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Synthesis of a Finite-Time Convergence Controller for
Trajectory Tracking of Unmanned Underwater Vehicles

by
Néstor Alejandro Narcizo-Nuci

Abstract

Unmanned underwater vehicles have gained importance, since they can perform tasks in un-
derwater environments such as exploration and construction. Proper control of the vehicle
trajectory is fundamental for successfully complete a task. When disturbances are frequent
and the dynamics of the vehicle change, a fast response of the control scheme is required and
the classical controllers do not adapt to overcome these conditions.

As the main contribution of this work, we propose the synthesis and implementation of
a control scheme with finite-time convergence applied to the trajectory tracking including a
time variable gain in the sliding surface of a 2nd Order Sliding Mode Control. In a firt part the
parameterized trajectory considered five degrees of freedom: x,y,z,φ and ψ. In a second part
an emulation of a simultaneous scheme between two vehicles is proposed, taking advantage
of the finite-time convergence of the proposed controller.

The dynamic parameterization of the vehicle is based on BlueROV2 vehicle by BlueR-
obotics, which counts with four horizontal and vectored thrusters, and two vertical thrusters.
A finite-time second order sliding-mode controller will be synthesize applying a variable gain
on the sliding surface. This gain will be parametrized by a Time Base Generator.

The controller was tested to determine its performance, accuracy and prompt response
for trajectory tracking in space and were compared against classical controllers: a Proportional-
Integral-Derivative Controller, a Feedback Linearization controller and a Lyapunov function
based controller. In the second part, the controller was compared with two state-of-the-art
controllers, that also counts with finite-time convergence.

The proposed control schemes will be evaluated in a simulator constructed in a Mat-
lab/Simulink environment with the actual parameters of the underwater vehicle, and where
the parameters of the RMS values of the tracking error and the RMS values of the control
signals are analyzed to evaluate the performance of the controllers.

The results of this work demonstrated that it is possible to synthesize the 2nd Order
Sliding Mode Controller with finite-time convergence and apply it in the trajectory tracking
of underwater vehicles, in trajectories that involved the five degrees of freedom and even in
the presence of marine currents.

The results of these thesis are expected to be implemented in future work related with
trajectory tracking and collaborative tasks with underwater vehicles.
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Chapter 1

Introduction

Unmanned underwater vehicles (UUVs) have gained importance due to their capability to
perform tasks in marine environments, where humans cannot reach such as exploration, ex-
traction of samples from seabed with scientific purposes, inspection and construction of gas
and oil ducts, construction of damps and bridges, among others [10, 40]. Depending on their
operation methods underwater vehicles can be classified in two categories: Autonomous Un-
derwater Vehicles (AUV) and Remotely Operated Vehicles (ROV). The main difference is that
AUVs are completely autonomous and sometimes are underactuated [21], which means, that
they have a reduced number of actuators which cannot permit the displacement in the whole
space. On the other hand, ROVs require an operator to be controlled and posses a tether cable
to supply electricity and to transfer data between the human operator and the vehicle [38].
This condition makes ROVs a more complex model since it may suffer of uncertainties in the
dynamic model.

Even when ROVs are human operated, its performance requires several techniques for
helping the operator to assure a correct positioning and trajectory control of the vehicle [31].
This task becomes particularly hard due to underwater marine currents, the complexity of the
environment and the variability of the tools used to perform their activities [72]. Further,the
variability and uncertainty of the underwater vehicle behavior required strong and robust con-
trol strategies, since these conditions make the vehicle a complex non-linear system and thus
a matter of study.

There exist three basic areas for control of underwater vehicles: Dynamic Positioning,
Path Following and Trajectory Tracking. The concepts of path following and trajectory might
be used as synonyms, since in both of them the vehicle must converge to and follow a desired
path. However, path following does not involved any temporal specifications while trajectory
tracking control requires the vehicle to track the path in a desired time [3]. On the other hand,
in point stabilization or dynamic positioning, the vehicle is commanded to be steered to a
desired position and orientation from an initial configuration [2].

The paradigm of the finite-time convergence in trajectory tracking guarantees that the
vehicle will converge to a trajectory in a specific time. This behavior creates the possibility of
uses this approach as a solution for tasks that requires more than one vehicle since the problem
of localization and navigation must be addressed for establishing a collaborative scheme for
underwater vehicles [32].

1
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1.1 Motivation
Even when there are many studies that had successfully solved the trajectory tracking prob-
lem, most of them limit the controlled degrees of freedom (DOF) considering only the x axis
for translation, and ψ angle for orientation. On the other hand, most of the controllers are
model-based, which requires exact knowledge of the dynamic parameters and disturbances.
This is a time consuming task, and there is always the possibility of variations and uncertainty
caused by the changing underwater environment.

Related to the time of convergence, most studies presented asymptotic convergence of
the error, and only a few dealt with finite-time convergence.The main difference is that the
asymptotic convergence assures that the error is reduced while time tends to infinity, and the
finite-time convergence allows to reduce the error to a practical 0, or in a vicinity around 0 in
a given finite-time. However, this convergence time is determined by the tuning gains of the
control scheme and depends on the initial conditions of the vehicle. Then, in order to establish
an specific time, iterative mathematical calculations must be performed in order to obtain a
desired time of convergence.

1.2 Problem Statement and Context
Underwater environments are complex, and it is not an easy task to model and consider all of
their uncertainties and disturbances, since they can be considered as stochastic. To success-
fully perform a task, the model of the system must be as accurate as possible and a precise
knowledge of the vehicle parameters is needed. Then, a model-free controller might be a bet-
ter option, since it does not requires any knowledge of the physical or dynamic parameters of
the vehicle [31].

Based on literature review, the work in this thesis aims to synthesize a Model-free Sec-
ond Order Sliding Mode Control to achieve the finite-time convergence of the error in the
trajectory tracking of an underwater vehicle using a time-variant gain, defined by a soft-
polynomial, which convergence time can be set directly.

The paradigm of a finite-time convergence assures that the vehicle will converge to the
desired trajectory in an specific time.

1.3 Research question
Motivated by the work described by Parra-Vega and Parra-Vega et al. [54, 55], the previous
work presented by Garcı́a Valdovinos et al. [31] and the research opportunities found in the
literature, it is possible to synthesize the Model-free Second Order Sliding Mode Controller,
with a sliding manifold parameterized by a Time Base Generator (TBG). The control will
achieve finite-time convergence of tracking errors of 3D trajectories in a specific time that do
not depends on the tuning of the controller and can be directly established. The control will
be test considering the parameters of a BlueROV2, by BlueRobotics, controlling the x, y, z,
φ, ψ DOFs, since θ will be considered intrinsically stable.
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The approach of this work is limited the realization of computational simulations con-
sidering and neglecting the effects and disturbances caused by the marine currents. Compar-
isons among a Model-Based Proportional-Integral-Derivative Controller (PID), a Feedback
Linearization Controller, and a Lyapunov Function Based Controller are included, evaluat-
ing the Root Mean Square (RMS) values of tracking errors of the five controlled degrees of
freedom, and the RMS values of the control signals in order to obtain a parameter of energy
consumption along the whole trajectory.

In a second part, the possibility of keep the simultaneous trajectory tracking of two
ROVs is explored. Nevertheless, in coordinated tasks for UUVs, localization, navigation and
communication are considered challenges since the underwater environment is complex and
the vehicles must navigate among each other [32]. Finite-time convergence control can be
one option to overcome this challenges, since the vehicles can reach to specific trajectories in
a given time.

An emulation of a collaborative task between the two vehicles is performed in order to
determine the effectiveness of the proposed Model-Free Second-Order Sliding Mode Con-
troller. In order to compare the performance, the values RMS values of the tracking error
and the RMS values of the control signals along the proposed trajectories. The controller will
be compared against two other finite-time state-of-the-art controllers:the Non-singular Termi-
nal Sliding Mode Control (NSTSMC) [44] and the Finite-time Second-order Sliding Mode
Control (FTSOSMC) [46].

1.4 Solution Overview
To answer the research questions it is necessary to follow the methodology consisting of the
next steps:

For the first part of this thesis:

• Retrieve the dynamic parameters of BlueROV2 from previous works.

• Update the Matlab-Simulink Simulator to perform the simulation with the correct pa-
rameters of the BlueROV2.

• Program and test the Proportional-Integral-Derivative Control, the Feedback Lineariza-
tion Control and the Lyapunov Function Based Control for trajectory tracking.

• Synthesize and test the Model-Free Second-Order Sliding Mode Controller with the
finite-time convergence approach.

• Compare the RMS values of the tracking error and control signals as a power con-
sumption parameter of the proposed controllers and the and the proposed Model-Free
Second-Order Sliding Mode Controller within a spiral trajectory.

For the second part:

• Program and test the Non-Singular Terminal Sliding Mode Control proposed by Liu et
al. [44] and the Fast-Terminal Second-Order Sliding Mode Control proposed by [46]
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• Compare the RMS values of the tracking error and control signals as a power con-
sumption parameter of the proposed controllers and the and the proposed Model-Free
Second-Order Sliding Mode Controller within the trajectories.

.

1.5 Contributions
1. Retrieving of the dynamic parameters of the BlueROV2 from previous reported works

and update them into the proposed software for the performance of simulations.

2. Synthesizing and testing of the Model-Free Second-Order Sliding Mode Controller with
finite-time convergence for Trajectory Tracking in four degrees of freedom: x, y, z and
ψ. The θ angle will be considered intrinsically stable and the φ angle will stay in a
defined reference value.

3. Comparing the RMS values of the tracking error and control signals (as a power con-
sumption parameter) of the classical controllers: PID, Feedback-Linearization, Lya-
punov Function Based and the proposed Model-Free Second-Order Sliding Mode Con-
troller.

4. Proposing a control option for simultaneous tracking exploiting the finite-time conver-
gence characteristic of the Model-Free Second-Order Sliding Mode Controller.

5. Comparing the RMS values of the tracking error and control signals (as a power con-
sumption parameter) between the state-of-the-art controllers: the Non-Singular Termi-
nal Sliding Mode Control and the Fast-Terminal Second Order Sliding Mode Control;
and the proposed Model-Free Second-Order Sliding Mode Controller.

1.6 Thesis Structure
This work is structured with the next sections:

• Chapter 1: Introduction. In this section a scope of the project is introduced. The
motivation and the objectives of the topic are also mentioned. The solution overview
presents the followed methodology to solve and answer the research question. The main
contributions of the work are also listed.

• Chapter 2: Literature Review. In this section an extensive review of the main control
techniques applied for the trajectory tracking problem, giving special attention to the
Sliding Mode Controller, the Model-free based controllers and the finite-time conver-
gence paradigm.

• Chapter 3: Theoretical Background. The main concepts related with underwater
vehicles are presented, starting with the kinematic and dynamic modeling of the vehicle,
the definition of the different components of the vehicle model. Concepts about control
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techniques such as the PID and the Sliding Mode Controller will be mentioned. The
structure of the Finite-Time convergence approach is mentioned.

• Chapter 4: Methodology. The process presented in the Solution Overview are ad-
dressed. The dynamic parameters of the vehicle, as well as the constraints of the
thrusters will be specified. A description of the controllers proposed to perform the
simulations, as well as the parametrization of the proposed trajectories and the scope of
material and software is also mentioned.

• Chapter 5: Results. The main results relating the performance of the controllers and
showing the resulting plots for position and velocity, as well as the required torques and
control inputs will be shown. The RMS values of the tracking error of the controlled
DOFs and the RMS values of the control signals as a parameter to measure the energy
consumption will be also presented.

• Chapter 5: Discussion An analysis of the results are presented in this chapter. Par-
ticular attention is given to the RMS values of the tracking errors and the RMS of the
control signals. A comparison between the performance of the proposed solution and
other controllers is stated.

• Conclusions. As the final part of the work, the main findings and contributions are
presented here. Also a scope to the application of the proposed controller for future
work is presented.



Chapter 2

Literature Review

Several control strategies have been found in the literature to deal with the complex underwa-
ter environment, as well as with the uncertainties and disturbances due to marine currents and
to manage the variation in physical parameters of the vehicle due to a tool swap or the change
in buoyancy. A revision of the state of the art control techniques is mentioned next.

2.1 Controllers

2.1.1 Proportional-Integral-Derivative (PID) Controller
The Proportional-Integral-Derivative (PID) controller have a good performance thanks to its
simple structure and its preferred for its effectiveness under specific and non-variable condi-
tions. However, the changing dynamics of the vehicle and the uncertainty of the underwater
environments, it is preferred to work with more robust systems and this method is only used
for performance comparison with the proposed models.

However, more robust techniques have been explored. Campos et al. [9] presented a
non-linear PD and a PD+ controller with saturation functions, and an asymptotic stability.
However, when the buoyancy of the vehicle is changed, the control degrades. Guerrero et
al. [34] proposed a non-linear PID based on a set of saturation functions that compensates
the effects of small disturbances. The controller converges in shor term, but keeps a small
tracking error.

Soylu et al. [63], proposed an adaptive PID signal is included in a MIMO control law to
fine tune the controller and eliminate residual errors. A hierarchical architecture is employed:
an outer-loop receives the target locations and generate motion directives. The inner control-
loop receive the motion commands to generate thruster commands. The controller operated
with centimetre-level precision and provided stable motion.

2.1.2 Sliding Mode Control (SMC)
Unmodeled dynamics and disturbances can be efficiently managed using sliding mode con-
trol. This control strategy is compound of an equivalent control law, which is continuous
and based on the dynamic model of the vehicle; and a switching term has to compensate the
difference between the desired and the actual dynamics [61]. This last term may introduce a

6
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high frequency switching in the actuators, called chattering, deteriorating and reducing their
lifetime. The controller guarantees an asymptotic convergence of the tracking errors.

In [69], Yang et Yu proposed a control law considering the effect of states and con-
trol input quantization by introducing the bound of quantization error into the switching term
of a SMC. A disturbance observer was applied to estimate the unknown disturbances. Ac-
cording to simulations, the trajectory tracking errors of the AUV converged to zero. Qiao et
al [56], presented three exponentially convergent robust controllers based on eventual SMC.
The controllers were non-linear based and compensated the dynamic uncertainties and exter-
nal disturbances.

