
Instituto Tecnologico y de Estudios Superiores de Monterrey

Puebla Campus

School of Engineering and Sciences

An Approach Based on Suffix Array to Discover Routines in User
Interaction Logs

A thesis presented by

Astrid Monserrat Rivera Partida
Submitted to the

School of Engineering and Sciences
in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

Monterrey, Nuevo León, June, 2021

An Approach Based on Suffix Array to Discover Routines in
User Interaction Logs

by
Astrid Monserrat Rivera Partida

Abstract

Robotic Process Automation (RPA) is a fast-advancing technology that allows organi-
zations to automate repetitive work by the use of software robots. The number of candidate
processes for automation may be vast and, henceforth, it raises questions such as which pro-
cesses have higher priority for automation? and which of them can be automated by means
of User Interaction (UI) routines? Selecting routines amenable for automation requires dis-
tinguishing between noise and relevant events and defining the boundaries thereof. From a
technical point of view, the discovery of routines starts with a log capturing the UI tasks per-
formed by a human and partitions it into segments that are presumably candidate patterns that
can be composed into routines. Existing techniques, however, fail when the UI log contains
multiple intertwined routines, yet such situation occurs in real-world scenarios. This project
tackles this problem leveraging techniques stemmed from the field of periodic sequence min-
ing and, more specifically from stringology. The result is a collection of novel algorithms
tailored for the problem at hand which shows good performance, resilience to noise and has
been evaluated with artificial and human generated UI logs.

v

List of Figures

2.1 Excerpt of a UI log . 8
2.2 Robotic Process Mining pipeline . 9
2.3 Web-usage mining process . 14
2.4 Suffix tree for T = mississippi . 17
2.5 Suffix array of the string T = mississipi$ and its lcp-interval tree 20
2.6 Range Minimum Query example . 23
2.7 The algorithm assumes a constant alphabet ⌃ and k � 1. However the solu-

tion takes O(mk|A| ·max(k, logn+ occ) when using O(n) bits indexing data
structure. 24

2.8 Example of a control-flow graph . 25
2.9 Dominator tree from CFG . 26

3.1 CFG of example log L’ . 32
3.2 Sequence from UI log L’ . 33
3.3 LCP array excerpt . 35
3.4 Suffix array for UI log L = ?ABDABCDACABCDABD> 35
3.5 LCP Tree of UI log L . 36
3.6 Pattern Symbol for leaf h(5; 0, 1), 4i . 38
3.7 LCP Tree of UI log M . 41

vii

List of Tables

3.1 Excerpt of a UI log . 30
3.2 UI log normalization and translation . 31

4.1 UI logs . 48
4.2 Information of the interleaved UI logs . 48
4.3 Comparing the quality of the discovered routines 52
4.4 Comparing the quality of the discovered routines 53
4.5 Results of the interleaved logs . 54
4.6 Information of the routines found by the Graph Approach 55

ix

Contents

Abstract v

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Problem definition . 2
1.2 Hypothesis and Research Questions . 3
1.3 Objectives . 4
1.4 Organization . 4

2 Theoretical Framework 7
2.1 Robotic Process Mining . 7

2.1.1 User Interactions log . 7
2.1.2 Stages and Challenges in RPM . 8

2.2 Sequential Pattern Mining . 11
2.2.1 Full vs. Partial . 11
2.2.2 Perfect vs. Imperfect . 12
2.2.3 Synchronous vs. Asynchronous . 12
2.2.4 Dense Periodic Patterns . 13
2.2.5 Approximate Periodic Patterns . 13

2.3 Web-usage Mining . 14
2.3.1 Time-Oriented Heuristics . 14
2.3.2 Navigation-Oriented Heuristics . 15

2.4 Correlation of event logs for process mining 15
2.5 String Matching Basic Concepts . 16

2.5.1 Suffix Tree . 16
2.5.2 Suffix Array . 17
2.5.3 Burrows Wheeler Transform . 17
2.5.4 Repeating Substrings and Extendibility 18
2.5.5 Longest Common Prefix . 18
2.5.6 Finding Maximal Repeats . 20
2.5.7 Top-down traversals . 20
2.5.8 Range Minimum Query . 22

xi

2.5.9 Approximate String Matching . 23
2.6 Related Work . 25
2.7 Chapter Conclusions . 27

3 Contribution 29
3.1 UI Log Normalization . 29
3.2 Discovering Exact Routines in a UI Log . 32

3.2.1 Building basic structures . 32
3.2.2 Algorithms to Discover Exact Patterns 36

3.3 Approximate matching . 40
3.4 Chapter Conclusions . 44

4 Evaluation 47
4.1 Datasets . 47
4.2 Metrics . 48

4.2.1 Jaccard index . 49
4.2.2 Rand index . 49
4.2.3 Coverage . 50
4.2.4 Effective Coverage . 50

4.3 Results . 50
4.3.1 Artificial and real-life logs . 50
4.3.2 Interleaved logs . 54

4.4 Validity Threats . 55
4.5 Limitations . 56

5 Conclusions and Future Work 57
5.1 Future Work . 57

Bibliography 62

xii

Chapter 1

Introduction

Business processes are part of the daily routine of every organization, and they must perform
in the best possible way to reduce or avoid losses. A business process may take input from
different devices or people and must be completed according to predefined rules to produce the
desired output [34]. Seeking efficiency in the execution of business processes is not something
new. As intelligent systems have evolved, their integration to typical business applications
has been sought, being the primary objective the efficiency enhancement through process
automatization—one of the significant trends in the robotic automation of business processes.

Robotic Process Automation (RPA) is a software solution for creating programs that
mimic human workers’ behavior when performing repetitive and structured tasks with infor-
mation systems [9]. It is driven by simple rules and business logic while interacting with
multiple information systems through graphic user interfaces. Its functionalities comprise the
automation of repeatable and rule-based activities using a non-invasive software robot called
a bot. Such bots have the capacity to respond to stimuli and changes in business processes.
Also, RPA simplifies the way users automate tasks by interacting with multiple applications
at once [22].

RPA can facilitate scaling up strategically and helping companies to offer greater value
to clients and customers. Its main objective is to reduce the burden of repetitive, simple tasks
on employees [47]. RPA has outperformed expectations on non-financial benefits such as
accuracy, timelines, flexibility, and improved compliance, with at least 85 of the surveyed
businesses reporting that RPA met or exceeded their expectations in these areas [49]. Accord-
ing to Gartner [17], RPA software revenue grew 63.1% in 2018 to $846 million, making it the
fastest-growing segment of the global enterprise software market.

However, RPA still has some challenges to overcome. While RPA has already been
successfully applied to various organizations, a significant amount of time is dedicated to
programming the bots manually. The current method for identifying candidate routines is
interviewing workers, walk-throughs, and detailed observation. Nevertheless, these methods
are time-consuming, and they face scalability issues if the number of routines is too high.
Besides, if there is an inefficient process, RPA can not find a way to optimize it [30]. Hence,
it raises two important questions: which routines should be automated and how to optimize
them.

A new set of tools, Robotic Process Mining (RPM), arises as a solution to both ques-
tions. Its main idea is that repetitive routines amenable to automation may be found from

1

2 CHAPTER 1. INTRODUCTION

the interactions between users and the applications (User Interactions or UIs) used during the
process enactment. The candidate routines will be analyzed in terms of potential benefits and
automation costs. RPM tools identify automatable routines from a given log of user inter-
actions (UI log), collect their variants, standardize and streamline the identified variants, and
discover an executable specification. Then, the specification will be compiled into a script and
executed in an RPA tool.

The discovery of automatable routines still is an unexplored area. However, there have
been recent approaches for process discovery. For example, the research in [32] presents an
approach to identify the degree of automation through textual process descriptions, such as
work instructions. However, this approach may lead to imprecise results due to the assumption
that tasks are performed as documented. Other research proposals, such as TaskTracer [13],
have addressed the problem by analyzing UI logs to identify the task performed by the user
or the switches between tasks. Notwithstanding, they do not consider the inputs and outputs
of each action but only the sequence of actions.

Therefore, in this research work, we address the need to discover routines from an un-
segmented UI log. We, therefore, develop a collection of algorithms stemmed from the field
of periodic sequence mining to identify automatable routines from a UI log. An empirical
analysis of the algorithms’ performance regarding their ability to discover routines was car-
ried out. The algorithms have been evaluated with artificial logs and real processes within an
educational institution.

1.1 Problem definition
Robotic Process Automation (RPA) is a fast-emerging process automation approach that uses
software robots to replicate human tasks, including interacting with an enterprise application
or transferring data from one application to another, and more, allowing users to focus on more
critical tasks. RPA technology is suited to replace humans who perform processes where it is
needed to include data from multiple inputs, and then RPA processes it using rules and uses
this completed as the input for other systems [28].

RPA has been defined as a class of tools that allow users to specify deterministic routines
involving structured data, rules, user interface interactions, and operations accessible via APIs
[31]. These routines are encoded as scripts executed by bots, operated via control dashboards.

This technology has the purpose of eliminating or reducing costs, the need for multi-
ple people performing large amounts of repetitive tasks, and improving business processes’
quality and speed. RPA contributes to accelerate time to value, reduce human error, and in-
crease throughput. It also helps to ensure that outputs are complete, correct, and consistent
[39]. Another critical benefit of robotic process automation is that the tools do not alter exist-
ing systems, while other automation tools interact using application programming interfaces
(APIs), leading to issues about maintaining the code and responding to underlying applica-
tions [28].

Despite the multiple benefits of RPA, there is still one paramount concern: How to select
candidate routines for automation? Even if RPA tools are able to automate different routines,
they cannot identify which routines are suitable to automate. Current methods for identifying
automatable routines involve interviews and detailed observations from the workers, either in

1.2. HYPOTHESIS AND RESEARCH QUESTIONS 3

situ or using video recordings [6]. In large organizations, this approach is time-consuming,
and it faces scalability limitations if the number of routines is high.

The new concept of Robot Process Mining (RPM) arises to solve this problem. RPM
is defined as a set of tools that take as input data collected (UI log) during the execution
of tasks in business processes and use these data to assist analysts to identify the routines
for automation, extract executable routine specifications, generate RPA scripts and monitor
the execution [31]. Hence, RPM tools receive as input a UI log which has to be recorded
beforehand. Given a UI log, the goal of RPM is to discover repetitive sequences of actions,
which are called routines, and select the routines amenable for automation. Then, RPM aims
to extract an executable routine specification for an RPA tool. From this, we are able to
distinguish three main stages in RPM:

1. Collecting and pre-processing UI logs corresponding to executions of one or more tasks.

2. Identifying candidate routines.

3. Discovering executable RPA routines.
In this work, we focus on the second stage of the RPM process: identifying candidate

routines for automation. Discovering routines can be enhanced via automated methods. Most
existing approaches to find automatable routines assume that the UI log is already segmented,
which translates to discovering frequent sequential patterns, a problem widely explored. In
practice, a UI log is not segmented and consists of a single sequence of actions or UIs con-
taining one or more routines. However, these instances of routines can also be intertwined
with UIs that are not part of any routine. These UIs are called noise. Noise can occur when
workers make mistakes while performing a task, leading to execute irrelevant actions.

Previous work on noise filtering [45] treats noise as chaotic events; however, it is not
useful in case noise gathers around a specific state and could also remove relevant events
that seem chaotic. The problem posed by the segmentation stage is similar to Web session
mining. Nonetheless, Web session mining approaches can be used only in the context of Web
interactions, while tasks in the RPM context are performed across multiple applications. The
approaches [15] and [4] are tested under restrictive settings and produced inaccurate results.
Another approach [29], which tackles the problem with a high degree of success, is sensitive
to multiple starts and is not as accurate when different routines start with different initial UIs.

Therefore, in this work we address the problem of finding candidate routines for au-
tomation from an unsegmented UI log. To this end, the selected approach uses suffix arrays
to extract exact patterns from the UI log, each representing a sequence of UIs that repeatedly
appear in the unsegmented UI log. Additionally, we adapt existing string matching methods
to find approximate patterns to discover routines affected by noise. Moreover, we evaluate
and compare the performance of our method with the existing approach for identifying UI log
segments. This method has been tested on artificial and real-life UI logs to evaluate its ability
to discover quality routines.

1.2 Hypothesis and Research Questions
In this research, we are interested in the question of how to identify candidate routines for
automation? However, we focus on particular questions that guide this work and we aim to

4 CHAPTER 1. INTRODUCTION

answer through our research.
Research questions

• RQ1 What set of state-periodic mining algorithms can be adapted to be used for the
problem at hand?

• RQ2 How to measure the quality of executable routines discovered by periodic se-
quence mining algorithms?

• RQ3What is the performance of periodic sequence mining?

• RQ4 Is the approach applicable in real-life settings? Is it capable of handling noise in
the UI log?

• RQ5What patterns are factors in failures?

We are interested in developing an efficient method to extract routines from UI logs, therefore,
we define the following hypothesis: Using periodic sequence mining techniques will al-
low us to identify periodic frequently occurring significant sequences from unsegmented
User Interface logs that will lead to quality candidate automatable routines for Robotic
Process Mining tools.

1.3 Objectives
The general objective of this research is to develop and implement a noise-tolerant algo-
rithm based on periodic sequence mining techniques to identify candidate routines from
UI logs. We expect that such a technique would allow us to find meaningful sequences and
amenable for automation and enhance the quality of the executable routines for RPA tools.
The particular goals to achieve as this research work is conducted are:

• To develop a new algorithm extending the state of the art techniques on periodic se-
quence mining to discover noise-free routines from UI logs generated synthetically.

• To develop a noise-tolerant algorithm to discover routines from UI logs extracted from
real-world scenarios.

1.4 Organization
This thesis project is organized into five chapters, starting with the current chapter.

• Chapter 2 reviews the Theoretical Framework needed to conduct the research, going
into detail about the complete process of Robotic Process Mining and the concepts
behind it. We present the concept of UI log; and a review of string matching concepts
and algorithms used in our proposed solution. Moreover, we analyse the only other
algorithm applicable to our problem of identifying candidate automatable routines.

1.4. ORGANIZATION 5

• Chapter 3 describes our Contribution. The proposed solution is divided into two parts:
the first one to extract exact routines and the second one to find routines with noise.

• Chapter 4 presents the Evaluation of the proposed solution and compares it against the
current State of the Art algorithms. To this end, we propose evaluation metrics to assess
the efficiency of our approach.

• Chapter 5 contains the Conclusions and Future Work, where we evaluate the comple-
tion of the research objectives and address the future work.

Chapter 2

Theoretical Framework

In this section we introduce the concepts and techniques relevant for the research proposed in
this manuscript. Firstly, we explore ”Robotic Process Mining” (RPM), the phases compris-
ing it, and the challenges associated with each of those phases. Moreover, we introduce the
concept of User Interactions Log (UI log) and the processing required to make it suitable for
RPM. Given that the focus of this work is the noise filtering and segmentation of UI logs, we
explore sequence mining techniques as we consider them relevant in formulating a solution
to the problem of identifying candidate routines from the UI logs. Henceforth, we introduce
both RPM and sequence mining in the following subsections.

2.1 Robotic Process Mining
As stated before, Robotic Process Mining (RPM) is a class of new tools capable of discover-
ing automatable repetitive routines from interactions between workers and Web and desktop
applications, intending to turn the discovered routines into scripts that RPA bots can execute.
In this way, they will assist analysts by creating a systematic inventory of candidate routines
for automation and once selected, RPM will produce executable specifications of routines.
RPM can be considered as an extension of process mining. However, their focus and goal
are complementary. While process mining is concerned with the analysis of event logs from
enterprise systems to discover/enhance process models and supporting the analysis of the per-
formance of the underlying business processes [46], RPM is concerned with analyzing UI
logs, possibly in conjunction with data extracted from process event logs, to identify candi-
date automatable routines, obtain routine specifications, and monitor their executions. Then,
its focus lies in identifying opportunities for automation. Before discussing the research chal-
lenges these tools present, we introduce the concept of User Interface log, which is the input
for the whole RPM process.

