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FEATURE SELECTION FROM BIOLOGICAL BIGDATA: IDENTIFICATION OF 
SIGNIFICANT ASSOCIATIONS APPLYING MULTIVARIATE MACHINE LEARNING 

ALGORITHMS TO GENOME-WIDE ASSOCIATION STUDIES (GWAS) 

By 

DÉBORA GARZA HERNÁNDEZ 

ABSTRACT 

Crohn's Disease (CD) is a type of Inflammatory Bowel Disease (IBD) affecting the 

gastrointestinal tract with diverse symptoms. At present, Genome-Wide Association Studies 

(GWAS) have discovered over 140 genetic loci associated with CD. Usual univariate GWAS 

methods have allowed the discovery of minor effects from common variants. It assumes 

independence among them, which can lead to missing subtle combinatorial signals. 

Considering the importance of CD, multivariate approaches can aid to elucidate the etiology 

of the disease and facilitate the identification of novel associations. However, current 

univariate-based and multivariate CD models have a broad performance spectrum and have 

been assessed in different datasets under diverse methodological settings. Other multivariate 

methods and models (LASSO, XGBoost, Random Forest, BSWiMS, and LDpred) were 

compared under a strict sub-sampling and cross-validation approach to predict CD risk in a 

GWAS dataset (de Lange et al. 2017). The predictions were explored and compared to 

whether the generated models could provide additional information about variants and genes 

associated with CD. Additionally, the effect of common strategies was assessed by increasing 

and decreasing the number of SNP markers (using genotype imputation and LD-clumping). 

The LDpred model without imputation appears to be the best model among all tested models 

to predict Crohn’s disease risk (AUROC = 0.667 ± 0.024) in this dataset. The best models 

were validated in a second dataset (NIDDK IBD Genetics), where LDpred was also the best 

method with similar performance (AUROC = 0.634 ± 0.009). Finally, based on the 

importance of the variants yielded by the multivariate models, an unnoticed region was 

identified within chromosome 6, SNP rs4945943, close to gene MARCKS, which appears to 

contribute to CD risk.  
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1. CHAPTER 1: INTRODUCTION 

1.1 OVERVIEW 

The recent advances in DNA sequencing have boosted the necessity of statistical methods to 

analyze the gathered information. Specifically, Genome-Wide Association Studies (GWAS) 

are statistical genetic methods that allow the identification of alleles controlling a specific 

trait (Alqudah et al., 2020). GWAS are observational studies where a genome-wide set of 

genetic variants in different individuals are analyzed to find any association with a trait. 

These studies typically focus on associations between Single Nucleotide Polymorphism 

(SNP) and usually complex human traits (Bush & Moore, 2012). 

GWAS are based on the assumption that a marker allele (i.e., SNP), spaced through the 

genome in linkage disequilibrium LD (i.e., non-random association) with a “causal variant,” 

would be associated with the trait of interest (Stranger et al., 2011). This state of non-random 

association can be caused by selection, genetic drift, genetic distance, and other effects. 

However, recombination and gene conversion can break this state (Wigginton, 2005). 

To date, GWAS has allowed the identification of common SNP with mainly large effects on 

phenotype, identifying several novel susceptibility loci (McCarthy et al., 2008). Also, the 

markers present on the SNP arrays have been selected to be common, to facilitate the variants 

discovery among different populations. GWAS are biased in terms of what is found; this can 

be caused by the allele frequencies, affecting the strength of statistical association between 

alleles. A rare variant in a low LD with a common variant will have fewer probabilities of 
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being detected in the analysis. Therefore, allowing the detection of causal variants common 

in the population but has a problem detecting rare variants (Visscher et al., 2012). 

Nevertheless, there are statistical challenges to be addressed when a wide genomic study is 

applied, specifically those that can lead to spurious relationships. The most commonly 

focused are sample failures, genotyping errors, and population structure (Teo, 2008). Also, 

gene-gene and gene-environment interactions are of great interest for GWAS development, 

but understanding them and their relationship with GWAS results is still a significant 

challenge. 

The analysis of genome-wide association data involves a  series of single-locus statistic tests, 

which examines the independent SNP association to the phenotype (Bush & Moore, 2012). 

However, evidence has shown that many complex traits are highly polygenic, implying that 

multiple causal variants contribute simultaneously to genetic susceptibility. Thus, examining 

genetic scores rather than individual SNPs may lead to better insights when studying the 

genetic contributions for complex traits (Levine et al., 2009). 

Most of the existing feature selection approaches, for big data applications, focus on 

univariate analysis to screen features based on the estimated “individual” effects on the 

outcome of interest, which is the case of GWAS. But for many complex traits, the underlying 

mechanisms are neither static nor linear. Therefore, identifying interaction effects among 

variables will help obtain more accurate phenotype prediction results and reveal functional 

interactions (Xu et al., 2018). 

Currently, the existing implementations of machine learning methods pose several 

limitations for application to genome-wide data. Further research is needed to identify and 
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evaluate variable selection procedures that are especially suited for genetic data (Szymczak 

et al., 2009).  

Here I propose that machine learning methods be adapted to GWAS data to improve the 

predictions’ performance and identify significant SNP-phenotype Associations. This can be 

done by selecting the most predictive SNPs, testing combinations between them, and 

identifying potential pathways involved in developing the phenotype. Also, I intend to 

validate the results by fitting a typical univariate analysis and obtaining the standard 

polygenic scores to compare the accuracy of the multivariate models. This will be addressed 

using GWAS data of Crohn’s Disease (CD). 

1.2 PROBLEM DEFINITION 

The main problem to be addressed in this work is detailed. The proportion of heritability 

explained by common variation for most common diseases to date is modest because 

traditional GWAS do not have the power needed to detect minimal individual effects for 

determining variants (Ferns et al., 1986). Also, many complex traits are driven by enormously 

large numbers of variants of minor effects (Boyle et al., 2017). GWAS’ assumption that 

causal variants are in LD with tag SNPs allows the identification of significant associations 

for those markers, potentially leading to the identification of the causal gene/mutation 

(Visscher et al., 2012). However, in a genome-wide random SNP approach, many disease-

causing genes are missed due to an incomplete or null LD among the variants (Ferns et al., 

1986). 

GWAS has identified more than 1,200 loci associated with more than 165 common human 

diseases. However, the heritability of these traits has been poorly explained; this has been 
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called “missing heritability” (Zuk et al., 2012). Understanding that combinations of rare 

variants rather than single variants contribute to a significant proportion of the missing 

heritability is a big challenge. Also, one crucial challenge requires integrating interaction 

models to determine variants associated with a specific phenotype. This will require the 

application of statistical and computational methods that detect patterns of interactions 

among the variants (Eichler et al., 2010). The need for computationally efficient methods is 

rising, particularly to analyzing exome and whole-genome sequence data (Eichler et al., 

2010).  

This investigation considers that machine learning approaches are likely complements to 

standard single-and multi-SNP analysis methods for understanding the overall genetic 

architecture of complex traits (Szymczak et al., 2009). However, the existing 

implementations of machine learning methods face several limitations for application to 

genome-wide data. Further research is needed to identify and evaluate variable selection 

procedures that are especially suited for genetic data (Szymczak et al., 2009). 

1.3 MOTIVATION 

The motivation to utilize a GWAS dataset of Crohn’s Disease (CD) relies on the impact of 

this disease on scientific research. The proposed solution model will test multiple variants 

together by a feature selection algorithm and evaluate its score as a measure to classify the 

analyzed phenotypes. 

Crohn's Disease (CD) is a type of Inflammatory Bowel Disease (IBD) that affects the 

gastrointestinal tract with diverse symptoms depending on disease severity (Baumgart & 

Sandborn, 2012). CD incidence and prevalence in developing countries is considered high; 
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it has a reported incidence in North America of 6.3 to 23.8 per 100,000 (Ng et al., 2017). As 

with other complex traits, CD incidence has been theorized to be related to environmental 

and genetic factors (Feuerstein & Cheifetz, 2017) (Liu & Anderson, 2014).  

Additionally, this work considers comparing the performance of multivariate machine 

learning algorithms with the univariate-based algorithms methods through the polygenic risk 

scores. To determine which method performs the best for the identification of risk groups. 

Finally, this work aims to identify potential pathways involved in developing the phenotype 

by using the information collected from the multivariate models and validating the 

multivariate machine learning algorithms. 

The differences between this proposal and the actual efforts rely on the application of feature 

selection algorithms combined with filtering strategies that have not been applied to the De 

Langer et al.  CD dataset and their adaptation to reduce the complexity of the analysis. 

The following was studied during the investigation: 

• Adaptation of feature selection algorithms to apply them to genome-wide data: The 

general strategies used are: filtering by a threshold of several variants for genetic 

imputed, non-imputed, and a combination of imputed and non-imputed datasets. 

• Implementation of multivariate algorithms adapted to deal with GWAS data, to 

identify significant associations. 

• Comparison of the performance achieved for CD-risk prediction between univariate 

and multivariate models applied to GWAS data. 
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• Validation of the multivariate derived’ variants associated with CD risk by analyzing 

the potential biological pathways involved in developing the phenotype. 

1.4 HYPOTHESIS, OBJECTIVES, AND CONTRIBUTIONS  

1.4.1 Hypothesis 

The research is conducted under the hypothesis that applying multivariate machine learning 

algorithms to genome-wide SNP data will improve the performance and allow the 

identification of significant association variants for GWAS. 

The proportion of heritability explained by common variation for most common diseases to 

date is modest. Thus, identifying variants interactions concerning the outcome of interest can 

improve phenotypic prediction. Also, the hypothesis is based on the assumption that applying 

multivariate methods will generate a discrimination score that will perform better than the 

traditional polygenic risk scores. This, while controlling for common confounders such as 

population structure, sample size, etc. 

Furthermore, a feature selection algorithm aims to identify relevant features according to a 

definition of relevance. Concerning GWAS, the feature selection problem can be seen as a 

search in a set of hundreds of possible solutions, for which adaptation should be performed 

to reduce the computational complexity which could be derived.  

According to this, the following research questions are generated: 

• How different are the results obtained by univariate-based and multivariate methods 

for GWAS analysis? 
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• Which are the required adaptations for a feature selection algorithm, which must be 

implemented to obtain reliable results to identify significant association variants for 

GWAS. 

• Is it possible to use multivariate analysis to generate an alternative to the univariate-

based polygenic risk scores? 

• How is the performance of multivariate models for the phenotype prediction? 

• Is it possible to generate a multivariate rank, to order the variants according to the 

importance achieved within the multivariate models? 

• Is it possible to identify novel variants or genes by applying a variant’s multivariate 

ranking? 

1.4.2 Objectives 

This work aims to identify significant SNP-phenotype associations and polygenic scores 

through multivariate machine learning algorithms from Genome-Wide Association Studies 

(GWAS). 

This research intended to achieve these particular goals: 

• Acquire phenotypic and genotypic data (GWAS) for CD. 

• Filter genome-wide SNP data according to established criteria. 

• Estimate the classic univariate analysis to validate the GWAS methodology. 

• Increment the features by imputing genotypes in LD from a reference dataset.  

• Reduce the GWAS dataset by filtering and LD-clumping to decrease computational 

complexity in subsequent analyses.  
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• Apply the multivariate and univariate-based methods to predict CD risk at the GWAS 

data. 

• Identify SNPs from reduced GWAS data using “adapted” multivariate methods. 

• Compare results from multivariate and univariate methods on GWAS data. 

• Establish a multivariate rank for the variants belonging to the best CD-risk prediction 

model. 

• Identify likely key biological sources on variability by using gene ontology and 

pathways data, using as input the list of genes retrieved from the best CD-risk 

prediction model. 

Particular goals for the “Adapted” multivariate methods 

• Adapt multivariate algorithms for feature selection on genome-wide SNP data. 

a. Filter by a threshold of the number of variants for both imputed and not 

imputed data. 

b. Filter by LD-clumping for both imputed and not imputed data. 

• Implement a feature selection algorithm on GWAS data. 

a. Multivariate 

i. Random Forest (RF), LASSO, XGBoost, BSWiMS, and LDpred 

b. Univariate-based 

i. Polygenic Risk Score P+T and Polygenic Risk Score Unadjusted 

• Evaluate the performance of multivariate methods for SNP-phenotype Associations. 

• Evaluate the adaptation made to the multivariate algorithms using ROC AUC 

(AUROC). 
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• Assign variant importance for the multivariate methods, defined by the feature weight 

observed for each variant within the train set. 

 

1.4.3 Contributions 

The contributions of this research are listed below. 

• It reviews the impact and applications of multivariate analysis on GWAS to predict 

the risk of developing a disease. 

• Comparisons of multivariate analysis for CD-risk prediction are presented to relate 

with the results achieved in this investigation. 

• A strategy for adding information to the model’s trough genotypes imputation is 

tested and compared with the application of multivariate models on not imputed data. 

• LD-clumping was evaluated as a measure of feature reduction by pruning the non-

independent variants. 

• A robust 10x cross-validation methodology was implemented to select variants by 

their importance within the models. 

• Five multivariate approaches were evaluated for the CD dataset, LASSO, XGBoost, 

Random Forest, BSWiMS, and LDpred. 

• Two common PRS approaches were evaluated for the CD dataset, PRS unadjusted 

and PRS P+T. 

• LDpred outperformed both the common PRS and the other multivariate models, with 

a mean AUROC of 0.667 ± 0.024 in the testing set. 

• A validation dataset was used to evaluate the performance of the models, where the 

LDpred models also achieved the best performance (AUROC = 0.634 ± 0.009). 
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• A multivariate rank was constructed based on the importance of the variants within 

the best multivariate model. 

• Based on the importance of the variants yielded by the multivariate models, the 

unnoticed region within chromosome 6, SNP rs4945943, close to gene MARCKS, 

was identified. 

• Functional analysis for the 402 genes within the CD-risk prediction’s best model was 

implemented, where it shows CD-risk genes linked to well-known inflammatory 

processes.  

 

1.5 DISSERTATION ORGANIZATION 

The present document is structured as Chapter 1 presents an overview of the research, 

including the problem definition, motivation, hypothesis, objectives, and contributions. 

Chapter 2 comprises the theoretical framework, including GWAS review, univariate and 

multivariate methods, and limitations and problems. Chapter 3 describes the solution model 

and methodology. Chapter 4 presents the results obtained through this investigation, 

including the performance of the models and the model validation analysis, with its biological 

interpretation. Finally, Chapter 8 mentions the research's discussion and conclusions, 

describes the limitations, and proposes the future work to be applied to this topic. 
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2. CHAPTER 2: THEORETICAL FRAMEWORK 

2.1 GENOME-WIDE ASSOCIATION STUDIES 

Genome-Wide Association Studies (GWAS) are observational studies, where genomic-wide 

variants within a group of individuals are tested against a phenotype of interest, usually a 

major human disease, to find a statistical association between them (Alqudah et al., 2020). A 

single nucleotide polymorphism (SNP) is a variation at a single position in a DNA sequence 

among individuals. GWAS are based on the assumption that a variant  (i.e., SNP), spaced 

through the genome and in linkage disequilibrium (LD) (i.e., non-random association of 

alleles of different loci) with a “causal variant,” would be associated with the trait of interest 

(Stranger et al., 2011).  

GWAS  had allowed the identification of several alleles associated with different traits of 

medical interest (Stranger et al., 2011). Due to the improvement of SNP genotyping and 

microarray SNP analysis, acquiring genotype data has become extremely simple and quick, 

revolutionizing gene identification and applying GWAS (Stranger et al., 2011). 

2.1.1 GWAS LIMITATIONS AND CHALLENGES 

GWAS has allowed the identification of several common SNP-based variants, as novel 

susceptibility loci, with large effects on phenotype (McCarthy et al., 2008). According to the 

GWAS catalog, up to date, there are 5,457 publications for GWAS, involving 190,974 

reported SNPs, which trends for the identification of complex traits’ genetic variants 

(MacArthur et al., 2017). 
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However, according to Visscher and collaborators in their 2017 review, about 10,000 

independent associations (Figure 1), with a genome-wide p-value, have been reported in the 

last ten years between genetic variants and several complex traits (Visscher et al., 2017). This 

reflects the great gap in identifying significant associations for complex traits through 

GWAS.  

 

Figure 1. GWAS SNP-Trait Discovery Timeline, by (Visscher et al., 2017) 

Despite GWAS having allowed the detection of several loci associated with complex traits, 

results with a p-value less stringent coming out from GWAS can fail to replicate; this could 

be affected by different reasons such as missing genotypes, genetic heterogeneity, 

unexpected LD, minor effects size, low allele frequency, or complex genetic architectures 

(Korte & Farlow, 2013).  
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While GWAS had detected hundreds of associated genetic variants, it can only explain a 

small proportion of the phenotypic variance attributed to additive genetic factors (Hofuku et 

al., 2013). Also, GWAS results can be biased in detecting variants due to the impact of allele 

frequencies on the strength of statistical association between alleles and traits. Additionally, 

the level of LD can affect the GWAS results, as a rare variant in low LD with a common 

variant will have fewer probabilities of being detected in the analysis (Visscher et al., 2012). 

Thus, many disease-causing genes could be missed even at high density in a genome-wide 

random SNP approach.  

The markers present on the SNPs platforms have been selected to be common in the genome. 

Therefore, allowing the detection of causal variants common in the population but has 

problems detecting rare variants (Visscher et al., 2012). Similarly, the effect sizes for the 

GWAS associations are generally relatively modest (Witte, 2010), which indicates the need 

to use methods more robust, which could deal with high dimensional data and minimal 

frequencies. 

Case-control is the most common and most straightforward study design for GWAS. 

However, this design assumes that any difference in the allele frequencies on the studied 

dataset relates directly to the measured phenotype (Cardon & Palmer, 2003). Thus, measures 

for confounders control must be implemented.  

2.1.2 GWAS QUALITY CONTROL 

Quality control (QC) procedures are essential criteria to be considered in GWAS. This step 

is carried out to remove low-quality samples or markers and reduce the spurious associations 

in later analysis. However, it can be computationally intensive, technically challenging, and 
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constant development (M. H. Wang et al., 2018). Among the criteria, the QC addresses in 

GWAS are: examining for potential sample identity problems, samples’ genotyping 

efficiency, genotypes’ call rate, minor allele frequency filtering for rare variants, testing for 

Hardy-Weinberg Equilibrium (HWE), because departure from this equilibrium can be 

indicative of potential genotyping errors, population stratification, and can lead to false 

associations, and finally batch effect can also be considered (Turner et al., 2011). 

2.1.3 ASSOCIATION WITH A SINGLE MARKER (UNIVARIATE ANALYSIS)  

The most common approach for testing the association between a genetic variant and a 

phenotype is a single-locus test. This strategy assumes that in a random mating population 

with no population structure, the association between a marker and a trait can be tested with 

a single marker regression (Hayes, 2013). 

For a single marker test association, different genetic models can be fitted; a dominant model 

indicates that one specific allele will increase the risk of disease in equal amount for the 

homozygous most frequent and the heterozygous compared to the baseline risk for the 

homozygous less frequent, i.e., For allele “A” will translate the genotypes (AA, Aa, aa) to 

(1, 1, 0). An additive or co-dominant model will indicate that each additional copy of the 

“disease” allele will increase the disease risk, i.e., For allele “A” will code (AA, Aa, aa) as 

(2, 1, 0). A recessive genetic model will mean that two copies of the “disease” allele will be 

required to express the phenotypic characteristic related to this allele, i.e., For allele “A” will 

code (AA, Aa, aa) as (1, 0, 0). The most common genetic model used in GWAS analysis is 

the additive or co-dominant model (M. H. Wang et al., 2018). 
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The null hypothesis under the univariate GWAS test establishes no association between the 

genotype and phenotype, while the alternative hypothesis is that the marker affects the trait. 

For binary traits, this is commonly addressed by a Chi-squared test on 1° of freedom, odds 

ratio test, Fisher’s Exact Test, and Armitage’s trend test. However, when the phenotype is a 

continuous variable, ANOVA or t-test can be used. Also, when testing a single locus, simple 

linear regression and logistic regression would give an identical result to the tests mentioned 

above, as all of them are regression models with one predictor variable (M. H. Wang et al., 

2018).  

2.1.4 MULTIPLE TESTING 

As the number of variables in a univariate analysis increases, the probability of detecting 

false positives increments; in GWAS, thousands of tests are conducted, each with its false 

positive probability. Therefore, the probability of finding more false positives over the entire 

GWAS analysis is much higher; this is referred to as multiple testing (Bush & Moore, 2012).  

The most common and simplest method to correct for multiple testing is the Bonferroni 

correction. The Bonferroni correction adjusts the alpha value from α = 0.05 to α = (0.05/k), 

where k is the number of hypothesis tests conducted. Another method used to correct multiple 

testing is determining the false discovery rate (FDR). The FDR (Benjamini Hochberg) 

method sorts and ranks the P-values and multiply each P-value by the total number of the 

hypothesis tested, to finally divide the value by its assigned rank, obtaining the adjusted P-

values (Hochberg & Benjamini, 1990). 

Multiple testing can also be managed with permutation testing. The phenotype status of the 

individuals is randomly permuted, with the maximum test statistic calculated for the original 
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status and each permuted status. Then, based on comparing the test statistics, the p-values 

are adjusted (Besag & Clifford, 1991). 

2.1.5 POPULATION STRATIFICATION  

Population stratification (PS) refers to the state where populations are distinguishable by 

specific genotypes caused by differences in allele frequencies through the genome. This state 

is caused by colonization, migration, and random mating. PS can be a confounder within an 

association study by highlighting false associations between a genotype and the trait of 

interest (Hellwege et al., 2017). Several methods have been proposed to deal with PS; one of 

them is the genomic control method, which estimates a genomic (variance) inflation factor, 

given by equation 1. 

�̂� = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋1
2, 𝑋2

2 … 𝑋𝑝
2)/0.456  

Equation 1. Genomic inflation factor. 

Where X2 is a chi-squared distributed statistic calculated from the genome-wide scan of p 

SNPs, the test statistics are adjusted for the genomic inflation as indicated in equation 2. A �̂�  

value around 1 will be considered a measure of no population structure (M. H. Wang et al., 

2018). 

𝑌2 = 𝑋2/�̂� 

Equation 2. Test statistics adjustment. 

Another approach to managing population structure is adjusting the individual genotypes and 

phenotypes through linear regression on Principal Component Analysis (PCA). This 
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approach consists in first, apply PCA to genotype data to infer the genetic variation. Second, 

the genotypes and phenotypes are adjusted by amounts attributable to ancestry, and third, the 

association statistics using ancestry-adjusted genotypes and phenotypes are computed (Price 

et al., 2006). 

2.1.6 POWER OF GWAS 

The statistical power refers to the probability of detecting an effect, meaning that the 

probability of making a type II error (false negative) will be low. This parameter depends on 

the effect size and the study sample size. In GWAS, the power turns on: a) The correlation 

between the marker and the causal variant, b) the proportion of total phenotypic variance 

explained by the genetic variant, c) the sample size, d) the disease prevalence, e) the genetic 

architecture, f) the genotyping array and haplotype reference panel used for imputation, g) 

the allele frequencies and h) the significance level threshold set for the study (Ferreira, 2018; 

Hayes, 2013; Visscher et al., 2017).  