Several variations of this controller have been applied for the trajectory tracking of
UUVs, including Terminal SMC, Integral SMC and High Order SMC. These variations pre-
serve the advantages and robustness of the SMC. However, adaptive parameters are added to
address the possible changes in the parameters of the vehicle and other external disturbances.
Also, it is possible to obtain a faster exponential convergence rate and reduction, or even
elimination, of chattering. Every of these configurations offers benefits, as chattering attenua-
tion, finite-time convergence and robustness against unmodeled dynamics. Some of the main
variations of SMC are listed on Table 3.2.

Table 2.1: Main SMC variations found in literature and their main characteristics. [57]

Controller Characteristics References in literature

Linear SMC Guarantees asymptotical convergence [56]
Presence of chattering

Terminal SMC Finite-time convergence [13, 52]
High steady tracking precision

Integral SMC Insensitive to uncertainties and disturbances [41, 15]
High steady state accuracy

One of the strategies to reduce and even eliminate the chattering effect is by changing
the discontinuous sign function in the switching term, for similar continuous function. The
saturation function [4, 6, 7, 66, 52, 17, 26], as well as the hyperbolic tangent [41] and the
inverse tangent functions [37],as an exponential function [73] are the ones present in the lit-
erature. However, the change of functions may reduce in the tracking performance of the
vehicle [57] . Some functions are shown in Figure 2.1.

Another approaches have been considered to guarantee stability and stabilizes the track-
ing errors in finite time in an underactuated UUV. In [71], a PID controller as a sliding surface
is proposed. To stabilize the tracking errors, a first order PI and a second order PID sliding
surface are introduced to develop the dynamic tracking controller, resulting in the convergence
of all tracking error to a small neighborhood of the origin even with parameter perturbation
and uncertainties.

Qiao and Zhang [57], proposed an adaptive second-order fast nonsingular terminal slid-
ing mode control that yielded local exponential convergence of the position an attitude track-
ing errors to zero, and included the sign function into the time derivative of the control input,
eliminating chattering without reducing the tracking precision. In [52] a Time Delay Control
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Figure 2.1: Continuous functions for the switching term in SMC to avoid chattering. A) Sat-
uration Function. B) Hyperbolic Tangent Function. C)Inverse Tangent Function. Modifying
the parameters of these functions it is possible to achieve a better approximation of the sign
function.

(TDC) was proposed with the inclusion of a term based on Terminal Sliding Mode Con-
trol(TSMC) that provided a fast response and a PID term that reduced the tracking error, the
controller had a good response and a free-chattering response.

In order to deal with the uncertainties and improve the trajectory tracking of the UUVs,
it is common to decoupled the model of the system into two parts and thus in two independent
control loops: a kinematic part and a dynamic part. Double loop SMC allows the tracking er-
rors to converge to a small neighborhood of zero, even in the presence of external disturbances
and system uncertainties. Also the chattering is considerably reduced. However, this works
have been only tested by simulations. Qiao and Zhang. [58], implemented a double-loop
integral terminal SMC with a kinematic and a dynamic loop. The controller tracks the desired
trajectory in finite time even in the presence of uncertainties and external disturbances.

Huang and Yang [37], replaced the switching term for a inverse tangent function to
reduce chattering, and the system is divided into two loops, one for controlling velocity; and
the other for the position and attitude. Even in the presence of external disturbances and
uncertainties, including sensor noise, the errors converge to a small neighborhood of zero. Li
et al. [43], proposed a backstepping SMC where the outer-loop of the controller constructs the
position error sliding surface through the desired position error and the inner-loop controller
constructs the sliding surface of longitudinal, horizontal and vertical velocities. The controller
presented a a faster response and shorter time of adjustment, but with a larger overshoot.

2.1.3 Visual Servoing
Also known as visual based control. This strategy uses a camera system to provide feedback
signals for a robotic system. The desired configuration is reached by a set of features that
moves through the image frame [26].

In [27], Gao et al. uses visual servo for positioning the vehicle with respect to a fixed
target in camera-in-hand configuration. A structure of a dual loop cascade system is proposed.
In a kinematic loop, the velocity is managed, and in the dynamic loop, the acceleration. Also
a feed-forward neural network in conjunction to a PI controller is applied to compensate
for uncertainties in the vehicle dynamics. The controller drives the vehicle to a the target
successfully even in the presence of uncertainties and calibration errors.

In [28], a hierarchical image based visual servoing is used for dynamic positioning. The
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desired velocity in the kinematic loop is generated by a non linear MPC, and a single, hidden
layer, neural network is used to drive the vehicle to track the desired velocity based on the
current velocity feedback.

2.1.4 Backstepping Control (BSC)
Backstepping has been widely used for underwater vehicles due to its simple design procedure
to stabilize system states by a step-by-step recursive progress [66]. In [22], Ferreira et al.
developed a controller with a kinematic/torque control law using backstepping. However, the
controller does not guarantee asymptotic stability, and presented small oscillations around the
equilibrium point appeared.

Karkoub et al. [39] proposed a backstepping and SMC control based on the kinematic
and dynamic model of the system. The virtual reference velocity is calulated using back-
stepping, while the velocity control uses SMC. The trajectory tracking is guaranteed with
asymptotic stability.

2.1.5 Dynamic Surface Control (DSC)
Dynamic Surface control (DSC) is an approach similar to backstepping, which allows to avoid
a high level of complexity by using first order filter to compute the derivatives of the plant
model [20]. The filtered signals are calculated at each step from internal control signals,
and they are used in the control law to replace analytical differentiation [5], reducing the
level of complexity. Ellenrieder applied, in [20], an hyperbolic tangent function is utilized
to re-scale the control input as the actuators become saturated. However, the reduction of
complexity comes at the expense of a slight loss of the robustness to larger disturbances.
Baldini et al. [5] aimed to control a MIMO system through three controllers. The DSC
is used to generate the moment and forces required for the vehicle to perform the desired
motion. Several uncertainties and external disturbances, its considered as a fault tolerant
control (FTC).

2.1.6 Model Predictive Control (MPC)
Model Predictive Control (MPC) is an control methodology based on the model of the plant
and its high level of flexibility allows to deal with any non-linearity or varying characteristics
of the model. The model has three characteristics: prediction model, rolling optimization and
feedback correction.

In [75], the problem was treated as a numerical optimization problem solved by quadratic
programming, in which the system model is designed to predict the future control inputs and
the future plant responses. When the AUV reached a certain position, the next optimal inputs
are recalculated based on the current states and the desired trajectory. In simulation, the results
showed a robustness against various disturbances. Gan et al. [25], solved the problem based
on quantum-behaved particle swarm optimization, obtaining a balance between the control
performance and the thrusts constraint optimization.

In [3], Anderlini et al. presented an Adaptive Model Predictive Control (AMPC). This
controller selects the optimal actions at the beginning of every time step with the aim of
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minimising the tracking error and prevent abrupt changes in the control action. The controller
was able to track the desired trajectory, but the linearisation and the identification process
affected its performance.

In [59], a nonlinear MPC was proposed to handle the strong model non-linearity of an
AUV and formulated the problem trying to avoid numerical difficulties. Also, to optimize the
controller, the Ohtsuka’s continuation/general minimal residual is applied, and resulting in a
bounded position errors. Shen et al. [60], proposed a Lyapunov based non-linear MPC that
can well handle the nonlinear system dynamics and the thrust constraints, creating a trade-
off between computational complexity and control performance, resulting in a better control
performances and robustness and reducing considerably the mean square error of the track
even in the presence of ocean current disturbances and errors in the vehicle parameters.

2.2 Adaptive Strategies

2.2.1 Neural Networks
Neural networks are widely applied due to its efficient nonlinear identification capability, as
model uncertainties and external disturbances. According to Hernandez-Alvarado [35], the
neural networks characteristics include: parallelism, generalization, non-linearity and adapt-
ability. Some common structures are shown in Figure 2.2.

Figure 2.2: Common Neural Networks Structures with inputs, hidden layer and outputs. A)
A Back-propagation NN with sigmoid activation function. B) A Radial Basis Function NN,
with Gaussian activation function. C) A Recurrent NN, with feedback to the hidden layer.

Back Propagation Neural Network (BPNN)

In their work [35], Hernandez-Alvarado et al. proposed an auto-tune PID controller with
a BPNN, which uses the sigmoid function as the activation function. The neural network
adapted to changing environment an reduced the minimum square error compared against the
traditional PID.
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Recurrent Neural Network

Recurrent neural network has recurrent middle layer structure, which can reflect the time se-
ries between the input and the output variables of the system [73]. Recurrent neural networks
have a faster learning speed an good learning performance [14]. In [73], a local recurrent
neural network is proposed to estimate the unknown function item in controller in an adap-
tive SMC. The proposed approach had a higher accuracy and could track a desired trajectory
without knowing the thrust model with smaller overshoot and faster convergence.

Radial Basis Function Neural Networks

The radial basis function neural network (RBFNN) Uses a radial function, i.e. a Gaussian
function, as activation function instead of the common sigmoid function. This NNs are pre-
ferred due to their simplicity and linear parametrization [65]. Cui et al. [16] applied reinforce-
ment learning to reduce the learning time of the NNs. Two NNs were used, one to evaluate
the performance of the controller and the other to compensate for the unknown dynamics. In
[13], Chu et al. utilized a RBFNN to identify unknown dynamics with estimation errors that
can not converge to zero. The thruster’s dynamics and the measurement noises of sensors are
considered for simulation. As part of a Fault Tolerant Control (FTC), a RBFNN is incorpo-
rated in [66] to approximate the general uncertainty of a controller that incorporates a sliding
mode algorithm and a backstepping scheme. The unknown thruster fault is treated as part of
the uncertainties.

In [4], a radial basis neural network is utilized to mimic a control law in an SMC to
curb the system dynamics on the sliding surface and guarantee and asymptotic stability. The
neural network counted with four, twenty ad four neurons in the input, hidden and output
layers, with weights initialized randomly. The parameters of the vehicle did not need to be
known explicitly, and the controller follow the reference trajectory even in the occurrence of
uncertainties.

In, [49], a RBFNN was employed to account for modelling errors and the controller is
constructed based in a dynamic surface control and applying the minimal learning parameter.
In simulation was found that the errors converge to a small neighborhood for the desired tra-
jectory even in the presence of unmodelled dynamics and outer disturbances. Zhou et al. [76]
proposed a combination of a RBFNN and state prediction using backstepping sliding mode
control. The RBFNN is used to estimate the interference of model parameter uncertainties
and external disturbances. The controller could track the trajectory at the fastest speed and the
actual motion was smooth and stable.

2.2.2 Fuzzy Logic Controller (FLC)
Fuzzy Logic Controllers (FLC) can be applied to plants that are not so well defined mathemat-
ically [47], has a greater anti-disturbance ability and robustness, so it can be used in uncertain
systems and non linear systems. In [12], Chin et al. used a fuzzy inference mechanism for
a Genetic Algorithm to influence the correct evolutionary step and direction under the uncer-
tainties and external perturbations. Huo et al. [38] proposed a fuzzy logic control scheme
for speed control in a path following process. The controller reduced the complexity of the
algorithm and take advantage of the robustness and anti-disturbance characteristics. In [70],
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Figure 2.3: Activation functions for neural networks. A) Sigmoid function, used in most
neural networks, when the value is above 0.5 the output is considered one; when is less than
0.5, the output is considered to be 0. B) Gaussian function, as a radial basis function, the
output is related to a distance between a fixed center and the value.

a fuzzy function is applied to eliminate the uncertain term, and thus, reduce the chattering ef-
fect on a sliding-mode controller. At the beginning of the simulation the controller presented
chattering, but in future stages it was reduced.

Fuzzy re-planing is other interesting approach of FLC. In [45], a trajectory reconstruc-
tion method is proposed. It takes into account the case where the initial position deviates from
a corresponding point in a desire trajectory. For this purpose, a cubs spline function is used to
reconstruct a local desired trajectory at each instant based on the AUV’s current position, in
order to keep the control output smooth and maintaining satisfactory tracking performance.

In, [11] is proposed a fuzzy control system of nominal dynamics based on computed-
torque controller. A fuzzy compensator was also included, as a non-linear filter to compensate
for uncertainties and generated a robust feedback gains variation inside the control loop. The
control system is characterized by robustness and good tracking performance

2.3 Other control approaches
The presence of uncertainties can be managed by certain controllers. Other approaches in-
clude adaptive methods as neural networks or fuzzy logic. However, in

[1] an adaptive switching supervisory control combined with a non-linear Lyapunov-
based tracking control is proposed. The controller does not suffer from singularities due to the
parametrization of the rotation matrix and the chattering is avoided using a form of hysteresis.

In [2], a Linear Quadratic Regulator (LQR) is designed to control an AUV with two
operation models: a glider mode and a thrust mode. The controller provides accurate tracking
performance even in the presence of underwater currents. However, the tracking position was
prioritized over orientation.

In [19], a robust adaptive control was designed for an under-actuated AUV. The control
design was based on controllers for stability and of stochastic systems, potential projection
functions, backstepping and Lyapunov methods. The results showed that the tracking errors
converge to a circle of adjustable radius and centered in the origin.
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A Nussbaum-function based controller is proposed in [64]. A high-level kinematic con-
troller is designed for the velocity commands, and a low-level controller is designed to pro-
duce the force and torque commands for the thrusters. The controller includes an adaptation
law based on Adaptive Proportional Control (APC) adaptation la to enable robustness to ex-
ternal disturbance and unknown environments, but the gains only can grow as a result of the
adaptation and, thus, resetting the gains serves to avoid large control efforts. The controller
exhibited robustness to noise and avoid overshoots and instability.

2.4 Model-Free Controllers
Bagheri and Moghadamm [4], presented a radial basis neural network that is utilized to mimic
a control law in an SMC to curb the system dynamics on the sliding surface and guarantee
and asymptotic stability. The neural network counted with four, twenty and four neurons in
the input, hidden and output layers, with weights initialized randomly. The parameters of the
vehicle did not need to be known explicitly, and the controller follow the reference trajectory
even in the occurrence of uncertainties.

Garcı́a-Valdovinos et al.[31], presented a model-free High Order SMC that takes advan-
tage of the SMC and reduces the chattering effect by introducing and integral action. Based
on the same model, in [36], Hosseini and Seyedtabaii presented a data fusion method, using
redundant measurements and a Kalman filter, that is able to contain the varying disturbances
and reaches a zero steady state tracking error. In [30], Garcı́a-Valdovinos et al. included a
backpropagation neural network to the model to compensate disturbances and to deal with
parametric uncertainties.

