on the use of metal-coated glass in build-
ings and the deployment scenarios. Such use is expected
to differ in different markets and regions of the world and
also may increase over the years due to new regulations
and energy-saving initiatives. Furthermore, the use of such
high-loss glass currently appears to be more predominant in
commercial buildings than in residential buildings in some
regions of the world.

The study on channel models reported in [108] took into
consideration not only O2I building penetration losses but
also O2I car penetration losses, applicable for the frequency
range 0.6 - 60 GHz. On the other hand, in [109] the studies
have found some extensibility of the existing 3GPP models
(e.g. 3GPP TR36.873) to the higher frequency bands up to
100 GHz. Conducted measurements indicated that the smaller
wavelengths introduce an increased sensitivity of the propa-
gation models to the scale of the environment and show some
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FIGURE 13. Methodology for indoor radio propagation modeling.

frequency dependence of the path loss as well as increased
occurrence of blockage. Furthermore, the penetration loss
was highly dependent on the material and tended to increase
with frequency.

Comparisons of COST-231, WINNER II and 3GPPP
projects are shown in Table 11. Some important considera-
tions that have been reported in the literature are indicated.
In addition to this, standardization organizations and research
institutions have also defined several indoor channel models
and recommendations, as summarized in Table 12.

IV. INDOOR CHANNEL MODELING REMARKS
Considering all the features of radio wave propagation mod-
els reviewed earlier, accurate path loss predictions as well
as available radio measurements are very useful tools for
any radio system designer. This section focuses on providing
remarks for hybrid models due to the inclusion of theoretical
and empirical approaches.

Several issues should be considered as key factors when
modeling radio wave propagation indoors. These factors are
illustrated in Fig. 13 as a methodology and explained here-
after.

The surveyed studies agree on the way results are pre-
sented, i.e., a similar method, which reveals three stages:
outlining, implementing and integrating. Outlining gives a
valuable summary of the model draft and workplan to address
the radio wave propagation model approach; implementing
consists on conducting measurement campaigns to collect
all necessary data to complement and to adjust the model;
and integrating uses previous activities to postprocess and to
validate the data obtained from the designed model.

A. OUTLINING

1) MODEL DRAFT

As a first step, the aim of the propagation model should be
defined, according to specific requirements. For example,
in [43], the authors search for optimal transmitter locations
in an indoor wireless system and therefore need a model
to achieve this. In [120] the model estimates the optimal
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TABLE 11. Comparisons of COST-231, WINNER Il and 3GPP projects.

Considerations J

Under consideration of a typical O2I model, COST-231 model was the best fit
compared to the ray-tracing result at 900, 1800 and 2100 MHz [110].

In [111] the 3D ray-tracing resulted in an estimation similar to the multi-wall
(COST-231) model without requiring a 3D model of the structure or demanding
computational power. The 3D ray-tracing generated the best results. however, this
advantage is almost negligible over multiwall model which offers a greater
simplicity.

COST-231 model can be used as a reasonable lower bound for received power

At 3.5 GHz with an indoor LOS case only WINNER model remains accurate [112].
In [113], Latinovic et al. demonstrate that WINNER II and similar channel models
designed for communications are not suitable, due to: the lack of specular
components in los channel, the lack of NLOS bias in NLOS channel and constant
delay spread over distance is assumed.

Delay spread models for O2I scenarios are identical to 3GPP model in both above 6
GHz and below 6 GHz [114].

Project Frequency Target areas
850, 1800 and Ofﬁce‘ buildings,
COST-231 shopping centers and
1900 MHz .
factory environments.
[112].
Indoor office, large u
WINNER 11 2-5GHz indoor hall, 120 and O2I
scenarios.
Office environments, -
0.5-100 shopping malls and .
3GPP GHz indoor industrial

scenarios.

The 3GPP models i.e., floating intercept (FI) and alpha-beta-gamma (ABG) models
provided reliable performance for path loss for both single and multi-frequency
models in LOS scenario at 3.5 GHz and 28 GHz [115].

TABLE 12. Standardization activities about the indoor channel modeling.

Considerations

Project Frequency Target areas
Residential, office,
commercial, factory, .
ITU-R 300 MHz to corr¥d0r, data center, TV
P.1238-10 studio, computer cluster,
450 GHz
[26] classroom, conference
room, railway station,
airport terminal
ITU-R
M.2135-1 2 to 6 GHz Indoor hotspot, O21 .
[116]
IEEE 100 to 900 . .
pise | Do eiden
[117] 2 to 10 GHz .
IEEE
802.15.2 2.4 GHz Indoor .
[118]
Residential, small office,
IEEE 802.11n 2 and 5 GHz typical office, large

[119]

space

Recommendation that provides guidance on indoor propagation mainly general site-
independent models and qualitative advice on propagation impairments encountered
in the indoor radio environment.

Report that provides guidelines for both the procedure and the criteria (technical,
spectrum and service) to be used in evaluating the proposed IMT-Advanced radio
interface technologies (RITs) or Sets of RITs (SRITs) for a number of test
environments and deployment scenarios for evaluation.

The indoor test environment focuses on isolated cells at offices and/or in hotspot
based on stationary and pedestrian users. The key characteristics of this test
environment are high user throughput or user density in indoor coverage.

In the O2I case the users are located indoors and base stations outdoors.

Standard that provides models for the UWB channels; it covers indoor residential,
indoor office, industrial, outdoor, and open outdoor environments (usually with a
distinction between LOS and NLOS properties).

For the frequency range from 100 to 900 MHz, it gives a model for indoor office-
type environments.

Addresses the issue of coexistence of wireless local area networks and wireless
personal area networks

Recommends two models for indoor environments where distance is between 0.5 m
and 8 m, and greater than 8m.

Standard that is defined through several specifications of WLANSs. It defines an
over-the-air interface between a wireless client and a base station or between two
wireless clients.

Provides general two-piece distance partitioned model for received signal strength
(RSS) behavior for indoor areas. The RSS is modeled as two piecewise linear
segments separated by a break point (including LOS and NLOS conditions).

position of fingerprints on an indoor map. Therefore, once the
model aim is clear, relevant parameters need to be specified.
A decision should be made related to whether the model
will be selected from previous research or it will be fully
designed, taking into account relevant propagation mecha-
nisms that will be included in the model and thus defining the
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corresponding material parameters for a particular building or
propagation scenario.

2) WORKPLAN
Planning increases design efficiency and facilitates proper
coordination during measurement campaigns, helping to
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achieve the objectives of the research. At this stage, radio
designers should:

o decide which type of measurements need to be taken;
indoor locations to be considered; building features
(materials, number of walls and floors, etc.); frequency
bands and equipment required;

« carry out a preliminary site visit to contemplate potential
test antenna locations and to consider specific building
and propagation details;

o evaluate if the campaign requires permission to be
granted;

« review technical requirements, i.e., equipment calibra-
tion, validation, etc.;

« select proper antenna parameters that will be varied,
such as locations, heights, elevation angles, etc.;

« plan the walk test routes to be followed to obtain as much
information as possible from the propagation mecha-
nisms and path loss; e.g. Aguirre ef al., in [121] reported
zig-zag moving pattern through the measurement area to
obtain NLOS results;

« estimate the timing to complete the measurement cam-
paign according to time restrictions and granted building
permissions;

« choose a suitable navigation to be used indoors, consid-
ering that GPS is not available inside buildings; and

o achieve a schedule plan—campaign guide—that
includes all previous activities with times and resource
descriptions.

According to [122, Sec. 19.8], the most common approach
to navigation indoors is called way-point navigation and
consists of having a digital representation of parts of the
building, which may be split by floors or regions. The user
interacts with the data collection software where it selects
their position at a given point in time on the floor. The soft-
ware begins recording signal strength samples at regular time
intervals from the RF receiver hardware, and data collection
continues as the user walks until the end-point on the floor
layout is indicated by the user. The collection software then
uniformly assigns a position to each discrete sample collected
over the period between the start time and end time of the
walk segment.

Other indoor navigation systems have been employed and
suggested using low-cost stationary sensor nodes. This equip-
ment can be casually placed in the facilities by untrained
personnel without location measurement. To acquire knowl-
edge of the physical environment without a map, the system
collects radio and compass signatures to continually record
paths traversed by users. Using this information, paths are
automatically aggregated into path clusters, and a navigable
Virtual Roadmap (VRM) of the indoor environment is built
by the system [123].

B. IMPLEMENTING

Measurement campaigns are a crucial source of information
for in-building radio propagation modeling. On this basis, it is
essential to conduct such measurements suitably. Tuning and
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validation stages should use different measurement samples
from the complete campaign for accurate model design and
verification [124], [125]. This involves a dynamic and effi-
cient planning stage—executed in the workplan for efficient
implementation.

Once the planning is complete, the measurement campaign
is conducted, following the schedule plan for effective radio
measurements.

C. INTEGRATING

1) POSTPROCESSING

Postprocessing is employed when signal processing is
required to be performed on the raw measured data. Aver-
aging and filtering are common operations performed during
post-processing. Postprocessing can be performed in the mea-
sured data but also after preliminary predictions have been
made, for example, to obtain the local mean of the signal.
In this context, it is also used to obtain precise positions of
unknown points by relating them to known points. It must
be noted that the known points are the result of a previous
filter stage, where only useful data is considered (samples
that are under the noise floor of the receiver are discarded).
After an exhaustive review of indoor modeling, there are
two complementary techniques that are contemplated: spatial
interpolation and tuning.

When a large amount of useful data is available, model
accuracy is greatly improved. However, a small amount of
measurements is often available in campaigns due to spe-
cific permissions for the selected locations, time restrictions
and unreachable places where these measurements cannot be
performed. Spatial interpolation techniques show how robust
estimates can also be made in such situations, significantly
improving the results. The most frequently used techniques,
according to [126], are inverse distance weighting (IDW),
ordinary kriging (OK) and ordinary co-kriging (OCK).

Kriging is an interpolation technique based on the methods
of geostatistics where a subject is concerned with spatial
data. Geostatistics assumes that there is an implied con-
nection between the measured data value at a point and
where the point is in space. Therefore, it is possible to esti-
mate unknown values from the best set of available sample
points.

Thanks to kriging, in [127], Konak created an accurate
and complete network coverage map of a target service area
from a limited number of test point measurements. Thereby,
the cost of time-consuming site surveys can be reduced.
Kriging has certain advantages over other interpolation tech-
niques. It is an optimal interpolation method because it pro-
duces an unbiased estimate with minimum variance. On the
other hand, in [128], several spatial interpolation techniques
based on IDW are analyzed and compared in terms of reliabil-
ity bounds of the interpolation errors for an indoor environ-
ment, where performance evaluation shows that the spatial
interpolation techniques can provide a robust and reliable
estimation data.

VOLUME 8, 2020



M. E. Diago-Mosquera et al.: Bringing It Indoors: A Review of Narrowband Radio Propagation Modeling

IEEE Access

TABLE 13. Summary of research opportunities for indoor channel modeling.

Figure of merit

Computational

. Low
complexity

Medium

Cost .
(measurement campaigns)

Time consumption Medium

Technical resources Many

When valuable parameters of the mathematical model are
tuned from the data obtained in the measurement campaign,
the model will be suitable for the actual indoor propagation
environment. As reported by Aragén-Zavala [122, Sec. 7.7],
the result of model tuning is an optimal trade-off between the
benefits and costs of both approaches, saving time and money
in the design and implementation.

2) VALIDATION

This process verifies signal strength and coverage predictions
made using the model against a set of measurements—only
for testing—of the complete campaign. Different estima-
tors for the quantifying validation stage are used. In [18],
Oyie and Afullo compared the standard deviation of the
signal fluctuation around the mean of the path loss to val-
idate accuracy in predicting path loss. In contrast, in [32]
Morocho-Yaguana ef al. presented a comparative analysis
based on the average error, which is the difference between
calculated and measured attenuation. The root mean square
error (RMSE) is a common estimator for validating the accu-
racy of a model, as stated in [129]; and the computational
complexity is employed for verifying its efficiency.

Finally, it is a good practice to document the survey details,
parameters, characteristics, etc. to record the level of accu-
racy achieved with the indoor radio propagation model. This
information may be valuable for future model accuracy com-
parisons and measurement campaigns.

V. RESEARCH OPPORTUNITIES
The results presented in the works revealed that there are
some other sources—techniques—available that could be
used to make better in-building predictions, reducing cam-
paign costs and time. Spatial interpolation techniques used for
data post-processing can be employed to estimate path loss at
unreachable places where measurements cannot be obtained
from a limited number of test point measurements conducted
at nearby locations, combined with a well-known modeling
approach. Future work in this area will take advantage of
measurement campaigns, focusing on refining sampling and
learning strategies, as well as extracting as much information
as possible from existing sources and exploring the trade-off
between accuracy and efficacy of the designed model.

The majority of the reviewed work here was predominantly
focused in signal strength measurements and propagation
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High Depends on models selected
Low Medium

(measurement campaigns)
High Medium — High
Few Many

properties in two dimensions (2D). However, indoor mod-
els that include a third dimension (3D) are scarce, opening
research opportunities in the near future.

Model validation at mm-wave frequencies is also required,
where more measurements are needed at different venues.
Interoperability of various networks and devices with the
deployment of 5G networks at various vertical sectors
(health, entertainment, transport, intelligent manufacturing,
etc.) and the Internet of Things (IoT) will also require novel
approaches to model path loss and system performance in
more challenging enclosed environments—e.g. factories—to
guarantee the required strict grade-of-service levels that this
new technology will demand.

Table 13 presents the most relevant research opportunities
from the authors’ perspective, classified by figure of merit
and indoor channel model type.

VI. CONCLUSIONS

The main indoor radio wave propagation characteristics that
affect and characterize model performance have been investi-
gated, including path loss, propagation mechanisms, fast fad-
ing and shadowing. Additionally, a new taxonomy of indoor
channel models has been proposed and analyzed, including an
updated overview of indoor channel models. Finally, relevant
indoor modeling remarks were established as part of a radio
design methodology that includes three stages: outlining,
implementing and integrating.

Once the available scientific literature on indoor radio
propagation modeling was reviewed, the importance of
appropriate modeling become more evident. Small cells are a
mainstream element of operators of mobile network deploy-
ments for addressing hot-spot areas, in which capacity uplift
is needed, such as indoor scenarios, where people spend most
of the time. The novel taxonomy proposed herein consid-
ers developments which evaluate the effect of indoor small
cells over macrocells (I20 models) and the opposite case
(O2I models). These models are important specific cases for
a HetNet deployment. Besides, general cases are explained as
empirical, physical and hybrid models.

The difference between the environment for which the
propagation model was developed and the environment for
which the model will be used must be carefully evalu-
ated, considering a trade-off between accuracy and effi-
cacy approaches. In physical models, many ray methods are
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promising, their accuracy is higher than empirical models
but is tied to enough detail of the building geometry and
materials. These models are very time consuming, requiring
a large computational complexity even for few predictions.
In hybrid models, measurement-based methods, rigorous tun-
ing and validation stages are included, taking advantage from
empirical and physical models. For these reasons, the choice
of the most suitable propagation model approach to be used is
mainly driven by specific project requirements, environment,
available measurement data, etc. Empirical models can be
employed for fast predictions at specific buildings but are
strongly dependent on measurement accuracy and can hardly
be extrapolated to other buildings, even if they have similar
characteristics. Physical models can provide more accurate
predictions but until detailed digital building databases and
powerful computing resources are readily available, they
are still considered inappropriate for most practical designs.
It seems that the most promising approach is still the hybrid
method, as long as a solid reference model is employed
based on physical principles and complemented with accurate
measurements to tune relevant parameters.

For the time being, the interested reader which either is
new to the field or would like to seek for strong references in
narrowband propagation modeling inside buildings can take
this paper as a useful guideline.
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Chapter 3

The performance of in-building measurement-based path loss modeling
using Kriging

3.1 Summary of the Chapter

In this chapter, a measurement-based model which includes Kriging as part of the post-
processing analysis is proposed. To ensure a suitable methodology, the selection of the
variogram function in the variography stage, tuning dataset method and tuning dataset size
must be understood due to these selections are an open topic that had not been addressed
in the available literature in channel modeling. Thus, and considering a typical indoor
scenario, from a measurement bench available in the research group, signal-strength
measurements at the frequency bands of 800 and 1900 MHz in the library of campus
Queretaro were employed, to achieve these three pre-tests. Once the selection of these
approaches is clear, it is possible to ensure accurate predictions.

Additionally, and in order to validate the accuracy of the proposed model, 57 indoor
scenarios in campus Queretaro, such as a congress hall, a gym, an auditorium, buildings, and
offices were considered to validate if ordinary Kriging is the best linear unbiased predictor,
as is reported by linear geostatistics theory [22]. In addition to comparing, the accuracy of
the mathematical measurement-based model proposed, which predicts the unmeasured
shadowing according to the ordinary Kriging technique, against a classic linear interpolation
and the traditional assumption of shadowing as a normally distributed variable.

3.2 Full Article
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1 | INTRODUCTION

Channel modelling can enhance communication efficiency
through an accurate design to deliver higher quality to mobile
users inside buildings. Clear processes and methodologies that
can provide a high level of confidence in the design of indoor
radio propagation systems are thus required. With the deploy-
ment of 5G wireless communication and the need to accom-
modate for the shorter signal range, mmWave-enabled networks
will have a high density of base stations. In such a dense network,
interference is an important factor affecting network perfor-
mance [1]. In this way, an efficient radio access—constructed by
accurate channel modelling—combined with more spectrum
availability is essential to achieve the ongoing demands faced by
wireless carriers [2]. Therefore, it is important to explore suitable
in-building mathematical propagation modelling approaches
that can accurately make predictions, avoiding undesirable
effects—for example, interference, which may result in a low
Signal to Interference plus Noise Ratio (SINR), throughput, and
in some cases, a total disruption of service [3]—and support
ever-growing consumer data rate demands of modern 5G
communication systems.

Since hybrid approaches employ solid reference models
based on physical principles and are complemented with

| A. Arag()n-Zavala1

| C. Vargas-Rosales”

An accuracy evaluation analysis of a novel in-building measurement-based path loss
prediction narrowband model is presented here, comparing the performance of Kriging-
aided shadowing prediction against the most traditional assumption of slow fading as a
random variable and a classical estimation derived from linear interpolation. Extensive
radio measurements were employed using distinct samples to calibrate (tuning dataset)
and validate (testing dataset) the model. Path loss predictions are made over the testing
dataset locations to compare it against the measured values, thus obtaining an error in the
prediction from the difference between measurements and predictions. The results in the
seven buildings evaluated show the potential of Kriging-aided channel modelling with a
higher level of confidence than other modelling approaches compated hereafter.

measurements to tune up relevant model parameters [4, 5],
they look promising towards higher accuracy predictions. Such
measurement-based modelling approaches have been used in
the past with encouraging results [6-9], taking into consider-
ation that radio measurements are always required even on
physical models for validation purposes.

The possibility to collect large amounts of data from
measurement campaigns can be very limited for practical de-
signs. Venues often permit data collection campaigns having
restrictions on measurement areas, test antenna location
placements, available times, and dates to conduct the mea-
surements, etc.

Nevertheless, with a careful design of the measurement
campaign, valuable information can be extracted and used in
our modelling approach. Linear geostatistics show potential to
estimate measurements in such situations, by significantly
improving the results with few available samples. In addition, it
allows us to extract as much information as possible from the
existing sources and to explore the accuracy and efficacy trade-
off of the designed model.

The path loss consists of three major components: median
path loss, shadowing, and fast fading [10]. These components
depend on both the relative position of the elements of a
wireless system and the obstructions in the channel. The

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the
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median path loss is predicted by any standard path loss model,
such as the classical single slope path loss model. Fast fading
results from rapid signal variations on the scale of half-
wavelength and is often removed by filtering. For indoor
channels, shadowing occurs due to the large variability of
obstructions present in the venue, which results in a received
power that fluctuates randomly over time. Median path loss
modelling cannot only be used to estimate shadowing, but it is
empirically known that shadowing has a spatial correlation.
Therefore, it can be estimated by applying an appropriate
weighted average to the observation dataset in the framework
of spatial statistics or by including a method of linear geo-
statistics that minimises the variance of estimation errors under
the constraint of unbiased estimation [11].

Kriging is an interpolation technique based on the methods
of geostatistics, where the subject is concerned with spatial
data. Geostatistics assumes that there is an implied connection
between the measured data value at a point and its location in
space. Therefore, it is possible to estimate unknown values
from the best set of available sample points, which consider
the singularities and the characteristics associated with the
selected scenario. An outstanding influence of Kriging intet-
polation on the construction of radio environment map (REM)
has also been observed in various works [12—17]. REM is a tool
for analysing radio propagation, which is typically defined as a
map that stores the received signal power. Several of these
works reported that Kriging is employed to interpolate the
received signal power over unknown locations, simplifying the
design of REM-based systems. El-friakh et al. [18] suggest that
when building indoor Wi-Fi REMs via spatial interpolation
methods, in practice, less complex spatial interpolation
methods may be preferred over more computationally
demanding methods such as Kriging variants. However, for
indoor scenatios, the spatial interpolation methods based solely
on the estimation error over all rooms analysed in [18] is not
sufficient to fully characterise Wi-Fi REMs. Therefore, it is a
promising approach to use spatial interpolation methods to
estimate only an individual variable and not a global one that
depends on others, for example, shadowing instead of received
power. Related works on the radio propagation analysis, for
example, [19-21], attempt to characterise and estimate shad-
owing as a variable that follows a normal distribution with zero
mean and standard deviation 6. However, few efforts have
been taken to predict and extract shadowing from other as-
sumptions and lot less work from spatial statistics.

