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The use of multispectral images and deep learning models
for agriculture: the application on Agave

by
José Alberto Montán López

Abstract

Agave is an important plant for Mexico, country considered as center of biological diversity
of agave, in addition, one variety is used for production of tequila, an important product that
brings money to the country. Demand of product has led farmers to pay more attention to
plantation and to reduce quality. We can find several solutions regarding agricultural filed
such as identification of weed and classification of species implementing aerial imagery along
with machine and deep learning reaching good results. However, there are few solutions
applied directly on agaves to monitor they health. Moreover, there is not a public dataset
about agaves for the purpose of this work, for this reason we have worked to collect data
using a drone equipped with a multispectral camera capable to capture five different channels
of a different wavelength of the light spectrum. This dataset contains 7ha of agave information
into five channels provided by the multispectral camera as well as three Vegetation Indices that
were computed from the multispectral bands. In this work we explore the use of recent deep
learning (DL) algorithms as well as traditional machine learning (ML) algorithms to segment
agaves based on health using aerial multispectral images. On the experiments we found out
that ML algorithms were able to segment just one of the two classes defined for agaves. On the
experiments of DL models we could define the size of the images we wanted to train where a
size of 500x500 was the best for this problem. Experiments for both types of algorithms were
done using many combinations of channels such as use just vegetation indices or using all
available bands on the dataset. On the other hand, Vision Transformer (ViT) Segmenter model
reached an accuracy of 92.96% using vegetation indices data while the best ML algorithm was
Random Forest using the five bands captured by the drone reaching 88.06% accuracy. We also
test the models using traditional RGB images to compare against multispectral images and see
if there is an actual advantage on the use of this type of technology. Results show us that when
we introduce the variable of health into agaves, i.e. we have two classes of agaves, models
that have additional bands can get better results. Thus, the use of multispectal images actually
increase the performance of all models, including ML and DL, for identification of more than
one class of agave.
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Chapter 1

Introduction

1.1 Background
Agriculture is an activity that is part of the primary sector, which is related to the treatment
of the soil and the cultivation of the land to produce food, a modification of the environment
is made to have one more suitable for its use and thus having a higher productivity in the
soil with which more resources (food) are obtained for its consumption, either direct or that
takes extra processing for its commercialization. It is an important activity since the products
generated are used to cover one of the basic needs of humans.

The production of the harvest can be affected by different factors either by factors gen-
erated by the environment such as problems related to water, floods or droughts, problems
related to the climate, on the one hand, the extremely low temperatures during seasons of
frosts and other, high temperatures that can directly damage plants or produce droughts; prob-
lems related to cultivation practices such as an excess or lack of nutrients, damage caused by
the incorrect use of chemicals, such as the excessive use of pesticides that can lead to the death
of the plant, physical damage when handling to the plants. In addition, in the 2030 Agenda on
Sustainable Development, where 17 Sustainable Development Goals are defined as a response
to improving the lives of all and include issues for the elimination of poverty, climate change,
education, and equality for women, among others. Goal number twelve talks about responsi-
ble production and consumption where in section 12.2 of that goal they mention ”From now
to 2030, achieve the sustainable management and efficient use of natural resources” in section
12.a we can read ”Help developing countries to strengthen their scientific and technological
capacity to move towards more sustainable consumption and production patterns” which can
be directly related to agriculture, since the development of more sustainable production and
the efficient use of resources are mentioned, facts that apply to being a primary activity[39].

For these reasons, new technology and new techniques have been generated to directly
attack these and other problems. Information and communication technology applications
are used directly in agriculture. Some of these applications are the internet of things (IoT),
Geolocation systems, Big Data, unmanned aerial vehicles (UAV or drones), automatic sys-
tems, and robotics. Those technological applications are used to improve the administration
of the necessary resources to carry out the harvest, reduce the time for decision-making, and
have more precise information. The application of these technologies in agriculture is known

1
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as precision agriculture or Smart farming. Within the economic factors, precision agricul-
ture provides higher productivity, higher income, and better product quality. The amount of
undergrowth, pests, and diseases are reduced thanks to the application of these technologies
[1].

One of the plants that are cultivated in the Mexican territory on a large scale is the agave.
The Agave has an origin that dates back approximately 10 million years to the American
continent, this being the place where most of the species are found. Worldwide, we can find a
total of approximately 211 species, this number may vary a little depending on the author who
identifies them, of which 75% are found in Mexican territory being the state of Oaxaca where
the greatest variety of species is found, which makes Mexico the center of the biological and
cultural diversity of agave[52]. Among the first registered uses, it is found in things such
as food and used as a fiber for the manufacture of ropes and nets. Today, its use has grown
and reached various areas such as in the agricultural sector as an agent to prevent erosion
and as an organic fertilizer, in the area of medicine as an anti-inflammatory, and in household
products such as detergents and some kitchen utensils. The importance of this plant is such
that research works have been carried out around it, the chemical sector being the one that has
the most contribution with 62% being the second the medicine sector with 15%. Within the
chemical sector, there are topics related to drinks, biofuels, and sweeteners, among others. In
addition, Mexico contributes 54% of scientific publications, its main topics being drinks and
sweeteners[10].

However, despite the vast number of applications that this plant has, its main use is the
production of drinks, such as mezcal, pulque, and tequila. [16] The latter comes from the Blue
Weber Agave, the only variety of agave with which tequila can be produced. This species
of agave can only be found in the states of Jalisco, Michoacán, Tamaulipas, Nayarit, and
Guanajuato, which is why it has earned the so-called designation of origin. Tequila production
is an industry that generates sales of more than 2 billion dollars annually and employs around
70 thousand people. The popularity of Tequila has been on the rise, so much so that the price
increased six times during the period from 2016 to 2018. [15] We can see this in the amount
of tequila exported and the agave production. Figure 1.1 shows the increase in the exportation
of Tequila from 2016 to 2020, we can see a growing demand for Tequila 100% while the
amount of Tequila remains the same. On the other hand in fig. 1.2, production of Tequila has
increase considerably since 2017 where Tequila 100% leads the production. This data tell us
that more and more Agave must be cultivated in order to satisfy the demand and because of
the time it takes to grow, farmers needs to put more effort in care the crop.

The main country to which it is exported is the USA, followed by Germany and Spain.
Due to this large amount of necessary production and the quality demanded by companies,
the care, maintenance and protection of plants is becoming increasingly difficult. Caring for
the agave against problems is mainly done by going through the crops and checking that the
plant is in good condition. Going through a complete plantation checking the health status of
each agave takes a long time, and with the current trend where greater production is required,
the times to maintain the care increases.

One of the common solution is the use of Vegetation Indices (VI), being the most popu-
lar the Normalized Difference Vegetation Index (NDVI). NDVI is an image calculated by two
channels captured by a multispectral camera, these are Near Infrared (NIR) and Red chan-
nels. With NDVI is possible to know in a faster way the health of a plant allowing a quickly



CHAPTER 1. INTRODUCTION 3

Figure 1.1: Quantity of Tequila exported from 2016 to 2020 by category, Tequila and Tequila
100% of agave. Data extracted from ”Consejo Regulador del Tequila”

Figure 1.2: The production of Tequila and Tequila 100% of Agave from 2016 to 2020. Data
extracted from ”Consejo Regulador del Tequila”
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Figure 1.3: An example of an RGB image on the left and a NDVI image on the right

evaluation of the state of the crop. The reason it works well and is very popular is because
is based in how the plant interact with light. Pigment on plants absorb the visible red light
while it reflects the NIR. Moreover, some drones like those from ”DJI” already count with a
computed NDVI output. We can observe an example of the application of NDVI in fig. 1.3
where in the left side a common RGB image is seen while in the right side is the resultant
image after compute the NDVI, note that is easy to see whether is plant or not and for the
variation of color represent the health. But for those that are not included, a dedicated soft-
ware is required. There are more VI but if you wish to apply it or explore more option with
multispectral images, is necessary first have the software and then learn how to use it.

Thus, the solution we propose to solve these problems can be seen in fig. 1.4. We
propose the use of a UAV to collect images of the crop, these images are captured with a mul-
tispectral camera that can capture light for a range of wavelengths (called bands). Images are
pre-processed to choose a combination of bands that provide more information. For feature
extraction to segmentation, we will explore several deep learning algorithms and select the
efficient one but, as a main and preferable algorithm to explore more applications, the use of
U-Net will be explored deeper. Areas will be segmented by characteristics of Agave and the
soil e.g. nutrient level, pests, the health of the plant, and humidity. Finally, given areas that are
segmented help make a decision allowing the farmer to make the right decision in a specific
area. The main contribution is in the segmentation since there are several classes to classify,
from where many problems can be covered at the same time.

By the given solution, we expect to have an algorithm capable of detecting areas and
classifying them according to features such as humidity and nutrient levels with high accuracy.
In addition, some of the benefits we can reach are the following: an increase in the productivity
of agave crops such as other precision farming methods can achieve but in an efficient way
that is easy to understand since specific areas are labeled for the corresponding class. Thanks
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Figure 1.4: Scheme of the proposal solution

to this method we can also reduce the workforce necessary to supervise the entire crop to
ensure its quality of it. The proposed solution also performs a helpful way to efficient use
of resources such as water, fertilizer, and pesticide and focus on a delimited area if there is a
problem and not waste resources in areas where is not necessary. Finally, we can use it as a
health supervisor of the plant and the soil and know exactly or with high accuracy where and
what the problem is.

1.2 Problem Statement and Context
One of the problems that we can face is the wilting of the plant. This problem is derived from
variants of the climate, which, although we can not control but we can take preventive mea-
sures, and soil variables. These variables are maximum and minimum temperature, relative
humidity, soil humidity, precipitation, and solar radiation. By having control of some of these
variants such as soil moisture with irrigation and having measures to better manage the other
variants, the plant has less chance of suffering a wilting. Plant nutrition is an important factor,
having soil with the necessary nutrients will help the plant to develop, and a balance of these
nutrients is better for the plant. The amount of water in the soil, which is directly related to hu-
midity, can become a problem in uneven terrain, the amount in a region can be greater due to
these irregularities, causing the water to stay in one place or have it run downward by gravity
on steep terrain. Finally, we have the problem of pests, an insect known as the Agave Snout
Weevil with the scientific name Scyphophorus acupunctures Gyllenhal is considered the most
important pest for the Blue Weber agave, causing damage to 24.5% of the population. The
damage is so serious that it can lead to the death of the plant [12].

Nowadays, there are solutions for some general problems that can be applied to a number
of types of crops. One of the most popular problems is Weed Detection or Weed Mapping, the
task consists in segment or identifying if the plant on the image is part of the crop or not. The
importance comes since weed is undesired because it consumes resources, such as water and
nutrients, affecting directly the entire crop healthy and indirectly the economy of the farming.

Therefore, datasets are published publicly in order to develop an efficient algorithm or
solution that can lead to this specific problem. By the year 2020, 15 different datasets of weed
detection are available in open source [36]. Datasets use crops of carrot and sugar for weed
detection but just a few of them use a UAV to collect images. The main difference between
datasets is the kind of image collected, on one side we have those that capture RGB images,
and on the other hand, those that use Multispectral Images including NDVI. We want to high-
light this difference since it is part of the proposed solution, we are using multispectral images
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that contain more information. Furthermore, as proof that better results are achievable by us-
ing more channels of images, recent research done for Weed Mapping using Deep Learning
algorithms and multispectral images demonstrated how by choosing the right combination of
channels a high accuracy is achieved and compared against SegNet architecture receives RGB
images as input [47]. A significant improvement where Area under the ROC Curve (AUC)
score is increased by about 0.2 points is achieved with this method. In addition, the usefulness
of NDVI is reinforced in that paper.

On the other hand, we can find datasets for precision farming for diverse applications.
For example, in fruit detection there are datasets dedicated to this task commonly with RGB
images, fruits to be detected include apples, mango, and almond. Other datasets aim at the
detection of diseases of Maize, where images are captured at short distances and with channels
of RGB. Finally, there is a dataset of videos captured with a Microsoft Kinect v2, that allows
making a segmentation in a 3-dimensional space [36]. Despite having datasets for multiple
tasks, there is still no agave dataset that we can use.

In the literature, there are just a few solutions that have been developed directly for
Agave. One of these is a counting methodology [6]. This involves a problem in which a
number of agave in a field is necessary to estimate the production of Tequila, to avoid counting
through all the crops by hand with their respective error margins a method is defined to do it
automatically. In this solution, image acquisition is made by a UAV that is equipped with an
RGB camera. Their solution is to apply a method based on Mathematical Morphology that
involves image processing to apply filters and kernels to create a mask to segment Agave. The
solution reaches an accuracy of about 98%.

Another solution is the one proposed by Ramirez et al. [9]. This work aimed to identify
specific areas by three restrictions, theses are economic, health, and humidity. They use a
supervised classification with multispectral images and again the NDVI. An accuracy of 73%
was reached, a percentage that can be improved by applying other methods. An interesting
result is shown in this work, which is the values of NDVI, they found that this value changes
depending on the age of the agave, a higher value represents an older plant. This work involves
the problem of segmentation by characteristics of soil, in this case, was measured by humidity,
and the health of the plant. However, we expect to have better accuracy by using deep learning
methods.

As we can note for solutions applied directly on Agave, there are still a lot of opportu-
nities to develop tools and to take advantage of UAV and multispectral images. In this work
we want to bring a direct solution to the Agave, we saw a good Weed Mapping solution and
the usefulness of NDVI so with a combination of those methods and an exploration of U-Net
architecture or more deep learning algorithms, we expect to achieve an efficient solution.