Yan et al. [68], proposed a model-free PD controller that can manage the actuator satu-
ration constraints and the time delay caused by sensors. A high proportional gain results in a
large change in the output and the derivative term reduces the overshoot and improves the tran-
sient response. Martin and Withcomb [48] presented a model-free PD controller with asymp-
totic stability for set-point regulation. However, they found that model-based controllers’
tracking errors should be significant smaller than in the model free controller.

Kumar and Rani [42] proposed a combination between a model-dependant and a model-
free controller. Using a RBFNN is used for an approximation of the unknown dynamics.
The control scheme has reported a strong robustness against the parametric and dynamics
uncertainties.

2.5 Finite Time Convergence
Other approaches have been considered to guarantee stability and stabilize the tracking errors
in finite time in an underactuated UUV. Yuo, Guo et Yan [71], presented a PID controller as a
sliding surface of a SMC. To stabilize the tracking errors, a first order PI and a second order
PID sliding surface are introduced to develop the dynamic tracking controller, resulting in the
convergence of all tracking error to a small neighborhood near the origin even with parameter
perturbation and uncertainties.

To deal with the uncertainties and improve the trajectory tracking of the UUVs, it has
been found that is common to decoupled the model of the system into two parts and thus in two



CHAPTER 2. LITERATURE REVIEW 14

independent control loops: a kinematic part and a dynamic part. Double loop SMC allows the
tracking errors to converge to a small neighborhood of zero, even in the presence of external
disturbances and system uncertainties. Also the chattering is considerably reduced. However,
this works have been only tested on simulations. Qiao and Zhang [58], implemented a double-
loop integral terminal SMC with a kinematic and a dynamic loop. The controller tracks the
desired trajectory in finite time even in the presence of uncertainties and external disturbances.

Guerrero et al. [33], presented an adaptive High Order SMC. The real time experiments
showed that the control signal is smoother than the control signal of other controllers as the
General Super-twisting Algorithm. The finite-time convergence of the algorithm is clearly
noted, counteracting against perturbations.

Parra-Vega [54] presented a 2nd Order Sliding Mode manifold with a TBG-based slid-
ing surface applied with simulation study on a rigid 2 DOF robotic arm, obtaining finite-time
convergence of tracking error. In other work, Parra-Vega et al. [55], presented a continuous
chattering-free Sliding PID control law to guarantee tracking in finite time applied experimen-
tally on a planar 2 DOFs robot.

2.6 Summary
Several control strategies have been found in the literature to deal with these conditions
and make possible the performance of UUV. Even when the Proportional-Integral-Derivative
(PID) is one of the most practical controllers used in linear plants due to its simplicity, the
complex underwater conditions make not possible its correct operation, since the systems
became non-linear and with several uncertainties, degrading its performance. Instead, the
design and implementation of Sliding Mode Control (SMC) have gained a wide range of ap-
plications in the field. Linear SMC, Terminal SMC, Integral SMC and High Order SMC, have
been employed due to their capacity of deal with uncertainties and disturbances. However,
the reduction and elimination of chattering is also a matter of study, and several methods have
been reported to avoid it, reduce it and, even, eliminate it. The change of the discontinu-
ous sign function, for other similar-shaped and continuous functions is widely applied. The
saturation function, as well as the inverse and the hyperbolic tangent function are found in
literature. Other techniques as Backstepping, Visual Servoing, Dynamic Surface and Model
Predictive control are also studied for the control of underwater vehicles.

Due to the lack of knowledge and the impossibility of modeling the external disturbances
and vehicle dynamic uncertainties, the use of adaptive control have been widely studied. The
utilization of Neural Networks is extensively applied due to their capacity of modeling uncer-
tainties and external disturbances Back Propagation NN (BPNN), Recurrent NN (RNN), with
the sigmoid functions as an activation function; and Radial Basis Function NN (RBFNN),
which activation function is a radial basis function as the Gaussian function; are applied.
However the RBFNNs are the most applied due to their simplicity and good learning perfor-
mance. Other adaptive technique involves the application of Fuzzy Logic Controllers (FLC)
due to its robustness and anti-disturbance ability.

In various studies, it is impossible to know the exact dynamic parameters of a vehicle,
since this can be a complex and time consuming task. Then, it is preferred to design and
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utilize model free controllers, which do not require any knowledge of these parameters. Pre-
vious strategies as SMC, PID and adaptive approaches have been found applied in the design
of these type of controllers. Double-structures, where a kinematic and a dynamic controller
are designed for the manage of position and velocity errors are also found in literature. In this
category, the hierarchical approach is commonly treated. Other authors have design less com-
mon control techniques based on Lyapunov theory, Nussbaum functions and Linear Quadratic
Regulator.

Information about the controllers used in several studies for dynamic positioning and
trajectory tracking is shown in Tables 2.2 and 2.3. As well, the type of vehicle utilized in the
study, the level of approach, denoted by anE when the study included Real Time Experiments,
and an S, when the study included simulations. The strategies marked with the symbol ∗ are
the studies based on a model-free controller. The controlled DoF are also included.

Table 2.2: Control Techniques with at least one form of Sliding Mode Control applied for
dynamic positioning

Reference Vehicle Controllers Approach DOF

Bessa, Dutra et Kreuzer.
(2008*, 2010) [6, 7] ROV

FLC
SMC S

z
x, y, z

Chin et Lin
(2018) [12] ROV

FLC
SMC S z, ψ

Gao et al.
(2017) [26] ROV

SHL-FFNN
SMC (VSC) S x, y, z, ψ

Garcı́a-Valdovinos et al.
(2019)* [30] ROV

BPNN
HOSMC E z

Hernández-Alvarado et al.
(2019)* [35] ROV

BPNN
PID E z

Table 2.3: Control Techniques involving at least one form of Sliding Mode Control applied
for Path Following and Trajectory Tracking.

Reference Vehicle Controller Approach DOF

Bagheri and Moghadamm
(2009)* [4] ROV

SMC
NN S x, y, z, ψ

Chin et Lin
(2018) [12] ROV

FLC
SMC S x, y

Chu et al.
(2019) [13] ROV

RBFNN
SMC S x, y, z, ψ

Chu, Zhu et Yang
(2017) [14] ROV

RNN
ATSMC S x, y, ψ
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Table 2.3: Control Techniques involving at least one form of Sliding Mode Control applied
for Path Following and Trajectory Tracking.

Reference Vehicle Controller Approach DOF

Cui et al.
(2017) [15] ROV ISMC S x, y, z, φ, θ, ψ

Cui, Zhang et Cui
(2016) [17] AUV SMC S/E θ, ψ

Elmokadem et al.
(2017) [21] AUV TSMC S x, y, ψ

Gan et al.
(2018) [25] ROV

MPC (PSO)
SMC S x, y, z, ψ

Garcı́a-Valdovinos et al.
(2014)* [31] ROV HOSMC

S
E

x, y, z, ψ
z

Garcı́a-Valdovinos et al.
(2019)* [30] ROV

BPNN
HOSMC E z

Guerrero et al.
(2019) [34] AUV HOSMC E z, ψ

Hernández-Alvarado et al.
(2019)* [35] ROV

BPNN
PID S x, y, z, ψ

Hosseini et Seyedtabaii
(2016)* [36] ROV HOSMC S x, y, z, φ, θ, ψ

Huang et Yang
(2019) [37] ROV SMC S x, y, z, ψ

Karkoub, Wu et Huang
(2017) [39] AUV

BSC
SMC S x, y, z, φ, θ, ψ

Kim et al.
(2015) [41] AUV ISMC S/E x, y, ψ

Li et al.
(2019) [43] AUV

BSC
ISMC S x, y, z, φ, θ, ψ

Martin et Whitcomb
(2018)* [48] AUV

PD*
PD S x, y, ψ

Esfahani et al.
(2015) [52] AUV

TSMC
PID /FLC S x, y, z, ψ

Qiao et al.
(2017) [56] AUV SMC S x, y, z, φ, θ, ψ
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Table 2.3: Control Techniques involving at least one form of Sliding Mode Control applied
for Path Following and Trajectory Tracking.

Reference Vehicle Controller Approach DOF

Qiao et Zhang
(2019) [58] AUV ITSMC S x, y, z, φ, θ, ψ

Qiao et Zhang
(2019) [57] AUV TSMC S x, y, z, φ, θ, ψ

Soylu et al.
(2016) [63] ROV

SMC
PID E x, y

Wang et al.
(2015) [66] AUV

RBFNN
SMC/BSC S x, y, z, φ, θ, ψ

Yan et al.
(2019)* [68] ROV PD S/E x, y, z, ψ

Yan et Yu
(2018) [69] AUV SMC S x, y, ψ

Yan et al.
(2019) [70] AUV

BSC
SMC-FLC S z, θ

Yu, Guo et Yan
(2019) [71] AUV PID-SMC S x, y, z, θ, ψ

Zhang et Chu
(2012) [73] ROV

SMC
RNN S z

Zhou et al.
(2019) [76] AUV

RBFNN
BSC-TSMC S x, y, ψ

Only studies that include the application of a Sliding Mode Controller where included
in these tables. The inclusion of a finite time convergence approach was also considered.



Chapter 3

Theoretical Background

3.1 Mathematical Modeling
An underwater vehicle, has six degrees of freedom (DOF), defined as the set of independent
displacements and rotations that specify completely the position and orientation of the vehicle.
The motion in the horizontal plane is referred to as surge (x axis), the sideways motion is sway
(y axis) and the vertical motion (z axis) is referred to as heave. Now, the rotations on each of
these axes are roll, pitch and yaw, respectively. According to the Society of Naval Architects
and Marine Engineers (SNAME) [62], the notation for the movement of underwater vehicles
and the used variables is shown in Table 3.1.

Table 3.1: Notation for the modeling of the vehicle dynamics according to SNAME [62]

Degrees of
Freedom

(DOF)

Forces and
Torques

Position
and Euler

Angles

Linear and
angular

velocities

Surge Motion in the x direction X x u

Sway Motion in the y direction Y y v

Heave Motion in the z direction Z z w

Roll Rotation about the x axis K φ p

Pitch Rotation about the y axis M θ q

Yaw Rotation about the z axis N ψ r

According to Fossen [24], the model of an UUV has to be referred to two reference
frames, as shown in Figure 3.1. One is the earth-fixed frame known as North-East-Down
(NED), defined as a the tangent plane on the surface of the Earth. The other is the body-fixed
frame, located in the center of buoyancy of the vehicle, and defined as a moving coordinate
frame that is fixed to the vehicle. Fossen [23], proposed a compact model in the 6 DOFs using
a vectorial setting shown by the equation 3.1.

Fossen [23], proposed a compact model in the 6 DOFs using a vectorial setting shown
by the equation 3.1.

18
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Figure 3.1: ROV’s basic Degrees of Freedom for movement, as explained by Fossen [24].

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ (3.1)

Considering that:
η = [x, y, z, φ, θ, ψ]T (3.2)

and
ν = [u, v, w, p, q, r]T (3.3)

Where M ∈ R6×6 represents a matrix of inertia. C(η) ∈ R6×6 and D(η) ∈ R6×6

represent the Coriolis and Damping matrices respectively. Finally, vectors g(η) ∈ R6×1 and
τ ∈ R6×1 are the compensation for gravity and buoyancy, and the vector with the control
inputs, respectively. η is a vector with the components of position respect to the earth-fixed
frame and ν is the vector of the velocities respect to the vehicle body-fixed frame. The trans-
formation between this two reference frames is performed by Eq. 3.4.

η̇ = J(η)ν (3.4)

Where J(η) is the Jacobian matrix, and it is defined as:

J(η) =

[
J1(η2) 03×3

03×3 J2(η2)

]
(3.5)

With η2 = [φ, θ, ψ]. The matrices J1 and J2 are defined as:

J1(η2) =

cψcθ −sψcθ + cψsθsφ sψsθ + cψcφsθ
sψcθ cψcφ+ sφsθspsi −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (3.6)

and:
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J2(η2) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 (3.7)

Where s = sin(a), c = cos(a) and t = tan(a).

3.2 Kinetic Model
The equation 3.1 considers the Newton-Euler formulation for rigid bodies. This formulation
is based on the Newton’s Second Law. However, it is necessary to consider the motion of
rigid bodies, hydrodynamics and hydrostatics in order to completely define this equation.

3.2.1 Inertia Matrix
The inertia matrixM is expressed as:

M = MRB +MA (3.8)

WhereMRB is the rigid-body mass matrix and it is defined by:

MRB =

[
mI3×3 −mS(rbg)
mS(rbg) Ib

]
=


m 0 0 0 mzg −myg
0 m 0 −mzg 0 −mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ixy −Ixz
mzg 0 −mxg −Iyx Iy −Iyz
−myg mxg 0 −Izx −Izy Iz


(3.9)

Where the S(rbg) term is the skew symmetric matrix, with rbg = [xg, yg, zg]
T which are

the distances from the origin of the body-fixed frame to the center of gravity. m is the mass
of the ROV, Ix,Iy,Iz are respectively the moments of inertia about xb,yb and zb axes in the
body-fixed frame. Also with Ixy = Iyx, Ixz = Izx, Iyz = Izy are the inertia products [24].

The matrix MA involves the added mass, which can be considered as pressure-induce
forces due to a forced harmonic motion of the vehicle body proportional to its acceleration,
and for vehicles that are completely submerged the coefficients are constant [24]. The matrix
is defined as shown in equation 3.11.