In channel modelling, the accuracy and efficacy trade-off
of the designed model are essential. Purely empirical models
are not sufficiently accurate to be employed in all types of
buildings and purely deterministic models still need a good
amount of computational resources, requiring a large quantity
of building details and therefore becoming unviable for prac-
tical radio prediction work. Therefore, the model proposed in
this study is inspired by the most promising approach of
measurement-based method, besides, it is intended primarily
for narrowband modelling to estimate path loss inside build-
ings. The use of Kriging for wideband channel modelling has
not been tested yet and somehow is out of the scope of this

work, leaving it as a possibility for future research related to
this topic.

Additionally, the contributions presented hereafter are the
comparisons of path loss results when spherical and expo-
nential variogram models are selected, showing the most
suitable variogram function and the shadowing spatial corre-
lation according to an exponential model; the analysis of
different methods to select a tuning dataset towards choosing
the best method for taking full advantage of Kriging; and the
recommendation about the effective tuning dataset samples to
be selected from measurements for obtaining the best good-
ness of fit, and finding the best trade-off between accuracy and
sample size.

2 | MEASUREMENT PROCEDURE AND
SCENARIOS

Radio signal measurements were performed within typical in-
building propagation in seven buildings at Tecnologico de
Monterrey, campus Querétaro, Mexico, as shown in Figure 1.

Extensive measurements were made on each building, in at
least three different floors, Fyx. The buildings have classrooms,
laboratories, offices, general areas of entrance, rooms, and
corridors where interior and exterior walls were built with
drywall and block, respectively. Ceilings were built of steel
decks and metallic beams while the floors were built of ceramic
tile. Ceilings are 4 m high with false ceilings which are 3 m
high. The measurements were carefully calibrated and filtered
for tuning and model validation, included in the so-called
tuning and testing dataset.

The transmitter system was placed on different floors in
each building, F, the overall description of the measurement
campaign is shown in Table 1. This system consisted of two
types of antennas at different heights, h: a Kathrein tri-band
omnidirectional indoor antenna, model 800-10,249 for
869.6 MHz with 2 dBi gain, and a Kathrein tri-band directional
indoor antenna, model 800-10,248 for 1930.2, 2400, and
2500 MHz with 7 dBi gain; and a Rohde and Schwarz Signal
Generator, model SMB100A, 9 KHz-3.2 GHz with 30 dBm of
max power. The receiver comprises an omnidirectional
monopole 0 dBi antenna plugged into a Rohde and Schwarz
Vector Network Analyser (VNA), model ZVL6 for 2400 and
2500 MHz. In addition, a dual-band whip 0 dBi antenna with a
portable SeeGull LX dual-band radio scanner was used to
perform measurements at 869.6 and 1930.2 MHz.

To avoid an overly transmitter, system pictures Figures 2—5
illustrate the external view of some buildings and the trans-
mitter system used during measurement campaigns.

The measurements were collected by using different walk
routes at a constant speed and recorded by means of the radio
scanner as well as using the spectrum analyser option of the
VNA. Sample locations were recorded with the softwate InSite
v3.1.0.19, from PCTEL, and with a special programme
developed in Matlab for the radio scanner and the spectrum
analyser, respectively. Afterwards, data post-processing is
required to be carried out on the raw collected data to remove
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FIGURE 1 Buildings for measurement campaign

TABLE 1

Measurement campaign specifications

Antenna
location

Building f [MHz] P, [dBm| Orientation [°] by [m] Fx Fu

B2 869.6 11 0 26 2
1;2; 3; 4
1930.2 3
25 90 2
2400 2 1,23
B5 869.6 11 0 206 3
1;2;3
1930.2 25 90 2.2 1
Bo 869.6 11 0 23
1 1,23
1930.2 25 270 2
B8 869.6 11 0 2.6
1930.2 25 90 22 1 012
B9 869.6 11 0 2.54 0 0:1:2:3
19302 25 235 2.2 2
B10 869.6 11 0 2.6 1
0;1; 2
1930.2 2
25 180 2
2500 1
B11 869.6 11 0 2.6 1 1253
1930.2 25 169 22 2

fast fading by averaging the instantaneous signal strength
measurements and samples that either are beyond the noise
floor of the receiver or are clipped due to very strong field
strength at short distances from a strong transmitter antenna to
the receiver. This process should be performed carefully to
preserve the shadowing variations and avoid filtering it out.
Considering that fast fading is on the scale of half-wavelength,

the entire layout of each scenario was segmented in a grid of
A X A squares, where 4 is the wavelength for each measurement
frequency—described in Table 1. All the samples inside each
square were averaged through (1), removing the fast fading
from the sampled signal measured without causing smooth
shadowing variations.

D 1 s P /10
P, =10log ;Zi:110 / ) (1)

where P,y is the received power in dBm, and s is the number of
samples inside a square of the grid. The averaged measure-
ments were divided into two datasets as follows: one set
chosen to perform model fitting, denoted as tuning dataser,
and the rest of the data considered as a second set called the
testing dataset. The measurements over the testing dataset
were used to evaluate the accuracy of the predictions at those
measured locations.

3 | CHANNEL MODEL DESCRIPTION

To improve confidence for in-building radio design, an opti-
mum combination of carefully calibrated and filtered radio
measurements with simple path loss models to predict com-
plete system coverage performance was employed. Our overall
channel model description is illustrated in Figure 6.

From the tuning dataset, the path loss L is extracted in dB
as follows

L=Ps+G-Py, (2)
where Py denotes the transmission power in dBm and G is the

transmission gain in dBi. The effects of the antenna radiation
pattern are considered to calculate G in a specific location
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FIGURE 3 Measurement campaign at B5 (a) External view, (b) omnidirectional antenna, (c) directional antenna

FIGURE 4 Measurement campaign at B6 (a) External view, (b) omnidirectional antenna, (c) directional antenna

point, G(6, ¢). For this, the manufacturet's radiation patterns
are used, provided in two planes: azimuth 6 and elevation ¢. To
estimate gain values at any location from manufacturet's data,
the pattern interpolation method proposed by Vasiliadis et al.
in [22] was employed as follows:

o GH(G) cw + G\7(¢) - Wy
o [w,2 + w2 ’

G(0, ) ©)

where, G (6) and Gy(¢) are the horizontal and vertical gain
in dBi, respectively. w; and w, are the weight functions
described in [22]. To continue with the model tuning process,
two components are defined as median path loss Ly in dB
and shadowing L, in dB. The median path loss desctibes a
distance-dependent relation, which considers both free space
path loss Lg at a reference distance dy=1m and the char-
acteristics of the propagation medium. The median path loss
is given by
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FIGURE 5 Measurement campaign at B9 (a) External view, (b) omnidirectional antenna, (c) directional antenna

FIGURE 6 Channel model methodology

= Path loss exponent, n L

Model tuning

= Sources of uncertainty, e
l, Median path loss, Lso

<

" Shadowing extraction =

1. Asarandom variable, L Shadowing generation
2. From linear interpolation, L
3. Kriging-aided, L
Estimated path loss I
Validation s
d In seeking to optimise the model and to continue with the
Lsy = Lg + 10nlog,, d_o +e (4) second component for path loss, shadowing, or slow fading, it
L¢ = 20log,, (do) + 20log,, (f) — 28, (5) depends on the characteristics of the nearby—Ilocal clutter—

where 7 denotes the path loss exponent, d is the Euclidean
distance in a three-dimensional space in 7, e is a variable
accounting for specific from floor and walls
attenuations and waveguiding gain due to multiple re-
flections in corridors, and [ is the frequency in MHz. To fit
the variables in Equation (4), # and e are tuned by linear
regression, using the path loss extracted in Equation (2)
as L50.

sources

propagation environment, and this is given by
Li=L — Ly, (6)
Three facts are considered as follows:
1. Kriging, as a spatial predictor, does not require that data

follows a normal distribution since it is considered the best
linear unbiased predictor. However, if data does follow a
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normal distribution, then Kriging becomes the best unbi-
ased spatial predictor of all [23].

2. Shadowing can be modelled as a random variable in dB,
normally distributed with zero-mean and standard deviation
o, resulting in a log-normal distribution of the received
power in watts.

3. The spatial correlation of the random process from the
shadowing datasets is estimated through the wvariography
described in Section 4.1.

Thus, a Kriging-aided channel modelling approach was
selected to predict shadowing in specific locations and needs to
be validated. Equation (6) yields shadowing extracted behav-
iour, necessary for Kriging processes.

To sum up, the channel model proposed here estimates the
path loss as follows

L = Lg + 10nlog,, (g) +e+ L, (7)
0

whete L will be extracted from a shadowing grid that is using
Kriging, as is presented in the next section. Towards
comparing the proposed method accuracy, two more shad-
owing approaches were considered as follows: an estimate of
L, in dB as a random variable with zero-mean and a standard
deviation ¢ extracted from the tuning dataset in Equation (6)
labelled as ‘R’; and an estimate of L, in dB from a shadowing
grid generated by Matlab griddata function, that is, a
triangulation-based linear interpolation from the tuning dataset
in Equation (6), this approach is labelled as ‘LI’. The Kriging-
aided method is labelled ‘K’ in the results presented here.

4 | MODELLING KRIGING-AIDED
SHADOWING

In geostatistics, the autocorrelation of one or more variables is
described to make estimations of a specific parameter for
unobserved locations. The main tool in linear geostatistics is
known as a variogram, which quantifies and describes squared
differences between observations, that is, the spatial variability.
Thus, the autocorrelated component suggests that, on average,
closer observations—distances smaller than a half-wavelength
—are mote similar to each other than more widely separated
observations. For this reason, it is expected to observe that
semivariances are smaller at shorter distance and then they
stabilise at some distance within the extent of a study area,
where the differences between the pairs are approximately
equal to the global variance (plotted in a variogram) [24].

To determine the amount of influence that neighbouring
observations have when predicting values for unobserved lo-
cations, Kriging employs the variogram to make the interpo-
lation. In brief, linear geostatistics include the following:

= variography for modelling the variogram, and
= Kriging for interpolation.

4.1 | Shadowing variography

Since the true variogram of the spatial process is usually
unknown, it must be estimated through shadowing extracted
from the tuning dataset—given by Equation (6)—as

follows:

1. Experimental variogram y(h): calculate the differences be-
tween pairs of observed shadowing values,

1) =50 — 2 ), (5

where z, is the shadowing value at the cartesian coordinates
given by the vector x and zcy, is the shadowing at another
point at a distance h from x.

2. Summarise the experimental variogram by the vatiogram
estimator ¥, (h),

1) = 7 o (= ) )

where N(h) is the number of pairs within the lag interval h and
x; the cartesian coordinates given by vector x at location i.

3. Fit a variogram model function to the variogram estimator,
spherical and exponential models provide good results for
most datasets in the available published works [25, 20], these
functions can be modelled as,

h h\ 3
c()+c(1.5——0.5<—) ), 0<h<a
7sph(h): a a ’ (10)

C()+C s
_2h
rep(h) = co +c(1 e ) (1)

where c is the sill, 2 is the range, and ¢; is the nugget effect of
the variogram estimator. The nugget, sill and range of the
variogram models are fitted according to weighted least square
error, considering that this is a convenient method for fitting a
model to an experimental variogram [27].

4.2 | Kriging

Once the model is selected to describe the variogram behav-
iour, the next step is to employ ordinary Kriging to interpolate
the shadowing known values onto a regular grid, which is the
most popular Kriging method. Ordinary Kriging uses a
weighted average of the neighbouring points to estimate the
value Z of an unobserved point xy as follows:
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N

2X() - w; - inv (12)

i=1
where w; denotes the weights that must be estimated, N the
number of observations and zy, the known shadowing values.
To guarantee that the estimates are unbiased, this method
determines the weights under the constraint Z}Lwi =1,
where the expected average error must be minimised, that is,
E(z, —z,)=0.

Satisfying the condition that the sum of the weights should
be equal to one. This optimisation problem can be solved using
a Lagrange multiplier, resulting in a linear Kriging system of
N + 1 equations. The Kriging system can be presented in a
matrix notation

K, - E=Kg, (14)

where K, is the matrix of the coefficients; these are the
modelled vatiogram values for the pairs of observations, E is
the vector of the unknown weights w; and the Lagrange
multiplier v and K is the tight-hand-side vector. The process
to calculate the shadowing regular grid estimates is described
by the following steps:

1. Create a grid with the locations where the shadowing is
unknown to compute the Euclidean distance with the
known locations.

2. Calculate Ky, as follows

}’(JC],JCO)

7(%2, x0)

7(xN7x0)
1

where y(xj,x0) is the variogram between the data points and
the unobserved points. y(xj,x¢) is calculated from Equa-
tion (10) or Equation (11) with h as the values obtained in the
previous step.

3. Obtain the weights w; and the Lagrange multiplier v con-

tained in the matrix E=[w; w, .. wy v ]|, the
matrix K, must be inverted
E=K," - Kg, (14)
0 7(x1,%2) y(x,xn) 1
¥ (x2, 1) 0 (2, xn) 1
y(xNa xl) Y(xl\u x2) 0 1
1 1 1 0

(15)

where y(xj, %)) are the modelled variogram values for the pairs
of observations that are calculated from Equation (10) or

Equation (11) with h as the Euclidean distance between the
known locations.

4. Calculate the Kriging shadowing estimations for the grid
through Equation (12), where w; values are in the E matrix
obtained through Equation (14). The Kriging variance is
given by

OZZKR_l ‘E, (17)

5 | MODEL VALIDATION

To justify our Kriging selection and the assumptions that it
implies—the shadowing can be modelled as a zero-mean
Gaussian random variable; this is usually only tested by vi-
sual inspection of the histogram—the histogram of shad-
owing from tuning datasets was computed. By fitting a
Gaussian curve to the histograms, we obtained a goodness
of fit metric of R-squared (R?) for each measurement
campaign y;, which are described in Table 2 and calculated
as follows

(18)

TABLE 2 Goodness of fit for shadowing histograms

Fr
Building Fi, 0 1 2 3 4
B2 2 - 0.94 0.98 0.98 0.87
3 - 0.89 0.98 0.89 0.97
2 - 0.68 0.88 0.99 -
B5 3 - 0.96 0.95 0.99 -
1 - 0.96 0.78 0.89 -
B6 1 - 0.72 0.99 0.99 -
- 0.30 0.99 0.97 -
B8 1 0.98 0.77 0.89 - -
0.96 0.41 0.17 - -
B9 0 0.99 0.89 0.99 0.90 -
2 0.99 0.97 0.98 0.97 -
B10 1 0.96 0.93 0.99 - -
2 0.94 0.96 0.96 - -
1 0.99 0.91 0.97 - -
B11 1 - 0.99 0.82 0.77 -
2 - 0.94 0.87 0.95 -
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where (y, —9;) is the difference between measured values and
predicted values for the N measures and (y, —7%,) is the dif-
ference between measured values and the mean of the pre-
dicted values. Indeed, the R? coefficient measures how well the
prediction explains the measurements, it is in the range (0, 1),
where a value close to one means that the prediction efficiently
explains the observations.

Based on the results from Table 2 , we conclude that in
most cases, our Kriging model assumption on the shadowing
part is valid. Nevertheless, in the cases where R? is below 0.9,
we want to analyse how Kriging behaves; therefore, it is further
reviewed in Section 5 (Table 5).

The understanding of the selection of the variogram
function, tuning dataset method, and tuning dataset size, is an
open issue that has been almost not addressed in the avail-
able literature. Moreover, the adequate selection of these
three approaches results in a reliable model tuning process.
Thus, the following three pre-tests were conducted in the B6
to detail the statements considered to validate the model
proposed herein:

o Variogram function selection: for successful Kriging esti-
mation, it is necessary to choose the most suitable variogram
between spherical and exponential fitting functions.

o Tuning dataset method selection: it is necessary to analyse
what happens when the selection of tuning dataset method
varies, to select the right one to get the most out of
Kriging.

o Tuning dataset size: to select the least amount of tuning
dataset to obtain the best goodness of fit, it is necessary to
analyse what percentage of data should be selected for this
dataset. In all the previous tests, 1 and 2, it is considered at
a rate of 70% for tuning and 30% for testing datasets, 70/
30, from the whole samples.

5.1 | Pre-test 1: Variogram function selection

Path loss results for spherical and exponential variogram
models were analysed. To extract the tuning dataset, the floor
layout was divided into nine classification zones each of a
width of 5m describing rings around the transmitting antenna,
where a 70/30 rate extracted from each classification zone is
ensured to carry out an accurate fitting process that considers
data from all zones.

For this test and to verify the goodness of fit of the var-
iogram function selected, the metric of R? was selected. Ac-
cording to Figure 7, in this case, it seems that the spherical
function has a better goodness of fit than the exponential with
an R* = 0.75.

Once the shadowing is predicted over the testing dataset
locations through the methodology described in Section 3, the
estimations are compared to the real values with a spherical
and an exponential function, Figure 8 shows Kriging-aided
shadowing estimations and its variance. The kriging variance
observed with an exponential function as a fitting variogram
model presents a better fit of closer locations to measurement
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FIGURE 7 Variogram models for shadowing semivariance in B6
(TxL1_RxL1)

samples (black dots—tuning dataset—plus blue dark values of
the shadowing variance). Besides, when root mean square er-
rors (RMSE) of both cases were compared, both were small.
However, in all cases, the exponential function has a lower
value of RMSE.

For B6, Table 3 overviews the goodness of fit metric of R
given by (18) and the RMSE defined by

RMSE = \/éle (yi—&iy, (19)

From the results presented in Table 3, when the expo-
nential function was selected to represent the experimental
variogram obtained from tuning dataset, the path loss
modelled has a better fit—with a RMSE of 3.03 dB—than the
spherical selection.

Therefore, shadowing can be modelled as a zero-mean
Gaussian random variable that is spatially correlated accord-
ing to an exponential correlation model. Besides, shadowing
can be estimated through Kriging with a higher level of
confidence—with the best goodness of fit of R* = 0.96—than
the other two approaches: R and LI.

5.2 | Pre-test 2: Tuning dataset method
selection

To select the most appropriate tuning dataset from all available
measurements, different methods were validated to efficiently
divide the samples into two datasets namely tuning and testing,
Four classification methods are proposed, each method will
divide the measurements into zones under different consider-
ations, whete a 70/30 rate from all zones is ensutred according
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to the classification method. These methods are described as
follows:

® Measurements are assigned to areas defined by concentric
circles with radius » = 5k m, where k=1, 2, ..., n, centred
at the position of the transmitting antenna. 7 depends on
the maximum separation distance between transmitter and
receiver.

® Measurements are zoned every 5 dBm of received power.

® Measurements are divided according to x coordinates every

3m.

® Measurements are divided into two datasets in a random
process that only considers extracting 70% for tuning and
30% for testing from total measurements.

TABLE 3 Results for variogram selection for B6 (I'xL1_RxL1)

Shadowing K K
approaches R LI (sph)R? =0.68  (exp)R* = 0.61
R® shadowing ~0.93 —9.81 0.82 0.81

R path Toss 0.62 —1.12 0.96 0.96

RMSE [dB] 9.79 23.16 3.06 3.03

Table 4 shows an overview of the results in terms of R?
given by Equation (18) and the mean absolute error (MAE)

given by
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TABLE 4 Results for zones classification

)

MAE = L Zil lyi -

Method Parameter R LI K N
1 R? shadowing 124 0.01 0.86 where ’yi - 5’1| is the absolute value of the difference between
2 measured and predicted values for the N measures. The first
R” path loss 0.47 0.77 0.97 R
method shows the best error performance with the least mean
MAE [dB] 8.50 3.81 216 absolute error of 2.16 dB for shadowing estimations; it de-
2 R? shadowing ~1.08 -1.17 0.84 scribes the rings around the transmitting antenna location (see
igure 9).
R? path loss 0.49 0.46 0.96 Figure 9)
MAE [dB] 8.99 6.16 2.30
3 R? shadowing ~0.63 ~1.20 0.82 5.3 | Pre-test 3: Tuning dataset size
R® path loss 0.59 0.45 0.95 ) o
] To select the least amount of tuning dataset obtaining the best
MAE [dB] 7:96 504 240 goodness of fit, the size of this dataset was analysed. Tests with
4 R* shadowing -0.61 —1.54 0.73 100% to 60% of tuning dataset were carried out, where the
0 .y
R? path loss 0.58 033 0.93 100 /0' is extracted from an initial rate of 70/30.
Figure 10 presents the results of three tests that were
MAE [dB] 8.31 0-85 2:62 performed for each approach (100, 90, 80, 70 and 60), in order

Abbreviation: MAE, mean absolute error.