2.2 POLYGENIC RISK SCORE 

Many complex traits are highly polygenic, implying that multiple causal variants contribute 

simultaneously to genetic susceptibility. Thus, examining “genetic scores” rather than 

individual SNPs may lead to better findings when studying the genetic contributions for 

complex traits (Boyle et al., 2017; Levine et al., 2009). A polygenic score, commonly called 

Polygenic Risk Score (PRS) on biomedical analysis, is an estimation based on the variation 

in multiple genetic loci. This approach assumes that phenotypic variation can be explained 

by the ensemble of markers (Dudbridge, 2013). A PRS is usually calculated as a weighted 

sum of the number of risk alleles carried by an individual. The risk alleles and weights are 
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defined by the loci and their measured effects as detected by GWAS. In some instances, a 

lower threshold than genome-wide statistical significance may be used to improve the 

phenotypic variance explained by the model, which allows incorporating variants that are not 

perfectly correlated with the causal genetic factors (Torkamani et al., 2018). 

Some alternatives have been applied to PRS estimation. The primary approach called PRS 

P+T performs an LD-clumping to the variants to remove variants in LD and to keep the most 

significant for each clump and then estimates the score based on the GWAS summary 

statistics (Vilhjálmsson, Yang, Finucane, Gusev, Zheng, et al., 2015). And, the PRS 

unadjusted, where all the markers, without LD clumping, are used to compute the PRS (i.e., 

the sum of all genetic markers across the genome, weighted by their marginal effect size 

estimates) (Ge et al., 2019). 

The PRS relies on allele frequencies, varying across populations (Reisberg et al., 2017). Yet, 

PRS commonly fails when applied to different populations to the discovery set. However, 

polygenic analyses can be robust despite their disadvantages while still including many non-

significant markers (Dudbridge, 2013). 

2.3 MULTIVARIATE GWAS ANALYSIS  

Non-linear effects that control variation in phenotypes can be caused by interactions 

(Epistasis), either between SNPs, genes, or quantitative trait loci (QTLs) (H. Zhang et al., 

2017). Thus, the future impact of GWAS relies not only on the identification of the 

association signals against a specific trait but on the proper identification of gene-gene 

interactions effects on complex traits (McCarthy et al., 2008).  
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Machine learning approaches had been proposed as a mechanism to capture the cumulative 

effect of variants and their overall contribution to the outcome in disease prediction 

(Behravan et al., 2018; Curbelo Montañez et al., 2018). They promise complements to 

standard SNP analysis for understanding the overall genetic architecture of complex traits 

(Szymczak et al., 2009).  

Multivariate methods had allowed the identification of complex additive effects on specific 

loci. However, the task of identifying valid combinations of genetic variants by multivariate 

search strategies can be highly computationally intensive due to the high number of models 

to be explored (Malovini et al., 2016). 

2.3.1 FEATURE SELECTION ALGORITHMS 

A feature selection (FS) algorithm is a computational solution driven by the relevance of the 

features and which can yield a weighted order of features (Molina et al., 2002). An FS method 

consists of four steps (Figure 2), 1) subset generation, where a candidate feature subset will 

be chosen, 2) subset evaluation, where the feature subset is evaluated according to an 

evaluation criterion, 3) stopping criterion, which is reached after founding the subset that best 

fits the evaluation criterion and 4) result validation, where the subset is validated using a 

validation set (Tang et al., 2014). 

 

Figure 2. A General Framework of Feature Selection for Classification (Oreski & Novosel, 2014). 
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There are two basic feature selection techniques: filter and wrapper techniques. Filter 

methods (Figure 3) are generally used as a preprocessing step. Features are commonly 

selected based on correlations with the outcome variable. Wrapper methods (Figure 4) 

require a predetermined data mining algorithm in feature selection; it uses a subset of features 

and trains a model using them (Oreski & Novosel, 2014). 

 

Figure 3. A General Framework of Filter Method for Feature Selection 

 

 

 

 

Figure 4. A General Framework of Wrapper Method for Feature Selection 

Most of the existing feature selection approaches, for big data applications, focus on 

univariate analysis to screen features based on the estimated “individual” effects on the trait 

of interest, which is the case of GWAS. But its underlying mechanisms are neither static nor 

linear for many complex traits. Thus, identifying interaction effects among variables will 

help obtain more accurate results for phenotype prediction and reveal functional interactions 

(Xu et al., 2018). 

 

Set of all features Selecting the best 
subset Learning Algorithm Performance

Set of all features Generate a subset Learning 
Algorithm Performance

Selecting the best subset 
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2.3.2 MULTIVARIATE METHODS APPLIED TO GWAS ANALYSIS 

Multivariate feature selection methods allow researchers to identify a subset or a combination 

of genetic variants that underlies the risk of developing a phenotype (Malovini et al., 2016). 

They can be categorized as regression-based (Dinu et al., 2012), LD-based (Paré et al., 2017), 

Bayesian approaches (Y. Zhang, 2012), machine learning methods (Behravan et al., 2018; 

X. Wang et al., 2016) and a combination of machine learning and statistical approaches 

(Mieth et al., 2016) 

In 2014, an implementation of the correlation learning method Sure Independence Screening 

(SIS) was applied, as a genome-wide interaction analysis, to screen the most associated SNP-

SNP interactions affecting regional brain volumes (Hibar et al., 2015). This method performs 

a dimensionality reduction as it generates a subset of SNPs n/ln(n), based on the correlation 

between the SNP and trait.  

Another attempt to identify two-marker interaction effects was applied to amyloid imaging 

phenotype, using the Alzheimer's Disease Neuroimaging Initiative data. They selected the 

top significant 10,000 SNPs from univariate analysis to fit into a subsequent 2-marker 

interaction analysis (Li et al., 2015). This method was able to test up to two SNP 

combinations.   

The algorithm COMBI, published in 2016, consists of a two-step process combining machine 

learning and statistical testing. First, a support vector machine (SVM) is trained to determine 

a subset of candidate SNPs, and then it performs hypothesis tests for these SNPs and an 

adequate threshold correction (Mieth et al., 2016). 
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Genetic algorithms (GAs) have also been applied to GWAS, and they have proved to be 

promising to detect multi-locus associations. A study published in 2014 used a GA to 

discover groups of SNPs (of size 2, 3, or 4) jointly associated with bipolar disorder. They 

found that their algorithm could realize significant multi-locus associations, even among 

SNPs that were not strongly associated with the disease (Mooney et al., 2011). 

Support Vector Regression with Pearson Universal kernel (SVR PUK), as a fitness function, 

has also been applied for GWAS data. This method selected the most relevant SNPs for a 

continuous variable. Also, it generated groups of markers, considering all features with 

significant effects on the phenotype, and allowed the entry of less significant markers. Then 

it evaluated the performance of the group of SNPs and found that this method increased the 

Pearson correlation for the models and reduced the number of SNPs used to make the 

predictions (de Oliveira et al., 2014). 

Random Forest has been shown to perform better than univariate tests in real GWAS data, 

but the probability of detecting interacting SNPs drops as the total number of SNPs increases. 

A proposed method based on the Random Forest algorithm, Trees inside Trees (T-Trees), 

considers the correlation structure among the genetic markers implied by linkage 

disequilibrium in GWAS data. This method showed significant improvement in terms of 

predictive power. However, this method is sensitive to rare variants and markers deviating 

from HWE (Botta et al., 2014). 

A Bayesian genomic risk prediction method known as LDpred, proposed in 2015, infers each 

marker’s posterior mean effect size by integrating LD information from an external reference 

panel (Vilhjálmsson, Yang, Finucane, Gusev, Zheng, et al., 2015).  This method has 
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improved the prediction of schizophrenia and multiple sclerosis (Vilhjálmsson, Yang, 

Finucane, Gusev, Zheng, et al., 2015). 

A Finnish study in 2018 designed a machine learning approach to identify interactions among 

SNPs contributing to breast cancer risk. They applied a gradient tree boosting method 

followed by an adaptive iterative SNP search and used a support vector machine (SVM) as 

the classification method. Their approach performed better than the results obtained using a 

PRS model (Behravan et al., 2018). This method was later applied to a second dataset and 

added demographic factors (Behravan et al., 2020). 

Another study published in 2019 applied random forest to evaluate the risk of individual 

susceptibility to asthma using SNPs with a p-value <1e-3 from a statistical association 

analysis. K-nearest neighbor (kNN) and SVM algorithms were trained to classify the 

individuals according to their susceptibility to asthma, showing that the occurrence of a 

multifactorial disease such as asthma can be predicted with RF-SVM (Gaudillo et al., 2019). 

In 2021, gene-gene or gene-environment interactions impacting Drug-induced liver injury 

susceptibility were studied. For this, Multivariate Adaptive Regression Splines (MARS) and 

Multifactor Dimensionality Reduction (MDR) were applied to SNP data, and a decision tree 

model was successfully used to predict Drug-induced liver injury (Moore et al., 2021). 
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2.4 CROHN’S DISEASE: GENETICS AND PREDICTION 

Crohn's Disease (CD) is a type of Inflammatory Bowel Disease (IBD) that affects the 

gastrointestinal tract with diverse symptoms depending on disease severity. These symptoms 

involve abdominal pain, fever, diarrhea, and bleeding (Baumgart & Sandborn, 2012). CD 

incidence and prevalence in developing countries is considered high; it has a reported 

incidence in North America of 6.3 to 23.8 per 100,000 (Ng et al., 2017).  

As with other complex traits, CD incidence has been theorized to be related to environmental 

factors, including H. pylori exposure, occupation, microbiota, diet, lifestyle, medications, 

pollution, and genetic factors (Feuerstein & Cheifetz, 2017) (Liu & Anderson, 2014). The 

population within industrial urbanized societies is the most affected by this inflammatory 

bowel condition attributed, mainly, to a westernized lifestyle (Koloski et al., 2008; M’Koma, 

2013). 

At present, over 140 genetic loci associated with CD have been discovered by Genome-Wide 

Association Studies (GWAS) (de Lange et al., 2017; Liu et al., 2015).  

The heritability of liability for CD, calculated from GWAS, has been estimated to be 0.37, 

which contrasts against the estimated pooled twin data (h=0.67) (Gordon et al., 2015). NOD2, 

IL23R, and ATG16L1 are among the well-known CD-risk genes identified. These genes are 

involved in inflammation and the immune system's response (Gajendran et al., 2018).  

Heritability for Crohn's disease has been estimated, from pooled twin data, to be around 0.75, 

which contrasts GWAS's heritability estimate, which is about 0.37 (Gordon et al., 2015).  

Identifying genetic variants or susceptibility genes for CD has allowed the development of 

more efficient and disease-directed drugs (Grenier & Hu, 2019), thus evidencing the 

importance of investigating CD risk genes. 
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Current CD models, including univariate-based and multivariate models, have a broad 

spectrum of performance, which can vary from 0.59 to 0.84 (AUROC, area under the 

receiving operating characteristic curve) (Kooperberg et al., 2010; Mittag et al., 2015; 

Newcombe et al., 2019; Romagnoni et al., 2019; Wei et al., 2013). The variations reflect the 

complexity of the disease and the dependencies of datasets and methodologies. The methods 

that have been tested are LDpred (Vilhjálmsson, Yang, Finucane, Gusev, Zheng, et al., 2015), 

LASSO (Kooperberg et al., 2010; Newcombe et al., 2019; Wei et al., 2013), gradient boosting 

(Romagnoni et al., 2019), support vector machines (SVM) (Mittag et al., 2015), k-nearest-

neighbors (KNN) (Mittag et al., 2015), multi-layer perceptron (MLP) (Mittag et al., 2015), 

Bayesian methods (G.-B. Chen et al., 2017) and random forest (Mittag et al., 2015). 

However, the performance of these risk prediction methods has not been tested on the same 

CD dataset under similar, robust, and stringent methodological conditions. In addition, the 

de Lange et al. dataset (de Lange et al., 2017) has not been assessed for risk prediction 

models. Table 1 shows the studies where CD has been studied with different machine 

learning approaches, with their respective performances and models information. 
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Table 1. Crohn’s Disease prediction studies: Multivariate methods. 

Publication Dataset # of 
Samples 

Method Impute Threshold 
for pre-
selection 

SNPs / Pre-
selected 

SNPs 

ROC 
AUC 

Wei et al., 
2013 (Wei et 
al., 2013)  

IIBDGC’ 
Immunochip 
project 

~17,000 CD 
~22,000 HC 

LASSO No 1e-4 573/10,799  0.86 

Romagnoni et 
al., 2019 
(Romagnoni 
et al., 2019) 

IIBDGC 18,227 CD 
34,050 HC 

LR Only 
NAs 

1e-4 2,575/21,896 ~0.80 
GBT 
ANN 

G. B. Chen et 
al., 2017 (G. 
B. Chen et al., 
2017)   

IIBDGC 16,850 CD 
27,050 HC 

BayesR 
inmunochip 

No ? ?/42,534 0.75 

Wang et al., 
2019 (Y. 
Wang et al., 
2019) 

PopGen 
Biobank 
WTCCC panel 
GTEx panel 
(phs000424) 

115 CD and 
62 HC 
2,678 CD 
635 HC 

AVA,Dx No DKMcost 125 genes / 
13,957 genes 
/ 173,013 
variants 

0.75 

Song et al., 
2020 (Shuang 
Song, Wei 
Jiang, Lin 
Hou, 2020) 

IIBDGC 
 
WTCCC 

6,333 CD 
15,056 HC 
1,689 CD 
2,891 HC 

EB-PRS No ? ?/871,743 0.69 
PRS ? 0.63 
PRS P+T 1e-7 0.68 
Ldpred-inf ? 0.62 
Ldpred ? 0.66 
So’s ? 0.69 
Mak’s ? 0.68 

Newcombe et 
al., 2019 
(Newcombe 
et al., 2019)  

WTCCC 1,684 CD 
2,836 HC 

LASSOSum No ? 255,781 0.65 
Ldpred 0.69 
JAM 0.69 

Vilhjálmsson 
et al, 2015 
(Vilhjálmsson
, Yang, 
Finucane, 
Gusev, 
Zheng, et al., 
2015) 

WTCCC 1,687 CD 
2,867 HC 

PRS No  All 376,901 0.62 
PRS P+T 1e-4 ? / 376,901 0.63 
Ldpred-inf CF = 0.01 ~3,769 / 

376,901 
0.63 

Ldpred CF = 0.01    0.67 

Kooperberg et 
al., 2010 
(Kooperberg 
et al., 2010) 

WTCCC 
 
NIDDK 

2,000 CD 
3,000 HC 
792 CD 
932 CD 

LASSO Only 
NAs 

3000 top 
SNPs 

33/100 0.64 

Mittag et al., 
2015 (Mittag 
et al., 2015) 

WTCCC 
 
 

2,000 CD 
1,500 HC 
 

SVM, 
KNN,RF, 
MLP 

No 1e-3 ??/1,560 ~0.59 

IIBDGC International Inflammatory Bowel Disease genetic consortium, WTCCC Wellcome Trust Case 
Control Consortium, NIDDK National Institute of Diabetes and Digestive and Kidney diseases, HC healthy 
controls, LR Logistic regression, GBT Gradient Boost Trees, ANN Artificial Neural Networks. 
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2.5 LIMITATIONS AND PROBLEMS 

Currently, the existing implementations of machine learning methods pose several 

limitations for application to genome-wide data. Further research is needed to identify and 

evaluate variable selection procedures suited for genetic data (Szymczak et al., 2009). The 

study of epistatic interactions at the whole genome level has been limited due to the 

complexity of conducting pairwise statistical tests. The difficulty of testing interactions is 

caused by computational complexity issues, selection of multiple testing thresholds, and LD 

(M. H. Wang et al., 2018). 

Different multivariate methods have been successfully applied to various genetic datasets; 

however, they can be affected by computational complexity issues in GWAS (McKinney et 

al., 2006). The next chapter explains a solution approach for detecting SNP interaction based 

on feature selection by a multivariate algorithm. 

For GWAS, the computational complexity can be estimated as O(np), where n refers to the 

input size and p to the number of variants (SNPs). Whereas for multivariate analysis 

accounting for pairwise comparisons due to the interaction between the variants, the 

computational complexity would be as high as O(n2p). 
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3. CHAPTER 3: SOLUTION MODEL AND METHODOLOGY 

3.1  SOLUTION MODEL 

This research aimed to solve common problems for GWAS wherein a genome-wide random 

SNP approach many disease-causing genes are missed. This, caused by an incomplete or null 

LD among the markers with the causal variants (Ferns et al., 1986). The SNPs replication is 

also an issue in these studies, which could be affected by missing genotypes, genetic 

heterogeneity, unexpected LD, minor effects size, low allele frequency, or even complex 

genetic architectures (Korte & Farlow, 2013). The typical approach to conducting GWAS 

(univariate analysis) has allowed the discovery of large effect common variants. Still, it has 

limitations to deal with the advent of big data and more efficient genotyping technologies. 

Therefore, more efficient methods are needed to analyze multi-locus interactions for GWAS. 

Machine learning approaches are considered good complements to standard SNP analysis 

methods for understanding the overall genetic architecture of complex traits (Szymczak et 

al., 2009). However, the difficulty of testing interactions is caused by computational 

complexity issues, selection of multiple testing thresholds, and LD issues (Wang et al., 2018). 

Some works have been performed to detect SNP-SNP interactions. However, algorithmic 

development is still ongoing due to its mathematical and computational complexities. 

Nevertheless, it is essential to consider that the performance of the established computational 

or statistical methods will vary depending on the type of data to be analyzed. Thus, robust 

strategies for SNP association identification involving interactions among locus are needed. 
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The number of combinations can become computationally challenging when many-variable 

interactions need to be contemplated, as is the case of a GWAS. Thus, this work considered 

the adaptation of multivariate machine learning algorithms to deal with genome-wide data 

through techniques of features reduction. Imputation of SNPs was evaluated to investigate 

the effect of adding information for non-genotyped markers to the prediction performance. 

And, dealing with the independence of data reflected by the LD among the SNPs was 

explored with and without LD clumping. The data for this research is “publicly” available 

genotypic and phenotypic data for CD. This data was requested by the standard methods on 

their respective database, i.e., NCBI dbGaP or EGA EMBL-EBI. The dataset used for the 

multivariate analysis has not been used for prediction analysis for either univariate-based or 

multivariate analysis. 

The solution model proposed for this research (Figure 5) consisted in replicating the GWAS 

published by de Lange et al. in 2017 (de Lange et al., 2017) to validate the subsequent 

methodology. This consisted in adapting multivariate feature selection algorithms such as 

LDpred, Random Forest, XGBoost, BSWiMS and LASSO, and the common univariate-

based PRS approaches such as PRS P+T and PRS unadjusted. The adaptations consisted of 

adding information through SNPs imputation, filtering strategies, such as filtering by a 

threshold or causal fraction of some variants for imputed and non-imputed data and reducing 

the number of markers by evaluating its independence through LD clumping. Filtering was 

necessary to reduce the computational complexity issues. Univariate-based analyses were 

attempted to compare the common polygenic score strategy with the proposed multivariate 

machine learning approach. And, finally the validation of the results with its biological 

interpretation. 
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Figure 5. General Framework of the solution model for Feature Selection from Biological BigData: 

Identification of Significant Associations Applying Multivariate Machine Learning Algorithms to 

Genome-Wide Association Studies (GWAS) 
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3.2 METHODOLOGY 

Figure 6 presents a scheme of the overall methodology to compare the performances for CD-

risk prediction. First, two datasets were selected, the raw and the imputed data, to assess the 

effect on prediction models of increasing features and complexity by SNP imputation. 

Second, to reduce dimensionality and facilitate further computational analysis, a univariate 

analysis was performed on 40% of the samples to select the top 5% of features maintaining 

the other model generation steps blind. Third, an LD clumping was applied to decrement the 

number of SNPs filtering highly correlated SNPs. Forth, robust 10-fold-cross-validation 

geometric mean p-values (GMP) were estimated from the 60% of remaining samples. Fifth, 

prediction models were built to select SNPs at diverse GMP thresholds and assessed in a 10-

fold-cross-validation manner.  

 

Figure 6. Approach designed to evaluate multivariate and univariate-based models to predict 

CD risk in the UKIBDGC and UK10K GWAS dataset. 
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3.2.1 GWAS DATASETS ACQUISITION AND QUALITY CONTROL  

UKIBDGC and UK10K GWAS raw data was requested from the European Genome-

phenome Archive (EGA) website under accession EGAS00001000924 (de Lange et al., 

2017). The dataset contained 4,508 UK CD cases, diagnosed using accepted endoscopic, 

histopathological, and radiological criteria, and genotyped on the Human Core Exome v12.1. 

On the other hand, 9,944 population control samples genotyped on the Human Core Exome 

v12.0 were obtained from the Understanding Society Project under the accession number 

EGAC00001000205.  

Quality control (QC) for genotypes and sample were conducted as implemented in the 

original published data (de Lange et al., 2017), which consisted of removing variants that 

were not present on both versions of the genotyping platforms, had missing values >5%, had 

a significant difference in call rate between cases and controls (P < 10-5), deviated from 

Hardy–Weinberg equilibrium in controls (P < 10-5) or were affected by a genotyping batch 

effect (significant association (P < 10-5).  

After this QC process, 246,735 variants remained. For samples, the criteria were to keep the 

samples that passed the QC in the original study (information provided in the dataset). Also, 

the top 10 principal components provided in the dataset were used to correct for population 

structure.  

Data from the NIDDK IBD Genetics Consortium Crohn’s Disease was obtained through 

dbGaP accession phs000130.v1.p1 (Duerr et al., 2006) and was used to evaluate the models 

in an external dataset for validation. The dataset contained 513 CD cases and 515 control 

samples from European ancestry. SNPs were excluded for call rates less than 90% and MAF 

less than 1%. After this QC process, 313,752 SNPs remained. Only SNPs overlapping with 

the UKIBDGC and UK10K GWAS dataset were used for analysis. 
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3.2.2 GENOTYPE IMPUTATION 

Imputation was performed remotely using the Michigan Imputation Server (S et al., 2016). 

For this process, the European 1000 genomes were used as reference data. QC for genotypes 

consisted of removing variants with MAF <1%, INFO SCORE  <0.4 (a measure of 

imputation quality), and deviated from Hardy–Weinberg equilibrium in controls (P < 10-7).  

3.2.3 UNIVARIATE ANALYSIS REPLICATION FOR ALL SAMPLES 

An additive frequentist analysis corrected for population structure was implemented for all 

QC-pass GWAS data, which consisted of 9,194 healthy controls and 4,508 CD cases. An 

additive model, with the top 10 first principal components as covariates, was implemented 

as a logistic regression in R (R Core Team, 2021) for the non-imputed dataset and SNPTEST 

for the imputed datasets. 