MA = −


Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

 (3.10)

Where, for example the term Yu̇ := ∂Y
∂u̇
.
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However, in several applications the ROV will only move at a low speed. Also, consid-
ering symmetry, the off-diagonal elements of the matrixMA can be neglected [23]. Resulting
in:

MA = MA
T = −diag{Xu̇, Yv̇, Zẇ, Kṗ,Mq̇, Nṙ} (3.11)

3.2.2 Coriolis Matrix
The Coriolis Matrix is defined by:

C(ν) = CRB(ν) +CA(ν) (3.12)

Where CRB is the rigid-body Coriolis and centripetal matrix due to the rotation of the
body-fixed frame about the inertial Earth-fixed frame [24] and can always be expressed such
that CRB is skew-symemtric:

CRB(ν) = −CT
RB(ν) =

[
03×3 −mS(ν1)−mS(S(ν2)r

b
g)

−mS(ν1)−mS(S(ν2)r
b
g) mS(S(ν1)r

b
g − S(Ioν2)

]
(3.13)

However, considering the same symmetry conditions, the matrix shown in Eq. 3.13 can
be written as 3.14 [67]:

CRB(ν) =


0 0 0 0 mw 0
0 0 0 −mw 0 0
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq
−mw 0 −mu −Izr 0 Ixp
mv −mu 0 Iyq −Ixp 0

 (3.14)

For a rigid-body moving through an ideal fluid the Coriolis matrixCA(ν) can be always
parameterized such that it is skew-symmetric [23], such that:

CA(ν) = CT
A(ν) = −

[
03×3 −S(A11ν1 +A12ν2)

−S(A11ν1 +A12ν2) −S(A21ν1 +A22ν2)

]
(3.15)

Taking in consideration that:

M = MA =

[
A11 A12

A21 A22

]
(3.16)

However, the same consideration of velocity and symmetry arise, simplifying Eq. 3.15
into 3.17.

CA(ν) = CT
A(ν) =


0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
Yv̇v Xu̇u 0 −Mq̇q Kṗp 0

 (3.17)
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3.2.3 Hydrodynamic Damping
Fossen [23] recalls four different types of damping:

• Potential Damping: This damping is encountered when a body is forced to oscil-
late with the wave excitation frequency. The contribution of this term are usually ne-
glectable.

• Skin Friction: This damping is due to the laminar boundary layer when considering
the low-frequency motion of the vehicle. A quadratic contribution can be added due to
a turbulent boundary layer.

• Wave Drift Damping: This is added resistance for surface vessels advancing in waves.

• Damping due to Vortex Shedding: In a viscous fluid, the frictional forces make the
system not conservative with respect to energy. The viscous damping force depends on
the speed of the vehicle, the projected cross-sectional area under water, the density of
the water and the drag-coefficient based on the representative area.

In general, it is not an easy task to separate the damping effects. So, it is then convenient
to write the hydrodynamic damping as:

D(ν) = D +Dn(ν) (3.18)

WhereD is the linear damping matrix, andDn(ν) is the nonlinear damping matrix.
For slow speed underwater vehicle, this matrix is expressed as Eq. 3.19.

D(ν) =− diag{Xu, Yv, Zw, Kp,Mq, Nr}
− diag{X|u|u|u|, Y|v|v|v|, Z|w|w|w|, K|p|p|p|,M|q|q|q|, N|r|r|r|}

(3.19)

3.2.4 Restoring Forces and Moments
Gravity and buoyancy forces also affect underwater vehicles. This forces are called restoring
forces. According to SNAME notation, the submerged weight of the body and buoyancy force
are defined as:

W = mg (3.20)

B = ρg∇ (3.21)

Where m is the mass of the vehicle, g is the constant gravity acceleration of 9.8m
s2

(pos-
itive downwards), ρ is the density of water, and ∇ is the volume of fluid displaced by the
vehicle.

Considering that the center of the body-fixed frame is located in the center of flotation,
and the considerations mentioned by Wu[67],the resulting matrix is shown in Eq. 3.22.
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g(η) =


(W − B)sin(θ)

−(W − B)cos(θ)sin(φ)
−(W − B)cos(θ)cos(φ)

zgWcos(θ)sin(φ)
zgWsin(θ)

0

 (3.22)

3.2.5 Ocean Currents
According to Fosen [24], the forces of the ocean currents can be implemented using relative
velocity, between the difference of the real velocity and the current velocity:

νr = ν − νc (3.23)

Where ν is the velocity of the vehicle, and νc is the velocity of the currents.
The generalized vector for an irrotational ocean current velocity is given by:

νc = [uc, vc, wc, 0, 0, 0]T (3.24)

Defining the angles αc as the angle of attack, βc as the slideslip angle and Vc as the
magnitude of the velocity of the marine current, every element of the velocity vector can be
calculated as:

uc = Vc cos (αc) cos (βc)

vc = Vc sin (βc)

wc = Vc sin (αc) cos (βc)

(3.25)

Where uc is a current velocity produced from north, vc is the current from east, and wc
is the current from down.

Since the velocity vector is expressed in the Earth-Fixed frame, Eq. 3.1, can be modified,
resulting in:

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ (3.26)

3.2.6 Thruster Allocation
The underwater vehicles are equipped with thrusters in order to generate the forces and torques
for movement. The force produced by these thrusters can be calculated using the Eq. 3.27

τ = TKu (3.27)

Where u is the vector with the control inputs, K is a diagonal matrix with the thrust
coefficients such that K = diag{K1, K2, K3, K4, K5, K6} and T is the allocation matrix.

The matrix T includes the distances and angles to calculate the required torques accord-
ing to the control inputs.
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3.2.7 Control Allocation
From Eq.3.27 it is possible to solve for u in order to find the corresponding control signals to
be applied for each thruster. This vector is determined as Eq.3.28.

u = K−1T−1τ (3.28)

Nevertheless, the matrix T is singular, due to the roll-row filled with 0s. For this case,
the Moore-Penrose pseudo inverse is applied.

3.3 Control Strategies
All the different control strategies apply a torque on the system based on the difference be-
tween the desired position and the real position. In order to obtain the desired accelerations
ν̇, it is necessary to solve from Eq. 3.1. Resulting in:

ν̇ = M−1 (τ −C(ν)ν −D(ν)ν − g(η)) (3.29)

However, with the modifications proposed by [67], the M−1 is now singular, and the
Moore-Penrose pseudoinverse matrix must be applied in this case.

3.3.1 Proportional Integral Derivative Controller
The Proportional-Integral-Derivative (PID) is one of the most practical controllers used in
linear plants due to its simplicity. It is composed of a proportional term, which is proportional
to the present error; an integral term, which accumulates the past errors, and thus eliminates
the steady state error; and a derivative term, which works with the rate of change of the error,
and thus reduces the overshoot, since it acts as a predictive term. Equation ?? presents a basic
PID structure presented by Ogata [53], where Kp represents a proportional gain, τi represents
an integral time constant, and τd represents a derivative time constant.

Gc = Kc

(
e(t) +

1

τi

∫
e(t) + τd

de(t)

dt

)
(3.30)

However, the complex underwater conditions make not possible its correct operation,
since the systems became non-linear and with several uncertainties, degrading its perfor-
mance.

3.3.2 Sliding Mode Controller (SMC)
Uncertainty can be classified into to major kinds [61]:

• Structured: Which are inaccuracies on the modeling.

• Unstructured: Inaccuracies of the system order.
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However, both type of inaccuracies have undesired effects on the vehicles. The Sliding
Mode controller can deal with uncertainty since it is composed of a nominal part, and addi-
tional terms capable of deal with model uncertainty. The task of designing a control law starts
with getting the state x to track a specific time varying state xd in the presence of model im-
precision [61]. However to achieve this task successfully the initial desired state xd(0) must
be equal to the real x(0) state.

xd(0) = x(0) (3.31)

The aim of sliding mode control is to define a time-varying surface S(t) in the state-
space by a scalar equation s(x, t) = 0 or:

s(x, t) =

(
d

dt
+ λ

)n−1
x̃ (3.32)

Where x̃ = x− xd and with λ strictly positive.
Graphically, the sliding surface is a line in the phase plane, with a slope −λ and con-

taining the point xd.

Figure 3.2: Phase plane with a sliding Surface with outside points that reach the surface.

However, it is necessary for the control law to be discontinuous across S(t). This discon-
tinuity term may introduce a high frequency switching in the actuators, called chattering, dete-
riorating and reducing their lifetime. The controller guarantees an asymptotic convergence of
the tracking errors. Unmodeled dynamics and disturbances can be efficiently managed using
SMC.
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Several variations of this controller have been applied for the trajectory tracking of
UUVs, including Terminal SMC, Integral SMC and High Order SMC. These variations pre-
serve the advantages and robustness of the SMC. However, adaptive parameters are added to
address the possible changes in the parameters of the vehicle and other external disturbances.
Also, it is possible to obtain a faster exponential convergence rate and reduction, or even
elimination, of chattering. Every of these configurations offers benefits, as chattering attenua-
tion, finite-time convergence and robustness against unmodeled dynamics. Some of the main
variations of SMC are listed on Table 3.2.

Table 3.2: Some SMC variations and their main characteristics. [57]

Controller Characteristics

Conventional SMC Guarantees asymptotic convergence
Presence of chattering

Terminal SMC Finite-time convergence
High steady tracking precision

Integral SMC Insensitive to uncertainties and disturbances
High steady state accuracy

3.4 Finite Time Convergence
If the vehicle is placed outside the initial point of the desired trajectory, it must be able to
reach the trajectory in an determined time, or converge and reduce the error in finite-time. For
this task, it is necessary to establish a sliding surface using a Time Base Generator (TBG),
which, according to Morasso [50], is a scalar time function, characterized by a smooth tran-
sition from 0 to 1, with a controllable duration tb and the desired bell-shaped speed profile.
Mathematically, it implies that the trajectory is reached at the same time in which the TBG
concludes the transition between 0 and 1 as shown in Fig. 3.3.

Garcia-Valdovinos [29], proposed a fifth order soft polynomial for the TBG, with con-
ditions ξ(t0) = ξ̇(tb) = 0, where t0 represents the initial time, which is usually equal to 0.
The shape of this function, Eq. 3.33, and its derivative, Eq. 3.34, accomplish the conditions
presented above.

ξ(t) = 10
(t− t0)3

(tb − t0)3
− 15

(t− t0)4

(tb − t0)4
+ 6

(t− t0)5

(tb − t0)5
(3.33)

ξ̇(t) = 30
(t− t0)2

(tb − t0)2
− 60

(t− t0)3

(tb − t0)3
+ 30

(t− t0)4

(tb − t0)4
(3.34)

The derivative of the TBG function has a bell-shaped form, which satisfies the conditions
ξ̇(t0) = ξ̇(tb) = 0. This functions are shown in Fig. 3.4. The time tb can be arbitrarily
established and does not depend on the initial condition of the system. Equations 3.35 and
3.36 define a well posed TBG as a sliding surface for SMC, with α0 = 1+ ε, which represents
an initial gain, 0 < ε� 1 and 0 < δ � 1 [54], which represent adaptive parameters.
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Figure 3.3: Function of the TBG with different values of tb.

Figure 3.4: Derivatives of the TBG functions with different values of tb.

ż = −α(t)z (3.35)

where

α(t) = α0
ξ̇

(1− ξ) + δ
(3.36)

The solution of the differential equation, shown in eq. 3.36, represents a family of
functions that softly converge to a arbitrary small value in the time tb, and thus convergence
in finite time is achieved. The solution is then:

z(t) = z(t0)[1− ξ + δ]α0 (3.37)

when t = tb, then ξ(tb) = 1 which leads to the solution:

z(tb) = z(t0)δ
α0 (3.38)



Chapter 4

Methodology

In order to successfully synthesize and test the 2nd Order Sliding Mode Controller with fi-
nite time convergence some specifications and precisions about the BlueROV2 model will be
presented. The parametrization of the trajectory to be tracked, and the description of the used
controllers are also described.

4.1 The BlueROV2
The BlueROV2 is a small underwater and affordable vehicle that have been used in other
studies [18],[51]. The vehicle have 6 thrusters (T200 model): 4 vectored thrusters for hori-
zontal translation and two vertical thrusters for vertical movement. It is ideal to perform tasks
in moderate waters at a maximum depth of 100 m. The model of this vehicle is considered,
and its dynamic and hydrodynamic parameters are used in this work to perform the trajectory
tracking simulations.

Figure 4.1: BlueROV2 underwater vehicle.

For the operation of the BlueROV2 in this work, the next considerations are taken into
account:

• The BlueROV2 operates at relatively low speeds, and thesn lift forces can be neglected.

• BlueROV2 is assumed to have port-starbord and fore-aft symmetry. Thus, the center of
gravity is located in the symmetry planes.

28
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• The thruster allocation of the BlueROV2 does not permit an active control of the pitch
DOF. Since the values of angular position θ and angular velocity q are considered in-
trinsically stable. Resulting in a system of velocity:

ν = [u, v, w, p, 0, r]T (4.1)

This considerations result in the simplification of the matrices presented in the Chapter
2. Following the work of Wu [67] and Binugroho [8] the matrices M,C,D, and, g applied for
this work are:

MRB =


m 0 0 0 mzg 0
0 m 0 −mzg 0 0
0 0 m 0 0 0
0 −mzg 0 Ix 0 0
0 0 0 0 0 0
0 0 0 0 0 Iz

 (4.2)

MA = MA
T = −diag{Xu̇, Yv̇, Zẇ, Kṗ, 0, Nṙ} (4.3)

As well as with the Mass matrices, the row of the θ DOF, must be changed to 0. The
matrices shown in Eq. 3.14 and 3.17 are then:

CRB(ν) =


0 0 0 0 mw 0
0 0 0 −mw 0 0
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq
0 0 0 0 0 0
mv −mu 0 Iyq −Ixp 0

 (4.4)

CA(ν) =


0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q
0 0 0 0 0 0
Yv̇v Xu̇u 0 −Mq̇q Kṗp 0

 (4.5)

Now, for the damping matrix, after changing to 0 all the parameters in the θ row:

D(ν) =− diag{Xu, Yv, Zw, Kp, 0, Nr}
− diag{X|u|u|u|, Y|v|v|v|, Z|w|w|w|, K|p|p|p|, 0, N|r|r|r|}

(4.6)

Finally applying the same technique to decouple the θ DOF for the gravity matrix, it
results in:

g(η) =


(W − B)sin(θ)

−(W − B)cos(θ)sin(φ)
−(W − B)cos(θ)cos(φ)

zgWcos(θ)sin(φ)
0
0

 (4.7)



CHAPTER 4. METHODOLOGY 30

4.1.1 Dynamic Parameters
Based on the data from the manufacturer of the BlueROV2, the parameters shown in table 4.1
were obtained.