2.1.1 User Interactions log
User Interactions (UIs) are generated as natural byproducts of the interaction of users with
systems using a window-based operation. Such events usually capture information related
to a user interaction executed on the system. A UI log is a timestamped sequence of UIs or

7

8 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.1: Excerpt of a UI log

events across one or multiple applications performed by a user in a workstation [38]. Each UI
is characterized by its timestamp, event type, and other parameter values. A UI’s parameters
can be divided into: context parameters and data parameters. Data parameters store the values
used per task execution. On the other hand, context parameters always have the same values.

In Figure 2.1 we present a fragment of a UI log to illustrate these concepts. If a UI
consists of clicking a button, the button’s identifier must be stored, as seen in row 2 of the UI
log. Click button stores the source application (Web), which is a context parameter. Similarly,
if a field is edited (row 1), the attributes that should be stored include the identifier of the field
and the new value assigned to that field, which is data parameters. Moreover, UIs of the same
type normally have the same number of attributes. Some UIs can be merged into one action,
i.e., Go to cell (row 5) and Copy (row 6) can be merged in one action called Copy Cell.

The bulk of the information associated with a UI is collectively referred to as the pay-
load. Likewise, each execution of a task is represented by a task trace. Given that UI logs are
typically voluminous and rich in detail, automated processing is generally required to extract
information at a level of abstraction useful to identify repetitive sequences of actions and the
routines amenable for automation.

2.1.2 Stages and Challenges in RPM
The process followed by RPM tools can be decomposed into three main phases:

1. UI log collection and pre-processing.

2. Candidate routine identification.

3. Executable routine discovery.

To provide a more detailed explanation of the elements of each phase, they are decom-
posed into steps. The first phase decomposes into the recording step itself, and three pre-
processing steps (noise filtering, segmentation and simplification). The second phase maps
into the step of candidate routine identification. The third phase is decomposed in two steps:
executable routine discovery and compilation. We present the specific challenges and oppor-
tunities that are associated with each stage. To clarify the process, the diagram in Figure 2.2
shows the steps graphically with their corresponding inputs and outputs.

2.1. ROBOTIC PROCESS MINING 9

Figure 2.2: Robotic Process Mining pipeline

1. Recording. The main challenge regarding recordings is identifying which actions must
be recorded, given that one action may be either important or irrelevant depending on
the context. From this step, we extract the recording of a UI log. Existing UI event
recording tools, such as Macro Magic and TinyTask, save the actions performed by the
user at pixel coordinates level, and the UI logs generated by these tools are not useful for
extracting routines. In [2] a Windows-based application that records UI actions from
mouse movements to the selection of items in dialog boxes is presented; however, it
supports only Microsoft Word and Adobe Reader. The tool in [14] goes beyond that
and even simplifies the recorded UI logs by removing redundant events, although it
supports only MS Excel and Google Chrome.

2. Noise filtering. A UI log may contain irrelevant events that do not belong to any task;
thus, it is needed to separate this noise from the events that contribute to tasks. One
solution could be to treat noise as events that can happen anywhere in process execution.
But if noise gathers towards one specific task or set of tasks, it is possible not to filter
it out or remove relevant events mistakenly. Thus, it is important to consider the values
of the data objects involved in the actions and events.

3. Segmentation. Likewise, one UI log may have data frommultiple tasks, where their ac-
tions and events are mixed. One task can be spread across multiple UI logs; for example,
if multiple users perform the same task on different work stations. Similarly, as with
noise filtering, one approach examines data values involved in the events and actions
since it is most likely that events belonging to the same task have similar data values. It
is also possible to use sequential pattern mining techniques [42] to search for frequent
sequences of events with common data attributes or attribute values. Furthermore, an
approach to tackle the problem of segmentation is presented in the research by [33].
This problem is akin to Web session mining, where the input is a set of clickstreams,
and the goal is to extract sessions where a user engages with a web application to fulfill

10 CHAPTER 2. THEORETICAL FRAMEWORK

a goal. Most traditional approaches to session identification can be used, however, only
in the context of Web interactions, making this approach not valid, given that tasks are
usually performed across different systems and applications, and the Web browser is
just one of many applications. Another approach is to set a limit for the duration of a
session through time-based heuristics or to set the maximally allowed time difference
between two events. However, this approach is not reliable since users may be involved
in different activities when performing the tasks.

4. Simplification. Even if an event is part of a task, it can still be redundant based on
the context. So, simplification involves the detection of redundant events. One possible
approach to eliminate redundant tasks is to use sequential pattern mining techniques to
identify which events are outliers [42]. Nevertheless, if an event rarely occurs, it can be
treated as an outlier, creating the need for semantic filtering.

5. Candidate routines identification.

The first substep aims to identify and extract repetitive sequential patterns that repre-
sent the execution of routines. One of its challenges is that during routine execution,
the user can perform other actions that do not constitute a routine. When identifying
the routines, such actions have to be ignored. In this regard, sequential pattern mining
techniques, in particular, the ones that work with gaped patterns [14] can be used. The
second challenge involves the order of the actions performed in the routine, given that
sometimes the actions that constitute a routine may be performed randomly (e.g., fill-
ing a Web form). Hence, it is difficult to identify frequently occurring patterns. One
possible solution is to standardize the task traces and then identify repetitive patterns.

This step can be mapped to the problem of frequent pattern mining. The goal of this step
is to identify sequences of UIs, which can be translated as symbols. Frequent pattern
mining algorithms can be divided into two types based on their output:

• Algorithms that discover exact patterns and are vulnerable to noise.

• Algorithms that discover patterns with gaps and are noise-resilient.

Based on their input we can divide them into:

• Algorithms that operate with a set of sequences of symbols and can be applied to
segmented UI log.

• Algorithms that discover frequent patterns from a sequence and may be applied
directly to unsegmented UI log.

The second substep seeks to identify routines amenable for automation. A discovered
routine is considered a candidate for automation if this routine is semi or fully automat-
able. In this context, the challenge is how to identify if a routine is automatable or not.
Geyer-Klingeberg et al. [2], describe how to assess the automation potential of a task,
they propose the frequency of execution of a task as the main criterion for automation.
However, if the task is frequent, there is no guarantee it is automatable.

2.2. SEQUENTIAL PATTERN MINING 11

6. Executable routines discovery. There can be multiple ways of executing a routine, so
when discovering a routine specification, it is necessary to capture all the preconditions
that may trigger the routine and its effects or postconditions. If two routines have the
same effects, the best must be selected. Another challenge is to discover the data trans-
formations within each action. Recent work [6] uses methods for automated discovery
of data transformation-by-example, although these methods present scalability issues
and the types of transformations they can discover are limited.

7. Compilation. To generate an executable RPA script, given the routine specification, it is
required to identify the application elements involved in the routine. Such information
is usually obtained during the recording step. However, sometimes it may be missing,
for example, when the elements do not have identifiers or in nested containers. Hence,
it is required an intelligent recognition of the elements.

2.2 Sequential Pattern Mining
The problem of segmentation is similar to periodic pattern mining. Pattern mining is a power-
ful tool for analyzing big datasets, which consists in discovering useful patterns in databases.
A sequential pattern is a set of itemsets structured in sequence database which occurs sequen-
tially with a specific order. A sequence database is a set of ordered elements or events, stored
with or without a concrete notion of time. Each itemset contains a set of items which include
the same transaction-time value [43]. Frequently occurring subsequences are referred to as
sequential patterns. Sequential pattern mining aims at discovering and analyzing statistically
relevant subsequences from sequences of events or items with a time constraint. It consists
of discovering interesting subsequences in a set of sequences, where the interestingness of a
subsequence can be measured in terms of various criteria such as its occurrence frequency,
length, and profit [16].

A periodic pattern is the one defined as repeating behaviors at certain location with
regular time interval (time property), they can provide important information to assist with
decision-making [51]. At the same time, periodic patterns are classified as frequent periodic
patterns and statistically significant patterns based on the frequency of occurrence. According
to Sirisha et al. [42], frequent periodic patterns are classified as full or partial, perfect or
imperfect, synchronous or asynchronous, dense and approximate. Below are described the
characteristics of each pattern and the existing approaches to identify them.

2.2.1 Full vs. Partial
Full. A full periodic pattern is where every element in the pattern exhibits the periodicity.

ABCBCBCACD
This sequence has a full periodic pattern BC with period equal to 2.
Partial. It is a pattern in which one or more elements do not exhibit periodicity.

ABCADCACC
This sequence contains a partial periodic pattern A*C, where the second element does not
exhibit the periodic behavior.

12 CHAPTER 2. THEORETICAL FRAMEWORK

2.2.2 Perfect vs. Imperfect
Perfect. A pattern X is said to satisfy perfect periodicity in sequence S with period p if
starting from the first occurrence of X until the end of S every next occurrence of X occupies
p positions away from the current occurrence of X.

ABDABVABFABC

AB* is a perfect periodic pattern with a period 3. It occurs 4 times from first occurrence
to the end of the sequence. In [36], an algorithm for discovering cyclic association rules is
presented, in which association rules are defined as the relationships between the occurrences
of items within transactions This algorithm finds the cyclic association from time stamped
transactional data. A cycle c is a tuple (l,o), where l is the length in multiples of the time unit
and an offset o which represents the first time unit when the cycle occurs. An association rule
has a cycle c = (l,o) if the association rule holds in every lth time unit starting with time unit
t0 and ti equals to the time interval [i ⇤ t, (i+ 1) ⇤ t], where t is the time unit referring to time
granularity specified by the user.
Imperfect. Imperfect periodicity means that the pattern deviates from the next expected oc-
currence, it is possible to have some of the expected occurrences of X missing.

ABCDBFABGABV

AB* is an imperfect pattern, it has missed the second of its expected positions. Han et. al
[23] explored properties related to partial periodicity and proposed an algorithm called max-
subpattern hit set, creating a tree to mine full imperfect periodic patterns and partial imperfect
periodic patterns. For a given period, the time series is segmented in smaller segments where
the length of their period is equal the given period. The time series is scanned once and all 1-
patterns which are found to be frequent in the segmented time series are reported. A 1-pattern
is the one where only one position in the pattern is defined, i.e. (a, *, *) or (*, a, *) or (*, *,
a). Then, these patterns are joined to form a maxpattern and the time series is scanned for the
second time. During the second scan each segment is intersected with the maxpattern. The
result of the intersection, called max-subpattern, is inserted into the tree or, if it is already in
the tree its node count is incremented. At last, the max-subpattern tree is traversed and all the
patterns whose count is greater than a user defined threshold are shown as frequent periodic
patterns.

2.2.3 Synchronous vs. Asynchronous
Synchronous. A pattern that occurs periodically without any misalignment or with no inter-
vention of random noise is called a synchronous periodic pattern.

ABCADCBDCBAC

**C is a synchronous periodic pattern with a period 3.
Asynchronous. Asynchronous periodic patterns mean the patterns might be misaligned due to
the intervention of random noise. The misalignment is accepted only up to a certain threshold
value.

2.2. SEQUENTIAL PATTERN MINING 13

ABCDBCCBABC

*BC is an asynchronous periodic pattern due to the insertion of random noise events CB
between the second and third occurrences of the patterns. Asynchronous periodic pattern
mining can deal with the shift and distortion due to the presence of random noises in the
periodic sequence.

Longest Sequence Identification (LSI) is the pioneering algorithm to mine asynchronous
periodic patterns. For an asynchronous periodic pattern, the algorithm detects the longest
subsequence containing it. It works in three phases. In the first phase it detects all potential
periods, which requires single scan of the sequence. In the second phase all candidate 1-
patterns are validated. An i-pattern is a pattern where i positions in the pattern are defined for
e.g. ab* is a 2-pattern with periodicity 3 where 2 positions out of 3 are defined. In the third
phase the candidate i-patterns are formed from (i-1)-patterns. Validation of these i-patterns
require single scan of the sequence. The second and third phases of LSI require multiple scans
of the sequence [50].

2.2.4 Dense Periodic Patterns

A dense periodic pattern is the one in which the periodicity is focused on part of the time
series or a pattern which occurs in small segments of time. Sheng et al. [36] have proposed an
algorithm to find dense fragments from time series, where a dense fragment is a segment of
time series where the distance between every pair of consecutive occurrences of each unique
symbol is less than the distance threshold. All the dense fragments with lengths greater than
the minimum length defined by the user, are retained. Then a max-subpattern tree is used
to generate the partial periodic patterns. The algorithms prunes periods by finding the lower
bound period for each symbol in its dense fragment. Periods below lower bound are safely
pruned.

2.2.5 Approximate Periodic Patterns

Noise and imprecision exists in most of the real world data, so there is the need to mine ap-
proximate patterns. The previous algorithms which tolerate replacement, insertion, and dele-
tion noise mine approximately repeating periodic patterns [42]. Y.L. Zhu el al. have mined
approximate periodic patterns from hydrological time series [52]. Based on asynchronous pe-
riodic pattern and partial period mining with suffix tree, to mine multi-event asynchronous pe-
riodic patterns based on modified suffix tree representation and traversal, with a dynamic can-
didate period intervals adjusting method, which avoids period omissions and discover more
local periodic patterns. The majority of the approaches to discover periodic patterns require
other information such as the length of the pattern to discover or they need to assume a period
(e.g. hour, day, week). This makes the adaptation of such patterns not ideal for the problem
of UI log segmentation, where the length of the routines is unknown.

14 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.3: Web-usage mining process

2.3 Web-usage Mining
Web-usage Mining deals with understanding the user behavior, when interacting with a web
site. This information is stored in Web server logs. It employs data mining techniques to
extract patterns from the Web server logs [44]. Data collection is the first step of in Web-
usage mining, which consists in gathering data from sources like Web servers, Cookies, user
input from forms and proxy servers. Web-usage mining is composed from three stages that
are similar to the aforementioned stages of RPM, besides the step of data collection [41]. In
Figure 2.3 :

1. Data preprocessing contains three steps: data cleaning, user identification and session
identification.

2. Pattern discovery applies data mining techniques to processed data with the goal of
extracting relevant patterns.

3. Pattern analysisUninteresting rules are ruled out and analysis is done using knowledge
query mechanism.

Furthermore, a session can be defined as a set of pages visited by a single user during
one particular visit to a website [35]. Sessions are usually identified on time or navigation.
Traditional session identification algorithms are based on a fixed timeout.

2.3.1 Time-Oriented Heuristics
One approach to identify sessions is through time-oriented heuristics. Kapustra et al. [24]
assume that the user visits multiple web pages in one session until the user finds the content
page with the required information. There, the user spend a considerable amount of time
compared with the navigation pages. The content page is considered the end of the session.

2.4. CORRELATION OF EVENT LOGS FOR PROCESS MINING 15

Chen et al. [10], designed an algorithm whose purpose is to find maximal forward ref-
erences (longest sequences of Web pages visited by a user without revisiting some previously
visited page in the sequence) from very large Web logs. The approach considers two types of
sessions:

• ↵-interval session: ensures that the duration of a session may not exceed a threshold
of 30 minutes. �-gap session: ensures that the time between any two consecutively
visited pages may not exceed a threshold of 20 minute.

The algorithms define a URL node structure which stores the URL, the user’s access time and
a pointer to the next URL node. Next, the maximal forward reference session is calculated
using interval session and gap session.

These methods could be applied in the context of RPM. However, in the case of the
algorithms based on timeout, users may be involved in different activities when performing a
task. Moreover, users usually perform tasks in batches and the time difference between two
tasks may be smaller than the time difference between events in the same task, causing an
incorrect segmentation.