3.2.4 ESTIMATION OF MARKERS WITH DISEASE POTENTIAL 

An additive analysis, including the initially reported top 10 PC as covariates, was performed 

using 40% of samples (1,803CD and 3678 HC) for the imputed (8,755,412 SNPs) and the 

original dataset (not imputed, 246,735 SNPs). The additive genetic model is represented by 

equation 3. Where 𝛽0 refer to the intercept, 𝛽𝑛, to the effect size of the nth marker, X is the 

number of copies of the reference allele, and 𝜀, the residual error. 

ln(𝑜𝑑𝑑𝑠) = 𝛽0 + 𝛽𝑛𝑋 + 𝜀 

Equation 3. Additive Genetic Model 

 

A preselection step using the 40% of samples was implemented to deal with the large number 

of variants yielded by the imputation process. Then, after removing duplicated data (by 

position), the top 5% of the top associated markers, 428,320 and 11,987 SNPs for the imputed 
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and not imputed data, respectively, were selected as potential markers and were used for the 

subsequent analysis. 

3.2.5 LINKAGE DISEQUILIBRIUM CLUMPING 

An LD clumping process was set (Fig. 1D), using plink (Purcell et al., 2007), removing all 

the SNPs with an r2 >0.05 keeping the most significant markers of de clump set. After this 

process, 1,413 variants remained within the not imputed dataset and 33,555 within the 

imputed dataset. 

3.2.6 ROBUST ESTIMATION OF MULTIVARIATE POTENTIAL 

The remaining 60% of samples, was used to test the multivariate and univariate-based 

methods. The models were trained using 70% of the samples and tested on the remaining 

30%. The experimental setting for this analysis consisted of performing 10 repeated random 

sub-sampling validation to correct for sampling, which is represented in Figure 7. 

 
Figure 7. Random sampling’ ten-fold cross-validation diagram, used to apply multivariate and 
univariate-based methods. 
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Then, a univariate GWAS analysis was performed for each RS (random sampling) in the 

training set, and those SNPs with a p-value < 0.01 were subsequently used. An additive 

analysis corrected for population structure was implemented for QC-pass GWAS data. An 

additive frequentist model was used as is the most common approach in univariate studies. 

The model was implemented as a logistic regression in R using the 10 first principal 

components as covariates.  

3.2.7 PREDICTOR MODELS 

The training set (42% of the data resulting from 70% of the 60%) and the SNPs filtered by 

p-value threshold were used to evaluate the multivariate and univariate-based methods. The 

test set (18% of the data resulting from 30% of the 60%) was finally used to assess the 

prediction performance for all the models. The performance average and standard deviation 

across the 10-folds sets were used (Figure 8). 

 

Figure 8. Overall methodology for evaluating the performance of the models for the CD dataset. 
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3.2.7.1 UNIVARIATE-BASED METHODS  

A PRS was estimated with the log of the odds ratio of the effect sizes (used as weights), using 

various p-value thresholds from 1e-7 to 1e-2. This score is represented in equation 4. 

𝑃𝑆𝑖 = 𝛽1𝑔1𝑖 + ⋯ +𝛽𝑚𝑔𝑠𝑖  

Equation 4. PRS estimation 
 

Where 𝑔𝑚𝑖 , is the number of effect alleles (0, 1, or 2) of SNP m for individual i, and βm 

denotes the allele “risk” effect of SNP m  (Behravan et al., 2018; Torkamani et al., 2018). 

The PRS adjusted and unadjusted were estimated. PRS is considered unadjusted when all the 

markers within a determined threshold are selected without considering possible detrimental 

effects due to neighbor variants in LD (Li et al., 2015). Adjusted PRS was estimated using 

both plink P+T (Li et al., 2015). PRS P+T scores were generated by first clumping all the 

markers with an LD r2 > 0.05 using plink v1.9 (Purcell et al., 2007), thus keeping only the 

independent variants.  

3.2.7.2 MULTIVARIATE METHODS  

Embedded methods, like LASSO, are characterized by including a feature selection process 

in the training stage of the model. LASSO (least absolute shrinkage and selection operator) 

is a regression analysis method (Figure 9) that enhances the prediction accuracy by 

performing variable selection and L1 regularization (Tibshirani, 1996).  
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Figure 9. The schematization of a classification problem with a binary trait. 

 

Due to, L1 regularization some coefficients can become zero and eliminate from the model. 

(Tibshirani, 1996). The regression algorithm minimizes the error (loss function) when 

training a model. Lasso (L1) regularization modifies the loss function as presented in 

equation 5. LASSO was implemented with the R package glmnet (Friedman et al., 2010)  

𝐿 = ∑(𝑦 − �̂�)2 + 𝛼 ∑ |𝑚| 

Equation 5. Lasso (L1) regularization, L = Sum of squared residuals + Penalty. 

 

Random forest (RF) is a classification tree-based strategy that ranks the features by how well 

they improve the purity of the node (Figure 10). This method is an ensemble learning method 

for classification where the output of the random forest analysis is the class selected by most 

trees (Ho, 1998). The Gini Impurity of a node is a measurement of the likelihood of incorrect 

classification of a sample given a variable (Ho, 1998).  

 

X1

X2
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Figure 10. Random Forest representation for a binary class classification problem. 

 

In a classification problem, the Gini impurity is represented by equation 6, where fi is the 

frequency of sample i at a node and C is the number of unique samples. RF was used from 

the R package caret (Max Kuhn, 2021) and ordinalForest (Roman Hornung, 2021). 

𝐺 = ∑ −𝑓𝑖

𝐶

𝑖=1
(1 − 𝑓𝑖) 

Equation 6. Gini impurity to decide the best split for the RF problem 

 

XGBoost provides a regularizing gradient boosting framework, which constructs boosted 

trees with a score indicating how useful or valuable each feature was in creating the boosted 

decision trees within the model (Tianqi Chen et al., 2021). In gradient boosting, the learning 

procedure consecutively fits new models to classify the variable (Figure 11); the idea is to 
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add new models to the ensemble sequentially (Natekin & Knoll, 2013). XGBoost was used 

from the R package caret (Max Kuhn, 2021) and xgboost (Tianqi Chen et al., 2021). 

 

Figure 11. XGBoost, a gradient boosting framework, representation. Model built sequentially. 
 

Bootstrap Stage Wise Model Selection (BSWIMS) is based on forwarding, and backward 

selection (Figure 12) coupled to logistic models, using the R package FRESA.CAD (A 

Martinez-Torteya et al., 2018). BSWIMS extracts those SNPs whose all terms are statistically 

significant, repeating the model generation until no significant SNPs are added. 

 

Figure 12. Schematization of forwarding and backwards selection 
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LDpred is a Python-based software package that adjusts GWAS summary statistics for the 

effects of linkage disequilibrium (LD) (Vilhjálmsson, Yang, Finucane, Gusev, Zheng, et al., 

2015). This method infers each marker's posterior mean effect size using prior effect sizes 

and LD information from an external reference panel (Figure 13). Ldpred applies an 

approximate MCMC (Marko Chain Monte Carlo) Gibbs sampler to infer the posterior mean. 

This approximate Gibbs sampler sample the update of the effect sizes from the posterior 

distribution (Vilhjálmsson, Yang, Finucane, Gusev, Zheng, et al., 2015). 

 

Figure 13. Diagram for Ldpred methodology, as established by (Vilhjálmsson, Yang, Finucane, 
Gusev, Zheng, et al., 2015) 
 

Assuming that distant markers are unlinked, Vilhjálmsson et al. mention that the posterior 

mean for the effect sizes within a small region l under an infinitesimal model are 

approximated by equation 7. Where Dl denotes the regional LD matrix within the region of 

LD, and B~1 represents the least-squares-estimated effects within that region.  Ldpred can 

estimate the PRS by assigning a causal fraction for the data. 

E(βl∣∣β˜l,D)≈(MNh2gI+Dl)−1β˜l. 
Equation 7. LDpred: Bayesian Approach in the Presence of LD as described by (Vilhjálmsson, Yang, 
Finucane, Gusev, Zheng, et al., 2015) 
 
 

The LDpred method was also applied to the data, but instead of selecting the markers to build 

the PRS by p-value thresholding, this was performed by a causal fraction. Version 1.0.10, 
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available in https://github.com/bvilhjal/ldpred, was used. Due to the conditions for which 

LDpred has been developed (to relay in the LD among the markers), these analyses were 

only performed with the datasets without the LD clumping.  

Most of the classification methods assume the dataset is evenly distributed and are optimized 

to perform better in those circumstances. Thus different methods to balance the data class 

distribution have been proposed (Ali et al., 2015). For this research, an oversampling step 

was integrated to balance the data classes for the multivariate methods, using the package 

ROSE (Lunardon et al., 2014). Random Oversampling involves supplementing the training 

data with additional data for the minority classes (Figure 14) (Ling & Li, 1998). This 

approach creates a sample of synthetic data for the minority class, where the new examples 

are drawn from a conditional kernel density estimate of the two classes. The unknown density 

function is estimated by averaging over a set of homogeneous kernel functions centered at 

each sample point and then generating new sample points based on the estimated density 

function (Lunardon et al., 2014). 

 

Figure 14. Schematization of random oversampling for a minority class 
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3.2.7.3 PERFORMANCE OF THE MODELS 

The predicted probability of disease was evaluated on the test data for each model. Receiver 

operator characteristic curves (ROC) and the area under the ROC curve (AUROC) were used 

to assess the models. The AUC score reduces the ROC curve to a single measure performance 

metric. The AUROC is the probability that a random sample for a case is ranked more likely 

to be diseased than a random sample for control (Hanley & McNeil, 1982). This is given by 

equations 8 to 10. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Equation 8. True Positive Rate estimation 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁 

Equation 9. False Positive Rate estimation 

 

 𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅) 

Equation 10. AUC estimation 

3.2.7.4 IMPORTANCE OF THE VARIANTS FOR MULTIVARIATE MODELS 

For XGBoost and Random Forest, the models estimate variance importance for the SNPs, 

which are averaged scaled class-specific scores (Max Kuhn, 2021). The importance is a 

measure of the reduction in the statistic when each predictor’s feature is added to the model. 

For LASSO, BSWiMS, and LDpred, the measure of variance importance is given by the size 

of the re-estimated effects (betas) of the variants (A Martinez-Torteya et al., 2018; Tibshirani, 

1996; Vilhjálmsson, Yang, Finucane, Gusev, Price, et al., 2015).  
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The rank of importance for these methods was derived by ranking the absolute value of the 

re-estimated betas. For XGBoost and Random Forest, the rank was performed based on the 

accumulative importance, obtained by adding the mean importance of the variant and the 

number of CVs selected. 
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3.2.8 VALIDATION AND BIOLOGICAL INTERPRETATION 

3.2.8.1 FUNCTIONAL ANALYSIS OF GENES AND VARIANTS 

Functional analysis for genes associated with variants from the models was performed using 

ENRICHR and DAVID’s bioinformatic tools  (Huang et al., 2009), which conducts an over-

representation test to determine if the selected genes have a non-random presence in a 

biological pathway. The criteria for clustering terms consisted of selecting those terms 

statistically significant (after Bonferroni correction for p < 0.05) and that involved a certain 

number of genes (≥10 for diseases, ≥ 4 for GO, and KEGG).  

The pathways and gene ontology terms for molecular function and biological process were 

analyzed. Because many highly related terms were observed, the significant terms were 

grouped by similarity using hierarchical clustering separately for GO and KEGG and by 

groups of similar disorders or diseases. Groups were generated by averaging the presence of 

the gene among the diseases/terms merged in the group. HLA genes were removed in this 

analysis to simplify cluster generation of terms. Finally, the gene list from those reported in 

open targets was compared (Carvalho-Silva et al., 2019) to identify novel or unreported genes 

for CD. 
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3.2.8.2 PERMUTATION OF CD PHENOTYPES 

The experimental setting of the prediction models was repeated, but adding a permutation of 

phenotypes (class: case or control), thus randomizing the samples. This was performed to 

evaluate the efficacy of the models to predict the CD status (Figure 15). 

 

Figure 15. Workflow for comparing multivariate and univariate models with the permutation 

of samples phenotypes. 
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3.2.8.3 MISCLASSIFIED EXPERIMENT 

An additional model building was conducted for the poorly or misclassified samples for 

LASSO and XGBoost, selecting misclassified samples from the not imputed data, with no 

LD clumping and a p-value < 1e-3 (Figure 16). For this, three different GWAS were 

implemented for each method: 1) misclassified CD cases vs. correctly classified CD cases, 

2) misclassified healthy controls vs. correctly classified healthy controls, and 3) misclassified 

CD cases vs. misclassified healthy controls. The same methodology previously mentioned 

was applied, but with the SNPs identified on the 3 GWAS for the misclassified samples. 

 

Figure 16. Approach for misclassified samples. 3 additional GWAS were performed for the 
misclassified samples. 
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3.2.8.4 GENOTYPE SUBTYPING FOR “NOVEL” MARKER 

Fourth, to further challenge rs4945943 polymorphisms attempting to explain its importance 

in CD and to explore possible links between this association and known CD genes, it was 

reasoned that CD might present highly diverse genotypes. Thus, surged the question of what 

the genome-wide associations could be when cases and controls are pre-selected for the same 

specific rs4945943 polymorphism. This procedure could imply an epistatic effect between 

the resulting associations and a particular polymorphism. Therefore, a GWAS analysis was 

performed, comparing controls and cases having AA, AB, or BB polymorphisms in 

rs4945943 (Figure 17). To compensate for decreases in the number of samples, only the 

1205 SNPs whose p-value < 10-2 in the entire dataset were used. The number of cases was 

251, 1,655, and 2,601, correspondingly to AA, AB, and BB polymorphisms, and the number 

of controls was 397, 3,154, and 5,643, respectively.  

 

Figure 17. Representation of the genotype subtyping analysis for the rs4945943 SNP. 
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4. CHAPTER 4: RESULTS 

4.1 GWAS DATA AND QC FILTERING 

For the discovery and testing, the GWAS raw data was obtained from the European Genome-

phenome Archive (EGA) website under accession EGAS00001000924 and 

EGAC00001000205 (de Lange et al., 2017), corresponding to the UK IBD Genetics 

(UKIBDGC) and UK10K GWAS dataset. The dataset contained 4,508 UK CD cases 

(EGAS00001000924), diagnosed using accepted endoscopic, histopathological, and 

radiological criteria, and genotyped on the Human Core Exome v12.1. 9,944 population 

control samples genotyped on the Human Core Exome v12.0 were obtained from the 

Understanding Society Project (EGAC00001000205). Quality control (QC) for genotypes 

and sample were conducted as implemented in the original published data (de Lange et al., 

2017), which consisted of removing variants that were not present on both versions of the 

genotyping platforms, had missing values >5%, had a significant difference in call rate 

between cases and controls (P < 10-5), deviated from Hardy–Weinberg equilibrium in 

controls (P < 10-5) or were affected by a genotyping batch effect (significant association (P 

< 10-5). For samples, the criteria were to keep the samples that passed the QC in the original 

study (information provided in the dataset information). For this non-imputed dataset, after 

quality control for genotypes, data were available for 4,508 Crohn's disease cases and 9,194 

controls for 246,735 variants (Figure 18).  

Finally, the top 10 principal components provided in the dataset were used to correct for 

population structure for the subsequent analysis (Figure 19).  
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Figure 18. Summary of non-imputed variants QC 

 

 
Figure 19. Top 2 Principal components plot 

For the validation analysis, the NIDDK IBD Genetics Consortium Crohn's Disease data was 

requested, obtained through dbGaP accession phs000130.v1.p1 (Duerr et al., 2006). This 

dataset contained 513 CD cases and 515 control samples from European ancestry. SNPs were 

excluded for call rates less than 90% and MAF less than 1%. After this QC process, 313,752 

SNPs remained. Only SNPs overlapping with the UKIBDGC and UK10K GWAS dataset 

were used for analysis. 
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4.2 GENOTYPE IMPUTATION 

Imputation was performed remotely using the Michigan Imputation Server (S et al., 2016). 

For this process, the European 1000 genomes reference data was applied. 47,077,455 variants 

were retrieved for autosomal chromosomes. For this dataset, QC for genotypes consisted of 

removing variants with MAF <1%, INFO SCORE <0 .4 (which is a measure of imputation 

quality), and deviated from Hardy–Weinberg equilibrium in controls (P < 10-7). The process 

resulted in 8,755,412 variants after QC for the imputed dataset (Table 2). 

Table 2. Summary of imputed variants QC 

Filtering Criteria 

Chr 1-22 

SNPs Imputation 47,077,455 

Mismatching calls 160 

Duplicate Vars 2,603 

Qualilty < 0.4 32,861,186 

HWE p < 1e-7 588 

Maf < 1% 5,457,506 

Final Data 
Variant postQC 8,755,412 

% Recovery 19% 

  



 66 

4.3 UNIVARIATE GWAS REPLICATION (100% SAMPLES) 

4.3.1 NON-IMPUTED DATASET 

An additive frequentist analysis corrected for population structure was implemented for all 

QC-pass GWAS data. With 100% of samples, the univariate analysis yielded a correlation of 

95% (Figure 20) against the original data. Among the causes of the differences between this 

replica and the original results are the samples used for the analysis, as they removed some 

additional samples to perform the metanalysis.  

 

Figure 20. Correlation plot of GWAS replication in log10 p-values scale. Only SNPs not imputed 
and used for metanalysis within Langer et al. 2017 are considered for this plot. 

 

The Manhattan plot (Figure 21) and QQ plot (Figure 22) showed CD-associated locus in 

chromosomes 1, 5, and 16, previously associated with disease susceptibility. The thresholds 

for identifying the significant variants were 1e-7 for genome-wide significance and 1e-5 for 

suggestive associations.  
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Figure. 21.  Manhattan plot of CD GWAS, for 100% sample and not impute dataset, x-axis refers to 
chromosomes and y-axis to -log10 p values of logistic regression. Red line: genome-wide significant 
threshold 1e-7. Blue line: Suggestive association threshold 1e-5. 

 

 
Figure 22.  QQ plot of GWAS for the not imputed dataset, the x-axis represents expected -
log10 and y-axis refer to the observed -log10 of each SNP. 

 

  



 68 

4.3.2 IMPUTED DATASET 

An additive frequentist analysis, corrected for population structure, was set in SNPTEST v2.0 

(Marchini et al., 2007). This was implemented for all QC-pass GWAS data with 100% 

samples and yielded a Pearson correlation of 87% (Figure 23) against the original data. 

Among the causes for the differences between this replica and the original results are: 1) the 

samples used for the analysis were slightly different because they removed some duplicated 

samples, with other studies, to perform the metanalysis, and 2) they used an additional (not 

provided) set of whole-genome sequencing to enrich the imputation reference dataset. The 

Manhattan plot (Figure 24) shows known CD-associated locus at thresholds of 1e-7 for 

genome-wide significant variants and 1e-5 for variants with a suggestive association. The 

QQ plot (Figure 25) represents the deviation of the observed P values from the null 

hypothesis. These results provide confidence for this subsequent analysis due to the 

reproducibility of associated variants. 

 

 
Figure. 23. Correlation of -log10 P values of replica and CD GWAS. 
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Figure 24. Manhattan plot of CD GWAS for 100% samples and imputed dataset, x-axis refers to 
chromosomes and y-axis to -log10 p values of logistic regression. Red line: genome-wide significant 
threshold 1e-7. Blue line: Suggestive association threshold 1e-5. 

 

 
Figure 25. QQ plot of GWAS for the imputed dataset, the x-axis represents expected -log10 and y-
axis refer to the observed -log10 of each SNP.  
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4.4 APPROACH DESIGNED TO EVALUATE MULTIVARIATE AND 

UNIVARIATE-BASED MODELS TO PREDICT CD RISK IN THE 

UKIBDGC AND UK10K GWAS DATASET. 

The approach described within the methods section compared different methods to predict 

CD risk from a GWAS dataset. For this, four pipeline versions were derived from the 

combination of original data with and without SNP imputation together with and without LD 

clumping. To facilitate computational analysis, a univariate analysis on 40% of the samples 

was performed to select the top 5% of the features, including more than genome-wide 

significant SNPs. The remaining 60% of the samples were used to robustly estimate a p-value 

for each SNP and the error for multivariate risk models. The robust estimation was performed 

in 10-fold-subsamples where 70% of the samples were used for training and 30% for testing 

when evaluating multivariate models.  

The robustly estimated geometric mean p-value was used to filter markers at specific p-value 

thresholds and then fed into multivariate algorithms to generate the multivariate models.  

4.4.1 SNPS DATASETS 

The UKIBDGC AND UK10K GWAS dataset was selected to train and test the CD risk, 

prediction models. In addition, the NIDDK IBD Genetics Consortium Crohn's Disease was 

selected as the validation set, where the best models were also tested. Figure 26 describes 

the analysis that was conducted in each dataset. 
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Figure 26. Datasets selected for CD risk prediction methodology. 

4.4.2 SNPS FILTERING: PRE-SELECTION GWAS (40% OF SAMPLES)  

For both not imputed and imputed datasets, a GWAS was performed on the 40% of samples 

to decrease the number of features and facilitate the subsequent analysis. A frequentist 

additive analysis was implemented for both sets. The not imputed dataset contained 246,735 

SNPs, and the imputed dataset consisted of 8,755,412 SNPs. The samples were the same for 

both analyses, corresponding to 1,803 CD cases and 3,676 healthy controls. These analyses 

were performed within SNPTEST v2.0 (Marchini et al., 2007). 

For this 2 GWAS, 3,846 and 111,653 markers were found to be significant at a p-value < 1e-

2, however, to add more features, SNPs for the cross-validated univariate analysis, a top 5% 

of SNPs were selected for both imputed and not imputed sets. Figure 27 shows the 

distribution of markers with a p-value <1e-2 for both not imputed and imputed datasets. 
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Figure 27. Distribution of markers with a p-value <1e-2, for both A) not imputed and B) imputed 
dataset 

 

Finally, LD-clumping was performed with plink for both not imputed and imputed datasets. 

11,987 and 428,320 markers were selected as the top 5% of each non-imputed and imputed 

dataset. Table 3 displays the number of SNPs remaining for each dataset version. 

Table 3. Number of SNPs remaining in each dataset version. 

Dataset version #SNPs LD-clumping #SNPs No LD-clumping 

Not imputed 11,987 1,413 

Imputed 428,320 32,142 

4.4.3 PRE-SELECTION OF SNPS FOR UNIVARIATE ANALYSIS 

The groups of markers were filtered based on the p-value threshold from 1e-7 to 1e-2. 

However, for the imputed dataset, the analysis for some multivariate methods was possible 

only up to 1e-4 because of the complexity of the models. Table 4 shows the number of 

markers selected for a predefined threshold of 1e-7, 1e-6 1e-5, 1e-4, 1e-3, and 1e-2, for either the 

imputed dataset or the not imputed dataset and for the application of LD clumping.  
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Table 4. Mean number of SNPs selected in each threshold. ± standard deviation. 