1.3 Research question
To attack problems that the Blue Weber Agave has, we can use an unmanned aerial vehicle,
in this case, a drone, to fly above the plantation to obtain information on some characteristics
like nutrients and humidity levels of the plant and the soil. As we have commented before, by
using multispectral images we can get better results. Space between plants, the presence of
undergrowth, and the detection of pests are possible with RGB images. We can note that there
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is a limitation if we want to solve as many as possible of problems that the agave has. So, to
improve the number of features, a multispectral image is a good option. A multispectral image
is an image that has information on several spectral bands, each of these bands captures the
reflation of different wavelengths such as infrared and ultraviolet. Thanks to the information
given by the multispectral images we can attack more problems, those for RGB images in a
better way plus humidity, nutrients of the plants, and temperature.

Thus, the hypothesis is:

With the use of UAV multispectral imagery we can identify agaves which their condition or
health is not normal corresponding to a problem on the plant that can be pests, low levels of

nutrients, or any other condition that can affect the plant. In addition, since multispectral
images provide more information, they can get better results compared to traditional RGB

images.

Questions that will support the given hypothesis are the following:

• What are the common characteristics of a healthy plant?

• What Vegetation Index can we use in order to obtain a large value or information?

• Does the use of deep learning models is superior to machine learning models?

• Is there an advantage on the use of multispectral images against RGB images?

1.4 Objectives
The general objective of this work is to develop a model based on deep learning algorithms and
multispectral images in order to monitor the health of the Agave to ensure quality and identify
critical areas that are put at risk the agave production by the end of the Master program. To
achieve this objective, we need a list of goals to measure the efficiency of the solution. The
proposed goals for this project are the following:

• As the first objective due the lack of information we are capturing data to create a dataset
for this project.

• Generate vegetation indices of the captured data

• Creation of ground truth labels to train models

• Segment agaves base on the health level

Note that each objective depends on the past objective, thus, the final solution is a com-
bination of all of them. This combination will be use to identify areas by importance level
doing decision making easier.
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1.5 Chapters Structure
This work is divided into six chapters, starting with this Introduction chapter and follows
this structure: Chapter 2 presents the previous research done for semantic segmentation us-
ing aerial imagery; Chapter 3 explains the topics used in this work; Chapter 4 describes the
methodology used to achieve the goals of this thesis, using a pipeline to explains the steps
followed; Chapter 5 discuss the results obtained using two types of algorithms; Finally, Chap-
ter 6 ends with a conclusion of the entire work and future work that can be done in order to
improve the results.



Chapter 2

Literature Review

Literature Review chapter is focused in discuss previous work regarding aerial imagery for
agricultural use. The use of unmanned aerial vehicle has been explored by researchers to
deal with problems on crops such as weed detection. In the literature we can find solutions
using UAVs to capture images in RGB and Multispectral formats, applying machine learning
algorithms with interesting results. For both types of images, the high spatial resolution stands
out as the main advantage of UAV technology.

As mentioned in the review article [40] by Oghaz et al., there are several studies done
using aerial imagery along with deep learning methods in crops. They identify five groups
where research have done, these are: 1)vegetation identification, classification and segmenta-
tion, 2)crop counting and yield prediction, 3)crop mapping, 4)weed detection, and 5)disease
and nutrient deficiency detection. There is a number of solutions for each kind of problem but
there is still opportunities to enhance those solutions.

This chapter is divided into two main sections, the first sections aims on the work done
using visible spectral images i.e. RGB images where we can find good results for some
specific problems. On the other hand, the second sections is focused in work done using
multispectral images, here we can find applications using Vegetation Indices to help algorithm
have a better performance.

2.1 Segmentation with visible spectral images
Even with more actual technology for agricultural use, RGB imagery is still the cheaper op-
tion so it is accessible. Research have showed that it is not necessary the top technology to
reach high accuracy by using the correct methodology. Following, it is going to be discussed
the use of RGB aerial imagery for vegetation studies. An article of remote sensing by Bhat-
nagar et al.[4] explore several machine and deep learning algorithms to perform segmentation
of vegetation communities in Clara Bog, a nature reserve in Ireland. They acquired data us-
ing a DJI drone with optical camera to capture data from bog using a specialized software to
generate the path and capture the desired area with a spatial resolution of 30cm. They collect
around 75 images of 3000x4000 dimension with five classes to segment. In order to be con-
sistent with all algorithms, and compare them, Bhatnagar et al. decided to resize images into
a smaller scale scarifying high spatial resolution.

9
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As mentioned before, Bhatnagar et al.[4] explored a number of machine and deep learn-
ing model including random forest, graph cut segmentation, SegNet, VGG16, UNet, ResNet50,
and PSPNet. In order to compare the performance of algorithms, they use overall accuracy
score. For Machine Learning algorithms they could reach an accuracy of about 85% thanks to
random forest classifier. On the other side deep learning algorithms perform better achieving
a higher accuracy of 91% with ResNet50 along with UNet.

Comparing algorithm they define Pros and cons for each one for example, machine
learning algorithms are capable to train faster than deep learning algorithms besides they need
less data to train and no specialized hardware (dedicated graphic card) is required. Oppositely,
it requires manual adjustment with extra process to add features. On the other side of the coin,
deep learning algorithms can learn more features without extra functions to reach a higher
accuracy, however, it requires more time and data as well as GPU and good RAM. They end
by considering ML algorithm better suitable for this application due to low time to train, good
accuracy, and limited data for train models.

2.2 Segmentation using multispectral images
The use of multispectral images has been recently explored by researchers due to drones
already equipped with multispectral cameras and cameras that count with the necessary soft-
ware to do the corresponding calibration of channels. Multispectral images count with more
information due to number of extra bands when capturing images. These channels contribute
with information that are not visible with simple RGB images generating new opportunities
to explore. However, this kind of images present challenges we do not have with common
images but on the other hand, we can generate new channels to gain valuable information
for plants. In the article [7], Candigo, S. et al. discuss the use of Multispectral Images and
Vegetation Indices in the precision farming field in order to evaluate the performance of such
technology in cultivations of vineyards and tomatoes. First, they start with a comparison of
different techniques used to collect images from an aerial view where the spatial resolution,
cost for data acquisition, and usability are compared. Satellite platforms, such as LansatLook
from the USGS, allow users to explore satellite data with a spatial resolution of about 1-25 m
but the cost for image acquisition is very high. While the use of UAVs gives a spatial resolu-
tion of 0.5-10 cm, depending on the altitude at which images were taken, that is more suitable
for a more precise study of the crop. In addition, the cost of data acquisition by using this
method is cheaper compared to a helicopter and airborne image collection.

Candigo, S et al.[7] used a UAV hexacopter equipped with a Multispectral camera for
data acquisition that captures the green, red, and NIR bands. By using these three bands, they
were able to compute three different Vegetation Indices, NDVI, GNDVI, and SAVI. They
save two datasets, one for a vineyard crop captured from a flying height of about 100 m and
the second one for a tomato crop with a flying height of 80 m. Both datasets go through a
pipeline to perform a radiometric calibration, then an image orientation adjustment and finally
construct the orthophoto. The final output is an orthoimage with three channels aligned with a
5 cm resolution. After constructing the orthoimage, Vegetation Indices are computed in order
to study their values in the entire crop.
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For the first crop, they selected four zones for the study with diverse vegetation con-
ditions. Then, they compare vegetation index values in those zones finding that Vis used to
perform good discrimination between areas with high or low health of the crop. In addition,
they find it very useful to have high-resolution data since it can detect more details and fea-
tures compared with satellite images. Similar results were presented in the tomato crop. This
article compared three vegetation indices in two crop types showing that VI is able to distin-
guish between plant health for a variety of conditions. Finally, Candigo, S et al.[7] recognize
the potential of UAVs for image acquisition since are a flexible, fast, reliable, and economic
tool for information collection and for decisions making in the agricultural field.

Sa, I. et al. present in [47] a semantic weed mapping using Multispectral images and
deep neural network. In this paper, they identify principal limitations in the use of UAV
images, Multispectral bands, and deep neural network algorithms. Such limitations are those
involved in the data acquisition, flight altitude and ground sample distances, change of the
resolution that generates a loss of information, and channel alignment.

The task of this work was to detect weeds in a sugar crop, datasets were collected in
crops in Eschikon and Rheinbach, Germany. They use two different drones for image acqui-
sition, one equipped with a camera of five bands and the other with four bands. In addition,
they compute the NDVI vegetation index in order to have more information about the crop.

As mentioned before, Sa, I et al.[47] found limitations in the use of multispectral images,
hence, they define a method to solve these problems. The process is the following: first, they
start by capturing the data at a specific elevation such that GSD value is similar for each
orthoimage, then, they use software that performs the radiometric calibration for the camera
and sun sensor as well as the alignment of multispectral bands. By having the orthomosaic
map they can compute vegetation indices, RGB images, and color-infrared images. Just after
processing the data, a sliding window is used to trim the image into smaller images with a
specific size in order to conserve the details of the data. Then, trimmed images are the input
for a SegNet model. By using this data in the Deep Learning model, they could reach an AUC
of 0.863 for crop segmentation and 0.782 for weed detection.



Chapter 3

Theoretical Framework

In this chapter, we are explaining the topics required for a better understanding of this work.
The chapter is divided as follows: first, we explain the definition of precision farming as well
as its importance in agriculture. Then, we move to multispectral images which are the prin-
cipal data for the development of this project. The next section is a description of Vegetation
Indices, a tool we can use to extract useful information from multispectral images. In addition,
a list of indices for the use of this application is proposed. We continue with orthogonal maps
where some adjustments for images are performed. Finally, machine learning algorithms for
segmentation are described.

3.1 Precision Farming
Precision Farming (PF), also known as Smart Farming is the task to manage correctly the use
of resources by a collection of information from a number of devices that add precision i.e.
having efficient farming with the help of technology [31]. In recent days, PF involves the
use of IT technologies such as Global Positioning Systems (GPS), Geographic Information
Systems (GIS), drones, sensors, and robotics. we can see some examples in fig. 3.1 where 3.1a
is a humidity sensor installed close to the plant, 3.1b are drones used to collect information
from aerial images, and 3.1c is a robot equipped with sensors and a camera that can collect
information through the crop. Some of the uses are to measure soil moisture, nutrients, and
pH levels in order to map critical areas. In other words, PF is the use of IT technologies in
order to collect data and proceed to make a decision, have better resource management, and
increase productivity. However, the result depends on how good the analysis was, thus an
expert in the area is crucial for this task.

According to Krishna [31], precision farming contains at least these components: GPS,
Remote Sensing Imagery with information on soil fertility and crop productivity, GIS soft-
ware, and Variable Rate Applicators (VRT) by using robotics. The advantages of PF vary
regarding geographic location as well as the kind of farming. In addition, Krishna compares
the advantages of rice farming and European Plains finding that they are different even when
the techniques used are very similar. Some of the topics related to the variation of the ad-
vantages are: geographic area, soil, the pattern and agronomic requirements of the crop, and
their economic value. However, the efficient use of agro-consumables as well as the reduction

12
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(a) Humidity sensor (b) Drones for image acquisition

(c) A robot with sensors and a camera that travels
the crop to collect information

Figure 3.1: Common devices used in precision farming

of cost are common groups where precision farming helps to enhance the productivity of the
crop.

On the other hand, the implementation of PF is not easy at all, for instance, in Latin
America the adoption of PF requires a high initial investment for equipment as well as man-
agement time and in some cases, the profit is minimum due to the low price of the product
in the crop. In another case, in Europa, the implementation is time-consuming and requires
specific skills to be used such as the interpretation of digital imagery, it also has a high cost
and can be considered a long-term investment. This problem also happens in Asian countries
where the cost and the culture are some constraints in the adoption of precision farming.

3.2 Multispectral Images
A multispectral image captures data of a number of bands, commonly five but can be a little
more, of the light spectrum 3.2. The visible light comes from 380nm to 750nm, crossing those
edges we can find X-Rays, Infrared, Gamma rays, Ultra-violet, and radio waves. Thus, we
call a band the capture of a value of wavelength in the light spectrum e.g. if we want to capture
the Infrared, we can capture a wavelength of 1000nm and this would be a band. In addition,
a combination of those bands is done to obtain more information, we already mentioned the
NDVI as a combination of bands Red and NIR.

Fig. 3.3 shows how a multispectral image looks like. We can observe five bands for the
same captured image and then by combining them a new image is computed.
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Figure 3.2: Classification of light spectrum by wavelength

Figure 3.3: Bands of a multispectral image which combination produce a new image with
more information

3.3 Vegetation Indices
In the remote sensing field, scientists have developed Vegetation Indices (VIs) which are a
combination of reflectance values of two or more wavelengths to measure and detect vege-
tation properties [17]. A Vegetation Index determines reflectance surfaces such as soil and
plants in the function of parameters like color, brightness, and humidity. Depending on these
parameters a different wavelength of light is reflected [18]. In multispectral images, we would
see the reflected light in a band of the image. Nevertheless, this is not limited to multispectral
images, VI is also found for RGB images. Vegetation indices are used as indicators for the
assessment of healthy by measuring levels of nitrogen, carbon, and leaf pigments. Most of
these indicators are based on the red edge (RE) and near-infra-red (NIR) spectral regions due
to the relationship to forest properties [34]. In addition, vegetation indices are designed to
maximize vegetation characteristics extraction while factors that can affect the index calcula-
tion e.g. soil background reflectance or atmospherical effects are minimized [14]. One of the
most popular VIs is the Normalized Difference Vegetation Index (NDVI), whose formula will
be explained later, where NIR and Red bands are used to compute the index. In Figure 3.4 we
can observe an example of the NDVI against an RGB image. High values of NDVI are shown
in green, representing dense vegetation, and low values in orange and red where green areas
and soil are easy to distinguish.

