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Severity Identification of Chronic Neuropathic Pain based on EEG Analysis 

by 

Daniela Montemayor Zolezzi 

Abstract  
The lack of an integral characterization of chronic neuropathic pain (NP) has led to 

pharmacotherapy mismanagement and has hindered advances in clinical trials. In this study, we 

attempted to identify chronic NP by integrating psychometric (based on Brief Inventory of Pain – 

BIP), and both linear and nonlinear electroencephalographic (EEG) features. For this purpose, 35 

chronic NP patients were firstly recruited voluntarily. All of the volunteers filled in the BIP; and 

additionally, 22 EEG channels positioned in accordance with the 10/20 international system were 

registered for 10 minutes at resting state: 5 minutes with eyes open and 5 minutes with eyes 

closed. EEG Signals were sampled at 250Hz within a bandwidth between 0.1 and 100Hz. 

Secondly, linear and Nonlinear EEG features were extracted from healthy and NP conditions. In 

addition, a database of an age matched control group of 13 healthy participants was downloaded 

from the Figbase open access site. As linear features, band power was obtained per clinical band 

considering five regions: prefrontal, frontal, central, parietal and occipital. As Nonlinear features, 

approximate entropy (ApEn) was calculated per channel and per clinical frequency band. The 

control group was used as an EEG feature reference against those in NP condition to explain 

power and entropy tendencies. Finally, resulting feature vectors in NP condition were grouped in 

line with the BIP outcome to create BIP-EEG patterns in three groups: (a) low, (b) moderate, and 

(c) high pain.  Resulting BIP-EEG patterns were classified achieving 96% accuracy for all 

severities, F-score of 95% for high pain, and 94% F-score for moderate and low pain. Despite 

being cross validated with 5k-fold, this classifier must be tested with new patient data to discard 

overfitting. Statistical results showed most significant differences in EO condition for ApEn. NP 

severities were best identified from the control group in the full bandwidth, theta and delta. In 

particular, high pain was significantly different from control for all bands, except for the alpha 

band.  Taken together, these results indicate that EEG activity of chronic NP patients shows 

significant differentiable neuroplastic trends with respect to the severity of pain in the spontaneous 

state for each clinical band. The main contribution of this work is proving ApEn as a method that 

effectively characterizes the different levels of chronic NP. With further characterization of NP, 

entropy might be an appropriate and sufficient method to monitor the experience of pain and aid 

physicians to achieve a better pain management and treatment for chronic NP.  
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1 Chapter One: Introduction 
 
 
Pain is a complex experience of somatic mechanisms and psychological influences; hence, it is 

always subjective. The classification of pain in terms of time has varying definitions, but generally 

it may be classified as acute (less than 3 months), chronic (more than 3 months)[1] or subacute 

(between 6 weeks and 3 months)[2]; or in terms of mechanism, as nociceptive, inflammatory, or 

neuropathic [3]. Living with pain seriously affects all aspects of a person’s life, including personal 

(e.g., emotions, attention, and perception), social, and professional aspects [4]. Chronic pain is 

commonly multifactorial and frequently involves a neuropathic pain (NP) component  [5]. The 

International Association for the Study of Pain (IASP) defines NP as “pain arising as a direct 

consequence of a lesion or disease affecting the somatosensory system (SNS)” [6]. When NP 

lasts for a prolonged period (more than 3 months), the neurons in the spinal cord and the brain 

respond with neuroplastic changes [7]. This maladaptive response may change the perception of 

pain to the point of feeling unbearable pain due to a simple caress [8]. The maladaptive changes 

include abnormal threshold to stimuli, altered sensibility in receptors, ectopic generation of action 

potentials, reduced inhibition, and inappropriate connectivity of neurons. These are the changes 

that take part in the induction of NP, but there are other mechanisms that develop later to sustain 

pain [9]. Some pharmacological agents target these sustained pain mechanisms, focusing on 

preventing or altering neuronal plasticity [10]. Definitely, chronic pain is a challenge for any 

physician and pain specialist due to the impact on the human body and the struggle to reach an 

accurate treatment.  

In Figure 1, the types of pain are exemplified. Not every chronic pain is NP. For instance, chronic 

pain from arthritis results from a normal activation of pain pathways by inflammatory mediators 

surrounding a joint [11]. Likewise, not every NP is chronic. The phantom pain that may be 

experienced after an amputation is NP and usually lasts between one or two months [9]. Some 
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patients experience one type of pain predominantly when having several types of pain. For 

instance, low back pain with a component of NP has a higher and more severe depression, 

reduction in functionality, and higher values of pain severity when compared to adults with the 

same pain that is nociceptive or inflammatory [12], [13]. 

 

Figure 1 Venn diagram for type of pain and chronicity. Pain from a minor foot sprain would be considered normal 

and nociceptive because it is signaled by tissue injury (i.e., a normal mechanism). Inflammatory pain from arthritis 

(center) is an example of a nociceptive mechanism because inflammation is the cause of pain. Inflammation is also 

pathophysiologic because it involves an altered (i.e., disease) state.  NP is at the right, considered only as 

pathophysiologic because pain is elicited by abnormal pain mechanisms in diseased neurons. Normal pain is only 

acute, whereas inflammatory or NP may be acute or chronic. Figure adapted from [14]. 

1.1 Problem Statement  

 
Characterization is a significant gap in chronic NP research and clinical management [15]–[17], 

because it is based almost exclusively on the subjective perception of the patient. Since there are 

still no objective measures for chronic NP, the current consensus for an adequate management 

is based on trial and error [18]. As described by [19], NP is an unsatisfied need with a considerable 

gap in pharmacotherapy and a great need for a simple clinical tool that may identify and monitor 

Nociceptive Pathophysiologic

Normal Inflammatory Neuropathic

Acute < 3 months Chronic > 3 months
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NP. It is important to address the gaps of characterization to improve the management of 

treatment and ultimately the life of patients suffering from chronic NP.  

Patients with NP have a quality of life similar to patients with severe cardiac disease, severe 

mental illness [20], or in another study rated as “worse than death” [21].  NP is present in about 

7% - 10% of the adult population [22], [23], 17% of chronic pain patients, 35% of oncological 

patients [16], and 30% of adults that attend pain clinics [24].  NP is also present in the pediatric 

population with up to 6% of infants suffering from it [25]. In Mexico, chronic pain is considered a 

public health issue [26]. If chronic pain affects between 25% and 29% of the world population, 

there could be approximately 28 million people suffering from chronic pain in Mexico alone [23]. 

However, chronic pain with NP characteristics should be treated as a separate clinical entity in 

Mexico, and elsewhere, given its specific demographical characteristics [27], [28]. There is still 

much epidemiological work ahead to know the actual impact of chronic NP in the Mexican 

population. Yet, a proper epidemiological study of chronic NP has also been impeded by the 

current inadequate characterization. The fundamental problem of characterization arises because 

of the pathophysiology of NP, given the variety and complexity of the underlying mechanisms 

[12]. In most cases, NP cannot be related to specific nerves or cortical areas, because 

neuroplastic changes occur unrelated to the anatomy of nerves where NP is felt. Consequently, 

specific symptoms or patterns of NP are almost impossible to identify through verbal reports from 

the patient. This hinders an adequate characterization of NP and an accurate clinical 

management at the short and long term [13]. Figure 2 illustrates the optimal characterization 

method and system for NP that should be moreover integral: incorporating subjective and 

objective interpretations. There are several widely used methods for the subjective 

characterization of symptoms [20], [21]. However, there is enough evidence to state that NP is 

not only an abstract perception but also a physical signal mediated by neurotransmitters and 
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synapses [10], [29]. Therefore, given that NP is a signal [30], it can be quantified and have an 

objective interpretation. 

 

 

Figure 2 The desirable NP characterization. It should be integral and composed of subjective and objective 

information.  The subjective perception of the patient may describe the intensity, pain patterns, degree of emotional 

affection, or the interference of daily activities due to pain.  Objective information from the CNS may be obtained through 

electrophysiological signals, divided into spontaneous or evoked recorded with electroencephalogram (EEG); or from 

the autonomous nervous system, where the sympathetic activity may be measured (heart rate (HR) and electrodermal 

activity (EDA)). 

1.3 Justification: Current gaps in Neuropathic Pain Research 
 

1.3.1 Worldwide pharmacotherapy issues from non-integral characterization 

Pharmacotherapy for NP targets specific action sites to achieve analgesic effects for different 

mechanisms of pain. However, when the mechanisms of pain for a patient are not characterized 
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appropriately, pharmacotherapy may become inefficient. According to the latest review of the 

Canadian Pain Society Consensus statement, the pharmacological treatment for NP are 

gabapentinoids (gabapentin and pregabalin), tricyclic antidepressants, and serotonin-

norepinephrine reuptake inhibitors as first-line agents. Tramadol and opioids are second-line 

treatments, and cannabinoids have been moved from a fourth-line to a third-line treatment option 

[31]. Usually a combination therapy is preferred [32] because of greater analgesic activity with 

mutual reinforcing effects of drugs, and better tolerability profile with reduced symptoms such as 

anxiety, depression and sleep disturbance [33]. There is some evidence showing that at least 

45% of patients with NP are treated with two or more drugs [34], [35]. However, it does not imply 

that patients with a higher number of analgesics are treated better [36]. In fact, only 40-60% of 

patients have obtained sufficient pain relief with medications given in combination or alone [37]. 

Surprisingly, one study stated that the universally used pregabalin and gabapentin are ineffective 

for most patients with NP [38]. Even when newer trials seem to increase [39], recent 

pharmacological clinical trials for NP have failed to provide efficacy because of the poor 

characterization and stratification of NP. In Mexico, Guevara and colleagues [40] interviewed 

seventy physicians of public and private care from different locations within the country. Figure 3 

shows the tendency of treatment for NP in Mexican physicians. Forty of them stated that 

anticonvulsants were the first line of treatment, twenty-three of them opted for tricyclic 

antidepressants, and the rest of them opted for either strong or weak opioids. To develop a precise 

judgement of first-line agents, physicians should update themselves constantly with systematic 

reviews and the assessment of the individual patient history. 
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Figure 3 Tendencies in prescription of pain medicine in Mexico. Seventy physicians across the country were 

interviewed according to their use of first-line agents for treating NP. Anticonvulsants were the first place with 40 

answers, followed by antidepressants with 23 answers. Figure adapted from [40]. NSAIDs refers to nonsteroidal anti-

inflammatory drugs.  

1.3.2 Issues from non-integral characterization by age group 
 

A recent cross-sectional study in Germany revealed the deficits in NP medication for chronic NP 

patients.  From their sample, 57% of patients had NP, but only 18% received adequate pain 

treatment in terms of dosage or number of pharmacological agents used [36]. Another study 

concluded that one out of ten geriatric patients had a problem of under- or over-treatment with 

pain medications [41]. The preceding mismanagement of treatment for NP, in addition to the 

vulnerability of older adults exposed to polypharmacy for other disorders [42] may increase 

sedation, impaired balance, and thus, falls [43].  

In pediatric patients, NP management and characterization becomes even more challenging 

because verbalization is difficult [44]. Pain signs and life quality monitoring usually help in the 

management of pain, but this is not enough to adequately treat a child with NP. Each brain with 

NP may evolve differently in view of genetic, environmental, emotional, or cognitive factors [45]. 

Note that, NP is dynamic and this dynamicity may alter white matter structurally. The monitoring 
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of this particular behavior of NP could be very informative for physicians during the development 

years of the child. From childhood to adolescence there is a protracted maturation of the prefrontal 

cortex, an area highly activated in chronic NP [46].   

Despite the fact that physicians have a varied pharmacotherapy selection at first, when a patient 

has gone over several agents for months or even years, the treatment scheme might not be 

changed due to a lack of understanding of the current NP state of the patient. Improved patient 

analgesia suitable for all ages could be achieved by obtaining more information about the 

neuroadaptive alterations that occur in a NP state [47]. Discussion of clinical management with 

neurostimulation is out of the scope of this study, but is dealt elsewhere [48]. Considering all life 

stages and syndromes, the best way to adjust treatments could be monitoring the changes in 

neuronal activity individually and across time. 

1.4 Aim of the Work  
 
In the light of the above discussion, subjective perception for the management of chronic NP has 

been proved to be limited to monitor the pain experience. This is because specific patterns and 

characteristics of NP will differ across individual experiences. The SNS responds and evolves to 

NP differently in view of genetic, environmental, emotional or cognitive factors [45]. Therefore, a 

characterization based almost exclusively on the subjective perception of the patient, given through 

written or verbal reports is inadequate [17]. Indeed, there is a great need of an objective tool that 

monitors NP [19]. As a consequence, it seems necessary to take into account both psychometric 

testing (the patient report) and electrophysiological measurement (neuronal plastic changes of the 

electrical activity of the nervous system) to characterize NP adequately. Therefore, the aim of the 

present work was to investigate if the level of NP could be predicted by psychometric (BIP score) 

and electrophysiological measurements (EEG signals). To our knowledge, only one study [49] 

has classified NP based on EEG features. In [49], EEG band power in eyes open (EO) and eyes 
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closed (EC) condition were used as features, and a support vector machine (SVM) as classifier. 

Their pattern recognition proposal achieved 87-90% classification accuracy. In addition, we 

hypothesized that adding Nonlinear EEG features in the classifier would increase prediction 

performance due to the better characterization of neurophysiological mechanism of NP, along 

with psychometric evaluation. Have in mind that disease identification  in clinical applications,  

should be closer to 100% [49]. This is supported by previous evidence which indicates that 

approximate entropy (ApEn) can numerically differentiate between simple and complex cognitive 

states, and between control and neuropathological conditions, including schizophrenia or 

Alzheimer [50].  

1.5 Organization of the Thesis 
 
The thesis is divided as follows. Chapter one gave an introduction to the problem of 

characterization and NP management, stating the aim of the study. Chapter two exposes the 

general literature framework of NP with its pathophysiology, mechanisms, 

electroencephalographic and psychometric measurements. Chapter three introduces the 

research questions, hypothesis and objectives of this study. Chapter four describes the study 

design: sample size calculation, stratification, questionnaire election and evaluation. Chapter five 

defines the characteristics of the NP sample studied, experimental procedure, equipment and the 

data analysis methods used. Chapter six presents the results of both questionnaires and all EEG 

features, as well as the statistical results. Chapter seven discusses and integrates all the results 

with previous literature, stating the principal impacts and contributions of our study. Chapter eight 

concludes and presents future work.  
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2 Chapter Two: Framework 
 

2.1 Chronic NP Background 
 
To further discuss the appropriate characterization of chronic NP, its complex pathophysiology 

needs to be stated thoroughly.  

2.1.1 Pathophysiology of NP 

NP in most cases, has a spontaneous and an evoked component [51]. Therefore, in any proposed 

integral system to manage chronic NP, both components should be addressed. The most 

prominent component in NP is the spontaneous pain. This is independent of stimuli and may be 

continuous, similar to the pain of a limb in diabetic neuropathy; or otherwise, with intermittent 

attacks, as in trigeminal neuralgia [13]. The most reported qualities of pain are burning sensation, 

acute stabbing, shooting, electrical discharges, or oppressive pain. Also, NP can present non 

painful paresthesia in conjunction with pain sensations [51].   Table 1 states both components 

with their mechanisms of pain. The two components of NP (spontaneous and evoked pain) are 

described with their mechanism, type of altered sensation, and the conductor fibers or the location 

of sensation. Evoked pain in NP may be from noxious (i.e., dangerous) stimuli or from non-noxious 

stimuli. Non-noxious stimuli are further divided into three types of allodynia. 
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Table 1 NP components with their neurophysiological mechanism, type of altered 
sensation, and conduction or location characteristics. 

 Mechanism Type of altered sensation Conducted by/ Location of 
sensation 

Spontaneous 
Pain 

DNA modification causes an alteration of Ca+ 

channel refractory time [52]. Ectopic 

discharges [53] result from an abnormal 

expression and accumulation of Na+ 

channels, which then results in decreased 

threshold of receptors. 

Altered sensation to 

mechanic thermal or 

innocuous stimuli  

Within an area of sensorial 

alteration in receptors of 

small peripheral nerve fibers 

(i.e., skin) 

Nonpainful paresthesia Reflect the spontaneous 

activity of thick Aß fibers that 

mediate the tactile and 

vibratory sensation.  These 

nerve fibers are less 

frequently affected in NP [13] 

Evoked pain  From noxious stimuli. When cellular 
damage is a consequence of an underlying 

disease, decreased pH reduces the threshold 

in membrane channels. Neurons are always 

partially or totally depolarized, which causes 

depolarization with more intensity and for its 

effect, more pain [5], [54]. 

Hyperalgesia Generally, A∂ fibers for 

stimuli such as pinprick, 

mechanical and heat/cold. 

When hyperalgesia is 

continuous, it is conducted 

by C fibers [54], [55] 

From non-noxious stimuli. Its origin is more 

complex and may be caused by: (a) abnormal 

growth of dendritic sprouts, (b) expanding of 

receptive field, or (c) intercommunication 

between nerve endings. Over one type of 

allodynia could occur in the same patient. 

Besides, it has been reported that allodynia 

within a sensible area may be induced by a 

stimulus in another distant part of the body, 

as if the pain region was stimulated [56]. 

 

Mechanical dynamic 

allodynia 

Pain evoked from a simple 

touch. Reflects central 

nociceptive sensitivity. This 

type of allodynia is very 

common and is conducted 

by large peripheral nerve 

fibers [13], [52] 

Cold allodynia Provoked by a non-noxious 

cold stimulus. Conducted by 

large peripheral nerve fibers 

Movement allodynia Provoked by an active or 

passive stretch of muscles or 

tendons. Conducted by large 

peripheral nerve fibers 

These pain mechanisms are common in different diseases, and their manifestation usually varies 

among patients, even if the etiology is the same. This is another factor that hinders the NP 

characterization. For example, a diabetic patient with peripheral NP may have a different evolution 

and history from a cancer patient with NP. Moreover, a patient with complex regional pain 

syndrome can have NP in various limbs without a pattern or defined region, in contrast with 
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trigeminal neuralgia that occurs specifically in the trigeminal territory (i.e., face, including oral 

cavity) [57], [58]. The same applies in extension and intensity. Two patients with the same etiology 

(e.g., post-surgical NP) may present different symptoms: one may have stabbing pain in a local 

point, whereas the other may feel a burning sensation that extends from the thorax to the arm. 

This diversity supports the proposal for seeking an integral characterization, which should be 

independent of the etiology, and more focused on the individual neuronal activation from CNS 

and peripheral nervous system.  

2.1.2 Neuroplasticity of the CNS measured by EEG 

The function and morphology of the brain are affected by the chronicity of NP symptoms [47]. 

Neuroplasticity is dynamic and unpredictable, thus neuronal activity may change fast and 

drastically for a patient, or rather, in a slow and unnoticeable process for another patient. As 

mentioned previously, a NP patient would need periodic objective evaluations for proper 

management. The system for measuring NP objectively should also be costly effective so that it 

may be used in routine clinical practice. There are many methods to test NP, such as 

hemodynamic (positron-emission tomography (PET)) or functional magnetic resonance imaging 

(fMRI)), neuroelectric (electroencephalogram (EEG), magnetoencephalogram (MEG)) and 

neurochemical (union of receptors and modulation of neurotransmitters (MRS)) [59].  These tools 

have mapped effectively the activated regions of pain, specifically with fMRI [60]–[62] and 

PET[61], [63]. However, they have a high cost and a more complex methodology for clinical 

practice. In addition, hemodynamic methods do not measure neuronal activity per se, they 

measure the dynamics of blood flow. As neuronal activity is electrical by nature, it may be more 

adequate to monitor NP in terms of electrophysiology.  

This following literature review focuses on EEG as it stands out as a valuable noninvasive tool 

that provides relevant information of the brain function during rest, sensory stimulation or 
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execution of cognitive tasks [64]. The major advantage of measuring electrical activity with EEG 

is temporal resolution, and its major drawback is poor spatial resolution.  EEG has a much simpler 

methodology and lower cost. Raw EEG signals are not very helpful in clinical application due to 

the superposition of wide variety and large number of neuronal sources. EEG signals must be 

preprocessed and analyzed carefully to be useful in any clinical settings. This may be what is 

hindering the use of EEG as a monitoring tool, but it may be simplified by using graphical and 

intuitive interfaces for physicians. Additionally, EEG offers the possibility of analyzing brain signals 

according to the spontaneous and evoked components of pain (Table 1), which makes it ideal for 

NP. EEG has been used to evaluate the function of the brain in chronic pain syndromes such as 

fibromyalgia, migraine, rheumatoid arthritis, neuralgia, chronic pancreatitis and breast cancer 

[65]–[67]. The main advances in EEG analysis for linear methods and Nonlinear methods are 

revised in the following section. 

2.2  Subjective and Objective Tools for the Assessment of Chronic 

NP  
 
2.2.1 EEG Measures 
 
For EEG analysis, there are spontaneous and evoked methods. These may be divided into linear 

and nonlinear measures. Spontaneous measures will be explained through the pathophysiology 

perspective of neuronal oscillations. Additionally, the evoked method may be phase locked or 

non-phase locked.  