Dataset version / 
Filtering Threshold 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 

Not Imputed No LD 
clumping 39 ± 6 46 ± 5 60 ± 6 88 ± 6 168 ± 15 417 ± 25 

Not Imputed with LD 
clumping 4 ± 1 5 ± 1 6 ± 1 8 ± 1 13 ± 2 34 ± 5 

Imputed No LD 
clumping 

516 ± 
133 

694 ± 
108 

990 ± 
143 

1,555 ± 
135 

3,249 ± 
401 10,324±485 

Imputed with LD 
clumping 7 ± 2 9 ± 2 13 ± 2 25 ± 4 74 ± 9 439±23 

 

4.4.4 SNPS REPLICATED AMONG THE 10X RANDOM SAMPLING GWAS   

A 10X random subsampling approach was implemented to consider the “sampling effect” 

for the marker’s pre-selection from the univariate analysis. Figures 28 and 29 show the 

number of variants replicated among the 10X GWAS for the not imputed and imputed 

dataset, most of them reproduced with higher thresholds. The lack of replication is evident 

for p-values less stringent as p<1e-2. This lack of replication, for SNPs not genome-wide 

associated, is one of the documented pitfalls of GWAS. Also, these results show that the 

replication of markers is slightly better for the imputed dataset than the non-genotyped SNPs 

(imputed set). 
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Figure 28. Percentage of markers replicated in each GWAS at different thresholds for the not imputed 
dataset. 

 
Figure 29. Percentage of markers replicated in each GWAS at different thresholds for the imputed 
dataset. 

 

4.4.5 ROBUST ESTIMATION OF MULTIVARIATE POTENTIAL 

The 10X test mean and standard deviation AUROC for each combination of the dataset, 

filtering, LD clumping, imputation, and predictor model is shown in Table 5 for non-imputed 
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datasets and Table 6 for imputed datasets. The AUROC mean and deviation for each model 

are also shown in Figure 30. Due to LDpred building models by filtering the markers by a 

causal fraction (using a reference LD panel to model the LD among SNPs), these 10X models 

were tested using various causal fractions cutoffs for the two versions of the No LD clumped 

(top 5% markers) datasets. The best performance observed was obtained by us all the Top 

5% SNPs in the not imputed dataset (mean AUROC=0.667, Figure 30A and Figure 30B, 

Table 7, Figure 31). Compared to both the multivariate and PRS univariate-based models, 

this performance was the best. All markers with no filtering were fitted, 2M markers in 

imputed data and 100K markers in no imputed data, and with a variation in the causal 

fraction. This, to explore a further increment in AUROC. However, the results did not show 

an increment for AUROC in both analyses (Table 7 and Table 8).  

PRS P+T showed the second-best performance (AUROC=0.656). However, the multivariate 

models were further analyzed, specifically the XGBoost models, due to its evaluation of 

variants (the variant importance estimation), which is a measure that cannot be directly 

estimated from a typical PRS analysis.  
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Figure 30.  Mean AUROC of multivariate and univariate-based models in testing sets across datasets. 

(A) For not imputed with no LD clumping. (B) For not imputed with LD clumping. (C) For imputed 

with no LD clumping. (D) For imputed with LD clumping. Multivariate models: BSWIMS, LASSO, 

Random Forest, and XGBoost. Univariate-based models: PRS unadjusted, PRS P+T, and LDpred. 

Vertical bars around mean dots represent the standard deviation. The upper axis (orange) for the No 

LD clumped set only corresponds to LDpred causal fractions (gray). 

For the multivariate models, LDpred (AUROC=0.667), LASSO (AUROC=0.621), and 

XGBoost (AUROC=0.615) showed better performances than the other models along dataset 

versions and number of SNP used. LASSO was slightly better than XGBoost in the four 

datasets versions. LASSO, BSWiMS, and LDpred were also analyzed because even though 

they have an effect size, as the PRS methods, and do not provide a variant analysis, to assign 

importance for the markers compared to methods as Random Forest and XGBoost, these 

effects sizes are readjusted according to the importance of the features within the models. 
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Figure 31. Mean ROC AUC of LDpred models in the testing set for not imputed and imputed sets. 

Vertical bars show the standard deviation. 

Overall the performances of most algorithms do not show a detrimental tendency when 

increasing the number of SNPs, even when they barely carry CD causal information (when 

less significant SNPs are added). Only PRS unadjusted showed a decrement for the AUROC 

when less informative SNPs were added (Figure 30).  
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Table 5. Mean AUROC for testing dataset, for 10X RS for multivariate models and univariate-based 
models, for the not imputed dataset. Data in bold refer to the highest AUROC value. +/- indicate 
standard deviation 
Threshold (for p-value 
filtering) 

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 

#SNPs No LD clumping 39 46 60 88 168 417 
LASSO 0.592 

±0.013 

0.592 

±0.011 

0.601 

±0.011 

0.609 

±0.007 

0.621 
±0.009 

0.615 

±0.013 

RF 0.584 

±0.006 

0.584 

±0.008 

0.594 

±0.009 

0.599 

±0.010 

0.602 

±0.012 

0.606 
±0.007 

XGBoost 0.587 

±0.009 

0.590 

±0.007 

0.597 

±0.01 

0.601 

±0.005 

0.615 

±0.004 

0.594 

±0.013 

BSWiMS 0.589 

±0.011 

0.591 

±0.011 

0.594 

±0.011 

0.599 

±0.009 

0.604 
±0.011 

0.598 

±0.015 

PRSunadj 0.547 
±0.027 

0.527 
±0.026 

0.532 
±0.016 

0.512 
±0.013 

0.517 
±0.010 

0.516 
±0.011 

PRS P+T 0.625 
±0.012 

0.627 
±0.012 

0.634 
±0.011 

0.646 
±0.008 

0.657 
±0.007 

0.656 
±0.012 

#SNPs LD clumping r2 > 0.05 4 5 6 8 13 34 
LASSO 0.57 

6±0.012 

0.580 

±0.008 

0.580 

±0.008 

0.582 

±0.008 

0.587 
±0.011 

0.575 

±0.012 

RF 0.541 

±0.017 

0.548 

±0.013 

0.554 

±0.011 

0.565 

±0.011 

0.564 

±0.009 

0.563 

±0.006 

XGBoost 0.569 

±0.011 

0.576 

±0.010 

0.580 

±0.008 

0.580 

±0.006 

0.583 
±0.008 

0.572 

±0.012 

BSWiMS 0.560 

±0.015 

0.567 

±0.014 

0.570 

±0.014 

0.575 

±0.012 

0.580 
±0.011 

0.574 

±0.011 

PRSunadj 0.530 
±0.029 

0.530 
±0.022 

0.517 
±0.017 

0.515 
±0.014 

0.522 
±0.017 

0.507 
±0.008 

PRS P+T 0.607 
±0.010 

0.612 
±0.010 

0.615 
±0.009 

0.618 
±0.010 

0.625 
±0.011 

0.614 
±0.011 
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Table 6. Mean AUROC for the testing dataset, for 10X RS for multivariate models, and univariate-
based models, for the imputed dataset. Data in bold refer to the highest AUROC value. +/- indicate 
standard deviation 
Threshold (for p-value filtering) 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 
#SNPs No LD clumping 516 694 990 1555 3249 10324 
LASSO 0.600 

±0.010 

0.603 

±0.015 

0.610 

±0.012 

0.621 
±0.010 

0.616 

±0.008 

0.593 

±0.006 

RF 0.550 

±0.031 

0.553 

±0.028 

0.562 
±0.037 

0.544 

±0.014 

NA NA 

XGBoost 0.596 

±0.010 

0.598 

±0.009 

0.608 
±0.005 

0.603 

±0.006 

NA NA 

BSWiMS 0.595 

±0.007 

0.602 

±0.011 

0.606 

±0.010 

0.610 

±0.008 

NA NA 

PRSunadj 0.537 
±0.023 

0.534 
±0.019 

0.530 
±0.023 

0.524 
±0.022 

0.516 
±0.014 

0.513 
±0.006 

PRS P+T 0.633 
±0.012 

0.636 
±0.013 

0.642 
±0.013 

0.651 
±0.008 

0.646 
±0.012 

0.632 
±0.012 

#SNPs LD clumping r2 > 0.05 7 9 13 25 74 439 
LASSO 0.583 

±0.009 

0.586 

±0.007 

0.590 

±0.011 

0.594 

±0.006 

0.594 
±0.005 

0.573 

±0.008 

RF 0.558 

±0.023 

0.553 

±0.016 

0.550 

±0.020 

0.551 

±0.019 

0.560 
±0.020 

0.550 

±0.013 

XGBoost 0.578 

±0.004 

0.585 

±0.011 

0.588 

±0.013 

0.591 

±0.007 

0.589 

±0.016 

0.567 

±0.010 

BSWiMS 0.569 

±0.008 

0.575 

±0.010 

0.579 

±0.007 

0.584 
±0.008 

0.583 

±0.006 

0.564 

±0.011 

PRSunadj 0.532 
±0.024 

0.533 
±0.025 

0.528 
±0.021 

0.5184 
±0.011 

0.519 
±0.018 

0.511 
±0.010 

PRS P+T 0.619 
±0.008 

0.623 
±0.007 

0.629 
±0.008 

0.637 
±0.006 

0.642 
±0.013 

0.626 
±0.008 
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Table 7. Mean AUROC for testing dataset, for 10X RS for LDpred models, for the imputed and not 
imputed dataset. Data in bold refer to the highest AUROC value. +/- indicate standard deviation 

Threshold  
(for Causal Fraction) 

1e-3 3e-3 1e-2 3e-2 1e-1 3e-1 1 

~ #SNPs 12 36 118 355 1,184 3,552 11,839 
LDpred 
Not Imputed Top 5%  

0.528 
±0.017 

0.528 
±0.017 

0.536 
±0.022 

0.554 
±0.024 

0.575 
±0.022 

0.612 
±0.025 

0.667 
±0.024 

~ #SNPs 88 265 882 2,645 8,818 26,454 88,181 
LDpred 
Not Imputed Top 
100K 

0.523 
±0.017 

0.518 
±0.015 

0.547 
±0.021 

0.586 
±0.022 

0.637 
±0.030 

0.640 
±0.024 

0.638 
±0.025 

~ #SNPs 324 973 3,244 9,732 32,439 97,317 324,390 
LDpred 
Imputed Top 5%  

0.525 
±0.021 

0.560 
±0.026 

0.595 
±0.029 

0.620 
±0.042 

0.636 
±0.019 

0.639 
±0.017 

0.656 
±0.021 

~# SNPs 1,480 4,439 14,798 44,395 147,983 443,948 1,479,826 
LDpred Imputed Top 
2M 

0.523 
±0.018 

0.567 
±0.030 

0.640 
±0.033 

0.626 
±0.019 

0.611 
±0.018 

0.620 
±0.021 

0.625 
±0.022 

 

Table 8. Mean AUROC for testing dataset, for 10X RS for LDpred models, for the not imputed 
dataset of 100K SNPs, with causal fractions from 1e-1 to 3e-1. Data in bold refer to the highest AUROC 
value. +/- indicate standard deviation. 
Threshold  
(for Causal Fraction) 

1e-1 1.5e-1 2e-1 2.5e-1 3e-1 

~ #SNPs 8,818 13,227 17,636 22,045 26,454 
LDpred  
Not Imputed Top 5% 

0.642 
±0.030 

0.660 
±0.023 

0.659 
±0.025 

0.653 
±0.025 

0.637 
±0.018 

 

Imputation of non-genotyped markers was performed to increase the number of features. In 

addition, LD clumping was also used to remove redundancy and decrease the data 

dimensionality with filtering based on the correlation of the markers, which is known to be 

high in imputed datasets [43]. However, for all the methods, the imputed dataset had only a 

slight increase in AUROC compared to the original, not imputed dataset (Figure 32), except 

for Random Forest. In LASSO, for example, the mean AUROC=0.610 using 88 SNPs, but 

for the imputed dataset, the mean AUROC=0.621 using 1555 SNPs (both results without LD 

clumping). Similarly, LD clumping had an overall detrimental effect on the performance of 
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the models for both the not imputed and imputed datasets. This is most evident in the not 

imputed datasets (Figure 32). 

 
Figure 32. AUROC values for the seven methods and their respective thresholds or causal fraction 
(LDpred). AUROC values for each method across the 4 datasets. The maximum number of features 
for each class is indicated in parenthesis. 

4.4.6 STATISTICAL ANALYSIS OF CD RISK PREDICTION ASSOCIATED 

METHODS 

4.4.6.1 CRITICAL DIFFERENCE 

A critical difference analysis highlighted the differences among methods for the results of 

both imputed and not imputed datasets and both with and without LD clumping (Figure 

33A). This analysis fits a Nemenyi post-hoc test to rank methods based on their AUROC. 

However, this diagram did not compare LDpred results because its AUROC is based on 

causal fractions rather than p-value thresholds. Figure 33A shows that when LDpred is not 

present, PRS P+T had the best results, and PRS unadjusted had the lowest-ranked results. 
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Figure 33. Critical difference of the multivariate and univariate-based methods shows the statistical 
comparison of all models against each other. Classifiers that are not connected by a bold line of length 
equal to CD (critical difference) have significantly different mean ranks (Confidence level of 95%) 
A) All 10X models and thresholds for imputed and not imputed datasets, without LDpred method. B) 
Best 10X models for every method against each other.  

 

Another critical difference analysis was performed to fit LDpred AUROC estimates and 

compare them against the other multivariate and univariate analyses. The best 10X models 

for each method were selected to fit the critical difference test for imputed and not imputed 

data. Figure 33B shows the statistical comparison of all 10X models against each other. This 

diagram ranks LDpred as the best method, with no significant difference with PRS P+T. This 

validates the use of LDpred models to identify variants and genes associated with CD risk. 

4.4.6.2 LINEAR REGRESSION 

The prediction of CD risk was performed under different conditions such as imputation 

status, LD clumping application, threshold or causal fraction filtering, fold repetition, and 

multivariate and univariate-based methods. Thus, a linear regression analysis was performed 

to identify the effect of each condition on the prediction (AUROC) is represented by 

equation 11. 
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𝐴𝑈𝑅𝑂𝐶~𝛽𝑜 + 𝛽𝐼 + 𝛽𝐿 + 𝛽𝑇 + 𝛽𝐹 + 𝛽𝑀 + 𝛽𝐼𝐿 + 𝛽𝐼𝑇 + 𝛽𝐼𝐹 + 𝛽𝐼𝑀 + 𝛽𝐿𝑇 + 𝛽𝐿𝐹 + 𝛽𝐿𝑀 + 𝛽𝑇𝐹 + 𝛽𝑇𝑀 + 𝛽𝐹𝑀  

Equation 11. Linear regression model for AUROC 

Where AUROC refers to the area under the curve reached by each model, 0 to the intercept, 

I to the imputation status, L to the LD clumping application, T to the threshold or causal 

fraction filtering, F to the fold number, M to the multivariate or univariate-based methods, 

and the interactions among them. This analysis was performed in the R-package. The 

estimates and significance p-values for all the variables are displayed in Table 9. LD 

clumping status, method, and the interaction between imputation and either LD clumping 

status, threshold, or method were significant after a Bonferroni correction (p-value < 

0.05/40), accounting for the 40 predictors fitted in the model. As expected, the fold variable 

was not significant, meaning that the random sampling method did not affect the models.  
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Table 9. Summary of linear regression model for all the model’s variables (imputation and 
LD clumping status, Thresholds, Folds, and Methods). 

 Variable Estimate Std. Error t value Pr(>|t|) 
 

Imputed      0.0080  3.14E-03 2.431  0.01517 * 

LD      0.0243  3.22E-03 7.544 7.90E-14 *** 

TH   -0.535   3.744E-01  -1.429  0.15314   

Fold   -0.0004   4.728E-04  -0.896  0.37026   

Method XGBoost      0.0090  4.51E-03 1.990  0.04676 * 

Method LASSO   0.008   4.41E-03 1.832  0.06713 . 

Method LDpred   -0.060  5.37E-03 -11.288  < 2e-16 *** 

Method PRS P+T      0.0460  4.413E-03  10.350  < 2e-16 *** 

Method RF   -0.009   4.510E-03  -2.125  0.03375 * 

Method PRS unadjusted   -0.049  4.41E-03 -11.169  < 2e-16 *** 

Imputed * No LD clumping  -0.010  1.958E-03  -5.225 1.99E-07 *** 

Imputed * TH  -0.053  8.934E-03  -6.037 1.98E-09 *** 

Imputed * Fold   0.0005   3.21E-04 1.771  0.0767 . 

Imputed * Method XGBoost  -0.002   3.472E-03  -0.444  0.65693   

Imputed * Method LASSO   -0.001  3.379E-03  -0.419  0.67513   

Imputed * Method LDpred       0.0430  4.45E-03 9.763  < 2e-16 *** 

Imputed * Method PRS P+T       0.0010  3.38E-03 0.319  0.74999   

Imputed * Method RF  -0.025  3.472E-03  -7.224 8.05E-13 *** 

Imputed * Method PRS unadjusted  -0.003  3.379E-03  -0.787  0.4314   

No LD clumping * TH      0.8350  2.81E-01 2.967  0.00305 **  

No LD clumping * Fold      0.0009  3.37E-04 2.657  0.00797 **  

No LD clumping * Method XGBoost  -0.007  3.472E-03  -2.035  0.04202 * 

No LD clumping * Method LASSO  -0.003  3.379E-03  -0.831  0.40628   
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No LD clumping Method PRS + PT   -0.007  3.379E-03  -2.181  0.02936 * 

No LD clumping * Method RF   -0.004  3.472E-03  -1.029  0.30365   

No LD clumping * Method PRS unadjusted   -0.023  3.379E-03  -6.845 1.12E-11 *** 

TH * Fold  -0.003  1.555E-03  -2.061  0.03952 * 

TH * Method XGBoost  -0.665  5.110E-01  -1.300  0.19371   

TH * Method LASSO   -0.395  4.824E-01  -0.820  0.41257   

TH * Method LDpred  -0.148  4.068E-01  -0.363  0.71645   

TH * Method PRS P+T       0.4030  4.82E-01 0.836  0.40314   

TH * Method RF       1.3900  5.11E-01 2.721  0.00659 **  

TH * Method PRS unadjusted  -1.422  4.824E-01  -2.948  0.00325 **  

Fold * Method XGBoost  -0.00006  5.946E-04  -0.098  0.92228   

Fold * Method LASSO      0.0006  5.83E-04 1.053  0.29239   

Fold * Method LDpred       0.0010  7.68E-04 1.461  0.14426   

Fold * Method PRS P+T       0.0003  5.83E-04 0.585  0.55831   

Fold * Method RF       0.0002  5.95E-04 0.338  0.7354   

Fold * Method PRS unadjusted       0.0005  5.83E-04 0.855  0.39277 
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. Residual standard error: 0.01791 on 1480 
degrees of freedom. Multiple R-squared:  0.8036, Adjusted R-squared:  0.7984  

 

4.4.7 MISCLASSIFIED SAMPLES EXPERIMENT 

Additional model building was conducted for the poorly or misclassified samples for both 

LASSO and XGBoost, selecting misclassified samples from the not imputed data, with no 

LD clumping and a p-value < 1e-3. For this, three different GWAS were implemented for 

each method. Table 10 shows the mean number of samples selected for each GWAS and the 

assigned code for each group.  
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Table 10. Mean number of misclassified samples for each GWAS conducted for both LASSO and 
XGBoost models. CD (Crohn’s Disease), HC (Healthy controls) 

 CD vs mcCD HC vs mcHC mcCD vs mcHC 

LASSO      0 
                   1 

1,252 

641  

2,570 

1,291 

1,291 

641 

XGBoost   0 
                  1 

1,224 

669 

2,739 

1,122 

1,122 

669 

The number of markers added to the model building analysis for both LASSO and XGBoost 

is displayed in Table 11. 

Table 11. Number of SNPs added to the new LASSO and XGBoost models (LASSO | XGBoost) 
from each GWAS.  

 CD vs mcCD HC vs mcHC mcCD vs mcHC 

1e-7 53   | 28  60   | 67 41   | 21 

1e-6 60   | 37 65   | 79 47   | 26 

1e-5 68   | 47 66   | 87 54   | 29 

1e-4 71   | 54 67   | 89 60   | 38 

1e-3 81   | 65 74   | 100 68   | 46 

1e-2 111 | 157 133 | 188 109 | 163 

However, the new models derived from adding SNPs associated with both CD or HC from 

misclassified samples did not reach the maximum AUROC obtained in the original approach 

(Figures 34 and 35). Still, an increment in the AUROC from the most significant p-values 

was observed, meaning that this strategy allows improving models where the features have 

been discovered with a high significance, but as the variants with less significance are added 

to the models (p-value <1e-3), they perform even worse than the original approach. 
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Figure 34. Mean AUROC for the LASSO misclassified approach. All MC (SNPs from mcCD vs. 
mcHC), CAS MC and Crl MC (SNPs from CD vs. mcCD and HC vs. mcHC), Cas MC (SNPs from 
CD vs. mcCD), Crl MC (SNPs from HC vs. mcHC). X-axis, p-value thresholds (1e-7 to 1e-2). 

 
Figure 35. Mean AUROC for the XGBoost misclassified approach. All MC (SNPs from mcCD vs. 
mcHC), CAS MC and Crl MC (SNPs from CD vs. mcCD and HC vs. mcHC), Cas MC (SNPs from 
CD vs. mcCD), Crl MC (SNPs from HC vs. mcHC). X-axis, p-value thresholds (1e-7 to 1e-2). 
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4.4.8 RANDOM PERMUTATION OF PHENOTYPES 

A random permutation of phenotypes was implemented to determine if the multivariate 

model performed better than random. The permutation of phenotypes for LASSO, BSWIMS, 

and PRS unadjusted, showed that for the testing set, a mean area under the curve around 0.5 

was found (Figure 36), which means that the multivariate models indeed perform better than 

random. 

 
Figure 36. The area under the curve for training (left) and testing set (right) for BSWIMS, LASSO, 
and PRS unadjusted with permutated data. 2 repetitions were performed, referred to as random 1 and 
random 2. Multivariate models: BSWIMS and LASSO. Univariate-based models: PRS unadjusted. 
Vertical bars show the standard deviation. 

 

4.5 MODEL VALIDATION ANALYSIS 

4.5.1 GENE-BASED ANALYSIS 

Because this analysis might include potential novel markers in the predictor model building 

step by incorporating SNPs close to the genome-wide significant criteria, the gene and variant 

content for possible discovery was explored. The different methods evaluated in this research 

had other techniques to assign a value to each SNP/variant. For example, BSWiMS, LASSO, 
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and LDpred had a re-estimation of the beta or effect size values, and RF and XGBoost had a 

measure of importance, which was described within the methods section. On the other hand, 

PRS P+T does not measure the SNPs' importance (it takes the estimated effects from the 

GWAS summary statistics) to further analysis, making decisions for the variant and gene 

identification.  

The models varied mainly in performance and the number of SNP used (4 to 11,839). 