According to Jackson et al. [26], the perfect vegetation index must be highly sensi-
tive to vegetation and insensitive to confounding factors. We refer to confounding factors
as those characteristics that reduce the sensitivity of the index by affecting the reflectance of
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Figure 3.4: Left image is the RGB and the right image represent the NDVI where high values
are in green and low values in orange to red

vegetation. These factors include soil brightness, soil color, atmospheric effects, environmen-
tal effects, and solar illumination. To solve those problems, we can find several Vegetation
indices that solve for some specific factors like the Soil Adjusted Vegetation Index (SAVI) in-
dex that add an adjustment factor to the NDVI index in order to minimize the soil background
reflected radiation [25].

Due to the number of vegetation indices that we can find in the literature, researchers
have classified Vegetation Indices into two categories e.g. Baret et al. [3] separate VIs based
on the slope (NDVI, SAVI) and by the perpendicular distance concerning the bare soil line.
Bannari et al. [2] define a sophisticated classification for vegetation indices that consider
confounding factors and improvements of classical VIs; the two groups are first-generation
indices and second-generation indices. First-generation indices do not bear in mind atmo-
spheric effects and soil characteristics due to they were designed using empirical methods.
In addition, they have limitations for scalability since they use a specific sensor for specific
applications. The second-generation indices are those based on mathematics and experimen-
tation by thinking about sensor calibration and atmospheric effects. Since second-generation
indices take into account effects that could impair the correct value, these VI are the best
choice for implementation in this work. However, a vegetation index must be chosen based
on the environment and the kind of desired application.

Vegetation indices have been widely implemented in many applications in precision
agriculture such as virus detection on tomato plants [48]. They have been compared in order
to find Vi that can provide the best information for a specific task like soil moisture, weed
detection, virus detection, and more [8, 22]. It is clear that VIs needs to be chosen depending
on the problem, the equipment data is captured, as well as the environment since they can
change the behavior of vegetation indices [55].

In order to generate information for our application, we have selected several vegetation
indices of the second-generation indices that consider all confounding factors. In the next
sub-sections, we define VI for each confounding factor in order to compare them to select
those that are more suitable for the project and to provide more information to the algorithms.
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3.3.1 Normalized Difference Vegetation Index - NDVI
The Normalized Difference Vegetation Index is the most popular Vegetation Index and more
used in farming topic. This index was developed by the NASA in order to monitor vegetation
using satellite data[46]. NDVI uses Red and NIR bands to calculate the health of a plant,
equation is as follows:

NDVI =
NIR − R
NIR + R

, (3.1)

where NIR is the Near Infra-Red band and R is the Red band. Values of NDVI go from -1 to
1. Negative values, close to -1, are for water and clouds; values close to 0 are for bare ground;
positive values represent green areas[38][19]. Those values are seen in Figure 3.4 where soil
has values close to zero and green areas have positive values, higher values are more healthy
plants.

3.3.2 Green Normalized Difference Vegetation Index - GNDVI
Purpose of green normalized difference vegetation index (GNDVI) is to measure leaf chloro-
phyll content[21], dditionally, GNDVI has a high correlation with nitrogen concentration.
Equation is simlar to NDVI but replacing red channel by green channel:

GNDVI =
NIR − G
NIR + G

(3.2)

3.3.3 Normalized Difference Red Edge - NDRE
Normalized difference red-edge vegetation index (NDRE) is another option to measure chloro-
phyll content with an equation similar to NDVI using Red-edge instead of Red channel. This
change allow measure chlorophyll when they are in the extremes levels [20].

NDRE =
NIR − RE
NIR + RE

, (3.3)

where RE is the Red-Edge channel and NIR is the near infra-red channel. Higher values
represent a higher chlorophyll content.

3.3.4 Modified Soil-adjusted Vegetation Index - MSAVI
This vegetation index is a modification of the Soil adjusted vegetation index that aims to
correct the factor caused by soil radiation where a factor L has to be selected depending
on vegetation density. Modified Soil-adjusted vegetation index (MSAVI) does not require a
correction factor since a function that minimizes soil effects is inside the equation[44]:

MSAVI =
2NIR + 1−

√
(2NIR + 1)2 − 8(NIR − R)

2
(3.4)
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3.3.5 Atmospherically Resistant Vegetation Index - ARVI
The Atmospherically resistant vegetation index, as the name implies, is a vegetation index de-
signed to correct atmospheric effects caused by atmospheric particles, i.e., fog, dust, smoke, or
pollution[27]. ARVI has a similar dynamic range to NDVI but is less sensitive to atmospheric
effects.

ARVI =
NIR − (2R − B)
NIR + (2R − B)

, (3.5)

where NIR is the Near Infra-red band, R is red band, and B the blue band.

3.3.6 Normalized Difference Water Index - NDWI
The use of Normalized Difference Water Index (NDWI) is to describe water features[37].
NDWI uses green and NIR channels to maximize water reflectance and the soil moisture can
be obtained. Equation is as follows:

NDWI =
G − NIR
G + NIR

. (3.6)

3.4 Orthomosaic Maps
An Orthomosaic Map can be defined as an aerial representation of the captured area created
by joining several photos that have been geometrically corrected. The scale is uniform, so
they have the same lack of distortion. Since orthomosaic is an accurate representation of
the surface, it can be used to measure distances with high precision. Figure 3.5 shows a
representation of an orthomosaic map formed by smaller images. The use of multispectral
images requires extra steps to compute the ortomosaic map such as corrections related to
sensor settings (aperture time and shutter speed) and scene conditions (camera location and
sunlight).

Figure 3.5: Example of an orthomosaic map

As mentioned before, orthomosaic maps can be used to measure distances thanks to the
Ground Sample Distance (GSD). GSD refers to the distance representation in a pixel on the
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ground. There is a relation between the spatial resolution of the image and GSD, a low value
of GSD represents a higher spatial resolution and can capture more details. For instance, a
GSD of 20mm represents 20mm of the ground and has a high spatial resolution while a GSD
of 10cm represents 10cm of the ground and has a low spatial resolution. Having a small GSD
requires flying low and taking more images.

We can find specialized software that performs those corrections and generate ortho-
mosaic maps even with multispectral images such as Pix4D, ArcGIS, as well as open-source
options like Open Drone Map.

3.5 Image Pre-procesing
While working with images, we can face images that look of bad quality, whether high or low
illumination, in other cases, we can note a kind of noise that makes it looks fuzzy or in general
bad. Thus, before entering the deep learning method, it is combined to apply computer vision
methods in order to enhance the quality of images [30].

In general, some of the methods used are the following and can be seen in figure 3.6:

• Gaussian Filter 3.6a. This filter aims to reduce image noise applying a kernel where
pixel in the center have more weight and pixels around are decreasing. Resultant pixel
is the value of the average of apply the kernel.

• Equalization 3.6b. This method uses histogram of an monochrome image, the aim is
to enhance image contrast by transform it with an histogram with uniform distribution.

• Binarization 3.6c. Is the reduction of information of an image. Creates an image with
values 1 and 0 for each pixel given the original value and a threshold that decides the
final value.

• Color adjustment 3.6d. Adjust colors of an image, reducing or increasing values of a
channel to have colors balance and avoid saturation.

• Morphological Operations 3.6e. Mathematics operations applied to binary images
based on forms, pixel value is computing by comparing with neighbours pixel values.
Common operations are dilation and erosion, while dilation add pixels, erosion remove
it.

3.5.1 Morphological operations
Morphological operations are a broad set of image processing similar to filtering that is based
on shapes. The structuring element is applied to an input image, then it is moved across every
pixel to create the processed image of the same size. The value of each pixel in the output
depends on the comparison of the pixel with its neighbors. The most basic operations are
dilation and erosion.

The erosion operation removes pixels on an object by selecting the minimum value of
all pixels in the neighborhood. In a binary image, the pixel value is set to 0 if any pixel in the
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(a) Gaussian Filter. On the left side is
the original image and the right side is
the resultant to apply Gaussian filter,
note that resultant image is fuzzy

(b) Histogram Equalization. Left side the
histogram is grouped in the middle and
right is distributed for all values.

(c) Binarization. Left side RGB
image and right side image in
white and black.

(d) Color adjustment. Left image with
channel green saturated and right image
with correction.

(e) Morphological Operations. Most common operations, di-
lation and erosion.

Figure 3.6: Image Pre-procesing methods

neighborhood has the value 0. It is used to remove floating pixels, and thin lines, strip away
extrusions, and split apart joint objects. The equation defining erosion operation is described
as follows:

A⊖ B = {z ∈ E|Bz ⊆ A}, (3.7)

where A is the binary image, B is the structuring element, E is the Euclidean space or an
integer grid, and Bz is the translation of B by the vector z defined as: Bz = {b+ z|b ∈ B}.

Erosion operation can also be defined as follows:

A⊖ B = ∩binBA−b (3.8)

The dilation operation expands the image pixels, or it adds pixels, by taking the max-
imum value of all pixels in the neighborhood. In a binary image, the pixel value is set to 1
if any pixel in the neighborhood has the value 1. It is used to make objects more visible, fill
small holes, repair brakes, and repair intrusions. Dilation is defined as follows:

A⊕ B = {z ∈ E|(Bs)z ∩ A ̸= ̸ o}, (3.9)
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where Bs denotes symmetric of B such that: Bs = {x ∈ E| − x ∈ B}. Dilation operation
can also be defined as:

A⊕ B = ∩b∈BAb (3.10)

Whit these two basic operations we can create more complex operations to remove small
objects, fill small holes or find perimeters on objects. Opening and closing are the most
common combinations of morphological operations.

Opening is obtained by first applying erosion of A by B followed by dilation of the
output of erosion. It is defined as follows:

A ◦B = (A⊖ B)⊕ B (3.11)

Closing operation is obtained by applying dilation of A by B followed by erosion on the
resultant image. Closing operation is defined as:

A •B = (A⊕ B)⊖ B (3.12)

3.5.2 Watershed Algorithm
The watershed algorithm is a transformation defined on a grayscale used commonly for seg-
mentation, i.e. for separate objects in an image. It is useful for counting objects or for the
analysis of separated objects. The name comes from the geological watershed which separates
adjacent drainage basins. The watershed transformation considers any gray-scale image as a
topographic surface where intensity denotes peaks and hills when is high, and valleys when is
low. We can see an example in figure 3.7

Figure 3.7: Topographic representation (on the right) of an grayscale image (on the right).

The algorithm starts by filling isolated valleys, local minima in the image, with waters
coming from different sources representing labels. This transformation is applied to the image
gradient such that water as the water rises, water from different sources will start to merge on
the peaks. Every time different water starts to merge, a barrier in the location is created to
avoid merging. This process is done until all peaks are underwater, thus, all the barriers that
were created are the segmentation result. However, using the transformation in this base form
produces over-segmentation, i.e., it separates a single object into several objects due to local
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irregularities in the gradient image. In order to solve the over-segmentation problem, a method
name marker-controlled watershed can be used. This is done by specifying the initial water
source will start, i.e. we can specify which valley points are to be merged and which are not.
We can observe an example of initial markers in figure 3.8 where reed areas are the water
sources.

Figure 3.8: Initial markers where water will start to rise.

3.6 Machine and Deep Learning algorithms

3.6.1 K-Nearest Neighbors (KNN)
The K-Nearest Neighbors (KNN) is a simple non-parametric supervised machine learning
algorithm that can be used for both classification and regression [42]. For the classification
task, the output of the algorithm is a class membership. A new object is classified based on
the vote of its nearest neighbors, where a class is selected by the most common class among
its ”k” nearest neighbors. The algorithm relies on distance for classification that assumes
similar objects are close to each other while different objects are far. On the other hand, the
classification error is bounded above twice the Bayes error rate, which is the minimum error
rate given the data distribution.

Each object is considered as a vector on a multidimensional vector space, for instance,
a 2-dimension object consists of a pair of features (x, y). The algorithm does not require a
defined training step since it only stores vectors and classes of the training set. The classifica-
tion phase takes the k nearest neighbor, previously defined by the user, in order to classify a
new unlabeled vector.

One of the most common distances used in the KNN algorithm is the euclidean distance
that is computed between the test sample and the training set. Let xi be an input sample of the
test set with p features (xi1, xi2, xi3, ..., xip), and xj a sample of the training set with the same
number of features. The Euclidean distance between the two points is defined as follows:

d(xi, xj) =
√
(xi1, xj1)2 + (xi2, xj2)2 + (xi3, xj3)2 + ...+ (xip, xjp)2 (3.13)
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Figure 3.9: KNN classifier example. A new object (green circle) has to be classified. With
k=3, algorithm takes two triangles and one square, then, the object is classified as a triangle.
With k=5, two triangles and three squares are considered in the algorithm classifying the new
object as a square.

With k = 1, 1-nearest neighbor, class is defined as:

C(xi) = minj(d(xi, xj)), (3.14)

where j goes from 1 to n, and n is the number of objects in the training set. The algorithm
assign the class of its closest neighbor in the feature space. When k > 1, the algorithm
consider the next k − 1 minimums in the feature space and then the class is selected with the
majority class.

Figure 3.9 shows a green circle, the new point, along with the training set represented as
red triangles and blue squares. The classification can vary depending on the selected number
of k neighbors. For instance, let k = 3, for the new object green circle the algorithms takes
two triangles and one square as the nearest neighbors, the majority class is the red triangle,
thus, the green circle is classified as a red triangle. A different result is caused when k = 5,
the algorithm takes three blue squares and two red triangles, thus, the circle is classified as a
blue square.

3.6.2 Decision Tree
Decision trees are another non-parametric supervised learning algorithm used for classifica-
tion and regression [5]. It is a flowchart-like structure in which nodes represent ”tests” on a
given attribute, each branch represents the output of the test, and leaves represent class labels.
Paths from the root to the leaf are called classification rules.