2.3.2 Navigation-Oriented Heuristics
Navigation-oriented heuristics do not consider the time a user spends on a Web page, instead
exploit the fact that users reach pages through hyperlinks rather than typing URLs. According
to Cooley et al. [11] a requested Web page w that is not reachable from previously visited
pages, should be assigned to a different session. The heuristic accounts for the fact that wmay
not be accessible from the page immediately accessed before it and the user can backtrack
to a page visited earlier, from which w is reachable. The backwards moves are not always
accessible and in this scenario the heuristic reconstructs the shortest path of backward moves
to w and adds it to the user’s session.

Cooley et al. [12] proposed another heuristic based on the referrer information of a URL
request, which is the page from which the request was issued. This heuristic states that the
referrer of a requested page should be a page in the session; else, the page is assigned to
another session. If the page has an empty referrer, then it is likely to be the first page of a new
session.

These approaches can only be used in the context of Web interactions, given that they
are based on Web specifics, as the approaches proposed in [11] and [12]. Therefore, the
adaptation of such techniques to work with multiple applications could be challenging.

2.4 Correlation of event logs for process mining
As evidence of processes execution information systems produce event logs. An event log
consists of a set of events. Each event represents an executed activity in the business process.
An event has a case identifier, a timestamp, among other context data [5]. The event log is
comparable to the UI log, where the events are equivalent to UIs. When the events in an event
log do not contain explicit case identifiers, they are said to be uncorrelated.

16 CHAPTER 2. THEORETICAL FRAMEWORK

The approach in [5] deduces the case identifiers of the unlabeled events, and generates a
set of labeled event logs with ranking scores. In a preprocessing step the algorithm constructs a
relationship matrix that represents the relations among the activities to handle cyclic behavior.
It has as inputs:

1. A process model.

2. An unlabeled event log with activity and timestamp.

3. Activity heuristics are data about the execution duration of each activity.

4. Threshold ranking-score, which is used to suppress generated labeled logs with a rank-
ing score less than the threshold.

The algorithm is based on some assumptions in order to work correctly. First, there is
no waiting time between activities. Each event has a timestamp that represents the completion
time of an activity and the start time of the next activity. The second assumption is that the
input process model must be dead- and live-lock free. The third assumption is that there is
one start activity not contained in any loop.

This approach assumes that the process model is given as input. However, a process
model is not available since the objective is to identify the routines in the log.

2.5 String Matching Basic Concepts
Given a UI log, which has been defined as a sequence of UIs, segmentation can be mapped to
that of string matching, treating the UI log as a string and applying string matching methods
to extract repetitive routines from the unsegmented UI log. Finding the occurrences of a
pattern in a given text is also widely studied in bioinformatics. Suffix trees are important data
structures in string processing and comparative genomics. However, suffix trees suffer from
relatively large memory requirements; even recently improved implementations of linear time
constructions still require 20 bytes per input character in the worst-case [26]. This problem
has repercussions in large-scale applications like the repeat analysis of whole genomes [27].
More efficient structures exist; among them is the suffix array.

2.5.1 Suffix Tree
A suffix tree of a sequence T, where n = |T |, is an index structure than can be computed and
stored in O(n) time and space [48]. Its applications can be classified into tree traversals [20]:

• Bottom-up traversal of the complete sufix tree.

• Top-down traversal of a subtree.

• Traversal of suffix tree using suffix links.

2.5. STRING MATCHING BASIC CONCEPTS 17

Figure 2.4: Suffix tree for T = mississippi

A suffix tree for the sequence T is a rooted directed tree with n+1 leaves. Except for the root,
the internal nodes have at least two children. Each edge is labeled with a nonempty substring
of T$. When two edges start at the same node, they cannot begin with the same character.
Its key feature is that for any leaf l, the concatenation of the edge-labels on the path from the
root to leaf l spells out the string T [i . . . n � 1]$. Figure 2.4 shows the suffix tree for T =
mississippi as an example.

2.5.2 Suffix Array
The suffix array of a sequence T, where n is the length of T n = |T |, requires 4 bytes per
input character, and it can be constructed in O(n) time in the worst case. Queries of the type
”Is P a substring of T?”, wherem = |P | can be answered in optimal O(m) time [20].

Let⌃ be a finite ordered alphabet. The suffix array SA of a string T is an array of integers
from 0 to n, containing the indexes of the lexicographically ordered n+1 suffixes of the string
T$, where $ is considered as the lexicographically last symbol of the alphabet. It requires 4n
bytes. T [i] denotes the character at position i in T, for 0 i n. Then, Ti = T [i . . . n� 1]$
denotes the ith nonempty suffix of the string T$. In Figure 2.5 column SA contains the index
in T of the suffixes in column TSA[i]. For example, when i = 0, SA[i] = 7 and the character
at position 7 in T is ”i”. So, TSA[i] = T [SA[i] . . . n � 1] = ”ippi$” The inverse suffix array
iSA is a structure of size n+1 such that iSA[SA[q]] = q for 0 q n.

2.5.3 Burrows Wheeler Transform
The Burrows-Wheeler Transform (BWT) is an algorithm that takes a block of data and re-
arranges it using a sorting algorithm [1]. The resulting output block contains the same data
elements that it started with, differing only in their ordering. The transformation is reversible,

18 CHAPTER 2. THEORETICAL FRAMEWORK

meaning the original ordering of the data elements can be restored with no loss of fidelity.
This may be defined in relation to the suffix array as follows. The result is a BWT array

such that BWT [i] = T [SA[i] � 1] if SA[i] > 0, otherwise is the last symbol of the original
string. The BWT is stored in n bytes and constructed over the suffix array in O(n) time.

In Figure 2.5, when i = 0, BWT [0] = T [6] = s. We can analyze the case when the
condition SA[i] > 0 is not met at i = 4, BWT [4] = $.

2.5.4 Repeating Substrings and Extendibility
Abouelhoda et al. [1], state that pair of substrings R = ((i1, j1), (i2, j2)) is a repeat iff
(i1, j1) 6= (i2, j2) and T [i1 . . . j1] = T [i2 . . . j2]. The length of R is j1 � i1 + 1. A repeat
is left-extendible if T [j1� 1] 6= T [i2� 1] and a right-extendible (RE) T [j1+1] 6= T [i2+1]. It
is a maximal or nonextendible (NE) if is both not LE (NLE) and not RE (NRE). For example,
in string T = mississippi$, substrings ”issi”, ”iss” and ”ssi” are repeats of length 4, and 3
respectively. Substring ”issi” is a maximal repeat but ”iss” and ”ssi” are not. However, ”ssi”
is left-extendible: if we extend it by the character to the left, the character that precedes the
substring is i. Analogously, the substring iss is right-extendible. In Algorithm 1 we present
the algorithm used to obtain all the NE repeats.

Algorithm 1 Determine if the repeat is NLE [19]
1: function NLE(i,j)
2: � BWT [i]
3: i

0 i+ 1
4: while i0 j and � = BWT [i0] do
5: i

0 i
0 + 1

return (i0 j)

2.5.5 Longest Common Prefix
The Longest Common Prefix (LCP) has been an important tool in pattern matching. Some of
its applications [3] include: compression of texts, calculating the Edit Distance between two
strings by computing mismatches, finding maximal repeats in genomic sequences, among
other applications. Due to LCP’s importance in our approach, we start this subsection with
definitions based on the LCP and derive algorithms that exploit its properties.

Let A and B be strings over ⌃. The LCP between the two strings is the longest substring
shared by them. For future reference, we denote the length of the LCP of A and B as lcp(A,
B). We can obtain the LCP via suffix tree construction, Lowest Common Ancestor queries, or
suffix array construction and LCP queries.

For example, between suffixes T [SA[1]] = ”issippi$” and T [SA[2]] = ”ississippi$” the
LCP of both suffixes is ”issi” with length 4; hence, lcp(T [SA[1]], T [SA[2]]) = 4.

LCP array

The LCP array is an array of integers in the range 0 to n, which stores the lengths of the
LCPs between consecutive sequences in the suffix array LCP [k] = lcp(SA[k�a], SA[SAk]) for

2.5. STRING MATCHING BASIC CONCEPTS 19

1 k n. LCP array can be computed during the construction of the suffix array or in linear
time from the suffix array. It requires 4n bytes in the worst case.

In the column LCP of Figure 2.5 we have the LCP array. LCP [0] = 0. LCP [1] stores
LCP (T [SA[0]], T [SA[1]]) = 1, LCP [2] = LCP (T [SA[1]], T [SA[2]]) = 2 and so on.

LCP intervals

Abouelhoda et al. [1] introduced the concept of lcp-intervals. An interval (i, j), where 0
i < j n is called an lcp-interval (denoted by (l; i, j)) of lcp-value l if:

1. LCP [i] < l

2. LCP [k] � l for all k with i+ 1 k j

3. LCP [k] = l for at least one k with i+ 1 k j

4. LCP [j + 1] < l

Kasai et al. [25] present an algorithm to simulate bottom-up traversal of a suffix tree with
a suffix array and the LCP array. It computes all the lcp-intervals of the LCP array. In the

Algorithm 2 Algorithm to compute the lcp-intervals
1: push(h0; 0,?i)
2: for k 2 (1,n) do
3: lb k - 1
4: while LCP[k] < top.lcp do
5: top.rb k - 1
6: interval pop
7: Report(interval)
8: if LCP[k] > top.lcp then
9: push(hLCP [k]; lb,?i)

algorithm, we denote the lcp-intervals as the tuple hlcp; lb, rbi. As an example, the interval
(0, 3) in Figure 2.5 has an lcp-value of 1, so the lcp-interval is represented by (1; 0, 3). The
interval (1, 2) has an lcp-value of 4, represented as (4; 1, 2).

LCP tree

The lcp-interval tree of a suffix array is not built but allows us to simulate tree traversals.
Algorithm 2 pushes the first element onto the stack;? stands for undefined value for interval’s
right boundary. The algorithm has the usual push and pop operations; top provides a pointer
to the stack.

An interval (m;l,r) is said to be embedded in (n;i,j) if i l < r j and n > m, when
an interval (m;l,r) is embedded in (n;i,j), then (m;l,r) is a child interval of (n;i,j). This parent-
child relationship constitutes a virtual tree, the lcp-interval tree. Its root is the interval (0;0,n).
Intervals where [l, l] are singleton intervals and they are left implicit on the tree. Continuing
the example of Figure 2.5 in the leftmost subtree represented with the lcp-interval (1;0,3), the
child interval is (4;1,2) and the singleton intervals [0,0] and [2,2].

20 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.5: Suffix array of the string T = mississipi$ and its lcp-interval tree

2.5.6 Finding Maximal Repeats
The algorithm in [37] makes use of the concepts of LCP array and the BWT array. It requires
5n bytes of storage, plus the stack space. It outputs a set of lcp-intervals.

Given a threshold pmin, which is the minimum lcp-value of the interval, and a range in
SA, Algorithm 3 outputs complete NE repeats. LB (Left Boundary) is the stack to store the
leftmost positions i at which there is an increase in the LCP value. Intervals (j, q) are pushed
onto LB at position j when the lcp increases and popped when it decreases. When a repeat is
popped, the algorithm identifies the repeat as NRE. To verify if a repeat is also NLE, we use
the function NLE in Algorithm 1. Variable prevNE stores the lefthand position of the repeat
(p; i, j).

2.5.7 Top-down traversals
In order to simulate the parent-child relations of the lcp-tree using a suffix array, we must
enhance it with additional information. The child-table is a table of size n+1 from 0 to n
and each entry contains three values: up, down, and nextIndex. Each of these three values
requires 4 bytes in the worst case. The child-table stores the parent-child relationship of the
lcp-intervals.

It can be computed in linear time by a bottom-up traversal of the lcp-interval tree, com-
puting the up/down values and the nextIndex value of the child-table. The Algorithm 4 in [1]
scans the lcp-table and pushes the current index on the stack if its lcp-value is greater than
or equal to the lcp-value of top. Otherwise, elements of the stack are popped as long as their
lcp-value is greater than that of the current index. Based on a comparison of the lcp-values
of top and the current index, the up and down fields of the child-table are filled with elements
that are popped from the stack during the scan.

2.5. STRING MATCHING BASIC CONCEPTS 21

Algorithm 3 Algorithm to compute all NE repeats of period p � pmin

1: j, p, q, prevNE 0,�1, 0, 0
2: push(LB;0,0)
3: while j < n do
4: repeat
5: j, p, q j + 1, q, LCP [j + 1]
6: if q > p and q � pmin then
7: push(LB, j, q)
8: until p > q

9: repeat
10: if prevNE � i then
11: Report (p; i, j)
12: else if NLE(i,j) then
13: prevNE i

14: Report (p; i, j)
15: until top(LB).lcp q

16: if top(LB).lcp < q and q � pmin then
17: push(LB, i, q)

Algorithm 4 Algorithm to build the columns up/down values from child-table
lastIndex �1
push(0)
for i 2 (1, n) do

while LCP [i] < LCP [top] do
lastIndex pop

if LCP [i] LCP [top] and LCP [top] 6= LCP [lastIndex] then
childtab[top].down lastIndex

if lastIndex 6= �1 then
childtab[i].up lastIndex

lastIndex �1
push(i)

22 CHAPTER 2. THEORETICAL FRAMEWORK

Algorithm 5 of the nextIndex verifies if the condition LCP [i] = LCP [top] is true. If it is true
then i is assigned to childtab[top].nextIndex. The child-table can be constructed in linear
time and space. However, it is possible to reduce the space requirement of the child-table.

Algorithm 5 Algorithm to construct the nextIndex field of child-table
push(0)
for i 2 (1, n) do

while LCP [i] < LCP [top] do
pop

if LCP [i] = LCP [top] then
lastIndex pop

childtab[lastIndex].nextIndex i

push(i)

Once we built the child-table, to locate the child intervals of (l; i, j) in constant time
is to find the minimum lcp in the interval[i, j]. The child intervals of [i, j] are the intervals
[i, i1 � 1], [i1, i2 � 1], . . . , [ik, j].

Abouelhoda et al. [1] proposed an algorithm getChildIntervals to calculate the child
intervals of a given interval [i, j] in time O(|⌃|). This function can be modified to a function
getInterval, with an lcp-interval [i, j] and a character c 2 ⌃ and returns the child interval [l, r]
of [i, j]. Suffixes in [l, r] share the same prefix.

Algorithm 6 Algorithm to find the child intervals of a given interval [i, j]
1: intervalList []
2: if i < childtab[j + 1].up j then
3: i1 childtab[j + 1].up
4: else
5: i1 childtab[i].down

6: add(intervalList, (i, i1 � 1))
7: while do
8: i2 childtab[i1].nextIndex
9: add(intervalList, (i1, i2 � 1))
10: i1 i2

11: add(intervalList, (i1, j))

2.5.8 Range Minimum Query
A Range Minimimum Query (RMQ(i, j)) for an array L, asks for an index k, such that
i k j and L[k] = minL[q]|i q j. An RMQ can be answered in constant time
provided that the array is appropriately preprocessed [1]. Possible approaches to solve the
RMQ task are listed below:

1. Sqrt-decomposition answering each query in O(
p
n). Preprocessing is done in O(n)

2.5. STRING MATCHING BASIC CONCEPTS 23

Figure 2.6: Range Minimum Query example

2. Segment tree answering each query in O(logn). Preprocessing is done in O(n)

3. Sparse table answering each query in O(1). Preprocessing is done in O(nlogn).

4. Cartesian Tree answering each query in O(1). Preprocessing is done in O(n).

The applications of RMQ include computing the Lowest Common Ancestor (LCA) and find-
ing the LCP.

2.5.9 Approximate String Matching
The k-difference problem consists of finding all occurrences of a pattern P in a string T that
have an edit distance at most k from P. Huynh et al. [21] study the case in which T is fixed
and then preprocessed into an indexing data structure (suffix array) so that any pattern query
can be answered faster. One of the motivating applications of the offline version of the prob-
lem is DNA sequence searching. This application requires finding DNA subsequences over
some known DNA genome sequences like the human genome. Since the genome sequence is
very long, it would be desirable to preprocess it to accelerate pattern queries. This problem
presents similarities with the one presented previously in the current research. An algorithm
that tackles this problem is described next.