Therefore, the best model regarding AUROC and variants was selected to analyze further the 

markers and genes associated with CD. The best model was generated by LDpred using no 

SNP imputation (mean AUROC=0.667), with a CD of 1 and including 11,839 SNPs, 

corresponding to 4,677 genes (Table A1). LDpred method is designed and used for 

prediction rather than variants or gene identification (Vilhjálmsson, Yang, Finucane, Gusev, 

Zheng, et al., 2015). Then, to facilitate the application of LDpred models to identify variants 

and genes associated with CD-risk, filtering on effect sizes (re-estimated betas) was 

performed. All the variants with an effect higher than 0.01 were selected, corresponding to 

516 (283 intragenic and 233 intergenic) from 402 genes (Figure 37).  
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Figure 37. A) Variants and genes within selected LDpred model. B) Distribution of absolute mean 
values of effect sizes (re-estimated betas) within 10X 1 CF not imputed LDpred models. C) 
Distribution of absolute mean values of effect sizes (re-estimated betas) higher than 0.01, within 10X 
1 CF not imputed LDpred models. 
 
However, for the remaining methods, it was observed that for the not imputed and not 

clumped data, the best AUROC were obtained for the p-value threshold of 1e-3. This 

threshold selects 168 variants in each 10xCV, integrating 418 unique variants among the 10 

CVs, which refer to 223 genes (Table A2).  These variants and genes were also analyzed to 

back and get more confidence for the results obtained for the LDpred method. 

The procedure to annotate variants to genes was performed with R package BioMart 

(Smedley et al., 2009) and variants or genes of interest were further reviewed within dbNCBI 

and OpenTargets genetics. Also, GWAS were benchmarked to find if a gene or variant could 

be considered a novel finding (Table A2).   
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4.5.2 VARIANT IMPORTANCE TO FINDING “NOVEL” MARKERS 

Univariate-based methods assume the importance of the variants in a test model is the same 

as the reached within the discovery set. These models do not weigh the variables (SNPs), 

thus affecting the replication process. The prediction models for CD risk elucidated here 

found that even though LDpred was the best method, there was no significant difference 

between PRS P+T (the univariate-based most common PRS approach) and PRS P+ T and 

LASSO. However, PRS P+T relies only on the summary statistics from the GWAS, thus 

cannot aid to distinguish among the 418 variants (SNPs) to rank them and hence make 

asserted conclusions. To further analyze the variants to identify those contributing the most 

to the prediction, the best model (LDpred for 1 CF and not imputed data) was analyzed 

together with the best model for the threshold filtering (LASSO and XGBoost for p-value 

<1e-3, not imputed and not LD-clumped data). LDpred models are used mainly for prediction 

(Vilhjálmsson, Yang, Finucane, Gusev, Zheng, et al., 2015); thus, this second model was also 

reviewed to back and compare the results obtained from the LDpred model. 

The mean variants rank, provided by the method at the CF of 1 for LDpred (516 variants and 

402 genes) and the threshold 10-3 (418 variants and 223 genes) or equivalent for LDpred, was 

analyzed to generate an average method rank for the multivariate methods. Moreover, 

variants and genes present in many sets suggest robust participation in the model, 

highlighting its relevance in CD. Thus, the frequency of relevant variants across the 10X 

internal subsampling sets was analyzed for LASSO and XGBoost. The most highly relevant 

variants were in well-known CD genes (Table A1 and Table A2). For example, top variants 

were associated with NOD2 and IL23R, well-known CD genes. Next, the importance of 

variants (rank) and the occurrences in the best model that contains 10X CV models was 
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assessed (Figure 38). A mean multivariate rank was constructed to facilitate the variants and 

genes analysis (Figure 38D). Here, a novel variant, rs4945943, was identified as relevant for 

the LDpred model (rank 46) and, on average, for 8 out of the 10 sampling sets for XGBoost 

and LASSO methods been ranked as the top 18, for the named multivariate rank.  

  
 

Figure 38. Variants importance and MARCKS. A) Importance of variants among the 10 subsets 
models relative to the number of appearing models A) LDpred, B) LASSO, C) XGBoost, D) 
Multivariate rank. Some well-known CD genes are marked in black. The genes with ~ are close to 
the observed variant. The top 3 non-associated genes in CD and related diseases are highlighted in 
magenta. 
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within the cross-validated models, these variants were not subject to subsequent analysis 

(Genotype stratification and interaction analysis). 

4.5.3 rs4945943AS ALLOWS THE IDENTIFICATION OF MARCKS AS A 

PUTATIVELY NOVEL MARKER 

rs4945943 variant is close to coding gene MARCKS. As described below, evidence suggests 

that MARCKS may be important in CD. First, MARCKS encodes for a Myristoylated 

alanine-rich C-kinase substrate, regulating proinflammatory cytokine expression in 

macrophages (Lee et al., 2015). Interestingly, MARCKS is upregulated within a murine 

model of colitis, where its regulation relies on non-coding RNAs (Mo et al., 2016). Second, 

rs4945943 is located at chromosome 6 at 460Kbp from the MARCKS gene within a putative 

enhancer region (Figure 39). The GeneHancer tool from GeneCards (Stelzer et al., 2011) 

shows that this enhancer region appears to affect MARCKS expression and two other long 

noncoding RNA (lncRNA) sequences at a high probability. MARCKS classical GWAS p-

value was marginally significant (mean p=8.8x10-5, for the 10X univariate analysis), 

contrasting the variant relevance in 8 out of 10 subsampling sets suggesting regulation of 

MARCKS as putative important in CD. 

 

 
Figure 39. Mapping representation of variant rs4945943 in chromosome 6 (hg38). 
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through the protein kinases (PKCA and PKCB) and the NEMO(IKBKG) genes (Figure 40). 

MARCKS gene encodes a rod-shaped protein of 35 kDa, which is susceptible to 

phosphorylation by protein kinases (i.e., PKC, ROCK) (Amri et al., 2018). MARCKS 

regulates human neutrophil migration and adhesion, also promoting neutrophil secretion of 

inflammatory cytokines (Amri et al., 2018). On the other hand, NOD2 activation leads to 

ubiquitinoylation of NEMO, a key component of the NF-kB signaling complex (Abbott et 

al., 2004) connected to MARCKS. 

 
Figure 40. STRING analysis for the top CD associated genes (i.e., NOD2, ATG16L1, IL23R) relative 
to MARCKS 

 

Fourth, to further challenge rs4945943 polymorphisms attempting to explain its importance 

in CD and to explore possible links between this association and known CD genes, it was 

reasoned that CD might present highly diverse genotypes. Thus, surged the question of what 

the genome-wide associations could be when cases and controls are pre-selected for the same 

specific rs4945943 polymorphism. This procedure could imply an epistatic effect between 

the resulting associations and a particular polymorphism. Therefore, a GWAS analysis was 

performed, comparing controls and cases having AA, AB, or BB polymorphisms in 

rs4945943. To compensate for decreases in the number of samples, only the 1205 SNPs 
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whose p-value < 10-2 in the entire dataset were used. The number of cases was 251, 1,655, 

and 2,601, correspondingly to AA, AB, and BB polymorphisms, and the number of controls 

was 397, 3,154, and 5,643, respectively.  

88 significant associations were found (p <10-6) where 40 were originally genome-wide 

significant in the whole dataset, and 49 were novel rs4945943-dependent calls. Logistic 

regression was applied to these 88 markers in the entire dataset to test interactions with 

rs4945943. For the 39 known markers, there were 4 significant interactions (p<0.05), all at 

the IL23R gene located in chromosome 1 (Table 12). However, only two interactions were 

significant after a Bonferroni correction using only independent markers, 4 from the 39 

significant SNPs (p<0.05/4). For the other 49 rs4945943-dependent calls, there were 12 

significant interactions (Table 13 (p<0.05), distributed at the genes PTPN22 (Chr 1), 

ZNF365 (Chr 10), USP25 (Chr 21), and ADO (Chr 10). However, none reached Bonferroni 

significance after correcting multiple testing on the 13 independent markers. Except for 

ADO, the other three genes show significant associations with CD or inflammatory bowel 

disease in previous studies (de Lange et al., 2017; Liu et al., 2015). Moreover, ADO is located 

at 300Kbp downstream of the gene ZNF365, thus perhaps representing a CD-associated 

region. 
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Table 12. Logistic regression results, for interaction models between rs4945943 genotype and the 
significant SNPs from the genotype stratification analysis. SNPs originally genome-wide significant 
in the full dataset 

SNPX P RS4945943 P SNPX P INTERACTION B RS4945943 B SNPX B INTERACTION DELTA R2 

1:67681669:T:G 4.4e-6 0.029 0.006 -0.290 0.160 0.120 0.010 

1:67670916:G:A 8.1e-6 0.028 0.010 -0.280 0.160 0.120 0.009 

1:67753508:C:T 0.430 0.120 0.031 -0.044 -0.110 -0.097 0.006 

1:67688349:T:C 3.1e-5 0.024 0.040 -0.250 0.170  0.091 0.008 

Delta R2. R2 Change, compared with the logistic model without the interaction and SNPx terms. Data in bold refer to 

significance after Bonferroni correction, using independent markers. 

Table 13. Logistic regression results for interaction models between rs4945943 genotype and the 
significant SNPs from the genotype stratification analysis. SNPs novel rs4945943-dependent calls. 
SNPX P RS4945943 P SNPX P INTERACTION B RS4945943 B SNPX B INTERACTION DELTA R2 

10:64408367:C:T  3.2e-6 0.430 0.008 -0.290 -0.059 0.120 0.002 

21:16817938:G:A  1.2e-4 0.540 0.034 -0.300 0.049 0.100 0.003 

21:16817051:A:G  1.3e-5 0.720 0.026 -0.260 0.026 0.100 0.003 

10:64445760:T:C  8.8e-5 0.750 0.022 -0.320 -0.027 0.120 0.002 

10:64398466:C:T  0.730 0.840 0.027 -0.022 0.015 -0.100 0.002 

10:64438486:G:C  0.590 0.870 0.036 -0.033 -0.012 -0.095 0.002 

21:16813212:T:C  5.2e-6 0.940 0.012 -0.280 -0.006 0.110 0.003 

21:16812552:C:A  7.8e-6 0.970 0.016 -0.280 0.003 0.110 0.003 

21:16805220:T:C  7.7e-6 0.980 0.016 -0.280 0.002 0.110 0.003 

1:114377568:A:G  0.003 0.990 0.050 -0.430 -0.002 0.150 0.002 

1:114303808:C:A  0.003 0.990 0.050 -0.430 -0.002 0.150 0.002 

10:64445564:A:G  1.1e-5 0.990 0.021 -0.260 0.0005 0.100 0.002 

Delta R2. R2 Change, compared with the logistic model without the interaction and SNPx terms. 

Fifth, to further review the importance of rs4945943, perhaps modulating MARCKS, an 

analysis of the rs4945943 region was performed, specifically in the data statistics from the 

de Langer et al. 2017 cohort (authors dataset in Figure 41). In the de Langer et al. study, the 
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rs4945943 marker was not evaluated in the meta-analysis presumably because it was not 

present in all datasets used for the meta-analysis but reported in the specific dataset generated 

by de Langer et al. and used in this study (the rs4945943 marker position was added to the 

Figure 41, to facilitate the comparison). It was observed that around the enhancer region, 

other SNPs also showed a potential association with CD risk even at higher significance 

(Figure 41). Thus, in summary, the region is important in the de Langer et al. cohort but lost 

in the meta-analysis and therefore unnoticed (Table 14). 

 
Figure 41. Mapping representation of variant rs4945943 in chromosome 6 (hg38). Region of 
enhancer, ENSR00000802281, lncRNA regions, and MARCKS genes are highlighted. De Langer et 
al. univariate summary statistics of 1,701 SNPs around rs4945943 region, for de Langer et al. 2017 
authors dataset (univariate analysis). The authors' dataset represents the specific patients assayed by 
de Langer et al. (instead of the meta-analysis). rs4945943 is not present in the de Langer et al. meta-
analysis (presumably because it was not present in all datasets from the meta-analysis) but present in 
the assayed data generated by de Langer et al. and used in this study (4,474 Cases and 9,500 Healthy 
Controls).  
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Table 14. Summary statistics from de Langer et al. 2017, for markers within chromosome 6 region 
tagged by rs4945943 in this study. 

 Position (hg37) P.value Pval_IBDseq Pval_IIBDGC  Pval_GWAS3 Region 

113713065 0.0651400  0.643083  0.4158 1.52e-5 Enhancer 
ENSR00000802281 

113713163 0.0353600  0.633853  0.4060 1.70e-6 Enhancer 
ENSR00000802281 

113714876 0.0067800  0.810792  0.5206 4.10e-7 Intergenic region 

113716570 0.0516900  0.695421  0.4177 7.20e-6 Intergenic region 

113717459 0.0295800  0.713358  0.4422 1.75e-6 Intergenic region 

113718188 0.0136500  0.922356  0.4975 1.47e-6 Intergenic region 

113718667 0.0762200  0.650426  0.4343 2.85e-5 Intergenic region 

113718725 0.0665500  0.663029  0.4345 1.93e-5 Intergenic region 

113720008 0.0862700  0.647798  0.4340 4.31e-5 Intergenic region 

113720073 0.0917500  0.637362  0.4344 5.20e-5 Intergenic region 

113720180 0.0210200  0.928552  0.5629 8.76e-6 Intergenic region 

113721570 0.0759100  0.630312  0.4011 1.98e-5 Intergenic region 

113722011 0.0232600  0.673220  0.8838 4.37e-5 Intergenic region 

113734952 0.0001628  0.646900  0.9244 3.56e-8 Intergenic region 

 
Figure 42 represents the SNPs around the rs4945943 region, for de Langer et al. 2017 data 

in this study, specifically in the 40% samples GWAS, performed at the initial stage of the 

analysis. Whereas Figure 43 shows the gpmean of –log10 p-value of 13 SNPs around 

rs4945943 region, for 60% of data, from the 10X CV data, with the standard deviation of p-

values. 
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Figure 42 –log10 p-value of 1,701 SNPs around rs4945943 region, for de Langer et al. 2017 data 
(univariate analysis). Region of enhancer, ENSR00000802281, lncRNA regions, and MARCKS 
genes are highlighted. rs4945943 is not present in the original de Langer (metanalysis) analyzed data. 
4,474 Cases and 9,500 Healthy Controls.  

 
Figure 43. gpmean of –log10 p-value of 13 SNPs around rs4945943 region, for 60% of data, from 
the 10X CV data. Region of enhancer, ENSR00000802281, lncRNA regions, and MARCKS genes 
are highlighted. 2704 Cases and 5516 Healthy Controls. 
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4.5.4 RS9262151 IDENTIFICATES MDC1 AS A LESS ROBUST MARKER FOR 

CD RISK  

 
The rs9262151 variant is located within the MDC1 gene. The same analysis performed to 

rs4945943 (~MARCKS) was applied to this SNP to evaluate the shreds of evidence for its 

importance related to CD risk. MDC1 classical GWAS p-value was marginally significant 

(mean p=5x10-4, for the 10X univariate analysis). This SNP showed relative importance for 

Ldpred and LASSO models’ variant was only identified in 4 out of 10 subsampling sets, 

showing less replication evidence than rs4945943. The analysis performed in the STRING 

database (Szklarczyk et al., 2019) using the top CD-associated genes suggests a possible link 

with well-known CD genes, such as ATG16L1, through the RB1CC1 and TP53 genes, 

affecting autophagy, one of the processes related to CD development and which states that 

CD arises from a defective innate immune response to enteric bacteria (Henderson & 

Stevens, 2012). 

Also, a GWAS analysis was performed, comparing controls and cases having AA, AB, or 

BB polymorphisms in rs9262151, for the 1205 SNPs with a p-value < 10-2 in the entire 

dataset. The number of cases was 5, 340, and 13,357, correspondingly to AA, AB, and BB 

polymorphisms, and the number of controls was 397, 3,154, and 5,643, respectively. 134 

significant associations were found (p <10-6) where 100 were originally genome-wide 

significant in the whole dataset, and 34 were novel rs9262151-dependent calls. Logistic 

regression was applied to these 134 markers in the entire dataset to test interactions with 

rs9262151. Only two interactions within TNXB were found (p<0.05), and both were 

significant after Bonferroni correction (p-value 1.1e-6 and p-value 1.6e-6). However, due to 

the small number of samples for nG0 and nG1, these results are not reliable. Finally, at 
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summary statistics from De Lange et al., 2017 a variant located 2kb, rs35743249, was 

associated with CD with a p-value of 3e-4. 

4.5.5 GENE ENRICHMENT AND PATHWAYS ANALYSIS 

To further validate the variants and genes identified with the established approach and to 

further investigate the pathways and biological terms associated with those genes, a 

functional annotation of the variants in the two models (LDpred 1 CF and LASSO and 

XGBoost as p-value <1e-3 filtering) were performed. The variants were re-annotated using 

BioMart (Smedley et al., 2009), dbNCBI, and OpenTargets platform (Carvalho-Silva et al., 

2019; Sherry et al., 2001) and functionally analyzed using DAVID and ENRICHR 

(Ashburner et al., 2000). The analysis was performed on the 402 1CF LDpred models genes 

and the 223 p-value <1e-3 genes.  

Similar functional terms were collapsed and weighted for each gene depending on their 

relative presence among collapsed terms to summarize the findings. Next, each functional 

analysis is described. 

4.5.5.1 P-VALUE <1E-3 MODELS (223 GENES) 

Among the terms identified in the functional analysis for the p-value filtered genes are those 

related to inflammatory processes, response to organic stimulus, transport, innate immune 

response, cell migration, signaling pathways such as cytokines, TNF, jak-stat, AGE-RAGE, 

and adhesion, also with the regulation of transcription and diseases as autoimmune and 

inflammatory bowel disease. It was found that the genes most enriched were those associated 

with the inflammatory bowel diseases, as expected, and with the biological process of the 

immune response, regulation of immune response, cytokine, jak-stat, and AGE-RAGE 
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signaling, which are related to the nature of Crohn’s disease. Also, the molecular function 

involving DNA and protein binding, together with regulation of gene expression, cellular 

adhesion, transport, and immune response, shows a general overview of the elements related 

to the etiology of the disease. Figure 44 shows the hierarchical clustering of the terms and 

highlights genes commonly associated with CD, such as NOD2, ATG16L1, IL23R, and 

PTGER4 (Figure 44, red lines). This functional analysis observed that CD, UC, and IBD 

were collapsed together because they were clustered together at the disease's hierarchical 

clustering, meaning that the variants had a less stringent p-value for CD risk (p-value <1e-3) 

are less specific for CD. On the other hand, MARCKS and MDC1 were identified as 

associated with the focal-adhesion term from the GO Cellular Component Adhesion cluster. 

Thus, this gene enrichment analysis helped validate the standard approach to identifying 

terms enriched by genes identified through GWAS and the proposed random sampling and 

multivariate setting methodology.  

 
Figure 44. Functional analysis of P-value <1e-3 filtered genes. Columns show genes, and rows 
refer to collapsed terms from DAVID and ENRICHR analysis for GO, KEGG, and Diseases. Gene 
names were divided into two labeling rows for clarity. Red lines highlight ATG16L1, IL23R, and 
NOD2, whereas the blue lines highlight MARCKS. Numbers in parenthesis represent the number of 
terms collapsed within each general term.  
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4.5.5.2 LDPRED MODELS WITH 1 CF (402 GENES) 

LDpred is used for trait prediction rather than to identify novel variants or genes (Vilhjálmsson, Yang, 

Finucane, Gusev, Price, et al., 2015); this is due to its mechanism where up to 2,000,000 variants can 

be fitted to generate a prediction. However, this study aimed to use the results from LDpred prediction 

for a variant/gene analysis. From the 11,839 markers within the LDpred 1 CF, there were 516 SNPs 

from 402 genes, which had an effect size higher than 0.01. These genes were used to perform second 

functional enrichment analysis. 

Among the terms identified in the functional analysis for LDpred 1 CF genes are those related 

to the regulation of immune response (interleukins 10, 12 and 17, B and T cell), activation 

of cellular immunity, regulation of cytokines and TNF, viral infection & MAPK and TNF 

signaling, cell migration and phagocytosis & NK cell cytotoxicity, bacterial infection and 

immune response, adhesion, transport, and ion channels, also with diseases as autoimmune, 

coronary and inflammatory bowel disease. Here, the genes most enriched were those 

associated with the inflammatory bowel diseases and autoimmune diseases, and with the 

pathways cell migration and phagocytosis & NK cell cytotoxicity and viral infection & 

MAPK and TNF signaling and the biological process of the cell proliferation and cytokine 

signaling, which are related to the nature of Crohn’s disease. Figure 45 shows the 

hierarchical clustering of the terms and highlights genes commonly associated with CD, such 

as NOD2, ATG16L1, IL23R, and PTGER4 (Figure 45, red lines). However, in this 

functional analysis CD, was only collapsed with IBD, being UC collapsed with other diseases 

(Psoriasis, Behcet syndrome, and viral infections) at the diseases hierarchical clustering, 

meaning that the variants selected with LDpred models are more specific for CD, thus, being 

able to distinguish between CD and UC. On the other hand, MARCKS and MDC1 were 

identified. Still, only MARCKS had a biological interpretation with a significant term (Fc 
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gamma R-mediated phagocytosis within KEGG Cell migration and phagocytosis & NK cell 

cytotoxic cluster). MDC1 was enriched only for autoimmune diseases. Thus, this gene 

enrichment analysis helped validate genes identified through GWAS and the proposed 

random sampling and multivariate setting methodology.  

 
Figure 45. Functional analysis of LDpred 1 CF genes. Columns show genes, and rows refer to 
collapsed terms from DAVID and ENRICHR analysis for GO, KEGG, and Diseases. Gene names 
were divided into two labeling rows for clarity. Yellow circles highlight ATG16L1, IL23R, and 
NOD2, whereas the red circles highlight MARCKS and MDC1. Numbers in parenthesis represent the 
number of terms collapsed within each general term.  

4.5.6 VALIDATION OF LDPRED IN NIDDK IBD GENETICS CONSORTIUM 

DATASET 

The SNP data from the validation dataset was converted from the hg35 genome version to 

the correspondent in the hg37 version, then used for the CD risk prediction approach. Among 

the 11,839 SNPs from LDpred models, 2,360 SNPs were genotyped at the NIDDK CD 

dataset. And, among the 418 SNPs for the 1e-3 threshold for LASSO, XGBoost, Random 

Forest, and PRS P+T, 88 were genotyped in the validation dataset. Thus, the 10 cross-

validated CD risk prediction models were evaluated in the NIDDK dataset (Table 15 and 

Figure 46).  
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Table 15. Mean AUROC of multivariate methods and PRS P+T for the validation dataset. Data for 
2,360 common genotyped SNPs. SD standard deviation. 