Table 4.1: Physical parameters and equipment of the BlueROV2

Parameter Value

Dimensions 457 x 338 x 254 mm

Weight in Air 10-11 kg

Net Buoyancy 0.2 kg

The values of weight and buoyancy can be obtained using Eq.3.20 and Eq.3.21. Solving
then:

w = mg = 10.5 kg × 9.81
m

s2
= 103.005 N (4.8)

B = Bn + w = 0.2 N + 103.005 N = 105.005 N (4.9)

Where Bn is the net buoyancy proportioned by the manufacturer.
The information related to the dynamic parameters of the BlueROV2 is not presented ex-

haustively in the literature. However, information about the BlueROV and BlueROV2 Heavy
is presented in the works of Amorim [18] and Laranjeira [51] and Wu [67]. As considered
as Wu, the roll and pitch motions of the ROV are passively stable, such that a representative
value of zg = 0.02 m, which is the distance from the center of the body-fixed frame, lo-
cated at the center of buoyancy, and the center of gravity, assuming that rb = [0, 0, 0]T and
rg = [0, 0, 0.02]T . The information applied for the simulations is shown in Tables

Table 4.2: Used parameters for the BlueROV2 simulation.

Parameter Value

rb [0, 0, 0]T

rg [0, 0, 0.02]T

Ix 0.16 kg m2

Iy 0.16 kg m2

Iz 0.16 kg m2
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Table 4.3: Added mass parameters for the BlueROV2 simulation.

Added mass Value

Xu̇ −5 kg

Yv̇ −12.7 kg

Zẇ −14.57 kg

Kṗ −0.12 kg m2

rad

Mq̇ −0.12 kg m2

rad

Nṙ −0.12 kg m2

rad

Table 4.4: Damping parameters for the BlueROV2 simulation.

Linear Damping Value Quadratic Damping Value

Xu −4.03 kg Xu|u| −18.18 Ns2

m2

Yv −6.22 kg Yv|v| −21.66 Ns2

m2

Zw −5.18 kg Zw|w| −36.99 Ns2

m2

Kp −0.07 kg Xp|p| −1.55 Ns2

rad2

Mq −0.07 kg Xq|q| −1.55 Ns2

rad2

Nr −0.07 kg Xr|r| −1.55 Ns2

rad2

4.1.2 Thruster Allocation
The BlueROV2 has a four vectored thrusters configuration for the horizontal displacement,
and two vertical thrusters for the vertical displacement. As it was stated before, the BlueROV2
is intrinsically stable in the pitch, θ angle. Considering the same restrictions that Binugroho
et al. [8] the matrix T ∈ R6×6 but with rank = 5, since the row corresponding to the roll
angle is filled with 0. Matrix T is shown in Eq. 4.10. And the position of the Thrusters are
shown in Fig. 4.2.

T =


cos(γ) cos(γ) −cos(γ) −cos(γ) 0 0
−sin(γ) sin(γ) −sin(γ) sin(γ) 0 0

0 0 0 0 −1 −1
0 0 0 0 −dy dy
0 0 0 0 0 0
−dψ dψ −dψ dψ 0 0

 (4.10)

It is important to obtain the position of the thrusters in order to calculate correctly the
forces applied by every actuator. The positions are shown in Table 4.5.
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Figure 4.2: Thruster location and numeration used in this work.

Table 4.5: BlueROV2 thrusthers positions with respect of the body-fixed frame [51].

Positions X (m) Y (m) Z (m)

T1 0.135 -0.115 0.0

T2 0.135 0.115 0.0

T3 -0.135 -0.115 0.0

T4 -0.135 0.115 0.0

T5 0 -0.115 0.070

T6 0 0.115 0.070

Applying the matrix from Eq.4.10 with dy = 0.115 and dψ = dxsin(γ) + dycos(γ) with
dx = 0.135 [51], the matrix T can be successfully applied for the control of the BlueROV2.
The BlueROV2 has six identical thrusters (model T200), which at an operating voltage of
16 V produce approximately 40 N of torque. According to Wu [67],the matrix K can be
approximated as shown in Eq. 4.11.

K = diag{40, 40, 40, 40, 40, 40} (4.11)

4.1.3 Saturation of Thrusters
The necessary control signals are calculated with Eq. 3.28. However, in order to make the
simulations more realistic the saturation constraints of the thrusters must be taken in account.
Since the vector u only can have values between such as −1 ≤ u ≤ 1. The value of u must
be constrained, for the 4 horizontal thrusters, which corresponds to the first 4 elements of the
vector, if the maximum absolute value of all this four elements is greater than one, all the
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values are divided by this value. Then for thrusters T1,T2, T3, T4:

u(i) =
{

u(i)
max(u(1:4)) if max(|u(1 : 4)|) > 1 (4.12)

with i = 1, 2, 3, 4.
Now for the elements of the vertical thrusters, T5 and T6, if the value is greater than 1 it

is limited only to 1, and if the value is lesser than -1, it is limited to -1. Then:

u(i) =

{
u(i) = 1 if u(i) > 1

u(i) = −1 if u(i) < −1
(4.13)

with i = 5, 6.
Now the torques are calculated again using Eq. 3.27.

4.2 Simulations

4.2.1 Software
A simulation program based on a Matlab/Simulink environment was implemented by Hernández-
Alvarado [35]. However, this software needs to be adapted for the BlueROV2, since the cur-
rent parameters were obtained for the 6 DoF Kaxan vehicle. The process presented by Wu
[67] will be followed in order to model and update the parameters of the BlueROV2 into the
simulation software. Among other characteristics, this software allows to simulate external
disturbances, as ocean currents. For this task, some of the main parameters of the ROV are
shown in Tables 4.1, 4.2, 4.3, 4.4 and 4.5.

4.2.2 Parameterized Trajectory
The desired trajectory was chose in order to control the four DOFs of the ROV: x, y, z and ψ.
An spiral trajectory was parameterized, as function of time. For the xy plane, the- equations
of a circle where used as shown in Eq. 4.14.

xd = R cos(ωt) + h

yd = R sin(ωt) + k
(4.14)

Where R = 1 m, ω = π
6
rad
s

, h = 0 and k = 0, since it is centered in the origin.
For the z axis position, a final depth of 10 m was chose. The parametrization of this

component followed a simple line depending on time as shown in Eq. 4.15.

zd = 10
t

ttotal
(4.15)

Where ttotal is the desired time of simulation.
For a time of simulation, ttotal = 30 s, the resultant trajectory is shown in Fig.4.3.
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Figure 4.3: Desired trajectory parametrized by Eq. 4.14 and Eq. 4.15.

4.2.3 Parameterized Trajectory for Simultaneous Scheme
To test the trajectory tracking of two BlueROV2 vehicles, a task of gripping, transporting and
depositing an object was designed. For successfully accomplish the task, the UUVs must
converge to their desired trajectories in a given time, and must keep a constant euclidean
distance between them. The heading of both vehicles must remain constant along the time of
the task.

The following considerations were made for the design of the task:

1. A tank of 6m× 6m× 3m is considered as workspace.

2. Only the geometry of the object is considered, neglecting its physical and dynamic
properties. The object is considered to be non-deformable and static under the action of
marine currents.

3. The position and dimensions of the object are completely known, requiring a distance
of 0.5 m between the UUVs to grip it.

4. Both UUVs must grip the object with their front, in such a way that their x axis must
be aligned but in opposite directions, having a difference of 180◦ in the heading orien-
tations.

5. The gripping of the object occurs when the UUVs approach to a certain distance of the
object, considering high friction at the gripping.

6. The UUVs can start in any initial position, but they finish their trajectories in the oppo-
site corners of the tank.
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7. The environment is completely observable, there are not obstacles and it is possible to
access to the position states η = [x, y, z, φ, θ, ψ]T .

Design of the task

The complete coordinated task has a total duration of 40 s and it is divided into 9 intervals:

1. Interval 1: t ≤ 6s
The vehicles start in an arbitrary initial position and they approximate to the object and
converging in finite-time. The initial position of the object is given by Oi(1.5, 3.5, 3).
The UUVs arrive one meter above the initial location of the object and with a distance
of 0.5 m between their body-reference-frame center point. The heading of the UUVs at
this point is given by ψ1 = −π

2
and ψ2 = π

2
.

2. Interval 2: 6s < t ≤ 9s
Descending to the object: The UUVs descend to the depth z = 3m where the object is
located.

3. Interval 3: 9s < t ≤ 12s
Gripping of the object: Both vehicles get slightly closer on the y axis reaching the
gripping points which are G1(1.5, 3.75, 3) for UUV1 and G2(2.5, 3.25, 3) for UUV2.

4. Interval 4: 12s < t ≤ 15s
Carrying of the object: The UUVs ascend to one meter (z = 2m) above of the gripping
point.

5. Interval 5: 15s < t ≤ 21s
Moving of the object: Both UUVs translates the object to the point above the releasing
point Of (4.5, 1.5, 3).

6. Interval 6: 21s < t ≤ 24s
Descending to the releasing position: The UUVs descend to a depth of z = 3m to re-
lease the object. The realising points areR1(4.5, 1.75, 3) for UUV1 andR2(4.5, 1.25, 3)
for UUV2.

7. Interval 7: 24s < t ≤ 27s
Releasing of the object: The UUVs separate slightly on the y axis to release the object.

8. Interval 9: 27s < t ≤ 30s
Ascending to a safe point: The UUVs ascend slightly to a depth of z = 2m.

9. Interval 6: t > 30s
The UUVs finish the task moving to their final positions, located at F1(0, 0, 0) for UUV1
and F2(6, 6, 0) for UUV2.

The whole trajectory set is shown in Fig. 4.4.
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Figure 4.4: Desired trajectories for simultaneous trajectory tracking.

4.3 Classic Controllers
Once the software is adapted with the right parameters, the control laws based on the PID
controller, the Feedback Linearization Controller, the Lyapunov-function based controller and
the 2nd order SMC were implemented. These controllers were tested in the Matlab/Simulink
program for validation with the previously defined trajectory.

4.3.1 Proportional Integral Derivative Controller
The PID controller is widely used in plants that are linear since it has a simple structure. The
controller was applied using Eq. 3.30 can be expanded in order to obtain a structure where
the gains Kd and a Ki arise. In the case of the 6 DOF model, Kp, Kd, Ki are matrices such
that the gains are located on the main diagonal.

GPID = Kpe(t) +Ki

∫
e(t) +Kd

de(t)

dt
(4.16)

Where e(t) = ηd − η is the error between the desired positions and the actual positions
on the Earth-fixed frame.

Now, to obtain the respective torques the Eq. 4.17 is applied.

τ = JT (ν)GPID (4.17)

The controller was tuned manually since the Ziegler-Nichols methods did not apply for
the system.

4.3.2 Feedback Linearization Controller
This controller is also called Computed Torque, it is a model-based controller and its main
purpose is to cancel the non-linear dynamics of the vehicle, obtaining a closed-loop decoupled
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and linear dynamic. Considering the dynamics of the vehicle, presented in Eq. 3.1, the non-
linearities can be cancelled using the control law from Eq. 4.18.

τ = Mab +C(ν)ν +D(ν)ν + g(η) (4.18)

Where the term ab is called a commanded acceleration [23], that can be designed in
order to obtain a linear closed-loop dynamic. This term was implemented in this work as a
PID controller, as shown in the Eq.4.19.

ab = ν̇d −Kpν̃ −Kd
˙̃ν −Ki

∫ t

0

ν̃dt (4.19)

Where ν̃ = ν − νd is the tracking error. And the term with commanded accelerations,
considering Eq. 4.14 and 4.15, the resulting terms are:

ẍd = −Rω2cos(ωt)

ÿd = −Rω2sin(ωt)

z̈d = 0
(4.20)

Thus the commanded acceleration vector is ν̇d = [ẍd, ÿd, z̈d, 0, 0, 0]T .
The value of gains where exactly the same than the ones used with the PID controller.

Also, there is not any parametric uncertainty considered for the control scheme.

4.3.3 Lyapunov Based Controller
The Lyapunov based controller looks for the asymptotic convergence of the tracking error.
Proposing a change of coordinates as shown in Eq.4.21 and 4.22.

η̇r = η̇d − αη̃ (4.21)

Sη = η̇ − η̇r = ˙̃η + αη̃ (4.22)

Where η̃ = η − ηd is the tracking error respect of the Earth-fixed frame and α > 0 is a
constant diagonal matrix ∈ R6×6. The applied control law is expressed in Eq.4.26.

τ η = M ηη̈r +Cηη̇r +Dηη̇r + g(η)−KdSη (4.23)

To express the control in the body-fixed frame the next transformations are implemented:

η̇r = Jνr → νr = J−1η̇ (4.24)

η̈r = Jν̇r + J̇νr → ν̇r = J−1
[
η̇r − J̇νr

]
(4.25)

Considering Eq.4.24 and 4.25 the control law in the body-fixed frame is:

τ = Mν̇r +Cνr +Dνr + g(η)−KdS (4.26)

Where S = ν − νr.
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4.4 State-of-the-art Controllers

4.4.1 Non-singular Terminal Sliding Mode Control
The work presented by Liu et al [46], includes a non-singular sliding mode manifold defined
by:

S = e2 + βFf (e1) (4.27)

where e2 = η − ηd, e2 = η̇ − η̇d with ηd and ˙etad are the desired position vector and the
desired velocity vector, β is a positive constant and Ff (e1) is given by:

Ff (e1) =

{√
|A(e1)| (I+e

−e1 )2

e−e1
sign(e1) if |e1| > ε1

A1 sin
(
π
2
e1
ε1

)
+ ε1

2π
A2 sin

(
2π e1

ε1

)
if |e1| ≤ ε1

(4.28)

where ε1 is a constant vector, I is a ones vector of compatible dimensions, |e1| is the
absolute value of each element in e1, and:

A(e1) =
I − e−e1
I + e−e1

(4.29a)

A1 =
√
|A(ε1)|

(I + e−ε1)2

e−ε1
(4.29b)

A2 =
1√
|A(ε1)|

+
√
|A(ε1)|

I − e−2ε1
e−ε1

(4.29c)

Considering an AUV subject to modelling uncertainty and external disturbances, the
action of control law with the sliding manifold and the adaptive rate is:

u = ueq + uad (4.30a)

ueq =B+JT ((ĈRBη + ĈAη)η̇ + D̂ηη̇ + ĝη)+

B+JTM̂η

(
η̇d − β

∂Ff (e1)

∂e1
e2

) (4.30b)

uad = −B+JTM̂η

(
α1S + α2|S|γsign(S) +

L̂TmΘ

2ε0
S

)
(4.30c)

with

˙̂
Lm = λ−1m

(
‖S‖2

2ε20
Θ−K2

mL̂m

)
(4.31a)

K̇m = −λ−1p Km (4.31b)

Where the superscript + denotes a pseudo-inverse operation; α1 and α2 are diagonal
matrices: ε0 is a positive constant and γ is a constant between 0 and 1; and Θ = [1; ‖η̇‖; ‖η̇2‖]2
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Now the partial derivative ∂Ff (e1)

∂e1
is given by:

∂Ff (e1)

∂e1
=


1√
|A(e1)|

+
√
|A(e1)| I−e

−2e1

e−e1
sign(e1) if |e1| > ε1

π
2ε1
A1 cos

(
π
2
e1
ε1

)
+ ε1

2π
A2 cos

(
2π e1

ε1

)
if |e1| ≤ ε1

(4.32)

4.4.2 Finite-Time Second-Order Sliding Mode Control
Liu et al [44] presented a finite-time second-order sliding mode control (FTSOSMC) for tra-
jectory tracking of underwater vehicles subject to system uncertainties and unknown distur-
bances. The model expressed in the body coordinate system is:

η̇ = J(η)ν (4.33)

M ′ν̇ + C ′(ν)ν +D′(ν)νg′(η) = τ + τex (4.34)

And the underwater vehicle dynamics can be rewritten as:

η̈ = F (η, η̇) +G(η)τ + τd (4.35)

where F (η, η̇) = M−1(−Cη̇) − Dη̇ − g and G(η) = M−1. Also, M = M ′J−1(η),
C(ν, η̇) = [C ′ −M ′JT J̇ ]J−1(η), D(ν, ˙eta) = D′J−1(η) and g(η) = g′(η).