Consider a text T, with |T | = n and a pattern P, with |P | = m, both strings over a fixed
finite alphabet⌃. The k-difference problem is to find all j such that the edit distance between P
and some substring starting at j in T is k. LetX = x1x2 . . . xm and Y = y1y2 . . . ym be strings
over �. The edit distance between X and Y, denoted by dist(X, Y), is the minimum number
of character deletions, replacements, and insertions to convert X to Y. Distance dist(X, Y)
can be evaluated in time O(mn) by using a very simple form of dynamic programming. The
method evaluates a (m + 1) ⇥ (n + 1) table e such that e[i, j] = dist(x1 . . . xi, y1 . . . yj).
Entries in one column are used to evaluate entries in the next column.

The editing trace from X to Y is any sequence T = ⌧1⌧2 . . . ⌧q of character operations
applied on positions in X to get Y, ordered from the rightmost position in X to the leftmost
position, where each ⌧q is either d (delete), r (replace or change), u (unchange), or i (insert).
Additionally, the editing trace does not store information about the character value. For ex-
ample, a trace of the string x = aaaaa to Y = aaacb is represented as ”riduuu”, in which the
r operation is to replace the rightmost character “a” by “b”, the i operation is to insert “c”, the
d operation is to delete the second rightmost “a”, and the remaining three u operations are to

24 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.7: The algorithm assumes a constant alphabet ⌃ and k � 1. However the solution
takes O(mk|A| ·max(k, logn+ occ) when using O(n) bits indexing data structure.

keep the remaining “a” unchanged. There is exactly one operation (u, d, or r) for each char-
acter in X, whereas there may be zero or more i operation. The cost c(T) of T is the number
of delete, insert or replace operations in T . Thus dist(X, Y) is the minimum possible cost of a
trace from X to Y. The order of the operations is as follows: u < d < r < i. Figure 2.7 shows
the algorithm for the k-difference problem. The algorithm is based on the following lemma:

• Lemma 1. Given a text T with |T | = n and its SA, assume for a prefix P an interval in
SA [s, e]. Then, for a character c, the interval [s0, e0] of Pc can be computed in O(logn)
time

• Lemma 2. Given the prefixes P1 and P2 with their respective interval [st1, ed1] and
[st2, ed2] we can find the interval [st, ed] using SA and iSA such that P1P2.

• Lemma 3. Given SA and iSA, for a prefix P with interval [s, e] and a character c we
can find the interval for [s0, e0] for cP , assuming that we have in advance an array C,
such that for any c in alphabet, C[c] stores all the total number of occurrences of c0 in
T , where c0 c.

For the same k-difference problem, Ghodsi [19] proposes a backtracking algorithm for
discovering DNA seeds that finds approximate matches of a pattern in a large indexed text
adapted for suffix arrays, which takes theoretically sublinear time. It is based on the affirma-
tion that for every large patternm, the pattern can be broken into smaller pieces and each piece
can be searched for independently. The algorithms takes advantage of the main property of
the suffix array: if some prefix of the suffix pointed to by the ith element in the suffix is equal

2.6. RELATED WORK 25

Figure 2.8: Example of a control-flow graph

to the element pointed to by jth, then for every k✏[i . . . j], the all elements in the suffix array
pointed to by kth element share the same prefix.

The recursive algorithm over suffix array is described as follows: we keep two aligned
windows of two suffix arrays and the length lcp of the prefix. The distance between the
shared prefix of suffixes in the windows is stored in a global dynamic programming table. If
the symbols from both sides of the window match, the dynamic programming table is updated
and search for the next symbol after lcp. If the symbols do not match we divide the window
in two smaller equal windows and use recursion to find the matches. The size of the window
is greater or equal to one.

2.6 Related Work
The discovery of candidate routines for automation with RPA tools is a new research area.
Before, we have described some of the approaches with a context similar to ours, and could,
therefore, be applicable to the problem. However, after performing an analysis of the lit-
erature, we could only identify one work directly related with identifying routines and we
describe it below.

The approach in [29] follows the RPM pipeline in Figure 2.2. It takes as input a prepro-
cessed UI log, and its output is a set of routines candidate for automation. First, the UI log is
decomposed into segments (segmentation). Then, candidate routines are identified by mining
frequent sequential patterns from segments (candidate routine identification).

A preprocessing step is applied to the log to reduce noise impact. In this step, redundant
UIs produce a log where most UIs are unique because they have a different payload. To
discover the start and end of each task execution, we need to detect all the UIs that even
having different payloads represent the same action. To this end, the UI log is normalized
(a set of context parameters characterizes each UI). Given that a normalized log consists of
context parameters, multiple executions of the same routine likely have the same sequence of
UIs.

With the normalized log, the segmentation step starts by constructing a Control-flow
Graph (CFG), where each vertex of the CFG maps to a normalized UI and the edges represent
a directly-follows relation between the UIs mapped. The algorithm then detects the back-
edges of the CFG by analyzing the Strongly Connected Components (SCCs).

The segmentation starts when the CFG is built. In an ideal scenario, once the task
execution ends, the next UI should already be in the CFG, and the loop will be generated. In

26 CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.9: Dominator tree from CFG

such case, all the vertices in the loop correspond to a UI in the executed task. If several tasks
are captured in the UI log, the graph would contain disjoint loops. Alternatively, if a task has
repetitive subtasks, there would be nested loops. Figure 2.8 shows an example of CFG.

Then, back-edges are identified by analyzing the SCCs of CFG. Given a CFG, the dom-
inator tree ⇥ is built. It captures the domination relations between vertices of CFG.

The non-trivial SCCs are discovered with the algorithm in [40] removing the trivial
SCCs. For each SCC, the algorithm finds its header (the vertex that dominates all the other
SCC vertices). The back-edges are identified to look for nested SCCs until there are no more
back-edges and SCCs. In case an SCC does not have a header, back-edges cannot be detected;
instead, the loop-edges are collected via depth-first search. Out of the loop edges, the algo-
rithm stores the one which contains the target and source connected by the longest simple
path.

As all of the back-edges have been collected, the targets and sources of the back-edges
are retrieved. Every UI corresponding to a target is a possible starting point for a segment.
Similarly, the UIs that are the source of a back-edge is possible ending points for the segment.
Next, the algorithm scans all the UIs in the log, and when a starting point is found, a new
segment is created. This strategy assumes that the same starting UI will follow the ending
UI of a segment. If the segment is not a start UI, then the algorithm checks if it is within
the segment, discarding it as noise if not. If the condition is true, the algorithm appends it
to the segment and verifies an ending UI. When it is true, the segment is added to the set of
segments; otherwise, the algorithm continues analyzing the UIs.

Finally, with the segmented UI log, the algorithm identifies candidate routines. The
candidate routines identification step is based on sequence mining algorithms. A sequential
pattern within a UI log is a sequence of normalized UIs occurring in the same order in different
segments but with possible gaps between UIs belonging to a pattern.

The approach is capable of discovering multiple variants of the same routine when the

2.7. CHAPTER CONCLUSIONS 27

UIs occur in different orders. However, while the approach can handle multiple ends, all
routine executions should start with the same UI.

2.7 Chapter Conclusions
We reviewed the concepts necessary to address the problem of discovering RPA routines,
covering the concept of UI log and the pipeline of Robotic Process Mining, addressing the
challenges and possible approaches to solve them. Besides, this chapter has addressed cur-
rent approaches to tackle the problem of finding candidate routines for automatization from
unsegmented UI logs. We have analyzed techniques in similar contexts, such as Web Usage
Mining, and presented how they could be applied to the current problem besides the problems
they could present. Some of them consider that a model is given, some are not possible to
adapt to work with multiple applications (which is required in our context). In contrast, others
rely on the time to perform the segmentation step (this could lead to imprecision).

Moreover, we present string matching concepts applicable to our approach, where the
input UI log may be treated as a string. Approximate string matching algorithms were in-
troduced also. Finally, the Graph approach is the only existing technique in the context of
RPM. In the following sections, we will further analyze its results by comparing the graph
approach and our approach. Our approach will be using string matching techniques to tackle
the problem. In the next chapter, we detail the approach developed in this work.

Chapter 3

Contribution

This chapter describes our approach for identifying candidate routines from an unsegmented
UI Log. First, we discuss how a UI log can be mapped into a sequence of symbols, referred
to as a normalized log, that can be used as input for pattern mining techniques. We show how
string matching algorithms can be used for extracting exact routines from the normalized log.
This step generates a collection of exact routines. Then, we present an approach to finding
approximate routines from the exact routines. Overall, our approach consists of a collection of
algorithms that takes as input a UI log and generates as output a collection of routines. In the
following sections, we describe the steps of the process in detail, including the normalization
of the UI log.

3.1 UI Log Normalization
The interaction of a worker with one or more applications in a workstation is recorded by a
software agent in a UI log. We part from the assumption that only one action can be performed
at a specific time, and therefore, the UI log can be considered a sequence of UIs chronologi-
cally ordered based on their timestamps. The concept of UI can be better explained with the
excerpt of a UI log in Table 3.1.

The example described is a simple yet realistic UI log based on one of the cases we use
to test our approach in Chapter 4, which consists of the admission process of international
and domestic students in a university. The software agent recollects information from two
applications: Excel and Web browser. Moreover, rows are chronologically ordered by their
Timestamp. Each row in Table 3.1 corresponds to an instance of a UI between the worker and
the application.

The sequence of UIs emulates transferring the students’ data from a spreadsheet in Excel
to a Web form. There are three complete executions of a task (task traces) belonging to two
records of different students, ”John”, ”Mary”, and ”Jane”. The main goal of the task captured
in the example is to generate a new record of a student in the Web form. Hence, the end UI
references the actual creation of a record by clicking the button ”Submit”. Please notice that
when filling the Web form for ”Jane”, the checkbox for international students is not clicked,
meaning that ”Jane” is a domestic student. Thus, there are two variations of the task: one
for international students and the other for domestic students. The start UI of the task trace

29

30 CHAPTER 3. CONTRIBUTION

is colored in green, and the end UI in red. Such UIs are represented by the Timestamp, UI
Type, a set of parameters, and their values. With this information we define a UI as a tuple
u = (t, ⌧, P, V) where t is the timestamp, ⌧ is the UI type, P is the set of parameters and V is
the set of parameter values.

i Timestamp UI type Application Element Label Column Row Value
. . .

56 2019-02-21 16:07:21 copyCell Excel A 1 John
57 2019-02-21 16:07:24 clickTextField Web Name
58 2019-02-21 16:07:28 paste Web
59 2019-02-21 16:07:30 clickCheckBox Web International
60 2019-02-21 16:07:35 clickButton Web Submit
61 2019-02-21 16:07:40 copyCell Excel A 2 Mary
62 2019-02-21 16:07:49 clickTextField Web Name
63 2019-02-21 16:07:53 paste Web
64 2019-02-21 16:08:01 clickCheckBox Web International
65 2019-02-21 16:08:05 clickButton Web Submit
66 2019-02-21 16:08:12 copyCell Excel A 3 Jane
67 2019-02-21 16:08:16 clickTextField Web Name
68 2019-02-21 16:08:22 paste Web
69 2019-02-21 16:08:35 clickButton Web Submit

. . .

Table 3.1: Excerpt of a UI log

To discover the routine, first, we need to identify the UIs that, having different payloads,
represent the same action within a task. Different parameters will be relevant for its char-
acterization accordingly to the UI type. Two types of parameters are identified within this
framework:

• Context parameters store the information about the location where the UI was per-
formed, namely, the application and its location within it.

• Data parameters capture the values used during the execution, e.g., the value of text
fields.

Context parameters are likely to have the same values within a task execution, such as the
Application field in Table 3.1. Data parameters have different values per task execution, i.e.,
Value field, which stores the value of the copied cell. Hence, we must select a set of relevant
parameters to characterize the UIs. For example, copyCell, which represents the action of
copying a cell from a spreadsheet in Excel, we have the context parameters Application and
Column. The value of both parameters does not change among task executions. However,
if the user wants to copy the student’s last name besides the name, Row field would be the
same for the name and the last name, yet the columns would differ. In this scenario, we would
have two different actions: copy name and copy last name. Therefore, it is necessary to select
parameters that properly identify a UI. To this end, for copyCell we concatenate the UI type
with the column Row, as shown in column � Table 3.2. Each UI is then characterized by the
combination of different attributes needed to reconstruct the activity. We call this process the
normalization of a UI.

3.1. UI LOG NORMALIZATION 31

UI � �
0

. . .
u56 copyCell A A
u57 clickTextField Name B
u58 paste B’
u59 clickCheckBox International C
u60 clickButton Submit D
u61 copyCell A A
u62 clickTextField Name B
u63 paste B’
u64 clickCheckBox International C
u65 clickButton Submit D
u66 copyCell A A
u67 clickTextField Name B
u68 paste B’
u69 clickButton Submit D

. . .

Table 3.2: UI log normalization and translation

Given the UI log, we normalize it by normalizing every UI in it. In a normalized log, the
possibilities that multiple executions of the same task have the same sequence are high. Table
3.2 shows the normalization of the excerpt of the UI log. The first column contains the UI’s
identifier, which is unique for each UI, � is the label produced by the normalization of the
UI. The last column, �0 is the mnemonic used for simplification in the following examples.
Besides, for this reason, we merge B and B

0 to produce a simplified UI log excerpt. By
inspecting � we can clearly observe two routines within the UI log, with the initial and end
UIs equally colored in green and red, respectively. The routines showed in the example using
�
0 are:

• ABCD for international students, where C corresponds to the activity of ”clickCheck-
box International”. Two traces in the running example match this routine. Trace 1:
u56, u57, u58, u59, u60 and Trace 2: u61, u62, u63, u64, u65.

• ABD for domestic students ”clickCheckbox international” is not performed. One trace
in the running example matches this routine. Trace 1: u66, u67, u68, u69.

ABCD

In this approach, a domain expert manually selects the set of context parameters that will
constitute the UIs’ labels. The above is formally defined as follows.

Definition 3.1.1 (User Interface log). Let U be the set of UIs U = u0, . . . , un�1, where a
UI log L is a subset of UIs in U with a total order defined by the binary relation ”happens
before” < such that ui < ui+1. Similarly, the function � : U ! ⌃ provides the label resulting
from the combination of relevant parameters for a UI, such that �(u) is the label associated
with the UI u. ⌃ is a finite alphabet of labels. For the sake of simplicity L[0 . . . n � 1] =
�(u0) · �(u1) · · · · · �(un�1).

32 CHAPTER 3. CONTRIBUTION

Figure 3.1: CFG of example log L’

With these concepts in mind, we may proceed to explain the main approach. The fol-
lowing section describes the algorithm to find the exact routines in a log.

3.2 Discovering Exact Routines in a UI Log
Before proceeding to explain the algorithms, in this section, we review some basic concepts
from Chapter 2 and how they can be applied to the concept of UI log as seen in the previous
section. Then, we explain the algorithms to find exact patterns using a running example.

3.2.1 Building basic structures
Intuitively, the suffix array (SA) is a data structure that allows us to identify the position
of all the suffixes in a sequence, which are ordered lexicographically. Accordingly, a suffix
is not stored explicitly in SA, but only the suffix index. Usually, the suffix array is found in
conjunction with the Longest Common Prefix (LCP) and Burrows-Wheeler Transform (BWT).
The LCP array is an auxiliary data structure to the SA. Considering two consecutive suffixes
in SA, the LCP array stores the number of matching symbols between both suffixes. The
BWT stores the preceding symbol of each suffix. We rely on these data structures to identify
the repetitive sequences in the UI log. These concepts can be applied to the UI log, based
on Definition 3.1.1, where the UI log is defined as a sequence of labels, where each label is
comparable to a symbol in a string. Consider the UI log L = ABDABCDACABCDABD.