2.2.1.1 What does the EEG measure? 

 
EEG reflects particularly the summation of excitatory and inhibitory postsynaptic potentials at the 

dendrites of ensembles of neurons with parallel geometric orientation [68]. In order for the 

neuronal synapses to occur, neurotransmitters activate ion channels in the cell membrane, which 

lead to ion flow into and out of the cell. This electrical field generated by the flow of ions is too 

weak coming from a single neuron to be measured from an EEG electrode several centimeters 
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away. As neuronal activity becomes synchronous across hundreds, thousands, or tens of 

thousands of neurons, the electrical fields generated by individual neurons sum, and the resulting 

field becomes powerful enough to be measured from outside the head. It has been estimated that 

between 10,000 and 50,000 neurons, mainly in superficial cortical layers, dominate the EEG 

signal [69].  

2.2.1.2 Neurobiological Mechanism of Oscillations 

 
An oscillation is a rhythmic alternation of states, which can occur in time or in space. Particularly 

for the brain, the term oscillation refers to rhythmic fluctuations in the excitability of neurons or 

ensembles of neurons. Neuronal oscillations are observed on many spatial and temporal scales 

and have been linked to many neurobiological events ranging from long-term potentiation to 

conscious perception [70]–[72]. There are many factors that modulate the frequency, amplitude 

and phase of neuronal oscillations but there is one primary physiological mechanism that 

produces them. This mechanism involves the interaction between inhibitory (GABAergic) 

interneurons and excitatory pyramidal cells. The alternating balance of excitation and inhibition is 

thought to  dominate the oscillations of EEG [68].  

The main theory that states oscillations as cause for cognition, denotes interregional oscillatory 

synchronization as the mechanism that underlies the transmission of information across neuronal 

networks, where synchronization-mediated connectivity is crucial for perceptual and cognitive 

processes [73]. This means that spatially disparate neuronal networks cooperate and transfer 

information more efficiently when they are phase synchronized.  

2.2.1.3 Linear Analysis – Power and Synchronization 

 

One-dimensional signal analysis is linear and refers to frequency or time-frequency domain [74]. 

The term “power” indicates the squared length of the complex vector. It is an estimate of the 

amount of energy at a certain point in time in a particular frequency band. Thus, changes in the 
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amplitudes of power (increase or decrease) are frequency band specific. The synchronization of 

local neuronal networks is the most likely neurobiological event that contributes the most to an 

increase in time-frequency power. For instance, 10,000 neurons oscillating at 8 Hz would lead to 

synchronous field potential oscillations, that would generate a field potential powerful enough to 

be detected in the alpha band by scalp electrodes [68]. This is may be the reason why power is 

referred to as synchronization in a usual way. An increase of power may reflect a change in local 

synchronization strength or a change in the number of neurons that are synchronized.  

2.2.1.4 Nonlinear Dynamics and Analysis  

 
The theory of deterministic chaos contrasts with the traditional “Newtonian” physics that focuses 

on “linear” systems. In linear systems, small perturbations of the system do not grow with time. 

Although this systems may have nonlinear equations involved, they either have closed-form 

solutions or some sort of workable linear approximation [75]. Nonlinear dynamical systems that 

are capable of self-organization are open, dissipative, and subject to strong non-equilibrium 

constraints. Neuronal systems at some levels have been shown to exhibit various nonlinear 

behaviors [76]. Deterministic chaos theory states that nonlinear systems are governed by few 

variables that can result in apparently random time series. If the parameters of a nonlinear 

differential equation are “pushed” beyond a certain threshold value, small perturbations in the 

measurement of the initial state can result in an exponential deviation of the behavior of the 

system as a function of time, despite a small initial difference between the states. Consequently, 

it has been proposed that EEG waveforms are not as a sum of sine waves but a chaotic pattern 

[76]. Beginning in the mid 1980s, scientists began to apply chaos theory to the human EEG. Since 

then, chaos has been applied to EEG in two main ways, (1) estimating the dimension of attractors 

that have been reconstructed from experimental time series by delay-time embedding, and (2) 

estimating the largest Lyapunov exponent of an experimental time series [50]. The mathematical 

description of a dynamical system consists of two parts: the state (“snapshot” of the system at a 
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given moment) and the dynamics. The “snapshot” of the system is given by the state vector. 

The vector is of length n, where n is the number of variables necessary for a complete description 

of the current status of the system. The dynamics is the set of rules by which the state of the 

system evolves over time. State space determines the hypothetical space of n dimensions formed 

by n variables of the state vector [77]. Point attractors represent a cessation of dynamical 

behavior, which in the case of the EEG would be upon death [75].  

2.2.2 Linear Measures in Chronic NP: Analysis of Spontaneous Activity 
 
Most EEG studies concerning NP patients [65], [67], [78]–[81] have focused on measuring 

spontaneous pain by requesting patients to rest either with EO or EC. The analysis of the 

spectrum of EEG manifests that patients with chronic NP have an increased power at rest in theta, 

beta, and delta bands [65], [67], [82]. Other studies [66], [67], [83] revealed that the dominant 

peak in the alpha spectrum power moved to lower frequencies in patients with chronic NP. 

According to [81], the previous results have been found mainly over frontal and parieto-occipital 

electrodes that correlate positively with the pain matrix [83]. Nevertheless, [82] argues that the 

observed changes in EEG power are widespread and correspond to multiple changes in an 

interconnected network of somatosensory, limbic, and associative structures that receive inputs 

from multiple nociceptive pathways [78]. This interconnection is illustrated in Figure 4. It highlights 

the frontal and somatosensory areas of the cortex, as well as the limbic structures observed from 

the sagittal cut of the brain, particularly the thalamus.  
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Figure 4 Abnormal oscillatory activity in NP. Changes in electrical activity in the pain matrix and associated 

structures: somatosensory area (circle “S”), frontal and prefrontal areas (circle “F”), and the limbic structures (star 

represents the thalamus).  (A) The source for the abnormal oscillatory activity is thalamocortical dysrhythmia (TCD). 

Thalamic firing is an input to descending pain pathways whose input terminates again in the thalamus (loop arrow). 

The changes in alpha oscillatory activity are depicted in (A) as a consequence of the abnormal oscillatory activity from 

slow-frequency ranges. (B) The cross-frequency coupling between gamma and theta (edge effect) allows pain to enter 

perception. (C) Increased beta activity predominantly in frontal areas generates perception and is feed forwarded to 

other brain structures (predictive coding system). 

2.2.2.1.1 Theta and delta oscillations 
 
Complementary information of the NP experience may be retrieved from the different frequencies 

of brain activity. There is evidence showing that EEG spectrum moves towards the theta 

frequency range [66], [84]. This effect along with the increase in power of theta and delta is caused 

by thalamocortical dysrhythmia (TCD), a self-sustaining neuropathological mechanism that 

underpins the constant perception of pain [65], [85]. TCD is also the probable underlying 

mechanism of another phantom perception: tinnitus [86]. TCD is a consequence from abnormal 

activation or excess inhibition of thalamic neurons in the process of pain [85], [87]. It is described 
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as a rhythmic burst of thalamic firing at infra slow frequencies in the ascending pain pathway that 

inputs the somatosensory thalamus, as depicted in Figure 4A [88]. The change along pain 

pathways is associated with modified whole-brain network connectivity. Note that the network and 

oscillatory changes do not occur during an acute painful stimulation in a healthy patient. 

Therefore, it is believed that only chronic NP may cause network changes that are based in long-

term processes, such as astrocyte activation, synaptic modulation, and TCD development [88]. 

The idea that NP has a central generator was proposed in [89] and further investigated in [90]. 

The presence of this theta activity provided by thalamic neurons has revealed two electrical 

components of the pain sensation in central pain patients. The first component localizes the pain 

experience in the physical body (somatosensory cortex, letter “S” in Figure 4A), and the second 

one relates to the emotional sensation of pain which is non localizable (thalamocortical loops), 

and described as the moral pain of being hurt that is present in all central pain patients [91].   

2.2.2.1.2 Gamma oscillations 
 
The enhanced theta oscillations reduce lateral inhibition and increase abnormal gamma 

oscillations. Lateral inhibition refers to the low-frequency activation (theta oscillations) of 

corticocortical inhibitory interneurons, by reducing lateral inhibitory drive (dysinhibition), which can 

result in high-frequency (gamma oscillations) coherent activation of neighboring cortical modules 

(shaded in yellow). Figure 4B represents this effect known as the edge effect for the 

somatosensory cortex (letter “S”) [87]. It results in a persistent cross-frequency coupling between 

theta and gamma. This is presumed to be the step where the pain perception enters 

consciousness through the global workspace [92]. Another study suggests the theta component 

of TCD reflects traits of the stable pain state of an individual, whereas the gamma component 

reflects the short term modulation of pain perception [93].  
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2.2.2.1.3 Beta oscillations 
 
Increases of beta oscillations were observed in frontal brain areas [65], [84], shown in Figure 4C 

letter “F”. Beta is considered to serve as feedback signaling (i.e., the signaling of predictions) 

which is abnormal in chronic pain [94]. The predictive coding system states the brain is not only 

a passive receiver, but also a generator and optimizer of resources in which sensations are 

compared with previous experience. If prediction errors arise, perception may be generated, and 

feed forwarded. Thus, the predictive coding system poses pain as a result of prediction errors, 

rather than from nociceptive information [95].  

2.2.2.1.4 Alpha oscillations 
 
Alpha oscillations are also affected by dysfunctional thalamocortical mechanisms, which 

decrease the dominant alpha rhythm [82], [84], but increase alpha power [96], observed in Figure 

4A. The role of synchrony at alpha also plays a role in the prediction and contextual coding. High 

alpha-band activity may relate to particular features of chronic NP [97]. However, the relation 

between enhanced alpha power and pain it is not yet elucidated [98]. The individual methods and 

results of the previously mentioned spontaneous EEG studies with chronic NP have been 

summarized in Table 2. 
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Table 2. EEG studies concerning spontaneous activity in patients suffering from chronic pain and NP. 
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2.2.2.2 Linear Methods: Evoked Activity 

 
In evoked methods, phase-locked activity corresponds to phase-aligned with the time=0 event 

and will be observed both in time-domain averaging and time-frequency domain averaging. Non-

phase-locked activity (also called “induced”) is time-locked but not phase-locked to the time=0 

event.  

2.2.2.2.1  Laser Evoked Potentials (Phase Locked) 

Research on the evoked component has mainly used laser to evoke pain sensation [79], [101]–

[106]. The laser evoked potentials (LEPs) is one of the first neurophysiological techniques to 

measure NP [79], [106]. This technique activates selectively nociceptors of A∂ and C fibers of the 

superficial layers of the skin. There are two components after the sensation perceived from the 

laser:  the first is stabbing or tingling, mediated by A∂ (observed in the EEG before 700 ms); and 

the second one lasts longer: it is diffuse, burning, and mediated by C fibers (ultra-late potentials 

observed from 750-1200ms). The electrical cortical activity in distinct electrodes (usually 

centroparietal), is analyzed with the amplitude and latency of LEP components in the milliseconds 

after the stimulus [81], [107]. LEP components consist primarily of: (1) N1, which is generated in 

the primary somatosensorial cortex, and in the insular cortex bilaterally, (2) N2 generated in 

insular networks, and (3) P2 which originates from the anterior cingulate cortex [101].  Two 

significant findings in LEP components for patients with allodynia are: the reduction of amplitude 

from LEPs and delayed latency [101], [102], [104]. These two characteristic findings for LEPs in 

chronic NP are depicted in Figure 5, the activity reflected from the LEPs originates from the lateral 

pain system and measures the degree of deafferentation that leads to NP [102].  



Neuroengineering and Neuroacoustics Research Group      

Daniela Montemayor Zolezzi – Master Engineering Sciences 33 

 

Figure 5. Laser Evoked Potential in chronic NP with allodynia or spontaneous pain in comparison to healthy 

state. The alteration for components N1 (­ latency) and P2 (¯ amplitude) in chronic NP in contrast to healthy controls 

(red line) is illustrated. The highest attenuation is presented for NP with spontaneous pain only (yellow line). The partial 

LEP preservation in a patient with NP might reflect a high probability of developing provoked pain 

(allodynia/hyperalgesia, orange line). Image created based on previous literature results, particularly [102]. 

Actually, the true hyperalgesia and allodynia from NP are never accompanied by increased LEPs. 

Attenuated responses of LEPs could be a consequence of pain habituation and supports NP 

pathophysiologic mechanisms. In a more recent study [108], the intensity of pain correlated 

inversely with the amplitude of the LEPs. Additionally, ultra-late responses (>700 ms) in chronic 

NP have been reported [102]. This response is supported by the slow-conducting and 

intermingled network of multiple synapses that input and modulate the signal for NP.  In earlier 

years, LEPs were considered to be the most reliable and sensitive neurophysiological test to 

diagnose NP, but their availability is limited because few neurological centers are equipped with 

a laser stimulator [109]. In addition, LEP values have not been used to classify NP activity as 

either normal nor abnormal, which impedes a proper characterization with values that define 

sensitivity and specificity for NP [108].  
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2.2.2.2.2 Somatosensory Evoked Potentials (Phase-Locked) 

Other methodologies applied to measure the evoked activity in chronic pain patients are the 

somatosensory evoked potentials (SEPs) to visual (e.g., images) or tactile stimulation. The 

evoked potential studies discussed below have been summarized in Table 3 in Annex 1. In [80], 

the reaction to tactile stimulation while observing pictures (from the International Affective Picture 

System) was investigated. The resultant components of their study were P50, N80, and P20. 

Patients were instructed to ignore tactile stimulation, and to pay attention to the images that 

displayed pleasant and unpleasant situations. Healthy controls displayed an attenuation in P50 

amplitude only during unpleasant pictures, whereas chronic pain patients showed an attenuated 

P50 amplitude in both situations over the primary somatosensory cortex. In sum, this activity may 

reflect the affective-charged state of an NP patient compared to a control [80], and supports the 

later abnormal emotional processing that occurs because of NP. Another component that has 

been studied for SEPs is P300, which is related to an increase of attention due to the assignation 

of brain resources to the processing of pain [81], [110]. In an earlier study, SEPs were recorded 

from chronic pain patients (not necessarily NP) to assess whether pain decreased the 

performance on attention processing capacity [110]. Pain patients had a higher reaction time 

response, but a higher error rate compared to controls. Task performance for these chronic pain 

patients implied to be poorly controlled and more impulsive, which provides evidence that pain 

reduces accuracy in tasks [111]. These results conclude that there is a deficit in the allocation of 

attention resources, but not on the capacity of resources. In other words, patients are hardly free 

from directing their attention towards pain [110], [112]. This attentional demand not only exists in 

the anticipation of pain, but also when pain is continuous (as for most NP patients), and not only 

to pain stimuli but also to innocuous deviant stimuli. This behavior may be explained by the model 

of hypervigilance in chronic pain, which makes patients excessively attentive, and more 

vulnerable to distraction from any somatic sensation [113].   
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2.2.2.2.3 Induced Activity (Not-Phase Locked) 

Induced activity consisting of event related synchronization (ERS) and event related 

desynchronization (ERD) is used to study the rhythmicity of activity in a particular frequency band 

to an event. In a recent study [114], ERD and ERS of imaginary movements in healthy controls, 

paraplegic patients without pain (PNP), and paraplegic patients with NP (PWP) were studied. 

PWP had the largest and spatially distinctive ERD in comparison to controls and to PNP in theta, 

alpha, and beta frequency bands. This implies that the neuronal reorganization affecting the SNS 

in chronic NP, also affects the cortical processing of the motor cortex during the imagination of 

movements. Figure 6 is an adapted figure from the results of [114] and illustrates the enhanced 

ERD in PWP for the alpha band. Participants were instructed to imagine hand or lower limb 

movements using a sequence of visual cues. The cues comprised at t = 1 s, a readiness cue (a 

cross +) which remained on for 4 s. At t = 0 s an initiation cue, presented as an arrow, was 

displayed for 1.25 s, pointing to the left, to the right, or down, and corresponded to imagination of 

the left-hand waving (LH), right-hand waving (RH) and tapping with both feet (F), respectively. 

Participants were asked to continue to perform imaginary movements until the cross disappeared 

from the screen (3 s after the initiation cue appeared) [114].  The enhanced activity in PWP 

demonstrates that NP, even more than paralysis, has a global effect in brain activity which 

spreads beyond the painful or paralyzed limbs. However, despite the promising results on induced 

activity for NP patients, the weekly practice of imagining movements of the painful body part, 

worsens pain [116].  
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Figure 6. ERD and ERS for NP paraplegia patients in C4 electrode for the alpha band. In t=0s a visual cue 

appeared, and participants were asked to perform imaginary movements until the cross in the screen disappeared at 

t=3s. In healthy controls, ERD of the alpha band is at its highest between 1.5-2s. In PNP, there is a clearer ERS in 

alpha band before the ERD which appears until 1.5 s. PWP had the largest ERD throughout the recording and 

throughout frequency bands. This image was created simulating the results of [114] with data taken from a Brain-

Computer Interface database [115]. Positive values in the color bar represent the percentage of ERD, negative values 

represent percentage of ERS. 

2.2.2.2.4 Other evoked-based methods without EEG  

In a more unstandardized way, the tool for stimulating allodynia has been with a brush, and 

measured with fMRI [62] or with PET [63]. Another fMRI study [60] used a frozen bottle as 

stimulus. The “cold rubbing” did not evoke pain while applied in the normal side of NP patients, 

but evoked pain when it is applied to the allodynic side and activated regions in the contralateral 

primary and secondary somatosensory cortex. For evoked-based methodologies, there could be 

drawbacks either laser or unstandardized brush evoked stimuli. The first method may be evoking 

pain with a painful sensation; and the second one is using an “approximate velocity” (3-4 cm/s) 

and an “approximate force” (100-150 mN) to apply the brush stroke, as authors reported in their 

work. Hence, force or velocity are not quantified. 
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2.2.3 Nonlinear EEG Analysis in Chronic NP: Entropy 

Chronic pain should be considered a cognitive state that might interfere with other cognitive or 

emotional states [117].  Recently, the Nonlinear theory of dynamic systems has been applied to 

EEG to capture the macroscopic spatial and temporal cortical activity [118]. A Nonlinear method 

is entropy, which quantifies the randomness and regularity of a temporal signal, to estimate the 

degree of the dynamical changes through time in cortical activity [119], [120]. This method has 

been used to study physiological and pathophysiological states. A decreased Sample and 

Spectral entropy has been found in sleep, anesthesia, schizophrenia, Parkinson, and epilepsy 

[118], [119].  For instance, a convulsion reflects an increase in the regularity of EEG, and 

consequently, low cortical randomness [121]. Under negative mood states (while observing 

unpleasant images), chronic pain patients showed a significant increase of Multiscale entropy in 

the right hemisphere over the left one [80]. There is still no information about brain randomness 

and the affective modulation of pain processing in chronic NP patients, but entropy could be ideal 

for exploring these questions given their dynamic nature. Chronic pain patients might be 

characterized by an abnormal processing of non-painful information when emotional cues are 

present [80], which supports the hypothesis that negative contextual information could enhance 

pain feeling [122].  In chronic NP patients, entropy could be a measure of habituation, chronicity, 

interference with relationships, or emotional impact. 

2.2.4 Limitations of EEG to measure Neuroplasticity of the CNS  
 
The principal disadvantage of EEG to measure neuroplastic brain changes is the limited spatial 

precision at the electrode level due to mixing of projections: (1) from source activities and (2) from 

volume conduction through the skull/scalp. Besides, EEG cannot measure all neuronal events. In 

fact, most of the events in the brain are not measurable with the EEG or all other brain-imaging 

techniques (single-unit recordings, local field potentials, voltammetry, fMRI). No single brain 

imaging technique can record most of the events in the brain, but different techniques are more 
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appropriate for measuring certain kinds of brain events [123]. Particularly, because maladaptive 

plasticity occurs in the neuronal level, and EEG cannot measure the changes happening at this 

microscopical unit. However, for the brain to perceive NP chronically, a change has occurred at 

a larger scale and maladaptive plasticity has altered many neurons, which can be measured to 

some degree with the EEG. 

2.2.5 Clinical Applicability of EEG  

The clinical applicability of EEG for the management of chronic NP patients is based on the 

following six key points:  

1) It helps diagnose with precision based on objective parameters about the role of CNS in 

the origin and maintenance of pain mechanisms [83]. 

2) It proposes a biomarker for the different pain syndromes with anatomical correlations of 

the electrical cortical activity [59]. 

3) It promotes the use of brain information as parameters of success or failure in treatment  

[124]. 

4) It identifies aspects of maladaptive plasticity: (a) the connections between brain regions, 

and (b) the changes in oscillations given the abnormal activity in inhibition and excitation 

of neurons [125]. 

5) It offers a viable alternative to understand the process of NP in an individualized way with 

a lower cost compared to other neuroimaging techniques [125]. 

2.2.5.1 Adjuvants to EEG 

In [71], the theory of brain-body coupling is proposed, where the frequency architecture of 

electrophysiological signals is described and discussed. In Figure 7, an example of its applicability 

is presented for a person with HR of 70 beats per minute.  
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Figure 7. Brain-body coupling theorem postulated in [71] for a person with 70 beats per minute. Positive integers 

determine brain oscillations, whereas negatives ones define breathing, BP, BOLD and gastric waves. Zero refers to 

cardiac activity at rest. 

With the individual HR, the frequency bands of the rest of brain and body oscillations can be 

obtained. These are: (1) rhythmic fluctuations in the blood oxygen level dependent (BOLD) signal, 

(2) breathing frequencies, (3) blood pressure waves, (4) gastric waves, and (5) neuronal 

oscillations: delta, theta, alpha, beta, and gamma. In line with this theorem, recording other 

electrophysiological signals besides EEG may be of extreme relevance in NP, given that the brain 

and other body oscillations are a single system [126].  