The tree is built as follows: Given a training vector xi ∈ Rn, i = 1, ..., l and a vector
containing the classes y ∈ Rl, the decision tree recursively splits the feature space such that
objects with the same class are grouped together. A data node m can be represented by Qm

containing nm samples. Each split θ = (j, tm) consist on a feature j and a threshold tm, data
is divided into two subsets Qleft

m (θ) and Qright
m (θ) such that:

Qleft
m (θ) = {(x, y)|xj ≤ tm} (3.15)
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Qright
m (θ) = Qm\Qleft

m (θ) (3.16)

In order to choose the best partition, it is necessary to compute the quality of a feature candi-
date of node m by using an impurity function or loss function H().

G(Qm, θ) =
nleft
m

nm

H(Qleft
m (θ)) +

nright
m

nm

H(Qright
m (θ)) (3.17)

Then, the parameter is selected such that it minimizes the impurity by:

θ∗ = argminθG(Qm, θ) (3.18)

Decision tree is created by recursively creating subsets Qleft
m (θ∗) and Qright

m (θ∗) until the
maximum depth is reached, nm < minsamples or nm = 1

We can choose between two options to compute the impurity of a split, gini and log loss,
also called entropy. The gini function is defined as follows:

H(Qm) =
∑
k

pmk(1− pmk) (3.19)

And the Entropy function is defined as:

H(Qm) = −
∑
k

pmklog(pmk) (3.20)

where pmk is the proportion if the class k in a node m defined by:

pmk =
1

nm

∑
y∈Qm

I(y = k) (3.21)

Figure 3.10 shows an example of a decision tree to decide whether a person can do
an activity or not depending on the weather of the day. Outlook was selected as the first
feature to split the data. This feature contain three variables so the data was divided into three
parts. On the second level, when outlook is overcast the decision is ”Yes”, and for the other
values, a second feature is selected. For instance, we can define a rule as (Outlook=Sunny and
Hum=Normal) = Yes or (Outlook=Rain and Wind=Strong)=No.

Figure 3.10: Example of a decision tree to decide whether realize an activity or not depending
on the weather
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3.6.3 Random Forest
The random forest classifier, created by Kam, T. [23], is an ensemble machine learning algo-
rithm used for classification and regression tasks that implement several decision trees where
the output is selected by the majority class given by the trees. The fundamental of random
forest is the low correlation of the trees that operate as a committee voting for a class. The
base of uncorrelated trees is given by two methods, bagging and feature randomness.

The first technique is feature randomness. In a typical decision tree, a tree is constructed
using all available features in the training set. In a random forest, trees can only choose a
random subset of features in the training set. This condition creates more variation for all
trees causing a low correlation among trees and creating more diverse trees.

Figure 3.11: Random forest classifier diagram. Several trees are created and each of them
give a vote to have the final class

For the second technique, bagging, decision trees can have different structures with
small changes on the training set since they are very sensitive to the data. This condition can
be reached by selecting a random sample with a replacement of the training set. The procedure
is the following:

Let X = x1, x2, ..., xn the training set and Y = y1, y2, ..., yn the corresponding class.
The bagging algorithm is repeated B times to create decision trees. For each b = 1, 2, ..., B:
1. A new sample with replacement of n elements from X and Y is selected; these are Xb and
Yb. 2. A decision tree fb is trained with sets Xb and Yb.

After training all decision trees, the prediction for a new sample x
′ , when used as re-

gression tree, is defined as follows:

f̂ =
1

B

B∑
b=1

fb(x
′
), (3.22)

where fb(x
′
) is the prediction of the tree b. On the other hand, for a classification tree the

majority vote is used to select the final class, similar to KNN algorithm but in this case we use
predictions of trees to get votes.

The figure 3.11 shows the general structure of the random forest algorithm. This consist
of several decision trees, n number of trees, where each of them is different. As we can note,
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for a new instance the tree follows a path (nodes in orange) predicting a class. In the final
step, the algorithm takes the majority class among all trees to give the final class.

3.6.4 Fully Convolutional Network (FCN)
Before the invention of Fully Convolutional Networks (FCN), models required fixed-size im-
ages causing problems when resizing images, creating distortions, or even over-fitting when
using pre-trained models. In order to solve such problems, Shelhamer et al. [49] created the
FCN model that is capable to receive arbitrary sizes to produce a segmentation of the output
of the corresponding size. The FCN is a neural network architecture that only contains convo-
lutions, sub-sampling, and up-sampling operations. The model takes as base a Convolutional
Neural Network (CNN), used for image classification, that consists of several layers to extract
features where the size is reduced until creating a large vector, and goes through the output
layer that contains fully-connected layers to give the final classification [50, 32]. Then, Fully
connected layers of CNN are converted into convolution layers in order to create a heat map on
the output for image segmentation, in addition, more layers as well as a spatial loss are added
to guarantee dense learning. Finally, a 1x1 convolution of n + 1 channels is added, where n
is the number of classes in the dataset, to predict scores of each class including background.
Figure 3.12 shows the general architecture of the model, we can note a down-sampling path
where features are extracted, and then the up-sampling for pixel-wise prediction to create the
final segmentation.

Figure 3.12: FCN architecture

3.6.5 U-Net
For the second deep learning model, we will use a deep neural network known as U-Net
for area segmentation. U-Net is an architecture that uses Convolutional Networks and was
designed for biomedical use so the interest area is identified by pixels, the name comes from
the letter ”U” that is formed by the structure [45]. Although its main use is in the medical
sector, it has been explored for the segmentation of objects and also for Weed Mapping [47]



CHAPTER 3. THEORETICAL FRAMEWORK 26

and seems to have good results. That is one of the reasons why we choose this model for the
problem.

In a simple view for an easy explanation, we can divide the structure showed in fig. 3.13
into three general steps. Each steps will be described next.

Figure 3.13: Structure of the U-Net model

• Feature extraction
The first step when receive the input image, we are in the left side of fig. 3.13. In this
step they apply a conventional convolutional network applying 3x3 convolutions with
an activation function Rectified Linear Unit (RELU). Going down, in each row a set of
feature maps is achieved and saved for a future use.

• Classification
In this step is where, by the computed feature maps of the past step, each pixel is
mapping to the corresponding class. This step is in the bottom of the structure.

• Reconstruction with segmented areas
The final step is to re-construct the image with pixels identify. This is a reverse process
of the first step but, since the image is being extended, there are space that needs to be
filled. This is when the saved information from step one is used, with this information
space are filled. In the structure of U-Net, we can see gray arrows identify as ”copy and
crop”.

3.6.6 Vision Transformer Segmenter
The last and most recent model is the Vision Transformer for image segmentation (ViT Seg-
menter). Transformers, first introduced by Vaswani et al. [53] for natural language processing
(NLP) is based on the attention concept. The model extract features using a self-attention
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mechanism to understand the important all words in the sentence. Architecture is formed
by two parts, an encoder, and a decoder containing blocks of attention and a feed-forward
network. In general, self-attention is a sequence-to-sequence operation where a sequence of
vectors X goes in, and a sequence of vectors Y goes out. In order to produce a vector yi self-
attention operation performs a dot product using a weighted average over all input vectors.
After the creation of transformers, they have been extended to other fields such as natural lan-
guage processing, computer vision, and audio processing [35]. The variant of transformers is
known as X-formers where the aim is to improve the original transformer model from differ-
ent perspectives including Model Efficiency, Model Generalization, and Model Adaptation.
In the Computer Vision task, we can find an application for Video Understanding, Image and
Scene Generation, Segmentation, and Object detection [29].

The vision transformer (ViT) Segmenter is based on the previous work by Dosovitskiy
et al. [13] for image classification. Strudel et al. [51] extended the original ViT to be used for
the semantic segmentation task by adding a mask transformer to the model. ViT segmenter
consists of two parts as can be seen in figure 3.14 where the left side, before the arrow, is the
ViT or Encoder part and the right side, after the arrow, is the segmentation part or Decoder.
It starts by splitting the image into fixed-size patches, a portion of the input image, then, they
are linearly embedded, a position embed. The resultant vectors enter the Transformer Encoder
that contains the self-attention mechanism used on the first transformer. Finally, an MLP with
one hidden layer is used for the classification in the case of image classification. On the other
hand, the process continues for segmentation. For the segmenter part, right side of figure
3.14, the sequence of patches, and output of the encoder pass through the Mask Transformer
that generates a set of class masks by computing the scalar product between class embeddings
and path embeddings. A softmax is applied followed by a layer norm to obtain the final
segmentation map.

Figure 3.14: ViT Segmenter structure. The left side (before the arrow) Encoder is the original
ViT, while right side Decoder present Mask Transformer to be used for semantic segmentation
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3.7 Metrics to compare models
Since we are comparing models, machine learning, and deep learning, we need to define the
scores that measure the performance of models in order to select the best one.

3.7.1 Pixel Accuracy
The pixel accuracy metric, a metric that can be use for classification and segmentation, reports
the percent of pixels that were correctly classified. This metric can be reported for each class
as well as globally across all classes. The formal definition of accuracy is:

Accuracy =
Number of correct predictions
Total number of predictions

(3.23)

When we consider the per-class accuracy, considering just one class at time, we are
doing a binary classification. In this case, accuracy can be defined in terms of positives and
negatives as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.24)

Where TP = True Positives, TN = True Negatives, FP = False Positives, and FN =
False Negatives.

On the other hand, the overall accuracy can be affected when working with imbalanced
classes, i.e, there are more pixels of one class than the others. For instance, suppose a class
covers 90% of the image, and we have a model that can always predict correctly that class
but other classes predict incorrectly, the overall accuracy of the model would be 90%. We
can think this is a good model, however, if we look at the other classes we would see that the
model is actually bad since it can only predict one class correctly.

3.7.2 Intersection Over Union
The Intersection Over Union (IoU), also known as Jaccard Index, represents the ratio of over-
lap area between the target mask and the prediction output. In other words, IoU metric mea-
sure the number of pixels that can be found in both the target mask and the prediction mask
divided by the total number of pixels present in both masks. Intersection over Union metric is
defined as follows:

IoU =
target ∩ prediction

target ∪ prediction
(3.25)

The equation shows the two parts of the metric. The intersection (or overlap), repre-
sented as A ∩ B, are the pixels that can be found in the prediction and target mask, while
the union part, defined as A ∪ B, are all the pixels present on the prediction or the target
mask. This equation can be visualized in figure 3.15 where we can distinguish between the
intersection part and the union part.
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Figure 3.15: Intersection over Union metric representation

This metric can also be defined in terms of positives and negatives such as accuracy
metric. Figure 3.16 shows an example of how the metric is used to measure the performance
of the prediction. IoU equation can be written as follows:

IoU =
TP

TP + FP + FN
(3.26)

Figure 3.16: Intersection Over Union metric on segmentation task



Chapter 4

Methodology

4.1 Introduction
In this chapter, the method used in the project is described defining a pipeline with all steps
for the final classification. Starting from data acquisition to test classifiers for semantic seg-
mentation. It is important to have a defined sequence of steps to follow for the replicability
of experiments. In the next sections, the process is going to be explained detailed step by
step in order to have a clear understanding of the pipeline as well as reasons to follow this
methodology.

Figure 4.1: Pipeline for this project

Figure 4.1 shows the pipeline used in the project to segment areas in an orthomosaic
map starting with data acquisition with the drone, then radiometric correction of images and
orthomosaic map using external software, creation of vegetation indices using the orthomosaic
map, input for algorithms and classification. This chapter is divided into several sections
separated by the type of task involved in the process, sections are the following:

30



CHAPTER 4. METHODOLOGY 31

1. Data Acquisition, where we give a description of the drone used to capture images as
well as configuration used. In addition, we provide details about locations and dates
when data was capture.

2. Data Processing, in this chapter we are explaining the process to generate the ortho-
mosaic map using an external software. Using the orthomosaic we can generate desired
vegetation indices that are used as the input of algorithms.

3. Deel Learning Algorithms is dedicated to mention algorithms used as well as the con-
figurations of them.

As an additional objective, we have included the task of counting the number of agaves
in the crop. Even when is a different task, it can be included as a branch in the pipeline just
after the adjustment of the image. In the last the section, the methodology followed for this
task is going to be explained.

4.2 Data Acquisition
As mentioned in previous chapters, there is no agave dataset to work with, and for that rea-
son, the creation of an agave dataset was necessary for this project. The drone we are using
throughout the project is the “P4 Multispectral” by DJI, this device was provided by ITESM
Campus Guadalajara to make easier the development and the success of this project. Addi-
tionally, the institution provided an iPad necessary to use the software, which is available just
for iOS devices, to control the drone and collect the information.

Figure 4.2: Drone P4 multispectral equiped with six cameras

The P4 Multispectral (see figure 4.2) is a drone designed by DJI for precision agriculture
and environmental monitoring use providing features and tools for a quick interpretation of
what is recording the drone even in real-time. The principal characteristic that makes this
drone perfect for these applications is the implementation of a Multispectral image system
(here is the “why” of the name of this drone) that in general terms is a set of cameras that can
capture several ranges of the wavelength of light. The set of cameras are the following: the
typical camera RGB; Red Edge (RE) captures the band 730 nm ± 16 nm; Near Infrared (NIR)
captures 840 nm ± 26 nm; Green (G) with 560 nm ± 16 nm; Red (R) 650 nm ± 16 nm and Blue
with 450 nm ± 16 nm. The drone also has a light sensor to capture the intensity of the sun and
adjust all images with the correct illumination. By capturing a Multispectral system, we can
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use the Vegetation Index (VI) which is a combination of the different channels, the drone can
process the Normalized Difference Vegetation Index (NDVI) in real-time. This device also
implements a system to include positions in real-time and measures of what is being captured.

Data was captured in an agave crop located in Zapopan, Jalisco, this crop contains sev-
eral conditions such as different soil levels and separations of agaves that makes it useful for
this project. The crop was divided into several zones delimited by natural roads and divisions
with other kinds of a plantation. We captured data flying at the same altitude to have the
same spatial conditions. All zones have different conditions, different sizes of agaves, and the
presence of weeds and water. In the next chapter, Analysis, and Discussion of Results, we are
giving more details about the dataset, including the size of the captured map, the number of
zones we captured, and the GSD for orthomosaic maps.