Method Mean SD 

PRS P+T 0.588 0.016 

LASSO 0.516 0.017 

XGBoost 0.526 0.012 

Random Forest 0.526 0.013 

BSWIMS 0.512 0.016 

LDpred 0.632 0.009 

LDpred method had the highest AUROC (0.632 ± 0.009), which is highly similar to that 

reached in the test evaluation in the UKIBDGC and UK10K GWAS dataset. The best 

AUROC was obtained for the 10th model for LDpred with an AUROC of 0.644.  

 
Figure 46. AUROC of multivariate methods and PRS P+T for the validation dataset. Data for 2,360 
common genotyped SNPs. 

 

These results confirmed that the LDpred model and this approach are robust and valuable. 

Also, in the validation dataset, the rs4945943 (~MARCKS) variant ranked top, having a mean 

rank of 5, from the 2360 SNPs of the 10X cross-validate models, thus validating its 

contribution to the CD-risk prediction with the LDpred model. 
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A second approach was applied to determine if adding additional markers closest to the non-

genotyped variants could improve the prediction.  Table 16 and Figure 47 show that even 

though LDpred again reached the highest performance among all the methods, it did not pass 

the one achieved by using only the genotyped markers. 

Table 16. Mean AUROC of multivariate methods and PRS P+T for the validation dataset. Data for 
2,360 common genotyped SNPs and 9,468 nearest-SNPs. SD standard deviation. 

Method Mean SD 

PRS PT 0.543 0.022 

LASSO 0.515 0.014 

XGBoost 0.510 0.019 

Random Forest 0.479 0.010 

BSWiMS 0.504 0.013 

LDpred 0.583 0.010 

 

 
Figure 47. AUROC of multivariate methods and PRS P+T for the validation dataset. Data for 2,360 
common genotyped SNPs and 9,468 nearest-SNPs. 

For this, 20 LDpred analyses were performed by each 50 pb up to 1000 pb. A gradient of 

nearest-SNPs distance was evaluated to determine if there was an optimal distance between 

the nearest marker and the non-genotyped SNP, which could help to improve the AUROC of 
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the prediction CD risk models in the validation data. However, Figure 48 shows that even 

using a gradient of nearest markers, the AUROC was not improved. 

 
Figure 48. LDpred Mean AUROC for the gradient of the nearest genotyped marker from the non-
genotyped SNP within the validation dataset. 
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5. CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 DISCUSSION 

5.1.1 ROBUST ESTIMATION OF MULTIVARIATE POTENTIAL: LDPRED 

APPEARS TO BE THE BEST MODEL  

The necessity of finding models to predict disease based on genotype has incremented over 

the years, and even that the PRS has been proposed to understand the genetic risk of 

developing a disease, its clinical application remains limited because it is known that genetic 

factors only contribute part of the disease risk, and more data is needed to allow PRS 

development (Wray et al., 2021). 

Nevertheless, attempting to improve the genetic risk prediction, several methods have been 

proposed to replace or improve PRS, such as EB-PRS (Shuang Song, Wei Jiang, Lin Hou, 

2020), LDpred (Vilhjálmsson, Yang, Finucane, Gusev, Zheng, et al., 2015), PRS-CS (Ge et 

al., 2019), and multivariate models, for example, regression-based as LASSO, RIDGE, and 

ElasticNET (Romagnoni et al., 2019; Wei et al., 2013) or classification-based as SVM and 

Random Forest (Goldstein et al., 2010).  

GWAS has allowed the identification of common variants for complex diseases. However, 

the contribution of rare or less frequent variants and solving the missing heritability remains 

a challenge (Eichler et al., 2010).  Crohn’s disease is a well-studied complex trait, with an 

annual incidence of 20 cases per 100,000, and is affected by a combination of environmental 

and genetic factors. However, its exact etiology is still unknown (Liu & Anderson, 2014). 

CD has a high heritability derived from pooled twin studies (0.75), which contrasts with the 

reached by GWAs (0.37) (Gordon et al., 2015). This, together with the importance of finding 
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novel targets for treatment and drugs development, makes CD an eligible model to test a 

multivariate methodology.    

The methods that have been implemented in CD GWAS datasets are LASSO (Kooperberg 

et al., 2010; Newcombe et al., 2019; Wei et al., 2013), gradient boosting (Romagnoni et al., 

2019), SVM (Mittag et al., 2015), KNN (Mittag et al., 2015), MLP (Mittag et al., 2015), 

Bayesian methods (G.-B. Chen et al., 2017) and random forest (Mittag et al., 2015). These 

studies vary in particularities of the analysis, such as sample size, SNPs platforms, imputation 

strategies, reduction of features, and methods applied. Thus, for CD, in particular, there is no 

agreement on which method could be the best to predict the disease risk under similar 

methodological conditions. Therefore, different multivariate methods were compared to 

generate models to predict CD risk in a GWAS dataset. For this, CD GWAS data was 

requested from the European Genome-phenome Archive (EGA), followed by an imputation 

process (to increment the data features with non-independent information), a pre-filtering 

process (LD clumping and p-value filtering) was implemented on 40% of samples. Then a 

set of markers of a specific p-value threshold were fitted in multivariate and univariate-based 

models for the remaining 60% of samples.  

These results showed that LDpred with no imputation yielded the most efficient performance 

(AUROC of 0.667 with 1 as a causal fraction using 11,839 SNPs) than univariate-based 

models such as common PRS and other multivariate models with GWAS data. The 

performance reported here is the highest for the de Lange et al. 2017 dataset. It was observed, 

as expected, that imputing genotypes to increase the number of features slightly improved 

the performance of the models (Bargelloni et al., 2021) but only on p-value thresholds less 

than 1e-4. Random forest did not increase the performance under imputation and clumping; 

additionally, the number of model markers increases, complicating interpretations. Also, 
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decreasing the number of features through LD clumping proved detrimental, mainly for the 

non-imputed dataset. Even if the pruning and thresholding approach is simple and 

computationally efficient, this approach (LD clumping) discards some information that could 

be useful (Paré et al., 2017). 

PRS usually yields performances around 0.65 for diseases with SNPs of strong effects (i.e., 

age-related macular degeneration and Crohn’s disease) (Richardson et al., 2018). This 

performance for CD prediction was validated with this experimental setting.  

LDpred showed the best AUROC for the not imputed data (mean AUROC=0.667), using a 

causal fraction of 1 (~11k variants). The results for this method did not drastically change 

along with the number of features (imputed sets) or variations in causal fractions. Ldpred 

was not tested with LD-clumping because LDpred made internal LD adjustments (Paré et al., 

2017). LDpred generally improves predictions over traditional PRS (Vilhjálmsson, Yang, 

Finucane, Gusev, Zheng, et al., 2015), which was also observed here. The critical difference 

analysis showed that Ldpred ranked as the best model with no significant difference with 

PRS P+T, which was also not different than LASSO. This showed that the multivariate 

methods were, in fact, equivalent to PRS, validating its subsequent use to the identification 

of variants associated with CD. 

These results also showed a detrimental tendency for the AUROC when adding SNPs with a 

p-value less than 1e-2. This result confirms that adding many SNPs with a less suggestive 

association with the disease can be disadvantageous for the prediction. 

It was expected to have better results for LASSO models based on what is reported in 

previous research where this method had reached AUROC from 0.64 (Kooperberg et al., 

2010) to 0.80 (Wei et al., 2013). However, the sample size of these studies was much larger 

(> 40,000 subjects), and the SNP used was more specific (Immunochip). Instead, an AUROC 
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of 0.621 was reached for LASSO, with a univariate threshold of 10-3, using 168 SNPs for 

the not imputed data and an AUROC of 0.621 for 1,555 SNPs, with a univariate threshold of 

10-4. Alternatively, SVM, RBF, KNN, RF, and MLP have been reported to be less efficient 

in predicting CD with AUROC around 0.59 (Mittag et al., 2015) for WTCCC data. These 

performances were improved using the XGBoost method (mean AUROC 0.608 and 0.615 

for imputed and not imputed datasets) and LDpred (mean AUROC 0.656 and 0.667 for 

imputed and not imputed datasets).  

The random permutation experiment reflected that the markers identified within the GWAS 

were, in fact, associated with the phenotype rather than a random association. The validation 

analysis with the NIDDK IBD Genetics Consortium data confirmed the application of the 

LDpred model with a different dataset, reaching similar performance (AUROC = 0.634). 

This approach differs from other studies by introducing a robust 10x cross-validation 

estimation for selecting variants in models and a preselection strategy on different samples. 

At the same time, the standard methods use only one set of samples and no cross-validation 

(Yan et al., 2021). Thus, this approach considers the subsets' variability and the samples' 

influence on the feature’s significance.  

5.1.2 MODEL VALIDATION ANALYSIS: MULTIVARIATE RANK AND 

“NOVEL” MARKERS  

The different methods evaluated in this research had different techniques to assign a value to 

each SNP/variant. BSWiMS, LASSO, and LDpred had a re-estimation of the beta or effect 

size values, and RF and XGBoost had a measure of importance. The best model, generated 

by LDpred using no SNP imputation. Because of, LDpred method is designed and used for 

prediction rather than variants or gene identification (Vilhjálmsson, Yang, Finucane, Gusev, 
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Zheng, et al., 2015),  to facilitate the application of LDpred models to identify variants and 

genes associated with CD-risk, filtering on effect sizes was performed and 516 variants, 

corresponding to 402 genes, with an effect size >0.01 were selected. Also, the variants 

corresponding to the best p-value threshold model (p<1e-3) were also evaluated, which 

integrated 418 unique variants among the 10 CVs from 223 genes. 

A rank for the variants was established for each method, and a mean multivariate rank was 

finally generated by merging the ranks information. This, to provide a robust validation for 

the SNPs identification. Variants and genes present in many sets and methods suggest robust 

participation in the model, highlighting its relevance in CD. Most variants showing high 

relevance were located in well-known CD genes such as NOD2 (rank 3), IL23R (rank 1), and 

PTGER4 (rank 30) (de Lange et al., 2017; Liu et al., 2015; Michail et al., 2013). Nevertheless, 

there are other less-studied genes, but have also been reported to be associated with CD and 

are annotated at Open Targets as IL12B (rank 57), TNFSF18 (rank 25) and, DUSP5 (rank 

78), PDGFB (rank 83) (de Lange et al., 2017; Liu et al., 2015) among others. 

However, other genes had been suggestively associated with either CD or IBD (p-value <10-

5) in previous studies (de Lange et al., 2017; L et al., 2012; Liu et al., 2015). Some of these 

were highlighted in this prediction model, such as GPR55 (rank 132), whose expression is 

different among CD patients (Włodarczyk et al., 2017), PLD5, which encodes the 

phospholipase D family member 5 (rank 208), which has found CD association by using 

neighborhood information (Yang et al., 2011). The RNA-binding protein RBFOX1 (rank 

219), which has been linked to CD (Elding et al., 2013); and TSBP1 (testis expressed basic 

protein 1 from the C6orf10 region, rank 286), which has been basally associated with CD 

and RA (Zheng & Rao, 2015). 
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The multivariate rank highlighted a novel variant, rs4945943, which was identified as 

relevant for the LDpred model (rank 46) and, on average as the top 18, for the named 

multivariate rank. This SNP is located within a regulatory region, an enhancer, which could 

putatively affect the MARCKS gene. MARCKS gene encodes a rod-shaped protein of 35 

kDa, which is susceptible to phosphorylation by protein kinases (i.e., PKC, ROCK) (Amri et 

al., 2018). The suppression of MARCKS expression in macrophage cell lines blocks LPS-

induced expression of TNF-α at the transcriptional level (Lee et al., 2015). Also, these genes 

have been suggested to contribute to the tumorigenesis of colorectal carcinomas (Kim et al., 

2002). Recently, it has been shown that a miRNA regulates MARCKS expression in a model 

of colitis in mice (Mo et al., 2016). When reviewing the gene network for the top associated 

CD-genes NOD2, IL23R, and ATG16L1 with MARCKS, it was found that MARCKS links 

to NOD2 through the interaction between protein kinases and NF-kappa-B essential 

modulator (IKBKG known as NEMO gene). NOD2 activation leads to ubiquitinylation of 

NEMO, a key component of the NF-kB signaling complex (Abbott et al., 2004). Also, when 

testing the interaction for rs4945943, a Bonferroni significant interaction with SNPs markers 

of IL23R was found. These findings point to a MARCKS enhancer with the evidence of 

expression changes in colitis, and its links to other CD-related genes suggest that regulation 

of the expression of MARCKS is critical in CD. Although the function of MARCKS is still 

not well understood, the above pieces of evidence strongly suggest that MARCKS play a role 

in CD. Future experimental validation would also be necessary. 

There were two additional polymorphisms linked to genes that have not been associated with 

CD, rs8050730 close to HS3ST4 (univariate p value= 2.73e-3), rs11185129 close to VAV3 

(univariate p value= 3.78e-3), and rs9262151 a missense variant for MDC1 (univariate mean 

p-value=5e-4). HS3ST4 encodes the enzyme heparan sulfate D-glucosaminyl 3-O-
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sulfotransferase 4 (rank 189) and is considered a pro-tumoral gene for colon cancer (Denys 

& Allain, 2019). VAV3 (Vav Guanine Nucleotide Exchange Factor 3, rank 211) is an 

oncogene expressed in colorectal cancer whose overexpression could dysregulate the 

expression of cell cycle control by activating the PI3K-AKT signaling pathway (Uen et al., 

2015). MDC1 is a mediator of DNA damage checkpoint (rank 11), determining cell survival 

fate. MDC1 is expressed lowly in various cancers, including lung cancer, breast carcinomas, 

and gastric carcinoma (Bo et al., 2014). Also, MDC1 is considered a potential therapeutic 

target for diagnosing and treating human gastric cancer (Qin et al., 2018). For MDC1, there 

is a polymorphism at ~2Kb, associated with CD in De Lange et al., 2017. Also, opentargets 

reports an association between MDC1 and Ulcerative Colitis, identified within a Japanese 

population (Asano et al., 2009).  

However, these last polymorphisms were not confirmed by all multivariate methods by being 

selected in fewer CVs compared to rs4945943 (2, 3, and 5 CVs, respectively). 

5.1.2.1 MODEL VALIDATION: GENE ENRICHMENT AND PATHWAYS 

ANALYSIS  

The genetic overlap between CD and other immune diseases has been reported in several 

studies (Liu & Anderson, 2014), mainly due to GWAS, where UC, type 1 diabetes, coeliac 

disease, or rheumatoid arthritis are among the immune diseases with a reported genetic 

overlap with CD (Zhernakova et al., 2009). 

Functional annotation of the 402 genes highlighted in this study found the pathways of 

inflammatory bowel disease, autoimmune diseases, regulation of immune response, 

activation of cellular immunity, signaling pathways, cell migration, and phagocytosis, NK 

cell cytotoxicity, adhesion, and transport. This analysis shows CD-risk genes linked to well-

known inflammatory processes (Feuerstein & Cheifetz, 2017) validating this strategy and the 
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application of multivariate models to identify genes associated with CD-risk. In this 

functional analysis CD, was only collapsed with IBD, being UC collapsed with other diseases 

(Psoriasis, Behcet syndrome, and viral infections) at the diseases hierarchical clustering, 

meaning that the variants selected with LDpred models are more specific for CD; thus, being 

able to distinguish between CD and UC.  

For the functional annotation of the 223 genes highlighted by the p-value threshold, the 

following terms were found: pathways of inflammatory bowel disease, autoimmune diseases, 

signaling pathways, adhesion, transport, immune response, and regulation of immune 

response and gene expression were identified. This analysis showed more general terms 

related to the immune response. Here, CD, UC, and IBD collapsed together, meaning that 

the variants had a less stringent p-value for CD risk (p-value <1e-3) are less specific for CD.  

5.2 CONCLUSIONS 

LDpred performed better in predicting CD-risk than other multivariate and standard PRS 

analyses. Also, multivariate methods allowed the identification of markers with their feature 

importance ranking. rs4945943 SNP, putatively connected to MARCKS, contributed to the 

CD-risk prediction. 

The hypothesis of this research was partially achieved (75%) because the prediction 

performance estimated for CD risk cannot be compared with the current literature since the 

data set used for this investigation has not been used for other prediction analyses yet. Also, 

the sample size and the differences in SNP platforms difficult the comparison with other 

multivariate prediction methods. Yet, the performances achieved in this research are better 

than the ones reported in the literature for datasets of similar size to the dataset used in this 

investigation. However, this methodology successfully identified variants previously 
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associated with CD and highlighted putatively “novel” markers, which would need additional 

experimental validation. 

5.3 FUTURE WORK 

To improve the performance of the prediction models, parameter optimization, random 

search approaches, and neural networks are strategies that could further be directed in CD 

GWAS data. 

This methodology was intended to be applied to a Mexican dataset of T2D (Type 2 Diabetes). 

However, the limitations of the sample size of the data, reflected in a lack of statistical power, 

limited the application of the methodology. Nevertheless, the methods proposed here can be 

applied to other complex diseases, such as T2D, which could be addressed in future work 

with a dataset of proper dimensions. 

6. APPENDIX 

Table A1: 402 Genes from LDpred models 

Table A2: 418 Genes from p-value < 1-3 models 
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Appendix 1 

SNPname Ch Position Gene 

Mean 
Multi-
variate 
Rank 

Ldpred 
Rank 

XGBTree 
Rank 

RF 
Rank 

LASSO 
Rank 

BSWiMS 
Rank 

Trait CD 
| IBD | 
UC at 

OpenTar
gets 

rs2659046 17 79145891 AATK  457 - - - - UC 
rs440970 5 131336287 ACSL6 49 95 34 38 21 55 CD 
exm105654 1 155033308 ADAM15  366 - - - - CD 
rs9791011 5 33622158 ADAMTS12  322 - - - -   
rs10051817 5 33679999 ADAMTS12  330 - - - -   
rs6555299 5 4534191 ADAMTS16  308 - - - -   
rs17256169 16 3993253 ADCY9  372 - - - -   
rs2050395 10 115801595 ADRB1  488 - - - -   
rs12654778 5 148205741 ADRB2  325 - - - -   
rs7529090 1 247069232 AHCTF1  427 - - - -   
exm-rs9348876 6 31575276 AIF1  416 - - - - CD 
rs2271696 10 71874683 AIFM2  203 - - - -   
rs9496563 6 143616271 AIG1  50 - - - -   
rs11162331 1 77850800 AK5  313 - - - -   
exm24765 1 19201919 ALDH4A1  510 - - - -   
exm2257537 6 135128858 ALDH8A1 341 458 232 350 249 418 CD 
rs4421638 1 105681907 AMY1C  52 - - - -   
rs16872693 5 74946455 ANKDD1B  130 - - - -   
rs12928649 16 89333342 ANKRD11  26 - - - - CD 
rs13188321 5 111914106 APC  375 - - - - IBD 
exm-rs3117582 6 31620520 APOM 329 156 336 318 418 418 CD 
rs1685633 1 154291718 AQP10  167 - - - - IBD 
exm1315364 17 36614485 ARHGAP23  35 - - - -   
rs7342975 17 66391232 ARSG  55 - - - -   
rs6501429 17 66393689 ARSG  114 - - - -   
rs3785613 17 66275830 ARSG  206 - - - -   
exm1327986 17 42254236 ASB16  16 - - - -   
exm3709 1 1430985 ATAD3B  347 - - - - IBD 
exm-rs3830076 6 32096244 ATF6B  454 - - - - CD 
rs1045100 2 234203597 ATG16L1 110 388 21 37 74 32 CD 
exm-rs10210302 2 234158839 ATG16L1 119 244 143 57 113 37 CD 
rs2241879 2 234183468 ATG16L1 124 445 22 44 73 34 CD 
exm-rs3792109 2 234184417 ATG16L1 128 499 73 28 25 14 CD 
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exm-rs3828309 2 234180410 ATG16L1 144 410 89 48 46 128 CD 
exm276398 2 234183368 ATG16L1 202 353 114 35 92 418 CD 
rs6663281 1 63221191 ATG4C 271 348 85 240 264 418 CD 