This theorem demonstrates that resonance of a biosignal is harmonized with other ones, and 

then, the same information to design clinical neuro-technology may be obtained from different 

sources. For instance,    

• During respiration, heart rate (HR) increases at inhalation and decreases at exhalation. 
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• HR presents a clear tendency 10:1 frequency ratio relative to breathing rate owing to 

energy demands and emotional regulation. 

• Gastric waves explain 8% of alpha band modulation of EEG signals, and 15% of BOLD 

variance is explained by gastric phase. 

• Slow frequency that modulates the envelope of the EMG signal is originated from neural 

mechanisms of motor control and resonance frequency of body parts. 

Regarding characterization of NP, sympathetic nervous system information can be collected from 

other electrophysiological sources such as HR or electrodermal activity (EDA) (Figure 2). In 

addition, CNS information may also be retrieved by estimating individual frequency bands of EEG 

from HR, to avoid analyzing in typical approximations applied in previous studies (see frequency 

bands in Table 2). In this respect, there is still no literature regarding chronic NP and EDA or HR, 

however there are few with chronic pain. EDA in chronic pain patients with depression was found 

to be lower than controls [127]. Pain descriptors and emotional words produced a higher EDA 

than neutral words in chronic pain patients, suggesting an enhanced effect with emotional load 

[128]. Regarding HR,  its variability was shown to be reduced in chronic pain [129], and it was 

useful in diagnosing NP after spinal cord injury [130]. We propose that measuring 

electrophysiological signals in parallel to EEG signals, could offer a complementary perspective. 

According to the theory [71], different frequency domains are associated with different processing 

domains regarding cognitive and physiological functions. For a recent systematic review of 

physiological measures in chronic pain, consult [126].  

2.2.6 Psychometric Diagnostic and Assessment Questionnaires 

As stated previously, even if an objective assessment of neuropathic pain is available, the 

subjective perception of the patient is still essential for proper characterization and management. 

The information that can be retrieved from the patient cannot be obtained from any other source, 

as for example: the fluctuation of pain, the emotional impact, or the interference of daily activities.  
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In this section, the primary qualitative subjective questionnaires will be stated as well as a 

quantitative subjective test.  

2.2.6.1 Qualitative subjective 

In the challenge to characterize NP, there have been several tools for the detection and evaluation 

of NP [21], [131]. A diagnostic tool differentiates from an evaluation tool for being highly sensitive 

and capable to differentiate NP from other types of pain. The evaluation questionnaires help 

physicians to monitor NP that has been previously diagnosed [20]. These tools are qualitative, 

because they are based on the subjective perception of the patient about his or her symptoms. In 

some questionnaires, the presence or absence of physical signs are also taken into account, for 

example: changes in skin color or skin temperature. The most commonly used diagnostic 

questionnaires are: 1) The Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) 2) 

Douleur Neuropathique en 4 Questions (DN4) 3) NP Questionnaire (NPQ) 4) ID Pain 5) Pain 

Detect Questionnaire (PDQ); and one for evaluation, 6) Brief Pain Inventory (BIP). All of them 

coincide in the questions about symptoms, showing a quality of these, such as: “stabbing, 

prickling, pins and needles, electrical discharges or shots, burning, pain evoked by a slight caress, 

or numbing” [12], [20], [132]–[134]. There are some apparent differences among the six 

questionnaires. They are the following six items: 

1) LANSS has 95% specificity for the diagnosis of NP, which makes it the highest of all 

questionnaires [135].  

2) DN4 has higher precision in patients with spinal cord injury [136] and diabetic patients 

[137]. 

3) NPQ qualifies affective impact and exacerbating factors such as changes in weather, 

emotional states, or tiredness [21], [134]. 
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4) ID Pain is the best tool for identifying NP in a wide variety of patients, particularly from 

primary care. To reduce misdiagnosis, it considers pain limited to articulations and 

subtracts one point if presenting this type of pain (-1 point) [21]. 

5) PDQ was created for assisting physicians in the primary care to determine the level of NP 

in patients with lumbar pain [12]. It is the only questionnaire that considers four fluctuation 

patterns of pain. Additionally, it considers pain irradiation which adds two points supporting 

the diagnosis of NP (+2 points). 

6) BIP is useful for the evaluation of NP because it highlights the impact of NP in daily life 

and across different domains. For example, the percentage of relief from treatment, 

walking, working, personal relationships, or enjoyment of life [138]. 

2.2.6.2 Quantitative subjective 

The only validated quantitative subjective test is the Quantitative Sensory Testing (QST) from the 

German Research Network for NP. QST measures the small nociceptive nerve fibers that account 

for approximately 80% of the peripheral nervous system, and cannot be measured with 

conventional studies such as evoked potentials, electromyograms, or electroneurograms [139]. 

QST has been used to test treatment efficacy for NP, but it cannot give a definite evidence for 

NP, because other types of pain (e.g., inflammatory pain) can reflect changes in the QST [101]. 

It is quantitative because it comprises a series of calibrated stimuli and thresholds (i.e., perception 

and pain thresholds) for different tests. The instrumentation with the different types of stimuli for 

QST is shown in Figure 8. During the evaluation, thirteen parameters are assessed to determine, 

and quantify the function of the somatosensory nervous system. Stimuli are applied by using two 

methods: (1) method of levels, and (2) method of limits [140]. In the first one, predetermined 

stimuli are applied repeatedly under, and above the threshold of pain detection. Then, the intensity 

of the following stimuli is increased or reduced systematically, until the patient identifies it as 

painful. The patient may then stop the stimulus by pressing a button which involves the time of 
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reaction [141]. The first drawback of QST is that although it is quantitative, the feedback for pain 

intensity is based only on the patient opinion. Thus, it is still subjective, as happens with 

questionnaires. A second drawback is time, since the duration of the QST is approximately 30-90 

minutes. Third, there are a vast number of methodologies available for different diseases, which 

makes it even more complicated to adapt to clinical practice, where time and simplicity are crucial 

[142]. Fourth, only certified centers may apply QST, and full equipment could be very costly, which 

limits even more clinical applicability. The final drawback is that mastering QST also requires 

many hours of study, and training to understand the different techniques to apply them in a clinical 

setting.  

 
 

Figure 8 Instrumentation of QST. A) Mechanical testing: set for testing the mechanical pain sensitivity, consisting of: 

stimulators (pinpricks) of different intensity and a Q-tip, cotton swab and a brush. B) A needle stimulator of the 

mechanical testing set. C) Von Frey filaments (optic fiber filaments with a rounded tip) to evaluate the mechanical 

threshold. D) The filaments are fiber optic cables with rounded tips. E) Tuning fork of 64 Hz at a scale of 8/8 (Rydel-

Seiffer) to evaluate the vibration detection threshold. F) Digital algometer of pressure to determine the pain threshold 

to pressure[140].  
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3 Chapter Three: Research Questions, Hypothesis and Objectives 
 

3.1 Research Questions 
 

For this project, the main research question was the following: 

Is it possible to quantify and qualify neuroplastic changes due to chronic NP by means of 

noninvasive neuroimaging techniques such as electroencephalography based on the 

outcome of a psychometric measurement?  

 

If so, two other secondary questions were: 

1) What are the differences in spontaneous EEG activity among patients with chronic NP at 

a low, moderate or high pain severity? 

2) Is the resulting EEG analysis (with linear and Nonlinear features) sufficient to monitor the 

patient pain experience, and thus be able to eventually assess the patient’s 

neurophysiological severity of NP? 

 

3.2 Null and Alternative Hypotheses 

3.2.1 Null  
 
The null hypothesis was the following:  
 
 
Even with neuroplastic changes, EEG activity does not show significant differentiable patterns 

with respect to pain severity since EEG technique, being a noninvasive method, does not reflect 

the dynamics of the neural networks in the SNS. 

 
3.2.2 Alternative 
 

The alternative hypothesis was the following: 
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Due to the neuroplastic changes, spontaneous EEG activity will show significant differentiable 

patterns with respect to the severity of pain, since the cortical electrical activity is a reflection of 

the dynamics of the neuronal networks in the SNS that are considerably affected with greater 

severity level of pain.  

 
3.3 General Objective 

 
The general and particular objectives were:  
 
To characterize the neuroplastic changes reflected in electrical activity caused by the degree of 

alteration of the SNS in patients with different NP severities.   

3.4 Particular Objectives 
 
1. To stratify the sample of patients based on the BIP actual pain outcome: low (0-3), moderate 

(4—6) and high (7-10).  

2. To study the neuroplastic tendencies given the degree of effect on the SNS in the different 

neuronal oscillations, through the analysis of the baseline neuronal electrical activity. 

3. To improve the identification of NP severity by including nonlinear EEG features (ApEn) in 

previous tested pattern recognition proposal based on linear features and classifiers. 
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4 Chapter Four: Study Design  
 
This study design is cross-sectional because it investigates a specific population through a 

sample (patients with chronic NP) at a specific point in time [143]. All participants had a common 

variable, in this case chronic NP, and multiple variables that they did or did not share such as 

pain severity, age, or sex. 

4.1 Sample Size 
 
The sample size was calculated in line with Eq (1), with a two-tailed Z normal distribution to 

evaluate similarity between a control group (null hypothesis) and the NP group (alternate 

hypothesis). Calculations were performed in MATLAB R2020a (The Mathworks, Inc., Natick, MA, 

USA) with the Statistics and Machine Learning Toolbox.  

!"#$% = '	[	*∝ +
(#!$#")∗√(	]	

+ ]                                   (1) 

Note that for Eq (1), the power depends on four factors: ∝, |	µ! + µ"|, &, and n. Thus, to compute 

the power with this formula, an expected value from the control group (µ!	with	its	variance	&	) and 

from the NP group (µ") is necessary. To solve for n, see Eq (2) where 1-ß is the power and ∝, is 

the significance level: 

- =
,	-"#∝/&.	-"#ß/

&+&
	(#!$#")&	

                                   (2) 

The parameter to estimate significant differences between the groups was the individual alpha 

frequency (IAF) value, an EEG biomarker taken from the analysis of the alpha band and from 

electrodes O1 and O2. The IAF is modulated by lifestyle, diet, exercise, sex, age, and many other 

factors. Moreover, it can be affected by neuropathologies such as tinnitus and NP by the 

mechanism of TCD, as mentioned earlier in the Section 2.2.2.1.4. To approximate the unknown 

value of the IAF of patients with NP, data from patients with tinnitus was taken from a database 

of Neuroengineering and Neuroacoustics Research Group of Tecnológico de Monterrey. The 

extraction of the IAF from the database is exemplified in Figure 9. It has been established that 
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[86], [90], [144]–[146] neurological mechanisms between tinnitus and NP patients are similar, 

since both of them are phantom perceptions. IAF for the control group was also calculated from 

this database. The mean and standard deviation of the IAF were calculated from previous 

calculated IAFs for each patient. The results were a mean of 10 Hz and standard deviation of 1 

Hz from 15 healthy subjects, 7 men and 8 women, with a mean age 38+-10.2. These results 

support those found in another group for healthy patients from ages 20-80 years reported in [71] 

and in [147]. On this basis, µ! (mean of the null hypothesis) was established as 10 Hz, and the ! 

at 1 Hz. For patients with tinnitus, the resulting IAF was calculated from 65 patients of tinnitus (40 

women and 25 men, mean age 54.92+-11.79) and resulted in 9.5 Hz (µ", mean of the alternate 

hypothesis), which is also supported by the results of another NP study [85].  

The power of a test shows how likely it is that a statistically significant difference will be detected 

based on a finite simple size n, if the µ" of the IAF in NP subjects differs from the mean of the 

control group under the null hypothesis (µ!). If the power is low (less than 80%), then it is unlikely 

to find a significant difference even if real differences exist between the true mean µ of the group 

being studied and the null mean µ! [148].  
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Figure 9. Diagram for the expected value of chronic NP. Since the calculation of sample size requires an expected 

parameter of a known value for the studied sample, a known parameter from EEG analysis was taken from the database 

of Tinnitus from the Neuroengineering and Neuroacoustics Research Group. The parameter was the mean and 

standard deviation of the alpha individual frequency, an individual measure that has been characterized to be altered 

with the same mechanism as NP.  

Therefore, to calculate the sample size for this study, and considering a power between 0.8 and 

0.9, the following parameters were applied in the Eq. (1), µ! = 10,	µ" = 9.5	, ∝= 0.05, ;<=	& = 1.   

According to Eq (2), for a power of 0.8, ß=0.2 and ∝= 0.05, n=32, meaning that 32 NP patients 

are needed to reach significant differences between NP and a control group. For a power of 0.9, 

ß=0.1 and ∝= 0.05, n=43. 

Figure 10 compares the power at different number of patients for the hypothesis parameters 

specified above. Two red lines in Figure 9 delimit the values between 32 and 43. As long as the 

number of patients stay within this range, the false positives would be 20% or less. As it can be 

seen, the higher the number of patients, the greater the power of the study. In conclusion, the 

objective was to recruit between 32 and 43 patients with chronic NP.  
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Figure 10 Power vs sample size. The blue line shows the different powers reached with the numbers of patients. The 

two red lines delimit the power between 0.8 and 0.9 with a significance level of alpha 0.05, which is ideal for a study 

not to contain too many type II errors (false positives). For the power of 0.8, the number of patients was 32 and for the 

power of 0.9 the number of patients was 43. 

4.2 Questionnaire Election 
 
The Spanish version of the questionnaires used [12], [149] are found in Annex 2 NP 

Questionnaires: PDQ and BIP. The two questionnaires have an anatomical map, where the 

patient marks the site with the greatest pain with an X. See Figure 11, image at the right. These 

two questionnaires are the following:  

1) The PDQ is a NP diagnostic tool. This questionnaire was chosen because it specifies 

four different patterns of pain fluctuation. These patterns can be important information for 

subsequent analysis of EEG signals (Figure 11, image at the left). In addition, pain 

qualities are used with various adjectives that can help the patient respond, for example: 

burning, tingling, sudden pains, electric shocks or numbness. 

2) The BIP is a NP assessment tool. This second questionnaire was chosen, since the 

patient reports the impact that NP causes in his or her daily life. For example, the patient 
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responds the degree of pain relief relative to individual treatment and the effect of pain on 

work, mood, ability to walk, or relationships. 

 

Figure 11 Questionnaire fluctuations and anatomic map. At the left, diagram depicting fluctuation patterns of pain 

experience (PDQ). At the right, anatomical map to mark the most painful site (BIP). 

4.3 Sample Stratification  
 
In a stratified sample, the population is taken and segregated by strata or groups. The principle 

of stratification is to divide the population so that the individuals of each stratum have greater 

similarity between them, and the variability between subjects is reduced to increase the power of 

the study [150]. In this experiment, the proposed stratification for the groups depended on the 

severity of pain marked in the “actual pain” reported in the BIP, which has a scale from 0 to 10 

[138]. In Figure 12, the variable NP is broken down in strata with the number of respective groups. 

For our study we considered three classes: (a) low pain = 0-3, (b) moderate pain= 4-6, and (c) 

high pain = 7-10. This division is hypothesized to have an increase intergroup variability while 

having less intragroup variability. The final groups with their respective sample size are defined 

in Section 6.1.2. Stratification makes an important difference in terms of the underlying 

neuroplastic mechanism. Different mechanisms involve different areas of the cortex. This entails 

a different neuronal dynamic that can be measured in function of the effect of chronic NP in the 

SNS. For instance, when dividing the sample by severity of pain, changes related to the emotional 

processing centers like the limbic system, or the frontal cortex were expected. 
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Figure 12 Diagram of stratification of sample. Exemplifies the stratification based on the number of patients for each 

stratum.  

4.4 Questionnaire Evaluation, Outcomes and Scores 
 
In this section, the scores for each questionnaire and their respective evaluation are described.  

4.4.1 PDQ 
 
The questionnaire consists of nine items in total, seven of these are questions about the quality 

of NP symptoms. The questionnaire is completed by the patient and does not require any physical 

examination. The first five questions are about the severity of pain and have a score of 0 to 5 (0 

= never, 1 = very light, 2 = light, 3 = moderate, 4 = intense, 5 = very intense). See Figure 14A. 

Question 6 is about the pain fluctuation with a score from -1 to 2, depending on the selected pain 

fluctuation. Question 7 refers to the radiation of pain, with an answer of yes or no, and with a 

score between 2 and 0 respectively (see Figure 14B). A total score between -1 and 38 can be 

calculated from the nine items, with a greater probability of having NP with higher scores. A score 

less than or equal to 12 indicates pain with a modest probability of being NP, greater than or equal 

to 19 means that there is a 90% probability that NP exists. A value between 12 and 19 indicates 

that the result is borderline. See Figure 14C. 

32	 ≤ %	 ≤ 43

'()	 = 0 − 3	 -(./012/ = 4 − 6 456ℎ = 7 − 10
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4.4.2 BIP 
 
Pain measurement in BIP is divided into two categories: severity and interference with function. 

The severity category consists of four pain items, as previously mentioned in the Section 4.3. The 

category of functionality is divided into seven items: general activity, mood, ability to walk, normal 

work, relationships with other people, rest and enjoyment of life. Each item is measured on an 11-

point scale from 0 to 10, where 0 is no pain or no interference, and 10 is worst pain or complete 

interference. See Figure 13, to visualize two questions of each category. 

 

 

 

Figure 13 Two questions of BIP. Questions correspond to one of each category in the questionnaire. Both are 

evaluated from 0 to 10. A) Severity of pain. B) Interference and function.  
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Figure 14 Score of PDQ validated in Spanish. A) The score of the quality of symptoms. B) Depicts the score for the 

fluctuations of pain and irradiation. C) The result of the total score which if it is >=19 there is a 90% probability to have 

NP. 
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4.5 Feature Extraction: Selection of EEG Analysis Methods  
 
4.5.1 Linear Method: Time-frequency based analysis: Absolute Band Power 
 
The linear method selected was absolute band power. Analyzing EEG data as a signal that 

contains frequency as a prominent dimension provides many opportunities to link EEG data to 

experimental manipulations, ongoing subject behavior and patient groups [68]. There are three 

major advantages of using time-frequency based approaches. The first advantage is that results 

concerning time-frequency-based analyses can be interpreted in terms of neurophysiological 

mechanisms of neuronal oscillations. Oscillations seem to be a fundamental neuronal mechanism 

that supports a synaptic, cellular and the overall brain function as a system across multiple spatial 

and temporal scales [151]. The second advantage is that until now, oscillations are arguably the 

most promising bridge linking multiple disciplines with neuroscience such as: biophysical 

computational models, in vitro single-cell recordings, intracranial EEG, scalp EEG and MEG. The 

third advange is more practical and statistical. EEG data captures a dynamic and 

multidimensional space with a diverse array of information concerning the brain processing, can 

be used and analyses from different methods that could answer a variety of questions. Thus, 

there are many task-relevant dynamics in EEG data that can be retrievable using only time-

frequency based approaches [123]. Some limitations of these analysis include: the decrease of 

temporal precision resulting from time-frequency decomposition (although fMRI temporal 

precision will almost always be worse), and the wide array of analysis that exist that may lead to 

suboptimal application of the analysis chosen.  

 
4.5.2 Nonlinear Method: Approximate Entropy 
 

In a brain with NP that has maladaptive plasticity (i.e., a dynamical model), it may be said that 

several neurons have no pre-defined meaning: they specialize, during the learning phase, in a 

manner which is often unexpected [152].  The reason is because propagation of activity in 
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excitatory networks is simple and predictable, it converges toward the same end. In contrast, 

when an inhibitory interneuron at the beginning of the chain is activated, it suppresses the activity 

of the target neuron. Consequently, the third interneuron in the chain will be less suppressed by 

the second interneuron, and the activity of the third neuron may increase. This process is called 

disinhibition [70]. Thus, networks built from both excitatory and inhibitory elements can self-

organize and generate complex properties. In fact, NP may arise from disinhibition and long-term 

depression of GABAergic interneurons [153]. Interneurons have also been proposed as a gate of 

pain transmission to higher brain areas [154]. Given the nonlinearity of a brain with NP caused by 

maladaptive plasticity, it was proposed to calculate the randomness of the system measured with 

entropy in the EEG. Various entropy algorithms [76] have been developed in the past two decades 

to explore the nonlinear dynamics of physical systems, for example the Kolmogorov and Renyi 

entropy have been widely used [155]. Specifically, to characterize chaotic behavior in time series 

data of the human system, different types of entropy have been applied, such as: approximate 

entropy (ApEn) [120], sample entropy [156], and multiscale entropy [157].  

In this study, ApEn was used as the measure of Nonlinearity for its properties and clinical 

applications concerning biological signals. The development of ApEn was motivated by data 

length and noise constraints commonly encountered in heart rate, EEG, and endocrine hormone 

secretion data sets [158]. Thus, ApEn is relatively unaffected by noise, it is finite for composite, 

stochastic and noisy deterministic processes [159], and it detects changes in underlying episodic 

behavior undetected by peak amplitudes[160]. The key of ApEn for clinical utility is the capacity 

to preserve order even in composite systems, because most biological time series are likely 

comprised of mixed processes with both stochastic and deterministic components. For these 

properties, ApEn has been used to understand brain function in brain disorders [161], [162] or in 

healthy subjects [163], [164], given the complex and dynamical characteristics of cerebral 

systems. However, it has still not been used for the analysis of chronic NP. 
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Mathematically, ApEn is part of a general development as the rate of entropy for an approximating 

Markov chain to a process [165]. Unlike Shannon entropy, that calculates the predictability based 

on the probability distribution of amplitude values observed in the signal, ApEn is not predicated 

on the underlying distribution of the data, rather it is based on sequence recurrence. ApEn 

quantifies the predictability of subsequent amplitude values of data series (e.g., the EEG) based 

on the knowledge of the previous amplitude values. Accordingly, in a regular time series, the 

ApEn would be zero. With increasing irregularity, even knowing the previous values, the prediction 

of the subsequent value would be unachievable and ApEn would increase. The ApEn value of an 

entirely irregular data series depends on the length of the epoch and on the number of previous 

values used for the prediction of the subsequent value [166].  