101

y-Coordinates [m]

Measurement Campaign: Floor layout

x-Coordinates [m)

FIGURE 9 Zones to extract tuning and testing dataset. B6

TxL1_RxL1

to have a sufficient number of outcomes to detive a more solid

conclusion.

From Figure 10, it is clear that a 100% to 80% of tuning
dataset lets the least error of ~2.2 dB—obtained as the
mean error for the three tests—for Kriging-aided model

-55

0 approach. The percentages of 100, 90 and 80 represent a
o rate of 70/30, 63/37 and 56/44, respectively, for tuning/
e testing dataset. Consequently, a 60/40 rate to divide the
75 measurement campaign is recommended, considering the
0 & first method to classify samples into zones and an expo-
&5 = nential function as a fitting variogram model for Kriging
P process.
95
e 5.4 | Results: Path loss predictions
-105
A validation that follows the procedure in Sections 2 and 3 was
performed for seven buildings at Tecnologico de Monterrey,
campus Querétaro, yielding 57 scenatios described in Table 1.
Due to previous three pre-tests, the following approaches are
considered to validate the model proposed herein:
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FIGURE 10 Boxplot: Error in path loss for different tuning rates
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TABLE 5 Goodness of fit (R?) for

Fu shadowing histograms and path loss estimations
No. Fu 0 1 2 3 4
B2 2 - 0.94 | 0.86 0.98 | 0.19 0.98 | 0.77 0.87 | 0.84
3 - 0.89 | 0.89 0.98 | 0.57 0.89 | 0.79 0.97 | 0.82
2 - 0.68 | 0.89 0.88 | 0.84 0.99 | 0.8 -
B5 3 - 0.96 | 0.61 0.95 | 0.77 0.99 | 0.7 -
1 - 0.96 | 0.94 0.78 | 0.91 0.89 | 0.9 -
B6 1 - 0.72 | 0.96 0.99 | 0.93 0.99 | 0.68 -
- 0.30 | 0.93 0.99 | 0.93 0.97 | 0.84 -
B8 1 0.98 | 0.84 0.77 | 0.93 0.89 | 0.67 - -
0.96 | 0.82 0.41 | 0.94 0.17 | 0.88 - -
B9 0 0.99 | 0.85 0.89 | 0.89 0.99 | 0.62 0.90 | 0.47 -
2 0.99 | 0.9 0.97 | 0.75 0.98 | 0.77 0.97 | 0.7 -
B10 1 0.96 | 0.86 0.93 | 0.92 0.99 | 0.65 - -
2 0.94 | 0.62 0.96 | 0.78 0.96 | 0.84 - -
1 0.99 | 0.87 0.91 | 0.9 0.97 | 0.73 - -
B11 1 - 0.99 | 0.95 0.82 | 0.94 0.77 | 0.65 -
2 - 0.94 | 0.92 0.87 | 0.96 0.95 | 0.67 -

1. shadowing will be modelled as a zero-mean Gaussian
random variable that is spatially correlated according to an
exponential correlation model,

2. measurements will be divided into classification zones
defined by concentric circles every 5 m from the position of
the transmitting antenna, and

3. a 60/40 rate will be extracted from each classification zone
to divide samples into tuning and testing dataset.

In Table 5, the goodness of fit for both extracted shad-
owing fitting with a Gaussian curve (R?) and path loss esti-
mation with the model presented here (R3), are given in the
form R?|RZ. Through the results highlighted in bold in Table 5,
the veracity of Kriging, as the best linear unbiased predictor is
clear and wvalidated; these results indicate that the extracted
shadowing values that did not follow a normal distribution
—R? < 0.9—did not condition the Kriging process to obtain
accurate path loss predictions. In the cases where R3 < 0.9, the
floors where the transmitting and receiving antenna are located
should be observed since this indicates that the mathematical
model should include in-building attenuations, and characterise
those caused by walls and floors; it provides an opportunity of
future work.

Figure 11 shows RMSEs for all the scenarios evaluated. In
all cases, the shadowing can be estimated through Kriging with
a higher level of confidence than the other two approaches: R
and LI. From the 57 validated scenatios, 16 scenarios have the
transmitting antenna located on the same floor as the receiving
antenna (bold values in Table 5), of which 56.3% have an
accurate goodness of fit of the model with RS > 0.9. Besides,
in-building measurement-based path loss modelling using

Kriging is an attractive method when performing path loss
prediction, as it offers a good trade-off between estimation
quality and the number of measurements required for model
tuning, In Figure 11, it can be seen that the methodology and
the model proposed here improve the prediction accuracy,
including cases where the transmitting antenna is located at a
different floor from that of the receiving antenna. Moreover,
the proposed combined path loss and shadowing model are
more accurate and flexible compared with the conventional
linear path loss plus log-normal shadowing model. In future
work, we expect to compare in-building hybrid propagation
models against the model validated here .

6 | CONCLUSIONS

This paper proposes Kriging-aided shadowing for modelling
path loss in an indoor scenario based on measurements. It was
validated through different approaches that the prediction ac-
curacy, expressed in terms of a goodness of fit metric of R?
and the RMSEs between estimations and measutrements, was
significantly better when Kriging is included as part of the
tuning process.

As a result of the approaches in testing stages, it was
validated that shadowing can be modelled as a zero-mean
Gaussian random variable that is spatially correlated accord-
ing to an exponential correlation model. Besides, in order to
capitalise the benefit of using higher confidence predictions
minimising cost, we recommend using a 60/40 rate to divide
samples into tuning and testing datasets—considering the
methodology presented here—with the objective to select the
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smallest tuning dataset to obtain the best goodness of fit for

modelling Kriging-based shadowing.
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Chapter 4

Testing a 5G Communication System: Kriging-Aided 021 Path Loss
Modeling Based on 3.5 GHz Measurement Analysis

4.1 Summary of the Chapter

In indoor venues with high-density user volumes such as hotels, supermarkets and congress
halls, among others, the deployment of indoor radio cells is a common solution, however
considering the availability of outdoor radio cells, this would become a hasty solution.
Regarding these conditions, outdoor-to-indoor (O2I) models become very relevant. As a
consequence, this chapter describes the performance of the proposed model in Chapter 3
when it is employed in 021 scenarios at 3.5 GHz. Two different cases of non-line-of-sight
(NLOS) links are considered when the transmitter system is located on the same side of the
street where the receiver is located and on the opposite side in two different universities.

Continuing with the validation purposes and based on the fact that a typical O2I path loss
model usually follows the most widely used standard equations provided by the projects

COST231, WINNER+, ITU-R and 3GPP. The error of the predictions achieved by the proposed
model is compared against those obtained when the standard models are employed.

4.2 Full Article
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Abstract: Deep knowledge of how radio waves behave in a practical wireless channel is required
for the effective planning and deployment of radio access networks in outdoor-to-indoor (O2I)
environments. Using more than 400 non-line-of-sight (NLOS) radio measurements at 3.5 GHz, this
study analyzes and validates a novel O2I measurement-based path loss prediction narrowband model
that characterizes and estimates shadowing through Kriging techniques. The prediction results of
the developed model are compared with those of the most traditional assumption of slow fading as a
random variable: COST231, WINNER+, ITU-R, 3GPP urban microcell O2I models and field measured
data. The results showed and guaranteed that the predicted path loss accuracy, expressed in terms of
the mean error, standard deviation and root mean square error (RMSE) was significantly better with
the proposed model; it considerably decreased the average error for both scenarios under evaluation.

Keywords: Kriging; outdoor-to-indoor (O2I); path loss; radio propagation; shadowing

1. Introduction

In recent years, there is a clear need to supply a sufficiently high data rate for areas
with elevated user volume such as venues, hotels, and conference centers, etc., where a
lack of signal is evident. Usually, in these situations the deployment of a new indoor radio
cell is unnecessary considering outdoor radio cell availability. Under these conditions,
outdoor-to-indoor (O2I) models become very relevant. These models characterize signal
propagation inside buildings coming from external mobile radio base stations (BSs), which
are mounted across a network of outdoor sites, occupying towers on hilltops, rooftops in
built-up areas, and other promising outdoor structures. O2I radio propagation has become
a challenging work, according to Small Cell Forum [1] some reasons for this are:

e  Due to the lower operating frequencies becoming exhausted, higher frequencies are
being deployed. However, they are not as effective for range and building penetration.

e 2l signal propagation is affected because the building fabric is more eco-friendly
and noise-free, using low-emissivity glass which reflects the radiation from cellular
antennas, and soundproof materials which attenuate radio waves.

e  There are large increases in demand for mobile cellular services which densify avail-
able networks with more sites and an increase in the size of the spectrum that mobile
network operators (MNOs) can deploy on those sites. This produces localized conges-
tion; the service may be available, but it may not always be satisfactory.

Therefore, the scientific community is encouraged to understand O2I radio wave
propagation [2-5] to help radio network engineers to achieve efficient radio coverage
estimation, determine the optimal BS location, and perform interference feasibility studies.
In seeking to understand those links, the applicability of standard urban microcell O2I path
loss models such as COST231, WINNER+, ITU-R, and 3GPP are empirically tested [6].
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The COST 231 project is based on adjusted models such as the one-slope model (15SM),
the multi-wall model (MWM) and the linear attenuation model (LAM), that are based on
propagation measurements [7]. The final O2I model proposed by the COST231 project
is based on empirical data acquired for NLOS links, where the model relates the loss
inside a room to the loss measured outside of it on the side nearest to the wall of interest,
i.e., multi-floor propagation. The WINNER+ channel model followed a geometry-based
stochastic channel modeling approach [8]. The channel parameters were determined
stochastically, based on statistical distributions extracted from channel measurements. The
ITU-R model [9] provided guidelines for both the procedure and the criteria (technical,
spectrum and service) to be used in evaluating the proposed IMT-Advanced radio interface
technologies (RITs) or sets of RITs (SRITs) for a number of test environments and deploy-
ment scenarios for the evaluation of the band of frequencies between 2 and 6 GHz. The
NLOS model proposed by the 3GPP is based on measurement campaigns, for O2I building
penetration loss. This model considered the material penetration losses for two types of
models: low loss and high loss. The composition of low and high loss is dependent on the
use of metal-coated glass in buildings and the deployment scenario characteristics. The
study reported for the 3GPP project considered not only O2I building penetration losses
but also O2I car penetration losses for the frequency range of 0.6 to 60 GHz [10].

According to [11], through an accurate channel modeling: the in-building radio
propagation phenomena, complex by nature, can be characterized; the range of a wireless
communication system can be calculated by assessing the expected coverage inside a
building; signal strength/path loss can be predicted more accurately everywhere in a
building; and channel performance predictions can be made quickly.

There are essentially three approaches for propagation models: physical, empirical
and hybrid. The majority of physical models are simple to use but their assumptions are
based on many simplifications. Generally, for this reason, they are employed to describe the
phenomenon within a given error, whereas empirical models take valuable and building-
specific information into account. As a result of combining the previous approaches, hybrid
models include the accuracy of physical models and the suitability of measurement-based
tuning perform in empirical models. On this basis, measurement-based methods are
promising to achieve accurate and practical predictions, even in situations where there are
not enough samples to carry out a rigorous characterization. To address the shortcoming
of samples from measurement campaigns, linear geostatistics demonstrate their usefulness
to predict unknown data with few available samples for practical designs.

To quantify the reliability of coverage provided by any radio cell it is imperative to
understand and to characterize median path loss, shadow fading, and fast fading as the
main path loss components [12]. As is surveyed in [11], the estimation of median path loss
is deterministic, mathematical models describe it in terms of how path loss changes as a
function of some factors, such as frequency and specific distance, etc. Nevertheless, these
models need to account for the shadowing process, including it as an additional variable
which describes the dispersion with respect to the nominal value given by the path loss
models. Therefore, due to the normal distribution that shadowing produces in the signal
measured, the most traditional action is to characterize it by a zero-mean Gaussian random
variable, such as in [6]. Other wireless studies include nonconstant shadowing variance
and non-lognormal shadowing, and predict the variance by considering the correlation
between paths [13,14]. However, in [15] the authors validate a more accurate method to
estimate the spatial correlation of shadowing by including Kriging, a linear geostatistics
technique that is based on the regionalized theory, which states that there is a variance rate
between samples over space in a physical continuity context, i.e., the spatial dependence
stated by Tobler in [16]: spatial samples taken close to each other may be expected to have
more similar values than samples taken farther apart. There are different types of Kriging
techniques, ordinary Kriging is the most common method; however, if there is a spatial
trend then this technique is no longer the appropriate to model the spatial variability. There
are other alternatives of Kriging, for instance, universal Kriging and simple Kriging, among
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others. The properly selection of the Kriging technique is focused on the data characteristics.
To summarize, the aim of Kriging is to minimize the variance of estimation errors under the
constraint of unbiased estimation [17]. The spatial prediction of Kriging does not require
that data to be interpolated follow a normal distribution since Kriging describes the best
linear unbiased estimator in the sense of least variance. However, if the data follow a
normal distribution, then Kriging becomes the best unbiased spatial predictor. Therefore,
telecommunications studies include Kriging to realize a highly accurate radio environment
map (REM) [18-20] or to enrich the training dataset (to produce a large amount of data) for
channel modeling, as is reported in [21].

Additionally, in [15], Kriging was employed to estimate shadowing only in indoor
scenarios at 869.6 MHz, 1930.2 MHz, 2400 MHz and 2500 MHz without considering
O2I non-line-of-sight (NLOS) links. Unlike the links studied in [15], in [6], the authors
considered O2I NLOS; nevertheless, they only focused their study on comparing the
performance of standard model predictions. To the best of our knowledge, this is the
first time such novel modelling for estimating shadowing through Kriging in O2I links at
3.5 GHz for 5G communication systems has been presented.

The findings of this study engage students in wireless telecommunications, profes-
sionals in the industry, and readers with new Kriging-applied insights and help them to
effectively reduce the time and costs involved in measurements campaigns to achieve
efficient radio coverage estimations.

2. Methodology and Data Collection

As an optimum combination of carefully measurements, Kriging and simple path loss
models were employed to predict complete system coverage performance in two types of
O2I NLOS links. The methodology, measurement equipment, scenarios and procedure are
described as follows.

2.1. Measurements and Data Collection Procedure

In order to represent typical O2I links, received signal-strength measurements were
carried out in two universities in Chile with similar scenarios: the engineering campus
of Universidad Diego Portales (UDP) in Santiago, and the main campus of Universidad
Técnica Federico Santa Maria (USM) in Valparaiso. This measurement campaign was
employed in [6] to research a completely different objective than the one addressed in this
study; here we only employ the NLOS O2I samples. In seeking to analyze NLOS links, the
samples collected in the measurement campaigns described two types of links reported
in Table 1. Table 2 details the scenarios for measurement campaigns and the NLOS O2I
samples collected.

Table 1. Measurement Campaign non-line-of-sight (NLOS) Links.

NLOS Link Description
Same side (SS) The transmitter and receiver system share the same street
Opposite side (OS) The transmitter and receiver system are placed on opposing sides of the street

Table 2. Measurement Campaign Scenarios.

Outdoor ! Indoor
Scenario Street Street Surroundines No. Rooms
Width Length urrou 8 Rooms Width
Concrete buildings with different
UDP 2l m 89 m floor heights and a few trees with 2 6m
~6 m in height
USM 85m 70 m Three-story concrete buildings of 5 6m

uniform shape with 6 m? windows

! There is an empty space on the opposite side of the university buildings.
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In Figure 1, a basic layout of both scenarios is illustrated; for same side (SS) links,
the transmitter system was always placed on the sidewalk 0.7 m away from the building
wall, and for opposite side (OS) links, it was moved directly across the street from its
previous location. Throughout the different transmitter system settings, it was located at a
5 m height with a 60° depression angle to the wall. The transmitter power of the system
was 17.8 dBm (Py) at a 3.5 GHz continuous wave (CW) and it consisted of a vertically
polarized directional patch antenna with 10.2 dB gain (Gt), 60° azimuth and elevation
half-power beamwidths. The received power was recorded by a narrowband receiver
connected to a vertically polarized half-wavelength dipole with a 2.4 dB gain (Gx). The
receiver bandwidth of 200 KHz allowed it to capture any frequency dispersion affecting the
CW transmission. In all field measurements the received power was at least 20 dB above
the receiver noise floor of —123 dB.

Same Side SS

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" 07m
o-b Q T ‘__ mqing mt
Q Q9 Q00
00000 - L %" .
o Q00 0 = = L L
BS Location ? o o o o 0 0 0 0 o
Receiver Location o —

Figure 1. An example of the measurement layout.

For the sampling process the receiver antenna was placed on a computer-controlled
rotating arm involving measurements of 6° (or 0.105 rad) angular increments on circles of
radius 0.4 m at each receiver placement. For each angular position 25 consecutive power
samples were collected, in order to verify consistency and averaging, and to remove resid-
ual temporal fades, which did not fluctuate by more than +0.5 dB due to the narrowband
static environment. Then, these consecutive samples were averaged to account for the first
power sample value and to continue to the next angular position until 60 possible angular
positions were completed in a 360° circle. Finally, 60 received signal power samples were
collected at each receive location, as illustrated in Figure 2. Regarding receiver locations,
a total of 308 and 108 sample locations were reported for the O2I NLOS USM and UDP
scenarios, respectively.

Considering the angular increments as ¢ and the circle radius as r in Figure 3 the
resulting separation distance is illustrated. In each location, this method yields a circle with
A/2 separation distance between successive antenna positions because 0.04 m = A/2.
According to [22], the spatial average of A/2 is in accordance with the shadow-fade
correlation distance.
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Building

Small-scale fade + Path loss

5m

First BS Location @

First Receiver Location o

!

Figure 2. An example of the OS NLOS measurement configuration with the on-axis 0.4 m rotating system.

Street

T v
4 6 I s=1r-0
k ~ / S r=04m
A S, 2
.. » 6 = 0.105 rad
s =0.04m

Figure 3. Separation distance according to the angular increment.

Thus, to average out the small-scale fades, the resulting average power (Prx) at specific
locations corresponded to the mean of the 60 samples recorded, which was calculated

as follows: .
B _ 60 Pry. /10
Py = 1010g(60 Y, 10 > (1)

where Py, is the received power measured in dBm and i is the number of the sample
recorded. An overview of the measurement conditions is presented in Table 3.

Table 3. Measurement Parameters.

Parameter Description
Type of O2I links OS NLOS and SS NLOS
Frequency, f 3.5 GHz
Transmit power, Py 17.8 dBm
Transmit gain, Gix 10.2 dB
Receive gain, Grx 2.4 dB
Receive distance range, d 5-40 m
Receiver noise floor —123 dBm
Number of spatial positions at each receive location 60
Number of O2I NLOS links at USM 308

Number of O2I NLOS links at UDP 108
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2.2. Kriging-Based Channel Model Development

The overall methodology for both SS and OS channel modelling links is illustrated in
Figure 4 and described as follows. As a first step, from the resulting O2I measurements, SS
and OS NLOS links, the path loss L is extracted in dB as a classical link budget:

L:Ptx“l‘Gtx"'er_Tm- (2)

Tuning dataset Testing dataset

Model tuning = Pathloss exponent, n
=  Sources of uncertainty, e
I, Median path loss, Lsg

Shadowing extraction
Shadowing generation

As a random variable, Lg
Kriging-aided, L

B &

Estimated path loss
Validation

jury

Figure 4. Channel model methodology.

To properly choose tuning samples that accurately reflected the characteristics of the
larger measurement campaign, the selections suggested by the authors in [15] about the
method and dataset size for tuning selection were considered: first, four classification
methods were addressed and compared in terms of the mean absolute error (MAE); the
results showed the first method as the most accurate with the lowest MAE of 2.16 dB. This
method divided the target area of each scenario into representative zones bounded by
concentric circles every 5 m from the position of the BS; and second, five approaches were
addressed in order to select the least amount of tuning dataset, obtaining the best goodness
of fit. The conclusion for this test was to recommend the rate of 60/40 to extract tuning
and testing datasets. Considering both suggestions, the measurements were divided into
areas defined by rings with radius r = 5k in m (where k = 1, 2,..., n, and n depends
on the maximum separation distance between transmitter and receiver) centered at the
position of the BS. Then, a 60/40 rate was extracted from each zone: 60% exclusively used
for driving the measurement-based prediction process using Kriging (tuning dataset), and
40% to perform the validation of the estimated path loss at those testing placements (testing
dataset). For the model tuning process, the path loss extracted in (2) was defined by two
components [22]: median path loss Lsy and shadowing Lg in dB:

L =Lsy+ L. (3)

The median path loss described how the transmitted signal was attenuated during the
path, in terms of the free space path loss L = 201og;(do) + 201log,,(f [MHz]) — 28 [23],
the distance-dependent relation, and specific sources from wall attenuations. In this channel
modeling proposal, the median path loss was calculated as:

d

L5y = Lg + 10n logw (d) +e, (4)
0

where Ly, = 42.9 dB, dj is the reference distance of 1 m,  denotes the path loss exponent,

d is the Euclidean distance in a three-dimensional space in m, and e is strictly related to

attenuation sources such as floor and walls attenuations. The variables n and e are found
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by fitting a linear equation to the path loss extracted in (2); the linear regression results are
shown in Table 4.