rs4782612 16 84384326 ATP2C2  82 - - - - 
Appendic
itis 

exm-rs1032757 5 81939318 ATP6AP1L  187 - - - -   
rs1032070 17 40618251 ATP6V0A1 280 233 219 276 255 418 CD 
rs4791171 17 63541497 AXIN2  448 - - - -   
rs2837102 21 41004152 B3GALT5  340 - - - - CD 
exm1371085 17 80923546 B3GNTL1  12 - - - - CD 
rs7774238 6 91107018 BACH2  23 - - - - CD 
exm-rs2844463 6 31615167 BAG6  228 - - - - CD 
rs9922832 16 50444159 BRD7  195 - - - - CD 
rs7204069 16 50451650 BRD7  326 - - - - CD 
rs16945643 17 59893990 BRIP1  234 - - - -   
exm74874 1 92554283 BTBD8  232 - - - - IBD 
exm1196960 16 613344 C16orf11  299 - - - -   
exm1238987 16 49430534 C16orf78  25 - - - - UC 
rs7217052 17 21452282 C17orf51 280 185 298 261 240 418 CD 
rs1052227 17 54906137 C17orf67 209 297 121 301 192 133 CD 
exm1338509 17 54872439 C17orf67  238 - - - - CD 
rs12139580 1 244373559 C1orf100  283 - - - -   
exm-rs7554511 1 200877562 C1orf106 273 387 118 227 215 418 CD 
rs10489182 1 169710669 C1orf112 184 150 99 151 103 418 CD 
rs2902440 1 67670916 C1orf141 23 41 6 7 20 42 CD 
exm-rs7517847 1 67681669 C1orf141 24 91 8 6 9 5 CD 
exm-rs11805303 1 67675516 C1orf141 55 98 63 17 48 48 CD 
exm-rs11209003 1 67601132 C1orf141 65 68 102 27 72 58 CD 
rs10489630 1 67662622 C1orf141 99 129 42 36 133 154 CD 
rs4655690 1 67659896 C1orf141 107 63 288 55 56 73 CD 
rs7539625 1 67672765 C1orf141 117 58 29 26 53 418 CD 
exm67171 1 67560956 C1orf141 141 153 167 157 141 88 CD 
rs3762318 1 67597119 C1orf141 163 140 50 88 121 418 CD 
rs10789224 1 67605134 C1orf141 167 110 156 29 120 418 CD 
rs10749771 1 67573730 C1orf141 219 241 202 117 117 418 CD 
rs2064689 1 67653010 C1orf141 229 402 66 40 217 418 CD 
rs1885276 1 67568824 C1orf141 293 272 319 167 289 418 CD 
rs10489631 1 67601115 C1orf141 321 309 328 215 333 418 CD 
exm-rs497309 6 31892484 C2 349 255 418 340 312 418 CD 
exm-rs558702 6 31870326 C2 369 398 418 223 386 418 CD 
exm1612908 22 42089623 C22orf46 349 506 214 352 256 418 CD 
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rs6895072 5 133144207 C5orf15  160 - - - -   
rs7715716 5 147289799 C5orf46  444 - - - -   
exm-rs12521868 5 131784393 C5orf56 150 169 165 140 137 140 CD 
rs2522051 5 131797578 C5orf56 194 275 314 109 144 129 CD 
rs2548993 5 131808869 C5orf56 201 455 148 139 151 111 CD 
exm535230 6 32261252 C6orf10 286 120 302 222 368 418 CD 
rs2894179 6 31066671 C6orf15  429 - - - - CD 
exm-rs9368699 6 31802541 C6orf48  413 - - - - CD 
exm1342077 17 58235763 CA4  99 - - - - CD 
rs3767498 1 201020727 CACNA1S 135 258 54 150 78 137 CD 
rs9921802 16 24297521 CACNG3  492 - - - - IBD 
exm2264647 17 65000219 CACNG4  262 - - - -   
rs11684413 2 85627714 CAPG 304 428 181 273 222 418 IBD 
exm1196761 16 597764 CAPN15  85 - - - -   
rs16871475 5 71020547 CARTPT  245 - - - - UC 
rs738469 22 39510995 CBX7  108 - - - - CD 
exm-rs12470505 2 219908369 CCDC108  323 - - - -   
exm458879 5 68616079 CCDC125  344 - - - -   
rs210837 17 32735169 CCL1  135 - - - - CD 
rs159297 17 32706889 CCL1  143 - - - - CD 
rs991804 17 32587725 CCL2 129 296 49 96 83 120 CD 
rs10515854 5 162737689 CCNG1  43 - - - -   
rs2059849 5 66610910 CD180  133 - - - - CD 
rs798029 1 117337524 CD2  352 - - - -   
rs17122383 1 100860339 CDC14A  33 - - - -   
exm454994 5 54468450 CDC20B  13 - - - -   
exm154203 1 227182033 CDC42BPA  449 - - - -   
rs1038843 5 21257067 CDH12  70 - - - - IBD 
rs10492861 16 82866767 CDH13 275 254 82 320 302 418 CD 
rs16960006 16 83297261 CDH13  101 - - - - CD 
rs7716554 5 31200936 CDH6  281 - - - -   
rs7200019 16 62518621 CDH8  451 - - - -   
rs6450652 5 28621295 CDH9  355 - - - -   
rs10045332 5 28560977 CDH9  415 - - - -   
rs9292272 5 28561546 CDH9  476 - - - -   
rs16941336 17 20575697 CDRT15L2  292 - - - -   
rs1139056 22 17661178 CECR1  277 - - - -   
exm148351 1 214818548 CENPF  9 - - - - CD 
rs6710428 2 169368019 CERS6  34 - - - -   
rs4668082 2 169497129 CERS6  73 - - - -   
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exm-rs1270942 6 31918860 CFB 385 350 418 360 378 418 CD 
rs903358 1 203147139 CHI3L1  482 - - - -   
exm862774 10 125780647 CHST15  119 - - - -   
rs3765265 16 840597 CHTF18  59 - - - -   
rs4895566 6 139878255 CITED2  205 - - - - UC 
exm-rs3131383 6 31704294 CLIC1 318 286 418 243 227 418 CD 
rs7199467 16 80951145 CMC2  496 - - - - IBD 
exm1579312 21 46875874 COL18A1  418 - - - -   
rs7563419 2 237742697 COPS8  252 - - - -   
exm1620076 22 50315363 CRELD2  267 - - - - UC 
rs25887 5 131416061 CSF2 172 324 160 114 157 106 CD 
rs2069616 5 131408077 CSF2 218 354 64 182 361 131 CD 
rs10914850 1 34496094 CSMD2  260 - - - -   

rs7557987 2 81469658 CTNNA2 266 467 69 231 145 418 
Allergic 
rhinitis 

rs953458 10 67082879 CTNNA3  447 - - - -   
exm849080 10 101993033 CWF19L1  96 - - - -   
rs809601 10 44789602 CXCL12  218 - - - -   
rs652267 5 156795204 CYFIP2  516 - - - -   
rs1420872 16 50807779 CYLD 161 174 210 104 195 121 CD 
rs4785452 16 50842077 CYLD 315 396 418 106 239 418 CD 
rs11863019 16 50847819 CYLD  405 - - - - CD 
rs13333062 16 50922786 CYLD  503 - - - - CD 
exm843816 10 96447920 CYP2C18  62 - - - -   
rs4796803 17 76630164 CYTH1  265 - - - - UC 
rs2939378 5 40042245 DAB2  94 - - - - CD 
exm519094 6 18256625 DEK  56 - - - - IBD 
exm-rs12134279 1 197781198 DENND1B 297 498 80 255 235 418 CD 
rs4927176 1 55354335 DHCR24 297 505 141 236 184 418 CD 
rs4558075 10 6401625 DKFZP667F0711  450 - - - -   
rs903630 6 170428032 DLL1  230 - - - -   
exm472888 5 118480316 DMXL1  316 - - - -   
rs16970950 16 21145657 DNAH3  223 - - - -   
rs1992711 5 13510918 DNAH5  11 - - - -   
exm206363 2 84745113 DNAH6  22 - - - -   
rs2150431 21 42291678 DSCAM  306 - - - -   
rs6690208 1 212295571 DTL  329 - - - -   
rs4589119 1 221915967 DUSP10  288 - - - -   
rs4433402 1 221946172 DUSP10  489 - - - -   
rs11195128 10 112186148 DUSP5 22 80 4 13 6 6 CD 
rs10444086 10 112179167 DUSP5 78 168 84 60 26 54 CD 
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exm-rs474534 6 31938107 DXO  310 - - - - CD 
exm533591 6 31938412 DXO  334 - - - - CD 
exm837666 10 82126600 DYDC2  149 - - - - CD 
rs6869051 5 158345923 EBF1  446 - - - - CD 
rs1034237 6 12395762 EDN1  261 - - - -   
rs7578234 2 233543537 EFHD1  189 - - - -   
exm533062 6 31864538 EHMT2 73 18 241 30 49 29 CD 
exm851598 10 103988265 ELOVL3  480 - - - - IBD 
rs1428556 5 73856207 ENC1  406 - - - - UC 
exm38093 1 29320013 EPB41  20 - - - -   
rs341295 5 111848890 EPB41L4A-AS2  165 - - - - CD 
rs3926393 5 159667613 FABP6  161 - - - -   
rs2901520 5 159613503 FABP6  460 - - - -   
rs16872345 5 74149478 FAM169A  377 - - - - UC 
exm896844 11 22646398 FANCF  441 - - - -   
rs17114146 10 103401516 FBXW4  166 - - - -   
rs4661028 1 157322310 FCRL5  83 - - - -   
rs13361304 5 108013371 FER  141 - - - -   
rs6875865 5 108556802 FER  181 - - - -   
exm842900 10 95347041 FFAR4  29 - - - -   
rs7189414 16 86620191 FOXL1 234 112 130 307 201 418   
rs733023 5 132655625 FSTL4  284 - - - -   
rs312305 5 162095410 GABRG2  456 - - - -   
rs2290949 16 81413389 GAN  343 - - - - IBD 
exm181733 2 27730940 GCKR 119 391 37 83 54 30 CD 
exm1543134 20 42891917 GDAP1L1  393 - - - - CD 
rs10788959 1 54068567 GLIS1  321 - - - -   
rs3013760 1 54036593 GLIS1  423 - - - -   
rs9426298 1 28990922 GMEB1  333 - - - -   
rs252200 5 141400028 GNPDA1  473 - - - - CD 
rs2312489 1 167040788 GPA33  280 - - - -   
kgp7075915 6 24473399 GPLD1  219 - - - -   
rs1848728 2 231839240 GPR55 132 314 58 110 61 116 CD 
rs17062729 6 102432315 GRIK2  214 - - - - UC 
rs12596342 16 9939750 GRIN2A  317 - - - -   
rs10117679 9 104378479 GRIN3A  424 - - - -   
rs11198881 10 121087219 GRK5  57 - - - -   
exm1317567 17 38064469 GSDMB 121 191 199 105 87 25 CD 
rs11078927 17 38064405 GSDMB 171 249 71 121 280 132 CD 
rs7094905 10 1015247 GTPBP4  338 - - - -   
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exm546690 6 42153428 GUCA1B  179 - - - - IBD 
exm1593009 22 24039410 GUSBP11  270 - - - -   
rs7707445 5 156449748 HAVCR1  282 - - - -   
exm-rs2395029 6 31431780 HCP5  163 - - - -   
exm530706 6 31379043 HCP5  300 - - - -   
rs3891636 5 130439091 HINT1  370 - - - - CD 
rs11596587 10 71113988 HK1  486 - - - -   
rs2523619 6 31318144 HLA-B 289 399 154 252 221 418 CD 
exm-rs2844586 6 31318024 HLA-B  240 - - - - CD 
exm-rs9264942 6 31274380 HLA-C 105 266 20 69 30 141 CD 
exm-rs2524229 6 31275231 HLA-C  273 - - - - CD 
exm-rs10484554 6 31274555 HLA-C  472 - - - - CD 
exm-rs1480380 6 32913246 HLA-DMA  479 - - - - CD 
exm-rs7758736 6 32758394 HLA-DOB 197 376 225 190 107 86 CD 
exm-rs2187668 6 32605884 HLA-DQA1 374 367 418 251 418 418 CD 
rs7775228 6 32658079 HLA-DQB1  356 - - - - CD 
rs7749057 6 32448904 HLA-DRA 304 404 273 201 225 418 CD 
exm-rs2395175 6 32405026 HLA-DRA  436 - - - - CD 
rs7736962 5 135764923 HNRNPA1P13  303 - - - -   
rs10521233 17 13559080 HS3ST3A1  395 - - - -   
rs8050730 16 25965289 HS3ST4 189 14 198 142 171 418   
rs780433 5 118990871 HSD17B4  328 - - - -   
exm1031652 12 104332224 HSP90B1 115 87 61 5 5 418 CD 
rs4585392 5 62670313 HTR1A  304 - - - -   
rs9686886 5 148010913 HTR4  285 - - - -   
rs10476898 5 148056656 HTR4  443 - - - -   
exm-rs907092 17 37922259 IKZF3 129 122 117 115 182 109 CD 
exm-rs9303277 17 37976469 IKZF3 210 142 122 156 213 418 CD 
exm-rs3024493 1 206943968 IL10 234 220 418 287 172 71 CD 
exm-rs3024505 1 206939904 IL10 257 198 175 296 200 418 CD 
rs4921227 5 158849837 IL12B 57 128 12 65 18 61 CD 
exm-rs10045431 5 158814533 IL12B 224 178 149 235 138 418 CD 
exm-rs6871626 5 158826792 IL12B  37 - - - - CD 
rs7720046 5 158884535 IL12B  369 - - - - CD 
rs1495965 1 67753508 IL12RB2 173 111 127 64 147 418 CD 
exm-rs924080 1 67760140 IL12RB2 267 305 129 95 387 418 CD 
exm67254 1 67705958 IL23R 1 1 1 2 2 1 CD 
exm-rs10889677 1 67725120 IL23R 42 69 27 42 50 22 CD 
rs10889676 1 67722567 IL23R 122 190 192 58 76 95 CD 
rs61839660 10 6094697 IL2RA 186 207 258 267 132 67 CD 
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rs58736 5 62560237 IPO11 137 97 113 266 108 102 CD 
exm-rs11117432 16 86019270 IRF8  182 - - - - CD 
exm-rs7714584 5 150270420 IRGM  81 - - - - CD 
exm-rs13361189 5 150223387 IRGM  173 - - - - CD 
exm-rs11747270 5 150258867 IRGM  373 - - - - CD 
rs1449263 2 182319301 ITGA4 130 359 60 99 69 63 CD 
rs6740847 2 182308352 ITGA4 206 349 65 128 68 418 CD 
exm1236563 16 31418975 ITGAD  31 - - - - IBD 
exm-rs10758669 9 4981602 JAK2 87 360 7 34 12 20 CD 
exm2273550 17 39880545 JUP  425 - - - -   
rs895767 2 224023296 KCNE4  437 - - - -   
rs1693229 1 233738342 KCNK1  311 - - - -   
rs6681392 1 154796712 KCNN3  144 - - - - IBD 
rs11264268 1 154796520 KCNN3  400 - - - - IBD 
exm-rs11584383 1 200935866 KIF21B 328 335 216 324 345 418 CD 
exm1319729 17 39041052 KRT20  259 - - - -   
rs4958756 5 154045825 LARP1  468 - - - -   
exm142334 1 205353492 LEMD1  208 - - - -   
rs17017451 1 211557908 LINC00467  216 - - - -   
rs11580269 1 169005304 LINC00970  301 - - - -   
rs7865479 9 27845760 LINGO2  319 - - - -   
exm216435 2 100915330 LONRF2  379 - - - -   
exm838275 10 85984444 LRIT2  242 - - - -   
exm-rs769177 6 31547611 LTB  32 - - - - CD 
rs7605137 2 150092739 LYPD6B  362 - - - -   
rs17162589 5 109384131 MAN2A1  508 - - - -   
rs4968857 17 67420433 MAP2K6  61 - - - -   
rs753173 10 30778738 MAP3K8 248 500 242 264 155 81 CD 
rs11008080 10 30802799 MAP3K8 395 501 310 365 381 418 CD 
exm1330831 17 43922897 MAPT  67 - - - -   
exm2270128 5 126356042 MARCH3  263 - - - -   

rs4945943 6 113712036 MARCKS 18 46 9 18 8 10 

Acute 
apendicit
is 

exm530865 6 31496949 MCCD1  105 - - - - CD 
rs9262151 6 30672353 MDC1 11 4 38 4 3 4 UC 

exm565825 6 90362783 MDN1  3 - - - - 
Periodon
titis 

exm220981 2 112725747 MERTK  66 - - - -   
rs7562674 2 172259687 METTL8 303 209 300 311 279 418 CD 
exm1606112 22 37866063 MFNG  72 - - - -   
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rs11695439 2 191261942 MFSD6  512 - - - -   
exm-rs3099844 6 31448976 MICB 339 180 285 392 418 418 CD 
exm530818 6 31474820 MICB  461 - - - - CD 
rs12090955 1 67412261 MIER1  113 - - - - CD 
rs8081387 17 5395383 MIS12  497 - - - -   
rs9935021 16 14132484 MKL2  371 - - - -   
exm1620696 22 50584130 MOV10L1  172 - - - - UC 
exm914444 11 60183189 MS4A14  201 - - - -   
rs792369 17 55446071 MSI2  434 - - - - CD 
exm834193 10 75184444 MSS51  103 - - - - CD 
exm586580 6 151270231 MTHFD1L  88 - - - -   
rs6665978 1 238575867 MTRNR2L11  126 - - - - CD 
rs2487091 1 238255771 MTRNR2L11  194 - - - - CD 
rs10512951 5 8303911 MTRR  49 - - - -   
rs10512943 5 8151979 MTRR  183 - - - -   
rs6721218 2 177414915 MTX2  137 - - - -   
exm1280666 17 4457116 MYBBP1A  36 - - - -   
rs9909522 17 10235790 MYH13 278 200 177 393 202 418   
rs7217738 17 59630944 NACA2  162 - - - -   
rs2072711 22 37268555 NCF4  337 - - - - CD 
rs6718462 2 183795633 NCKAP1  211 - - - -   
rs11749731 5 141500436 NDFIP1  215 - - - - CD 
rs9324864 5 141469000 NDFIP1  459 - - - - CD 
rs3095902 5 149926998 NDST1  243 - - - - CD 
rs322388 5 172156062 NEURL1B  269 - - - -   
rs3890764 1 61961953 NFIA  278 - - - -   
rs12144629 1 183397899 NMNAT2  45 - - - -   
exm1239948 16 50745926 NOD2 3 2 2 3 4 3 CD 
exm-rs5743289 16 50756774 NOD2 27 54 5 10 31 33 CD 
rs11647841 16 50743331 NOD2 94 124 53 70 105 119 CD 
rs2066843 16 50745199 NOD2 107 229 133 41 80 52 CD 
exm-rs2076756 16 50756881 NOD2 150 204 18 53 59 418 CD 
exm1239874 16 50744624 NOD2 216 148 272 86 156 418 CD 
rs2297516 17 26095730 NOS2  430 - - - - CD 
exm-rs3830041 6 32191339 NOTCH4  431 - - - - CD 
rs12448862 16 18068642 NPIPA8  307 - - - -   
rs12562860 1 161211678 NR1I3  414 - - - - CD 

rs9405897 6 6052055 NRN1 355 407 297 335 317 418 

 
Spondylo
sis 
without 
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myelopat
hy 

rs10827245 10 33639488 NRP1  339 - - - -   
rs11244602 10 126064956 OAT  363 - - - - IBD 
rs9358619 6 9282211 OFCC1  453 - - - -   
exm114185 1 159283746 OR10J3  109 - - - -   
exm912261 11 58034651 OR10W1  293 - - - - IBD 
exm-rs12517906 5 180170819 OR2Y1  279 - - - -   
rs10903267 5 180171716 OR2Y1  392 - - - -   
rs16942771 17 56252489 OR4D2 100 76 124 141 99 62 IBD 
rs7211774 17 56257984 OR4D2 239 86 418 163 111 418 IBD 
exm912309 11 58125774 OR5B17  426 - - - - IBD 
exm166706 1 247875313 OR6F1  40 - - - -   
rs162907 5 131580152 P4HA2 243 315 418 189 197 96 CD 
rs156109 5 131626611 P4HA2  248 - - - - CD 
exm1226533 16 23634293 PALB2  196 - - - - IBD 
rs4408174 1 99946091 PALMD  60 - - - -   
rs12060602 1 99994648 PALMD  358 - - - -   
rs3859118 16 50252235 PAPD5 318 440 418 136 179 418 CD 
rs4312853 5 7006254 PAPD7  186 - - - -   
rs2302404 10 89474072 PAPSS2  199 - - - -   

exm488660 5 140763665 PCDHGA1  15 - - - - 
Appendic
itis 

exm159815 1 233397909 PCNXL2  27 - - - -   
exm-rs968451 22 39670851 PDGFB 58 132 24 32 28 72 CD 
exm-rs2413583 22 39659773 PDGFB 83 84 97 116 44 76 CD 
rs9369484 6 12661620 PHACTR1  452 - - - -   
exm1307233 17 27238135 PHF12  42 - - - -   
rs1932758 1 88685730 PKN2  397 - - - -   
rs12038869 1 188469106 PLA2G4A  327 - - - - CD 
rs656755 1 20424167 PLA2G5  477 - - - - IBD 
exm1608133 22 38528888 PLA2G6  295 - - - -   
rs2227552 10 75669319 PLAU 129 271 55 134 94 90 CD 
exm1262411 16 81922813 PLCG2  138 - - - - IBD 
rs318843 5 41373205 PLCXD3  351 - - - - CD 
rs390956 1 242398403 PLD5 208 274 152 247 233 135 CD 
rs10926652 1 242380948 PLD5 249 253 161 237 174 418 CD 
rs2342271 1 242663273 PLD5  5 - - - - CD 
rs12406043 1 242940149 PLD5  121 - - - - CD 
rs12075764 1 242907976 PLD5  382 - - - - CD 
rs34052165 2 132057166 PLEKHB2  213 - - - -   
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rs7769470 6 106487292 PRDM1 109 251 59 119 55 59 CD 
rs2495060 1 14032007 PRDM2  474 - - - -   
rs10852259 16 24068314 PRKCB  515 - - - - IBD 
rs12570350 10 6795493 PRKCQ  30 - - - - CD 
exm449399 5 35072712 PRLR  24 - - - -   
rs1584468 5 119937691 PRR16  93 - - - -   
rs6909321 6 31093190 PSORS1C1  147 - - - - CD 
rs7730267 5 40548545 PTGER4 30 38 23 8 15 64 CD 
rs9687958 5 40496423 PTGER4 34 48 48 12 38 24 CD 
exm-rs4613763 5 40392728 PTGER4 34 17 31 11 29 82 CD 
exm-rs17234657 5 40401509 PTGER4 35 19 123 9 16 8 CD 
rs4286721 5 40497604 PTGER4 45 90 77 15 27 16 CD 
rs7720838 5 40486896 PTGER4 55 64 79 24 86 23 CD 
exm-rs11742570 5 40410584 PTGER4 142 341 17 82 180 92 CD 
exm-rs10440635 5 40490790 PTGER4 148 77 52 31 164 418 CD 
rs6869535 5 40597618 PTGER4 163 115 111 54 118 418 CD 
rs13163402 5 40607910 PTGER4 166 28 81 75 228 418 CD 
rs10077544 5 40484938 PTGER4 167 139 153 33 93 418 CD 
rs4957138 5 40622940 PTGER4 193 51 140 73 281 418 CD 
exm-rs6896969 5 40424426 PTGER4 205 509 330 72 71 43 CD 
rs1876143 5 40521648 PTGER4 330 312 418 185 315 418 CD 
exm85427 1 114377568 PTPN22  225 - - - - CD 
exm138344 1 202128601 PTPN7  432 - - - -   
rs10801677 1 198628483 PTPRC 145 8 203 62 33 418 CD 
rs10758997 9 8829567 PTPRD  487 - - - -   
rs1905339 17 40582296 PTRF 157 298 96 170 98 122 CD 
rs9912887 17 29827405 RAB11FIP4  403 - - - -   
rs12948477 17 29928492 RAB11FIP4  478 - - - -   
rs375085 17 29943842 RAB11FIP4  485 - - - -   
rs4272630 1 220486349 RAB3GAP2  342 - - - -   
rs3738091 1 21997282 RAP1GAP  368 - - - -   
rs11139654 9 85220698 RASEF 224 118 269 174 143 418   
rs9921862 16 5658177 RBFOX1 219 100 75 304 198 418 UC 
rs8063739 16 5778928 RBFOX1 223 157 110 241 187 418 UC 
rs12933690 16 5758532 RBFOX1  394 - - - - UC 
rs7193708 16 8084800 RBFOX1  411 - - - - UC 
rs4523953 17 77373331 RBFOX3  159 - - - - UC 
exm96669 1 151316324 RFX5  175 - - - - IBD 
rs11200948 10 86023610 RGR  79 - - - -   
rs10754006 1 192390633 RGS21  438 - - - -   
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rs2686226 1 241376512 RGS7  514 - - - -   
rs1877823 17 63226943 RGS9  264 - - - -   
rs9896245 17 63173756 RGS9  417 - - - -   
rs497915 1 182406654 RGSL1  217 - - - -   
exm560271 6 72984123 RIMS1  462 - - - -   
exm513179 6 3111166 RIPK1  107 - - - - CD 