4.3 Data processing
Data processing involves all the data transformation done before entering the algorithm for the
image segmentation and represents almost the entire process of the whole task. These steps
are mentioned in the pipeline (fig. 4.1) and go after data acquisition to before the input of the
segmentation algorithm. In general terms, the data processing is divided into the following
steps:

• Radiometric correction

• Creation of the orthomosaic map

• Extraction of Vegetation Indices

• Adjustment of the image

• Creation of tiles

• Creation of the ground truth map

Radiometric calibration along with the creation of the orthomosaic map is considered the
same step since they can be computed at the same time. On the other hand, vegetation indices
have their section since the equation is required to generate the index. At this moment, we
have generated the necessary data to train the models, however, images need to be adjusted in
order to have the proper size and characteristics algorithms need to work properly. The next
stage is to transform images in the correct format for each algorithm. Finally, we explain the
way to create the ground truth label.

4.3.1 Radiometric correction and orthomosaic map
Once data was captured by the drone, images are processed in order to generate the orthomo-
saic map. Using the drone we can create a flight plan where we select the area to map, each
flight plan creates a set of images that contains five channels (R, G, B, NIR, and Red-Edge)
of the same size that contains Geographic Information given by the GPS of the drone. Before
the creation of orthomosaic maps, it is necessary to align individual channels to have the same
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scene captured, correcting defects caused by variations of conditions, additionally, values of
pixels of images are saved into a format for the correct visualization in a computer but it needs
to be transformed into reflectance values. DJI provides a guide for image processing taking
Near Infra-Red (NIR) band as the central band to be aligned. The guide gives a sequence of
steps in order to first, generate individual bands reflectances and then, correct channels due to
the effects of the camera, corrections include vignetting correction and distortion calibration;
the next step is the alignment of the phase difference, which is caused by the camera position,
based on the NIR band and then an additional alignment due to different exposure times. The
difference of positions can be seen in figure 4.3 where the same scene was captured but there
is an offset between images.

Figure 4.3: Channels blue and green in left and right respectively. The two images looks
similar but they are not aligned. We can see a difference in the bottom-right corner in the wall

The manufacturer recommends the use of an Enhanced Correlation Coefficient (ECC)
for the alignment of all bands but applies an edge detection filter to have better results with
ECC. Once all channels are aligned with the hole flight plan, we can generate the orthomosaic
map by performing image stitching to join all images into a single one. The output image is
an orthomosaic map with five channels. This process can be used to generate the map from
scratch however, there are already many options for this task that just needs the set of images
to stitch and the software will generate the map.

P4 multispectral drone has software for a number of tasks such as 3D reconstruction,
mapping, measurements, and more for applications in construction, infrastructure, public se-
curity, filming, and agriculture. Nonetheless, agricultural use, which is the area of this project,
is limited since it can create vegetation indices NDVI, GNDVI, NDRE, LCI, and OSAVI, but
there is no tool for vegetation indices calculation. Another popular option is Pix4D, this soft-
ware for photogrammetry use has more applications than the past one and has a specialized
version for agriculture with a vegetation index calculator. This second software is more pow-
erful and makes the task easier. On the other hand, there is an open-source option called Open
Drone Map (ODM) that can generate the orthomosaic map but without vegetation indices.
Like other open-source options, it has limitations and requires learning how to use it.
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4.3.2 Creation of vegetation indices
After creating orthomosaic maps for a flight plan, we can use individual channels in order
to generate vegetation indices by applying equations from chapter 3. Vegetation indices use
reflectance values to compute the result as well as channels aligned so that a pixel represents
the same information in all channels. For instance, to compute the NDVI we would need Red
and Near Infra-Red channels and use the proper equation(see equation 3.1) to finally obtain
the index. For each VI we use the corresponding equation.

In total, we generate six vegetation indices including NDVI, GNDVI, NDRE, MSAVI,
ARVI, and NDWI, each one with unique information. Figure 4.4 shows NDVI and GNDVI
where two indices look similar but one has light colors (GNDVI), however, the range of
values is different and it can be seen next to the graph, while NDVI has values higher than 0.6
GNDVI limit are near to that value. The reason is that the channels they use are not the same
by changing Red for blue and the operation is inverted, in addition, vegetation indices have a
different meaning. Since both maps have unique values and ranges (the VI generated), they
are considered extra data.

Figure 4.4: Vegetation indices NDVI on the left and GNDVI on the right

On the other hand, in figure 4.5 there is a clear distinction between VIs, starting with the
color of the map whit colors red and yellow with a few of green and the range of values that
goes almost to 0.4, unlike GNDVI that reach 0.6. NDRE works better with the more mature
crop when NDVI gets saturated, this is seen in the orthomosaic map where green values appear
a few. In this example, agaves are in the initial years of their growth. On the flip side, MSAVI
looks very similar to GNDVI because of the color, but MSAVI goes from 0.2 to 0.3. We have
included two more channels to the dataset providing more information to the algorithms.

Finally, figure 4.6 shows ARVI and NDWI. The first Vegetation Index was intended to
be used as a correction caused by atmospheric particles in the environment but seeing the
map generated it looks like everything is in red but agaves highlight with a light color (in
yellow). However, all the agaves do not have a clear distinction between them. Even with this
characteristic, it can provide information to distinguish the soil and green areas.

NDWI is the vegetation index to measure moisture conditions in an area. Unlike others
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Figure 4.5: NDRE vegetation index on the left and MSAVI on the right

vegetation indices, NDWI highlights areas with more quantity of water in green while vege-
tation has lower values. This is contrary to the others Vegetation Indices that highlight green
areas and soil have low values. We can note that the negative value is higher than the positive
one, the opposite of NDVI. As we can note, all vegetation indices have different values to
characterize the crop. Furthermore, the range of values of the same map is different standing
out specific characteristics on each one.

Figure 4.6: Vegetation indices ARVI and NDWI on the left and the right respectively

Originally the map consist of five channels (red, blue, green, NIR, and red-edge), but
after computing all VIs we create an image with eleven channels, all of them aligned with their
respective meaning in the health of the crop. At this point generated Vegetation Indices are
considered as another channel in the image but in a different range of values, while original
channels (Red, Blue, Green. NIR, Red-Edge) have values from 0 to over 0.3, vegetation
indices go from -1 to 1.
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Thanks to the implementation of vegetation indices in the agricultural topic we can ex-
tract useful information not seen with the naked eye by combining bands that capture different
ranges of light wavelength producing new visualization explaining the status of the entire crop
such as nitrogen levels, moisture condition or the health of individual plants. The vegetation
indices stand out from RGB images since they highlight areas of interest and by combining
several VIs we can obtain more precise information.

4.3.3 Adjustment of images and Creation of tiles
Just after the creation of vegetation indices, explained in the previous section, we need to per-
form an adjustment othomosaic maps in oirder to use it in the algorithms. The first adjustment
is in the values of the images and the second one in the size.

As we observe in the creation of vegetation, all maps have different values in the same
orthomosaic map and some of them manage a wide range of vales. Moreover, the five bands
also have different range of values. Those conditions create a variety of values creating dis-
perse data. We can see how values of each channels vary in the table 4.1.

Table 4.1: Minimum and Maximum values of each band

Band Min Value Max Value
Red 0.0084 0.3067
Green 0.0083 0.3073
Blue 0.0153 0.3087
NIR 0.0216 0.2872
Red Edge 0.0117 0.2986

We can observe that values of all channels stays in the same range of values and are very
close of each others. On the other hand in table 4.2 we can observe minimum and maximum
values for six vegetation indices. As described in the previous chapter, most of VIs have
values in the range of -1 to 1 and there is a clear distinction in one of them, ARVI exceed the
maximum value of the others vegetation indices. Bands values and vegetation indices values
have different ranges so they need to be normalized. In this step we explore some methods to
normalize the data of all channels and vegetation indices to avoid problems with the weights
of them.

Table 4.2: Minimum and Maximum values for Vegetation Indices

VI Min Value Max Value
NDVI -0.4157 0.7021
ARVI -0.4678 3.4657
GNDVI -0.4684 0.6547
NDRE -0.2451 0.3950
MSAVI -0.2047 0.3392
NDWI -0.6547 0.4684

The second adjustment is related to the size of the images. Some algorithms just accept



CHAPTER 4. METHODOLOGY 37

Figure 4.7: Tiles obtained in an orthomosaic map

an specific size of the input image to work. In order to always have the correct input, com-
monly images are resized in the correct size before use it in the algorithm. Due the importance
of the detail of the image to classify each plant, we have decided to follow a similar approach
given by Sa, I. et al. [47] where the image is divided into tiles of the desire size, for example,
in the case of the u-net the algorithm needs an input of 160x160 so the original image is di-
vided into smaller images of that size. Figure 4.7 shows the obtained images derived from the
orthomosaic map. By following this method we can preserve the detail of the images while
generating the dataset so that for a single orthomosaic map we can extract several images,
depending of the size of the original image an the size of the tiles.

4.3.4 Ground truth map
An important step in the implementation of machine learning for classification or segmenta-
tion is the creation of labels of the images because it defines the classes for the classification
and separate the objects for the rest of the image. We can observe an example of a ground
truth map in figure 4.8 where we find three classes in the orthomosaic map, the first class in
green represent the Agave class, the second in yellow are the trees and the rest of objects in
purple are labeled as another class.

Just like the orthomosaic map, the ground truth map is divided into tiles of the same size
such as the same area of a tile is captured into the orthomosaic map and the ground truth. The
process of the creation of the tiles is done for both maps at the same time. First both images
are loaded and compared in order to have the same size, then the orthomosaic is taken as the
template to select an area. After the selection, the area is cropped in both images at the same
position so that we have generated a new image with they respective label. The process is
repeated for all images used for the training phase.
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Figure 4.8: Ground Truth map of an orthomosaic map for three classes. Green for Agaves,
yellow for trees and purple for the rest of objects

4.3.5 Machine learning format
Unlike deep learning models that are trained with the images without any changes, except
for the pre-processing step, data in machine learning requires an specific format such that
an instance is described by a set of features that are used by the models. For instance, on
image classification, an image is transformed by creating a vector of pixels, i.e. each pixel
represent a feature describing the image. Then, an algorithm uses all the features to predict
the target label. If we have a 200x200 image, the total features that describes it are 40,000.
The next table is a data format representation of an image, we can observe that each pixel is a
feature and there is a label for each image. It is clear that there is a huge number of features
on a 200x200 image size, for this reason image format is also accompanied by a Principal
Component Analysis in order to reduce the number of features.

Table 4.3: Feature representation on an image

Index Pixel 1 Pixel 2 Pixel 3 Pixel 4 ... Label
Image 1 23 23 123 75 ... 1
Image 2 93 67 80 13 ... 0
Image 3 54 12 69 38 ... 1

On the image segmentation task, all individual pixels needs to be classified so we follow
a different approach. Lets define an RGB image of 5x5 pixel size and their respective ground
truth table of the same size. The image consist of three channels (red, green, and blue) and
there are two objects inside, a tree and a building. The ground truth has the label for the tree
on yellow and blue for the building. This can be seen in the figure 4.9. The tree is covered by
two pixels while the building is covered by six.

As mentioned before, the procedure for image segmentation is different to classification
task where pixels are features. In this case since classification must to be done for individual
pixels, instead of the entire image, we need to take a pixel as an instance and a band as the
feature. In our example, a pixel contains three values for the three channels, so, each one has
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three features an one correspondent target label.

Figure 4.9: Input image on the left with a tree and a building, and the correspondent ground
truth label on the right.

Figure 4.10 shows the format mentioned before where we can see that the tree is on the
3 channels representing the feature and there is also a label for each pixel. This means that, in
this case, we have 25 instances and three features that models will use. By using this format,
we can provide a lot of instances to machine learning models. In the application in the project,
the channels are not just RGB but all channels available in the camera as well as Vegetation
Indices. Thus, the number of features will vary depending on the selected channels.

Figure 4.10: New data representation for machine learning models of an RGB image and the
correspondent label



CHAPTER 4. METHODOLOGY 40

4.3.6 Watershed algorithm
Image semantic segmentation is a pixel-level classification forming clusters that represent
objects in an image. Using this technique we are not able to identify individual plants in the
crop to count them. In addition, we face a condition where a single agave is classified into two
classes due to the difference in the center and the edge. In order to fix this condition and to
separate agaves on the segmentation, we have created an additional step that is applied to the
final prediction of models. We included this process in this section since it uses techniques
described in the pre-processing section even when it is applied at the final of the segmentation.

Figure 4.11: Flow diagram of the final process to separate agaves

Figure 4.11 shows the flow diagram with steps to create the final prediction of an image.
We start by providing the image prediction of any algorithm, in the case of machine learning
model we need to do the inverse transform of the format described in the past subsection.
The prediction is an image containing the segmentation of pixels with values corresponding
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to the class. The next step is to create a copy and binarize it in order to perform morpholog-
ical operations. We continue by computing connected components to identify the segments
of clusters created by the model as well as their sizes of them. Then we separate clusters
based on their size using a defined threshold. This step is to divide clusters from those that
contain a single agave to those containing a group of them. We expect that larger clusters
contain more than one agave since the covered area is bigger. For the small-size group, we
continue with a step we are explaining later. The next step on the big size group is to apply
opening morphological operation in order to reduce some noise, small points segmented that
are not actually agaves. Additionally, this operation also helps to separate some agaves since
sometimes they are joined just with a thin line. Then, we compute connected components and
sizes, and we separate again clusters based on the size using a threshold. This time we are
ensuring large clusters contains more than one agave so we can apply a process to identify
single agaves inside the cluster. As we did we the previous small group, we are explaining the
next step later. For the big-size group, we continue by applying the watershed algorithm. The
algorithm is able to separate the agaves in order to identify each one as well as the centers.
At this point, we have several clusters in which each there is a single agave. The following
step applies to the small-size clusters as well as those generated by the watershed algorithm.
We start by joining the splits into a single image, then we get the center of the clusters. For
each of the centers, we mark in order to count the number of agaves in the image. Once we
have counted the agaves, we use the center to generate the final prediction or segmentation.
As we commented before, there are cases where agave is segmented into two classes, so, in
order to solve this problem, we use the class that is most centered in the agave since the center
is the most important part of the plant. The image obtained after marking the centers is a
binary mask with zeros and ones representing areas where there is agave, thus, we take the
mask to multiply it with the initial input image, the original prediction of an algorithm, such
that all agaves are separated. From the output of this operation, we use the centers and define
a small area using a circle, such that we are covering the same distance from the center to
all directions. Then, we take the most frequent class, or majority class, in the covered area
and we expand it to the whole cluster. Using this technique we can have a single class in the
agaves that are already separated. We end up with a segmentation image where all agaves can
be identified individually and just contains a single class that describes the agave, in addition,
we can know the number of agaves in the image.