4.5.3 Selection of Classifier: Support Vector Machine 
 
There are four fundamental approaches in machine learning: supervised, unsupervised learning, 

semisupervised, and reinforcement learning. Classification is a supervised learning method, 

which categorizes input data to output data based on many input-output example pairs during the 

training phase [167]. In this way, features related to samples from patients with NP can be used 

to train a decision function that generates labels when encountering new patients. Once the 

decision function (i.e., the classifier) is created based on the previous features, it can then 

automatically classify unseen observations using the patterns established in the training. Types 

of machine learning algorithms that can perform classification are support vector machines 

(SVMs), decision trees, naïve bayes, and deep learning networks. SVMs have become a widely 

used tool for classification in brain disorder research, particularly in neuroimaging [167], [168]. 

The decision function of SVMs is more precisely an optimal “hyperplane” that separates the 

observations belonging to each class based on the features from those observations. To solve 

classification problems, SVMs utilize a technique called the “kernel trick” as depicted in Figure 

15. By means of this kernel trick, the input data (in a Nonlinear lower dimension space) is 
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transformed to a higher dimension space where data may be linearly separable. However, there 

are many cases where data is not linearly separable and other Nonlinear kernel functions may be 

used. These functions are discussed in Section 5.4.1.4. The hyperplane can then be used to 

determine the most probable label for unseen data as seen in the right side of Figure 15.  

 
Figure 15 Kernel Trick in SVM. Different SVM algorithms use different types of kernel functions expressed as ∅. 

The power of SVMs is the ability to learn data classification patters with balanced accuracy and 

reproducibility. Thus, while working with SVMs, two complementary aims have to be considered: 

(1) maximizing the percentage of correct labels (i.e., optimizing its accuracy) and (2) ensuring that 

the classifier is generalizable to new data (i.e., optimizing its reproducibility). Reproducibility is 

assured by the degree of information that features reflect of a particular class, whereas accuracy 

is bound by the number of unique examples used to train the model. The power and popularity of 

SVMs compared to other classifiers, comes from its ability to achieve high accuracies that are 

generalizable even when dimensionality of the feature space exceed the number of observations, 

which is a common occurrence in neuroscience research [167]. Besides offering this balance 

performance, SVMs offer versatility, referring to the many different kernel functions available. A 

third advantage is that they are nonparametric, so SVMs do not assume prior knowledge of the 

distribution of the data. Another advantage is robustness, which guarantees SVMs will perform 

well in the presence of outliers or extreme data points. Nonetheless, SVM are also susceptible to 

overfitting precisely to the increased chance of model selection bias [169].  

∅ 
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5 Chapter Five: Materials and Methods 
5.1 Neuropathic Pain Patients Sample 

 
For this study, 35 chronic NP patients (8 men and 27 women) with a mean age of 44±13.98 were 

recruited. In order to participate, the patient authorized and signed the informed consent. The 

place where the EEG recordings were held is described in the informed consent in Annex 3: 

Informed Consent. Patients were recruited from social media. As a means to sign up and collect 

the patient’s clinical history about their pain they filled a Google Forms. Afterwards, an ID number 

was given to them with which they answered the PDQ in a second Google Forms (see Figure 16). 

Since patients were not taken from a specific pain doctor or pain center, only those that passed 

the total score of PDQ with a minimum of 12 points were included. In this way, all patients that 

had preliminary signed up, but did not have NP were excluded. Three patients were excluded for 

having a different type of pain. 

 

Figure 16 Google Forms for the PDQ. This questionnaire was answered to confirm eligibility for the study after the 

patient had preliminary signed up. 

5.1.1 Inclusion Criteria 
 
After an extensive literature review the following inclusion criteria were established under the 

supervision of pain specialist Dr. Fernando Cantú. The inclusion criteria were the following: 

(1) Age above 18 years old 

(2) Chronic NP for more than 3 months 

(3) Long-term treatment for the last 3 weeks at least 
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(4) Absence of a major psychiatric disorder (i.e., schizophrenia, major depressive 

disorder, bipolar disorder)  

(5) Absence of a neurological disorder (i.e., epilepsy, tinnitus) 

For ethical reasons, patients were allowed to continue with their medication. Some other EEG 

studies with NP have been undertaken under the same condition. For instance,  one study 

established that patients taking co-analgesic treatment (anticonvulsants and antidepressants) 

needed to have that specific medication treatment for at least 4 weeks prior to registration [58]. 

Moreover, the sub chronic dose (25 mg, > 15 days) of amitriptyline (an antidepressant given for 

NP) has no effect on the P3 component in patients with NP [170]. Finally, no significant differences 

were found between NP patients with or without central drugs (opiates and antidepressants) in 

EEG studies at rest condition and analyzing the signals in the bandwidth: 2-18 Hz [84].  

5.1.2 Exclusion Criteria 
 
The exclusion criteria were: 

(1) Any type of acute or chronic pain other than NP 

(2) Recent brain or neurological injury (seizures, tumor or infarct) that may affect the outcome 

of the EEG 

5.1.3 Suspension Criteria 
 
At any time, the patient was free to stop participating in the study. None of the patients that had 

agreed to be in the study dropped out. 

5.1.4 EEG Recordings 
 
EEG recordings were held at a doctor’s office (see Annex 3: Informed Consent). The Sanitary 

Protocol established in Annex 5: Health Guidelines for Medical Units, was based on the health 

protocol for the safe restart of activities in medical units of the Health Secretariat of Mexico City 

[171]. This protocol was followed strictly in view of the COVID19 safety measures. Some of these 

measures can be seen in the Figure 17. 
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A

 

B 

 

Figure 17 Sanitary safety measures for COVID. (A) shows a patient that is already in the EC segment of the session. 

(B) The application of the EEG cap was done with latex gloves trying to keep the distance with the maximum effort 

while wearing mask and face shield at all times.  

5.1.5 Clinical History and Demographical Data 
 
The clinical history was taken through a Google Forms when signing up for the study. The clinical 

history included general demographical questions and information regarding the patient NP 

condition, including major neurological or psychiatric diseases. The specific questions are listed 

in Annex 4: Patient profile questions. Some questions were multiple choice, the options are 

enumerated below the question.   

Once patients had filled their profile and clinical history, they had preliminary signed up for the 

study. The next step was to confirm eligibility by answering the PDQ. Non eligible patients were 

those who obtained a score less than 12 (in a range between 0 and 38), see exceptions in Section 

6.1.1. The questionnaire outcome was confirmed by the clinical history of the patient. In Figure 

18A, the frequency of the pharmacological treatment of patients is illustrated. Twelve patients 

(n=12) were not taking any type of medication, eighteen patients (n=18) were taking centrally 

acting drugs for over a year, two patients (n=2) were on cannabidiol derivatives (CBD), and three 

(n=3) took nonsteroidal anti-inflammatory drugs (NSAID) for pain attacks. In Figure 18B, the 

etiology of the NP patient sample is illustrated. The causes for NP in the studied sample were 
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spinal cord injury (31%), peripheral neuropathy (23%), diabetes (17%), trigeminal neuralgia (9%), 

CNS disorder (6%), and other (14%). None of these patients had a severe mental disorder, 

neurological disorder (beside NP), or had suffered from traumatism, cerebral infarct or CNS 

tumor. 

5.1.6 Informed Consent  
 
Written informed consent for study participation was obtained at the beginning of the EEG 

session, before the patient answered the BIP (see Annex 3: Informed Consent). All screening 

evaluations (in this case clinical history and PDQ) had to be completed and reviewed to confirm 

that patients met all eligibility criteria prior to recruitment. This study was approved by the Clinical 

Investigation Ethics Committee of TecSalud with the following number: P000369-DN-

RespElectro-CI-CR005. 

 

  

Figure 18 Current drug treatment and etiology of the NP studied sample. (A) Centrally acting drugs refer to 

anticonvulsants (pregabalin, gabapentin) or tricyclic antidepressants (amitriptyline) that are commonly prescribed for 

NP. NSAID (Nonsteroidal Anti-Inflammatory Drug, e.g., aspirin, ibuprofen and naproxen) were used by 3 patients, while 

CBD (Cannabidiol Based Derivatives) were used by 2 patients. The majority of the patients that had no current 

treatment, had previously been also in centrally acting drugs. (B) The most common etiology in this sample was spinal 

cord or nerve root injury (31%) followed by peripheral neuropathy (23%). The CNS (Central Nervous System) disorders 

in the sample were: Lyme disease (n=1) and CRPS (Complex Regional Pain Syndrome) (n=1). 
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5.1.7 Control group 
 
For the control group, a database was downloaded from open access Figshare site [172]. The 

database contained 13 healthy individuals (the majority were women, although the precise 

number was unclear, with a mean age = 38.277 +- 15.64). The healthy control subjects were 

examined for many psychiatric conditions and were found to be normal.  

5.1.8 Control group equipment and recording conditions 
 
Data acquisition hardware included a 19-channel electro-gel cap interfaced with a Brain Master 

Discovery amplifier. The 19 recording sensors were placed over the scalp (Fp1, F3, C3, P3, O1, 

F7, T3, T5, Fz, Fp2, F4, C4, P4, O2, F8, T4, T6, T8, Cz and Pz). The amplifier was attached to 

the computer system through a universal serial bus (usb) port. The EEG cap with 19 sensors 

covered the whole scalp according to 10–20 electrode placements, which were standard with a 

link-ear (LE) reference. The sampling frequency was 256 samples per second. EEG recordings 

were conducted during eyes closed (EC) and eyes open (EO) conditions for 5 min each. During 

EO, the participants were instructed to sit relaxed with minimum eye movement [173].  

5.1.9 Comparison with NP Sample  
 

There are several similarities that validate the comparison between this control database and the 

chronic NP sample from this study: (1) the number of subjects in the control group (n=13) is 

comparable to the number of patients in each NP severity group, (2) age and sex are similar, (3) 

the recording conditions were 5 min EO and EC, (4) sampling rate was 256 Hz while for NP was 

250 Hz, and (5) electrode number (19 vs 22) and location (10-20 electrode placement with Cz as 

reference) were comparable.  
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5.2 Recording Systems and Equipment of Chronic NP Sample 
 
5.2.1 EEG System 
 
Ten minutes of spontaneous EEG data were recorded using 24 electrodes positioned according 

to the International 10/20 System (Figure 19C). Figure 19A shows the mBrainTrain cap with 24 

Ag/AgCl electrodes (M1 and M2 were used as ground electrodes and Cz as the reference). The 

amplifier in use was the Smarting mBrain which has a  wireless bluethooth v2.1 communication 

(Figure 19B). The input impedance is 1G Ohms. The input referred noise is less than 1 µV. It has 

a resolution of 24 bits. The temporal resolution is determined by the sampling rate of the system, 

which was 250Hz (250 samples per second). The bandwidth was between 0.1-100 Hz, with a flat 

frequency response of 0-133 Hz. OpenViBe software was used to implement the experimental 

paradigms and record the EEG signals. Electrode impedances were kept below 5 kΩ. Right and 

left mastoid electrodes were used as ground electrodes and Cz as the reference electrode.  

 

A. B. C. 

 
Figure 19 Laboratory Resources of the Neuroengineering and Neuroacoustics Research Group. (A) MBrainTrain 

cap with 24 Ag/AgCl electrodes. (B) Smarting device used for communication between electrodes and recording device 

by means of bluethooth. (C) Topographic map for the 24 channels positioning according to the 10/20 system. Two 

mastoid electrodes (M1 and M2) were averaged and used as ground, and Cz was the reference electrode. 
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5.3 Experimental Procedure 

 
 
5.3.1 Recording Session  
 
Patients sat in an upright position. The first five minutes, they were asked to keep their eyes 

opened and fixed on a white cross in a dark background of a monitor 50 cm away. At the end of 

the first 5 minutes, the cross disappeared, and patients closed their eyes for the last 5 minutes 

until a beep marked the end of the recording. A simplified diagram for the procedure followed for 

the recording session is depicted in Figure 20. 

 

Figure 20 Methodology for the Recording Session. First, the procedure is explained to the patient thoroughly. 

Second, the informed consent is signed. Third, the BIP is answered. The PDQ that was answered previously is 

explained again to the patient. Fourth, the EEG cap is installed along with the measurement of heart rate with a pulse 

oximeter. After everything is set, the spontaneous EEG Recording paradigm starts. Finally, the session ended in 

approximately 55 min and a monetary contribution was given.  

5.4 Data Analysis 

 
5.4.1 Signal Analysis 
 
In this section, the signal analysis methods used for preprocessing, feature extraction and data 

processing are described thoroughly. Signal preprocessing and processing was performed in 

MATLAB R2020a (The Mathworks, Inc., Natick, MA, USA). 

 

 

Finish 
Session 
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5.4.1.1 Preprocessing of Raw EEG signals 

 
EEG data contains signal and noise. Appropriate preprocessing is needed to attenuate the noise 

in the data. Noise pertaining to artifacts might be easier to remove. However, even with 

preprocessing, some noise might remain because it may be mixed with the signal. It is a trade-off 

between signal and noise: removing a lot of noise may remove signal as well, and leaving as 

much signal in the data, means to leave noise as well. In other words, there is tolerance for some 

noise in order to retain as much signal as possible [174].   

5.4.1.2 Preprocessing Methods 

 
EEG raw signals were preprocessed using EEGLAB toolbox (v.19.1.1) for MATLAB (R2020a) 

software. Signals were firstly filtered by a 6th-order Butterworth high-pass filter with a cut-off 

frequency at 0.1 Hz to remove very low frequency artifacts. Then, transitory artifacts were rejected 

using the Artifact Subspace Reconstruction [175]. After that, muscular, ocular, cardiac, line noise, 

or channel noise artifacts were removed by Independent Component Analysis supported by 

ICLabel [176].  

5.4.1.3 Feature Extraction 

 
To estimate the electrical activity in neuronal frequency bands, a linear and nonlinear method 

were applied as illustrated in Figure 21.  Before feature estimation, EEG signals were divided into 

one-minute segments. Afterwards, ApEn and absolute band power was estimated per segment 

as follows. On one hand, ApEn was calculated for the 22 electrodes, and for six frequency bands: 

delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-100 Hz) and broad 

bandwidth (Bw) (0.1-100 Hz). On the other hand, absolute band power was calculated for five 

bands (delta, theta, alpha, beta and gamma), and for the following five regions, averaging the 

EEG electrodes over each region: prefrontal (AFz, Fp1, Fp2), frontal (F7, F3, Fz, F4, F8), central 

(T7, T8, C3, C4, Cz, CPz), parietal (P7, P3, Pz, P4, P8), and occipital (POz, O1, O2). As a result, 

157 features ([22 electrodes × 6 bands] + [5 regions × 5 bands]) were extracted, yielding 350 
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observations (35 patients × 10 EEG segments). The dimensionality of the resulting feature vector 

was 157. Finally, data was normalized in z-score scale with center 0 and a standard deviation of 

1. 

 

 

Figure 21 Pipeline of Signal Analysis and Feature Extraction. Resulting feature vectors were 157 features per 350 

observations.  

5.4.1.3.1 Band filtering 
 
To filter segments into the five clinical bands and the broadband, six filters were designed (for 

ApEn). For power, only the five clinical bands were used. The filters were 8th-order bandpass 

Butterworth filters with the lower and higher frequency of each band specified in the previous 

section.  The sampling rate was 256 samples per second. 

5.4.1.3.2 Absolute Band Power Estimation  
 
Absolute band power was calculated to estimate the level of neuronal synchrony according to Eq. 

(3), where n is each data point of N (segment of 60 s x 256 Hz, N=15360) and x is the amplitude 

value of the filtered signal,   

.[-] =
0
1∑ 02

3[-]1
240      (3) 
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5.4.1.3.3 Approximate Entropy Estimation 
 
ApEn is estimated from the uniformly sampled time-domain signal by reconstructing the phase 

space. ApEn measures the likelihood that runs of patterns that are close of m observations remain 

close on next incremental comparisons. Thus, two input parameters are needed: the pattern 

length m and tolerance factor r; r is a tuning parameter (a.k.a. similarity criterion) used to identify 

the meaningful range in which fluctuations in data are similar [163]. For a given system, there 

usually is significant variation in ApEn over the range of m and r  [177]–[179]. ApEn results in a 

unitless number varying from 0 to 2, where 2 corresponds to a random time series and 0 to a 

perfectly regular time series [180]. It is computed as follows: (1) the first sequence of length m is 

compared to all sequences of the same length point by point, the sequences for which all points 

are within r of their corresponding point (in the original sequence) are counted, (2) this is repeated 

for all sequences of length m+1, (3) the natural logarithm of the ratio between the amount of 

similar sequences for m+1 and the resulting amount from m long sequences is calculated, (4) the 

process is repeated for all sequences, (5) the results of all logarithms are added and normalized 

for N, the total number of data samples and m [163]. Thus, the ApEn was calculated as 

;>>?@AB<C = D# − D#$" in line with Eq. (4) with the Predictive Maintenance Toolbox.  

'5 = (2 −4 + 1)$0 ∑ log	(22)
1$5.0
240    (4) 

A value of ApEn was computed for each segment and each channel. In order to reconstruct the 

phase-space, a delayed reconstruction Y1:N  for N data points with dimension m and lag t is 

needed. For the appropriate t and sufficient dimensions, the embedded dynamics (Figure 22A) 

are diffeomorphic to the original state-space dynamics (Figure 22B), meaning that they have 

qualitatively the same topology and have the same dynamical variants (see Figure 22).  
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A.  

 

B.  

Figure 22 Taken’s Theorem. (A) Embedded dynamics and (B) Original space dynamics. The Taken’s Theorem states 

that, whenever reconstructed appropriately, embedded dynamics and original space dynamics are diffeomorphic, 

because they share the same topology and dynamics. Adapted from [77]. 

The delay-coordinate embedding is used to “reinflate” the data in a reconstruction space [77]. 

First, for the uniformly sampled univariate time signal X1=(x1,1,x1,2,...,x1,N)T, the time series is 

reconstructed according to Eq. (5) [181],  

:0,2
7 = ;:0,2 , :3,2 , …:0,2 + (40 − 1, )>0?, @ = 1,2, … , 2 − (40 − 1, )>0		 (5)	

where X is the one-minute segment (60s*256 Hz) and N is the length of the time series 

(600s*256Hz), >0 is the lag, and 40 is the embedding dimension for :0. It can be demonstrated, 

based on the Whitney embedding theorem, that a reconstruction of the full state vector at each 

data point can be done by delay-time embedding each point in a higher dimensional space (Figure 

22). The delay for the phase space reconstruction is estimated using Average Mutual Information 

(AMI). For reconstruction, the time delay is set to the first local minimum of AMI. AMI is computed 

as (6) [181],  

CDE(F) =G H(02 , 02.8)I"J3 K
9(:(,:()*)
9(:()9(:()*)

L
(

240
   (6) 

where, N=15360, the length of the time series and T=1: MaxLag. If lag is too small, then the state 

vectors would be reconstructed from lagging on data points that are nearly identical [75]. This 
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would lead, to a diagonal line as the entire reconstructed attractor in the m-dimensional 

embedding space [182].  

The embedding dimension was estimated using the False Nearest Neighbor (FNN) algorithm 

[183]. For a point i at dimension d, the points X%& and its nearest point X					%&∗  in the reconstructed 

phase space {X				%&∗ }, I = 1:K, are false neighbors if (7) 

;<(&(=.0)$<(&(=)
<(&(=)

> N@OPQ-R$Fℎ%$Oℎ"IT    (7) 

where, L%)(d) =∥ X%& − X	%&∗ ∥) is the distance metric. When results were computed, dimension was 

m=3 for the control group, as well as NP patients in EO and EC. The lag was calculated for each 

subject and condition. Previous references held that EO has an increased dimension than EC, 

but it wasn’t the case in this study [75]. Additionally, previous theoretical studies indicate that 

filtering a time series prior to estimating its dimension increases the dimension estimate because 

it increases the randomness of system dynamics [184]. Furthermore, if the dimension is increased 

beyond the minimally required value it has the effect of emphasizing the noise contamination in 

the EEG signal dynamics [185]. For actual EEG data, it would appear that the longer the data 

length, the higher the estimated dimension [75]. It can be demonstrated that the optimal number 

of previous values used for the prediction of the subsequent value (m) depends on the number of 

data points N (in our case 60s x 256Hz, N=15360 for each segment). According to [186], the 

number of data points should range between 10# and 30#.  Nonetheless, the value for (m) is 

typically chosen as m=2 or m=3 , which are in accordance with the theoretical implications of 

[177]. The number of within range points at point i was calculated by Eq. (8),  

22 =	∑ 1(∥1
240,2>? V2 − V? ∥@< X)    (8) 

where one was the indicator function, and R was the radius of similarity (r, the similarity criterion); 

r  was calculated as 0.2*variance(X), where X is a 60 s segment of a specific channel and subject 

in either EC or EO (60s x 256 Hz, N= 15360). These values have been demonstrated to produce 
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good statistical reproducibility for time series of length N > 60 [120]. To normalize r with this 

approach gives ApEn a scale invariance, so it remains unchanged under uniform process 

magnification, reduction, or constant shift to higher or lower values [159]. 