The tracking error is then:
e(t) = η(t)− ηd(t) (4.36)

The sliding surface is defined as:

s = ė+ λe (4.37)

where λ is a positive scalar.
The control law has the form:

τ = τe +Mτs (4.38)

where τe = −G−1(F + λė− η̈d) and τs is defined as:

τs =− k1signb(s)−
∫ t

0

(
k2sign2b−1(s(τ))

+ k3s(τ) + k4signbs(τ)dτ

(4.39)

4.5 Proposed Model-free Second Order Sliding Mode Con-
trol

To develop this controller, a transformation between the body-fixed frame model(Eq.3.1) can
be transformed into a Earth-fixed frame model.
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M ηη̈r +Cη(η,ν)ν̇r +Dη(η,ν)ν̇r + gη(η) = τ η (4.40)

Where:

M η(η) = J−T (η)MJ−1(η)

Cη(η,ν) = J−T (η)J−T (η)
[
C(ν)−MJ−1(η)J̇(η)

]
J−1(η)

Dη(η,ν) = J−T (η)D(ν)J−1(η)

gη(η) = J−T (η)g(η)

τ η(η) = J−T (η)τ (η)

(4.41)

Garcı́a-Valdovinos et al [31] established that equation 3.1 is linearly parametrizable by
the product of a regressor Y (η, η̇, η̈) composed of known no linear functions and a vector θ
of constant parameters.

M ηη̈r +Cη(η,ν)ν̇r +Dη(η,ν)ν̇r + gη(η) = Y (η, η̇, η̈)θ (4.42)

The open loop error dynamics are obtained by the substraction of Eq. 4.40 and 4.42.
Obtaining:

M ηṡr +Cη(η,ν)sr +Dη(η,ν)sr = τ η − Y (η, η̇, η̈)θ (4.43)

Where sr = η̇ − η̇ is the extended error and thus the problem is to design a controller
finding a τ that generates exponential convergence when the term Y (η,η̇,η̈)θ is not available.
Now, considering the nominal reference:

η̇r = η̇d −αη̃ + sd −Ki

∫ t

0

sign(sη)dσ (4.44)

The position tracking error is described by η̃ = η − ηd, as the difference between the
actual position and the desired position. α is a diagonal positive definite matrix, which can be
manipulated to implement the finite time convergence. Ki is also a diagonal positive definite
matrix of gains. Now, considering that:

s = ˙̃η +αη̃

sd = s(t0)e
−κt

sη = s− sd
(4.45)

The extended error sr can be expressed as:

sr = sη +Ki

∫ t

0

sign(sn)dσ (4.46)

Considering Eq.4.47 the proposed control law has the structure:

τ η = −Kdsr (4.47)

Garcı́a-Valdovinos et al. [31] presented a stability test of the system and demonstrates
the existence of the sliding mode. It concludes that if Kd has a big enough value and the
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initial error is small enough the stability arises. To apply the torque correctly to the model it
is necessary to transform it back to the Body-fixed frame, using the expression:

τ = JTτ η (4.48)

Since the diagonal matrix of gains α is constant, the proposed approach from [29] ap-
plied to manipulators, is considered to modify and make the gain variable as a function of
time and it is parameterized by a time-base generator (TBG) that has the same form of the
fifth-order polynomial shown in Eq. 3.33 and its derivative shown in Eq. 3.34. The time base
tb can be set arbitrarily to establish different convergence times. Then, α is defined in Eq.
4.49:

α =

{
α0

ξ̇
1−ξ+δ if t ≤ tb

αc if t > tb
(4.49)

Where α0 is 1 + ε, with 0 < ε � 1 and 0 < δ � 1 and αc is a constant gain. The
parameters for the implementation are:

4.6 Marine currents
In order to better compare the performance of the proposed controller with finite-time conver-
gence, a simulated marine current was proposed in order to determine the robustness of the
controller. The proposed current has the three components of the directions in order to better
simulate the effects of the current in a real ocean environment.

In the work presented by Zhang [74], the ocean currents were measured and registered.
The depth proposed in the mentioned study has a final value of 800 m, and thus variable
currents, dependant on the depth are presented. For the purposes of this study, the depth is
only 10 m, and then, the proposed values of velocity are taken as constants, considering the
max values reported in [74]:

uc = 0.7
m

s
vc = 0.2

m

s
wc = 0.3

m

s
(4.50)

4.7 RMS values for comparisons
The results of the performance of the controllers will be examined in terms of the Mean Root
Squared (RMS) values of the tracking errors, and the RMS value of the control signal, u. The
tracking error is defined as the difference between the desired position and the real position.
The formula used to calculated these values will be:

xRMS =

√√√√ 1

N

N∑
n−1

|xn|2 (4.51)

Where xn is the value of error or the value of control signal, respectively, and N repre-
sents the total number of values obtained in the ttotal simulation time.
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Results

5.1 Spiral Trajectory
Since the main contribution of this thesis is to synthesize the Model-Free Second-Order Slid-
ing Mode Controller with finite-time convergence, the vehicle must start outside of the desired
trajectory. The initial proposed point has the structure η0 = [x0, y0, z0, φ0, θ0, ψ0], considering
the trajectory described before, was the point η0 = [2,−1, 2, 0, 0, 0]. Three different times tb
were tested: tb = 3 s,tb = 5 s and tb = 3 s. The time of simulation is always ttotal = 30 s.
The results of the implementations of the controllers on the proposed trajectory and with the
desired initial point are shown in the next section.

This section will present the behavior of the four control schemes: PID, Feedback Lin-
earization, Lyapunov-Function based, and the Model-Free Second Order Sliding Mode, while
reaching the trajectory from the proposed point, and without disturbances. After the proposed
marine currents are added to the simulation only with the Second Order Sliding Mode con-
troller in order to test its robustness. The control gains were tuned heuristically to guaranty a
good performance in the simulations that do not consider the marine currents. The resulting
tuned gains are shown in the Table 5.1.

Table 5.1: Control gains for every control scheme.

Control Scheme

PID
Kp = diag{140, 140, 140, 140, 0, 140}
Ki = diag{120, 120, 120, 120, 0, 120}
Kd = diag{180, 180, 180, 180, 0, 180}

Feedback Linearization
Kp = diag{140, 140, 140, 140, 0, 140}
Ki = diag{120, 120, 120, 120, 0, 120}
Kd = diag{180, 180, 180, 180, 0, 180}

Lyapunov-Based
α = diag{0.8, 0.8, 0.8, 0, 0.8}
Kd = diag{80, 80, 80, 80, 0, 80}

2nd Order SMC
Kd = diag{800, 800, 800, 800, 0, 800},Ki = diag{5, 5, 5, 5, 0, 5}

κ = 5, α0 = 1.01, αc = 25, δ = 0.001

42
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5.1.1 Proportional Integral Derivative Controller
The main results of the PID controller on the proposed trajectory are shown next. The linear
position behavior is shown in Fig. 5.1, while the angular position comparison is shown in
Fig. 5.2. It can be seen that the PID converges to the trajectory with an overshoot in all the
degrees of freedom, except the ψ angle, since it is already in the desired value. Since θ is not
controllable, the movement in this DOF is caused by the displacement of the vehicle. The
errors are not maintain in 0 along the whole trajectory.

Figure 5.1: Resulting linear positions with the PID controller.

Figure 5.2: Resulting angular positions with the PID controller. Note that θ is not controllable.
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Linear and angular velocities in the body-fixed frame are shown in Fig. 5.3 and 5.4. As
well as with the positions, the velocities reach their desired values with overshoot and a small
error is maintain along the whole trajectory. As well as θ, q is not controllable.

Figure 5.3: Resulting linear velocities with the PID controller.

Figure 5.4: Resulting angular velocities positions with the PID controller. Note that q is not
controllable.
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The comparison between the desired trajectory and the actual trajectory performed by
the controller is shown in Fig. 5.5. It can be seen that the obtained trajectory does not follow
the desired trajectory, since a small error is maintained between them.

Figure 5.5: Comparison of Trajectories with the PID controller.

The applied torques and the control signals for every thruster are shown in Fig. 5.6 and
5.7. It can be seen that only in the beginning a strong control signal and thus, a strong torque,
is applied to force the ROV to converge to trajectory. However, once the vehicle is in a vicinity
near to 0, the control signals and the torques becomes constant and smooth.
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Figure 5.6: Required Torques with the PID controller.

Figure 5.7: Control signals u behavior with the PID controller.
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5.1.2 Feedback Linearization Controller
The main results of the Feedback Linearization Controller on the proposed trajectory are
shown next. The linear position behavior is shown in Fig. 5.8, while the angular position
comparison is shown in Fig. 5.9. The behavior of this controller also presented overshoots in
all the DOF. Specially, the angular positions of the φ angle has an overshoot of ±50◦. Even
when θ is not controllable, the fast movement of the vehicle to converge to the trajectory
causes an overshoot of 40◦, but after a while it stabilizes to value of θ ≈ 10◦.

Figure 5.8: Resulting linear positions with the Feedback Linearization controller.

Figure 5.9: Resulting angular positions with the Feedback Linearization controller.
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Linear and angular velocities in the Body-fixed frame are shown in Fig. 5.3 and 5.4.
it can be seen that velocities u, v and w have a sharp behavior. Angular velocities have also
abrupt behaviors, having maximum values greater than 100

◦
s .

Figure 5.10: Resulting linear velocities with Feedback Linearization controller.

Figure 5.11: Resulting angular velocities positions with the Feedback Linearization controller.
Note that only q is not controllable.
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The comparison between the desired trajectory and the actual trajectory performed by
the controller is shown in Fig. 5.12.

Figure 5.12: Comparison of Trajectories with the Feedback Linearization controller.

The applied torques and the control signals for every thruster are shown in Fig. 5.13 and
5.14. It can be seen that at the beginning both control signals and required torques presented
abrupt changes and oscillations. Approximately, after t = 10s the signals become smoother
and constant.
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Figure 5.13: Required Torques with the Feedback Linearization controller.

Figure 5.14: Control Signals with the Feedback Linearization controller.
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5.1.3 Lyapunov Based Controller
The main results of the Lyapunov Based Controller on the proposed trajectory are shown next.
The linear positions behavior is shown in Fig. 5.15, while the angular position comparison
is shown in Fig. 5.16. The Lyapunov based controller offers exponential convergence, which
is seen in the convergence of the errors. The linear position errors converge to 0 in a time
t ≈ 6s. This convergence is smooth and following the exponential behavior. In the angular
positions, the errors are kept oscillating in a small vicinity near to 0 for φ.

Figure 5.15: Resulting linear positions with the Lyapunov-function based controller.

Figure 5.16: Resulting angular positions with the Lyapunov-function based controller.
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Linear and angular velocities in the Body-fixed frame are shown in Fig. 5.17 and 5.18.
Velocities also converge exponentially, except for velocity r, which have an abrupt behavior.
For the case of p, the velocity present small oscillations around the desired value. Recall that
q is not controllable.

Figure 5.17: Resulting linear velocities with the Lyapunov-function based controller.

Figure 5.18: Resulting angular velocities positions with the Lyapunov-function based con-
troller. Note that only q is not controllable.
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The comparison between the desired trajectory and the actual trajectory performed by
the controller is shown in Fig. 5.19.

Figure 5.19: Comparison of Trajectories with the Lyapunov-function based controller.

The applied torques and the control signals for every thruster are shown in Fig. 5.20
and 5.21. Both the control signal u and the torques for each thruster presented an exponential
and behavior. After the time of converge both of this variables remain constant. As a special
remark the variation of the parameter α modifies the convergence time.
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Figure 5.20: Required Torques with the Lyapunov-function based controller.

Figure 5.21: Control Signals with the Lyapunov-function based controller.
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5.1.4 Model-free Second Order Sliding Mode Controller
There where three different arbitrarily selected time to perform the simulations. These times
were tb = 3 s, tb = 5 s, tb = 7 s.

tb = 3 s

The results of the 2nd Order SMC on the proposed trajectory with a tb = 3 s are shown next.
The linear position behavior is shown in Fig. 5.22, while the angular position comparison is
shown in Fig. 5.23. The behavior of the convergence is completely smooth and is done in the
proposed time tb = 3s for all the degrees of freedom. The error is kept at 0 along the whole
trajectory.

Figure 5.22: Resulting linear positions with the 2nd Order SMC with a tb = 3 s
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Figure 5.23: Resulting angular positions with the 2nd Order SMC with a tb = 3 s

Linear and angular velocities in the Body-fixed frame are shown in Fig. 5.24 and 5.25.
It can be seen that velocities converge in the same proposed time tb = 6s,and its values are
maintain at 0 along the whole trajectory.