Table 4. Median Path Loss.

O2I Link n e
SS 1.93 24.73
OS 2.41 15.64

In Figure 5 the path loss extracted from (2) is illustrated in blue circles markers for the
SS links and in red cross markers for the OS links (where the marker points are already
averaged over all 60 samples per received position) along with the median path loss
calculated by (4) with the values presented in Table 4 for the SS and OS NLOS O21I links.

115 T T T T T T T T T T T T T

110

105

100

Path Loss [dB]
g 9

(o]
W

o]
[}

5 10 15 20 25 30 40 50 65 80
Distance [m]

Figure 5. O2I path loss measurements.

For shadowing extraction and continuing with the second component for path loss,
the shadowing is extracted from (3) as follows:

Ls = L — Lg. ®)

The shadowing generation process employs the shadow values previously obtained
in (5) to interpolate the known data Ls(c;) in unknown locations ¢y, achieving the accurate
shadowing values through the Kriging-aided channel. In other words, from the N shad-
owing tuning samples at the coordinates c;, the dataset vector defined by (6) is extracted,
leading Kriging to estimate an unknown shadowing value Ls(cp) at a random location ¢
from the known samples Ls(c;):

Ls(ci) = (Ls(c1), Le(c2), --., Le(en))T. (6)

To provide these predictions, Kriging employs the variography to understand and
find a pertinent threshold of neighboring samples to the interpolation. In order to sum-
marize the central shadowing tendency, an exponential model function is fitted to the
variogram estimator to further visualize the shadowing spatial process. The selection
of the exponential function is focused on both theoretical reasons, which highlight the
properties that a function selected as a variogram model must fulfil, and practical reasons,
for which evidence from multiple studies [15,24,25] demonstrates that the exponential
function provides the best fits.

In Figure 6, it is possible to observe that the parametric curve (exponential function,
Exp) fits reasonably well over the first three 5 m lags for both SS and OS NLOS links.
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Semivariance

According to geostatistics [26], this is appropriate for Kriging due to near points, such

as shadowing neighboring samples, carry more weight than more distant ones to the
unknown shadowing values. Thereby, considering the characteristics of the data, ordinary
Kriging is employed to interpolate and then predict shadowing at each grid location in
the scenario area. Ordinary Kriging uses a weighted average of the neighboring points to
estimate the value of an unobserved point. To guarantee that the estimates are unbiased
this Kriging determines the weights under the constraint described below in Algorithm 1.

As is illustrated in Figure 4, at the end of the methodology proposed, the estimated path

loss is assessed by (3) at the testing locations in order to proceed with the validation of the
shadowing measured at those points.

T T T T T T O 16 T T T T T T T T
d x
o x
14 - X 4
4 5 o
o 1o 12| x X e HKeeXersrnsaneansses X Xeeenenns -
o | —— e R B
o 0 ....................... g - } N
o L e c 10 - x 1
o o ..o e g X x
o o0 o © o o g £
- D e e S ] > B
- _O_ T © £ 8f ]
0o ."0° o © 3 XX
R o o) 4 X
0. 6F 1
O O  Variogram estimator | :.': x  Variogram estimator
..". — — —Population variance 4r X — — —Population variance
o e Exp, R2=0.6 | - L Exp, R?=0.74
. . . . 1 1 I 2 X | | ! | | | | |
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 40 45
Distance between observations [m] Distance between observations [m]
(a) (b)

Figure 6. Variography results. (a) SS UDP & USM O2I link. (b) OS UDP & USM O21 link.

All the supporting information for the Kriging-aided method was analyzed and de-
scribed in greater depth in [15]; however, an overview is presented in the algorithm below.

Algorithm 1. Kriging-aided process.

Designing the path loss:
1: Tune the parameters n and e in (4) from the tuning dataset.
2: Extract shadowing from (5).
3: Generate shadowing trough the Kriging-aided process: variogram and interpolation.
Modeling the variogram:
4: Calculate the experimental variogram.
5: Summarize the experimental variogram.
6: Fit a parametric curve.
7 if variogram fits to the first 3 lags then
Kriging interpolation:
8: Create the scenario through a grid.
9: Ordinary Kriging constraint: Z{il w; =1
10: Calculate the weights w; and the Lagrange multiplier.
11: Estimate Ls trough the weighted average of the neighboring points.
Estimating the path loss:
12: L= LferlOnloglo(%) +e+Ls
3. Results

The developed model described in Section 2.2 is labeled as K with L = Lsy 4 Ls where
Ls is extracted from the shadowing grid generated by Kriging. In order to validate the
performance and the accuracy of the prediction results of the model, it is evaluated based
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on the mean error, standard deviation and root mean square error (RMSE) of the predicted
path loss values, L;, at the testing measured locations, ty, relative to the corresponding
testing measured path loss values, L;. The mean error (ME), the standard deviation of the
error (S) and the RMSE are given by:

1 .
ME = - N (Li— L), @)

1 ¢ N 2
S:\/tN—lzﬁl (L; — L;) — ME|?, ®)
RMSE = \/ % YN (L - )% ©)

Furthermore, these results are compared with those of the most traditional assumption
of L = Lsg + Ls, where the shadowing, Ls, is a random variable with a zero mean and a
standard deviation ¢ extracted from the tuning dataset behavior, labeled as R.

Based on the approach that a typical O2I path loss prediction model considers: the
main large-scale propagation loss in line-of-sight (LOS) or NLOS up to the building wall,
is a penetration factor that adds wall losses and an indoor path loss term, and that this
structure is shared by the most widely used standard models for O2I: COST231 Building
Penetration LOS model [7], WINNER+ O2Ia/LOS model [8], ITU-R O2I model [9] and
3GPP 3D-UMi O2I model [10]. The K model predictions are also compared with those of
the standard models. The path loss estimated trough the standard models is calculated
using (7), where each component is in dB and is described in Table 5:

Lsm = Ll + L2 + L3/ (10)

The path loss components, described in Table 5, were extracted from the setup and
results of the O2I NLOS measurement campaign, i.e., the distances of the x, y, and z axes
were given by the location of each measurement, the frequency f in Hz (3.5 x 10° Hz) and
the room depth w in m by the measurement setup. In each room where the measurements
were performed the receiver antenna was placed at three different room depths: around
1 m from the exterior university wall, in the center of the room, and around 1 m from the
interior university wall.

Table 5. Standard Models.

Standard Model Path Loss Components !
Ly = 22log( /22 +y? +22) +28 + 2010,
3GPP 1 g( v ) 8 f
L, =20
I5=2

L =22( log /2 —w)?+22) +28+201
ITU-R 1 (og 2+ (y—w) +Z>+ 8 +20log f

Ly = 14 +15-(1 - 6)?

Ly=%
= 2 —w)? 2
WINNER Ly 22.710g< ¥4+ (y—w) +z ) +27+20log f
Ly = 17.64 4+ 14-(1 — 1.81og f) + 15-(1 — 6)*
Ly =%
L= 2010g< 2+ (y—w)? + 22 +w> +324+20log f
2
COST231 Ly =7+20- (1 e i —
V2 +(y—w)?+22 4w
— (w—-2)(1 Yy ®
L =06 (w 2) <1 \/x2+(y—w)2+22+w)

1o :tan_1<\/m/y—w).
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Probability [%]

To make a robust analysis to the choice of the 60/40 rate for tuning and testing
datasets, a uniform random sampling method was performed 2000 times to estimate the
corresponding path loss according to the Kriging-aided model proposed. The average of
the 2000 iterations for the mean error, the standard deviation of the error and the RMSE is
presented in Table 6 for each link described in Table 2.

Table 6. Path Loss Models Accuracy.

O2I Link Model Mean Error Standard Deviation RMSE
R —0.04 4.73 4.73
K 0.30 2.82 2.85
3GPP 3.43 3.52 491
S5 ITU-R 5.6 3.82 6.49
WINNER+ 1.29 3.91 411
COST231 —3.81 3.31 5.04
R 0.00 4.81 4.81
K 0.47 2.78 2.84
3GPP 0.55 3.46 3.49
03 ITU-R 5.20 3.02 6.00
WINNER+ 1.16 3.03 3.23
COST231 1.14 3.02 3.21

In addition, after the 2000 iterations are performed to select a different 60/40 rate from
measurements to estimate the path loss, the model-based results are presented in terms of
the cumulative distribution function (CDF) of the mean error, the standard deviation of the
error and the RMSE in Figures 7-9, respectively.

l— T T AT 1 T T T T T T T T T T
09 - - 4
0.8 [ . 4
0.7 - - 4
0.6 - i i ]

2 |
r R b= | |
0.5 Z |
(] |
< |
0.4+ 1 o / ]
[-»
R -
03 K il R
K
3GPP
0.2 [ 3GPP 1
ITU-R TUR
o1k —— WINNER | | WINNER |
COST231 COST231
0 | I L 1 1 1 i L 1 1 1 1 L 1 1 1 L 1 1 1 1 L 1 L L L 1 1 1 L
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According to Table 6 and Figure 9, in both links, with an RMSE of 2.8 dB, the Kriging-
aided model estimates the path loss with a higher level of confidence than the other
approaches evaluated. Additionally, this novel technique provides the best fit to the
measured data with respect to the standard models presented by Castro et al. in [6].

Kriging, as a geostatistical technique, assumes that there is an implied connection
between the measured data value at a point and its location in space. Therefore, it was
possible to estimate shadowing from the best set of available sample points (tuning dataset)
yielding the K model as the most accurate of those exposed in Table 6, where the metrics
and the CDFs illustrated in Figures 7-9 suggest the efficiency of the proposed model, since,
unlike the others, it considers the characteristics of the selected link. Even though the
R model tunes the parameters 7, e and Ls from the tuning dataset and is considered in
telecommunication society as the most traditional model, the WINNER+ is quite accurate
for the SS link with an RMSE of 4.11 dB, and the COST231, WINNER+ and 3GPP for the
OS case with an RMSE of no more than 3.4 dB.

In Figure 7 it is possible to validate the outstanding K model performance. From the
2000 tests that were carried out, it is possible to conclude that, when estimating the path
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loss with Kriging-aided shadowing, there is a 95% probability that the mean error of the
prediction is less than 1 dB and 1.3 dB for SS and OS links, respectively. Regarding Figure 9,
the stability and the confidence to predict the path loss more accurately is guaranteed when
the K model is used, with a 95% probability that the RMSE is less than 3.1 dB and 3.25 dB
for SS and OS links, respectively.

The applicability of the standard model results presented in Figures 7-9 is discussed
as follows: the COST231, 3GPP, and WINNER+ models are more accurate for the OS
than for SS links, with median errors less than or equal to 1.16 dB and RMSEs of no
more than 3.49 dB. The results presented in Table 6 demonstrate the WINNER+ model as
the most consistent and the ITU-R as the least accurate compared to the other standard
models for both types of links. Regarding SS results and considering the resulting scenario
geometry by locating the BS as low as 0.7 m from the building wall, the standard models
present higher standard deviations compared to the OS deviations. By taking into account
these results and the following two considerations: the standard models were based on
measurements at different frequencies: 850 MHz, 1.8 and 1.9 GHz for COST 231; 450 MHz
to 6 GHz for WINNER; 2 to 6 GHz for ITU-R; and 0.5 to 100 GHz for 3GPP. Additionally, the
formulation of each standard model was originally conceived for cells of up to 1 Km radius.
It is important to improve the accuracy of the standard models for a specific application,
in this case, for O2I NLOS links at the 3.5 GHz band, one of the candidate frequencies
considered for 5G communications.

In [15] it was validated through different indoor approaches that the path loss pre-
diction accuracy was significantly better when Kriging was included as part of the tuning
process for frequencies in the ultra-high-frequency (UHF) band. This study validated the
potential of this geostatistical technique for O2I scenarios at 3.5 GHz against standard
models. Therefore, it is an interesting future line of research to consider other setups
to validate and compare Kriging performance against the existing standard models at
difference frequencies.

4. Conclusions

It was validated that the methodology and the model proposed in this paper for O2I
applications such as 5G communications at 3.5 GHz, with a proposed accurate combined
path loss and shadowing-aided model, were more accurate and versatile compared to
both the conventional linear path loss plus log-normal shadowing model and the existing
standard models.

The results and the methodology proposed in this study will help students in wireless
telecommunications, professionals in the industry, and engineers to achieve efficient radio
coverage estimation; estimate measurements in situations where the possibility to collect
large amounts of data from measurement campaigns is very limited, reducing time and
costs in practical campaigns; and to encourage them to perform Kriging-aided channel
design, considering its accuracy to predict path loss in O2I NLOS links.
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Chapter 5

Tuning Selection Impact on Kriging-Aided In-Building Path Loss
Modeling

5.1 Summary of the Chapter

The aim of this chapter is to understand if you select enough tuning dataset from
measurements to guarantee the best accuracy in path loss predictions. The last pre-test
achieved in [16] is similar to this objective, but in this case this study aims to select tuning
dataset from a grid of measurements instead a random path. For that purpose, the available
measurements in the frequency band of 800 MHZ in the congress hall of campus Queretaro
have been selected. However, to have a set of grids with different separation distances
between two consecutive measured points Ray Launching (RL) has been included to provide
samples in all the spatial points of the scenario.

Towards providing results for practical campaigns, where the time and the number of
available samples are limited. In this part of the research, a cost function has been proposed
in terms of the Euclidean distance to select the minimum cost of the mean absolute error
(MAE), tuning samples and the sampling distance.

5.2 Full Article

61
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Tuning Selection Impact on Kriging-Aided
In-Building Path Loss Modeling

Melissa Eugenia Diago-Mosquera
Fidel Alejandro Rodriguez-Corbo
Raed M. Shubair

Abstract—How do you know you select enough tuning dataset
from measurements to guarantee model prediction accuracy? Tun-
ing datasets are often selected based on simple random sampling
with predefined rates. Usually, these rates are determined as a/b,
where a % of the data goes to training and the remaining b % goes
to testing. But it is not clear to what extent tuning dataset in order
to minimize the estimation path loss errors. It is, thus, required to
analyze the performance of channel modeling by selecting—among
all measurement samples—appropriate tuning dataset. Using ra-
dio measurements and deterministic Ray Launching techniques
to collect enough reliable samples, this letter analyzes the im-
pact of tuning dataset selection—expressed in terms of the mean
absolute error and cost—on a novel Kriging-aided in-building
measurement-based path loss prediction model.

Index Terms—Indoor path radio

propagation, tuning dataset.

loss model, Kriging,

I. INTRODUCTION

CCURACY and efficacy are the fundamental channel mod-
A eling features. Thus, it is important to strike a balance
between them. Empirical models are useful for practical radio de-
signs, but the similarity of the measured and predicted environment
is a fundamental consideration to achieve accurate estimations;
deterministic models are complex in terms of both computational
resources and rigorous building details for channel modeling; but
hybrid models represent good tradeoff between the empirical and
deterministic models by including rigorous fitting and suitable
validations [1]-[3].

Considering the restrictions during measurement campaigns,
the opportunity to collect a useful quantity of samples can be
very limited. However, with a precise measurement plan and
Kriging-aided postprocessing, treasured data can be extracted for
the accurate channel modeling, as is reported in [4]-[7]. The goal
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of Kriging is to estimate missing values at a random location from
the available measurement samples, which intrinsically contain
the path loss singularities associated with the evaluated scenario.
Measurement-based models employ radio measurements to per-
form model fitting and model validation through tuning and testing
datasets, respectively. In most studies, these datasets are selected
from the corresponding measurements according to a desired ratio
a/b that is based on random sampling [8], [9], i.e., an a% for tuning
the model and a b% for testing the model. In [10], Diago-Mosquera
et al. analyze the following approaches: what happens when the
method selection of tuning dataset varies in order to select the right
one to get the most out of Kriging, and what percentage of data
should be selected for tuning dataset to obtain the best goodness
of fit; however, choosing a suitable approach for optimal tuning
selection involves a deeper study that includes the analysis of the
separation sampling distance and the cost function that minimizes
the mean absolute error (MAE), the separation sampling distance,
and the tuning dataset of the system.

The present letter is inspired by the fact that the impact of
the tuning dataset selection on the accuracy of the model has
not been thoroughly researched. Here, we carry out the accurate
analysis of this approach with a novel Kriging-aided in-building
measurement-based path loss prediction model. Besides, due to
the possibility to collect large amount of data from measurement
campaigns is very limited, we propose a methodology that in-
cludes a deterministic Ray Launching (RL) approach to account
for valuable data in order to accomplish the characterization of
samples related to missing points of the scenario where there is
no spatial resolution from empirical measurements.

II. CHANNEL MODELING

An optimum combination of measurements, RL techniques,
Kriging, and simple path loss models was employed to pre-
dict complete system coverage performance. The overall channel
model description is illustrated in Fig. 1.

First, accurate measurement locations and signal strength levels
are collected to account for the received power behavior in an
indoor scenario. However, because the number of measurements
and the area, where observations can be performed, are limited,
full stored data are missing; therefore, and second, to address
the shortcoming of the amount of data from measurement cam-
paign, RL techniques described in Section III— are employed
for the missing information. Besides, it is possible to obtain
signal strength samples in the entire area of the scenario evaluated
with an outstanding accuracy through RL as the RL predictions
are calibrated with the measurements available. These complete
samples are necessary due to the aim of this letter to analyze

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Channel model methodology.

the impact of the tuning dataset selection-considering different
amounts from available samples.

By querying communication system details, antenna gains G in
dBi and transmission power P in dBm along with the received
signal strength values P,y in dBm are processed to yield measure-
ments of path loss L in dB against location, this process is named
as path loss extraction, as shown in Fig. 1. As a fourth stage, the
samples are divided into two datasets: a tuning dataset, which is
exclusively used for driving the model fitting, and a testing dataset,
which is used to evaluate the accuracy of the path loss predictions
at those measured locations.

For model tuning, it is necessary to have the path loss model
generation, which is made up of two components: a first distance-
dependent d component named as median path loss Lsg, which
represents a typical propagation medium given by

Lso = Lys + 10nlog;q (CZ)) +e (D)
where L, = 20log,o(do) + 20log,(f) — 28 denotes the free
space path loss at a reference distance d (1 m) and a frequency f
in MHz, n denotes the path loss exponent, d is the Euclidean
distance in a three-dimensional (3-D) space in meter, and e
accounts for specific sources from the floor and walls’ attenuations
and waveguiding gain due to multiple reflections in corridors. For
model tuning, it is necessary to fit the variables in (1), n and e are
tuned by linear regression, using the path loss extracted.

And a second component that depends on the characteristics
of the nearby propagation environment. Resuming the concept of
path loss by extracting the distance-dependent part (Lsg) from
the total loss, the value related to shadowing or slow fading L is
obtained (in Fig. 1, this process is named as shadowing extraction)
and this is given by

Ly = L — L. 2)

The most conventional log-normal shadowing model is
assumed in various studies; however, in seeking to enhance the
model tuning and the shadowing generation, the aim of this
letter validates the potential of Kriging-aided channel modeling
to predict shadowing throughout the in-building area. From
shadowing tuning samples (2), the dataset vector ¥ is obtained
Y = (2uys Zagy -+ Zuy) L, where N is the number of samples,
and z,, is the known shadowing at the location given by x;.
Kriging minimizes the variance of estimation errors under the
constraint of unbiased estimation; in fact, it is considered the
best linear unbiased predictor [11]. To quantify and describe the

Fig. 2.

Congress hall, Tecnologico de Monterrey, campus Queretaro.

spatial variability, Kriging preliminary employs the variogram as
part of the variography process; afterward, Kriging interpolates
the shadowing values at a random location xo from y to
obtain unknown shadowing samples according to the variogram
outcomes. Then, as a result of this postprocessing, a shadowing
grid is generated for the target area; for a better understanding,
this process is described in detail in [10]. Finally, the estimated
path loss process is performed and is calculated as follows:

d
L = Lss; + 10nlogq <d) +e+ Ls 3)
0

where L is extracted from the shadowing grid generated by
Kriging; the variables L ¢4, n, do, and e are given from the process
described and d is the location leading by testing dataset.

III. DATA COLLECTION

A. In-Building Radio Measurements

A series of carefully measurements were carried out at the
first floor of the congress hall in the Tecnologico de Monterrey,
campus Querétaro, Mexico. This building has a general area
of entrance, two conference rooms, two bathrooms, and corri-
dors. The congress hall is a two-story structure with interior and
exterior walls that consist of glass, drywall, and block. Ceil-
ings include building materials, such as steel roofing and metal
beams, while the floors only include ceramic tile. Ceilings are
8 m high with false ceilings of 6 m high. Fig. 2 shows the inside
and outside building views.

The transmitter system consisted of a Kathrein triband omni-
directional indoor antenna, model 800-10249 with 2 dBi gain
plugged into a Rohde, and a Schwarz Signal Generator, model
SMB100A with 11 dBm of electrical power at 869.6 MHz. Re-
ceived signal strength values were supplied by the use of a dual-
band whip 0 dBi antenna with a portable SeeGull LX radio scanner.
The walk route visualized, as shown in Fig. 3, was followed at
a constant speed to collect the measurements through the radio
scanner, and to record location data, the software InSite v3.1.0.19,
from PCTEL, was employed.