5.4.1.4 Classification 

 
As classifier, a support vector machine (SVM) with a quadratic kernel function was selected as it 

had the best performance compared to the linear, cubic, and gaussian kernels tested. In most 

machine learning methods including SVM, there are three essential stages to SVM analysis: (i) 

feature selection, (ii) training and testing the classifier, and (iii) performance evaluation.  

5.4.1.4.1 Stage 1: Feature Selection 
 
Only the feature vector of the NP group was used for the classifier. The control data was not used. 

The feature vectors were labelled according to the severity level of the actual pain reported in the 

BIP. Three classes were considered: (a) low pain = 0 – 3, (b) moderate pain = 4 – 6, and (c) high 

pain = 7 – 10. The feature vector that served as an input for the SVM was the data resulting from 

the linear and nonlinear analysis, depicted in Figure 21. Scaling is important in the algorithm of 

SVM because the distance between the data points is used to calculate a hyperplane to spatially 

separate training data of different classes [187]. For this reason, the vector was normalized in z-

score scale as previously mentioned. The number of features for power was reduced in the 

preprocessing stage by averaging the electrodes across regions based on the relevance that 

certain brain regions have on the mechanisms of neuronal oscillations (Section 2.2.2). Also, 

feature selection was incorporated in the classifier itself during the training phase. This type of 

feature selection is called embedded method and it is applied when using the kernel functions. 

Instead of relying on the feature vector directly, kernel functions allow to train the SVM using a 

Gram matrix (i.e., kernel matrix) which has the value P(A*, A#), on (n, m) element, where 

{	A*	A#}(P = 1,… .K) is training inputs (Gram matrix is symmetric and should be positive 



Neuroengineering and Neuroacoustics Research Group      

Daniela Montemayor Zolezzi – Master Engineering Sciences 71 

semidefinite) [188]. This matrix maps the raw data to a higher dimensional feature space. The 

following were the kernel functions tested in this study:  

• Gaussian kernel Eq. (9), is a general-purpose kernel, used when there is no prior 

knowledge about the data, it is known that exp	(P(A*, A#)) is a valid kernel function, if 

P(A*, A#) is a kernel function. This kernel has infinite dimensionality. 

 
P(A*, A#) = exp	(∥,!-,"∥

#

).# )      (9) 

• Polynomial kernel Eq. (10), for the linear kernel = = 1, for cubic = = 3 and for quadratic 

=	 = 4. 

(A*, A#) = (A% ∙ A/ + 1)0       (10) 

5.4.1.4.2 Stage 2: Training and Testing the Classifier 
 
Features are furthered referenced by coordinates based on their relationships to each other and 

form the “support vectors” [167]. Regardless of the SVM’s level of dimensionality (number of 

features), classification is often linear (the hyperplane is straight and not curved). The SVM aims 

to maximise the distances between input data points belonging to the different NP severities, which 

are closest to the hyperplane, and are called support vectors. Thus, the aim of SVMs is to minimise 

the classification error while maximising hyperplane margins. This may create Nonlinear barriers 

between the classes, which is the basis for the suitability of SVMs in Nonlinearly separable 

datasets. To classify the three classes, one versus one was used as multiclass method.  The one 

versus one approach uses a hyperplane to separate between every two classes, which breaks 

down the multiclass problem to multiple binary classifications. Permitting misclassification can be 

achieved using what’s referred to as a soft margin, which relies on the use of slack variables 

represented by ε [167]. The average error across all of the five partitions was reported as ε (errors 

caused by allowing the classifier to misclassify, or having a soft margin). A penalty factor C, called 

the “soft-margin constant,” is also introduced with the soft-margin approach to incur a penalty on 
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slack variables. This parameter serves to control the trade-off between hyperplane complexity and 

training errors (i.e., regularization).  

5.4.1.4.3 Stage 3: Evaluating SVM performance 
 
To validate the performance of model, a cross-validation 5-Fold was chosen (k = 5). Datasets were 

split into five randomly chosen folds of roughly equal size. One subset was used to validate the 

model trained, using the remaining subsets. This process was repeated five times such that each 

subset was used exactly once for validation.  

For each class, accuracy, sensitivity, specificity, precision and F-score were calculated. Accuracy 

Eq. (11) refers to the number of correctly classified data observations, for instance those correctly 

labeled as high pain and those correctly labeled as not high pain. Sensitivity Eq. (12) measures 

the proportion of positives that are correctly identified, for example those patients with high pain 

were identified correctly as high pain. Specificity Eq. (13) refers to the proportion of negatives that 

are correctly identified, meaning that those that had moderate or low pain were not identified as 

high pain.  Precision Eq. (14) is the positive predictive value in classifying data points. F1 Score 

Eq. (15) is a metric that measures how precise and robust (i.e., does not miss any significant 

number of observations) the classifier is. In the following equations, TF= true positives, FP= false 

positives, TN=true negatives, and FN=false negatives.  

VWWX?;WY = 12$13
12$42$43$13      (11) 

Z[<\ICI]ICY = 12
12$43        (12) 

Z>[WI^IWICY = 13
13$42      (13) 

_?[WI\I@< = 12
12$42      (14) 

`1 = )×67*8%9%:%9;×2&7<%8%=*
67*8%9%:%9;$2&7<%8%=*       (15) 
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5.5 Statistical Analysis  
 
First, from the resulting feature vectors, ApEn from all of the electrodes and severity levels were 

grouped according to two conditions: EO or EC. Likewise, power data was grouped in those 

conditions. Secondly, a Shapiro-Wilk normality test was performed to test data normality.  

ApEn estimates for both conditions were non-normal, therefore a Kruskal Wallis test was applied 

for each band in EC and EO. A multiple comparison Nemenyi test after Kruskal-Wallis was used 

to compare groups in ApEn with the Tukey procedure (significance value=0.05).  

5.5.1 Justification for Analysis of Kruskal-Wallis  
 
The Kruskal-Wallis test is the non-parametric equivalent for the one-way analysis of variance 

(ANOVA), and it is used for testing whether samples originate from the same distribution. It may 

be used for comparing two or more independent samples of equal or different sample sizes [189], 

[190]. This is important since the number of electrodes for control and NP were different. If the p-

value from the Kruskal-Wallis test is lower than 0.05, at least one group is different from the others. 

Some have stated unambiguously that equal variances are required for a Kruskal-Wallis test. 

However, as long as Kruskal-Wallis is used to essentially compare groups, homoscedasticity is 

not required [193]. A Levene’s test was performed to test equality of variances in ApEn and 

obtained a pvalue=6.395e-06 which concludes unequal variances, but as mentioned previously it 

is not required. If medians were to be compared, for example, then the Kruskal-Wallis test would 

require homoscedasticity. When observations represent very different distributions, as in the case 

of this study, the result from Kruskal-Wallis should be regarded as a test of dominance between 

distributions. If the interpretation of results can be done in terms of dominance of one distribution 

over another, then there are indeed no distributional assumptions [194]. Actually, in the biological 

statistics domain, using Kruskal–Wallis is an advantage in cases with heterogeneity of variance 

[195].  
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For power values, each frequency band in either EO or EC showed a normal distribution, yielding 

a higher value than 0.05 in the Shapiro-Wilk test. Therefore, before using a one-way ANOVA test 

to compare the groups, equality of variances was tested in each frequency band, which is also an 

assumption for ANOVA. A Tukey test was performed as a post-hoc analysis (significance 

value=0.05).. 
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6 Chapter Six: Results  
 

6.1 Questionnaire Outcome 
 
6.1.1 Pain Detect 
 
As stated previously, the PDQ was used as a screening questionnaire to confirm the presence of 

NP in each patient. A score higher than 12 was needed as an inclusion criterion. Figure 23 shows 

the PDQ results for the 35 patients. Only four patients who had results lower than 12 were 

included. Two patients (one who scored 5 and the second one scored 9) had recently gone in 

remission. However, we decided to include them for the high possibility of observing longterm NP 

consequences, (2) one patient had undergone a surgical procedure one month before to alleviate 

the NP, and (3) the patient who scored 10 reported in the recording session that he always 

answered pain questionnaires lightly. He also reported to experience a lot of pain while driving 

and walking. The most frequent score (n = 4) was 24, followed by 13 and 17 (n = 3). The highest 

score (x = 31) was from a patient suffering from Complex Regional Pain Syndrome (CRPS), the 

most painful NP syndrome reported [191].  

 

 
Figure 23 PDQ Results for the 35 patients. PDQ results depicted in a histogram. The score with the most frequency 

of patients was 24 (n=4), followed by 13 and 14 (n=3). The minimum score was 5 and the highest 31. Most of the scores 

stay between 12 and 26.  

 
 
 



Chapter Six: Results 

 76 

6.1.2 BIP  
 
The BIP is an integrative questionnaire, and outcomes show the complexity and variety of an NP 

condition for a particular patient. The most important advantage of the BIP is that it gives insight 

into NP effect on daily activities.  In Figure 24, it can be seen that NP affects relationships and 

sleep the most.  After quantifying the BIP Actual Pain score (first column of Figure 24), the sample 

size for each NP severity group was stratified as follows: 10 patients for the low pain group, 12 

patients for the moderate pain group, and 13 for the high pain group.  

 
Figure 24 BIP Results for the 35 NP patients. The color bar in the far left illustrates the scores by colors (score 

ranges from 0-10). Some patients did score a 0 (darkest blue) or a 10 (darkest red). The columns of walking and work 

had the most rectangles in dark blue. Relationships and sleep have the darkest shades of red.  

6.2 EEG Preprocessing: Noise reduction   
 
In Figure 25, an example of raw signals (not preprocessed) versus preprocessed signals is shown 

for the patient ID8.  
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A. Raw: 100 seconds

 

B. Preprocessed: 100 seconds 

 

C Raw: 350 seconds 

 

D Preprocessed: 350 seconds 

Figure 25 Comparison of raw and preprocessed EEG signals. A and B are windows of 100 seconds. C and D are 

windows of 350 seconds. In all the cases, the voltage scale is of 70uV per row.  

6.3 EEG Processing to characterize neuroplastic changes due to NP   

 
In this section, the ApEn of each electrode, as well as the band power across regions will be 

displayed in graphs to give an insight into the EEG characterization of NP based on linear (band 

power) and nonlinear (ApEn) features. Mean ApEn is displayed on topographical plots per level 

of severity for all of electrodes (22 for NP and 19 for control).  Mean EEG band power is displayed 

in three dimensions: regions (prefrontal, frontal, central, parietal and occipital), severity, and 

power amplitude. These results from power and ApEn may help explain the central tendencies of 

the abnormal increased neuronal power or randomness expected from neuronal plastic changes 

owing to the different NP severity levels.   
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6.3.1.1 Eyes Open Control 

 
For control in EO (Figure 26), theta reached the highest power for all bands. Alpha power in EO 

had reduced power compared to alpha-power in EC, which is supported by the results of [192].  

 
Figure 26 Power EO in All Bands and Regions for the control group. The band that displayed the highest power 

was theta. Delta showed decrease in power for central and frontal region, while alpha showed a decreased power for 

the occipital region.  

6.3.1.2 Eyes Closed Control 

 
In Figure 27, for the control group in EC, the highest power is seen in delta (frontal and central 

region) and alpha (occipital and parietal). However, there is also some gamma and beta activity 

that was not present in EO. These results are in line with [192], where the dominant alpha power 

was found to be at the posterior area with a frontal extension much more evident in EC than EO 

state, which can be seen here in the darker yellow shade corresponding to the alpha band over 

the occipital region.  
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Figure 27 Power EC in All Bands and Regions for the control group. Delta in frontal and central regions showed 

the highest power. Followed by the alpha-power in occipital, parietal and central regions. Beta and gamma also 

showed a higher activity than for EO. 

6.3.1.3 Eyes Open NP 

 
In Figure 28, gamma was more enhanced than in the control group across all regions in all 

severities, particularly for low pain in central regions and moderate pain in occipital and parietal 

regions. In second place, delta for low pain (particularly for prefrontal, frontal and central regions) 

had an increased power. Finally, beta for moderate pain had an increased power as well, 

specifically in the prefrontal region. Conversely, beta presented decreased power for prefrontal, 

frontal, parietal and occipital regions in low pain. For alpha and theta, power remains in values 

below 0.2. 
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Figure 28 Power EO for All Bands and Regions for the NP group. Gamma bands showed the highest power for 

all severities of pain, but low and moderate severities had a higher power than high pain in the gamma band. The 

second highest power was seen in delta low pain. Beta also displayed some high activity in moderate pain. In the x-

axis, the labels for each column are according to severity and band: L- low pain, M- moderate pain and H-high pain. 

6.3.1.4 Eyes Closed NP 

 
In Figure 29, almost all frequency bands are show a decrease power ranging from [-0.4 -0.6], but 

there are a few bands that show some enhanced power. These exempted bands are beta and 

gamma in high pain, delta and theta in moderate pain, and alpha in low pain. For theta, there is 

increased power that only happens for the prefrontal and frontal regions in moderate pain. The 

results of [193] show an increased power in EC comparing controls with NP. The majority of bands 

in all NP severities of Figure 29, have a power in the ranges of [-0.2, -0.6], whereas in the control 

group the range goes from [0.2, 0.3] approximately (Figure 27).  
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Figure 29 Power in EC for all bands and regions in the NP group. The highest power was found in beta band in 

high pain and gamma band for high pain. There is focalized enhanced power in prefrontal and frontal regions for 

moderate pain for the theta band. In the x-axis, the labels for each column are according to severity and band: L- low 

pain, M- moderate pain and H-high pain. 

6.3.1.5 ApEn 

 
Up to now, there has not been another NP study that has analyzed EEG signals based on ApEn. 

In some cases, absolute band power was inversely proportional to ApEn since band power 

increases when the level of synchronized neuronal activity increases as well. In contrast, ApEn 

decreases when the regularity of EEG signals increases, that is, the neuronal synchronicity. 

6.3.1.5.1 Delta band  
 
 
In Figure 30, ApEn in delta for control group is higher in EC than EO. Thus, there is more 

randomness in theta band during EC in a healthy state. This is confirmed with the power results 
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of Figure 27 in which there was less synchronization (i.e., decreased power) in EC (i.e., more 

randomness) for theta compared to other bands. Delta in EO for all NP severities (topoplots to 

the right) resembles that of the control group. However, a higher ApEn can be observed in NP, 

particularly in EC for all NP severities compared to the control group. High pain is characterized 

by more signal randomness in the left hemisphere.  

 
 

 
 

Figure 30 ApEn for delta band in control and NP groups. ApEn for EC in the control group showed a higher ApEn 

than EO (topoplots to the left). For the NP group (topoplots to the right), there is increased ApEn for all severities in EC 

compared to EO. This increase of ApEn seems to happen in unison for all severities, since it is generalized without any 

particular region having more ApEn. This may reflect the role of delta as a global processing mode. 

6.3.1.5.2 Theta band  
 
In Figure 31, the opposite of what is observed in delta band occurs in theta: the highest ApEn is 

seen in EO instead of EC, particularly around electrodes F7, F3 and T8. This is supported by the 

findings of [192] that described a radical reduction of theta field power (possibly an increase of 

ApEn) from EC to EO. EO from the low NP severity has a slightly decreased ApEn compared to 

the EO of the control group. Low pain severity in EC resembles the control group in EC. However, 

in moderate pain there is an enhanced signal randomness over right parietal and occipital 
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electrodes. As pain increases to high, the enhanced ApEn expands predominantly in central and 

parietal electrodes.   

 

 
  

Figure 31 ApEn for theta band in control and NP groups. There is increased ApEn for the control group in EO as 

compared to EC (topoplots to the left). The increased of ApEn in the control group occurs slightly over the left frontal 

electrodes and right central electrodes. For the NP group (topoplots to the right), ApEn stays almost on a neutral level 

in all three severities in EO. Except for some frontal areas that increase marginally their ApEn as in moderate pain. In 

EC, there is decreased ApEn in low pain, whereas there is an enhanced ApEn in moderate pain for occipital and left 

central/parietal electrodes. In high pain, central, parietal, occipital and frontal areas have more ApEn compared to other 

severities.  

6.3.1.5.3 Alpha 
 
In a previous study in healthy participants, the dominant alpha power was found to be at the 

posterior area with a frontal extension much more evidently in EC than EO state [192]. In Figure 

32, a posterior extension of alpha ApEn in EC is observed for the control group (topoplots to the 

left, yellow area). Furthermore, ApEn is enhanced in EO (more desynchronization or randomness) 

in some frontal electrodes (Fp1, F3, Fz), parietal (P3, P7, P4 and P8) and in O1 electrode. In the 

NP groups (Figure 32, topoplots to the right), there is an intensely enhanced ApEn for low and 

moderate NP in EO. This may point out towards the alpha desynchronization that occurs in EO 
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state in healthy individuals [192]. However, this enhanced generalized ApEn in EO is not present 

in the control group or in high pain. In high pain for EO, there is a decrease in ApEn or a plausible 

increase in synchronization (manifested by the blue region) primarily in central and parietal 

electrodes. For low and high pain in EC, there seems to be a decrease ApEn overall compared 

to the control group. This with the exception of moderate pain, where parietal and occipital 

electrodes have an increased ApEn or increased desynchronization. 

 

 

Figure 32 ApEn for alpha band in control and NP groups. ApEn for the control group (topoplots to the left) is 

enhanced in EO in some frontal electrodes (Fp1, F3, Fz), parietal (P3, P7, and P8) and in O1 electrode. ApEn for EC 

in the control group has more ApEn over central (Cz) and parietal electrodes (P7, P3, Pz). For the NP group (topoplots 

to the right), low and moderate pain in EO have a remarkable generalized increased ApEn as compared to other 

severities. High pain in EO has a decreased ApEn in central and parietal electrodes, particularly in CPz.  For all 

severities in EC there is an overall decreased ApEn, except for moderate pain where parietal and occipital electrodes 

have a slightly increased ApEn. 

6.3.1.5.4 Beta 
  
In Figure 33 (topoplots to the left), the ApEn of the control group has an increased ApEn over the 

prefrontal electrodes and Fz in EO. The latter is supported by another study, of healthy 

participants, where beta-2 field power was limited mainly to the prefrontal area [192]. In the NP 
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groups (Figure 33, topoplots to the right), there is an increase of ApEn mainly in EO for low and 

high pain over prefrontal and frontal electrodes. In EC, there is a generalized decrease in ApEn, 

particularly for moderate pain in prefrontal and frontal electrodes. The localization of the 

decreased or increased ApEn is in line with other studies that argue also for prefrontal and frontal 

areas of beta activity in NP [65], [84].  

 

 

Figure 33 ApEn for the beta band in the control and NP groups. Beta band for the control group (topoplots to the 

left) showed a neutral ApEn ranging approximately between [-0.1 and 0.1]. Only with a slightly increase of ApEn over 

the prefrontal cortex (Fp1 and Fp2 electrodes) and the frontal Fz electrode. For the NP groups (topoplots to the right), 

the only severity that shows a significant and overall Increase of ApEn is the low pain in EO. High pain in EO has 

increased ApEn in the prefrontal and frontal electrodes. Moderate pain in EO has a slight increase over the T7 and C3 

electrodes. In the other hand, all three severities in EC are relatively neutral. Moderate pain in EC has significant 

decrease of ApEn in the prefrontal and frontal electrodes.    

6.3.1.5.5 Gamma 
 
In Figure 34 (topoplots to the left), an increase of ApEn in EO as compared to EC is observed for 

the control group. The highest ApEn in EO is localized over the F3 electrode, but also F4, Cz and 

C4. In EC, ApEn remains below 0. The previous findings of the control group is supported by 

[192], that reported gamma localized in the prefrontal area in healthy participants. For the NP 
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group (Figure 34, topoplots to the right), high pain had the highest ApEn. The increased ApEn 

was generalized with a specificity of central, parietal and occipital electrodes in EO. High pain in 

EC had the same distribution, but with a lower intensity of ApEn. In low pain for EO, there was 

increased ApEn in the right frontal hemisphere. For moderate pain, the increased ApEn occurs 

over the left frontal hemispheres for both EC and EO. 

 

 
Figure 34 ApEn for the gamma band in the control and NP groups. The control group (topoplots to the left) in EO 

had an increased ApEn over the frontal electrodes F7 and F3, as well as F4, Cz and C4. ApEn for EC remained around 

-0.2 throughout the scalp. For the NP group (topoplots to the right), the highest increase of ApEn occurred for high pain 

in EO. In EC for high pain, there was also an increase of ApEn almost with the same distribution but with a less degree. 

In moderate pain (both EO and EC), the enhanced ApEn occurred in the frontal left electrodes. Meanwhile for low pain, 

this enhanced ApEn was only slightly enhanced in frontal and temporal right electrodes for EO.  

6.3.1.5.6 Broad Bw 
 
In Figure 35 (topoplots to the left), for EO in the control group, there is a modest increase of ApEn 

compared to EC particularly for T7 and C3. ApEn for EC is mainly below zero. For the NP group 

(topoplots to the right), Figure 35 shows the ApEn of the full Bw in NP with more negative values 

for EC than EO. In EO, there is increased ApEn in the occipital lobe for low pain. In moderate 

pain, there is an overall increase in ApEn throughout the cortex. As pain severity increases to 
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high pain, the irregularity of neuronal activity in NP patients shifts from posterior to frontal brain 

areas. There is also a remarkable decrease in ApEn for low pain in EC.  