Figure 5.24: Resulting linear velocities with the 2nd Order SMC with a tb = 3 s
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Figure 5.25: Resulting angular velocities positions with the 2nd Order SMC with a tb = 3 s.
Note that only q is not controllable.

The comparison between the desired trajectory and the actual trajectory performed by
the controller is shown in Fig. 5.26.

Figure 5.26: Comparison of Trajectories with the 2nd Order SMC with a tb = 3 s
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The applied torques and the control signals for every thruster are shown in Fig. 5.27 and
5.28. The plots shown that the control signals are smooth and continuous, avoiding the satu-
ration of the actuators. After the convergence is achieved, the values of torques are maintain
constant.

Figure 5.27: Required Torques with the 2nd Order SMC with a tb = 3 s

Figure 5.28: Control Signals with the 2nd Order SMC with a tb = 3 s
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tb = 5 s

The results of the 2nd Order SMC on the proposed trajectory with a tb = 5 s are shown next.
The linear position behavior is shown in Fig. 5.29, while the angular position comparison is
shown in Fig. 5.30. The same behavior is expected, even when the time tb was modified, the
vehicle converge to the desired trajectory in the proposed time.

Figure 5.29: Resulting linear positions with the 2nd Order SMC with a tb = 5 s

Figure 5.30: Resulting angular positions with the 2nd Order SMC with a tb = 5 s
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Linear and angular velocities in the body-fixed frame are shown in Fig. 5.31 and 5.32,
and they have the same behavior, converging in the proposed time tb = 5s.

Figure 5.31: Resulting linear velocities with the 2nd Order SMC with a tb = 5 s

Figure 5.32: Resulting angular velocities positions with the 2nd Order SMC with a tb = 5 s.
Note that only q is not controllable.
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The comparison between the desired trajectory and the actual trajectory, performed by
the controller, is shown in Fig. 5.33.

Figure 5.33: Comparison of Trajectories with the 2nd Order SMC with a tb = 5 s

The applied torques and the control signals for every thruster are shown in Fig. 5.34 and
5.35. The graphs show a relaxation in the torques, since the tb is bigger, and the vehicle has
more time to converge to the desired trajectory.
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Figure 5.34: Required Torques with the 2nd Order SMC with a tb = 5 s

Figure 5.35: Control Signals with the 2nd Order SMC with a tb = 5 s
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tb = 7 s

The results of the 2nd Order SMC on the proposed trajectory with a tb = 7 s are shown next.
The linear position behavior is shown in Fig. 5.36, while the angular position comparison is
shown in Fig. 5.37. Again, the vehicle converge to the desired trajectory in the established
time tb, in a smooth way.

Figure 5.36: Resulting linear positions with the 2nd Order SMC with a tb = 7 s

Figure 5.37: Resulting angular positions with the 2nd Order SMC with a tb = 7 s



CHAPTER 5. RESULTS 64

Linear and angular velocities in the body-fixed frame are shown in Fig. 5.38 and 5.39
respectively and shown the same behavior, converging to the desired value in the time tb = 5s.
Recall that θ is not controllable.

Figure 5.38: Resulting linear velocities with the 2nd Order SMC with a tb = 7 s

Figure 5.39: Resulting angular velocities positions with the 2nd Order SMC with a tb = 7 s.
Note that only q is not controllable.
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The comparison between the desired trajectory and the actual trajectory performed by
the controller is shown in Fig. 5.40.

Figure 5.40: Comparison of Trajectories with the 2nd Order SMC with a tb = 7 s

The applied torques and the control signals for every thruster are shown in Fig. 5.41 and
5.42. The required torques and control signals are less aggressive, since the time tb has been
increased.
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Figure 5.41: Required Torques with the 2nd Order SMC with a tb = 7 s

Figure 5.42: Control Signals with the 2nd Order SMC with a tb = 7 s
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5.1.5 RMS values
As stated before, the parameters to analyze are related with the RMS values of the tracking
error and the RMS values of the control signal, as a parameter of energy consumption. The
RMS values are calculated with Eq.4.51.

The summary of the results are reported in the tables 5.2, 5.3 and 5.4.

Linear positions

Table 5.2: RMS error for the linear positions x,y and z

Controller RMSE x (m) RMSE y (m) RMSE z (m) Mean

PID 0.1788 0.2482 0.1628 0.1966

Feedback Linearization 0.1695 0.2028 0.1442 0.1722

Lyapunov-Based 0.1829 0.1993 0.1707 0.1843

2nd Order SMC with tb = 3 s 0.1989 0.2163 0.1879 0.2011

2nd Order SMC with tb = 5 s 0.2563 0.2804 0.2410 0.2592

2nd Order SMC with tb = 7 s 0.3032 0.3326 0.2645 0.3068

The smaller RMS values of linear errors was obtained by the Feedback Linearization Con-
troller, and then is followed by the Lyapunov function-based controller. The third place is
obtained by the 2nd Order SMC with tb = 3 s. However, the first two controllers are model-
based and this condition requires an exact knowledge of the model of the vehicle. The 2nd
Order SMC is model-free, which means that in the presence of dynamic uncertainty will still
have a good performance. This difference must take into account that the 2nd Order SMC
controller makes the vehicle to be outside the desired trajectory until the convergence time.
For this reason, the RMS tracking error is also greater that with other controllers.

Angular positions

Table 5.3: RMS error for the angular positions φ,θ and ψ

Controller RMSE φ (◦) RMSE θ (◦) RMSE ψ (◦) Mean (◦)

PID 0.1363 0.4911 0.5159 0.3811

Feedback Linearization 19.1639 13.6952 18.8877 17.2489

Lyapunov-Based 0.2048 1.0021 0.1837 0.4635

2nd Order SMC with tb = 3 s 0 0.0706 1.0366 0.3691

2nd Order SMC with tb = 5 s 0 0.3500 1.4142 0.5881

2nd Order SMC with tb = 7 s 0 0.5362 1.7100 0.7487
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In the case of the angular position, the Best performance was obtained for the 2nd Order
SMC. Even when the controllable DOF are ψ and φ, the values of θ are also near to 0 since it
is intrinsically stable. In the case of the 2nd Order SMC, as the time tb increases, the angular
error also increases.

Control Signals

Considering the saturation constraints for all the controllers, the highest RMS value was ob-
tained by the Feedback Linearization Controller. The RMS values obtained by the Lyapunov
function-based Controller and the 2nd Order SMC has similar values. However, when the
time tb increases, the RMS values reduces. This occurs since the controller gives the vehicle
more time to reach the desired trajectory, and thus less work is demanded on thrusters.

Table 5.4: RMS values of control signals for each thruster.

Controller T1 T2 T3 T4 T5 T6 Mean

PID 0.2078 0.1946 0.2010 0.0.2105 0.0.1311 0.2041 0.1915

Feedback
Linearization 0.1676 0.1876 0.1909 0.1693 0.2851 0.2760 0.2127

Lyapunov
Based 0.1278 0.1500 0.1380 0.1192 0.0678 0.1358 0.1231

2nd Order SMC
with tb = 3 s 0.1475 0.1417 0.1351 0.1404 0.0853 0.1450 0.1325

2nd Order SMC
with tb = 5 s 0.1275 0.1199 0.1015 0.1071 0.0801 0.1355 0.1119

2nd Order SMC
with tb = 7 s 0.1163 0.1096 0.0915 0.0958 0.0794 0.1324 0.1042

5.1.6 Convergence of the error
In this part the analysis the time of convergence of every controller will be analysed in or-
der to compare the first three controllers: PID, Feedback Linearization and the Lyapunov
function-based will be compared with the different configurations of the 2nd Order SMC.
These comparisons are shown in Fig. 5.43 for x, Fig. 5.44 for y, Fig. 5.45 for z. In this case
it is observable the PID behavior, since it can not completely eliminate the steady state error,
but instead it keeps oscillating in a vicinity near to 0.
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Figure 5.43: Comparison of the error convergence of all the controllers in the x DOF.

Figure 5.44: Comparison of the error convergence of all the controllers in the y DOF.
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Figure 5.45: Comparison of the error convergence of all the controllers in the z DOF.

In Fig.5.46, the error convergence of φ. For the case of the Feedback Linearization Con-
troller, the behavior of the φ DOF is one order of magnitude greater that the others controllers.
Fig. 5.47 shows the comparison in this DOF on magnification.

Figure 5.46: Comparison of the error convergence of all the controllers in the φ DOF.
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Figure 5.47: Magnification of the error convergence of all the controllers in the φ DOF (with-
out Feedback Linearization Controller).

In Fig.5.48, the error convergence of ψ. For the case of the Feedback Linearization Con-
troller, the behavior of the ψ DOF is one order of magnitude greater that the others controllers.
Fig. 5.49 shows the comparison in this DOF on magnification.

Figure 5.48: Comparison of the error convergence of all the controllers in the ψ DOF.
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Figure 5.49: Magnification of the error convergence of all the controllers in the ψ DOF (with-
out Feedback Linearization Controller).

The 2nd Order SMC controllers are included in these figures in order to verify the finite-
time convergence. The chose parameters could dealt with the regressor term proposed by
Eq.4.42, and thus the finite time convergence is achieved.

5.2 Spiral Trajectory considering the effects of marine cur-
rents

The effects of marine currents are considered in this section. The values of marine currents
proposed by Zhang et al. [75] are considered. These values are given as:

uc = 0.7
m

s
vc = 0.2

m

s
wc = 0.3

m

s
(5.1)

The same control gains proposed in the Table 5.1 are kept in order to verify the effects
of the marine currents in the controllers.

5.2.1 Convergence of the error
As in the previous section, the analysis the time of convergence of every controller will be
analysed in order to determine the effects caused by marine currents. The same three classical
schemes are considered, as well as the three configurations of the 2nd Order SMC. These
comparisons are shown in Fig. 5.50 for x, Fig. 5.51 for y, Fig. 5.52 for z. In this case, the
PID, the Feedback Linearizaton and the Lyapunov based controller degrade, since they can
not completely eliminate the steady state error, and the vehicle keeps oscillating and never
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eliminating the errors in the three linear DOFs. The 2nd Order SMC is robust, since the time
of convergence is kept even in the presence of marine currents.

Figure 5.50: Comparison of the error convergence of all the controllers in the x DOF subject
to marine currents.

Figure 5.51: Comparison of the error convergence of all the controllers in the y DOF consid-
ering the effects of marine currents.
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Figure 5.52: Comparison of the error convergence of all the controllers in the z DOF consid-
ering the effects of marine currents..

In Fig.5.53, the error convergence of φ is shown. For the case of the Feedback Lin-
earization Controller, the behavior of the φ DOF is one order of magnitude greater that the
others controllers. Fig. 5.54 shows the comparison in this DOF on magnification. It can be
seen that the Feedback Linearization Controller has the worst behavior, since the error reaches
the 240◦. After, the Lyapunov based controller has the second greatest error, with values of
approximately 6◦. The PID controller also generates an error. The only controller that is not
affected is the 2nd Order SMC, mantaining the error in 0, along the whole trajectory.
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Figure 5.53: Comparison of the error convergence of all the controllers in the φ DOF.

Figure 5.54: Magnification of the error convergence of all the controllers in the φ DOF (with-
out Feedback Linearization Controller).
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In Fig.5.55, the error convergence of ψ. For the case of the Feedback Linearization
Controller, the behavior of the ψ is the worst, since the error reaches up to 400◦. Fig. 5.56
shows the comparison in this DOF on magnification and shows that the PID and the Lyapunov
based Controller presented oscillations allong the whole trajectory. The 2nd Order SMC
maintains its robustness, since the convergence times are not affected, and the error is kept in
0.

Figure 5.55: Comparison of the error convergence of all the controllers in the ψ DOF.

Figure 5.56: Magnification of the error convergence of all the controllers in the ψ DOF (with-
out Feedback Linearization Controller).
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5.2.2 RMS values
A new calculus of the RMS values of the tracking errors and the control signals was performed
in order to identify which the level of degradation in the performance of every controller
subject to marine currents. The RMS values are calculated with Eq.4.51.

The summary of the results are reported in the tables 5.5, 5.6 and 5.7.

Linear positions

Table 5.5: RMS error for the linear positions x,y and z considering marine currents.

Controller RMSE x (m) RMSE y (m) RMSE z (m) Mean

PID 0.2009 0.2571 0.1630 0.2070

Feedback Linearization 0.2072 0.2374 0.1678 0.2041

Lyapunov-Based 0.3515 0.2473 0.1905 0.2619

2nd Order SMC with tb = 3 s 0.1989 0.2164 0.1878 0.2010

2nd Order SMC with tb = 5 s 0.2563 0.2805 0.2410 0.2593

2nd Order SMC with tb = 7 s 0.3032 0.3327 0.2845 0.3068

The RMS values of the tracking errors remain practically the same in the case of the 2nd
Order SMC even with the introduction of the marine currents. For the case of the classical
controllers, the mean of the RMS values of the errors increased up to 5% for the PID,18% for
the Feedback Linearization Controller, and 42% for the Lyapunov Based Controller.

Angular positions

Table 5.6: RMS error for the angular positions φ,θ and ψ

Controller RMSE φ (◦) RMSE θ (◦) RMSE ψ (◦) Mean (◦)

PID 0.1995 0.3693 1.3934 0.6541

Feedback Linearization 83.5222 38.3770 190.7710 104.2234

Lyapunov-Based 2.6583 17.0146 1.9994 7.2241

2nd Order SMC with tb = 3 s 0 0.0705 1.0404 0.3703

2nd Order SMC with tb = 5 s 0 0.3498 1.4182 0.5893

2nd Order SMC with tb = 7 s 0 0.5358 1.7176 0.7511

In the case of the angular position, the controller that degrates the worst was the Feedback
Linearization Controller. The mean of the RMS values had an increase of 600%. For the PID,
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the increment of the mean of the RMS errors of the angular position was of 1700% and for
the Lyapunov based controller, the increment was of 1500%. However, since the Feedback
Linearization controller already had the worst performance managing the angular errors, it
has the greatest mean of 17.2489◦. The RMS values of the error for all the cases of the 2nd
Order SMC remains practically the same.