L
0 = ?ABDABCDACABCDABD>

3.2. DISCOVERING EXACT ROUTINES IN A UI LOG 33

Figure 3.2: Sequence from UI log L’

?(>) corresponds to an artificial start UI (end UI) which is a prepended (appended) to the
sequence for convenience. Therefore, we consider that both ? and > are included in the
alphabet ⌃ but are not part of L. The subsequences of interest in this example are ABCD and
ABD1, which represent the college admission process of international and domestic students,
respectively. There is an extra step C in the running example for international students, which
represents clicking the ”international” checkbox.

Ideally, the recording of the UI log should capture only the execution of the task. Never-
theless, usually, there are UIs that do not bring any value to the recorded task. Consequently,
we added an error to the original UI log, where the user begins to execute the routine, con-
tinues with the next action, but instead of B performs C and needs to restart the sequence. To
illustrate the process performed in L, we have generated a CFG of L’ in Figure 3.1 only for
visualization purposes. The CFG provides a graphical representation of the paths followed.
The error is shown in the CFG as a loop between A and C performed only one time.

To extract exact patterns, we must calculate all the structures mentioned before in order
to generate the LCP tree. But before, we must review the concept of repeat. We are inter-
ested in analyzing the sequences l1 = ABCD for international students and l2 = ABD for
domestic students, and we will use them as a running example to illustrate the concept of
repeat.

A repeating subsequence in a UI log is a subsequence that occurs more than one time
within the log. Given that l1 and l2 appear twice in L, they can be considered repeating
subsequences. Figure 3.2 presents UI log L’, where each symbol is the representation of a UI
and has a specific position in the sequence. Subsequences of interest, l1 and l2, are colored in
red and blue, respectively, while AC may be considered as noise.

A repeat is a set of locations in the UI log at which a repeating subsequence appears.
To characterize the repeat, we need the length of the subsequence and the positions in the
sequence where it occurs. For example, in the case of international students |l1| = 4 and it
occurs in positions 4 and 10 in L0. Thus, the tuple (4; 4, 10) denotes the repeat for international
students. In a similar manner, for domestic students |l2| = 3, starting in positions 1 and 14
in L

0, the tuple (3; 1, 14) denotes the repeat. As another example, the repeating subsequence
l = AB, which is the longest common prefix shared by l1 and l2 is denoted by the repeat
(2; 1, 4, 10, 14). The set of positions of l contains the positions of l1 and l2.

Definition 3.2.1 captures formally the concept of repeat in the context of RPM.

Definition 3.2.1 (Repeats on an UI log). Let L be a UI log, and u is a repeating subsequence
if it occurs at least twice in L. A repeat in L is a set of locations in L at which u occurs. It can
be specified by the length of u, p = |u| and the locations (p; i1, i2, i3, . . . , ik), k � 2.

1Without loss of generality, we merge UIs B and B’ from the example in Table 3.1 as B only to produce a
simplified UI log excerpt

34 CHAPTER 3. CONTRIBUTION

The positions in the repeat can be expressed as a range using the suffix array, while the
lengths of the repeats are calculated with the lcp. Next is detailed how the suffix array can be
calculated and aids in representing the repeats.

Definition 3.2.2 (Suffix Array of a UI log). Let L be a UI log. We refer to the suffix L[i . . . n],
i 2 0 . . . n � 1, as suffix i. Then, the suffix array SA is an array of integers in the range 0 to
n� 1. SA[j] = i iff the suffix i is in the position j among all the ordered suffixes of L.

Figure 3.4 shows the suffix array of L0 = ?ABDABCDACABCDABD> in the
second column (SA).

Besides the suffix array, we need other structures for the algorithm, such as the LCP
array. Towards this end, we define lcp. Below we define the concept of longest common
prefix. The LCP array can be calculated during the construction of SA or in linear time from
SA.

Definition 3.2.3 (Longest Common Prefix (LCP) and LCP Array). Let i1 and i2 be two suffixes
in the UI log L. The longest common prefix of suffixes i1 and i2 is denoted by lcp(i1, i2). The
LCP array for L’ is an array of integers in the range of 0 to n� 1. in which LCP [0] = 0 and
LCP [j] = |lcp(SA[j � 1], SA[j])|.

Continuing with the above example, Figure 3.4 gives the LCP array of L0. The lcp be-
tween the first two suffixes lcp(SA[0], SA[1]) = ABCDAB, then LCP [1] = |ABCDAB| =
6. Figure 3.3, shows the lcp for each pair of the first four suffixes in SA and the length of the
lcp, stored in the LCP array. Consequently, lcp-intervals can be computed from the SA array
and LCP array.

An lcp-interval is denoted as (p; l, r) where p is the length of the repeat and l and r are
the left and right boundaries, indicating the initial and last position of the repeat in SA. For
example, the repeat for international students l1 is represented by the tuple (4; 4, 10). In SA,
positions 4, 10 is stored in the range from i = 0 to i = 1 with SA[0] = 10 and SA[1] = 4.
For l1, the range in SA is given by the interval (0, 1), where 0 is the left boundary and 1 the
right boundary. Therefore, l1 = (4; 0, 1) as shown in Figure 3.4 with ABCD. While the repeat
for domestic students l2 represented by the tuple (3; 1, 14) is stored in SA[2] = 1 and SA[3]
= 3. Thus, its lcp-interval is (3; 1, 14), as seen in Figure 3.4, with ABD. The repeat l = AB,
(2; 1, 4, 10, 14) is stored in the range from i = 0 to i = 3 in SA. in this case the lcp-interval is
represented by the tuple (2; 0, 3).

An lcp-interval (p; l, r) in the UI log L is left-extendible (LE) if and only if all the UIs
preceding u are equal, such that

L
0[SA[l]� 1] = L

0[SA[l + 1]� 1] = · · · = L
0[SA[r]� 1]

It is right-extendible (RE) if and only if all the UIs succeed u are equal, such that

L
0[SA[l] + p] = L

0[SA[l + 1] + p] = · · · = L
0[SA[r] + p]

A repeat is nonextendible (NE) or maximal if and only if it is not LE (NLE) and not RE
(NRE). Following the example of international and domestic students, the repeat associated
with international students l1 = ABCD = (4; 4, 10) is RE and NLE, so it would not be a

3.2. DISCOVERING EXACT ROUTINES IN A UI LOG 35

Figure 3.3: LCP array excerpt

i SA LCP BWT L[SA[i]:] Maximal
0 10 0 C ABCDABD>
1 4 5 D ABCDACABCDABD>
2 1 2 ? ABDABCDACABCDABD> *
3 14 3 D ABD> *
4 8 1 D ACABCDABD>
5 11 0 A BCDABD>
6 5 4 A BCDACABCDABD>
7 2 1 A BDABCDACABCDABD>
8 15 2 A BD>
9 9 0 A CABCDABD>
10 12 1 B CDABD> *
11 6 3 B CDACABCDABD> *
12 3 0 B DABCDACABCDABD>
13 13 3 C DABD>
14 7 2 C DACABCDABD>
15 16 1 B D>
16 0 0 > ?ABDABCDACABCDABD>
17 17 0 D >

Figure 3.4: Suffix array for UI log L = ?ABDABCDACABCDABD>

36 CHAPTER 3. CONTRIBUTION

Figure 3.5: LCP Tree of UI log L

maximal repeat; since l2 = ABD = (3; 1, 14) is NRE and NLE, it is NE. The repeat l = AB

is NE, given that it is NRE and NLE. In the example, ABD,ABCDA,C and DAB are all
maximal repeats.

Through the Burrows-Wheeler Transform, it is possible to identify NLE repeats. Col-
umn BWT in Figure 3.4 contains the Burrows-Wheeler transformation. BWT table is stored in
n bytes and constructed in one scan over the suffix array in O(n) time. The Burrows-Wheeler
Transform is defined for a log L as a table such that for every j, 0 j n,BWT [j] =
L[SA[j]� 1] if SA[j] 6= 0; else if SA[i] = 0 we set BWT [i] = >.

We introduce a critical concept for our algorithm: the lcp-interval tree. To shorten,
we call it lcp tree. Two intervals can have a parent-child relationship, if the child interval
(l; i, j) is a subinterval of the parent interval (p;m,n); (l; i, j) is a subinterval of (p;m,n)
if i m < j n and p < l. The intervals where only one repetition appears are called
singleton intervals [k, k] and are left implicit in the lcp tree.

From this parent-child relationship between LCP intervals a lcp tree can be built. The
root of this tree is the interval (0; 0, n � 1). The shorter prefixes appear near the root with
longer intervals and longer prefixes with shorter intervals towards the leaves. Each of the
lcp-intervals represented in the tree is called a node. The nodes with children are intermediate
nodes, and the ones without children are the leaves. Although the lcp trees are usually only
conceptual, we use them for explanation purposes. For example, AB (2; 0, 3) would be the
parent interval of (3; 2, 3) and (5; 0, 1) as seen in the rightmost subtree of Figure 3.5.

3.2.2 Algorithms to Discover Exact Patterns
We have the necessary ingredients to explain our approach with the structures described above.
Our algorithm computes the enhanced suffix array and finds all the maximal repeats through

3.2. DISCOVERING EXACT ROUTINES IN A UI LOG 37

the Algorithm 3, defined in Chapter 2 in order to build the lcp tree. Figure 3.5 presents the
lcp tree with only the maximal repeats for UI log L = ?ABDABCDACABCDABD>.
Please, notice that the lcp tree as a simplified example contains only three branches (subtrees).

However, the general case usually presents a more significant number of subtrees. It
is thus necessary to design pruning and selection strategies that identify the routines that
are likely to produce quality routines. Consequently, we define heuristics to select the most
relevant subtree to analyze. The intuition followed is to choose the subtree that legitimizes the
routine or routines that cover the highest percentage of the UI log. The first step is to prune
the tree; we remove the sequences containing a leaf cycle.

Definition 3.2.4 (Leaf cycle).

lc(p; l, r) = argmin
k

0 < k < p ^ 9n : l n r ^ L[SA[n]] == L[SA[n] + k] _ k = p

As explained in Definition 3.2.4, a leaf cycle lc represents the length of the sequence
associated with a node upto the point it starts again. To illustrate this concept, consider the
leaves of the rightmost subtree in Figure 3.5. The sequence ABD corresponding to the leaf
(3; 2, 3) with p = 3 does not have a repeated symbol, therefore, lc = p = 3. As counterexam-
ple, the sequence ABCDA in the leaf (5; 0, 1) starts again in the fifth position. Hence, lc = 4
cuts the repeating symbol A out of the sequence of interest, which becomes ABCD. The leaves
in an lcp tree are then characterized by an lcp-interval and a leaf cycle.

After pruning the tree, we keep only intermediate nodes that do not present a cycle,
yet the leaves may or may not present a cycle. Each node (intermediate or leaf) has a set of
symbols covered by their lcp intervals. This is formally defined in Definition 3.2.5.

Definition 3.2.5 (Pattern Symbols, Strict Coverage). Let n = hp; l, ri be a node in the LCP
Tree, and lc be the length of the sequence upto the point it starts to repeat as shown in Defi-
nition 3.2.4. Moreover, we assume that SA is the underlying suffix array. The set of symbols
covered by the underlying pattern, denoted as PS(n, lc) can be defined as follows:

PS(n, lc) = PS(hp; l, ri , lc) =

8
<

:

Sr
i=l

Slc
j=0 SA[i] + j if n is a leaf node

S
d2Desc(n) PS(d, lc) otherwise

Where the function Desc(n) returns all the children of the node n. Moreover, the strict
coverage of node n is given by

SCov(n, lc) =
|PS(n, lc)|

|L|

For each legitimized leaf hp; l, ri, with leaf cycle lc its Pattern Symbol (ps) is given by
the indexes stored in SA corresponding to each suffix within the length of the interval [l, r].
Taking into account the lcp tree used in previous examples, n = (3; 2, 3) with lc = 3. Then,
PS(n, lc) = 1, 2, 3, 14, 15, 16, corresponding to the two times the sequence ABD appears in
L
0. Figure 3.6 shows PS for both leaves of the subtree (1; 0, 4).

However, for intermediate nodes ps is given by union of the PS of all its descendants
returned by function Desc(n); thus, PS would propagate bottom-up within a lcp tree. For

38 CHAPTER 3. CONTRIBUTION

Figure 3.6: Pattern Symbol for leaf h(5; 0, 1), 4i

the case of node (1; 0, 4), ps would be the union of PS(h3; 2, 3i , 3) with PS(h3; 0, 1i , 4),
covering almost all the symbols in L, except for AC.

On the other hand, the Strict Coverage (scov calculates the percentage of the UI log L

that is covered by a node. We can see in Figure 3.5 the scov above the root of each subtree,
being the rightmost subtree the one with the highest scov. This process is the basis for our
approach to finding the exact routines, which is described by Algorithm 7 and Algorithm 8.

Algorithm 7 DFS of LCP Tree
1: procedure TRAVERSE(current, var patterns, var ps)
2: if current is LEAF then
3: lc PatternSize(current)
4: patterns patterns [{hcurrent 7! ExtractPattern(current, lc)i}
5: ps ps [{hcurrent 7! LeafPS(current, lc)i}
6: else
7: nodePatterns, nodePS ;, ;
8: for child 2 ChildrenOf(current) do
9: Traverse(child, patterns, ps)
10: nodePatterns nodePatterns [patterns(child)
11: nodePS nodePS [ps(child)
12: patterns patterns [nodePatterns
13: ps ps [{hcurrent 7! nodePSi}

Algorithm 7, the procedure Traverse performs a depth first search on the lcp tree, calcu-
lating recursively the exact routines and PS associated with each node. It receives as input the
current node (current), and two variables patterns and ps. Traverse has two cases, the same
cases as in Definition 3.2.5:

• Current node is a leaf node.

• Current node is an intermediate node.

Initially, Traverse receives a node, being the root of a tree. The first case we explore is
when the node is a leaf. The length of the cycle lc is returned by the function Pattern Size.
Then, ExtractPattern returns the exact routine found in the interval of current; the routine
length is given by lc. The routines are stored in the variable patterns and ps actualizes with
the the current leaf ps.

3.2. DISCOVERING EXACT ROUTINES IN A UI LOG 39

When current is an intermediate node, the algorithm explores all of its children recur-
sively and updates patterns and pswith each child’s patterns and ps. In Figure 3.5 the patterns
of the root of each subtree are the patterns of their leaves that are propagated through the in-
termediate nodes performing a bottom-up traversal. For example, the patterns associated with
the root of the rightmost subtree (root = (1;0,4)) are ABD and ABCD. The routines found
with Algorithm 7 are the same we presented at the beginning, corresponding to domestic and
international students.

Algorithm 8 Algorithm to extract the exact patterns
1: function EXACTPATTERNS(Root)
2: patterns, ps, cover, patternSet ;, ;, ;, ;
3: Traverse(Root, patterns, ps)
4: open Desc(root)
5: while SCov(cover)< ↵ ^ open 6= ; do
6: Let s 2 open w. highest coverage
7: if |ps(s) \ cover|/|ps(s) [cover| < � then
8: patternSet patternSet [patterns(s)
9: cover cover [ps(s)

10: open open \{s}
return patternSet

In Algorithm 8, function ExactPatterns receives as input the root of the complete lcp tree
(Root). The algorithm calls procedure Traverse, which receives Root and maps each node in
the tree with their respective patterns and ps. FunctionDesc(root), returns the roots of the sub-
trees, i.e. the children of Root. In the example, variable open stores (1; 12, 15), (1; 9, 11), (1; 0,
4). While there are nodes in open and the minimum coverage threshold ↵ has not been
achieved, the algorithm will continue to explore the nodes in open. Next, the algorithm se-
lects the subtree s with the highest coverage. Variable cover stores the ps of the discovered
routines, whereas patternSet stores the discovered routines per se.