4.4 Machine and Deep learning algorithms
As commented in the previous section, in this project we are going to implement several
models in order to select the best method for this specific task of segmentation of the agave
based on health. The algorithms selected are the following:

Machine Learning

• KNN

• Random Forest

• Decision Tree
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Deep Learning

• U-Net

• FCN-8

• ViT Segmenter

We implemented deep learning models using the mmsegmentation toolbox [11] since it
is easy to implement and we can find several algorithms including those mentioned before.
Mmsegmentation toolbox allows us to create models by creating a configuration file where
we specify the model, data pre-processing, and data augmentation as well as the pipeline to
be used on the training and test steps. For each configuration file, we specified the model we
want to use including U-Net, FCN-8, and ViT Segmenter.

For the models we included data augmentation techniques to enhance the results of all
algorithms, techniques were resized on several scale ranges, crop, random flip, and padding.
In addition, image pre-processing like normalization is included in the pipeline of models.
We also use an iteration approach for training models instead of epochs like common training
since this is faster when using the toolbox. In addition, the tool also provides scores that
are most used for semantic segmentation by default including accuracy and intersection over
union (IoU) on average and per class. Graphs are also computed to visualize accuracy and
loss over iterations. Depending on the size of the dataset we select the number of iterations, as
well as the frequency model, which is validated. In the next chapter, we are discussing more
configurations of each model, the optimizer used, and the learning rate.

On the other hand, for machine learning models we use the scikit learn library to train
models [41]. This library already contains the models and it is easy to use since they only
need to be initialized, with a number of parameters defined by the user, and then train with the
data in the correct format. Since we want to compare these models and deep learning models,
we are using the same metrics, accuracy, and intersection over union.



Chapter 5

Analysis and Discussion of Results

In this chapter, we are presenting and discuss the results obtained from the project. First, we
start with the data captured from the agave crop giving details about the dataset created for
the project. Then, we continue with the comparison of algorithms where scores like Overall
Accuracy are compared to choose the best method to be used in the final solution. Afterward,
we give the conclusions of the entire work. Finally, we discuss future work that can be done
to improve the results of the whole process.

5.1 The data
As mentioned in the past chapter 4 Methodology, source data was created from an agave
plantation located in Guadalajara, Jalisco. The area contains agaves of different sizes related
to their ages, other plants like trees, and some foreign objects, a sample map is shown in figure
5.1. The whole plantation was divided into five zones delimited by roads and other kinds of
plants. For each zone, the drone passed for about 200 waypoints capturing six images on each
point (one image for each band) and flying at an altitude of about 30 meters to have a ground
sampling distance (GSD), a measure of resolution that represents the distance between two-
pixel centers based on flight height and camera specifications [33, 43], of 1cm/pix such that
each pixel represents 1cm2 of real area.

In order to create orthomosaic maps we used software that performs the necessary radio-
metric and geometric corrections removing distortions created by camera sensors and lenses,
those properties related to camera characteristics, and those related to the environment like
light intensity caused by the sun. This pre-processing of images allows us to create an ortho-
mosaic map with no distortion having all bands aligned [28, 54, 24]. In this work, we used
the PIX4Dfields software to generate those maps since it already supports DJI multispectral
cameras. The entire map can be seen in figure 5.2, the background is green in color and the
agave plantation stands out from the map in a brown tone due to the soil.

Finally, we divided the map into five maps of different sizes that go from 9529x7366 to
15797x12897 pixels providing a high-quality resolution that captures more details. Maps were
cropped such that information of the zone captured is inside the image avoiding duplicated
information of other zones. The software provides two resources of information, one for an
RBG map for easy visualization and a tiff file containing raw information of five bands. This

43
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Figure 5.1: Sample image of an agave crop

Figure 5.2: Aerial view of the entire plantation.
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Table 5.1: Information of the five ares captured on the crop. There are information about the
size on pixels of the orthomosaic map, the area covered, the name, and the GSD

Name Size (px) Area(ha) GSD (cm/px)
Zone 1 (fig. 5.3) 12,717 x 8,078 1.24 1.28
Zone 2 (fig. 5.4) 15,797 x 12,897 1.23 1.05
Zone 3 (fig. 5.5) 9,529 x 7,366 1.02 1.49
Zone 4 (fig. 5.6) 7,221 x 12,926 1.48 1.57
Zone 5 (fig. 5.7) 11,685 x 6,626 1.16 1.51

Figure 5.3: Zone 1 orthomosaic map

last information is what we will be using in this work to train the model while RGB images
are going to be used to visualize the result of segmented agaves.

In table 5.1 we can observe characteristics of the five zones captured by the drone like
the area covered, the size of the orthomosaic map, and the GSD. Combining all maps we are
covering an area of almost 7 ha. As we can note, all zones have a GSD close to 1cm/px,
variation was caused by soil altitude change on the field and obstacles like trees that force
drones to fly higher. However, we could maintain spatial resolution in all five zones.

From the entire map (see figure 5.2) it is clear the division we make. The roads on the
crop help us to define the zones. We created fly plans with the DJI application for each zone, a
flight plan is a configuration and path the drone follows to take photos to cover the entire area,
this allows us to re-capture the zone in the future and compare data, on how plants change
over time. We can view each zone individually in figures 5.3, 5.4, 5.5, 5.6, and 5.7, for zones
1, 2, 3, 4, and 5 respectively. The next process, which is explained immediately, is done for
each zone.

Once orthomosaic maps are created, it is time to add more information with vegetation
indices and construct ground truth maps based on that. Vegetation indices are treated as
another band on the tiff file so, adding three VIs on the map generates an image of eight
bands. As mentioned previously, we are following the procedure of Sa, I et.al [47] to create
the dataset, using smaller images from the entire map to maintain image quality and detail.
Size of tiles is a variable that can change the final results and is indeed used on experiments to
record the impact of information provided to algorithms. For ground truth creation we defined
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Figure 5.4: Zone 2 orthomosaic map

Figure 5.5: Zone 3 orthomosaic map
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Figure 5.6: Zone 4 orthomosaic map

Figure 5.7: Zone 5 orthomosaic map
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Figure 5.8: Ground truth map for Zone 1. Map contain three colors, blue, green, and black
for agave warning, agave normal, and background classes

three classes, agave with a normal health, agave with a kind of problem, and background or
zones with no agave where soil, trees and other kind of plants are included. Agave class was
selected by the NDVI value since high positive values represent a healthy plant and positive
small numbers represent soil and plants with problems [18, 38]. In order to create the ground
truth map, we first labeled individual agaves separating them from other objects like trees,
other plants and the soil. Once all agaves were labeled with an arbitrary class, we changed to
the actual class by averaging the NDVI value on the agave, then a threshold is used to select
the final class. We can define the process as follows:

For each agave: class =
{

val < 0.5, agave warning
val >= 0.5, agave normal , where val = average(agave)

(5.1)
In figure 5.8 we can observe an example of the ground truth map for Zone 1. There

are three colors in the map for each of the classes, blue for agave warning, green for agave
normal, and black for the background.

As discussed before, we have size tile as a parameter to change on experiments. We have
chosen three different sizes for square images, 500x500, 300x300 and 120x120. As we can
note, we have created three datasets containing the same information but in a different format.
A large size correspond to a small dataset while smaller size correspond to a large dataset.
By varying dataset size we expect to get better results on large dataset since we have more
instances to train models, however, this also implies give less information, where models can
not see the entire context of what they are learning, i.e. images contain a little amount of area
as we can see in Figure 5.9 that shows the covered area for each size, we can note how area is
reduced on small size.

In order to create the final datasets, depending on the tile size, and to avoid using images
without data we follow the next procedure: For each individual band:

• Get the maximum value on the tile

• If the value is negative the image is not added in the dataset
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Figure 5.9: A comparison of different sizes of tiles on the same map

• It the maximum value is positive the image is added on the dataset

• Repear for the next tile

The orthomosaic maps are rectangle images that contain data inside, however, as we
could see in the images of the zones and the ground truth, there is space with no data since
zones have variant shapes. In the TIFF file, to represent there is no data in a pixel, a value of
-1000 is assigned on each band, thus we can use this to filter tiles and use just those that have
data. Since the values captured for each band are positive, and RGB has values from 0 to 255
on each band, we can say that if an image has at least one pixel with a positive value, there is
valid data on the image. After the filter of data, we can now create the dataset. The directory
is defined as follows:
Dataset Size

Data
RGB
Red
Green
Blue
NIR
Red Edge
NDVI
GNDVI
NDRE

Label
Splits

Each dataset follows the same format as described before. In the ”Data” folder, there is a
directory for each band including RGB and Vegetation Indices where each of which contains
all the tiles created by the past process. There is also a ”Label” directory that contains the
ground truth in tile format that matches with information of bands, in addition, there is a
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”Splits” directory that contains the name of the tiles that correspond to the training and test
sets. Names of tiles follow the next structure: ”xxxx.tif” for bands, ”xxxx.png” for the label,
and ”xxxx.jpg” for RGB where x are numbers. Then, the name of images is defined with
four digits numbers, and extension changes depending on the type of data. As we mentioned
before, we have defined three tile sizes for datasets, in table 5.2 we can find the number of
tiles or images created by the tile size, thus the size of the dataset depends on the size of the
tiles.

Table 5.2: Size of the three datasets used to train models

Dataset Tile size (px) Number of Tiles
Agaves 500 500 x 500 1541
Agaves 300 300 x 300 4116
Agaves 120 120 x 120 24710

5.2 The comparison of algorithms
In this section, we are analyzing the results of models and compare the scores among all
machine and deep learning models. We start by analyzing scores of machine learning models,
also providing the ROC curve of the best models and the data they use to get those results.
Then, we continue with deep learning models. In this part, we compare the models using
different sizes of the images as well as the combinations of bands. Finally, we are comparing
machine learning versus deep learning models to see what the differences are in the final
predictions.

5.2.1 Machine Learning Models
We started by training the machine learning models since it is easier and we do not need
to run more than one experiment on each one. As we discussed in the previous chapter we
first need to change the format of the images into instances, features and labels. However,
because limitations of models and the toolkit used to train, we are using just half of the data
by sampling every two pixels. We can think of resizing the images by half. In addition, since
we are using pixels as the instances we do not need to use the different sizes of the dataset.
This is due to pixel quantity being the same for all datasets, the difference is given just by the
area captured (see figure 5.9).

Even with this transformation, the total instances on the dataset are 27,720,000. As
mentioned before, we have available eight different bands to train models. We decided to
perform many experiments using a different combination of the bands. Combinations include:
1.- All the eight bands. 2.- Three Vegetation Indices. 3.- Five multispectral bands. Therefore,
the number of bands is the number of features the algorithms will use in the training step.
We use the training set on the ”Splits” directory to train models and the test set to report the
results

Table 5.3 shows the overall scores of machine learning models for all the combinations
of bands including all bands, vegetation indices, and original bands on the camera. We can
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Table 5.3: Overall scores of machine learning models

Overall scores
Algorithm aAcc mAcc mIoU
KNN 85.35 61.62 51.02
KNN - VI 79.15 48.46 39.12
KNN - 5Bands 84.31 59.99 49.13
RF 86.91 53.86 44.83
RF- VI 87.72 58.84 48.10
RF- 5Bands 88.06 59.70 49.45
DT 84.10 58.47 46.84
DT- VI 82.90 56.01 44.80
DT- 5Bands 83.37 56.98 45.60

observe different behavior of models depending on the number of bands or the information
available to train. We start by using all channels, using this data we expect to have the best
scores since it contains more information. Random forest obtained the highest score on accu-
racy reaching 87.72% followed by KNN with 85.35%, about 2% less than RF, and Decision
Tree with 84.10%. This accuracy does not consider individual classes at all, it is the accuracy
of the whole prediction. We can use the mean Accuracy (mAcc) to have an overview of the
class accuracy to get a more realistic score. In this case, the higher mAcc was reached by
KNN with 61.62% followed by a decision tree with 58.47%, and then random forest with
53.86%. On the other hand, we also are reporting the Intersection over Union score, a value
that tells how well the segmented area was covered. The score is reported as the mean value
for all the classes, KNN obtained again the highest score with 51.02 %, followed by decision
tree with 46.84%, and random forest with 44.83%. As we can note, even when random forest
obtained the best aAcc, when we look at the mean accuracy of classes, KNN algorithm is
better.

For the second training round, we use just three vegetation indices including NDVI,
NDRE, and GNDVI. This time models just have three attributes to be trained. We compare
again the same metrics over all the models. Again, this time random forest has the best
aAcc with 87.72%, followed by decision tree with 82.90%, and KNN with 79.15%. We have
similar behavior on mAcc where the random forest has the best score with 58.84%. For the
intersection over union score, the random forest also reached the best score at 48.10%, and
KNN obtained the lowest score at 39.12%. In this case, random forest obtained the best scores
on both aAcc and mAcc.