Control Signals

Considering the marine currents the lowest mean of the RMS values of the control signals was
obtained by the 2nd Order SMC with tb = 7s. All the controller incremented its energy con-
sumption, the PID in a 39%, the Feedback Linearization Controller in a 147%, the Lyapunov
based controller in a 56% and the 2nd Order SMC in a 58%, 67% and 82% respectively.

Table 5.7: RMS values of control signals for each thruster.

Controller T1 T2 T3 T4 T5 T6 Mean

PID 0.3254 0.3131 0.3534 0.3163 0.1135 0.1761 0.2663

Feedback
Linearization 0.3978 0.4008 0.4056 0.3892 0.7889 0.7749 0.5262

Lyapunov
Based 0.2732 0.2479 0.2607 0.2306 0.0578 0.0843 0.1924

2nd Order SMC
with tb = 3 s 0.2790 0.2684 0.3093 0.2646 0.0578 0.0840 0.2105

2nd Order SMC
with tb = 5 s 0.2909 0.2670 0.2801 0.2535 0.0500 0.0556 0.1995

2nd Order SMC
with tb = 7 s 0.2897 0.2525 0.2625 0.2421 0.0479 0.0469 0.1903

5.3 Simultaneous Scheme
Simulations were conducted to test and measure the performance of the controllers presented
in the section 4.4: state-of-the art controllers . First, without considering the effects of ma-
rine currents, and then including them as perturbances.The euclidean distance between UUVs
must remain constant in order to assure the correct gripping, transporting and releasing of the
object. It is considered that the object is gripped by the front faces of the UUVs, in such a
way, that the resulting heading orientations of the UUVs must be ψ1 = −π

2
and ψ2 = π

2
. The

difference in the orientation of the vehicles must remain equal to 180◦ during the gripping,
transporting and releasing of the object.

The gains used for every controller are shown in the Table 5.8.
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Table 5.8: Control parameters for simulations

Control
schemes

Control parameters

2nd Order
SMC

Kd = diag{800, 800, 800, 800, 0, 800}; Ki = diag{1, 1, 1, 1, 0, 1};
κ = 1; α0 = 1.01; αc = 25 δ = 0.001; tb = 6 s

NSTSMC
(Liu et

al.,2020)[46]

β = 0.5; ε0 = 2; γ = 2
3
; ε1 = 0.01[1, 1, 1, 1, 1, 1]T ;

λm = diag(0.5, 0.5, 0.5); λp = diag(0.5, 0.5, 0.5);
α1 = diag(5, 5, 5, 30, 30, 30); α2 = diag(5, 5, 5, 30, 30, 30);
L̂m(0) = [2.5, 0.5, 0.5]T ; K̂m(0) = diag(0.1, 0.1, 0.1)

FTSOSMC
(Liu et al.,
2017) [44]

λ = 0.8; b = 0.7;
k1 = 30; k2 = 20;
k3 = 15; k4 = 20

5.3.1 Results without considering marine currents
A simulation without marine currents was performed with a initial position given by η1 =
[1, 2, 1, 0, 0, 0]T for UUV1 and η2 = [4, 1, 1.5, 0, 0, 0]T for UUV2. In order to compare the
controller properly, in this section the 2nd Order SMC, will be called Model-Free Second
Order SMC (MFSOSMC). Since MFSOSMC sliding surface is parameterized with a TBG, a
smooth convergence with a time-base tb = 6 is achieved. The comparison between the desired
and the real positions along all the trajectory are shown in Figures 5.57 and 5.58 for UUV1
and UUV2 respectively. The error of all the controllable degrees of freedom converge to 0 in
the desired time, and remains on the desired trajectory.

Figure 5.57: Comparison between the desired and the real positions for UUV1 with the MF-
SOSMC.
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Figure 5.58: Comparison between the desired and the real positions for UUV2 with the MF-
SOSMC.

The comparison between the desired and real attitudes are shown in Figures 5.59 and
5.60 for UUV1 and UUV2 respectively. The error converges in the desired tb except for θ,
which, as stated before, is not controllable and generating a small error between the range
±1◦ for UUV1 and ±2◦ for UUV2, that it is caused by the movement of the vehicle.

Figure 5.59: Angular positions for UUV1 with the MFSOSMC.
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Figure 5.60: Angular positions for UUV2 with the MFSOSMC.

The comparison between the desired and the real velocities are shown in Figures 5.61,
5.62 5.63, 5.64. The velocities converge to their desired value in the same established time
tb = 6s. Since angular velocity q is not controllable, the effect generated in that DOF is
consequence of the movement of the UUV.

Figure 5.61: Linear Velocities for UUV1 with MFSOSMC.
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Figure 5.62: Linear Velocities for UUV2 with MFSOSMC.

Figure 5.63: Angular Velocities for UUV1 with MFSOSMC.
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Figure 5.64: Angular Velocities for UUV2 with MFSOSMC.

The performance of the MFSOSMC within the desired trajectory is shown in Fig. 5.65
and 5.66. Coordinate systems of the body-fixed frame of both UUVs are added in order to
identify their orientations. Since the vehicles must take the object with the front face, the x
axis (shown in red) of both vehicles must be aligned and with opposite directions. Recall that
the orientation for heading must be ψ1 = −π

2
and ψ2 = π

2
for UUV1 and UUV2 respectively.

Figure 5.65: Comparison between the desired trajectory and the real trajectory with the MF-
SOSMC in an Isometric perspective.



CHAPTER 5. RESULTS 84

Figure 5.66: Comparison between the desired trajectory and the real trajectory with the MF-
SOSMC seen from above.

5.3.2 Comparisons
The performance of the controllers are compared against each other in this section. For
the proposed MFSOSMC, the finite-time convergence at 6s can be achieved just by setting
tb = 6s. However, for the other controllers, the convergence cannot be arbitrary set, since
it depends of the initial positions η0 and the proposed tuning gains. Recall that for the MF-
SOSMC, all the tracking error converge in the same established time tb = 6s, while the errors
of the FTSOSMC and the NSTSMC schemes converge in different times. For the case of the
FTSOSMC the convergence time is tr < 5s for both UUV1 and UUV2; and for the NSTSMC
the time is tc ≤ 2.18s for UUV1 and tc ≤ 2.37s for UUV2.

The comparisons among the behaviors of the errors are are shown in the Figure 5.67 for
the x direction, in the Figure 5.68 for the y direction and in the Figure 5.69 for the z direction.
The behaviors of the angular errors are shown in the Fig. 5.70 for the φ angle, and in the Fig.
5.71 for the ψ angle. The comparisons show that all the controllers converge to the desired
trajectory and kept the error in a vicinity near to 0.
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Figure 5.67: Behavior of the error convergence on the x axis without the presence of currents.

Figure 5.68: Behavior of the error convergence on the y axis without the presence of currents.
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Figure 5.69: Behavior of the error convergence on the z axis without the presence of currents.

Figure 5.70: Behavior of the error convergence on the φ angle without the presence of cur-
rents.
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Figure 5.71: Behavior of the error convergence on the ψ angle without the presence of cur-
rents.

Finally, the Euclidean Distance between both UUVs and the difference in orientations,
for every control scheme, are shown. The euclidean distance is maintained constant during
the gripping, the transport and the realising of the object, which has been established to be
0.5m in the z axis. The difference in orientation shows the desired value of 180◦ between the
gripping and releasing points. The comparison of the euclidean distance and the difference in
orientation is shown in Fig. 5.72 and 5.73, respectively.

Figure 5.72: Comparison of the euclidean distance between the UUVs.
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Figure 5.73: Comparison of the difference between the psi angles of the UUVs.

5.4 Simultaneous Scheme considering the fects of marine
currents.

The marine currents velocities described by Zhang et al. [75] were applied to the simulation
in order to evaluate the performance of the controllers, the applied currents velocity vector is
vc = [0.75, 0.25, 0.3, 0, 0, 0]T . Figures from 5.74 to 5.76 shows that the MFSOSMC maintains
its robustness even in the presence of the disturbance, and the error converges to 0 in the
same tb = 6s. The NSTSMC and the FTSOSMC keep also their robustness and the error is
maintained in a vicinity near to 0 along all the trajectory. However, Fig 5.77 and 5.78 show
that in the attitude control, only the MFSOSMC and the FTSOSMC are robust since the φ
and ψ errors are maintained at 0 the whole trajectory after the convergence time, while for the
NSTSMC the performance degrades at the end of the trajectory.
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Figure 5.74: Behavior of the error convergence on the x axis in the presence of marine cur-
rents.

Figure 5.75: Behavior of the error convergence on the y axis in the presence of marine cur-
rents.
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Figure 5.76: Behavior of the error convergence on the z axis in the presence of marine cur-
rents.

Figure 5.77: Behavior of the error convergence on the φ angle in the presence of marine
currents.
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Figure 5.78: Behavior of the error convergence on the ψ angle in the presence of marine
currents.

The euclidean distance and the difference in orientations are also shown in Fig. 5.79 and
Fig. 5.80, respectively.
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Figure 5.79: Behavior of the euclidean distance between UUVs in the presence of marine
currents

Figure 5.80: Comparison of the difference between the ψ angles of the UUVs in the presence
of marine currents.



Chapter 6

Conclusions

Several control techniques have been applied to solve the trajectory tracking problem in un-
derwater vehicles. However, the marine environment is complex and non-linear, making this
task a matter of study. Model-based controller can have a good performance only when all
the dynamics of the environment are precisely modeled and the parameters of the vehicle are
completely and exactly known. In reality this is a complex time-consuming and it is impos-
sible to completely model all the underwater environment, since some perturbations might be
stochastic.

The purpose of this work is to synthesize and implement a sliding mode algorithm with
finite-time convergence for trajectory tracking of a BlueROV2 underwater vehicle. The finite-
time convergence is fundamental to allow vehicles to successfully perform tasks involving
complex trajectories. The application of trajectory tracking in the space (x,y and z axes) will
allow the system to deal to external disturbances and reduce the position error to a certain
vicinity, normally near to zero, in a specific time.

The methodology of the project included a series of simulations performed on a Mat-
lab/Simulink environment, and comparing the performance of four different type of con-
trollers: a traditional PID, a Feedback Linearization controller, a Lyapunov-based controller
and the proposed 2nd order Sliding Mode Controller with finite-time convergence. The simu-
lations include parameters of the underwater vehicle BlueROV2, and considerations regarding
to the position of the center of gravity. Conditions of movement with low velocities were also
taken into account. This conditions simplified the model and made possible to simulate with
less computational effort.

After this work, it was possible to synthesize of the 2nd Order Sliding Mode Controller
by the integration of a variable gain α on the sliding surface. The gain α is parametrized by a
Time Base Generator, which is a soft polynomial that smoothly goes from 0 to 1 in an specific
time. Several times of convergence were selected, obtaining the expected results and avoiding
the thrusters saturation. This indicates that the time tb can only be established considering the
physical limitations of the thrusters.

Also, it has been probed that the controller can manage external perturbations as marine
currents, since the time RMS values of the controller remained in the exact same values that
before considering the presence of the marine currents. However, this performance requires
higher values of torques for all the thrusters and thus, a higher energy consumption.

As a second part, a novel application of the Model-free Second-order Sliding Mode
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Control (MFSOSMC) is developed in this work. The finite-time convergence characteristic is
taken in advantage to position two UUVs, on two different trajectories, to perform a simulta-
neous tracking, and to emulate a coordinated task of gripping, transporting and releasing an
object.

Simulation results showed the robustness of the three proposed control schemes: a
Model-Free Second-Order Sliding Mode Control (MFSOSMC), a Finite-Time Second-Order
Sliding Mode Control(FTSOSMC) and a Non-Singular Terminal Sliding Mode Control(NSTSMC).
The three controllers were capable of completing the task successfully, even in the presence of
high marine currents. The three control schemes kept a constant Euclidian distance of 0.5 m
between the two UUVs, and the difference in orientation was mantein in a value of 180◦ along
all the time of the task.

However, the MFSOSMC presents superior characteristics, since its convergence time tb
can be set arbitrary and does not depend on any control parameter. Also, simulations showed
the superiority of the MFSOSMC, since the tracking error of every DOF converge in the same
established time, even in the presence of high marine currents.

Future work will consider the dynamic and physical properties of the object being trans-
port, as well as the hydrodynamic effects of dragging forces acting on it.

The information presented in this paper will be a guide for the realization of future
research work related with collaborative tasks of underwater vehicles.



Bibliography

[1] AGUIAR, A. P., AND HESPANHA, J. P. Trajectory-tracking and path-following of un-
deractuated autonomous vehicles with parametric modeling uncertainty. IEEE Transac-
tions on Automatic Control 52, 8 (2007), 1362–1379.

[2] AL MAKDAH, A. A. R., DAHER, N., ASMAR, D., AND SHAMMAS, E. Three-
dimensional trajectory tracking of a hybrid autonomous underwater vehicle in the pres-
ence of underwater current. Ocean Engineering 185, April 2018 (2019), 115–132.

[3] ANDERLINI, E., PARKER, G. G., AND THOMAS, G. Control of a ROV carrying an
object. Ocean Engineering 165, March (2018), 307–318.

[4] BAGHERI, A., AND MOGHADDAM, J. J. Simulation and tracking control based on
neural-network strategy and sliding-mode control for underwater remotely operated ve-
hicle. Neurocomputing 72, 7-9 (2009), 1934–1950.

[5] BALDINI, A., CIABATTONI, L., FELICETTI, R., FERRACUTI, F., FREDDI, A., AND
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aquáticos autónomos.

[19] DO, K. D. Robust adaptive tracking control of underactuated ODINs under stochastic
sea loads. Robotics and Autonomous Systems 72 (2015), 152–163.

[20] ELLENRIEDER, K. D. V. Dynamic surface control of trajectory tracking marine vehicles
with actuator magnitude and rate limits. Automatica 105 (2019), 433–442.

[21] ELMOKADEM, T., ZRIBI, M., AND YOUCEF-TOUMI, K. Terminal sliding mode control
for the trajectory tracking of underactuated Autonomous Underwater Vehicles. Ocean
Engineering 129, August 2016 (2017), 613–625.

[22] FERREIRA, C. Z., CARDOSO, R., MEZA, M. E. M., AND ÁVILA, J. P. J. Controlling
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