 

 

Figure 35 ApEn for the BW band in the control and NP groups. In the control group (topoplots to the left), an 

enhanced ApEn in EO is observed for T7 and C3 with a generalized increased ApEn for all the electrodes. For EC, 

ApEn ranges in the values below zero. In the NP group (topoplots to the right), for EO low pain has increased ApEn in 

the occipital/parietal electrodes. Moderate pain in EO is enhanced generally but also focally in a greater degree for Fz 

and Cz. In EO for high pain, the increased ApEn is observed in the prefrontal cortex. In EC, there is a prominent 

decrease in ApEn for low pain mainly in the frontal and prefrontal electrodes.  

6.3.2 Statistical Results 
 
In this section, the statistical results for ApEn and power are reported in each frequency band for 

every combination of groups. Firstly, normality using the Spearson-Wilk test for both conditions 

(EC and EO) was assessed (Figure 36). All computations were done in RStudio(1.2.5033), an 

integrative development environment for R, the programming language for statistical computing 

and graphics (https://www.rstudio.com/). Hereinafter, “High” for high pain, “Mod” for moderate 

pain, “Low” for low pain, while referring to the comparison of NP groups, are used as 

abbreviations. 



Chapter Six: Results 

 88 

Despite the apparent normality shown in the QQ-plot for ApEn in EC (Figure 36B), the Shapiro-

Wilk normality test for EC had a p-value = 0.0058, which is lower than 0.05 and hence it is 

significantly different from a normal distribution. For EO, the p-value was 8.381e-11. Concluding 

that both data sets for ApEn are non-normal. Therefore, for every band, the Kruskal-Wallis rank 

sum test was done separating the data in EO and EC.   

A  B  

C  D   

Figure 36  Distribution for ApEn of EO and EC for all severities and bands. (A) Distribution of ApEn values across 

all severity groups (including control) for EO state. (B) Distribution of ApEn values across all severity groups (including 

control) for EC state. (C) and (D) are the qq-plot for each of the respective data. These graphs prove visually that 

neither of the two datasets have a normal distribution.  

6.3.2.1 ApEn Delta Statistical Results 

 
For delta, the most differentiable state was EO (Figure 37). Almost all groups proved to be 

different (Control-High p-value=7.1e-14, Control-Low p-value=0.00094, Control-Mod p-

value=4.3e-06, High-Low p-value=0.00019, High-Mod p-value=0.01850) except for Low-Mod. For 

EC, only Control-High (p-value=1.5e-05) and Control-Mod (p-value=0.021) showed significant 

difference.  
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Figure 37 Boxplots for ApEn in delta band in EO and EC. Boxplots for the mean of all the electrodes. All values are 

normalized with z score of mean 0 and standard deviation of 1.  

6.3.2.2 ApEn Theta Statistical Results 

 
By observing Figure 38, theta band was atypical in the sense that both EC and EO exhibited the 

same number of differentiable groups between states. In EC, the combinations that differed 

significantly were the following: Control-High (p-value=9.7e-06), Control-Mod (p-value=0.018), 

High-Low (p-value=1.0e-11) and Low-Mod (1.9e-06). In EO the groups that were significantly 

different were High-Control (p-value=3.8e-06), Low-Control (p-value=0.0020), Control-Mod (1.0e-

11) and Low-Mod (0.0017). 

  

Figure 38 Boxplots for ApEn in theta band in EO and EC. Boxplots for the mean of all the electrodes. All values are 

normalized with z score of mean 0 and standard deviation of 1. 

6.3.2.3 ApEn Alpha Statistical Results 

 
Alpha band was most differentiable for EO and exhibited significant differences in: Control-Low 

(p-value=2.7e-07), Control-Mod (p-value=3.3e-05), High-Low (p-value=2.0e-10) and High-Mod 
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(p-value=8.6e-08). For EC, Control-Low (p-value=2.2e-05) and Low-Mod (p-value=0.00017) 

where significantly different. The difference in the distribution between groups may be observed 

in Figure 39. 

 

Figure 39 Boxplots for ApEn in alpha band EO and EC. Boxplots for the mean of all the electrodes. All values are 

normalized with z score of mean 0 and standard deviation of 1. Outliers in the distributions are represented with a circle.  

6.3.2.4 ApEn Beta Statistical Results 

 
Beta band was significantly different for EC in Control-High (p-value=0.01), Control-Mod (p-

value=0.00054), and Low-Mod (p-value=0.0123). In EO, beta band exhibited significant 

differences in Control-High (p-value=0.0025), Control-Low (p-value=3.0e-11), High-Low (p-

value=0.0023), Low-Mod (p-value=5.6e-06). The boxplots of Figure 40 illustrate these results. 

  

Figure 40 Boxplots for ApEn in beta band EO and EC. Boxplots for the mean of all the electrodes. All values are 

normalized with z score of mean 0 and standard deviation of 1. Outliers in the distributions are represented with a circle. 
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6.3.2.5 ApEn Gamma Statistical Results 

 
Gamma band was most differentiable for EO and exhibited significant differences in Control-High 

(p-value= 8.9e-09), Control-Mod (p-value=0.0145), High-Low (1.9e-05), and High-Mod (p-

value=0.0084). This can be explained by observing the boxplot of EO in Figure 41 as the low and 

moderate groups have a more similar distribution compared to the rest.   In EC, Control-High (p-

value= 0.006) and High-Mod (p-value=0.027) were significantly different. 

  

Figure 41 Boxplots for ApEn in gamma band EO and EC. Boxplots for the mean of all the electrodes. All values are 

normalized with z score of mean 0 and standard deviation of 1. 

6.3.2.6 ApEn Bw Statistical Results 

 
In EC, the significant differences were found in all the combinations of low: Control-Low (p-

value=0.01), High-Low (p-value=3.8e-05) and Low-Mod (p-value=3.0e-05). For EO, the 

statistically significant difference was found mostly for the control group vs all pain severities 

(Control-High p-value=2.6e-06, Low-Control p-value=0.00083, Mod-Control p-value=9.2e-10), 

including the combination of the NP groups Low-Mod (p-value=0.035). The differences between 

distributions may be perceived in Figure 42.  



Chapter Six: Results 

 92 

 
  

Figure 42 Boxplots for ApEn in Bw band EO and EC. Boxplots for the mean of all the electrodes. All values are 

normalized with z score of mean 0 and standard deviation of 1. Outliers in the distributions are represented with a 

circle. 

6.3.2.7 Power Statistical Results 

 
The calculation for statistical power results were the same as for ApEn. First, a visual inspection 

for EO and EC was done separately with the data from all severities. This is depicted in Figure 

43. For power, both distribution plots and quantile-quantile plots look fairly non normal. The 

Shapiro-Wilk normality test proved this true with a p-value = 0.0075 in EC, meanwhile for EO the 

p-value= 0.0043. Concluding that both data sets for power were also non-normal.  
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A

 

B

 

C  D  

Figure 43 Distribution of Power in EO and EC for all severities and bands. (A) Distribution of power values across 

all severity groups (including control) for EO state. (B) Distribution of power values across all severity groups (including 

control) for EC state. (C) and (D) are the qq-plot for each of the respective data. These graphs prove visually that 

neither of the two datasets have a normal distribution. 

6.3.2.8 Comment on Statistical Results of Power for All Bands 

 
Even though the Shapiro test returned a non-normal result, normality was confirmed for each 

band in EO or EC state, before the Kruskal-Wallis test.  Surprisingly, all bands in either EO or EC 

were normal. Consequently, before performing an ANOVA on each of the frequency bands, a 

Levene’s test was done to test the equality of the variances. Most bands (either in EO or EC) had 

a p-value over 0.05 which proved equal variances. For instance, the Levene’s test returned a a 

pvalue= 0.575 and 0.644 for beta and gamma respectively, which concludes equal variances. 
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Afterwards, the ANOVA and a Tukey procedure was performed as a post-hoc test to compare the 

groups in each band. There were no bands with statistically significant differences between 

groups in either EC or EO state. The only results that approximated a statistically significant result 

were in beta and gamma band in EO (see boxplots of Figure 44). For the beta band, Low-High (p 

value= 0.053) and Mod-High (pvalue=0.079) had close significant results. For the gamma band, 

the combination of groups that approximated the most to being significant were Low-High 

(pvalue=0.068) and Mod-High (p=0.088). Note that both band distributions are partially similar. 

For instance, the high pain group had the maximum power values in both bands. Low and 

moderate distributions are both below control. Lastly, most of the boxplots have roughly the same 

mean and interquartile range between the bands. 

  

Figure 44 Boxplot for beta and gamma power in EO. Boxplots for the mean of the five regions. All values are 

normalized with z score of mean 0 and standard deviation of 1. Low and moderate pain have a similar distribution 

between beta and gamma. Control and high pain have also a similar distribution between the bands. Outliers in the 

distributions are represented with a circle 

6.3.3 Feature Extraction Results  
 
The previous study [49] that classified NP based on EEG features in EO and EC, achieved 87-

90% of classification accuracy. We hypothesized that Nonlinear EEG features would increase 

classifier performance closer to 100% for clinical applications, due to a better characterization of 

the nonlinearity of NP. First, the two most differentiable features among the three classes are 

presented. Figure 45 shows the relationship of these two variables that come from the two 
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different methods of analysis: power and ApEn. The feature ranked in the first place was power 

in the prefrontal region in the beta band. The second place was ApEn in the Fz electrode for the 

Bw band. Particularly, lower values of power have increased values of ApEn. Besides, the 

scatterplot distinguishes that moderate (blue dots) and high (green dots) are clustered better than 

the low (red dots). This means that high and moderate are better classified than low pain for these 

specific features. The results for the classifier with the added Nonlinear features were the 

following.  

 

Figure 45 Scatterplot for the first two ranked features. ApEn in Fz in the full Bw is represented in the y-axis, and 

power in the prefrontal region for the beta band is presented in the x-axis. Low pain is represented in red, moderate in 

blue and high in green. 

6.3.3.1 Differentiation among NP severity levels: Classification outcomes 

 
As explained in Section 5.4.1.4.1, four types of kernels for SVM were tested and their resulting 

accuracies were the following: for the quadratic kernel 96.6%, the linear kernel 84.9%, the cubic 

kernel 95.1% and the gaussian kernel 86.3%. The quadratic kernel was selected for achieving 

the highest accuracy. In Figure 46, the resulting confusion matrix of the 3-classes SVM-based 

classification with the quadratic kernel is presented. As can be seen, the 3 levels of NP severities 

were identified at least in a 93% and misclassified at most 6%. In Figure 47, accuracy, sensitivity, 
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specificity, precision and F-score for each class are illustrated. The F score for high pain was 

95%, while for moderate 94% and for low pain was 96%. Specificity for low pain was 98%, while 

for moderate and high was 97%. Sensitivity was 95% for high pain, and 94% for moderate and 

low pain. Precision was 96% for low pain, 93% for moderate pain, and 93% for high pain.  

A B 

Figure 46 Positive predicted values and false discovery rates of the SVM confusion matrix. (A). True positive 

rates and (B) false negative rates of the SVM confusion matrix. 
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Figure 47 Classifier scores for each level of NP severity. Low pain achieved an accuracy of 97% and a specificity 

of 98%. Moderate pain reached an accuracy of 96% and a specificity of 97%. High pain achieved an accuracy of 96% 

and a specificity of 97%.  
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7 Chapter Seven: Discussion  
 

7.1 Neuroplastic Tendencies by Severity 
 
In this section, the NP severities by bands will be addressed with an integration of the 

neurophysiological and statistical results that have been reported. Power from brain oscillations 

is a highly complex circumstance. In general, power modulations might be related to the overall 

activity of neuronal populations [194] or to the degree of spike synchronization [195]. Oscillation 

frequency might be related to the neuronal networks involved and their extension [196], or the 

excitation-inhibition balance in the background neuronal activity [197]. Therefore, neuronal 

oscillations at different frequencies may reflect diverse neuronal populations and/or network 

states [196], functionally relevant for cognitive task performance [198]. There are some genetic 

factors that take part on EEG signals [199], but possibly the main effect on EEG is the difference 

between EC and EO states at rest [192]. EO is different from EC state, since the Default Mode 

Network (DMN) is active in the resting brain and deactivated during tasks (EO) [200]. In EO, there 

is a greater cognitive demand given the visual input.  For this purpose, both states were studied. 

Consequently, the higher cognitive demand imposed by NP, the greater deactivation of DMN 

[201]. Some of the assumptions proposed to explain the differences observed in ApEn are based 

on the neurophysiological theory behind EEG band power studies. The relationship between 

ApEn and power is still not defined, but the following discussion will give particular intuitions of 

this relationship. Yet, only enhanced responses (of power or ApEn) have a strong impact on down-

stream processes. If there is a successful binding and dynamic selection of responses, then there 

is a signal relayed which in fact could be the signal leading to the perception of chronic NP [202]. 

A previous work [192], stressed the necessity for EEG studies to define not only the spectral 

information but also the spatial characteristics of the subjective experience, since the spatial 

nature may manifest the underlying co-activity in structure-function relations. The spatial and 

spectral nature of the results are herein discussed. Results are summarized in Table 4.    
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Table 4. Results summarized by frequency bands and groups.   
 
 Control Low Pain Moderate Pain High Pain 

Delta ­ ApEn in EC compared 

to EO control 

¯ Power in EC for control 

group 

­ Power compared to other 

pain severities in parietal, 

central and frontal regions 

¯ ApEn than control group  ApEn in EO was significantly 

different from all groups 

Theta ApEn in EO was 

significantly different from 

all other groups 

¯ ApEn compared to 

control in EO 

­ Power in EO for all 

regions (slight increase) 

¯¯ Power in EC for all 

regions 

­ Power in EC compared to 

low and moderate pain 

­­­  Power in EO for the 

prefrontal region 

­­  ApEn in EO for parietal 

and occipital electrodes 

­ Power in EO for the 

occipital and parietal 

electrodes 

 

­­­  ApEn in EO for the 

occipital, central and parietal 

electrodes 

Alpha Control was not 

differentiated from high 

pain only in this band 

¯¯ Power in EO for all 

regions 

­­­ ApEn in EO for all 

electrodes 

­ Power in EO for all regions 

­­­ ApEn in EO for all 

electrodes 

­ Power in EO for central and 

parietal regions 

¯ Power in EC for central and 

parietal regions 

¯¯  ApEn in central and 

parietal electrodes 

Beta - ¯¯ Power in EO for all 

regions except the central 

region that has ­ power  

­ ApEn in EO 

­­­ Power in EO across all 

regions 

­­­ Power in EC across all 

regions, particularly for 

central region  

Gamma ¯¯ Power in EO for all 

regions  

­ Power in EC (slight 

increase) 

­­­ Power in EO 

 

­­ ApEn in EO for prefrontal 

and frontal electrodes 

­­ Power in EO for parietal 

and occipital regions 

ApEn in EO was significantly 

different from all groups 

­­ Power in EO for frontal, 

parietal and occipital regions  

­­­ ApEn overall electrodes 

except C3 

Bw ApEn in EO was 

significantly different from 

all severities of pain  

­­ ApEn in EO for the 

occipital electrodes 

­­­ ApEn in EO for the 

frontal, central, parietal and 

occipital electrodes  

­­­ ApEn in EO only in 

prefrontal and frontal 

electrodes 
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7.1.1 Delta  
 
Delta (with theta and alpha) is one of the global processing modes. These three bands have been 

hypothesized to integrate cortical sites by synchronizing coherent activity and phase coupling 

across widely spatially distributed neuronal assemblies [151]. Delta oscillations are considered 

the most ancient oscillatory mode, compared to higher frequency oscillations. Accordingly, delta 

dominates the EEG spectrum of lower vertebrates, particularly reptiles, the direct evolutionary 

ancestors of mammals. In 1958, [203] proposed a principle stating that delta oscillations in 

humans are more pronounced in conditions that are associated with diminished activity of the 

‘higher’, or more advanced ‘nervous arrangements’. These conditions include: (a) earlier 

developmental stages, (b) deep sleep; and (c) pathological states [204]. NP is an example of a 

pathological state as it decreases alpha, a higher nervous arrangement. 

7.1.1.1 Control  

 
The statistical results of delta in EO show that all possible combinations revealed a true difference 

between all NP groups and control (Control-High, Control-Mod and Low-Control). Thus, delta in 

EO might effectively differentiate the NP neuroplastic changes from a healthy state. The increased 

ApEn in EC compared to EO (Figure 30), may be related to the primitive neurophysiological role 

of delta. In other words, the increase randomness might be given from the constant screening of 

internal and external stimuli in search for potential threat or reward [199]. Meanwhile alpha is 

associated with a conscious percept oscillation, delta is associated with an unconscious percept 

oscillation [205], [206]. There is an increase of ApEn in EC for the control group (Figure 30), at 

the time that there is decrease of power (desynchronization) in Figure 26. 

7.1.1.2 Low Pain  

 
Delta was not significant in EO for Low-Mod pain. The reason that Low-Mod was not a 

differentiable combination may be that neuroplastic changes involved in the delta band, do not 

severely change from a low to moderate NP (see Figure 30, low pain and moderate pain). This 
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may also be a consequence of the neuroplastic changes happening in the delta band from 

emotional processing [207], [208]. It is possible that there are more changes in emotional 

processing from a control to a higher pain severity than from control to low pain state. 

Convergently also, delta power in EO (Figure 28) was highest for low pain in the parietal, central 

and frontal regions, which are all involved in emotional processing and somatosensory perception 

[122].  

7.1.1.3 Moderate Pain  

 
Delta was significantly different in EO for Control-Mod and Mod-High (Figure 37). Similarly, in EC, 

Mod-Control was significant. In moderate pain, the increase in delta oscillations may characterize 

the salience system that pays attention to the NP as a relevant percept over other percepts, 

because the brain has not fully adapted to NP [209].  

7.1.1.4 High Pain  

 
Delta was also significantly different in ApEn EO between all groups for high pain (Control-High, 

Low-High and Mod-High). In the boxplot of Figure 37, it can be observed that the groups of NP 

have a much lower ApEn than the control group. This lower ApEn value may be due to the 

increase of delta activity (more synchronization) in NP that has TCD as a background and the 

ongoing subconscious percept of pain. Delta power for EC (Figure 29) was only relatively 

increased in high pain. However, neurons also adapt as neuroplastic changes increase [210], 

which may be the reason that power in EO (Figure 28) is not as increased for high pain as 

compared to low pain in delta. 

7.1.2 Theta 
 
EEG theta oscillatory activity (4–8 Hz) appears to be functionally involved in higher brain functions 

including the integration of working memory [211], executive control, and focused attention [212].  
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Furthermore, the TCD proposes that the increased theta activity in pathological states is the 

normal resting-state alpha [90]. Hence, there is increased power in theta and less power in alpha 

compared to a healthy state.  

7.1.2.1 Control  

 
In EC, Control-High and Control-Mod, showed a significant difference (Figure 38). This may be 

due to neuroplastic changes that have not occurred severely in low pain as have for other 

severities, leaving low pain almost as a “control state” for theta band. However, in EO (Figure 38) 

there were significant differences in control between all severities of NP (Control-High, Control-

Low and Control-Mod). This confirms that ApEn characterizes NP in the theta band appropriately, 

as others have reported repeatedly for power analysis in NP [78], [84], [85].  

7.1.2.2 Low Pain 

 
Low-Mod and High-Mod represented a significant difference in EC (Figure 38). In the other hand, 

for EO Control-Low and Low-Mod were significant. In Figure 31, the decreased ApEn in low pain 

compared to control in EO may reflect more synchronization. However, power was only slightly 

increased (little greater than 0) for theta in EO (Figure 28). In EC (Figure 29), theta was highly 

desynchronized (decreased power) in all regions.  

7.1.2.3 Moderate Pain 

 
There was significant difference found from Control-Mod and Low-Mod for ApEn in EO and EC 

(Figure 38). For ApEn in EC, there is increased signal randomness in posterior areas (Figure 31). 

The results for power in EC show a slight increase in power across all regions compared to low 

and high pain severity (Figure 29). Moderate pain shows an increased power in the prefrontal 

area for EO (Figure 28), which supports a previous study that found increase workload in frontal 

electrodes for theta [212]. 
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7.1.2.4 High Pain 

 
It seems that high pain in theta band might represent a neuroplastic tendency for high severity 

NP since it is differentiable from control and low. However no significant difference was found 

between High-Mod in neither EC nor EO, which might indicate that theta activity does not suffer 

significant neuroplastic changes from moderate to high pain (Figure 38). In Figure 28, power was 

enhanced in EO for high pain in the occipital and parietal electrodes. Additionally, Figure 34 

(gamma ApEn) supports the assumption that theta is a means of nested gamma oscillations. The 

gamma topoplots illustrate an increased level of ApEn surrounding the same areas as theta for 

high pain in EC (Figure 31), which is known as the edge effect in TCD theory [87]. Whether 

gamma and theta are actually correlated in our study still needs further investigation. 

Nevertheless, their location and intensity give intuition of what has been previously reported.  

7.1.3 Alpha 
 
Alpha oscillations characterize the resting state neuronal activity in EEG of humans [198], [213]. 