The last round of training was using the five original bands captured by the drone. If we
can obtain better scores using this set of data, we would be able to use raw data without the
necessity to compute vegetation indices reducing the time to get the final prediction. Random
forest algorithm again obtained the best aAcc score with 88.06%. For mAcc, KNN obtained
the best score with 59.99% for just 0.29 points. Comparing mIoU random forest was better
than KNN with a score of 49.45% just above 0.32. As we can note, the random forest was
better again on almost all the scores but there is not much difference between RF and KNN.

Models change the score based on the number of bands they use to train to go from 75%
accuracy to over 85%. However, when looking for mAcc some of the scores go down so the
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Table 5.4: Per class scores for Machine Learning models

Per class Accuracy and IoU

Algorithm
Background Agave normal Agave warning
Acc IoU Acc IoU Acc IoU

KNN 97.76 90.81 58.56 39.67 28.54 22.59
KNN - VI 95.34 82.14 38.10 25.36 11.93 9.85
KNN - 5Bands 96.98 89.52 59.36 39.29 23.63 18.57
RF 98.83 89.78 60.60 42.61 2.16 2.11
RF- VI 97.76 91.51 72.65 47.15 6.11 5.65
RF- 5Bands 98.04 92.02 70.71 47.15 10.35 9.19
DT 94.05 89.06 48.79 32.77 32.57 18.68
DT- VI 93.31 87.40 46.38 30.87 28.35 16.13
DT- 5Bands 93.60 88.08 47.34 31.60 30.01 17.11

accuracy for some classes is worst than others. For this reason, we also compute the score for
each of the classes in the dataset.

Table 5.4 shows the per class accuracy and IoU of models using the combinations of
bands we discussed before. Comparing the scores for all models we can observe scores
reached by the VI data were the lowest on most of the models and classes in the dataset.
As we can see, there are three classes we are computing the scores, background, agave nor-
mal, and agave warning. In addition, we can note that the score given by IoU is less than those
given by the accuracy. For the case of the Background class, both scores Acc and IoU drop
to the minimum when just using Vegetation Indices data, with 93.31% and 82.14% accuracy
and IoU respectively. However, the background class has higher scores compared to the other
two classes. These high values rely on the number of background labels present on the ground
truth maps, most of the area is covered by this class.

On the other hand, agave normal and agave warning had lower scores dropping to about
2% accuracy and IoU. In addition, we can note how the scores are low for the Agave warning
class. Looking at the agave normal class, the highest accuracy is given by random forest using
VI data reaching 72.65% accuracy and 47.15% IoU. However, when we look at the score for
agave warning of the same model, the score drops to about 6%. Overall, we can say that all
models can segment just one kind of agave decently by the random forest model but it is not
able to segment agaves with a kind of problem. Some models detect better agave normal class
while reducing the detection of the agave warning class.

As we could see, it is not sufficient to just look at the overall scores to select the best
model but also look at individual scores for each of the classes. For instance, overall scores
tell us KNN with all bands and random forest using five bands are the better models for this
application, however, the random forest was not able to distinguish the agave warning class.
Since we want to have a balance of the classes, we would choose a model that can predict
all of the classes. In this case, KNN algorithm has better scores for the three classes, but, on
the other hand, the decision tree also has good results on the individual scores even when was
the model with the lowest overall scores. In one of the next sections, we are comparing the
final predictions of the machine and deep learning models as well as examples of the output
images.
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Figure 5.10: ROC Curve of KNN algorithm

Finally, we compute the ROC curve using true positive and false positive rates of the
best configuration of each of the models. Data selected for each model are: 1.- KNN: All
bands. 2.- Random Forest: Five original bands. 3.- Decision Tree: All bands. Data was
selected by the highest overall score as well as the more distributed best individual scores.
For instance, KNN model has similar scores with using all bands and using just five original
bands, in addition, the score given for the agave normal class are also very close, however,
there is a difference for the agave warning class being the model that uses all bands the one
that got the highest score.

All plots have the same symbology so we can compare them correctly. Light blue rep-
resents the background class, orange represents the agave normal class, and blue represents
the agave warning class. On the other hand, the pink squares line is the micro-average score,
and the dark blue squares line is the macro-average score. In this case, the micro-average line
is the most important score since it is generated by taking into account each of the classes so
each of them has a weight depending on the amount of label while the macro-average gener-
ates the score independently of the classes in the dataset. In addition, a micro-average score
is used commonly when there are more than two classes or classes are imbalanced.

We started with KNN algorithm, we can see the ROC Curve in figure 5.10. As we can
note, the area covered by the background class is higher than the others, similar to accuracy
and IoU scores. Both classes, agave normal and agave warning cover a similar area of about
0.86 but the performance is not similar since agave warning is not detected very well by the
model. We can also observe how the score of the micro-average is higher than the macro-
average. The second model was the random forest using the five original bands. As we can
see in figure 5.11 the ROC curve looks better and the area is above 0.90 for all the classes,
and micro and macro averages. We can note a similar behavior of the scores of the classes,
background covers most areas, followed by agave normal class and finally agave warning
class. In addition, we can see the area of the micro-average score for random forest algorithm
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Figure 5.11: ROC Curve of random forest algorithm

Figure 5.12: ROC Curve of decision tree algorithm
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is greater than the area of KNN. The last model is decision tree whose ROC curve can be seen
in figure 5.12. It is clear that this is the worst model since are drops over 0.6 and lines are
close to the limit black line. Behavior of classes is the same, with background class as the
best and agave warning as the worst.

Comparing the three graphs along with the scores provided in the tables we can conclude
random forest classifier is the best machine-learning model of the three when using just five
bands or features. However, models are just able to identify one of the classes. After analysis
of deep learning models, we are showing the predictions of the models.

5.2.2 Deep Learning Models
We perform several experiments for deep learning models, first using different sizes of tiles
and then varying the bands used. In order to train models, we decided to use mmsegmentation
repository, a toolbox based on PyTorch to easily implement deep learning models for semantic
segmentation [11]. Models were trained following an iteration-based runner approach instead
of epoch based since it is faster and recommended by developers of mmsegmentation.

Table 5.5: Deep Learning models configuration

Model Data Augmentation Optimizer Learning Rate Iterations

FCN
Resize: ratio(0.5, 2.0)
Random Crop 0.75
Random Flip 0.5

SGD 0.01 30,000

U-Net
Resize: ratio(0.5, 2.0)
Random Crop 0.75
Random Flip 0.5

SGD 0.01 30,000

ViT Segmenter
Resize
Random Crop
Random Flip

SGD 0.001 30,000

Even though we train models using the iteration approach, we have selected iterations
to train for 10 epochs. As a principal score, we are considering accuracy since it is most
commonly used in others papers, however, we are also reporting mean accuracy, individual
accuracy for each class as well as IoU scores similar we did with machine learning models.
As discussed in the methodology chapter, we have three datasets of different tile sizes and we
have also three different combinations of bands generating nine training sets for each of the
models. We have divided the results into three groups in order to have the same format as
machine learning, thus, each group is separated by the tile size or the dataset.

We begin with a 500x500 tile size dataset to analyze the scores given by the models
similar to ML models where we analyze first overall scores and then individual scores. Table
5.6 shows the overall scores of selected deep learning models. At first view, we can note a
better performance against classical ML algorithms since the scores are close 90% accuracy
and 65% IoU. In addition, there is not much difference between the variant of models, for
instance, all ViT models have similar values for the three scores, aAcc is close to 92%, mAcc
is about 80% and mIoU is close to 69%. The accuracy of most of the models are higher than
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Table 5.6: Overall scores using 500x500 tile size

Overall scores size 500
Algorithm aAcc mAcc mIoU

ViT 92.96 78.93 68.78
ViT - VI 92.68 80.81 69.05
ViT - 5Bands 92.98 79.28 68.88
Unet 92.54 75.16 64.62
Unet - VI 88.46 51.31 51.31
Unet - 5Bands 92.41 75.31 63.95
FCN 85.74 48.25 40.54
FCN - VI 89.08 77.79 62.29
FCN - 5Bands 88.63 68.21 52.66

92% and IoU is higher than 60%, thus, in this case, it is most important to consider individual
scores. Furthermore, it seems that FCN is the worst of the models since none of the models
reach 90% accuracy.

Table 5.7 shows individual scores of deep learning models using 500x500 tile size. In
this table, we can observe differences between models and variants of them in the scores given
for agave normal and agave warning classes. ViT model is the most stable model since scores
on all classes are very similar and they remain in a very close range. The unet, model that
has 92% accuracy on all the variants, got low scores on the agave warning class but it also got
the best scores for the agave normal class reaching almost 90% accuracy. On the other hand,
FCN model that had one of the worst scores among the models got the best accuracy on the
agave warning class reaching 82%. However, both models got very poor performance in the
other class.

Table 5.7: Per class scores with 500x500 tile size

Per class Accuracy and IoU size 500

Algorithm
Background Agave normal Agave warning
Acc IoU Acc IoU Acc IoU

ViT 98.3 95.45 72.93 61.23 65.55 49.66
ViT - VI 97.27 95.04 73.59 61.01 71.57 51.11
ViT - 5Bands 98.02 95.42 77.98 62.72 61.83 48.51
Unet 98.51 96.00 84.68 61.16 42.29 36.69
Unet - VI 96.8 94.46 78.71 46.05 16.68 13.44
Unet - 5Bands 98.12 96.03 89.17 61.26 38.63 34.55
FCN 99.65 89.3 41.21 28.45 3.88 3.86
FCN - VI 93.13 90.44 79.4 54.29 60.83 42.14
FCN - 5Bands 97.68 95.24 24.56 23.29 82.39 39.44

Using this table we could identify the best combination of bands for each of the models
using a tile size of 500x500. Even when FCN did not get more than 90% accuracy, the use
of vegetation indices could help the model to have a good distribution of segmentation of
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the classes. Models selected were the following: 1.- ViT using vegetation indices bands. 2.-
Unet using all bands. 3.- FCN using vegetation indices bands. As we can note, two of the
models use vegetation indices bands, just three bands were necessary to segment the agaves,
but they have information on the five bands captured by the drone. We can say that deep
learning models are better than machine learning models since they can identify better the
three classes without scarifying the performance of the others.

Table 5.8: Per class scores with 300x300 tile size

Overall scores size 300
Algorithm aAcc mAcc mIoU
ViT 90.99 73.09 62.19
ViT - VI 89.69 69.61 57.56
ViT - 5Bands 90.30 72.54 58.43
Unet 84.48 61.62 42.35
Unet - VI 82.67 61.42 41.13
Unet - 5Bands 71.75 47.11 30.67
FCN 90.24 65.54 53.50
FCN - VI 90.16 67.97 55.88
FCN - 5Bands 90.40 67.18 53.99

The second training round was using a tile size of 300x300 on the same combination of
bands eight, five, and three bands to train all the models. The overall scores for this training
dataset can be seen in table 5.8. In this dataset we expected to have an increase in the scores
since there are more instances to train the models, however, contrary to the expected result
there was a little drop in the majority of models. We can see how accuracy maintains at
90% but IoU is under 60%. Furthermore, FCN has similar values for all the combinations of
bands, contrary to Unet where accuracy is between 71% and 84% being the worst model in
this dataset. ViT trained with all bands was the best model in this round of training on overall
scores.

Table 5.9: Per class scores with 300x300 tile size

Per class Accuracy and IoU size 300

Algorithm
Background Agave normal Agave warning
Acc IoU Acc IoU Acc IoU

ViT 97.94 94.49 64.83 52.5 56.49 39.56
ViT - VI 98.06 94.03 41.26 37.83 69.51 40.83
ViT - 5Bands 98.05 95.43 35.73 34.50 83.83 45.35
Unet 94.88 93.59 0.45 0.45 89.52 33.02
Unet - VI 92.45 91.55 0.74 0.71 91.05 31.13
Unet - 5Bands 82.39 74.18 0.0 0.0 58.95 17.83
FCN 98.89 95.09 85.78 53.79 11.97 11.61
FCN - VI 98.02 94.87 83.27 52.54 22.63 20.24
FCN - 5Bands 98.39 95.67 90.92 54.38 12.22 11.91
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As we did in the previous analysis, we continue with scores given by each of the classes.
Table 5.9 shows the per class scores trained with 300 tile size. In this table, we can observe
unique behavior on the segmentation of classes like the case of the unet with five bands and
VI where the model was not able to identify the agave normal class but the accuracy on the
agave warning class increases until reached 91% accuracy. This high score in this class and
the low value on IoU tell us that the model segments all agaves as the same class, thus, the
model works as a two-class segmentation. We can see the same results but with the other class
on the FCN model. In this case agave, the normal class reached 90% accuracy with 54% IoU
but 12% accuracy on agave warning class. ViT was the unique model that could segments all
classes properly but not too well as models in the past dataset. In addition, the model with
all bands was the best in this case followed by VI bands but got a good distribution of class
detection. There was a change in the scores of all models in a negative way where models
were just able to detect one of the two classes of agaves and just two versions of ViT could
identify them decently.

Table 5.10: Per class scores with 120x120 tile size

Overall scores size 120
Algorithm aAcc mAcc mIoU
ViT 90.73 74.24 63.13
ViT - VI 89.34 67.97 55.85
Unet 83.77 59.74 45.29
Unet - VI 86.77 57.42 48.00
FCN 87.90 65.18 53.60

For the last training session, we use the 120x120 tile size, the bigger dataset since the
images are very small compared to the rest. Since the training time increases by the name
of instances in the dataset, we decided to train models with two variants of bands and one
of FCN due to the large amount of time necessary to train this model. Table 5.10 shows the
overall scores of this training round. As we can note, the table is smaller since with did not
include the five bands version. The scores are even lower than the other tile sizes, dropping
for about 86%similar to machine learning models. ViT model obtained again the best scores
among the others. The values of scores, the training time, and the low variation of scores with
different combinations of bands were the reason we did not continue with the training of the
rest of the variation of models.