Up to this point, we have discovered the exact routines of one task that might have
variations (e.g., the international and domestic students’ variations). However, in a UI log,
there could be multiple routines completely or partially different among them (in terms of
UIs). For example, a UI log might have two routines r1 = ABCD and r2 = XY Z and to
achieve high coverage, we should be able to find both of them.

Thus, it it critical to assess if other subtrees contain different routines. To this end, we
use the Jaccard Index to measure the similarity between cover and ps(s). Consider subtree
roots s1 = h1; 0, 4i, which is the subtree with the highest coverage and s2 = h1; 12, 15i the
second highest coverage. In the first loop iteration, the exact routines patterns(s1) are added
to patternSet and its ps to cover. So,

cover = {1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16}

Then, in the second iteration, if the threshold ↵ is higher than 0.875, the node with the highest
coverage is s2. With

ps(s2) = {3, 4, 5, 13, 14, 15}

40 CHAPTER 3. CONTRIBUTION

The algorithm computes the Jaccard Index, measuring the number of symbols shared by cover
and ps. It ranges from 0 to 1, 0 if they are completely different from each other, and one if they
are the same. If the Jaccard Index is smaller than the threshold �, the routines generated from
the subtree s2 are legitimized; otherwise, the tree is not considered in the analysis. Continuing
the example,

|ps(s2) \ cover|
|ps(s2) [cover| =

6

14
= 0.43

In this case, they share a high amount of pattern symbols, so it is likely s2 would be discarded
from the analysis. The algorithm returns the discovered routines, which for the example, are
ABD and ABCD. They correspond to the routines we are looking for. Please notice the
missing subsequence AC, considered noise, corresponding to the indexes 8, 9. This situation
can be appreciated better in Figure 3.6.

The algorithms present a greedy approach since it finds the local optima among the
subtrees, relying on two heuristics:

• Selecting the subtree that maximizes the Strict Coverage

• Selecting only the subtrees that minimize the number of UIs shared among them (Jac-
card Index).

Routines may present nested loops, hindering the identification of exact routines due to the
definition of lc. Therefore, to remove subtrees with nested loops from the analysis, we calcu-
lated the number of instances from each leaf in a subtree. Then, we calculate the interquartile
range (IQR) and apply the formula:

bottom = Q1� 1.5 ⇤ IQR; top = Q3 + 1.5 ⇤ IQR;

Consequently, subtrees with nested loops appear as outliers and are discarded.
With our approach in the example, we have achieved a coverage of 0.875. However, in a

real-life UI log, the coverage could be seriously reduced if there are permutations in the order
of the actions or mistakes. Therefore, it is critical to develop an algorithm able to identify
approximate candidate routines. In the following section, we address this issue and present
the approach we developed using approximate string matching techniques.

3.3 Approximate matching
At this point, we have collected all the exact candidate routines in the log. However, the exact
routines found in the previous example do not cover the UI log completely. The reason lies
in the human errors performed during the execution of the routine or variations in the order
(permutations). In Figure 3.2, the subsequence AC is considered as noise, and these symbols
are lost from the coverage. Hence, finding all the exact routines is not sufficient to cover the
full extension of the UI log. To solve this problem, we part from the assumption that the errors
occur less frequently than the correct exact routines, but they may happen more than once.

Noise may be identified in two cases:

• Leaves with very low frequency. These type of leaves are not legitimized as exact
routines by the ExactPatterns algorithm. Therefore, they are considered as noise.

3.3. APPROXIMATE MATCHING 41

Figure 3.7: LCP Tree of UI log M

• Singletons. They are not shown in the LCP tree and are represented as an interval with
only one occurrence in the form of [l, l]

The lcp tree of UI log M is in Figure 3.7. Assuming that we have already applied Algo-
rithm 8 and extracted the exact routines. We work with the right subtree, given that it is the
one with the highest coverage. The right node (5; 0, 1) occurs two times while the sequences
associated with the other leaves occur 4 and 5 times. Hence, node (5; 0, 1) is considered noise.
Furthermore, the second case of noise is also present in the same subtree. Please notice that
between node (3; 8, 13) and its respective child, the interval [12, 13] is missing. The two exist-
ing singleton intervals [12, 12] and [13, 13] share with its parent the first three symbols ABD,
which is the lcp-value in the interval [8, 13], yet the next symbols differ. This scenario happens
once again between node (4; 2, 7) and its child (6; 2, 6), with another missing singleton [7, 7],
sharing the first four symbols with its parent.

To retrieve the missing sequences, we use Algorithm 12. Our approach takes as input:

• n the length of the exact routine

• k the maximum difference

• query pattern the interval corresponding to the exact routine

• approximate interval or the search interval

Our algorithm does not exist in the literature; it is a non-trivial adaptation from the algorithm
for the k-difference problem by Huynh et al. [21] and the algorithm to answer decision queries
in [1]. This algorithm was not intuitively deduced and required an in-depth analysis through
multiple stages of experimentation with UI logs of varying degrees of complexity. In fact, our
algorithm parts from Lemma 2. Lemma 2 uses the suffix array (SA) and the inverse suffix
array (iSA). iSA is a table such that iSA[SA[q]] = q for any 0 q n. Given two prefixes
with their lcp-intervals P1 = (m1; st1, ed1) and P2 = (m2; st2, ed2), Lemma 2 finds the
interval [st, ed] such that P1P2. It receives as input both intervals and the length of P1. As an
example, take P1 = AB,m1 = 2 and P2 = C, with intervals [0, 13] and [31, 40], respectively.

42 CHAPTER 3. CONTRIBUTION

Algorithm 9 Given two prefixes P1 and P2, Lemma 2 finds the interval [st, ed] for which
P1P2

1: function LEMMATWO([st1, ed1], [st2, ed2],m1)
2: st min([8st 2 [st1, ed1] s.t. st2 iSA[SA[st] +m1] ed2])
3: ed max([8ed 2 [st1, ed1] s.t. st2 iSA[SA[ed] +m1] ed2])
4: return [st, ed]

Wewant to know the interval for P1P2 = ABC. The result ofLemmaTwo([0, 13], [31, 40], 2)
is the interval [2, 7] corresponding to the sequence ABC.

Function getInterval receives as input a symbol in M and returns its interval. This
function is an adaptation of Algorithm 6. For example, if we input A in getInterval, the
result is the interval in SA of symbolA. Hence, getInterval(A) = [0, 13]. We use getInterval
in Deflate in Algorithm 10. Deflate computes the interval of the symbol c in position m within
the interval [st2, ed2] in the UI log M . For c, [stc, edc] = getInterval(c). Then, LemmaTwo
obtains the interval for which P1c, with intervals [st1, ed1] and [stc, edc]. The length of P1 is
given by offset + m.

Algorithm 10 Function Deflate
1: function D([st1, ed1], [st2, ed2], offset,m)
2: return LemmaTwo([st1, ed1], getInterval(M [SA[st2] +m]), offset+m)

Function Translate in Algorithm 11, takes as input an interval and the offset. The input
interval [st, ed] is an interval over the local subtree (the one with the highest coverage). The
function translates [st, ed] from the local subtree to an interval in the subtree of the symbol in
positions SA[st] + offset and SA[ed] + offset. In our running example, we will use as input for
Translate the interval [0, 1] with an offset = 2. The result of Translate([0, 1], 2) is the interval
[22, 23]. The prefix of the suffixes in interval [0, 1] is AB, then, the symbol in position SA[st]
+ offset is B. This resulting interval is located in the subtree beginning with B.

Algorithm 11 Function Translate
1: function T([st, ed], offset)
2: return (iSA[SA[st] + offset], iSA[SA[ed] + offset)

Now, with the necessary functions defined, we introduce the main algorithm to compute
the approximate patterns from a given subtree. The approach takes into account only the
insertions and deletions but not the replacements. Algorithm 12 receives two intervals: the
interval [stq, edq] for a legitimized routine extracted with Algorithm 8 (exact interval) and
the approximate interval [sta, eda]. Besides the two intervals, the algorithm needs the length
of the exact routine n and the maximum number of differences k. We use a heap h to store
the candidate intervals and a list closed to store the approximate intervals found. Below, we
enumerate the variables used in the algorithm and what they represent.

• edop: number of current edition operations. It should be less than k.

3.3. APPROXIMATE MATCHING 43

• mq: position in the approximate pattern.

• ma: position in the query pattern.

• [lsta, leda]: approximate interval in the local subtree.

• summary: string that summarizes the operations performed.

The algorithm initializes the heap with the approximate interval. The exact interval is trans-
lated as [tstq, tedq]; if mq = 0 then [tstq, tedq] = [lsta, leda], which applies for the first itera-
tion of the loop. The function getChildIntervals has been defined in Algorithm 6 and returns
all the child local intervals [io, jo] of a given node. We translate each child and compute the
lcp between the translated query interval and the translated child. Next, we have three cases:

• if the complete pattern has been completely covered we report the interval after deflating
it (conditional in line 10).

• if the translated query interval is a subinterval of the translated child interval (condi-
tional in line 14).

• if the number of edit operations is less than the maximum number of operations (condi-
tional in line 19).

In the first case, mq + l is the number of symbols covered in the query pattern, and if
the sum is greater than the length of the query pattern, we report the deflated approximate
interval. Please notice that the interval [lsta, leda] is an interval in the local subtree, while the
interval [i, j] is located in a translated subtree. The result of this function should be an interval
in the local subtree. The discovered interval is added to the closed list to avoid analyzing the
same pattern in future iterations. When a pattern is found, we obtain its PS and add it to the
coverage of the exact routine.

The second case addresses the situation where the translated query interval [tstq, tedq]
is a subinterval of the translated child interval. If the number of edit operations is zero, we
push into the heap h a tuple with the local child interval, which corresponds to an extended
approximate interval. In the case where the number of edit operations is greater than zero,
we push the child’s local interval into the heap, yet actualizing the variables mq and ma by
advancing the length of the lcp.

If the previous two cases are not true, we verify if the query pattern has already been
covered and report it, following the same process as with the first case. If the pattern has
not been covered, we push the tuples in the heap for the operations insert and delete. The
operation insert advances one symbol on the side of the approximate pattern (ma + l + 1).
Delete advances one symbol on the side of the query pattern (mq + l+1). The number of edit
operations is increased by one, and the values of mq, ma and the local approximate interval
(through the Deflate function are actualized.

To illustrate this process, we use our running example in Figure 3.7. Given that the
rightmost subtree has the highest coverage the algorithm selects it. The nodes with the highest
coverage (5;8,11) and (6;2,6) are validated as exact routines. In the running example, the root
of the subtree [0, 13] is the approximate interval, we take as exact routine the leaf (6; 2, 7)
with length n = 4 and k = 1. Hence, [sta, eda] = [0, 13] and [stq, edq] = [2, 6]. Please notice

44 CHAPTER 3. CONTRIBUTION

in Figure 3.7 that [0, 13] has three children. We will analyze the cases of the children (4; 2, 7)
and (5; 0, 1).

Initially, all the variables are zero. We know the Translate function for every interval
will produce the same input interval given that ma = mq = 0. The child to be analyzed is
[0, 1]; lcp between [0, 1] and [2, 6] is l = 2. The first condition is not met and the exact pattern
is not completely covered given thatmq + l < n. The second condition is not met either. The
third condition is fulfilled but since mq + l + 1 < n, we push the tuples for insert and delete
operations. Function Deflate D([0, 13], [0, 1], 0, 3), finds the interval for M [SA[0] + 3] = C.
So, LemmaTwo([0, 13], [31, 40], 3). Hence, we push into the heap: h1, 2, 3, [0, 12], '- -i 'i. A
similar situation applies to the delete operation.

For the second child, with interval [2, 7] when we compute its lcp with the exact routine
[2, 6], l = 4 and [2, 6] is a subinterval of [2, 7]. The condition mq + l � n holds; thus, we
report the interval and summary. The summary is similar to the editing trace mentioned in
Chapter 2, as it stores the edit operations performed to identify the approximate pattern. The
edit operations insert and delete are represented as ”i” and ”d”. If symbols in the exact and
approximate pattern are the same, we represent the unchanged symbols with ”-”. This process
repeats until there is no element in the heap.

Up to this point, we have discovered the exact and approximate patterns. Now, we have
to assess the quality of the discovered routines and determine if they are significant. This is
a vital step to evaluate the effectiveness of our approach and it will be the subject of the next
chapter.

3.4 Chapter Conclusions
This chapter introduced the two developed methods to identify routines from a UI log: the
exact matching approach and the approximate matching approach. The first one is a heuristic-
based algorithm seeking to maximize the Strict Coverage and minimize the Jaccard. More-
over, we have seen that the algorithm to find the exact routines is the basis of the approximate
algorithm due to the extracted exact patterns being the input for the approximate algorithm.
Approximate matching techniques allow us to analyze the patterns with noise that the exact
matching method is not able to identify.

The chapter focused on explaining our methods and the basis behind them. However,
to assess the effectiveness of our approaches, we must answer whether the extracted patterns
are significant or not, leading us to select appropriate metrics to evaluate the routines. On that
account, we devote the next chapter to analyze the results of both approaches and comparing
them to the State of the Art approach, already reviewed in Chapter 2.

3.4. CHAPTER CONCLUSIONS 45

Algorithm 12 Algorithm to find approximate patterns
1: function APPROXIMATE MATCHING([stq, edq], [sta, eda], n, k)
2: h, closed ;, ;
3: offer(h,h0, 0, 0, [sta,eda],''i)
4: while h 6= ; do
5: edop, mq, ma, [lsta, leda], summary take(h)
6: [tstq, tedq] T([stq, edq],mq)
7: for [io, jo] 2 getChildIntervals([lsta, leda]), s.t. [io, jo] * closed do
8: [i, j] T([io, jo], ma)
9: l LCP(min(tstq, i), max(tedq, j))

10: if mq + l � n then
11: newInt D([lsta, leda],[i,j],ma,n-mq)
12: REPORT (newInt, summary + '-'*(n-mq))
13: closed closed [newInt
14: else if [i, j] ◆ [tstq, tedq] then
15: if edop = 0 then
16: offer(h,h0, 0, 0,[io, jo],''i)
17: else
18: offer(h,hedop, mq + l, ma + l, [io, jo], summary+'-'*li)
19: else if edop < k then
20: if mq + l + 1 = n then
21: newInt D([lsta, leda],[i,j],ma, l)
22: REPORT(newInt, summary+'-'*l+'d'))
23: closed closed [newInt
24: else
25: offer(h,hedop+1, mq+l,ma+l+1, D([lsta,leda],[i,j],ma,l+1), summary+'-'*l+'i'i)
26: offer(h,hedop+1, mq+l+1, ma+l, D([lsta,leda],[i,j], ma,l), summary+'-'*l+'d'i)

return results

Chapter 4

Evaluation

To assess the effectiveness of the algorithms, we apply our approach to artificial and real-life
UI logs in a controlled environment and evaluate the quality of the resulting routines. First,
we describe the datasets used for the experiments. Besides the artificial and real-life logs, we
generated more complex logs to test the algorithms. Moreover, we select adequate metrics
and describe the process to adapt and calculate them to evaluate the quality of the discov-
ered routines. Next, we analyze the results obtained based on the provided ground truths.
Furthermore, we compare our results against the ones obtained with the Graph Approach.

4.1 Datasets
We rely on 11 UI logs, which can be divided in: nine artificial logs and two real-life logs
in a controlled environment. The artificial logs (CPN1-CPN9) are noise-free and segmented.
These logs were generated from Coloured Petri Nets (CPNs) [7]. The logs contain a different
number of routines of varying complexity. The first six CPNs have a low degree of complexity,
with clear routines with a specific goal. CPN1 represents the sequence where the user opens a
file, opens a webpage, logs in, awaits the server’s response, and copy data from the webpage to
the file. CPN2 follows the same sequence, although it includes an error in the login action: the
user entering the wrong credentials. CPN3 is an extension of CPN2, where the user performs
unsuccessfully the login action multiple times until they cancel the procedure. CPN4 stems
from CPN1, injecting non-deterministic actions such as random button clicks and user inputs
with different login credentials for each routine trace. For CPN5 and CPN6, the number of
non-deterministic actions increases. The last three CPNs have the highest complexity. CPN8
includes a conditional, where a routine is only executed if a condition is met. CPN9 merges
CPN5 and CPN6 and includes a conditional based on input data.