There are some implications that the primary function of alpha oscillations is the synchronization 

of internal mental processes [201]. Since Berger [214], many have reported alpha as an “idling 

rhythm”, measuring decrease in alpha power upon task performance [215]. For instance, in the 

somatosensory cortex (S1),  watching painful situations suppressed somatosensory alpha 

oscillations [216]. Others have hypothesized alpha as a baseline for specific brain structures 

associated with the attentional system [205], during the processing of emotional arousing stimuli 

[217]. For instance, attention toward constant NP may deactivate the cortex as if it were 

performing a task [110], [112]. Alpha synchronization in the central/parietal region may reflect top-

down control during perception of painful stimuli [218], [219], whereas alpha desynchronization 

reflects bottom-up release of this inhibitory control [213]. Hence, recent studies point towards a 

direct and active role for alpha frequency band rhythmicity in attention and consciousness, rather 

than the idling view that was previously thought [220].  
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7.1.3.1 Control 

 
Alpha band statistical results were significantly different in EC only in Control-Low (Figure 39). 

This might suggest that even though NP poses an altered environment for alpha oscillations, there 

is no difference in the randomness of alpha during EC.  In Figure 39 in EO, significant differences 

were found in Control-Low and Control-Mod. Alpha was the only band in which control was not 

differentiated from high pain. The reason may be related to neuroplastic changes occurring in the 

attentional system, where high pain may adapt to a control state attentionally or emotionally [205]. 

Note, the similarity between the distributions of control and high pain in the boxplot of Figure 39. 

7.1.3.2 Low Pain 

 
Low pain was significantly different in the following combinations for EC: Control-Low and Mod-

Low. For EO, significant differences were found in Control-Low and High-Low (Figure 39). In fact, 

alpha desynchronization seen in Figure 28 for power in EO, might be the release of bottom-up 

inhibitory control that results in alpha desynchronization (plausibly more randomness) [213]. 

Hence, the generalized increase of ApEn in alpha band for low pain (Figure 32) may reflect the 

disorder in underlying neuronal networks towards a new way of perceiving sensory processes 

[221]. 

7.1.3.3 Moderate Pain 

 
In EC, Low-Mod was significantly different. In EO, two combinations were significant: Control-Mod 

and High-Mod. Moderate pain follows in some way the narrow variability distribution as low pain 

(Figure 39) and perhaps also its same neurophysiological explication given above. Besides the 

generalized enhanced ApEn in EO (Figure 32), there is also some increase of alpha power (Figure 

28) in moderate pain. This may be associated with the internal mental processes. If an internal 

mental process is active (such as pain rumination), inhibition of sensory perception and decreased 

attention to the external world follows [201]. 
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7.1.3.4 High Pain 

 
Alpha behaved unexpectedly for high pain. Power in EO (Figure 28) showed a slight increase of  

synchronization in the central and parietal regions, and a decrease of ApEn for these same 

regions (Figure 32). By the literature exposed previously, desynchronization in alpha band was 

expected for high NP. However, synchronization in central and parietal regions has been reported 

to reflect top-down control during perception of painful stimuli [218], [219]. Therefore, in high pain 

alpha synchronization may reflect the inhibition of painful stimuli, serving as an active inhibitory 

mechanism that gates sensory information by means of cognitive relevance [222]. In EC, there 

was decreased power for high pain (Figure 29), which could be attributed to lower attentional 

spans [198],[206]. 

7.1.4 Beta 
 
Beta is a very prominent signal in the human sensorimotor cortex, generally associated with motor 

functions [196]. Other functions for beta oscillations have been found such as, top-down control 

[72] or serving as a large-scale link of neuronal interactions [223].  Recent studies have suggested 

a correlation between GABA concentrations and the power of beta band oscillations at rest [224]. 

GABAergic interneurons are behind the GABA concentrations, which play a crucial role in pain 

perception and processing [225], [226]. In fact, beta oscillations could represent an index of the 

GABAergic component of pain [227]. Even though some studies have reported an increase of 

beta activity in neurogenic pain [65], [85], lower beta power is explained by the brain inhibition 

that is a consequence from deficiency of GABA which leads to NP [228]. Furthermore, beta has 

been recognized as a characteristic oscillation in chronic pain, because it provides prediction 

signals via descending feedback connections, which hold the theory that chronic pain arises from 

prediction errors rather than nociceptive input [95], [229]. Beta power is maximal when the 

predicted perception presents. 
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7.1.4.1 Low pain 

 
For low pain in EC the only significant difference occurred between Low-Mod. In the other hand 

low pain was significantly different for all groups in EO: Low-Mod, High-Low and Control-Low. 

This can be confirmed by observing the boxplot of Figure 40, where low pain has the highest 

ApEn.  In the case of low pain, there is a decrease in power across all regions, except for the 

central region where there is increase in power (Figure 28). These changes occur in parallel to 

an increase in ApEn (Figure 33) in EO.  Whether this activity comes from a decreased brain 

inhibition [228], from prediction errors [95], [229], or both is still to be determined.  

7.1.4.2 Moderate pain 

 
In EC, moderate pain was significant for Control-Mod and Low-Mod. In EO only Low-Mod were 

significantly different.  In the boxplot of Figure 40, moderate pain has a very similar ApEn as in 

the control state. In the boxplot of power in EO (Figure 44), Mod-High was in the borderline of 

having a significant difference. Moderate pain seems to reduce the variability of beta power 

distribution as compared to the low pain state, this might be due to the increase of power in EO 

across all regions for moderate pain (Figure 28). 

7.1.4.3 High pain 

 
In Figure 40, high pain was significantly different in EC for Control-High only. In EO, Control-High 

and High-Low were significantly different. This is a very appropriate differentiation, because high 

pain is accurately reflecting a neuroplastic change that differs particularly from the lower severity 

and the control state which can be seen in the difference of ApEn (Figure 33). Also, for power in 

EC high pain has a generalized increased synchronization, particularly for the central region 

(Figure 29). Thus, supporting previous results concerning beta band as an optimal feature to 

predict central NP [49].  
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7.1.5 Gamma 
 
Gamma band is also related in the pathogenesis of TCD. Gamma networks desynchronize and 

theta networks synchronize during encoding and retrieval [230]. Lower γ oscillations (as 

GABAergic EEG marker) have been found in pain controlling regions [225], such as the prefrontal 

cortex [231]. In the theory of predictive coding, prediction errors of perception induce error-related 

responses primarily in the gamma band (followed by an increased in beta) [94]. Gamma-band 

activity decreases, when the expected perception is fulfilled [232]. Gamma activity is believed to 

be a neuronal basis underlying the integration of sensory information into a coherent perception 

[233]. On a cellular level, it has been reported that gamma oscillations trigger synaptic 

transmission potentiation, which might further result in neuropathic pain generation after nerve 

injury and other aspects of the conscious pain experience [202], [234].  

7.1.5.1 Control 

 
The gamma band for EC reflected a significant difference only for Control-High. However, in EO 

the significant difference was found with Control-High and Control-Mod (Figure 41). In general, a 

decrease of power is observed in control in EO (Figure 26) with a slight increase of power in EC 

(Figure 27). The lower synchronization in EO compared to NP groups, might be due to the lack 

of interregional communication compared to NP groups. In NP, synchronization in gamma is 

needed to integrate sensory information in the coherent perception of pain [233].  

7.1.5.2 Low Pain 

 
Significant differences were found only in EO between High-Low only. In Figure 34, a generalized 

decrease of ApEn in EO can be observed compared to control group. This is confirmed with the 

boxplot of Figure 41 where there are decreased ApEn values. Additionally, this decrease of ApEn 

in EO is at the same time accompanied by an increase of power in the low NP severity (Figure 

28). 
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7.1.5.3 Moderate Pain 

 
In EC, High-Mod displayed a significant difference, while for EO the significant differences were 

found for Control-Mod and High-Mod. In the boxplots of Figure 41, moderate pain has a slightly 

higher ApEn than low pain, but still decreased ApEn compared to high pain. The increase of ApEn 

occurs primarily in the prefrontal and frontal electrodes for EO (Figure 34). The latter supports the 

results of other studies [235], [236] that describe higher pain ratings associated with stronger 

frontal and prefrontal gamma oscillations. The increase in gamma oscillations can also be 

observed in power for EO (Figure 28), but particularly for parietal and occipital regions. The 

continuous increase of gamma might be a reflection of synaptic transmission potentiation, which 

increases as pain increases [202], [234]. 

7.1.5.4 High Pain 

 
In EC, two combinations were significant: High-Mod and Control-High. In EO, the significant 

differences were found for all group combinations involving high NP: Control-High, High-Low and 

High-Mod (see boxplots of Figure 41). This could also manifest gamma band as a neuromarker 

for high NP. It has been reported that for almost all brain regions, gamma power rises as that 

region desynchronizes with gamma activity elsewhere in the brain, establishing gamma as a 

largely asynchronous phenomenon [230].  In NP, there is an enhanced gamma power in EO for 

frontal, parietal and occipital regions (Figure 28) at the same time that we see an enhanced ApEn 

in EO (Figure 34). If gamma is a largely asynchronous phenomenon, then there could be 

enhanced gamma power (more synchronization), at the same time that there is increased ApEn 

(more desynchronization or randomness).  

7.1.6 Bw Band 
 
7.1.6.1 Control 

 
The statistical results showed significant differences between the control group and all severities 

of pain in EO: Control-High, Low-Control, Mod-Control (Figure 42). This might mean that the full 
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Bw is another frequency band in which the neuroplastic tendencies for NP are effectively 

differentiated from the healthy state. In Figure 35, the difference in ApEn can be clearly observed. 

Control in EO and EC ranges from a generalized neutral state [0-0.2], while all severities of pain 

have localized areas with higher ApEn values [0.4-0.6]. 

7.1.6.2 Low Pain 

 
For EC, the significant differences were found in all the combinations of low: Control-Low, High-

Low and Low-Mod (Figure 42). Moreover, in Figure 35 there is an increased ApEn in the occipital 

lobe in EO for low pain that may be a consequence of the suppression of resting state occipital 

alpha-rhythm, which occurs in NP and is manifested predominantly in the occipital lobe [237]. If 

rhythmicity is suppressed, the irregularity increases and hence, the ApEn.  

7.1.6.3 Moderate Pain 

 
Moderate pain was significantly different for Low-Mod (in EC) and Control-Mod (in EO). For EO 

there is an overall increase in ApEn throughout the cortex with the highest ApEn localized 

between the frontal, central and parietal electrodes (Figure 35), where the sensory qualities of NP 

are processed. Besides, the generalized increased of ApEn may be due to the widespread 

changes of intermingled brain networks in the processing of pain [82].  

7.1.6.4 High Pain 

 
As pain severity increases, the irregularity of neuronal activity in NP patients shifts from posterior 

(low pain) to central parietal (moderate pain), to frontal brain areas in high pain (Figure 35). This 

frontal shifting may be supported by the role of emotional processing and executive behavior of 

the prefrontal cortex in the proper psychological and therapeutic management of chronic pain 

[238]. It is plausible that as NP increases, its sensory attributes (i.e., location and type of 

sensation) processed in somatosensorial cortex (CPz and central electrodes) are not processed 

anymore and coping abilities are the priority. Accordingly, the prefrontal cortex has two opposing 

yet leading roles in pain: (1) the location where top-down processing modulates pain in the dorsal 
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horn to the CNS, and (2) the area where induction of pain chronicity occurs [239]. In this frequency 

band, the significantly different combinations were Low-High (in EC) and Control-High (in EO). 

7.2 Discussion and Limitations of Classifier 
 

The results of the SVM classifier in this study reached a classification accuracy of 96% per class 

and above a 90% for the other scores in each class. These results were validated with cross-

validation of 5k-fold. However, even with cross validation, there is still a possibility of overfitting 

from the SVM whenever exposed to unseen data. Thus, this model needs to be proven with new 

patient data to assure that there is no overfitting. Overfitting might happen when there is a 

generalization error due to an increased variance and low bias [168].  

Some drawbacks of the model proposed might have been: (1) an inadequate number of 

observations vs features (at least 5 observations per 1 feature), this could result in less proportion 

of sample training data relative to dimensionality of features, (2) an increased number of features 

includes noise (high variance may result from modeling the noise in the training data), (3) not an 

adequate feature selection process. In this study, features were reduced in preprocessing by 

averaging and features were selected by the kernel function in the embedded method. However, 

other methods for feature reduction in the preprocessing stage could have been implemented, 

such as: (1) removing features with near-zero variance and (2) removing significantly correlated 

features that may contribute complexity to the model [167]. Also, in the classifier stage, wrapper 

methods may be implemented to reduce features, the most common in traditional SVM is 

recursive feature elimination, which removes features by recursively ranking them among 

increasingly smaller subsets of features through cross validation. This could have assured results 

with less chance of overfitting.  If after applying this model to new data, overfitting is detected, 

then observations can be increased to 2,100 (60s x 35 patients) by segmenting EEG recordings 

in 10s rather than 60s. Even though the results of the classifier are not definite, the statistical 

results prove that ApEn can significantly differentiate among NP severities. For this reason, if the 
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model has a poor performance with new data, an improvement of it would be pursued. The 

classification based on NP severity and spectral bands might be informative because the 

interaction between the bands causes NP to persist. The results of another study, using a data-

driven classification by means of SVM learning, show that theta, beta and gamma-frequency 

bands are important in differentiating between neuropsychiatric disorders and healthy control 

subjects in confirmation of the TCD model [240]. 

7.3 Limitations of Study 
 

The limitations of the study include: (1) the relatively small sample size, (2) the fact that other 

cognitive processes are occurring in the brain besides NP which could also be responsible for the 

activity observed in the EEG, and (3) there is still not enough known to explain with conviction the 

changes observed in ApEn. Even though the ApEn discussion was based in the neurophysiology 

behind the power results of the literature, some ApEn activity might not coincide entirely with the 

assumptions made. That is, for some bands, for some locations and for some severities, ApEn 

was in fact inverse, but not always. In more than one case, a positive correlation was observed.  

7.4 Contributions and Impact  
 

• This is the first NP study that investigated NP by performing a parallel EEG analysis based 

on an integral proposal: uniting objective data (EEG features) with subjective criteria (BIP 

questionnaire).  

• This is the first study that proves differentiable significance between NP severities using 

Nonlinear features. 

• This study proves that different NP severities have diverse patterns of neuronal electrical 

activity that may reflect neuroplastic tendencies. For instance, higher pain severities 

differentiated most from control and low pain states. In some bands, there were no 

significant differences between closer severities of NP (High-Mod or Control-Low). Hence, 
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NP severity alters neuroplastic changes as severity increases. The only band that did not 

differentiate between control and high was the alpha band.  

• This is the first study to compare ApEn and power. The comparison helps us advance in 

the questioning of our current understanding of neuronal activity and neuronal 

synchronization.  

• It was also proven that the different conditions of EO and EC, modify the electrical activity 

in chronic NP with respect to different neuronal oscillations.  
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8 Chapter Eight: Conclusion and Future Work  
 

8.1 Conclusion  
 
The aim of this investigation was to identify chronic NP severity by fusing psychometric (on the 

basis of the Brief Inventory of Pain – BIP), and both linear (power) and nonlinear (ApEn) 

electroencephalographic (EEG) features. Particularly, whether the level of NP severity could be 

differentiable by patients’ report (BIP) along with the analysis of EEG. For this purpose, we 

stratified the sample of patients based on the severity of pain (low, moderate and high pain), to 

evaluate the neuroplastic changes reflected in the neuronal electrical activity caused by the 

degree of involvement of the SNS. Our results show that ApEn is an attribute that significantly 

characterizes the different levels of chronic NP. Therefore, we prove our alternative hypothesis. 

Namely, that the EEG activity of chronic NP patients shows significant differentiable trends with 

respect to the severity of pain in the spontaneous state. Thus, the cortical electrical activity is a 

reflection of the dynamics of the neuronal networks in the SNS that are affected considerably with 

the greater severity of pain. Neuroplastic tendencies of NP were best identified from the control 

group in the full BW, theta and delta in EO. In particular, high pain was significantly different from 

control for all bands, except for the alpha band. Finally, our results show that the most utilized 

method for EEG analysis (power) did not yield any statistically significant results between the NP 

severities or control group. The latter points out that NP research could be extended to a deeper 

level by using ApEn to analyze EEG signals.  With further characterization of NP, ApEn might be 

a very appropriate and sufficient method to monitor the experience of pain and aid physicians to 

achieve a better pain management and treatment for chronic NP.  
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8.2 Future Work  
 
8.2.1 ApEn and Power 
 
For future work, testing the classifier with new data is primordial. Generalization of the method is 

also desired. For that purpose, a larger sample is necessary, including both genders, a larger 

range of ages, and different clinical histories. Additionally, after the discussion of our results, we 

see the need to research the relationship between ApEn and power more profoundly. Some of 

the questions that have arisen are the following:   

What is the correlation between the synchronous electrical activity measured as power and the 

signal irregularity measured as ApEn in chronic NP? Is this relationship dependent on pain 

severity or frequency band? If there is correlation, is there causality? What is behind the 

increased ApEn? Is it global desynchronization or local synchronization? How does alternating 

between EO and EC change the processing of NP in ApEn analysis? 

We propose to answer these questions by signal simulation and linear regression models. 

Afterwards, the connectivity between the frequency bands will be investigated, because of the 

dynamic environment needed to integrate the perception of NP. This can be done by researching 

phase-amplitude and cross-frequency coupling that occurs between theta–gamma and theta–

beta oscillations [240]. Recent research suggests that phase-amplitude coupling reflects with 

better precision the physiological mechanism for effective communication in the human brain 

[241]. Cross-frequency coupling might be important for the integration via low-frequency 

coherence of distributed, local, and high-frequency activity [242].	All these questions are highly 

important in NP research and have been poorly addressed specially with EEG.  

8.2.2 Evoked domain  
	

For a much deeper understanding of NP, the evoked component needs to be studied as well. 

Allodynia is the principal symptom in NP patients, but the measurement of allodynia has not been 

standardized to evaluate patients in a periodic and replicable fashion, as would be needed for an 
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objective evaluation of NP. The QST has calibrated tools in other domains of sensation such as 

temperature, pressure or pinprick, but it is not the case for mechanical allodynia [142], [243], 

[244]. After the present discussion, we consider that a system where allodynia is evoked with 

ordinary stimuli: a caress, vibration and air is necessary. These stimuli would be applied in the 

most painful peripheral area that was marked by the patient in the subjective evaluation. There 

would be three blocks, one for each stimulus and four ascending levels for each block. Each 

stimulus will have different units to ascend through the levels. Each level contains three stimuli 

with the same force. Every stimulation should have its particular stimulation zone, because the 

character of pain depends on the A∂ and C nociceptors, and on the type of skin. As discussed 

previously, patients with chronic NP have delayed sensation to stimuli in EEG, so there should be 

25 seconds between every stimulus, even if they are the same modality.  After the evoked EEG, 

a post-stimuli session of spontaneous EEG should be recorded, to monitor the affection of the 

spontaneous oscillations after being stimulated.  Figure 45 describes the spontaneous recording 

session, plus the evoked session proposed in this section. 
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Figure 48 Integrated method of spontaneous and evoked measurement sessions. The first session was described 

in Figure 18 in our methodology. The second session comprehends the evoked activity recording and a post-stimuli 

spontaneous EEG recording. The total time for every activity is marked below it. The proposed stimulation time for 

tactile, vibration and air stimuli are 6s [60], 3s, and 12s [245], respectively. Total time for the 4 levels of stimulation with 

rest periods is marked in a box below the stimulation time. 
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8.3 Work in process of publication 
 
Table 5: Papers submitted for publication. 
 
Type of paper Authors Title  Journal Date of 

Submission 
Current 
Status 

Review Article Daniela M. 

Zolezzi, Luz 

Maria Alonso-

Valerdi, David I. 

Ibarra-Zarate 

Chronic neuropathic 

pain is more than a 

perception: systems 

and methods for an 

integral 

characterization 

Neuroscience 

and 

Biobehavioral 

Reviews 

March 8, 

2021 

Under 

review 

Congress –  

Full 

contributed 

paper 

Daniela M. 

Zolezzi, Luz 

Maria Alonso-

Valerdi, Norberto 

Emmanuel Naal-

Ruiz, David I. 

Ibarra-Zarate 

Identification of 

Neuropathic Pain 

Severity based on 

Linear and Nonlinear 

EEG Features 

43rd Annual 

International 

conference of the 

IEEE Engineering 

in Medicine and 

Biology Society 

(EMBC) 

May 1, 2021 

 

Under 

review  

Database of 

raw EEG data 

 Daniela M. 

Zolezzi, Luz 

Maria Alonso-

Valerdi, Norberto 

Emmanuel Naal-

Ruiz, David I. 