Finally, table 5.11 shows the per class scores with the 120x120 dataset. Scores are very
similar to those obtained in the last training round having models that can just identify one
class of agave but with high accuracy such as the case of the Unet. Moreover, the accuracy
of Unet is close to 50% for both classes of agave. The most interesting model was ViT, a
model that has obtained good results in all the datasets, obtaining IoU scores close to 50%
and accuracy in the range of 59% and 65% in the agave classes.

As we could observe in the analysis of results using a different dataset, changing the size
of the image, a more small size creates lower scores for all the models. One of the reasons
that can produce this situation is the size of the image since models need the information that
is around the objects to create a good segmentation and as we could see in the methodology
section, the covered area changes depending on the tile size meaning less covered are for
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Table 5.11: Per class scores with 120x120 tile size

Per class Accuracy and IoU size 120

Algorithm
Background Agave normal Agave warning
Acc IoU Acc IoU Acc IoU

ViT 97.48 93.77 65.95 53.65 59.31 41.96
ViT - VI 97.32 93.06 83.26 53.47 23.32 21.03
Unet 94.44 92.47 18.76 14.11 66.02 29.30
Unet - VI 98.24 90.64 61.31 42.86 12.71 10.51
FCN 97.25 94.55 51.69 39.98 46.61 26.87

small size. We are continuing with the comparison of algorithms using just models that were
trained with 500x500 tile size since they obtained the best scores. We are also considering
machine learning models selected in the comparison.

Figure 5.13: Accuracy and loss curves of ViT over iterations

Then, we continue by visualizing the loss and accuracy curves of models to see if there
is over-fitting in the models or if there is a change to continue training the model to get better
segmentation. It is important to note we are only analyzing curves of the best algorithms we
mentioned in the 500-size dataset. We start with ViT model using vegetation indices bands.
Figure 5.13 shows the accuracy and loss curves of the model over the 30,000 iterations in the
training step where we can see the values on the training data (blue line) and the validation data
(orange data). On the accuracy graph we can observe the two lines, training and validation
data, are very close to each other and they are still going up in the score. Meanwhile, the loss
on training and validation sets go down over all the iterations, and they are very close to them
similar to the accuracy curve. We do not see any behavior of overfitting or underfitting in the
model and the trend tell us the model can still be trained for getting a higher accuracy and
lower loss.

Figure 5.14 shows the accuracy and loss graphs of the Unet model over the 30,000
iteration model that was trained. In this case, we can see a difference in the training and
validation data, while training accuracy grows quickly, accuracy on the validation set barely
grows. This condition repeats on the loss where the value on the training set reduces while the
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Figure 5.14: Accuracy and loss curves of Unet model over iterations

loss in the validation set has a low slope. This may cause overfitting on the training dataset
since the scores do not change on the validation dataset.

Figure 5.15: Accuracy and loss curves of FCN model over iterations

The last model was FCN which accuracy and loss curves are seen in figure 5.15. Graphs
look similar to ViT model, but there is a gap between the training and validation sets. In
addition, this also happens on the loss graph, the score on the validation and training sets goes
up while maintaining a distance. Even when there is a difference in the scores, there is no
overfitting in the model so we can continue training the model to get better results.

5.2.3 Models with RGB data
On the other hand, as we can note, models reached the highest score when using images of
500x500 size, thus, we are training models but now using RGB images to have a comparison
and see if there is a difference when using multispectral images. We use the same initial
configuration for the models, for instance, the optimizer is SGD, and the learning rate is 0.01
for deep learning models.

Table 5.12 shows the overall scores of machine learning and deep learning models using
RGB data, images that can be captured by any common camera. As per previous results, deep
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Table 5.12: Overall scores using RGB data

Overall scores size 500 RGB
Algorithm aAcc mAcc mIoU
ViT 89.22 71.00 58.69
Unet 90.93 74.24 61.43
FCN 90.81 75.98 62.92
KNN 84.56 56.80 44.85
RF 87.02 57.07 45.28
DT 87.15 57.48 47.96

learning models are superior to machine learning models on all scores whereas DL can reach
90% accuracy and 62% mIoU, ML just can produce about 87% accuracy and 47% mIoU.
Moreover, the performance of models is worst than those given with Multispectral data such
as ViT with vegetation indices. In this case, FCN and Unet were the best models in accuracy
and mIoU. On the other hand, FCN got a slightly better result compared to FCN with VI data.
As we can note there is a difference in scores when using RGB and Multispectral images on
models.

Table 5.13: Per class scores using RGB data

Per class Accuracy and IoU size 500 RGB

Algorithm
Background Agave normal Agave warning
Acc IoU Acc IoU Acc IoU

ViT 96.51 92.24 53.35 45.3 63.14 38.53
Unet 97.56 95.78 59.18 48.75 65.97 39.77
FCN 96.56 94.25 66.59 49.93 64.8 44.59
KNN 97.98 90.71 52.73 26.55 19.68 17.27
RF 97.26 90.71 73.49 44.68 0.46 0.46
DT 97.86 91.41 59.97 40.81 14.60 11.68

We continue analyzing individual scores on each class for the six models trained with
RGB data. Table 5.13 shows this information to take a look at how models segments each
class. Starting with ML models (KNN, RF and DT) we can see how they can only segment
one of the agave classes such as when using multispectral data. The best accuracy score for the
agave normal class was reached by random forest model with 73.49% accuracy. On the side
of DL models (ViT, Unet, and FCN), they got balanced scores on agave classes with accuracy
around 60% and 48% IoU. Moreover, as we mentioned in the overall scores, values obtained
by the models with this kind of data were lower than those obtained with multispectral images.
Even when FCN model looked to be better in this configuration, individual scores showed that
it was just a little inferior on agave normal class.

As we could see, there is a difference in the performance of models when using RGB or
Multispectral images on the agave segmentation based on the health of the plant being models
trained with bands on multispectral images superior for this specific task. Since multispectral
bands provide information not available in RGB, models can enhance their performance.
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5.2.4 Image Segmentation
In order to visualize the segmentation created by each model, we have selected those whose
give the highest scores and best balance of all classes. Models and multispectral data selected
are the following:

• Decision Tree: All bands

• KNN: All bands

• Random Forest: Five original bands

• ViT: Vegetation Indices

• Unet: All bands

• FCN: Vegetation Indices

Figure 5.16 shows the segmentation of the models of a random instance in the dataset.
The image at the top of the figure is the ground truth label, i.e., the expected output segmenta-
tion. In this instance, we can find several agaves, a group of agaves in the centers that are very
close, and an agave of the class ”agave warning”. On the left side, we can see segmentations
of ML models while on the right DL models. For ML models, we can see classification is
done at a pixel level, thus, we can observe points, like salt and pepper noise, over the entire
image causing noise in the segmentation. For instance, the noise can be seen clearly in the
Decision tree segmentation, where there are pixels classified as agaves. However, most pixels
are grouped inside agaves even when two classes are mixed. KNN algorithm also shows this
condition but noise is reduced as well as the mix of classes. Finally, Random Forest model,
which obtained the best scores among ML models, generates a better segmentation, the noise
is still present on the image but it is almost imperceptible compared to the others and the mix
of classes is just found on the edge of the plants.

On the side of DL models, we have different kinds of segmentation starting with the
noise that is not present in these models. We can see how the mix of classes inside the agave is
different in these models since they create groups of classes. FCN, the model which obtained
the worst performance compared to the rest of DL models, could segment agaves, however,
we can see that the model was able to segment agaves without problems. In addition, we can
see the mix of classes where inside the agave there are parts classified as another class. The
Unet got a better result than FCN, all agaves are segmented but there is a little mixture of
classes. Unet segmentation is very close to the ground truth label for agave segmentation and
the single ”agave warning” is detected correctly. The last ViT also has a good performance on
the segmentation similar to Unet but there is no mix of classes in this instance. On the other
hand, the ”agave warning” class was not detected.

As we could see, segmentation is different depending on the type of model either ML
or DL, and the model itself such as Random Forest or ViT. Even when there is noise in
ML segmentation, it can easily be filtered to get just the correct area. On the other hand,
DL models can create a better segmentation on agaves without the noise produced by ML
techniques and segmented areas are very close to the ground truth label. Despite the good
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performance of DL techniques, there is still a combination of classes in a single agave. For
this reason, we are implementing a watershed algorithm with some extra steps to correct the
label and to separate groups of agaves in order to identify individual plants.

Figure 5.16: Predictions of the six models. The target label is showed in the top of the image
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We have selected the prediction of the Unet since it has all the conditions that can be
corrected by the algorithm (see Watershed algorithm section of the Methodology chapter for
more details of the steps). Figure 5.17 shows the result of applying the watershed algorithm
to the prediction of the Unet model. The left side of the figure is the correction done after
the watershed algorithm and class selection. We can see how agaves that were grouped in the
center of the image are now separated by the algorithm enclosed in a blue line. In addition,
each agave has only one class representing the state of the plant. The purpose of the watershed
algorithm is to separate objects when they are very close to each other and it is not possible
to distinguish how many objects, or plants in this scenario, are in a cluster. Once agaves are
separated such that each cluster represent a single plant, the center is used for computing the
final class by taking the majority class of values around a defined radius. For instance, look at
the prediction of Unet in Figure5.16, there is one agave in the bottom left side of the image that
has been classified with two classes, after applying the algorithm we can see how the agave is
classified with ”Agave Normal” class since it is present in the center of the plant. In addition,
we can see how the segmentation is even closer to the ground truth label on the classified
classes. With the use of this algorithm, we have separated agaves as well as eliminated the
noise of mixed classes.

Figure 5.17: Prediction after applying Watershed algorithm. Left side is the final prediction.
Right side is a representation where dots are the detected agaves

On the other hand, we have created an extra representation to show the results of seg-
mentation that can be seen in the right side of figure 5.17. In order to create this representation
we take the image created by the algorithm, then, the center is used for extracting the agave
class. Then, a circle of a defined size is created in the center of each agave using agave class
to use the color. As we can see in the image, circles are in the center of the image with the
color of the class. This is just an extra representation that can be used for a different view on
the segmentation that for instance it is easier for a user to count plants.
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Conclusion

The implementation of multispectral images has been explored for many applications such
as in segmentation of trees, weed detection, and classification of areas in crops. They are
commonly implemented along with drones, a tool that has been also used in agriculture since
it is a useful tool to obtain data in a fast way. However, in the specific application in agaves,
we have just a few implementations or solutions related to this plant including agave count.
Thus, for this reason, an since is an important plant for Mexico, we decided to use agaves as
the case study for multispectral images.

In this work, we have presented two main contributions related to the identification of
agaves based on their health. The first one is the acquisition of multispectral data using a
drone about agave crops containing information on two kinds of agaves defined as ”Agave
Normal” and ”Agave Warning”. Captured images were processed to create orthomosaic maps
that were used to create three datasets. Each dataset was created using orthomosaic maps
and cropping small images of fixed sizes. Datasets contain a directory for each of the bands
captured including Red, Green, Blue, Red Edge, Near Infrared, and RGB, in addition, there
is a directory for ground truth labels. The second contribution is the development of deep
learning models for the segmentation of the two classes of agaves obtaining good results in
the predictions.

In the comparison of algorithms, we found that deep learning models were superior to
machine learning in the segmentation of agaves by classes, however, both can be used to
segment agaves from the rest of the objects in a map. In special ML models, the output of the
prediction requires an extra step to eliminate the noise and create consistent clusters. The best
ML algorithm was random forest using five bands of the dataset, the 5 bands captured by the
drone, reaching 88.06% accuracy and 49.45% mIoU, but as mentioned before the model can
just identify one of the classes, in this case, the ”Agave Normal” class.

For deep learning models, we perform several experiments to train models, varying the
size of the image and the bands used by algorithms. On the experiments, we conclude that
even when we have more instances to train models with a small size, the performance is
negatively affected by having scores similar to Ml models. Then, we got the best results using
the 500x500 size dataset reaching an accuracy of 92.96% by ViT model using Vegetation
Indices bands, in addition, the model was also the most balanced for both agave classes.
Furthermore, we also provide an additional step that fixes some conditions of the predictions
like the mixing of classes in a single agave that also separates groups of agaves to have each
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plant separated from the others.
On the other hand, we also train models using RGB images to compare against multi-

spectral images to see if there is an advantage to the use of more complex data. In the results,
we could see that they got good results reaching 90% accuracy for most of the models and
they could also segment the two agave classes. With these results, we could conclude that
multispectral images can help models get better results on the segmentation of agaves.

6.1 Future Work
This work makes use of a custom dataset captured by a drone equipped with a multispectral
camera in a crop located in Zapopan, Jalisco. Thus, since the crop contains certain character-
istics, we are limited by the types of conditions of the data that can be extended to have more
classes to identify. For instance, we can find agaves infected by pests, affected by a known
disease, with different ages of difference, or even identify other plants that are inside the crop.

On the other hand, we selected just six models to be trained with the dataset, three for
Machine Learning and three for Deep Learning. We know that several models can be trained
for this task like Support Vector Machine, XGBoost, DMNet, and new DL models that are
created every year. In that sense, we are saying that the dataset can be used to test many
models for agave segmentation. Moreover, in the dataset, we provide three vegetation indices
including NDVI, NDRE, and GNDVI, but since multispectral data is also in the dataset more
vegetation indices can be computed.

Another work that can be done related to the use of multispectral images in agriculture is
to measure the advantages of this kind of data. As we could see, there is an improvement when
using more channels along with vegetation indices increasing accuracy on the segmentation
of agaves based on health, thus it would be interesting if the application of this solution can
reduce the cost of the maintenance of a crop.
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