The aforementioned signal strength measurements should be
filtered prior to using them in the RL fitting. Considering the fact
that fast fading is on the scale of half-wavelength and filtering must
be done carefully to remove it, avoiding delete the shadowing
variations, this procedure consists of averaging all the signal
strength measurements inside a A X A square, which belongs to
the target area that previously was segmented in a grid of A x X
squares, where X is the wavelength for the measurement frequency.
All the samples inside each square, represented by the path in
Fig. 3, were averaged as follows:

P = 10log (i > 10PrXi/10> %)

=1
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Fig. 4. Schematic view of the considered scenario for simulation and mean
error comparison between simulation and measurement results.

where Py, is the received power measured in dBm, and s is the
number of samples inside a square of the grid.

B. RL Simulations to Obtain Propagation Data

Anin-house deterministic RL algorithm has been used to obtain
valuable data to analyze the tuning selection impact in Kriging-
aided path loss modeling. The RL technique is a geometry-based
deterministic model, which considers the 3-D morphology of the
scenario taking into account all the material properties of all the
obstacles in the scenario at the system frequency under analysis
(with the conductivity and relative permittivity). Electromagnetic
phenomena, such as reflection, refraction, or diffraction, are con-
sidered. Parameters, such as the operating frequency, number of
ray reflections, or angular and spatial resolution, are initialed
before the simulations. Thus, accurate received power levels can
be obtained for all the spatial points of the considered scenario. A
detailed description of the 3-D RL algorithm can be found in [12]
and its validation for indoor/outdoor complex environments [13],
[14].

In this letter, in order to validate the proposed RL algorithm in
the in-building considered complex scenario where measurements
have been performed, the same scenario with similar input pa-
rameters as the measurement campaign has been simulated. Fig. 4
presents the schematic recreated scenario, which corresponds with
the same congress hall where the campaign of measurements was
performed and the mean error comparison between the simulation
results and measurements layout, as shown in Fig. 3, showing a

mean error less than 1.7 dB, thus, validating the RL technique.
The main advantage of RL techniques is that valuable data are
obtained for all spatial points of the scenario; therefore, once the
RL has been validated, the next step has been to analyze the tuning
selection impact in the Kriging-aided path loss modeling with
these valuable data.

IV. RESULTS

Toward choosing an optimal tuning dataset to be representative
of the extent of the target area, which is reasonable to perform in
a practical situation, it is helpful to analyze and estimate the error
when a different size of tuning dataset is selected to predict path
loss in testing locations. Note that this letter defines an evaluation
in the following procedure where the word “samples” refer to
the 7495 path loss values contained into the complete RL grid
when considering 0.5 m spatial resolution at the same height of
the transmitter antenna (1.2 m).

1) Variogram results show that shadowing values are low at
small separation distances, i.e., near the origin, but they
increase with increasing distance until reaching a plateau,
which is close to the shadowing variance. This indicates
that the spatial process is correlated over short distances
but there is no spatial dependence over longer distances, in
this in-building case 5 m. Therefore, from samples and var-
iogram analysis, seven new grids are generated to consider
the separation-1 to 7 m-between two consecutive measure-
ment points as a first approach to achieve an optimal tuning
selection, e.g., the original RL grid consists of samples
reported every 0.5 m, a new grid will contain the samples
reported every 1 m instead of 0.5 m.

2) From the new grid generated, a% goes to the tuning
dataset. This percentage varies from 10% to 100% in
order to validate the optimal quantity to consider in model
tuning. This percentage is extracted according to the
method validated in [10], which limits the samples to
classification zones defined by concentric circles every
5 m from the position of the transmitting antenna, and the
corresponding a% is extracted from each classification zone.

3) Through the methodology described in Section II, the esti-
mated path loss is calculated at each RL grid location.

4) The MAE is calculated as

1 N
MAE =+ 3 |5 - 4 ®)

=1

where |z; — Z;| is the absolute value of the difference between the
measured and predicted path loss for the N samples.

To report the results in Table I, the steps that select the tuning
dataset percentage between 10 to 90 were iterated 100 times. In
Table I, each scenario is clearly described in terms of tuning sam-
ples and MAE, considering both approaches distance separation
and tuning dataset percentage. Fig. 5 describes the behavior of
the MAE as the number of model tuning samples increases; the
tendency is depicted in a red dashed line.

According to the article presented in [15], the aim of a cost
function is to measure how optimal the model is in terms of its
ability to estimate the relationship between desired variables. In
this case, the cost function is used to optimize the MAE as well
as the tuning samples (¢s) and distance (sd). Due to the positive
nature of the aforementioned variables, the Euclidean distance has
been selected as the cost function in order to find a tradeoff between
desired variables, allowing the tuning process optimization.
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TABLE I
PATH LOSS PREDICTIONS PERFORMANCE
Grid Tuning dataset [%]
Result .
Separation [m] 10 [ 20 [ 3 | 40 [ 50 60 | 70 80 90 100
. 1 189 376 567 755 945 1130 1318 1509 1697 1885
° 2 49 96 146 193 242 289 338 386 435 482
£ 3 23 44 67 89 112 134 156 179 200 223
o 4 15 27 40 52 67 79 93 104 118 131
£ 5 9 18 27 36 47 53 64 71 82 89
] 6 5 11 18 23 29 32 38 44 51 55
7 4 9 13 18 23 23 28 32 37 41
1 5.16 4.96 4.74 4.56 4.40 4.24 4.09 3.95 3.81 3.67
— 2 5.63 5.49 5.39 5.29 5.26 5.18 5.16 5.09 5.06 5.01
g 3 5.57 5.54 5.39 5.35 5.29 5.29 5.27 5.27 5.25 5.23
o 4 5.45 5.40 536 5.34 533 5.33 533 5.33 533 5.32
S 5 572 5.55 5.50 5.40 531 5.28 5.22 5.18 5.15 5.12
6 6.15 5.86 5.63 5.54 5.49 5.49 5.39 5.29 5.28 5.23
7 6.44 5.72 5.56 5.42 5.42 5.46 5.39 5.30 530 5.22
6.5 v . T . . T . . T and separation distance-calculated as follows:
6 ] 1\2
feost = mae? + 152 + | — (6)
& sd
5.5 .
= ‘h where mae, ts, and sd were normalized in the range of data
E sl \\‘\ i to [0, 1]. The mae, ts, and sd correspond to MAEs, number
S Yoo of tuning samples, and the inverse of the separation distance,
as| o~ | respectively. To simplify the measurement campaign process, it
' o~ 5 is desirable to maximize the sampling distance, considering the
e L MAESs and tuning samples. Thus, the invert of the variable sd
N Rt - has been used in the cost function weighting into the optimization
) process. Compared with direct observation, as shown in Fig. 5, the

35 1 I I 1 I I 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Tuning samples

® Im 2m ® 3m ® 4m ® S5m ® 6m 7m

Fig. 5.

MAES considering the number of tuning samples.

10 20 30 40 50 60 70 80 90 100
Percentage extracted from tuning samples [%]

—@— Im 2m —@—3m —® 4m & 5m —® 6m 7m

Fig. 6.  Cost function in terms of mae, ts, and sd.

Therefore, in order to identify a feasible amount of tuning
samples from a measurement campaign with practical separation
sampling distance, Fig. 6 describes the cost function in terms
of Euclidean distance [16] to select the minimum value of the
curves-i.e., the minimum cost in terms of MAE, tuning samples

best accuracy is presented by the method proposed with the grid
that reports samples every 1 m. However, the purpose of this study
is to approach a channel modeling methodology without affecting
estimated values accuracy for practical campaigns, considering the
optimal mae, ts, and sd. Therefore, the proposed methodology
allows to conclude that an optimal separation distance to perform
practical indoor radio measurements is 7 m, taking into account
the MAE of 5.3 dB with 32 samples—80% of the grid-employed
for model tuning, which represents an outstanding 92% decrease
of the 1509 samples used in the grid with 1 m of separation
sampling distance. Resulting in a feasible reference to know and to
understand the quantity of measurements that must be carried out
in a measurement campaign toward characterizing the path loss
in an in-building scenario, including Kriging, as an interpolation
technique, in the postprocessing stage for shadowing generation.
From these results, the dependence of the path loss exponent  and
the MAE in a Kriging-aided in-building path loss model can be
analyzed as a future research line, considering multiples scenarios.

V. CONCLUSION

This letter proposes Kriging-aided shadowing for modeling
path loss in an indoor scenario based on measurements. It was
validated through different approaches that this model is a power-
ful candidate for the radio propagation estimation, considering the
reported prediction accuracy expressed in terms of MAEs between
estimations and RL samples. Moreover, numerical results show
that it is possible to consider an optimal tuning dataset, which
reduces the extent of walk testing during measurement campaigns
which are reasonable to perform in a practical situation with good
tradeoff between enough tuning dataset and model prediction
accuracy. Additionally, a hybrid method between RL and Kriging
could be interesting future work, considering the possibility to
increase the statistical precision and outperform Kriging.
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Chapter 6

A 3D Indoor Analysis of Path Loss Modeling Using Kriging Techniques

6.1 Summary of the Chapter

The methodology proposed in Chapter 3 is based on the geostatistical fact that there is an
implied connection between the observed values, that in this research concern to the path
loss extracted, specifically to the shadowing, and its location in the space, i.e., the
corresponding coordinates where the measured was achieved. To predict shadowing at
unmeasured locations two main procedures are considered: variography, for investigating
the spatial structure of shadowing and Kriging for interpolation.

Usually, the spatial structure is analyzed considering the semivariogram, but the aim of this
chapter is to provide a solid basis to select an accurate tool for the variography, taking into
account that there are three possibilities: the semivariogram, the covariance function and
the correlogram. For that purpose, signal-strength radio measurements have been carried
outin the Library of campus Monterrey at 28 GHz. Besides, to provide the empirical basis for
the 3D path loss model two different receiver heights have been considered.

6.2 Full Article

67
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A 3-D Indoor Analysis of Path Loss Modeling Using
Kriging Techniques

Melissa Diago-Mosquera
Leyre Azpilicueta
and Francisco Falcone

Abstract—This study proposes a novel measurement-based
method to predict and model three-dimensional (3-D) path loss in
indoor scenarios, which first regresses 28 GHz measurements via
median path loss modeling and then includes ordinary Kriging to
interpolate shadowing. The performance of this method is evalu-
ated by investigating the spatial structure that follows shadowing
through the semivariogram, covariance function, and correlogram
as variography tools. It is shown that semivariogram outperforms
the other statistics to describe shadowing spatial continuity in path
loss modeling in terms of the mean absolute error.

Index Terms—Indoor path loss model, Kriging, three-dimen-
sional (3-D), variography.

I. INTRODUCTION

O QUANTIFY the reliability of coverage provided by any
base station, it is essential to understand and characterize
radio propagation factors, which consist of median path loss
and shadowing as the main path loss components for indoor
scenarios. When rigorous fit design and reliable predictions are
the principal approaches, hybrid path loss models are the best
method for estimating and analyzing radio propagation. Usually,
in these models, measurement datasets are first regressed via lin-
ear median path loss modeling and then shadowing is generated
as random variable. For accurate predictions in in-building mod-
eling it is necessary to consider the variability of the signal path
due to obstacles and scenario geometry. Therefore, shadowing
should be predicted considering the singularities associated with
the evaluated scenario.
Kriging is a powerful technique for this constraint, this analyt-
ical solution provides clear steps to go through when estimating
unknown values at unmeasured locations. Besides, prior to the
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interpolation to predict unmeasured from measured values, this
technique employs variography to explore the spatial structure
of the variable under study, in this case, to provide a suitable
description of the dispersion with respect to the nominal value
given by the in-building path loss model.

A. Related Works

In hybrid models, specifically measurement-based, measure-
ment campaigns are carried out to gain a better understanding
of path loss behavior, allowing an accurate fitting of the specific
scenario. Kriging, as a geostatistical technique, takes advantage
of these measurements to predict values at unmeasured locations
forming weights from surrounding known measured values,
considering that the closest samples have the most influence.
By looking at the spatial structure of the samples, it is possible
to calculate Kriging weights. This process is named variography
and its main goal is to explore the spatial dependence in order
to quantify it through a fitted model, which can be obtained by
plotting the semivariogram, covariance, or correlogram.

Recent works in radio propagation have employed Kriging to
interpolate path loss [1], shadowing [2]-[6], and received power
[7], [8] as part of the modeling process. All these studies have
been performed in two-dimensions and employed the semivari-
ogram as part of the variography stage, however, none of these
studies explain or justify such a choice. In consequence, it is
necessary to address and understand if the semivariogram is the
best choice to investigate graphically the spatial patterns of the
samples.

B. Our Contributions

The aim of this study is encouraged by the need to provide and
validate an accurate method to estimate three-dimensional (3-D)
pathloss in indoor scenarios including Kriging as a geostatistical
technique to predict the shadowing component. Therefore, the
main contributions are summarized as follows.

1) From a complete analysis of the variography process, it
is demonstrated that the semivariogram outperforms the
other statistics to describe shadowing spatial continuity in
path loss modeling.

2) To achieve accurate predictions, Kriging strongly depends
on the use of a suitable fitted model, which is provided
by the variography results. Through the first contribution,
the best performance of Kriging is guaranteed. Then, it is
employed to predict shadowing to estimate the path loss
in a 3-D indoor scenario. We validate the accuracy of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Indoor scenario within the library building at TEC Monterrey,
employed for the measurement campaign.

Fig. 2.

Measurement equipment. (a) Transmitter. (b) Receiver.

methodology by comparing the results against measured
data.

II. EXPERIMENTAL MEASUREMENT DESCRIPTION

A. Measurement Environment

To perform feasible in-building radio propagation modeling
to proceed with confidence to the path loss predictions, radio
measurements were carried out at 28 GHz in the 4th floor of the
library of Tecnologico de Monterrey, campus Monterrey, as is
illustrated in Fig. 1. This floor of the library is an open room
that has three wooden bookcases evenly distributed in the target
area, with exterior walls built with metallic beams and glass.
Ceilings are built with drywall while the floor with concrete
covered by a carpet material. This indoor scenario enables to
carry out both line-of-sight and non-line-of-sight measurements.
The transmitter system was located at a 1.5 m height and the
receiver at 1 and 2 m heights. The measurement campaign was
planned to collect samples on a grid (42 m long and 12 m wide)
with squares of 2 m on each side, where the transmitter was
located at the center of the grid at the low end. This setting
yields 132 samples for each receiver height and a total of 264
measurements.

B. Measurement Equipment

To collect received power samples in the selected scenario,
a complete radio propagation system was deployed, as is illus-
trated in Fig. 2. The transmitter system consisted of a Rohde
& Schwarz microwave signal generator, model SMB100A, set
at an operating frequency of 14 GHz. To access the frequency
of 28 GHz, an up-converter (Farran Technologies, model FDA-
K/28) with a multiplication factor of 2 was employed. It was
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connected to an omnidirectional vertically polarized antenna
with 3 dBi gain, G, model SAO-2734030345-KF-S1. The
transmitter power P« was 24 dBm.

The receiver system was composed of a vertically polarized
omnidirectional antenna equipped with a low noise amplifier
(LNA), model SAO-2734033045-KF-C1-BL, with 30 dB of
receiver gain G4, of which 3 dBi were from the antenna and
27 dB from the integrated LNA. The receiver was plugged into
a Keysight Field Fox N9952A microwave spectrum analyzer.

III. 3-D PATH LOSS MODELING

A. Path Loss Extraction

From the resulting power received measurements and consid-
ering the link budget of the radio propagation system, the path
loss of the links is calculated in dB as follows:

L :Rx +Gtx+er_-Prx (1)

where Py is the transmitted power, G, and G the antenna
gains employed to transmit and receive, respectively, and P
the measured power.

In the validation process it is necessary to quantify how well
the model predicts the path loss at specific locations, locations
which are obtained from testing dataset. Therefore, the path
loss extracted is grouped into tuning and testing datasets. This
process is based on radial sectors, where samples are extracted
from each sector keeping a 60/40 rate, 60% for tuning and 40%
for testing, following the methodology described in [5].

B. Model Tuning

For modeling median path loss Lsg, it is considered the
simplest form of power law model

Lso = 10nlogd + e (2)

where d is the Euclidean distance between the transmitter and
the receiver antenna, which have a 3-D coordinate system to
represent their location in the target area. The path loss exponent
n and the path loss intercept e are tuned with the tuning dataset of
the path loss measurements extracted in (1), in order to adjust the
model with specific characteristics and site details considered in
the radio measurements carried out.

C. Shadowing Extraction and Generation

The path loss also depends on the shadowing L, which is the
result of the sum between Lsg and L. Therefore, it is possible
to extract the shadowing component as follows:

Ly =1L — Lso. (3)

To predict and quantify the shadowing component in spe-
cific locations, ordinary Kriging is employed. Through this
geostatistical technique, Kriging weights are generated for the
known shadowing values to employ it to calculate a shadowing
prediction for the location with the unknown value. To proceed,
first, the spatial structure of (3) must be explored by variography
in order to provide reliable Kriging weights.

IV. VARIOGRAPHY AND KRIGING INTERPOLATION

To investigate and quantify the spatial structure, empirical
tools such as semivariogram, covariance function, and correlo-
gram can be employed.
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A. Variography: Spatial Modeling

The empirical semivariogram is computed as follows:

1 N(h) )

where N (h) is the number of pairs within the lag interval &, z;

is the known value at 3-D location ¢, and z;, is another known

value separated by alag 4 from i. In other words, h is a vector that

represents the separation distance between two spatial locations.
The empirical covariance is calculated as follows:

N (h)

Z Zi* Zidh — M - Mitp 5
i=1

1
C (h) = ——=
where m; and mjy, are given by the following:
1 N(h) 1 N(h)
m; = ——~ Ziy Mith = =7~ Zith-  (0)
NP NP

And the empirical correlation is computed as follows:

__cm
p (k)= VOi+0itn @

where o; and 0, are given by the following:

N(h)
L (z—mi), o
o = i —Mmi)”, Titn
(h) = :
R
p— — . 2
- N(h) 4 (Zh ml+h) . (8)

[ 1

When the empirical functions (4), (5), and (7) are graphed
versus the lag distance h, the semivariogram, the covariance
function, and the correlogram tools are obtained. These tools
provide information about the spatial correlation of the known
data; however, all possible distances are not covered by the
empirical functions, therefore, it is necessary to fit a theoretical
model, which is what is actually used to develop the Kriging
weights. This model must be a continuous function to guarantee
positive Kriging variances.

Considering the accuracy of the results assessed for path loss
modeling in [5], the exponential function is selected to provide a
semivariogram fitting. Consequently, the semivariogram model
is expressed as follows:

Yexp () = 5 - (1 - e*3h/r) )

where s is the sill, the semivariance value at which the semi-
variogram yields a plateau, and 7 is the range, the separation
distance at which the semivariogram reaches s.

If the spatial dependency of the measured known values
is analyzed by employing the covariance function, the fitting
model, resulting from the variography, is calculated considering
that the covariance function obeys the following relationship:

C (h) =0 — Yexp () (10)

where o2 is the variance of the variable under consideration
z, and exp(h) is the exponential function described in (9).
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Therefore, the fitting model when covariance function tool is
selected is as follows:

Cexp (h) = 57317, (11)

Similarly, when the correlogram tool is employed, it obeys
the following relationship:

12)

where C(h) is the function described in (11). Once the cor-
responding values are replaced in (12) the fitting model is
calculated as follows:

Pexp (B) = e73/T. (13)

At this point, it is clear that there are three options of statistical
tools for modeling the spatial patterns of measured samples
through a fitted model f(h) computed by (9), (11), or (13),
depending on the tool selection, where s and r are calculated
by fitting a least-squares regression analysis to the empirical
values.

Going on the variography, the binning process is adopted for
spatial modeling. Over this process, properly neighbor samples,
as described in [5], will restrict how far and where to look
for the samples to be used in the prediction, for this process
a distance separation matrix between all measured locations is
created as D. Toward selecting a suitable lag h and placing
a maximum lag limit on the calculation of (4), (5), and (7),
it is important to understand this process. Since the estimated
values in the variography tend to become more erratic with
increasing distances, boundaries are necessaries to analyze D.
The maximum lag limit is the maximum distance that is going
to be considered and is calculated as the half of the maximum
distances reported in D, while h determines the lag interval
considered to find measured neighbors, which is calculated as the
mean of the minimum distance extracted from D. For instance,
zi — Zi+n 1n (4), is grouped based on their corresponding lag
interval h—resulting in N (h) pairs—up to the maximum lag to
calculate (4) for each separation distance reported in D.

B. Ordinary Kriging for Shadowing Generation

Then, when the spatial patterns have been modeled by fitting
a theoretical function f(h), ordinary Kriging employs it to
interpolate known data and predict values at unsampled locations
by solving the following equation:

E=V"1.v (14)

where the matrix V' is composed by the values resulting from
f(h) with h as the distances between the pairs of measured
points, the vector v contains the result of compute the distance
of each measured locations to the prediction location and substi-
tuting it as the lag h in f(h), and k& is composed by the Kriging
weights A; and the Lagrange multiplier /.