Ibarra-Zarate 

Chronic Neuropathic 

Pain EEG Raw data in 

EC (5 min) and EO (5 

min) 

Mendeley Data May 17, 

2021 

Under 

review 

 

The work described in this thesis is only a first approximation to the objective characterization of 

chronic NP with linear and nonlinear EEG analysis. Much more work is needed for this 

characterization to be applicable in daily clinical practice and eventually help physicians in the 

management and treatment of chronic NP patients.   
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Annex 1: Table 3 
Table 3. EEG studies concerning analysis of evoked activity in patients with chronic pain and NP.   
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Annex 3: Informed Consent  
 
Before the restrictions and circumstances imposed by the current COVID-19 pandemic, it was proposed 
that patients would be recruited from two Tec Salud centers: 
 

(1) Pain management center of the Zambrano Helión Hospital in San Pedro Garza García, NL, 
Mexico 

(2) Eugenio and Eva Garza Lagüera Center for Medical and Diagnostic Specialties (CEM) in 
Santa Catarina, N.L. Mexico (this center has been closed throughout the pandemic) 

 
EEG recordings were also meant to be in those preestablished centers. However, as the pandemic 
advanced, it was neither possible (entrance was strictly supervised) or safe to ask patients to assist a 
hospital without any urgent necessity. In view of this situation and by recommendation of Dr. Fernando 
Cantú, patients were recruited through social media. In order to control the influx of patients, a private 
doctor’s office in Guadalupe, NL was borrowed to us. This establishment was closed during the pandemic 
and only opened for the 35 NP patients that we recruited. Three patients or four at maximum were seen in 
a day. The doctor’s office was located in the following address: Lic. Amador Garza Sepúlveda 2303, 25 de 
Noviembre, 67174, Guadalupe, NL. 
 
The following Informed Consent is written in Spanish, as was given to the patients of the study.  
 
Centro de estudio: Hospital Zambrano Hellion  
Domicilio: Batallón San Patricio 112 Col. Real de San Agustín CP 66278, San Pedro Garza García, 
Nuevo León, México 
Número telefónico de oficina: Centro del Manejo de Dolor, 8888-0000 Extensión 5491 
Número telefónico de atención las 24 horas: 8888-0911 
Hospital donde se verán eventos adversos serios del protocolo: Hospital Zambrano Helión 
 
Comité de Ética e Investigación de la Escuela de Medicina del Instituto Tecnológico y Estudios 
Superiores de Monterrey 
Persona de contacto: Dr. Víctor Lara Díaz 
Domicilio: Av. Ignacio Morones Prieto 3000, Sertoma, 64710 Monterrey, NL 
Número telefónico: (+52) 81 88882275 
 
Coinvestigadores médicos con especialidad 
en dolor 
 
Centro de Manejo de Dolor, Hospital 
Zambrano Hellion, Tec Salud 

Dr. José Miguel Guerra 
Anestesiólogo con subespecialidad en dolor 
Núm. Cédula Médico General: 6883518 
Núm. Credencial Anestesiología: 
9405751 
Dr. Fernando Cantú Flores 
Anestesiólogo con subespecialidad en dolor 
desde el 2001. 
Núm. Cédula Médico General: 1336326 
Núm. Credencial: en proceso de renovación.  

Coinvestigadores secundarios del área de 
ingeniería 
 
Tec de Monterrey 

Dra. Luz María Alonso Valerdi 
Interfaz cerebro-computadora y registro de 
bioseñales. 
SNI: Nivel 1 
Dr. David Isaac Ibarra Zárate 
Procesamiento de señales y neuroacústica. 
SNI: Nivel 1 
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CARTA DE CONSENTIMIENTO INFORMADO  
 

Dirigido a: Pacientes con Dolor Neuropático Crónico 
Título del estudio:   

“Caracterización de la Respuesta Electrofisiológica del Dolor Neuropático para Monitorear la 
Experiencia de Dolor” 

 
Investigador Principal: Lic. Daniela Montemayor Zolezzi 
Investigadores Secundarios: Dra. Luz María Alonso Valerdi -- Dr. David Isaac Ibarra Zárate 
Fecha de aprobación por el Comité de Ética: XX/XX/XX 
El siguiente consentimiento informado es aprobado por el Comité de Ética de la Escuela de Medicina 
del Tecnológico de Monterrey para cualquier persona involucrada en un estudio de investigación 
patrocinado por la universidad.  
 
Introducción:  
Estimado(a) Señor/Señora: 
Usted ha sido invitado a participar en el presente proyecto de investigación, el cual es desarrollado por 
la Escuela de Ingeniería y Ciencias del Tecnológico de Monterrey en colaboración con los especialistas 
de dolor de la Escuela de Medicina Tec Salud. Ambas sesiones del estudio se realizarán en el Hospital 
Zambrano Hellion en San Pedro Garza García. Las sesiones serán en el día y hora que el paciente 
decida, durante el horario (9:00 am a 6:00pm) que permanece abierto el Centro de Manejo de Dolor en 
el Zambrano. 
 
Si Usted decide participar en el estudio, es importante que considere la siguiente información. Siéntase 
libre de preguntar cualquier asunto que no le quede claro. 
 
 Objetivos y Justificación de Investigación: El objetivo de la investigación es identificar el dolor 
neuropático crónico por medio de electroencefalografía para monitorear la experiencia de dolor y el 
grado de afectación del sistema nervioso somatosensorial. La electroencefalografía es una herramienta 
que detecta la electricidad emitida por el cerebro por medio de electrodos. Posteriormente, esta señal 
puede ser analizada para encontrar patrones que den parámetros objetivos sobre el dolor neuropático 
en una persona. En México y en todo el mundo, el dolor es un reto por su carácter subjetivo. Debido a 
la carencia de una medida objetiva para el dolor neuropático, los tratamientos son tan variados que los 
fármacos de primera línea varían con la opinión de cada especialista. En este estudio, el objetivo es 
clasificar a los pacientes por la naturaleza del dolor, es decir, por su intensidad o tiempo con dolor. Una 
vez divididos, se analizará el dolor neuropático en su componente espontáneo. Además de la actividad 
eléctrica como medida objetiva, se tomará la percepción del paciente sobre su dolor por medio de 
cuestionarios como medida subjetiva. Como último objetivo, se compararán ambas medidas, la objetiva 
y subjetiva, para proporcionar al médico una perspectiva integral sobre el estado de afectación del 
sistema nervioso somatosensorial en un paciente.  
 
Criterios de elegibilidad: Le pedimos participar en este estudio porque usted forma parte de la 
población de dolor neuropático crónico mayor a 3 meses, su edad está entre el rango de 18 y 60 años, 
ha tenido un tratamiento estable por al menos las últimas 3 semanas, existe una ausencia de un 
desorden psiquiátrico mayor y su NP crónico está en al menos una de las cuatro extremidades.   

 
Procedimiento:  
El protocolo consiste en dos sesiones. Durante este semestre solamente registraremos la primera 
sesión.  
 
Instrumentos utilizados: 
• Electroencefalograma (EEG): gorra que detecta la electricidad emitida por el cerebro por medio 

de electrodos. 
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• Prototipo:  para las estimulaciones usaremos un prototipo automático y calibrado que tiene un 
botón de paro que usted puede parar en el momento que lo desee. 

• Pulsímetro: aparato pequeño que mide la frecuencia cardíaca desde un dedo de la mano.  
 
Su participación consistirá en:  

• La primera sesión durará máximo 50 min, pero pueden durar menos. En la primera sesión, se 
explicará el procedimiento de todo el protocolo.  

• Después, le entregaremos el consentimiento informado para que lo firme si está de acuerdo. 
Si procede a firmar el consentimiento, posteriormente le pediremos que conteste dos 
cuestionarios sobre el dolor y el impacto que tiene en su vida.  

• Cuando termine, tomaremos su frecuencia cardíaca con un pulsímetro en su dedo índice y 
comenzaremos con la instalación del equipo.  

• El registro de EEG de la primera sesión durará tan sólo 10 minutos, en los que permanecerá 
sentado en una posición cómoda con los ojos cerrados por cinco minutos y con los ojos abiertos 
por 5 minutos. Se le proporcionará un cubre ojos para su comodidad.  

• En la segunda sesión, pasaremos directo a la instalación del equipo y se le colocará de nuevo 
el pulsímetro que será retirado en un minuto. Una vez terminada la instalación del equipo de 
EEG, comienzan los bloques de estimulaciones. Son cuatro bloques para tres diferentes 
estímulos: caricia, vibración y aire. Durante los estímulos le pediremos que mantenga los ojos 
cerrados y le brindaremos de nuevo el cubre ojos para su comodidad.  

• El primer estímulo será una ligera caricia sobre su brazo o pierna, dependiendo de la región 
que usted nos haya marcado en el cuestionario. Esta caricia será una tela que pasa por su 
brazo y poco a poco ira subiendo de intensidad. En cualquier momento, usted tiene la opción 
de detener las estimulaciones con un botón, el cual parará el estudio completamente. En el 
caso que esto sucediera, usted puede seguir con la siguiente modalidad de estímulo si lo desea, 
y si no, podemos dar por terminada la sesión. Entre cada estímulo y cada cambio de sensación 
habrá un pequeño descanso. El segundo estímulo es la vibración que será aplicada en la palma 
de su mano o la planta de su pie. El tercer estímulo será aire que proviene de un pequeño 
ventilador a 10 cm de su piel. El tiempo transcurrido durante las estimulaciones son 20 min 
aproximadamente en total. 

• Terminada la sesión de estimulación, se le tomará un último EEG en reposo.  
 
Sobre medicamentos: Usted puede seguir tomando sus medicamentos como es costumbre. El 
régimen terapéutico que lleva nos lo indicará el médico y su historial clínico.  

 
Beneficios: Después de las dos sesiones, le entregaremos $300 pesos en efectivo como mínimo para 
saldar los gastos de transporte y estacionamiento. Adicionalmente, una vez terminada la investigación, 
se le darán a conocer los resultados de su estudio. En particular, se le explicará por medio de mapas y 
gráficas el grado de afectación del dolor neuropático en su sistema nervioso. Aunque esto aún no sea 
un beneficio directo sobre su dolor, será una herramienta que ayude a su médico a tomar mejores 
decisiones en base a su tratamiento. 
 
Por medio del presente hacemos constatar la total garantía de recibir respuesta a cualquier 
pregunta y aclaración ante cualquier duda acerca de los procedimientos, riesgos, beneficios y 
otros asuntos relacionados con la investigación.  

 
Confidencialidad: Toda la información que usted nos proporcione para el estudio será de carácter 
estrictamente confidencial, será utilizada únicamente por el equipo de investigación del proyecto y no 
estará disponible para ningún otro propósito. En la investigación, no se identificará al paciente con 
nombre, manteniendo la confidencialidad de la información relacionada con su privacidad. Se usará la 
abreviatura: ID1, ID2, ID3… Los resultados de este estudio serán publicados con fines científicos, pero 
se presentarán de tal manera que no podrá ser identificado(a). 
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Participación Voluntaria/Retiro: Su participación en este estudio es absolutamente voluntaria. Usted 
tiene la libertad de retirar su consentimiento en cualquier momento y dejar de participar en el estudio, 
sin que por ello se creen prejuicios para continuar su cuidado y tratamiento.  

 
Nos comprometemos a proporcionarle información actualizada obtenida durante el estudio, 
aunque ésta pudiera afectar la voluntad del sujeto para continuar participando.  
 
Riesgos e inconvenientes: Los riesgos involucrados en el estudio son mínimos. Todo el equipo que 
entre en contacto directo con su piel es estéril y en ningún momento se generará una lesión o herida 
sobre la piel o cuero cabelludo. El mayor inconveniente respecto a esto, pudiera ser una irritación menor 
del cuero cabelludo al retirar el gel que se aplicó para los electrodos. Aun así, el gel se puede retirar 
fácilmente de su cabello con un lavado adecuado. En la modalidad caricia del prototipo, pudiera causar 
incomodidad la fricción de la tela con su brazo, pero si llega a ser muy incomodo puede oprimir el botón 
de paro y podemos aplicar una crema como Neosporin. Si alguna de las preguntas de los cuestionarios 
de dolor, lo hiciere sentir incomodo(a), tiene el derecho de no responderla.  
 
Costos: Los costos fueron sufragados por el grupo de investigación de Neuroingeniería y 
Neuroacústica del Tecnológico de Monterrey. Dentro de los costos, se encuentran $2000 pesos de 
material de apoyo para el equipo de EEG (vendas, mallas) y material de limpieza. El equipo de EEG y 
el pulsímetro son parte del equipo que ya ha sido comprado por el grupo antes de este proyecto. El 
costo para los materiales del prototipo fue $14,575.90 pesos, mismo que se sufragó con el presupuesto 
del Grupo de Neuroacústica en el mes de febrero 2020.  
 
Contacto: Si usted tiene alguna pregunta, comentario o preocupación con respecto al proyecto, por 
favor comuníquese con la investigadora responsable del proyecto: Lic. Daniela Montemayor Zolezzi, al 
siguiente número de celular 8116289000 en un horario de 6:00 am a 16:00 hrs o al correo electrónico: 
a01039052@itesm.mx. 
 
Si usted tiene preguntas generales relacionadas con sus derechos como participante de un estudio de 
investigación puede comunicarse con el Dr. Víctor Lara Díaz de Tec Salud, al número (+52) 81 
88882275, de 9:00 am a 16:00 hrs. 
No firme este formato a menos que usted haya tenido la oportunidad de hacer preguntas y de que haya 
obtenido respuestas satisfactorias a todas sus preguntas. 
 
SUS DERECHOS NO SON AFECTADOS BAJO NINGUNA LEY DE PROTECCIÓN DE LA 
INFORMACIÓN. 
 
¿A quién poder contactar si tengo preguntas sobre mis derechos? 
 
Este Consentimiento ha sido revisado por Comité de Ética en Investigación de la Escuela de Medicina 
del Instituto Tecnológico y de Estudios Superiores de Monterrey y el Comité de Investigación de la 
Escuela de Medicina del Instituto Tecnológico y de Estudios Superiores de Monterrey. 
 
Si tiene alguna preocupación o queja acerca de este estudio o sobre cómo se está realizando, o alguna 
pregunta con respecto a sus derechos como un participante de investigación, usted puede comunicarse 
al (01) 81 88882107 

 
Declaración de la persona que da el consentimiento  
 
Por la presente doy mi consentimiento para ser objeto de esta investigación. Afirmo que se me ha dado:  

A. Una explicación de los procedimientos que deben seguirse en el proyecto, con indicación de los que 
son experimentales.  

B. Respuestas a las preguntas que he hecho.  

Entiendo que:  
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A. Mi participación es voluntaria y puedo retirar mi consentimiento y dejar de participar en el 
proyecto en cualquier momento. Mi negativa a participar no dará lugar a ninguna sanción.  

B. Al firmar este acuerdo, no renuncio a ningún derecho legal o liberación al Instituto Tecnológico y de 
Estudios Superiores de Monterrey ni a sus agentes de responsabilidad por negligencia.  

Nombre del paciente   _________________________________     

Fecha (dd/mm/aa)     _________________________________  
Firma del paciente_________________________ _  
 
Testigo 1 
Nombre: ___________________________ 
Dirección: ___________________________ 
Relación con sujeto de investigación: ___________________________ 
Firma: ________________________ 
 
Testigo 2 
Nombre: ___________________________ 
Dirección: ___________________________ 
Relación con sujeto de investigación: ___________________________ 
Firma: ______________________ 
Este consentimiento se extenderá por duplicado, quedando un ejemplar en poder del sujeto 
de investigación 
 

R e s u m e n d e P r o t o c o l o 
  

Fecha: _______________  
Gracias por ser parte de este experimento.   

Antes de leer este documento ya debe de haber firmado el consentimiento informado. Si no es 
así solicítelo al investigador. A partir de este momento se debe guardar confidencialidad 
acerca del estudio.  

1. Se debe de tener en cuenta algunas cosas para que la adquisición de los datos sea de buena 
calidad, se le dará una hoja donde se explica que debe de hacer durante el experimento, es 
necesario que usted como participante las tenga presente.   

2. Se hará adquisición de información de ondas cerebrales. Esta es una muy pequeña actividad 
eléctrica que el cerebro y produce como efecto secundario de la interacción de las neuronas, debido 
a que es muy pequeña se trata de que en el lugar a efectuarse el experimento exista la menor 
cantidad de fuentes de ruido eléctrico, por lo cual por favor no debe de llevar su teléfono celular ni 
otro aparato electrónico consigo.   

3. Por favor intente moverse lo menos posible, la fricción con la alfombra o con la silla puede causar 
estática eléctrica, aún en pequeñas cantidades, la estática es mayor que las ondas cerebrales, 
además si el ruido eléctrico generado por los músculos es mayor a las ondas eléctricas que se 
desean detectar. Usted tendrá momentos y espacios para descansar.  
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4. Si usted tensiona los músculos de su cara, pierna, cuello, o hombros, causará una gran cantidad 
de ruido eléctrico. Por favor tampoco apriete sus dientes. Trate de mantenerse en estado de 
relajación muscular, prestando la atención necesaria para realizar las acciones solicitadas durante 
el experimento, no se preocupe por su rendimiento, lo hará bien. Preocuparse solo elevará la 
tensión muscular y generará datos sin la calidad deseada.  

5. Si usted toca los electrodos en su cabeza, puede afectar el contacto entre el electrodo y la piel. 
Inclusive un pequeño desplazamiento de los electrodos puede afectar la adquisición de los datos, 
si algún electrodo es incómodo para usted, por favor infórmele al investigador. En general, la 
incomodidad es mínima y conforme pasen los minutos dejará de sentir la presencia de los 
electrodos.  

6. Durante los periodos de descanso, los investigadores podrán revisar y ajustar los electrodos si es 
necesario, además podrán darle instrucciones sobre qué debe de hacer durante el resto del 
experimento, por favor atienda las instrucciones que se le sean dadas.  

7. Informe al investigador a la brevedad si alguno de los estímulos comienza a causar más dolor de lo 
soportable y siéntase con la confianza de parar.  

8. Usted tiene la posibilidad de contactar a cualquier médico residente en el piso, o a su médico de 
cabecera si se ve en la necesidad de asistencia médica.  

9. Gracias por su paciencia. Si usted tiene alguna duda sobre el experimento o por favor notifíquele 
al investigador de inmediato, ellos se asegurarán de que usted pueda comprender y llevar a cabo 
el experimento.    

¡Muchas gracias, ahora los investigadores darán una explicación del experimento, 
recuerde seguir las instrucciones! 
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Annex 4: Patient profile questions 
 

(a) Full Name 

(b) Age 

(c) NP cause 

1. Diabetes 

2. Peripheral Neuropathy 

3. Trigeminal Neuralgia 

4. Spinal cord or nerve root injury 

5. Central Nervous System Disorder (i. e., CRPS, Lyme disease) 

6. Other 

(d) Time elapsed with chronic NP 

(e) Current drug treatment (choose all that apply) 

1. Pregabalin 

2. Amitriptyline 

3. Tramadol 

4. Gabapentin 

5. CBD derivatives 

6. Other  

7. I do not take any medication currently.  

(f) If you answered yes, how long have you been in that current drug treatment? 

(g) Have you had any procedures to manage your pain? (Select all that apply) 

1. Infusions  

2. Nerve blocks 

3. Any type of surgery 

4. Other  
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5. I have not had any procedures. 

(h) Do you attend with regularity to a psychological or emotional therapy for pain 

management?  

(i) If your answer was yes, please write down the name of your therapy.  

(j) Do you suffer from any other pain condition like arthritis, migraine or 

fibromyalgia?  

(k) Do you suffer from a major mental disorder? (i.e., schizophrenia, bipolar 

disorder, post-traumatic stress disorder or dissociative disorders) 

(l) Do you suffer from any other neurological condition? (i.e., epilepsy, Alzheimer, 

tinnitus) 

(m) Have you suffered from a severe neurological traumatism or a brain-infarct?  
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Annex 5: Health Guidelines for Medical Units 
 
The following health guidelines are based on the health protocol for the safe restart of activities 

in medical units of the Health Secretariat of Mexico City [171]. 

• At the entrance of the workplace, 70% alcohol-based gel will be applied to the hands of 

the researchers, participants and companions before entering the office. 

• The temperature of each person entering the unit will be measured with an infrared 

thermometer. 

• Prior to the experimental procedure, participants will be sent a COVID19 symptom 

questionnaire and will also ask if they have been in recent contact with people sick with 

the virus. 

• Only researchers wearing masks, gowns and face shields will be allowed to enter the 

office. Regarding the participants, they can only enter if they wear a mask. 

• At the beginning, between each participant, and at the end of the experimental sessions, 

surfaces, materials and electronic devices will be thoroughly cleaned. 

• Electronic devices will be cleaned with alcohol-free disinfectant wipes with the following 

ingredients: 

o Water, Isopropyl Alcohol, Dipropylene Diamine Laurylamine, Propylene Glycol, 

Fragrance, Glycerin, Sodium Cocoamphoacetate, Hydrogenated Castor Oil, Citric 

Acid, Benzalkonium Chloride, Tetrasodium EDTA, Emulsifier. 

• Investigators should avoid being in front of the participant during the EEG recordings and 

maintain a healthy distance at all times. 

The cleaning of the doctor’s office should be done in the following order: 

1. Cleaning will start from the least used places towards the most used places, and from top to 

bottom. 
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2. Cleaning of surfaces will be done in one direction only to avoid passing through areas that have 

already been disinfected. 

3. Cleaning of the surfaces will be done with a cloth with water and detergent. 

4. After cleaning a surface, the cloth will be rinsed with clean water and disinfected. 

The disinfectant substances recommended in [171] are the following: 

o Chlorine solution 0.1% (1000 ppm) at least, which is obtained by adding 25 ml of sodium 

hypochlorite (4% commercial chlorine) in 1 liter of water. 

o Compounds based on isopropyl alcohol or ethyl alcohol at least 60-70% alcohol. 

 

At the end of the experimental procedure with each participant, the waste will be deposited in a 

bag with chlorinated solution. The place should be ventilated by opening a window if possible, for 

better air flow. 

 

 