The real logs in a controlled environment Student Records (SR) and Reimbursement (RT)
were recorded with the tool Action Logger. The tool stores all context parameters associated
with each action. SR simulates copying students’ data from a spreadsheet to a Web form,
while RT simulates the task of filling reimbursement requests. Both logs contain fifty task
traces, where some of the task traces contain noise representing user mistakes.

Table 4.1 shows the characteristics of the logs we use to test our approach. Particularly,
we show the number of routine variants as reported by the user.

47

48 CHAPTER 4. EVALUATION

UI log # Reported
Routines

#Routine
Variants

#Taks
Traces

#Total
UIs

CPN1 1 1 100 1400
CPN2 3 2 1000 14804
CPN3 7 6 1000 14583
CPN4 4 1 100 1400
CPN5 36 12 1000 8775
CPN6 2 2 1000 9998
CPN7 14 7 1500 14950
CPN8 15 8 1500 17582
CPN9 38 18 2000 28358

Student Records (SR) 2 2 50 1539
Reimbursement (RT) 1 1 50 3114

Table 4.1: UI logs

UI log Length RT SR
IL401 40 22 18
IL402 40 20 20
IL501 50 21 29
IL502 50 25 25
IL601 60 28 32
IL602 60 33 27
IL801 80 36 44
IL802 80 30 50

Table 4.2: Information of the interleaved UI logs

Besides the 11 logs presented in Table 4.1, we use: eight more logs built from SR and
RT obtaining random samples from both logs, simulating when a user works simultaneously
on two tasks; and the concatenation of SR and RT labeled SRRT+ and RTSR+, i.e., the user
performs one task first and then the other. The information regarding the length and number
of instances from SR and RT is shown in Table 4.2.

4.2 Metrics
To answer the question of howwe can assess the quality of a candidate routine, we collected all
the ground truth routines for each UI log. The ground truth routines for CPNs were extracted
from the variants observed in the logs. The number of ground truths for each artificial log
is stated in column Number of routine variants from Table 4.1. Column Number of routines
reported is the number of routines per UI log in [29]. For SR and RT, we know the routines
performed by the user, and they represent the ground truth to evaluate the approach.

To assess the quality of the discovered routines, we measure their similarity with the
ground truth routines. There are different ways to calculate the similarity between the two

4.2. METRICS 49

routines. We use three different metrics, Jaccard index (JI), Rand index (RI), and Coverage,
the last one has two variants. The first two metrics measure the degree of similarity, while
the third one measures how much of the log behavior is captured by the routines. Neither JI
nor RI penalize the order of the UIs in a routine, following the assumption that a routine may
have permutations in the order of the UIs are executed. To introduce the metrics we have to
calculate the confusion matrix. Consequently, we describe how we calculate the values for
the confusion matrix in the context of UI log.

• True positive (TP) values are the UIs shared by the ground truth and the discovered
routines.

• False positives (FP) represent UIs in the discovered routine but not in the ground truth.

• True negatives (TN) are UIs not in the ground truth and not in the routine.

• False negatives (FN) are in the ground truth but not in the discovered routines.

Given the set of discovered routines and the set of ground truth routines, we calculate
the Levenshtein Edit Distance of each routine with the ground truths, and assign the closest
match. With the closest match we calculate the value of the metrics of interest and assign the
results of the metrics as a quality score for the routines.

4.2.1 Jaccard index
Jaccard index, which measures the degree of similarity between the discovered routine and the
ground truth. The Jaccard index between the routine found by the algorithm and the ground
truth is given by the ratio

JC =
TP

TP + FP + FN

In the RPM context, the JI between the closest match and the routine can also be calculated as
the number of UIs contained in both routines over the sum of the lengths of the two routines.
It has a value between 0 and 1, with 0 indicating that there is no similarity and 1 that the
routines are exactly the same.

4.2.2 Rand index
Besides JI, we use Random Index to measure the similarity between ground truths and the
discovered routine. We consider this metric, given that JI disregards the elements that are
different in both routines (TN values), as we consider the relevance of the TN values in the
routines.

RI =
TP + TN

TP + TN + FP + FN

Similarly to the JI, RI result ranges from 0 to 1, 0 indicating no similarity and 1 indicating
total correspondence.

50 CHAPTER 4. EVALUATION

4.2.3 Coverage
The pattern coverage considers the percentage of the log that is covered by the pattern occur-
rence. The goal is to reach a very high coverage with fewer routines. We defined the coverage
as the Strict node coverage in Definition 3.2.5. The coverage associated with each routine
(leaf coverage), we use:

Coverage =
|PS(node, lc)|

|L|
When we want the total coverage with the routines found by the exact routines,

TotalCoverage =
|PS(rootsubtree)|

|L|

If there are approximate patterns, they are treated as a leaf and their ps is added to the exact
routine ps. Then, we can calculate the TotalCoverage or the coverage per routine of the exact
routines including the approximate ps.

4.2.4 Effective Coverage
We defined an additional metric to make the coverage of Graph Approach comparable with
the coverage achieved by our method. The effective coverage counts the exact occurrences
of the reported patterns in the UI log. The effective coverage is calculated per pattern and is
defined as the ratio

n ⇤ |P |
|L|

Where n is the number of occurrences given a pattern P .

4.3 Results
In the following sections, we divided the results of the artificial logs and the real-life logs.
Initially, we use three evaluation metrics: Jaccard Index, Random Index, and Coverage (node
coverage and effective coverage). We present the coverage achieved by our approach in two
columns, Exact Cov refers to the coverage finding only the exact patterns. App Cov shows
the coverage after retrieving approximate routines using approximate pattern matching tech-
niques. All the approximate matching tests used the maximum number of edit operations
k = 7 We implemented our algorithm in C++ and the experiments were executed on a Win-
dows 10 laptop with an Intel Core i7-6700HQ CPU 2.60GHz and 8GB RAM.

4.3.1 Artificial and real-life logs
We compare the results of our algorithms Exact and Approximate against the Graph Approach
in Table 4.3 and Table4.4, which implemented four criterion to select the candidate routines:
Length, Frequency, Cohesion, and Coverage. Artificial logs have very similar values for
the exact and approximate coverage. When the perfect coverage is not achieved through
Approximate Matching, the identified subtree does not correspond to the first symbol of the

4.3. RESULTS 51

routine, and the first instance of the routine is lost. For CPN9, we legitimized only six routines
with the highest number of instances among the twenty-nine the algorithm finds due to the low
coverage of the left-out routines. In the case of CPN5, the 36 routines had a significant number
of occurrences in the log.

For the real-life logs, the difference between the achieved coverage of the exact method
and the approximate is wide, given that some noise was introduced to the logs. The results for
the concatenated logs SRRT+ and RTSR+ are the same.

For the CPN logs, the metrics JI and Coverage metrics were similar. However, as the
complexity of the logs increases, we may notice that our approach, with the approximate
matching algorithm, has better performance, yet the difference between both approaches is
low. The best result from the Graph Approach is achieved by the Cohesion criterion, being
Length almost always as high as Cohesion.

52 CHAPTER 4. EVALUATION

UI log #Selection
Criterion

Discovered
Routines

Routine
Length

Coverage JI

CPN1

Frequency 1 14.00 1.00 1.00
Length 1 14.00 1.00 1.00
Coverage 1 14.00 1.00 1.00
Cohesion 1 14.00 1.00 1.00
Exact 1 14.00 0.99 1.00
Approximate 1 14.00 1.00 1.00

CPN2

Frequency 3 6.33 0.99 1.00
Length 2 14.50 0.95 1.00
Coverage 2 14.00 0.99 1.00
Cohesion 2 14.50 0.95 1.00
Exact 2 14.50 0.99 1.00
Approximate 2 14.50 0.99 1.00

CPN3

Frequency 4 5.75 0.95 0.51
Length 3 14.33 0.95 1.00
Coverage 3 9.67 0.96 0.83
Cohesion 3 14.33 0.93 1.00
Exact 6 17.00 0.99 1.00
Approximate 6 17.00 1.00 1.00

CPN4

Frequency 1 12.00 0.86 0.86
Length 2 14.00 1.00 1.00
Coverage 1 13.00 0.93 0.93
Cohesion 2 14.00 1.00 1.00
Exact 2 14.00 0.99 1.00
Approximate 2 14.00 0.99 1.00

CPN5

Frequency 6 1.67 0.86 0.21
Length 7 7.29 0.83 0.85
Coverage 4 3.75 0.80 0.46
Cohesion 8 7.5 0.86 0.91
Exact 36 8.833 0.99 0.85
Approximate 36 8.883 0.99 0.85

CPN6

Frequency 3 4.67 1.00 0.49
Length 2 10.00 1.00 1.00
Coverage 3 4.67 1.00 0.49
Cohesion 2 10.00 1.00 1.00
Exact 2 10.00 0.99 1.00
Approximate 2 10.00 1.00 1.00

Table 4.3: Comparing the quality of the discovered routines

4.3. RESULTS 53

UI log #Selection
Criterion

Discovered
Routines

Routine
Length

Coverage JI

CPN7

Frequency 7 2.43 0.91 0.26
Length 7 9.57 0.88 0.99
Coverage 6 3.67 0.91 0.39
Cohesion 7 9.43 0.93 0.97
Exact 14 10.10 0.99 1.00
Approximate 14 10.10 1.00 1.00

CPN8

Frequency 5 4.20 0.75 0.33
Length 6 10.67 0.91 0.97
Coverage 5 7.60 0.89 0.62
Cohesion 6 10.67 0.91 0.97
Exact 15 10.67 0.99 1.00
Approximate 15 10.67 1.00 1.00

CPN9

Frequency 5 5.20 0.82 0.40
Length 6 14.67 0.95 1.00
Coverage 5 6.60 0.88 0.51
Cohesion 6 14.67 0.95 1.00
Exact 6 14.69 0.97 0.99
Approximate 6 14.69 0.99 0.99

SR

Frequency 3 10.00 0.96 0.36
Length 3 28.33 0.98 0.94
Coverage 2 15.50 0.96 0.53
Cohesion 3 28.33 0.98 0.94
Exact 2 30.00 0.78 0.97
Approximate 2 30.00 0.98 0.97

RT

Frequency 3 18.67 0.90 0.29
Length 3 56.33 0.96 0.83
Coverage 2 30.50 0.45 0.45
Cohesion 3 56.33 0.96 0.83
Exact 2 62.00 0.75 0.95
Approximate 2 62.00 0.98 0.95

SRRT+

Frequency 5 16.80 0.90 0.37
Length 4 45.25 0.91 0.93
Coverage 2 42.50 0.86 0.92
Cohesion 4 45.25 0.91 0.93
Exact 4 46.00 0.76 0.96
Approximate 4 46.00 0.97 0.96

RTSR+

Frequency 5 16.80 0.90 0.37
Length 4 45.25 0.91 0.93
Coverage 2 42.50 0.86 0.92
Cohesion 4 45.25 0.91 0.93
Exact 4 46.00 0.76 0.96
Approximate 4 46.00 0.97 0.96

Table 4.4: Comparing the quality of the discovered routines

54 CHAPTER 4. EVALUATION

UI log Method JI RI # Rou-
tines

Average
Length

Cover Eff
Cover

Exec
Time (s)

IL401
Graph 0.8 0.871 4 53.8 0.89 0.51 5.202
SAExact 0.834 0.896 8 39.5 0.65 0.46
SAApprox 0.81 0.467

IL402
Graph 0.923 0.950 5 45.75 0.88 0.70 4.771
SAExact 0.828 0.841 5 68.2 0.592 0.055
SAApprox 0.592 0

IL501
Graph 0.863 0.912 5 44.60 0.87 0.65 8.58
SAExact 0.748 0.839 5 47.6 0.799 0.075
SAApprox 0.97 0.31

IL502
Graph 0.760 0.847 5 60.2 0.89 0.51 5.866
SAExact 0.849 0.885 7 58.91 0.78 0.12
SAApprox 0.92 1.100

IL601
Graph 0.706 0.88 5 57.20 0.89 0.53 5.692
SAExact 0.832 0.850 5 55.80 0.66 0.106
SAApprox 0.95 0.945

IL602
Graph 0.807 0.811 6 54.67 0.89 0.84 7.776
SAExact 0.798 0.813 4 62.00 0.741 0.178
SAApprox 0.97 0.641

IL801
Graph 0.797 0.865 6 57.5 0.84 0.70 5.729
SAExact 0.956 0.973 4 49.4 0.72 0.157
SAApprox 0.94 0.468

IL802
Graph 0.799 0.880 6 47.00 0.87 0.77 6.828
SAExact 0.954 0.978 7 47.09 0.86 0.123
SAApprox 0.94 1.15

Table 4.5: Results of the interleaved logs

4.3.2 Interleaved logs

We presented the information of the interleaved logs in Table 4.2, where the logs were built
by alternating routines from RT and SR through a sampling process. Below we compare the
results of the algorithms developed and the Graph Approach. Nevertheless, to avoid cluttering,
we compare only the results of our two methods only against their best approach, namely the
cohesion-based variant and, given that the values of SAExact and SAApprox are the same except
for the coverage, we only added the value for the column corresponding to coverage. As seen
in Table 4.5, our approach has a good performance in terms of coverage, when the UI logs are
larger, yet with the logs with 40 instances of SR and RT, the coverage is low, specially in the
log IL402.

We observe a drop in the effective coverage obtained from the Graph Approach. More-
over, as we examine in great detail, we found that there are even cases where a routine has no
occurrence observed in the UI log. To elaborate further, we break down the effective coverage
of UI log IL601. Five routines are the result of the Graph Approach. Information regarding

4.4. VALIDITY THREATS 55

each routine is in Table 4.6. The Coverage column shows the coverage reported by the algo-
rithm, while the Effective Coverage column coverage of the exact occurrences of the routines.
Please notice that only two of these routines have real occurrences in the log. Hence, we may
conclude that some of the reported routines are approximate patterns.

Pattern Length Coverage Effective Coverage
P1 61 0.29 0.318
P2 100 0.2 0
P3 31 0.18 0.216
P4 51 0.14 0
P5 40 0.08 0

Table 4.6: Information of the routines found by the Graph Approach

4.4 Validity Threats
After analyzing the reported coverage and the effective coverage, we notice the drop in the
value of the second metric for every UI log due to the exact occurrences of the reported routine
being low. Some of the routines do not occur in the UI log, being approximate patterns. By
contrast, our approach can back up the coverage results with an exact reference of the observed
instance in the UI log and characterize the discrepancy of the approximate routines through the
exact number of edit operations. The exact approach reports higher levels of actual routines
found in the log, and the Graph Approach presents uncertainty in the reliability of the reported
data.

At first glance, we could be prompted to dismiss the validity of the Graph Approach’s
discovered routines. Nevertheless, there are aspects in the evaluation that are not transparent.
With the analysis, we cannot gauge the degree of uncertainty in their results. An alternative to
this situation search for approximate patterns and quantify the number of edition operations
that would legitimize every instance and its respective contribution to the coverage, similarly
to the approximate matching technique. Furthermore, we can either determine the level of
overlapping in the routines only using the effective coverage metric. To go through this level
of detail, we would need to analyze thoroughly the code implemented in their approach.

Since there exists a degree of uncertainty in the Graph Approach’s reported results,
due to their high-level evaluation, a more detailed evaluation of the routines is needed. We
consider that a further examination is required to assess in an objective manner and with
more precision the quality of their method, given that the patterns they are reporting, are
approximate yet they do not report the edit distance, nor the duplicate symbols or the symbols
in a different order. We would need to redefine their high-level vision, which could possibly
turn into a biased evaluation.