When calculating (14) the weights are found and the predicted
value Z, at unmeasured place is provided by the following:

N(h)

20: E )\i‘zi'
i=1

Fig. 3 shows an example of shadowing-aided predictions
employed by the variography tools when a random 60/40 is
selected (considering the radial grouping process). In Fig. 3,

5)
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Variography with Semivariogram

Fig. 3. Shadowing prediction results obtained by variography analysis.

TABLE I
PATH LOSS PREDICTIONS PERFORMANCE

Tool
MAE

y(h) C(h)
2.70 2.81

p(h)
272

tuning and testing dataset locations are plotted with black and
red dots, respectively.

V. 3-D PATH LOSS PREDICTIONS

For 3-D indoor path loss predictions, particular data features
are required, considering the aim of aided-shadowing Kriging,
the variable z described in Section IV corresponds to the shadow-
ing for the tuning dataset extracted in (3) from the measurements.
Thus, to predict path loss at specific location in the 3-D indoor
space, the next model is followed:

N(h)
L= 10nlogd + e + Z Ai - Lyg;.

i=1

(16)

One of the aims of this study is encouraged by the fact that
on the performance of feasible and accurate Kriging interpo-
lation processing, there is no explicit research to understand
and correctly select the best statistical tool to be employed
in the preliminary variography process. For this reason, the
performance of the variogram, the covariance function and the
correlogram is analyzed by comparing the predicted path loss
values L; with the measured path loss L; at the remaining test
locations ty, in terms of the mean absolute error (MAE), which
is given by the following:

A

’LifLi.

7)

1 &
MAE = —
Y

For a reliable analysis, 1000 iterations are assessed to extract
different 60/40 groups for tuning and testing dataset through
the radial algorithm described for the path loss extraction. Each
value presented in Table I is obtained as the 1000-result average
for each statistical tool employed in the variography process.

Furthermore, once the 1000-samples are performed the results
of the Kriging-aided model is presented for the tools analyzed
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in terms of the cumulative distribution function (CDF) for the
MAE in Fig. 4.

According Table I and Fig. 4, it can be seen that employing
semivariogram and correlogram for shadowing spatial modeling
improves the accuracy of Kriging at 28 GHz. With an MAE of
2.7 dB, the semivariogram guarantees the high level of confi-
dence of the spatial modeling, thus, when it is employed, the
proposed model achieves accurate path loss indoor predictions
at 28 GHz. However, even though the covariance function has
the highest MAE, it is still a small error of 2.81 dB for indoor
path loss predictions compared to other hybrid models available
in the literature [9].

Considering the profitable results when semivariogram is em-
ployed as a statistical tool for variography process in shadowing
predictions, Fig. 5 shows the predicted path loss with the model
here described and the path loss extracted from measurements
at the testing locations, as well as the fitting lines for each case.

VI. CONCLUSION

The aim of this study seeks to evaluate the performance of the
specific tool used in variography as part of the Kriging-aided
shadowing predictions for indoor path loss modeling. Specif-
ically, we focused on whether the choice of semivariogram,
covariance function or correlogram as a statistical tool influences
the improvement of the path loss estimation accuracy. The novel
knowledge obtained through this work is that in an indoor
scenario, correlogram achieves an almost equal performance of
semivariogram, even though semivariogram is validated as the
most accurate tool to describe shadowing spatial continuity in
enclosed spaces for 3-D path loss modeling at 28 GHz.
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Chapter 7

Towards Practical Path Loss Predictions in Indoor Corridors Considering
5G mmWave 3D Measurements

7.1 Summary of the Chapter

Reliable indoor path loss models for mmWave frequencies are essential to provide accurate
predictions for the deployment of 5G wireless service in in-building scenarios. In this
chapter, a long indoor corridor with a 90° break has been selected as a typical corridor to
characterize the effect of waveguiding due to the reflections along walls, floor, and ceiling.
Besides, radio measurements have been performed at three different receiver heights in
order to provide the empirical basis of the 3D propagation geometry. The measurements
have been achieved at two different mmWave frequencies, 28 and 60 GHz.

This chapter provides an additional example to ensure the effectiveness of the inclusion of
Kriging as a tool to improve model accuracy and achieved the minimum error when it is

compared against the most accurate single-slope segment-wise model presented in [23].

7.2 Full Article

73
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Towards Practical Path Loss Predictions in Indoor
Corridors Considering 5G mmWave
Three-Dimensional Measurements

Melissa Eugenia Diago-Mosquera
and Mauricio Rodriguez

Abstract—Theoretical and empirical foundations of how radio
waves behave in practical wireless channels need to be fully revisited
for millimeter-wave (mmWave) frequencies so that fifth-generation
(5G) technologies may be successful. Kriging is an outstanding
geostatistal interpolation technique that employs variography to
understand the spatial variability of known samples at specific loca-
tions to predict unmeasured samples, based on the fact that there is
an implied connection between the measured value and its location
in space. The research we here report is aimed at validating the
improvement in predictions when this tool is included for mmWave
frequency path loss modeling in a long indoor corridor with break.
In order to quantify the accuracy of the proposed methodology,
it is compared with a well-established procedure described in
the literature. Extensive path-loss measurements were collected
through specialized narrowband sounders at 28 and 60 GHz. Spa-
tially averaged power measurements using omnidirectional and
directive antennas at different heights provided the empirical basis
for the three-dimensional Kriging-aided model. It was found that
this method significantly improves the accuracy as it considers all
the singularities and site-associated features that are implicit in
measured samples. This is important to obtain a reliable path loss
model for planning and deployment of mmWave wireless commu-
nication systems in indoor scenarios.

Index Terms—Fifth-generation (5G) mmWave, indoor corridor,
Kriging, path loss model.

1. INTRODUCTION

S PROMISED by the fifth generation (5G) of radio com-
munication networks, future wireless mobile systems will
be inclusive, i.e., technologies for supporting wireless connectiv-
ity for any rates, type of communicating units, and scenarios [1].
To meet this ambitious aim, reliable path loss modeling for
millimeter-wave (mmWave) frequencies is essential to provide
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accurate predictions for the deployment of 5G wireless ser-
vice. These services are likely to be extensively used in indoor
environments such as office spaces linked by long corridors.
Propagation in corridors, whose structural geometry resembles
a waveguide, has been reported to exhibit path losses lower than
those observed in free space, attributable to the contributions of
reflections along walls, floor, and ceiling. This has been referred
to in the literature as “waveguide effect” [2]-[5], characterized
by a path loss exponent (PLE) less than 2, as reported in [6].

Path loss models for indoor corridors at various frequencies
have been reported in several previous studies. The model
derived in [7] is easy to implement and has clear physical
meaning for line-of-sight (LOS) in indoor corridors at 5.25 GHz.
Batalha ef al. [8] employed measurements to adjust path loss
prediction models of radio propagation for indoor environments
in the frequency band of 8 to 11 GHz. However, these studies
have not explicitly discussed waveguiding, which is the reason
for a PLE less than 2. Other research, such as those reported in
[9], have included this effect through a modified method named
effective wall loss model to estimate the path loss at 2.4, 5.3,
28, 60, and 73.5 GHz. In [10], motivated by the waveguiding
effect, the authors have proposed a single-slope segmentwise
path gain model for transmission along corridors at 28 GHz.
In [11], to overcome channel complexity and time-consuming
measurements, a novel methodology using an artificial neural
network techniques in indoor corridors at 3.7 and 28 GHz has
been studied. To improve path loss models for indoor corridors,
in [12], the close-in free-space reference distance model and the
floating-intercept model were studied and optimized considering
14, 18, and 22 GHz measurements. In total, 14 and 22 GHz
were also considered in [5] where a dual slope large-scale
path loss model was evaluated. Propagation measurements at
26 and 38 GHz have been conducted in [13] to investigate
propagation characteristics of indoor corridors. Even though the
works presented in [5] and [7]-[13] were suitable to predict
path loss in indoor corridors, their validation was restricted to
two-dimensional (2-D) since their models only accounted for
one receiver height without considering the complete coverage
in a three-dimensional (3-D) space.

Generally, for radio propagation predictions path loss has been
modeled using the log-distance model, which includes normal
distributed shadow fading [14], [15]. Other studies have taken
advantage of the spatial correlation of shadowing to estimate
it by including Kriging, which has minimized the variance of
estimation errors, due to Kriging employs variography to restrict
how far and where to look for the samples to be used in the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Equipment and scenario. (a) Receiver system platform at 60 GHz.
(b) Long corridor at the USM with break.

interpolation [16], yielding accurate shadowing predictions, as
has been validated in [17] and [18]. However, these models have
not considered the 3-D propagation geometry to predict the path
loss at mmWave frequencies nor employed Kriging to estimate
path loss.

The principal novelty in the work here reported is the inclusion
of Kriging as an effective tool to improve modeling accuracy for
mmWave indoor propagation as it considers all the singularities
and site-associated features that are implicit in measured sam-
ples. To the best of our knowledge this has not been reported
before despite the fact that its potential has been validated
[19]-[21] in previous work. Therefore, this letter is focused on
better understanding and modeling path loss considering long
indoor corridors, the effect of corners and different receiver
heights (i.e., 3-D) validating the benefits of using Kriging to
ensure accurate path loss predictions.

II. MEASUREMENT CAMPAIGNS AND DATA COLLECTION
PROCEDURE

A detailed description of the radio measurements conducted
in typical indoor corridor scenarios is provided as follows.

A. Measurement Equipment

Universidad Técnica Federico Santa Maria (USM) in col-
laboration with Pontificia Universidad Catdlica de Valparaiso
(PUCV) and Nokia Bell Laboratories constructed two narrow-
band sounders at 28 GHz [10] and 60 GHz.

The sounders transmit a—22.5 dBm at 28 GHz and 20.5 dBm
at 60 GHz—continuous wave tone into vertically polarized horn
antennas with 55° half-power beamwidths (HPBWs) and 10 dBi
of gain. In both cases, the power is recorded by narrowband
receivers with the alternative of using horn and omnidirectional
(omni) antennas. For 28 GHz the omni antenna has a 1.4 dBi
gain. The horn antenna has a 25 dBi gain and 10° HPBWs. At
60 GHz the omni antenna has a 2 dBi gain and a vertical HPBW
of 30°. The horn antenna has 25 dBi of gain and 9° HPBW in the
E-plane and 10° HPBW in the H-plane. The receiver is shown
in Fig. 1(a).

The received signal is amplified by several adjustable gain
low-noise amplifiers, mixed with a local oscillator and nar-
rowband filtered at a 100 MHz intermediate frequency. A
logarithmic-gain power meter generates 740 samples/second,
which are transmitted to a laptop computer. The receiver is
placed on a rotating 360° platform with the horn antenna rotating
on its phase center and the omni antenna describing a circle of
20 cm radius. The path loss is calculated based on the spatially
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averaged power measurements received at each location. Aver-
age power received by rotating the horn antenna is equivalent
to spatial averaging of the omni antenna after compensating for
elevation gain if all received multipath wavefronts are within the
vertical beamwidth of either antenna, according to the radiation
pattern analysis [10]. Using both types of antennas allowed us
to verify if there is a significant contribution of received power
that the narrower vertical-beamwidth horn antenna will miss.

B. Experimental Scenario and Data Acquisition

In order to represent typical long indoor corridors, received
signal-strength measurements were carried out in a long corridor
with one 90° break at 37 m from the transmitting antenna—
dividing corridor A from corridor B, Fig. 1(b)—in the engineer-
ing school of the USM. Corridor A is 39m long, 3.6m high,
and 2.74m in width. Corridor B is 16 m long, 3.7m high, and
in 2.57 m width. Both corridors are lined with rooms. The walls
and ceilings consist of brick and concrete, with a ceramic-tile
floor. At 28 m from the transmitter position, there is a glass door
with aluminum frame. The transmitter was always placed in the
middle of the corridor at a 1.66 m height and the horn antenna
of the transmitter system was manually aimed to get maximum
averaged received power at the measured locations.

The first measurement was recorded at 2 m from the transmit-
ter and subsequent samples were spaced every 1 m, resulting in
37 measurements for corridor A and 16 for corridor B, yielding
53 measurements for each system configuration, obtained when
varying: 1) frequency, 28 and 60 GHz; 2) type of receiver
antenna, horn and omni; 3) receiving height, 0.98 (h1), 1.66
(hs), and 2.03 m (h3). Consequently, a total of 636 radio mea-
surements were made.

Propagation in this scenario can be classified into two types of
links: LOS, corridor A, and non-line-of-sight (NLOS), corridor
B. NLOS results from reflected, dispersed, and/or diffracted
paths after the break. For the sampling process the receiver
platform is programed to switch every ten turns between om-
nidirectional and horn antenna. This is done for 30s with the
platform rotating at 100 r/min. Small-scale fades are eliminated
by averaging power over all angular positions for both types
of antennas. Average power over successive rotations is com-
pared to assure consistency in a static environment where no
significant temporal variation is to be expected. This sampling
process resulted in 636 links. The corresponding path losses
are illustrated in Fig. 2, where as expected, we found that the
spatially averaged path losses are very close for both types of
antennas. This is further discussed in Section IV.

III. CHANNEL MODELING

As a benchmark for comparison to our results we use the most
accurate single-slope segmentwise model presented in [10], for
the specific case of one break, i.e., one LOS corridor followed
by a 90° break and a NLOS corridor. This is described by

i L(dp) + 10nlogd, LOS |
=\ L(do) — S + 10nlog (1 (d — #1)), NLOs D)

where L(dy) is the free-space path loss at the reference distance
dop = 1m, n is the path loss exponent, d is the “Manhattan
distance” of the path, i.e., the sum of the path lengths along the
corridors from the transmitter to the receiver, S is the around-
the-corner loss, and x; is the length of the LOS segment, 37m
after which the transition to NLOS causes an evident increase
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describes the spatial
dependency

unmeasured locations to predict path loss™.

“Samples to validate the model and be considered as «— I

The path loss is predicted at testing locations points <—
through the Kriging interpolation, which employs

the exponential variogram model to estimate the
weights 4; of the neighboring points L.

The error of the predicted path loss Ly is measured «—
through the RMSE to evaluate Kriging-model for
usefulness/accuracy.

Fig. 3. Methodology for the Kriging-aided path loss predictions.

in path loss as seen in Fig. 2. The values of n and S are fitted
from measurements according to the best fit of a classical linear
regression.

Based on the fact that the closest samples to the unmeasured
locations have the most influence, Kriging predicts path loss
values at an unmeasured location with cO 3-D coordinates,
forming weights A; based on surrounding measured path loss
L, at known locations with ci 3-D coordinates, following the
methodology described in Fig.3. The path loss proposed is
modeled as

N(h)

Leo =Y hiLe 2
i—1

where N (h) is the number of known measured pairs within the
lag interval h, i.e., for the variography, the distance separation
between all measured locations is computed to select neighbor
samples by restricting how far (maximum lags) and where to
look (in each lag) for the samples to be used in the interpolation
through a matrix of Euclidean separation distances. This proce-
dure is described in more detail in [22]. In (2), h is calculated as
the mean of the minimum separation distance and N (h) is the
resulting number of pairs with h as the separation distance. An

—* Path loss and 3D coordinates are extracted.
“Known samples for spatial analysis, L;".

Modecl the variogram

1. The experimental variogram from L; is calculated.

2. 1is summarized by the variogram estimator.

3. An exponential variogram model is fitted to 2
according to weighted least square error.

Testing dataset

Validation

extended explanation of the process to form the 1; weights to
interpolate and predict unmeasured values can be found in [17].

IV. RESULTS

The proposed mathematical model in (2) takes advantage
of the spatial analysis of measured samples included in the
variography process, which generates the principal boundary
that Kriging considers for interpolations. The results we here
present are aimed at two distinct objectives, first quantifying the
benefit of including 3-D measurements and second, assessing the
advantage of using the Kriging-aided model (2). To this effect,
three different cases to select tuning and testing datasets are
considered. A tuning dataset is used to train the models, in order
to fit nand S in (1) and model the variogram to estimate A; in (2).
The testing dataset allows us to predict the path loss when using
the previously obtained model at the 3-D locations and compare
them to the measured values. The first case aims to analyze the
accuracy of the predictions at heights h3 and hq, i.e., higher and
lower than the transmitter antenna when the models are tuned
using only measurements at the same transmitter height, ho;
The second case uses the samples at ~; and hj to tune and test
the models, from each height. In total, 60% of data is randomly
selected for the tuning dataset and the remaining 40% from each
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TABLE I
RESULTS FOR PATH LOSS PREDICTIONS EMPLOYING (1) AND (2)

Frequency  Receiver Case n S RMSE; RMSEg
[GHz] Antenna [dB] [dB] [dB]
1 177 -15.0 3.6 3.1
Horn 2 170 -18.1 3.6 29
3 173 -17.1 3.6 3.0
28 1 1.68  -153 29 2.4
Omni 2 170  -159 3.0 2.1
3 1.69  -15.7 2.9 2.0
all cases 1.71 -16.2 3.2 2.6
1 2.00 -14.0 39 2.9
Horn 2 1.87  -169 38 3.0
3 191  -16.0 3.6 2.9
60 1 1.78  -16.5 2.5 2.0
Omni 2 1.82  -169 2.7 1.6
3 1.81 -16.8 2.5 1.6
all cases 1.87 -16.2 3.2 2.3
averaged RMSE 3.2 2.5

height for the testing dataset. Finally, the third case tunes/tests
the models considering a rate of 60/40 percentage randomly
selected from the samples measured at each of the three-heights:
hl, hg, and h3.

The accuracy and effectiveness of the predictions achieved
with (2) are evaluated and compared against those calculated
with (1) through the root-mean-square error (RMSE) metric con-
sidering all the three cases described. In Table I, the fitted values,
n and S, are calculated with (1), RMSE; refers to the RMSE
calculated when (1) is employed, and RMSEg when (2) is used
to predict the path loss at testing locations. These parameters
depend on the specific case selected to tune/test (1) and (2),
therefore, in Table I, the column “case” is included.

To analyze the results, it is important to bear in mind that
the first case considers only same-height transmit and receive
measurements for tuning, so the possible effect of dissimilar
heights is not part of the model. Instead for the second and
third cases possible 3-D effects are included, as transmitter and
receiver are at different heights. For the second and third cases,
the 60/40 rate is based on random sample selection, therefore,
the variability of the tuning/testing dataset must be considered.
Thus, 2000 iterations with a 60/40 rate were assessed to quantify
n, S, and the RMSE. The results in Table I correspond to the
average over the 2000 iterations, in contrast to the first case
where all samples were used to obtain a single value. In order
to overview the results listed for the horn and omni antennas at
both frequencies, the values of n, S, RMSE;, and RMSEy are
averaged and referred to as all cases in Table I. Also, the RMSE
reported for all cases is averaged and listed at the end of Table I.

Table I, first, shows that both type of antennas yields very
similar path loss parameters indicating that virtually all power is
collected by the narrower vertical-beam horn antenna, i.e., most
multipath wavefronts are close to the horizontal plane. We also
note that the omni antenna measurements have a consistently
lower RMSE. This suggests that although the omni antenna
moves over a relatively short range this nevertheless contributes
to reducing the shadowing that can affect the horn, which only
spins on axis with no displacement.

As seen for both types of antennas at 28 and 60 GHz n was
less than 2, suggesting a better scenario than free space, which
is the effect of waveguiding due to walls, ceiling and floor.
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On average, the value obtained for n in all cases at 28 GHz
with the horn receiver antenna was 1.73, which is similar to the
value reported in [10] when the first corner is at 37 m. The case
reported in [10] only considered 2-D measurements at 28 GHz
with a horn receiver antenna, where the RMSE for the similar
indoor corridor was 2.7 dB. However, when the model (1) is
employed for 3-D predictions the RMSE increases to 3.6 dB for
the first case evaluated, where only the measurements obtained at
ho are considered. The Kriging-aided model improves accuracy
predicting path loss with 3.1 dB RMSE.

When comparing the second case with the first, an improve-
ment is expected since the tuning data now includes power
measurements at heights that correspond to those for which
the model-predictions will be compared with measurements.
However, when (1) is employed, the RMSEs remain essentially
the same for both frequencies. Instead, when using Kriging,
better accuracy is observed in virtually all cases.

All three cases allow us to validate the enhancement obtained
when using the Kriging model instead of slope and intercept
for 3-D predictions. The reduction in RMSE is clearly seen
in Table 1. For the third case, at 28 GHz, the RMSE indicates
that with the horn receiver antenna there is an improvement of
17%, and a 31% with the omnidirectional when (2) is used to
predict path loss. At 60 GHz, with the horn receiver antenna
the RMSE decreases by 19%, and with the omnidirectional by
36% when using the Kriging-aided model. When the third case
is tested considering all link configurations (both frequencies
and receiver antennas), the advantage of Kriging is validated
by employing only 60% of the measured data, providing an ex-
cellent tradeoff between the averaged accuracy and the number
of tuning samples. We found the RMSE to be 2.4 dB using 95
tuning samples (from the 159 samples measured at the different
heights).

Accurate 3-D coverage prediction of wireless links is an
important consideration in assessing the quality of service. It
follows from our results that the methodology here proposed
for indoor corridors is a useful prediction tool to make effective
use of a limited number of available measurements. Based on
our extensive set of measurements and reviewing the results, we
found that using only 60% of the data, the minimum prediction
error of the Kriging-based model was up to 41% lower than that
of the single-slope segmentwise model.

V. CONCLUSION

Careful and extensive measurements to obtain path loss after
averaging small scale fades were collected using 28 and 60 GHz
narrowband sounders in a long indoor corridor with break. We
obtain a reliable 3-D Kriging-aided path loss model to plan and
deploy mmWave wireless communication systems in indoor
corridors, which effectively considers all the singularities and
site-associated features that are implicit in measured samples.
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Chapter 8

mmWave Channel Measurements for 3D Path Loss Analysis and Model
Design in Stadiums

8.1 Summary of the Chapter

The main objective of this final extra part of the research is to validate the versatility of the
3D mathematical model proposed in Chapter 7. And off course, contribute to the
telecommunications society with a good foundation towards a greater understanding of
mmWave channel propagation in an inclined surface of the seating area of a stadium. In
seeking further analysis, this work has sectorized the measurements to characterize the
propagation behavior and validate if there is a better model than the free space path loss
model (FSPL) to represent the coverage in this type of scenarios.

For this purpose, 400 extensive mmWave radio measurements have been carried out at the
Sausalito stadium in Vifia del Mar, emulating mobile user equipment with 100 different
transmitter positions and two locations for the receiver system, emulating a base station
with different placements.

8.2 Full Article
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mmWave Channel Measurements for 3-D Path Loss
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Abstract—A stadium is a multiuser scenario where the wire-
less system should be able to support real-time service delivery
when the stadium is at full capacity during an event. To address
radio propagation design for this type of challenging scenario,
theoretical and empirical method is needed. Extensive open-space
static measurements and research have been conducted at 28 and
60 GHz frequencies in an empty seating area of a stadium with
a capacity of 60000 seats. The findings of this work lay a good
foundation towards a greater understanding of mmWave chan-
nel propagation in a stadium, where a sectorization approach
is considered to characterize the path loss behavior in 3D and
predict it at unmeasured locations through the Kriging-aided
model proposed with only 1 dB RMSE.

Index Terms—3D path loss, mmWave, radio propagation
design, stadium, Kriging.

I. INTRODUCTION

LWAYS motivated by the need of people communica-

tion, radio propagation systems have evolved remark-
ably over the years, providing connectivity and continuous
improvements for wireless communication services. While
fast-growing, researchers, telecommunication students, and
engineers, have to consider innovative approaches to continu-
ously address user demands and provide progressive involve-
ment in technology development, as well as its usefulness
and support capabilities for massive consumers. To address
the high-density challenge, the exploration of new spectrum
bands, as millimeter-wave (mmWave) is becoming increas-
ingly. A stadium is a clear example of multiuser scenario
where the wireless system should be able to support real-time
service delivery when the stadium is at full capacity during
an event. In order to increase network capacity, the sector-
ization technique is performed in this type of high-density
scenario, therefore, it is essential to ensure interference con-
trol. To accomplish this aim, the main requirements are issues
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related to efficient use of network resources as is mentioned
in [1], e.g., accurate coverage predictions and clear footprints
of each sector.

It is important to emphasize that a stadium is a complex sce-
nario. First, there are the dressing rooms, the commentary box,
tunnels, etc., which are similar to any other office building.
Additionally, there is the seating area, which is an inclined sur-
face whose modeling is complex. Not forgetting the fact that it
is practically an outdoor scenario where it is more difficult to
contain the radio signal levels. Therefore, a stadium needs its
own radio frequency network, where three-dimensional (3D)
modeling is essential since, due to its geometry, users will be
at different levels as a result of the inclined surface of the
seating area.

Properly path loss characterizing in a stadium accomplishes
real knowledge of the network coverage when addressing
the challenges that come with i) capacity and spectrum uti-
lization, and ii) high density. Taking into account the first
challenge inherent to future wireless communication, in [2],
the authors investigated several stationarity properties of a
massive multiple input and multiple output (MIMO) chan-
nel in a stadium at 1.4 and 4.4 GHz. Also, in [3] the design
of two-dimensional (2D) arrays in a stadium was considered
for increasing the capacity through large cell sectorization.
Regarding the second challenge, measurements and research
have been conducted in stadiums in order to analyze the cov-
erage and capacity at 28 and 5 GHz, considering body loss as
parameter that can severely affect system performance [4]-[6].
Despite the challenges overcome in [2]-[6], and the research
available in [7], where iBwave presented a complete report to
design better wireless networks for stadiums describing the
best practices and a detailed radio frequency design. These
studies do not design a path loss model for radio channel
characterizing.

In the performance of wireless communication systems,
channel modeling is crucial to understand what happens with
the waves over the transmission path. Measurement-based
models can predict signal attenuation over a link, consid-
ering all propagation factors implicit in field measurements.
But, when a large amount of useful data cannot be achieved
during sampling in measurement campaigns, Kriging can be
included as a powerful and accurate tool to predict unmea-
sured values [8]. Notwithstanding the relatively realization that
mmWave frequencies are viable for mobile communications.
Currently, few attempts [9] have been made to understand
radio channels in stadiums above 28 GHz where there are
much wider unused bandwidth slots available. Therefore, we
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Fig. 1.

28 GHz radio system in the stadium Sausalito. a) Rx. b) Tx.

considered that 28 and 60 GHz measurements offer some
insight to move a step forward for channel modeling at
mmWave. To the best of our knowledge, this is the first
radio propagation empirical model proposed for stadiums
at mmWave frequencies, to achieve accurate predictions for
5G communication systems. Where specially constructed nar-
rowband sounders were employed to recollect careful and
extensive measurements, which allow us to report separation
distances between the transmitter and receiver much greater
than those reported in [9]. The main contributions of this letter
are as follows.

o A suitable sectorization approach is studied to understand
and characterize radio wave propagation in a stadium at
mmWave frequencies in terms of the traditional single
slope (SS) model. Considering possible 3D effects, as the
transmitter and receiver are at different heights on the
inclined surface.

o The inclusion of Kriging is an effective tool to improve
modeling accuracy for mmWave propagation as it consid-
ers all the singularities in the seating area and stadium-
associated features that are implicit in measured samples.

o Better understanding and modeling of path loss at a
stadium considering the effect of different transmitter
heights (i.e., 3D) validating the benefits of using Kriging
to ensure accurate path loss predictions with the best and
least amount of training samples.

II. DATA COLLECTION PROCEDURE

An extensive amount of carefully calibrated signal strength
radio measurements at mmWave frequencies was performed
in the 8089 m? of the seating area of the Sausalito
Stadium in Vina del Mar, Chile. Universidad Técnica
Federico Santa Maria (USM) in collaboration with Pontificia
Universidad Catélica de Valparaiso (PUCV) and Nokia Bell
Laboratories constructed the two narrowband sounders used
during measurement campaign at 28 GHz [10] and 60 GHz.
Measurements were carried out with the seating area empty to
assure a static scenario. The radio systems at both frequencies
transmit a continuous wave (CW) tone into a vertically polar-
ized horn antenna with 55° half-power beamwidths and a gain
of 10 dBi.

At 28 GHz the transmitted power is 22 dBm and at 60 GHz
is 20.5 dBm. The narrowband sounder platform at 28 and
60 GHz are visualized in Fig. 1a and Fig. 2a. Both receive the
signal with an omnidirectional (omni) antenna and amplify it

IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 11, NO. 9, SEPTEMBER 2022

Fig. 2. 60 GHz radio system in the stadium Sausalito. a) Rx. b) Tx located
in front of the receiver. c) Tx located on the right side of the receiver.

Blocked

access

Fig. 3. Measurement layout with the radio system distribution.

with several adjustable gain low-noise amplifiers, mixed with
a local oscillator, resulting in an intermediate frequency (IF)
signal centered at 100 MHz. The IF signal power (filtered
by a 200 kHz-wide bandpass filter) is measured and con-
verted to digital values through a logarithmic-gain power meter
that generates 740 samples/second. Finally, these samples are
transmitted to a laptop computer. Measurable path loss extends
to 171 dB at 28 GHz and to 167 dB at 60 GHz with directional
antenna gains.

For 28 GHz the omni antenna has a gain of 1.4 dBi and
at 60 GHz 2 dBi with a vertical half-power beamwidth of
30°. As pictured in Fig. 1a and Fig. 2a the receiver (Rx) is
placed on a rotating 360° platform with the omni antenna
describing a circle of 20 cm radius, thus, the received power
is calculated based on the spatially averaged received when the
transmitter (Tx) system (Fig. 1b and Fig. 2b) is moved at each
desired location. The Rx and Tx were always placed at 1.66 m
height and the horn antenna of the Tx was manually aimed
to get maximum average received power at each measure-
ment location. In order to properly characterize and represent
the complete seating area of a typical stadium, 100 locations
were carefully selected, as is illustrated in Fig. 3. Besides,
according to the radio system size, the transmitting system
was selected to be strategically moved through the seating area
locations, emulating a mobile user equipment, as is visualized
in Fig. 1 and Fig. 2. While the receiving antenna was fixed to
the first or the second location under the roof in the seating
area, emulating a base station.
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Fig. 4. Path loss measured with receiver antenna (cross marker) placed in

the 24 Jocation at 28 and 60 GHz.

During the measurement campaign, some places were
unreachable due to the seating area was separated by barriers,
as illustrated in Fig. 3 with the blocked access legend. As a
result of considered two different receiving locations at two
frequencies, four scenarios were assessed for the measure-
ment campaign. Where 100-samples were recollected at each
scenario, yielding a total of 400 received power samples.

ITI. PATH LOSS ANALYSIS FOR RADIO WAVE
PROPAGATION

From the received power measurements Pry and the features
of the radio system, i.e., the transmitted power Pix and the
antenna gains (G, Grx), the path loss is extracted from the
link budget at each location with L = Pix + Gix + Grx —
P.«. In order to illustrate the behavior of radio propagation
in a stadium, Fig. 4 shows the path loss measured when the
receiver is located at the second point. As is mentioned in [11],
theoretically, the path loss in free space decreases quadratically
as frequency increases, so long as the effective aperture of the
antenna is kept constant over frequency at both link ends.

Towards path loss modeling, it will be possible to con-
template a stadium venue as a free space scenario, however,
despite the fact that the physical size of both antennas is kept
constant and the venue suggests a pure line-of-sight (LOS) link
between the transmitter and receiver antenna, the behavior of
the path loss needs to be investigated due to it is not accurately
characterized as free space (FSPL), and, as is shown in Fig. 5,
is clear that the radiofrequency propagation environment dif-
fers vastly within the stadium, from LOS without reflections
to LOS with a lot of reflections in the seating area. In order
to provide an average tendency of measured path loss a fit-
ting green curve is illustrated in Fig. 5 for both frequencies
used during the measurement campaign. This green curve is
computed through the traditional SS model [12, Ch. 9]

L= Ly+ 10nlog(d) + Ls, (D

with Lg as the free space path loss at a 1 m distance, n as the
path loss exponent (PLE), d as the Euclidean distance of the
link, and Lg as the shadowing component, i.e., a zero-mean
Gaussian random variable with a standard deviation o.
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Fig. 6. Sectorizing approach for path loss analysis, where 15¢ case considers
x and y coordinates for grouping zones and 21d considers z coordinate.

On average, the measured path loss difference at each loca-
tion between 60 and 28 GHz was 7.8 dB. Which initially
shows a similarity with the theoretical value calculated by the
FSPL equation (20 X log;((60/28) = 6.6 dB). Besides, as
seen in Fig. 5, the measured path loss difference between the
fitting green curves and FSPL is only 1 dB at 60 GHz and
2.3 dB at 28 GHz. However, both green curves have an n
less than 2, suggesting a better scenario than free space, with
n = 1.95 at 60 GHz and n = 1.89 at 28 GHz.

In the design of a radio network, the main purpose of
sectorization is to consider specific areas to cover, reducing
the interference as well as improving capacity. Thus, and in
seeking of a further analysis in the radio propagation in stadi-
ums, three different cases are analyzed for signal propagation
description: the first, sectorized the stadium in 4 zones accord-
ing to the coordinates in the seating area of the stadium, case
illustrated on the left side of Fig. 6; the second, sectorized the
measurements according to the altitude reported for the trans-
mitted antenna location, yielding 5 zones visualized in the
right side of Fig. 6; and the third, consider all the measure-
ments without constraint the selection of the samples. The first
and second cases were motivated by the sectorization schemes
released in [7].
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TABLE I
PATH LOSS CHARACTERIZATION AT 28 GHz AND 60 GHz

28 GHz 60 GHz
Case Zone n o [dB] n o [dB]
1 1.86 32 1.93 3.6
2 1.90 1.6 1.99 0.8
! 3 1.90 3.1 1.93 35
4 1.92 38 2.05 32
1 1.90 4.5 1.97 4.0
2 1.87 32 1.94 3.7
2 3 1.90 4.1 2.00 34
4 1.88 32 1.94 35
5 1.88 32 1.94 3.7
3 1 1.89 43 1.95 4.4

To overview our findings, Table I is presented to show n as
well as o for signal propagation description when a SS model
is considered for the 3-cases previously described. To compute
(1), the measurements gathered at both receiver locations are
joined according to the frequency and employed to tune the
model.

The main conclusions of the summary provided in Table I
are: 1) The least path loss variations occur in zone 2 when
sectorization is achieved according to case 1, due to the posi-
tion of the receiver antenna. Which, for this zone, is located
exactly in front of the transmitter positions; ii) The highest
standard deviation in the measured path loss is found in zone
1 for case 2, this is largely related to the sectorization approach
since in this case, zone 1 is located around the entire soccer
field and measurements are probably affected by the reflec-
tions that occurred due to the proximity to the fence net and
field; and iii) At both frequencies when all samples are taking
into account (case 3) the PLE is less than free space, i.e., 2,
which becomes our goal to further investigate propagation in
a stadium by predicting path loss with an accurate model.

IV. PATH LOSS PREDICTIONS

Based on the geostatistical fact that there is an implied con-
nection between the observed values (measured path loss) and
its location in the space (3D coordinates), two main proce-
dures are considered to predict the path loss: variography, for
modeling the variogram and Kriging, for interpolation [13].
The aim of the variogram model is to describe the spatial
dependency of the path loss measured between the blue loca-
tions illustrated in Fig. 3. This variogram is used to predict the
unknown path loss L at an unobserved location c0 according
to a weight ); estimated from known path loss measurements
L; through ordinary Kriging:

N(h)
Lo = > A+ Lai, )
i=1

where N(h) is the number of pairs of measured locations within
the lag interval h selected to estimate the path loss at an
unmeasured point with cO 3D coordinates, in other words,
h is the size of a distance class into which pairs of locations
N(h) are grouped. An extensive mathematical description of the
variography and ordinary Kriging process is described in [14].
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TABLE II
PATH LOSS PREDICTIONS ACCURACY FOR THE 3-CASES CONSIDERING A
TOTAL OF 200 RECEIVED POWER MEASUREMENTS PER FREQUENCY

Samples

RMSE
SE; | Case 40 60 80 100 120
RMSE 1 2.0 1.8 1.7 1.7 1.7 1.7
[dB]” 2 2.1 1.8 1.8 1.7 1.7 1.7
3 22 1.9 1.8 1.7 1.7 1.7
RMSE 1 12 1.1 1.0 1.0 1.0 0.9
: dB]“’ 2 12 1.0 1.0 1.0 1.0 0.9
3 1.4 1.1 1.0 1.0 1.0 0.9

To train and validate the accuracy of the Kriging-aided
model, two datasets are extracted from the measurements: the
first dataset, named as samples in Table II, is used to calculate
Aj and L in (2); and the remaining dataset is designated to
validate the path loss predicted at those locations. In addition,
and towards decrease the quantity of required samples to train
Kriging, the 20 — 120 samples were extracted with a percent-
age varying from 10 — 60 percent. The boundary of 60 percent
was selected according to the findings reported in [14]. The
datasets are selected according to the three cases described
in Section III, e.g., for case 1 in Table II, if 60 percent is
selected to extract samples, it is ensured that this percentage
is randomly-extracted from each zone of the first case (illus-
trated in Fig. 6), resulting in 120-random samples available to
train Kriging; the remaining 80-random samples (40 percent)
are intended for testing and validating the model in terms of
the root-mean-square error (RMSE).

In order to include the largest number of possible ran-
domly drawn samples, 1000-tests were assessed to calculate
the RMSE of predictions. After 1000-RMSE were assessed for
each case, results were averaged and reported in Table II, aim-
ing to quantify and validate the accuracy of the Kriging-aided
model (K) proposed.

It is evident that when the sample size—with which Kriging
is trained—increases, the confidence in the estimates also
increases, as well as the accuracy, decreasing the RMSE. For
the 3 cases, at both frequencies, from 20% to 60% of the sam-
ple size selected (40 - 120 samples), there is not an evident
RMSE difference between the cases analyzed for the sector-
ization approach. This allows us to conclude that for this type
of scenario there is not necessary to zone the sampled field
to extract the training dataset, as in the last case, which pro-
vides an excellent trade-off between the number of samples
employed and the error in the prediction. On average, for
the third case, tunning the model with 80 to 120 samples the
RMSE is only 1.7 dB for 28 GHz and 1 dB for 60 GHz.

By comparing case 3 against cases 1 and 2, we can under-
stand the potential of the methodology followed by Kriging,
which first, analyzes the spatial variability of the samples,
and later, in accordance with the previous analysis, interpo-
lates the best set of samples to achieve suitable predictions
at unmeasured locations. Furthermore, Table II suggests that
from 80 samples the RMSE converges to the lowest reported
error, i.e., only 40% of randomly-separated samples represent
enough quantity to sample a stadium with a seating area of
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TABLE IIT
RMSES FOR PATH LOSS PREDICTIONS EMPLOYING SS AND K MODELS
Frequency RMSE RMSEgs  RMSEy

|GHz] value [dB] [dB]

Min 1.4 1.3

28 1000-averaged 1.8 1.7

Max 2.2 2.0

Min 1.2 0.6

60 1000-averaged 1.7 0.9

Max 2.2 1.6

an 8089 m? for suitably Kriging-training and accurate radio
propagation predictions.

To compare the performance of the model here proposed,
Table III provides a summary of the 1000-RMSEs achieved
when a 60/40 percentage rate is extracted from all stadium
measurements to tune/test both the well-known SS model
employed for LOS links, described in (1), and the K model,
described in (2). In Table III, RMSEgg refers to the RMSE
calculated when (1) is employed, and RMSEK when (2) is
used to predict the path loss at testing locations.

Through the RMSE values listed in Table III, we conclude
that the K model is very robust: Firstly, despite the complex
scenario considered to provide predictions in an inclined sur-
face, minor RMSE values are presented when the K model is
employed; Secondly, averaging 1000-iterations achieved, the
RMSE reported is just 1.7 and 0.9 dB for 28 and 60 GHz sce-
narios, respectively, which justifies including Kriging as part
of the post-processing to predict unmeasured data reducing
the RMSE by 0.2 dB for 28 GHz and 0.8 dB for 60 GHz
when it is compared to SS model RMSEs; Thirdly, the K
model performs just as well when tested against stadium as
indoor [8], [14] and outdoor-to-indoor [15] measurements at
mmWave frequencies. After tests were achieved by analyzing
maximum, average, and minimum RMSE:s listed in Table I, it
was possible to validate the consistency and the adaptability of
the K model for this complex scenario ensuring its usefulness
for path loss predictions.

V. CONCLUSION

This letter studied the propagation environment of a not
well investigated venue as is a stadium, provided a path loss
analysis when sectorizing measurements according to its loca-
tions, and validated the potential of employing Kriging for
path loss prediction when few samples are considered, allow-
ing RMSE as small as 1 dB. Besides, it was corroborated
that the usefulness of the model proposed can be extended
not only for indoor scenarios, as reported in [8], [14], but
also for a complex venue as is a stadium. The processed
data and the findings according to the Kriging-aided approach
will help with mmWave wireless network design for this spe-
cific scenario. Additionally, and on behalf to outperform the
Kriging-aided path loss model, a characterization of small-
scale fading in stadiums could be interesting future work,
considering the possibility of increasing statistical precision
when designing a wireless communication system.
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Chapter 9
Conclusions

The main goal of propagation modeling is to predict losses as accurately as possible, allowing
the range of a radio system to be determined before installation. This doctoral research
designs, develops and validates one of the most accurate methods for indoor 3D modeling in
terms of the quantified error of the predictions. Using few measurements and low
computational complexity, this mathematical model allows the algorithm to be implemented
as part of radio propagation software tools for modeling and designing indoor wireless
systems, providing a feasible, practical, and fast-validated solution.

The proposed model was tested and validated in different indoor scenarios, such as offices,
classrooms, long corridors, corridors with breaks, libraries, and rooms. The versatility of the
proposed model was corroborated including O2I scenarios, as well as a challenging scenario
as the seating area of a stadium. Additionally, through the extensive measurement
campaigns achieved, it was possible to characterize indoor scenarios considering different
types of antennas, such as omnidirectional and directional. Providing a good foundation for
a greater understanding of mmWave channel propagation.