It is then required to create a deeper evaluation, possibly including the design of new
evaluation metrics that allow us to assess the quality of the routines objectively in the RPM
context. Consequently, such analysis should not be conducted unilaterally to avoid perception
bias, so a collaboration with another university would be desirable. We foresee an opportunity

56 CHAPTER 4. EVALUATION

to work with the authors of the State of the Art algorithm. The detailed analysis in collabo-
ration with another research team is beyond the work of the present Thesis project, and we
consider it as future research work.

4.5 Limitations
Our approach can discover interesting routines from UI logs where the user performs one
or more tasks. It is capable of discovering more than one routine in the UI log. However,
when the routines are interleaved, this is applicable if the routines are executed more than one
consecutive time. Otherwise, if two routines are interleaved among each other, performing
only one time each routine, our approach likely detects them as one routine composed by the
concatenation of both.

The approach identifies multiple variants of the same routine if there is a slight vari-
ation in the UIs through approximate matching techniques. Since our approach is designed
for logs where the routines instances are consecutive, if the user performs multiple routines
simultaneously, i.e., interleaving UIs of one routine and then UIs of the other, the algorithm
won’t be able to discover significant routines. The situation is similar to when the routines are
interleaved.

Furthermore, the algorithm is capable of discovering multiple routines, which has been
proven with the concatenated and interleaved logs. However, the algorithm can discover a
routine only if it appears in the log at least twice. If a routine has multiple variants, and each
variant does not have enough support, the algorithm will not be able to find it.

Finally, the approach can handle multiple variants, nevertheless, in the case of permu-
tations (sections of the routine that can be performed in a different order), if the number of
interchanged activities is high (more than the maximum edit operations), the algorithm would
not discover the routine and some of the occurrences could be lost. Even increasing the maxi-
mum number of edit operations would increase the execution time. Therefore, we would need
to adequate the algorithm to handle permutations more efficiently.

Chapter 5

Conclusions and Future Work

This research presented an approach to discover candidate routines from UI logs for automati-
zation in Robotic Process Automation. The project’s main contribution is developing an exact
and approximate approach to identify candidate routines for RPA. As a first step, our approach
extracts exact repetitive routines. The UI log is treated as a sequence of labels, where a la-
bel represents a UI. Each label is composed of a combination of relevant parameters, which
where selected manually. Consequently, the UI log can be processed with string matching
techniques. The algorithm has a greedy point of view based on two heuristics that allow us to
select the best local optimal subtree or subtrees (by maximizing its coverage and minimizing
Jaccard) and legitimize the routines with coverage higher than a certain threshold. The second
part of the approach consists of, once having the best subtree (or subtrees), finding all the ap-
proximate patterns within a difference of k symbols. Moreover, we selected a set of metrics,
that we consider appropriate to evaluate the routines. The empirical evaluation shows that the
algorithm is capable of finding relevant routines and is robust to a certain degree of noise. The
approach has been implemented as in C++ and evaluated with real-life and synthetic logs.
There are still limitations that we have addressed before and constitute the basis for future
work.

5.1 Future Work
In the previous chapter, we have analyzed the results of both approaches. Based on the results,
we presented limitations the algorithm has to tackle. We aim to address them as future work.
Below are the main tasks to work on to improve our current algorithm:

1. We plan to develop an algorithm to select relevant parameters that characterize the UIs
automatically. This step has proven to be crucial for the discovery of candidate routines.
Greedy approaches can be explored to propose a plausible solution for this problem,
particularly the Gradient Descent algorithm. Other optimization algorithms can be used
in this scenario.

2. We aim to complement our approach by improving our algorithm to be able to handle
the permutations of the UIs in the routine (actions are performed in a different order).
A possible approach is to use more flexible notions of patterns such as in [8] that do not
consider the order of the events in an event log.

57

58 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

3. We plan to collaborate with another university (especially with the authors of the Graph
Approach) to conduct a more detailed evaluation to assess the quality of the routines
and, consequently, the effectiveness of both approaches. Specific evaluation metrics
should be developed to this end.

Another task to fulfill is related to the step in the RPM process pipeline, ”Candidate
routines identification”, which can be decomposed into two substeps. The first substep refers
to the problem already tackled with this approach. However, to address the second substep,
”Identifying routines amenable for automation”, we develop a metric to assess the extent to
which a routine is automatable and classify the routines as semi- or fully automatable routines.
Some approaches [18] use the frequency of execution of a task to decide whether the task is
automatable or not. Nevertheless, this approach is unreliable. Leno et al. [31] propose the use
of the concept of determinism. A bot would be able to execute a fully deterministic routine, but
a semi deterministic routine can be split into two automatable actions if a non-deterministic
action happens in the middle. Hence, there is a need to develop an approach to measure the
automatability of candidate routines.

Bibliography

[1] ABOUELHODA, M. I., KURTZ, S., AND OHLEBUSCH, E. Replacing suffix trees with
enhanced suffix arrays. Journal of Discrete Algorithms 2, 1 (2004), 53 – 86. The 9th
International Symposium on String Processing and Information Retrieval.

[2] ALEXANDER, J., COCKBURN, A., AND LOBB, R. Appmonitor: A tool for recording
user actions in unmodified windows applications. Behavior Research Methods 40, 2
(May 2008), 413–421.

[3] AMIR, A., APOSTOLICO, A., LANDAU, G. M., LEVY, A., LEWENSTEIN, M., AND
PORAT, E. Range lcp. Journal of Computer and System Sciences 80, 7 (2014), 1245–
1253.

[4] BAYOMIE, D., AWAD, A., AND EZAT, E. Correlating unlabeled events from cyclic
business processes execution. In Advanced Information Systems Engineering (Cham,
2016), S. Nurcan, P. Soffer, M. Bajec, and J. Eder, Eds., Springer International Publish-
ing, pp. 274–289.

[5] BAYOMIE, D., AWAD, A., AND EZAT, E. Correlating unlabeled events from cyclic
business processes execution. In CAiSE (2016).

[6] BOSCO, A., AUGUSTO, A., DUMAS, M., LA ROSA, M., AND FORTINO, G. Discov-
ering automatable routines from user interaction logs. In Business Process Management
Forum (Cham, 2019), T. Hildebrandt, B. F. van Dongen, M. Röglinger, and J. Mendling,
Eds., Springer International Publishing, pp. 144–162.

[7] BOSCO, A., AUGUSTO, A., DUMAS, M., ROSA, M. L., AND FORTINO, G. Discover-
ing automatable routines from user interaction logs. In BPM Forum (2019).

[8] BOSE, R. P. J. C., AND AALST, W. Abstractions in process mining: A taxonomy of
patterns. In BPM (2009).

[9] CHACÓN MONTERO, J., JIMENEZ RAMIREZ, A., AND GONZALEZ ENRÍQUEZ, J.
Towards a method for automated testing in robotic process automation projects. In 2019
IEEE/ACM 14th International Workshop on Automation of Software Test (AST) (May
2019), pp. 42–47.

[10] CHEN, Z., FOWLER, R., AND FU, A. Linear time algorithms for finding maximal
forward references. Proceedings ITCC 2003. International Conference on Information
Technology: Coding and Computing (2003), 160–164.

59

60 BIBLIOGRAPHY

[11] COOLEY, R., MOBASHER, B., AND SRIVASTAVA, J. Data preparation for mining world
wide web browsing patterns. Journal of Knowledge and Information Systems 1 (04
1999).

[12] COOLEY, R., TAN, P.-N., AND SRIVASTAVA, J. Discovery of interesting usage patterns
from web data. vol. 1836.

[13] DRAGUNOV, A., DIETTERICH, T., JOHNSRUDE, K., MCLAUGHLIN, M., LI, L., AND
HERLOCKER, J. Tasktracer: A desktop environment to support multi-tasking knowledge
workers. pp. 75–82.

[14] ELFEKY, M. G., AREF, W. G., AND ELMAGARMID, A. K. Stagger: Periodicity min-
ing of data streams using expanding sliding windows. In Sixth International Conference
on Data Mining (ICDM’06) (Dec 2006), pp. 188–199.

[15] FERREIRA, D. R., AND GILLBLAD, D. Discovering process models from unlabelled
event logs. In Business Process Management (Berlin, Heidelberg, 2009), U. Dayal,
J. Eder, J. Koehler, and H. A. Reijers, Eds., Springer Berlin Heidelberg, pp. 143–158.

[16] GAN, V. W., LIN, C.-W., FOURNIER VIGER, P., CHAO, H.-C., AND YU, P. A survey
of parallel sequential pattern mining. ACM Transactions on Knowledge Discovery from
Data 13 (06 2019), 1–34.

[17] GARTNER. Gartner says worldwide robotic process automation software market grew
63 in 2018, June 2019.

[18] GEYER-KLINGEBERG, J., NAKLADAL, J., BALDAUF, F., AND VEIT, F. Process min-
ing and robotic process automation: A perfect match. In BPM (2018).

[19] GHODSI, M. Approximate string matching using backtracking over suffix arrays .

[20] GUSFIELD, D. Algorithms on stings, trees, and sequences: Computer science and com-
putational biology. Acm Sigact News 28, 4 (1997), 41–60.

[21] HUYNH, T. N., HON, W.-K., LAM, T.-W., AND SUNG, W.-K. Approximate string
matching using compressed suffix arrays. Theoretical Computer Science 352, 1-3
(2006), 240–249.

[22] IVANČIĆ, L., SUŠA VUGEC, D., AND VUKSIC, V. Robotic Process Automation: Sys-
tematic Literature Review. 08 2019, pp. 280–295.

[23] JIAWEI HAN, GUOZHU DONG, AND YIWEN YIN. Efficient mining of partial periodic
patterns in time series database. In Proceedings 15th International Conference on Data
Engineering (Cat. No.99CB36337) (March 1999), pp. 106–115.

[24] KAPUSTA, J., MUNK, M., AND DRLÍK, M. Cut-off time calculation for user session
identification by reference length. 2012 6th International Conference on Application of
Information and Communication Technologies (AICT) (2012), 1–6.

BIBLIOGRAPHY 61

[25] KASAI, T., LEE, G., ARIMURA, H., SETSUO, A., AND PARK, K. Linear-time longest-
common-prefix computation in suffix arrays and its applications. vol. 2089, pp. 181–192.

[26] KURTZ, S. Reducing the space requirement of suffix trees. Softw. Pract. Exper. 29, 13
(Nov. 1999), 1149–1171.

[27] KURTZ, S., CHOUDHURI, J. V., OHLEBUSCH, E., SCHLEIERMACHER, C., STOYE,
J., AND GIEGERICH, R. REPuter: the manifold applications of repeat analysis on a
genomic scale. Nucleic Acids Research 29, 22 (11 2001), 4633–4642.

[28] LACITY, M., AND WILLCOCKS, L. Robotic process automation at telefónica o2. 21–
35.

[29] LENO, V., AUGUSTO, A., DUMAS, M., ROSA, M. L., MAGGI, F., AND
POLYVYANYY, A. Identifying candidate routines for robotic process automation from
unsegmented ui logs, 2020.

[30] LENO, V., DUMAS, M., MAGGI, F. M., AND ROSA, M. L. Multi-perspective process
model discovery for robotic process automation.

[31] LENO, V., POLYVYANYY, A., DUMAS, M., LA ROSA, M., AND MAGGI, F. M.
Robotic process mining: Vision and challenges. Business and Information Systems En-
gineering (Mar 2020).

[32] LEOPOLD, H., VAN DER AA, H., AND REIJERS, H. A. Identifying candidate tasks for
robotic process automation in textual process descriptions. In Enterprise, Business-
Process and Information Systems Modeling (Cham, 2018), J. Gulden, I. Reinhartz-
Berger, R. Schmidt, S. Guerreiro, W. Guédria, and P. Bera, Eds., Springer International
Publishing, pp. 67–81.

[33] LIU, B. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. 01 2007.

[34] MADAKAM, S., HOLMUKHE, R. M., AND JAISWAL, D. K. The Future Digital Work
Force: Robotic Process Automation (RPA). JISTEM - Journal of Information Systems
and Technology Management 16 (00 2019).

[35] MOBASHER, B., COOLEY, R., SRIVASTAVA, J., ZHOU, B., CHEUNG, S.,
DOMENECH, J., MIHARA, K., TERABE, M., HASHIMOTO, K., HEYDARI, M.,
HELAL, R. A., GHAUTH, K. I., BAYIR, M., TOROSLU, I. H., COSAR, A., AND
FIDAN, G. A novel technique for sessions identification in web usage mining prepro-
cessing.

[36] OZDEN, B., RAMASWAMY, S., AND SILBERSCHATZ, A. Cyclic association rules.
pp. 412 – 421.

[37] PUGLISI, S., SMYTH, W., AND YUSUFU, M. Fast, practical algorithms for computing
all the repeats in a string. Mathematics in Computer Science 3 (06 2010), 373–389.

[38] RODRIGUEZ, C., ENGEL, R., PISONI, G., DANIEL, F., CASATI, F., AND AIMAR, M.
Eventifier: Extracting process execution logs from operational databases.

62 BIBLIOGRAPHY

[39] ROMAO, M., COSTA, J., AND COSTA, C. J. Robotic process automation: A case study
in the banking industry. In 2019 14th Iberian Conference on Information Systems and
Technologies (CISTI) (June 2019), pp. 1–6.

[40] SHARIR, M. A strong-connectivity algorithm and its applications in data flow analysis.

[41] SHARMA, N., AND MAKHIJA, P. Web usage mining:a novel approach for web user
session construction. Global journal of computer science and technology 15 (2015).

[42] SIRISHA, N., SHASHI, M., AND PADMA RAJU, G. Periodic pattern mining-algorithms
and applications. Global Journal of Computer Science and Technology Software and
Data Engineering 13 (01 2013).

[43] SLIMANI, T. Sequential mining: Patterns and algorithms analysis. International Journal
of Computer & Electronics Research (IJCER) 2 (01 2013), 639–64.

[44] SPILIOPOULOU, M., MOBASHER, B., BERENDT, B., AND NAKAGAWA, M. A frame-
work for the evaluation of session reconstruction heuristics in web usage analysis. IN-
FORMS Journal on Computing 15 (04 2003).

[45] TAX, N., SIDOROVA, N., AND VAN DER AALST, W. M. P. Discovering more precise
process models from event logs by filtering out chaotic activities. Journal of Intelligent
Information Systems 52, 1 (Feb 2019), 107–139.

[46] VAN DER AALST, W., AND WEIJTERS, A. Process mining: a research agenda. Com-
puters in Industry 53, 3 (2004), 231 – 244. Process / Workflow Mining.

[47] VAN DER AALST, W. M. P., BICHLER, M., AND HEINZL, A. Robotic process automa-
tion. Business and Information Systems Engineering 60, 4 (Aug 2018), 269–272.

[48] WEINER, P. Linear pattern matching algorithms. In 14th Annual Symposium on Switch-
ing and Automata Theory (swat 1973) (1973), IEEE, pp. 1–11.

[49] WRIGHT, D. The robots are ready. are you? untapped advantage in your digital work-
force. Deloitte Consulting Group S.C (2018).

[50] YANG, J., WANG, W., AND YU, P. Mining asynchronous periodic patterns in time
series data. vol. 15, pp. 275–279.

[51] ZHANG, D., LEE, K., AND LEE, I. Periodic pattern mining for spatio-temporal tra-
jectories: A survey. In 2015 10th International Conference on Intelligent Systems and
Knowledge Engineering (ISKE) (Nov 2015), pp. 306–313.

[52] ZHU, Y., LI, S., BAO, N., AND WAN, D. Mining approximate periodic pattern in
hydrological time series. In EGU General Assembly Conference Abstracts (Apr 2012),
EGU General Assembly Conference Abstracts, p. 515.