The inclusion of Kriging, as an effective tool to improve modeling accuracy for indoor
propagation was successfully validated, due to this technique includes all the singularities
and geometry-associated 3D features that are implicit in measured samples. Encouraging
students in wireless telecommunications, professionals in the industry, and engineers to
accomplish efficient radio coverage estimation in situations where the possibility to collect
large amounts of data from measurement campaigns is limited, reducing time and costs in
practical campaigns.

When comparing the accuracy of the proposed model in terms of the RMSE of the
assessments achieved at 3.5 GHz in two different O2I scenarios [17],28 and 60 GHz in a long
indoor corridor and the seating area of a stadium [20], [21]. It is observed that the
improvement of the inclusion of Kriging is not conditioned to the frequency band of the radio
system analyzed, nor to the scenario that has been considered. Reporting an RMSE of 2.8 dB
for O2I cases, 2.5 dB when a long indoor corridor with a break is considered and, 1.7 dB at
28 GHz and 0.9 dB at 60 GHz in the complex scenario evaluated.

9.1 Guidelines

As part of the findings of this careful and extensive research, this subsection of conclusions
is inspired by the fact that several issues should be considered as key factors when following
the methodology here proposed for accurate path loss predictions. Four main steps should
be clearly defined as overviewed in Fig. 9.1. The first describes the procedures taken into
account to carry out a measurement campaign, and are described as follows:

85



Chapter 9
Conclusions

» Prepare a detailed work plan that considers the schedule that will follow during the
campaign, avoiding missing concerns such as available energy suppliers in the scenario,
the distance between consecutive sampling locations to follow a path, available time
according to granted permissions, and previous visits to the venue in order to mark
important locations.

= [f it is possible, always, before a measurement campaign the radio equipment must be
calibrated in an anechoic chamber to ensure measurement power accuracy, emulating
free space conditions.

Measurement Campaign

1 2

- Workplan - Calibrating
Scenario conditions Radio equipment
Sampling distance Anechoic chamber

Tuning and Testing Dataset Selection

4 3

" Size Selection ~ Method Selection
Samples percentage Sectorizing the layout
dedicated to tune = 60% (concentric circles)

Predictions: Variography + Ordinary Kriging

5 6

- Variography Tool *“Theoretical Function
Semivariogram Exponential
Correlogram Goodness of fit

Fig. 9.1 Overview of the guidelines for indoor radio propagation predictions.

The second step to bear in mind is the proper selection of the datasets to fit and validate the
model. If the campaign does not follow a linear path like in a corridor, is very important to
zone the measurements according to concentric circles, where the first circle is centered in
the location of the transmitter and the consecutive circles are separated by a distance that
represents a change of signal strength, in the indoor scenarios here evaluated 5 m has been
selected as the separation distance. Once the sampling location has been divided, 60 to 70%
of the available samples must be randomly extracted from each resulting zone, to train the
mathematical model with samples that are distributed in all the zones of the layout and
represent the complete scenario. As an additional remark, when the measurement campaign
has been planned to carry out following a grid in a typical indoor space with a maximum of
a pair of walls as obstructions between the transmitter and receiver. In order to perform the
minimum number of measurements that will provide accurate tuning The suggested
separation distance is 7 m between consecutive measurement locations, as is concluded in
[18], where the scenario represents a venue of 45 m long by 40 m wide.
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To achieve accurate predictions of path loss at unmeasured locations through Kriging, it is
necessary to select a semivariogram or a correlogram as the variography tool to properly
explore the spatial structure of the available samples. Then, to represent the spatial
correlation of the samples in all the possible distances, a theoretical function must be fitted
to the empirical tool selected, and this function is selected according to the best goodness of
fit. In the cases assessed in this research, the exponential function always represented the
correlation distance between available samples with a higher level of confidence than the
other available theoretical functions.

As a final guideline, it is important to select the same parameter to quantify the error of
predictions in order to compare the results in the same terms, e.g., over the publications in
this research the RMSE and the MAE were considered to compare and quantify the accuracy
when predicting with the proposed model against the benchmark models employed.

9.2 Contributions
Table 9.1 overviews the main contributions of each chapter to answer the research question
of how to accurately predict radio coverage inside complex environments such as buildings

without excessive computational resources or excessive building information?

Table 9.1 Principal contributions of the journal papers published.

Chapter Contributions
* Provide a complete state of the art about the indoor narrowband channel
models.
2 = Accomplish extensive knowledge about the type of methodologies usually used

to predict path loss in indoor scenarios.
= Provide remarks on indoor radio propagation modeling.

= Reuse measurements in the UHF band (at 800, 1900, 2400, and 2500 MHz) that
had already been at the Tecnologico de Monterrey, Campus Queretaro, to design
a Kriging-aided shadowing path loss model in an indoor scenario.

= Predict at specific in-building locations the path loss with a high degree of

3 accuracy.

= Provide a clear methodology to validate the proposed model.

= Based on the goodness of fit of the results, suggest a suitable (trade-off between
accuracy and efficacy) rate to divide the measurements into tuning and testing
datasets.

= Reuse measurements in the SHF band (at 3.5 GHz) that had already been at the
UDP and USM in Chile, to assess the versatility and validate the accuracy of the
Kriging-aided shadowing path loss model proposed for 021 scenarios.

= Collaborate with other universities in order to achieve the doctoral research
objectives, bring it more visibility and explore other type of indoor scenarios
with the measurements available.
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Find an optimal tuning dataset for reducing the extent of walk testing during
measurement campaigns to perform practical measurements with a good trade-
off between enough tuning dataset and model prediction accuracy.

Carry out a measurement campaign in the SHF band (at the mmWave frequency
of 28 GHz) in the library of the Tecnologico de Monterrey, Campus Monterrey,
with different receiver heights to provide the empirical basis for a 3D model.
Once the performance of the semivariogram, covariance, and correlogram
function as statistical tools used in the variography was assessed, select the
semivariogram as the most accurate according to Kriging shadowing
interpolations achieved for path loss predictions.

Achieve and validate 3D indoor path loss predictions.

Carry out measurement campaigns in the SHF and EHF bands (at the mmWave
frequencies of 28 and 60 GHz) in a typical indoor corridor with a break in the
USM, with different receiver heights to provide the empirical basis for a 3D
model.

Test omnidirectional and directional indoor antennas at 28 and 60 GHz, in order
to compare, analyze, and characterize path loss in an indoor scenario.

Analyze the waveguiding effect presented in enclosed spaces at 28 and 60 GHz.
Provide a path loss model, where the long indoor corridors, the effect of corners,
and the different receiver heights (i.e., 3D) are considered.

Employ the potential of Kriging to predict the complete path loss and not only
the shadowing effect in the path loss.

Carry out measurement campaigns in the SHF and EHF bands (at the mmWave
frequencies of 28 and 60 GHz) in a special scenario to validate the usefulness of
the Kriging-aided path loss model.

Characterize mmWave channel propagation in a stadium.

The achievements of this doctoral thesis provide contributions not only to the academic
sector but also to the industry, the telecommunications area, and the environmental sector.
Therefore, Table 9.2 overviews the main contributions of the doctoral thesis classified
according to the area.

Table 9.2 Principal contributions of the doctoral thesis to different areas.

Area Contributions

= Validate a multidisciplinary approach that considers
geostatistical as part of the post-processing to predict
unmeasured values in channel modeling.

* Provide one of the most accurate measurement-based

Telecommunications mathematical models for indoor scenarios.

= Improve efficiency in data processing for faster path loss
predictions.

* Contribute to the state of the art of channel modeling in radio
propagation.
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=  Contribute to Industry 4.0 with a practical solution for engineers,
helping planning telecommunications for the deployment of 5G
wireless service.

= Offer the opportunity of analyzing the indoor signal reception
quality that will allow homologating new mobile equipment for
indoor performance technology in small cells. Leading to the
achievement of strategic approaches to science and technology,
providing economic and social benefits.

Industry

= Provide a qualified methodology to analyze and validate the
measurement-based model proposed.

= C(Create an accurate resource for path loss analysis without
extensive measurement campaigns.

Academic = Eight scientific publications.

»  Education support for indoor channel modeling.

= Lay a good foundation towards a greater understanding of
mmWave channel propagation in indoor scenarios and a complex
stadium venue.

= Reduce time of measurement campaigns which results in a
Environmental reduction of the energy consumption of each piece of equipment
employed for radio measurements.

9.3 Publications

Indexed journal papers as first author:
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pp. 103875-103899, 2020, doi: 10.1109/ACCESS.2020.2999848.
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Measurements,” in IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 10, pp.
2055-2059, Oct. 2022, doi: 10.1109/LAWP.2022.3190324.

= M. E. Diago-Mosquera, A. Aragon-Zavala, A. Rodrigues-Lopez and M. Rodriguez,
"mmWave Channel Measurements for 3-D Path Loss Analysis and Model Design in
Stadiums," in IEEE Wireless Communications Letters, vol. 11, no. 9, pp. 2005-2009, Sept.
2022, doi: 10.1109/LWC.2022.3192513.

International conference papers with proceedings:

= M. E. Diago-Mosquera, A. Aragén-Zavala and M. Rodriguez, "A Novel 3D Kriging-Aided
Path Loss Model for Indoor Corridors Considering 28 GHz Measurements," 2022 IEEE
International Symposium on Antennas and Propagation and USNC-URSI Radio Science
Meeting  (AP-S/URSI), 2022, pp. 1914-1915, doi: 10.1109/AP-S/USNC-
URSI47032.2022.9886921.

Participation in indexed journal papers:

= (Correa-Mena, A.G.; Sesefa-Osorio, ]J.A.; Diago-Mosquera, M.E.; Aragén-Zavala, A,;
Zaldivar-Huerta, LE. Optical Transmission of an Analog TV-Signal Coded at 2.24 GHz and
Its Distribution by Using a Radiating Cable. Electronics 2020, 9, 917.
https://doi.org/10.3390/electronics9060917.

9.4 Future Work

The model proposed in this research is focused on narrowband channels and the use of
Kriging for wideband channel modeling has not been tested yet, leaving it as a possibility for
future research related to indoor radio propagation.

The dependence of the path loss exponent n and the error predictions with a Kriging-aided
in-building path loss model can be analyzed as a future research line, considering multiple
scenarios.

A hybrid method between RL and Kriging could be interesting future work, considering the
possibility to increase the statistical precision and outperform Kriging.

When modeling path loss including Kriging, there is a stage in the methodology that
corresponds to tuning or training the model based on measurements. The results during this
doctoral research always showed that Kriging ensured the best accuracy when compared to
other models. Validating Kriging as a powerful training tool, it would be interesting to
include machine learning as part of the tuning process for indoor path loss predictions.

90



Appendix A

Abbreviations and Acronyms

Table A.1 Abbreviations & Acronyms

Description
1SM One-Slope Model (1SM)
3D Three Dimensional
5G Fifth Generation
6G Sixth Generation
BS Base Station
cw Continuous Wave
e.g. exempli gratia (Latin), for example
EHF Extremely High Frequency
GoS Grade of Service
GHz Giga Hertz
HPBW Half-Power Beam Widths
i.e. id est (Latin), that is
120 Indoor-to-Outdoor
IF Intermediate Frequency
LAM Linear Attenuation Model
LOS Line of Sight
NLOS Non-Line of Sight
MAE Mean Absolute Error
MIMO Multiple Input and Multiple Output
mmWave millimeter-Wave
MNO Mobile Network Operators
MWM Multi-Wall Model
021 Outdoor-to-Indoor
PLE Path Loss Exponent
R2 R-squared
RL Ray Launching
REM Radio Environment Map
RIT Radio Interface Technologies
RMSE Root Mean Square Error
Rx Receiver
SHF Super High Frequency
SINR Signal to Interference plus Noise Ratio
SNR Signal to Noise Ratio
SON Self-Optimizing Network
Tx Transmitter
UHF Ultra-High Frequency
UTD Uniform geometrical Theory of Diffraction
VNA Vector Network Analyzer
WiFi Wireless Fidelity WiFi
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Units
Table B.1
Description

dB Decibel

dBi Decibels relative to isotropic

dBm Decibels with reference to one milliwatt (mW)
m Meter

MHz Mega Hertz

GHz Giga Hertz

92



Bibliography

[1]

[2]

[16]

T. S. Rappaport et al, “Wireless communications and applications above 100 GHz:
Opportunities and challenges for 6g and beyond,” IEEE Access, vol. 7, pp. 78729-78757, 2019,
doi: 10.1109/ACCESS.2019.2921522.

H. 0. Kpojime and G. A. Safdar, “Interference mitigation in cognitive-radio-based femtocells,”
IEEE Commun. Surv. Tutorials, vol. 17, no. 3, pp. 1511-1534, Jul. 2015, doi:
10.1109/COMST.2014.2361687.

M. E. Diago-Mosquera, A. Aragon-Zavala, and G. A. Castanon, “Bringing It Indoors: A Review of
Narrowband Radio Propagation Modeling for Enclosed Spaces,” IEEE Access, vol. 8, pp.
103875-103899, Jun. 2020, doi: 10.1109/access.2020.2999848.

M. Khatun, C. Guo, L. Moro, D. Matolak, and H. Mehrpouyan, “Millimeter-wave path loss at 73
GHz in indoor and outdoor airport environments,” in IEEE Vehicular Technology Conference,
Sep. 2019, vol. 2019-Septe, doi: 10.1109/VTCFall.2019.8891488.

N. O. Oyie and T.]. O. Afullo, “Measurements and Analysis of Large-Scale Path Loss Model at 14
and 22 GHz in Indoor Corridor,” IEEE Access, vol. 6, pp. 17205-17214, Feb. 2018, doi:
10.1109/ACCESS.2018.2802038.

F. Erden, O. Ozdemir, and I. Guvenc, “28 GHz mmWave Channel Measurements and Modeling
in a Library Environment,” in IEEE Radio and Wireless Symposium, RWS, Jan. 2020, vol. 2020-
Janua, pp. 52-55, doi: 10.1109/RWS45077.2020.9050106.

J. Bi et al,, “Fast radio map construction by using adaptive path loss model interpolation in
large-scale building,” Sensors (Switzerland), vol. 19, no. 3, Feb. 2019, doi: 10.3390/s19030712.
A. Konak, “A kriging approach to predicting coverage in wireless networks,” Int. J. Mob. Netw.
Des. Innov., vol. 3, no. 2, pp. 65-71, Jan. 2009, doi: 10.1504/I]JMNDI.2009.030838.

A. Dalla’Rosa, A. Raizer, and L. Pichon, “Deterministic tool based on transmission line
modelling and Kriging for optimal transmitter location in indoor wireless systems,” [ET
Microwaves, Antennas Propag., vol. 5, no. 13, pp. 1537-1545, Oct. 2011, doi: 10.1049/iet-
map.2010.0613.

A. Aragdn-Zavala, Indoor wireless communications: from theory to implementation, 1st ed.
Chichester, UK: Wiley, 2017.

K. Sato, K. Inage, and T. Fujii, “On the Performance of Neural Network Residual Kriging in Radio
Environment Mapping,” I[EEE Access, vol. 7, pp. 94557-94568, 2019, doi:
10.1109/ACCESS.2019.2928832.

J. Vallet Garcia, “Characterization of the Log-Normal Model for Received Signal Strength
Measurements in Real Wireless Sensor Networks,” J. Sens. Actuator Networks, vol. 9, no. 1, p.
12, Feb. 2020, doi: 10.3390/jsan9010012.

K. V. Anusuya, S. Bharadhwaj, and S. Subha Rani, “Wireless channel models for indoor
environments,” Def- Sci. J., vol. 58, no. 6, pp. 771-777, 2008, doi: 10.14429/dsj.58.1706.

M. Morocho-Yaguana, P. Ludena-Gonzalez, F. Sandoval, B. Poma-Velez, and A. Erreyes-Dota,
“An optimized propagation model based on measurement data for indoor environments,” J.
Telecommun. Inf. Technol, vol. 2018, no. 2, pp. 69-75, 2018, doi: 10.26636/jtit.2018.117217.
M. E. Diago-Mosquera, A. Aragon-Zavala, and M. Rodriguez, “A Novel 3D Kriging-Aided Path
Loss Model for Indoor Corridors Considering 28 GHz Measurements,” 2022 IEEE Int. Symp.
Antennas Propag. Usn. Radio Sci. Meet., pp. 1914-1915, Jul. 2022, doi: 10.1109/AP-S/USNC-
URSI47032.2022.9886921.

M. E. Diago-Mosquera, A. Aragon-Zavala, and C. Vargas-Rosales, “The performance of in-
building measurement-based path loss modelling using kriging,” IET Microwaves, Antennas
Propag., vol. 15, no. 12, pp. 1564-1576, Oct. 2021, doi: 10.1049/MIA2.12163.

93



[17]

[18]

[22]

[23]

Bibliography
In-building measurement-based radio
propagation modeling using a geostatistical interpolation technique

M. E. Diago-Mosquera, A. Aragén-Zavala, and M. Rodriguez, “Testing a 5G Communication
System: Kriging-Aided O2I Path Loss Modeling Based on 3.5 GHz Measurement Analysis,”
Sensors 2021, Vol. 21, Page 6716, vol. 21, no. 20, p. 6716, Oct. 2021, doi: 10.3390/S21206716.
M. E. Diago-Mosquera, A. Aragon-Zavala, F. A. Rodriguez-Corbo, M. Celaya-Echarri, R. Shubair,
and L. Azpilicueta, “Tuning Selection Impact on Kriging-Aided In-Building Path Loss
Modeling,” IEEE Antennas Wirel. Propag. Lett, vol. 21, no. 1, pp. 84-88, 2022, doi:
10.1109/LAWP.2021.3118673.

M. E. Diago-Mosquera, A. Aragon-Zavala, L. Azpilicueta, R. Shubair, and F. Falcone, “A 3D
Indoor Analysis of Path Loss Modeling Using Kriging Techniques,” IEEE Antennas Wirel.
Propag. Lett., vol. 21, no. 6, pp. 1218-1222, 2022, doi: 10.1109/LAWP.2022.3162160.

M. E. Diago-Mosquera, A. Aragon-Zavala, and M. Rodriguez, “Towards Practical Path Loss
Predictions in Indoor Corridors Considering 5G mmWave 3D Measurements,” IEEE Antennas
Wirel. Propag. Lett., 2022, doi: 10.1109/LAWP.2022.3190324.

M. E. Diago-Mosquera, A. Aragon-Zavala, A. Rodrigues-Lopez, and M. Rodriguez, “mmWave
Channel Measurements for 3D Path Loss Analysis and Model Design in Stadiums,” IEEE Wirel.
Commun. Lett., vol. 11, no. 9, pp. 2005-2009, Jul. 2022, doi: 10.1109/LWC.2022.3192513.

J. Negreiros, M. Painho, F. Aguilar, and M. Aguilar, “Geographical information systems
principles of ordinary kriging interpolator,” J. Appl. Sci., vol. 10, no. 11, pp. 852-867, 2010, doi:
10.3923/jas.2010.852.867.

D. Chizhik, J. Du, R. Feick, M. Rodriguez, G. Castro, and R. A. Valenzuela, “Path Loss and
Directional Gain Measurements at 28 GHz for Non-Line-of-Sight Coverage of Indoors with
Corridors,” IEEE Trans. Antennas Propag., vol. 68, no. 6, pp. 4820-4830, Jun. 2020, doi:
10.1109/TAP.2020.2972609.

94



Curriculum Vitae

Melissa Eugenia Diago Mosquera received the degree in electronics and telecommunications
engineering from the University of Cauca, Colombia, in 2014, the M.Sc. degree in informatics
and telecommunications from the Icesi University, Colombia, in 2018. In 2015, she joined
Sugarcane Research Center, CENICANA as a Networks and Telecommunications Engineer
facility working on the Internet of Things (IoT) projects, specifically focused on hybrid
radiocommunication networks. Since August 2019, she is a full-time doctorate student at the
School of Information Technology and Electronics, Tecnolégico de Monterrey Campus
Querétaro. Her research interests include indoor radio propagation, radio propagation
measurements, and channel modeling. She was awarded by the IEEE Antennas and
Propagation Society with the Mojgan Daneshmand Grant in 2022.

This document was typed in using Microsoft Word by Melissa Eugenia Diago Mosquera
(Student)

95



	The performance of in‐building measurement‐based path loss modelling using kriging
	1 | INTRODUCTION
	2 | MEASUREMENT PROCEDURE AND SCENARIOS
	3 | CHANNEL MODEL DESCRIPTION
	4 | MODELLING KRIGING‐AIDED SHADOWING
	4.1 | Shadowing variography
	4.2 | Kriging

	5 | MODEL VALIDATION
	5.1 | Pre‐test 1: Variogram function selection
	5.2 | Pre‐test 2: Tuning dataset method selection
	5.3 | Pre‐test 3: Tuning dataset size
	5.4 | Results: Path loss predictions

	6 | CONCLUSIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	PERMISSION TO REPRODUCE MATERIALS FROM OTHER SOURCES

	Introduction 
	Methodology and Data Collection 
	Measurements and Data Collection Procedure 
	Kriging-Based Channel Model Development 

	Results 
	Conclusions 
	References