exm1357589 17 74154496 RNF157  7 - - - - 

Irritable 
bowel 
syndrom
e 

rs12627970 22 39721745 RPL3 71 197 40 46 32 41 CD 
rs137603 22 39694225 RPL3 162 389 106 138 85 91 CD 
rs11655133 17 72130512 RPL38  490 - - - -   
rs3778409 6 166954244 RPS6KA2  155 - - - - CD 
rs10864040 1 213468908 RPS6KC1  345 - - - -   
exm-rs6679677 1 114303808 RSBN1 253 146 176 342 181 418 CD 
rs10489161 1 25338799 RUNX3  421 - - - - IBD 
rs11649472 16 51457948 SALL1  385 - - - - CD 
rs7742658 6 28600492 SCAND3  357 - - - -   
exm2250 1 1226757 SCNN1D  117 - - - - IBD 
exm2070 1 1220954 SCNN1D  331 - - - - IBD 
exm1332781 17 45915766 SCRN2  227 - - - - IBD 
rs790088 17 71588183 SDK2 189 152 267 277 158 89   
rs4789155 17 71558419 SDK2  374 - - - -   
exm798317 9 139369066 SEC16A  237 - - - - CD 
rs10158522 1 177938712 SEC16B  222 - - - -   
rs7076585 10 75503692 SEC24C 150 466 56 111 65 53 CD 
exm834716 10 75523634 SEC24C  136 - - - - CD 
rs431892 9 102056057 SEC61B  75 - - - -   
rs6594980 5 116042843 SEMA6A  39 - - - - CD 
rs4788999 17 75621704 SEPT9  481 - - - -   
rs12530071 6 2886067 SERPINB9  435 - - - -   
rs11968128 6 134445802 SGK1  291 - - - -   
exm831814 10 72604263 SGPL1 67 106 39 112 39 38 CD 
rs12414453 10 83006207 SH2D4B  502 - - - - CD 
rs12076073 1 154944156 SHC1  276 - - - - CD 
rs585499 1 232476942 SIPA1L2  504 - - - -   
exm533505 6 31935567 SKIV2L  192 - - - - CD 
exm114567 1 159799910 SLAMF8  92 - - - - CD 
rs6596966 6 3407646 SLC22A23  171 - - - - CD 
exm476696 5 131676320 SLC22A4 248 463 86 149 125 418 CD 
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exm-rs2073643 5 131723288 SLC22A5 85 102 32 81 140 70 CD 
rs7550613 1 9562830 SLC25A33  290 - - - -   
rs12618482 2 196206373 SLC39A10  226 - - - -   
rs11589993 1 8284497 SLC45A1 192 154 93 193 102 418 CD 
exm-rs35391 5 33955673 SLC45A2  469 - - - -   
exm182283 2 27887160 SLC4A1AP  71 - - - - CD 
rs1358175 17 38757789 SMARCE1  364 - - - - UC 
exm2259809 1 152849299 SMCP  409 - - - - IBD 
rs159364 5 60522414 SMIM15  365 - - - -   
rs6873063 5 150187805 SMIM3  164 - - - - CD 
rs2153409 1 245995920 SMYD3  221 - - - -   
rs2548621 5 53902339 SNX18  6 - - - -   
exm57998 1 48825355 SPATA6  53 - - - -   
rs16960660 17 19965587 SPECC1  176 - - - -   
rs6502788 17 4354348 SPNS3  408 - - - -   
rs10040443 5 141693593 SPRY4  493 - - - - CD 
rs13430952 2 45765157 SRBD1  361 - - - -   
rs36921 5 65464936 SREK1  287 - - - -   
rs26055 5 111040812 STARD4  151 - - - -   
rs8082391 17 40398973 STAT5B 424 475 418 391 418 418 CD 
exm-rs389884 6 31940897 STK19 287 134 316 293 273 418 CD 
rs4716127 6 17181845 STMND1  507 - - - -   
rs5750824 22 39830123 TAB1  433 - - - - CD 
rs10803704 2 9957097 TAF1B 121 346 62 108 42 47 CD 
exm-rs2857106 6 32787570 TAP2 308 289 163 305 364 418 CD 
kgp8226585 6 32813768 TAPSAR1  170 - - - - CD 
exm2948 1 1269554 TAS1R3  236 - - - - IBD 
exm1362902 17 77984172 TBC1D16  44 - - - -   
rs2789074 6 121126482 TBC1D32  383 - - - -   
rs9398632 6 121661170 TBC1D32  464 - - - -   
rs1779429 1 119460481 TBX15  390 - - - -   
rs2973656 5 167280392 TENM2  131 - - - -   

rs9466019 6 10356036 TFAP2A  10 - - - - 
Sialoade
nitis 

rs6717937 2 122043586 TFCP2L1  123 - - - -   
rs2580359 2 122063844 TFCP2L1  401 - - - -   
rs2810891 1 92154088 TGFBR3  104 - - - - IBD 
rs10059560 5 156405784 TIMD4  318 - - - -   
rs10114675 9 82759463 TLE4  420 - - - -   
rs2724918 2 569139 TMEM18  188 - - - -   
rs11165328 1 95630461 TMEM56 251 257 221 217 142 418 CD 
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exm1573724 21 43809092 TMPRSS3  302 - - - - IBD 
exm-rs7517810 1 172853460 TNFSF18 25 65 26 19 7 7 CD 
exm-rs9286879 1 172862234 TNFSF18 36 78 25 39 24 13 CD 
rs10912561 1 173164565 TNFSF4 166 89 47 187 91 418 CD 
rs2996494 1 201343638 TNNT2  184 - - - - CD 
exm137208 1 201330429 TNNT2  336 - - - - CD 
rs4788430 16 24793053 TNRC6A  294 - - - -   
rs1035671 2 218674484 TNS1  511 - - - - CD 
rs16858496 2 218824450 TNS1  513 - - - - CD 
exm-rs1150754 6 32050758 TNXB 132 125 172 169 96 98 CD 
exm534227 6 32036788 TNXB  145 - - - - CD 
exm-rs3807039 6 32078373 TNXB  246 - - - - CD 
exm-rs9267796 6 32023425 TNXB  380 - - - - CD 
rs2077580 6 32020844 TNXB  484 - - - - CD 
rs2545093 5 180682862 TRIM52  381 - - - -   
rs26173 5 14479938 TRIO  332 - - - -   
rs7092748 10 116730538 TRUB1  491 - - - -   
rs6556280 5 176096188 TSPAN17  378 - - - -   
rs4867851 5 176101823 TSPAN17  419 - - - -   
exm2270040 5 40755568 TTC33 249 116 257 226 229 418 CD 
exm1621207 22 50658424 TUBGCP6  495 - - - - UC 
kgp9751812 2 234651880 UGT1A8  47 - - - - CD 
rs17114247 21 43478135 UMODL1  494 - - - - IBD 
exm234549 2 158958605 UPP2 118 212 266 61 34 17   
rs7606259 2 158959335 UPP2  202 - - - -   
rs9824503 3 179451466 USP13  439 - - - -   
rs207136 1 55814164 USP24  412 - - - -   
rs2823286 21 16817938 USP25 68 256 13 20 14 39 CD 
exm276857 2 234436069 USP40  74 - - - - CD 
rs11185129 1 108070435 VAV3 211 177 74 183 204 418   
rs9623076 22 22560977 VPREB1  422 - - - -   
exm966088 11 124016058 VWA5A  384 - - - -   
rs1457113 5 110467074 WDR36  210 - - - -   
rs8068482 17 80608149 WDR45B  320 - - - -   
rs28758854 9 137015951 WDR5  193 - - - -   
exm1275236 17 1636950 WDR81  247 - - - -   
exm1348476 17 66449122 WIPI1  250 - - - -   
rs6555796 5 167731435 WWC1  386 - - - -   
rs2737290 16 78897506 WWOX  158 - - - -   
rs17124963 10 110463874 XPNPEP1  483 - - - -   
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rs8049877 16 17667833 XYLT1  21 - - - - CD 
rs16827790 2 187240797 ZC3H15  268 - - - - IBD 
rs3751675 16 88688832 ZC3H18  470 - - - -   
rs7189871 16 72996847 ZFHX3  224 - - - -   
exm526404 6 29641514 ZFP57  127 - - - -   
rs2802372 10 81047575 ZMIZ1 226 239 87 195 190 418 CD 
exm2259640 10 80898075 ZMIZ1  231 - - - - CD 
rs1515278 2 180503273 ZNF385B  442 - - - -   
kgp5731474 1 91330027 ZNF644  471 - - - -   
exm165864 1 247151487 ZNF695  465 - - - -   
exm1279692 17 3981290 ZZEF1   235 - - - -   

 
 

Appendix 2 

 

Mean Rank 
Multivariate 
Models SNPname Chr 

Position 
(hg37) 

XGBTree 
Rank 

RF 
Rank 

LASSO 
Rank 

BSWiMS 
Rank 

Gen for 
Functional 
Analysis 

Trait CD | IBD | 
UC at 

Opentargets 
1.5 rs11209026 1 67705958 1 2 2 1 IL23R CD 
3 rs2066844 16 50745926 2 3 4 3 NOD2 CD 

1.75 rs2066845 16 50756540 3 1 1 2 NOD2 CD 
7.25 rs11195128 10 112186148 4 13 6 6 DUSP5 CD 

19.75 rs5743289 16 50756774 5 10 31 33 NOD2 CD 
18.75 rs2902440 1 67670916 6 7 20 42 IL23R CD 
18.25 rs10758669 9 4981602 7 34 12 20 JAK2 CD 

7 rs7517847 1 67681669 8 6 9 5 IL23R CD 

11.25 rs4945943 6 113712036 9 18 8 10 MARCKS 
Acute 
apendicitis 

13.5 rs1039823 2 28623159 10 22 13 9 FOSL2 CD 
12.25 rs4807569 19 1123378 11 16 10 12 SBNO2 CD 

39 rs4921227 5 158849837 12 65 18 61 IL12B CD 
21.5 rs2823286 21 16817938 13 20 14 39 NRIP1 CD 

23.75 rs8413 9 139323311 14 47 19 15 INPP5E CD 
17.25 rs2155219 11 76299194 15 21 22 11 LRRC32 CD 
37.25 rs2005557 3 49701298 16 68 37 28 BSN CD 
92.75 rs11742570 5 40410584 17 82 180 92 PTGER4 CD 
137 rs2076756 16 50756881 18 53 59 418 NOD2 CD 
26.5 rs6478108 9 117558703 19 51 17 19 TNFSF15 CD 
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65.5 rs9264942 6 31274380 20 69 30 143 HLA-C CD 
41 rs1045100 2 234203597 21 37 74 32 ATG16L1 CD 

43.25 rs2241879 2 234183468 22 44 73 34 ATG16L1 CD 
27.5 rs7730267 5 40548545 23 8 15 64 PTGER4 CD 
39 rs968451 22 39670851 24 32 28 72 PDGFB CD 

25.25 rs9286879 1 172862234 25 39 24 13 TNFSF18 CD 
14.75 rs7517810 1 172853460 26 19 7 7 TNFSF18 CD 
35.25 rs10889677 1 67725120 27 42 50 22 IL23R CD 
32.75 rs2048507 4 26079164 28 59 23 21 RBPJ CD 
131.5 rs7539625 1 67672765 29 26 53 418 IL23R CD 
61.75 rs7130588 11 76270683 30 45 47 125 LRRC32 CD 
38.25 rs4613763 5 40392728 31 11 29 82 PTGER4 CD 
80.75 rs2073643 5 131723288 32 81 140 70 SLC22A5 CD 
187 rs2069235 22 39747780 33   110 418 SYNGR1 CD 
37 rs440970 5 131336287 34 38 21 55 ACSL6 CD 

65.75 rs10784838 12 70757341 35 77 52 99 KCNMB4 CD 
140 rs9267798 6 32044834 36 66 40 418 TNXB CD 
51 rs1260326 2 27730940 37 83 54 30 GCKR CD 

12.25 rs9262151 6 30672353 38 4 3 4 MDC1 RA 
57 rs12770335 10 72604263 39 112 39 38 SGPL1 CD 

39.75 rs12627970 22 39721745 40 46 32 41 SYNGR1 CD 
179.25 rs4409764 10 101284237 41 129 129 418 NKX2-3 CD 
91.25 rs10489630 1 67662622 42 36 133 154 IL23R CD 
68.5 rs1729662 2 61391305 43 133 67 31 C2orf74 CD 

66.75 rs912113 20 1342187 44 122 45 56 SIRPB1 CD 
195 rs10489629 1 67688349 45 50 267 418 IL23R CD 
76 rs910050 6 32315654 46 101 63 94 TSBP1, C6orf10 CD 

185.75 rs10912561 1 173164565 47 187 91 418 TNFSF4 CD 
30.5 rs9687958 5 40496423 48 12 38 24 PTGER4 CD 
87 rs991804 17 32587725 49 96 83 120 CCL2 CD 

169.25 rs3762318 1 67597119 50 88 121 418 IL23R CD 
76.75 rs10995271 10 64438486 51 146 75 35 ADO CD 
166.25 rs10440635 5 40490790 52 31 164 418 PTGER4 CD 
86.75 rs11647841 16 50743331 53 70 105 119 NOD2 CD 
104.75 rs3767498 1 201020727 54 150 78 137 CACNA1S CD 
93.25 rs2227552 10 75669319 55 134 94 90 PLAU CD 
71.25 rs7076585 10 75503692 56 111 65 53 SEC24C  CD 

25 rs34536443 19 10463118 57 14 11 18 TYK2 IBD 
86.25 rs1848728 2 231839240 58 110 61 116 GPR55 CD 

73 rs7769470 6 106487292 59 119 55 59 PRDM1 CD 
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72.75 rs1449263 2 182319301 60 99 69 63 ITGA4 CD 
122.25 rs116891695 12 104332224 61 5 5 418 HSP90B1 CD 
64.75 rs10803704 2 9957097 62 108 42 47 TAF1B CD 

44 rs11805303 1 67675516 63 17 48 48 IL23R CD 
184.5 rs2069616 5 131408077 64 182 361 131 CSF2 CD 
169.75 rs6740847 2 182308352 65 128 68 418 ITGA4 CD 
185.25 rs2064689 1 67653010 66 40 217 418 IL23R CD 

59 rs2242258 10 75607168 67 78 41 50 CAMK2G CD 
140.25 rs933243 6 167403873 68 224 128 141 RNASET2 CD 
215.75 rs7557987 2 81469658 69 231 145 418 LRRTM1 Allergic rhinitis 

101 rs4785205 16 50237938 70 152 95 87 TENT4B, PAPD5 CD 
151 rs11078927 17 38064405 71 121 280 132 GSDMB CD 

77.75 rs10761659 10 64445564 72 85 51 103 ADO CD 
35 rs3792109 2 234184417 73 28 25 14 ATG16L1  CD 

219.75 rs11185129 1 108070435 74 183 204 418 VAV3  
248.75 rs9921862 16 5658177 75 304 198 418 RBFOX1  
187.25 rs1063169 14 75747118 76 166 89 418 FOS CD 
33.75 rs4286721 5 40497604 77 15 27 16 PTGER4 CD 
103.25 rs224120 10 64445760 78 135 115 85 ZNF365 CD 

53 rs7720838 5 40486896 79 24 86 23 PTGER4 CD 
247 rs12134279 1 197781198 80 255 235 418 DENND1B CD 

200.5 rs13163402 5 40607910 81 75 228 418 PTGER4 CD 
280.5 rs10492861 16 82866767 82 320 302 418 CDH13 CD 
217.5 rs2188962 5 131770805 83 118 251 418 IRF1 CD 

56 rs10444086 10 112179167 84 60 26 54 DUSP5 CD 
251.75 rs6663281 1 63221191 85 240 264 418 ATG4C CD 
194.5 rs1050152 5 131676320 86 149 125 418 SLC22A4  
222.5 rs2802372 10 81047575 87 195 190 418 ZMIZ1 CD 
153.25 rs1480382 6 32740895 88 253 148 124 HLA-DQB2 CD 
77.75 rs3828309 2 234180410 89 48 46 128 ATG16L1 CD 
96.75 rs2872507 17 38040763 90 87 97 113 IKZF3 CD 
83.75 rs10487279 7 102516744 91 120 58 66 FBXL13 CD 
235 rs10781510 9 139279173 92 143 287 418 SNAPC4 CD 

201.5 rs11589993 1 8284497 93 193 102 418 PARK7 CD 
92 rs4945087 11 76136482 94 79 77 118 GVQW3 CD 

96.5 rs10852936 17 38031714 95 100 79 112 ZPBP2 CD 
121.5 rs1905339 17 40582296 96 170 98 122 MLX CD 
83.25 rs2413583 22 39659773 97 116 44 76 PDGFB CD 
94.25 rs6127152 20 52872215 98 145 90 44 PFDN4 UC 
192.75 rs10489182 1 169710669 99 151 103 418 SELL CD 
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227.5 rs744166 17 40514201 100 216 176 418 STAT3 CD 
143.5 rs17293632 15 67442596 101 168 178 127 SMAD3 CD 
64.75 rs11209003 1 67601132 102 27 72 58 C1orf141 CD 
192.25 rs7068361 10 64408367 103 89 159 418 ZNF365 CD 
112.25 rs6583623 8 143480669 104 147 88 110 TSNARE1 CD 
207.75 rs4643314 16 50375955 105 196 112 418 BRD7 CD 

105 rs137603 22 39694225 106 138 85 91 SYNGR1 CD 
60.25 rs7927997 11 76301375 107 49 36 49 LRRC32 CD 
188.5 rs6478109 9 117568766 108 94 134 418 TNFSF15 CD 
200.25 rs1736020 21 16812552 109 125 149 418 NRIP1 CD 

239 rs8063739 16 5778928 110 241 187 418 RBFOX1 UC 
175.25 rs6869535 5 40597618 111 54 118 418 PTGER4 CD 
112.75 rs1736148 21 16813212 112 126 153 60 NRIP1 CD 
147.25 rs58736 5 62560237 113 266 108 102 LRRC70 CD 
164.75 rs2241880 2 234183368 114 35 92 418 ATG16L1  CD 
147.75 rs114543649 6 32261158 115 23 35 418 TSBP1, C6orf10 CD 

225 rs4354332 8 115492603 116 230 136 418 CSMD3 CD 
130.75 rs907092 17 37922259 117 115 182 109 IKZF3 CD 
244.5 rs7554511 1 200877562 118 227 215 418 INAVA, C1orf106 CD 
248.75 rs10853952 19 1163934 119 291 167 418 SBNO2 CD 
263.25 rs2236866 1 169596313 120 295 220 418 SELP CD 
186.75 rs1052227 17 54906137 121 301 192 133 DGKE CD 
227.25 rs9303277 17 37976469 122 156 213 418 IKZF3 CD 

39 rs17234657 5 40401509 123 9 16 8 PTGER4 CD 
106.5 rs16942771 17 56252489 124 141 99 62 OR4D1 IBD 
244.25 rs890432 17 46629232 125 265 169 418 HOXB3  
142.75 rs10882091 10 94374377 126 219 109 117 KIF11 CD 

189 rs1495965 1 67753508 127 64 147 418 IL23R CD 
126 rs12537821 7 102624395 128 165 146 65 FBXL13 CD 

257.25 rs924080 1 67760140 129 95 387 418 IL12RB2 CD 
264 rs7189414 16 86620191 130 307 201 418 FOXC2  

163.75 rs4833071 4 38582859 131 256 122 146 KLF3 CD 
221.5 rs11190140 10 101291593 132 124 212 418 NKX2-3 CD 
76.5 rs2066843 16 50745199 133 41 80 52 NOD2 CD 

178.25 rs2305480 17 38062196 134 80 81 418 GSDMB CD 
188.75 rs7927894 11 76301316 135 67 135 418 LRRC32 CD 
256.5 rs8005161 14 88472595 136 206 266 418 GPR65 CD 
219.75 rs12523160 5 40385790 137 93 231 418 PTGER4 CD 
198.25 rs10781500 9 139269338 138 113 124 418 CARD9 CD 

72 rs6451493 5 40410935 139 43 60 46 PTGER4 CD 
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228 rs4957138 5 40622940 140 73 281 418 PTGER4 CD 
244.75 rs4927176 1 55354335 141 236 184 418 DHCR24 CD 

175 rs1866316 15 67441997 142 288 126 144 SMAD3 CD 
87.5 rs10210302 2 234158839 143 57 113 37 ATG16L1 CD 
71 rs10043301 5 40530886 144 25 70 45 PTGER4 CD 

266.5 rs16826094 3 116814285 145 292 211 418 LSAMP  
303.75 rs463426 22 21809185 146 329 322 418 UBE2L3 CD 
111.25 rs1172294 2 25169200 147 137 104 57 DNAJC27 CD 
137.25 rs2548993 5 131808869 148 139 151 111 IRF1 CD 

235 rs10045431 5 158814533 149 235 138 418 UBLCP1 CD 
151.5 rs713586 2 25158008 150 164 139 153 ADCY3 CD 
233.75 rs1074664 14 29068832 151 203 163 418 FOXG1 CD 
191.75 rs390956 1 242398403 152 247 233 135 PLD5 CD 
174.25 rs10077544 5 40484938 153 33 93 418 PTGER4 CD 
261.25 rs2523619 6 31318144 154 252 221 418 MICB CD 
279.25 rs4625 3 49572140 155 200 344 418 DAG1 CD 
180.75 rs10789224 1 67605134 156 29 120 418 IL23R CD 

296 rs652157 13 102764516 157 332 277 418 FGF14 CD 
297.75 rs13035268 2 127937551 158 363 252 418 ERCC3 CD 
256.5 rs6451494 5 40411291 159 159 290 418 PTGER4 CD 
134.25 rs25887 5 131416061 160 114 157 106 SLC22A4 CD 
247.5 rs10926652 1 242380948 161 237 174 418 PLD5 CD 
95.5 rs1060962 3 49708502 162 107 62 51 BSN CD 

312.5 rs2857106 6 32787570 163 305 364 418 HLA-DOB CD 
131.25 rs1297265 21 16817051 164 91 119 151 NRIP1 CD 

146 rs12521868 5 131784393 165 140 137 142 IRF1 CD 
76.75 rs3091315 17 32593665 166 71 43 27 CCL7 CD 
138.25 rs11208997 1 67560956 167 157 141 88 C1orf141 CD 
134.25 rs10883365 10 101287764 169 123 130 115 NKX2-3 CD 

211.25 rs10124038 9 110872527 170 312 223 140 KLF4 

Acute infective 
polyneuritis/guill
ain-barre 
syndrome 

287.25 rs2197465 14 48572632 171 330 230 418 MDGA2 MS 
133.75 rs1150754 6 32050758 172 169 96 98 TNXB CD 
81.25 rs1373692 5 40431183 173 52 64 36 PTGER4 CD 
324 rs6702421 1 197559324 174 325 379 418 DENND1B CD 

272.25 rs3024505 1 206939904 175 296 200 418 IL10 CD 
279.25 rs6679677 1 114303808 176 342 181 418 PHTF1 CD 
297.5 rs9909522 17 10235790 177 393 202 418 MYH13  
317.5 rs4917129 7 50323174 178 411 263 418 IKZF1 CD 
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213 rs11159833 14 88476004 179 171 84 418 AMT CD 
315.25 rs4345993 11 82222510 180 381 282 418 MIR4300HG CD 
273.5 rs11684413 2 85627714 181 273 222 418 CAPG IBD 
246.75 rs11957215 5 40445681 182 153 234 418 PTGER4 CD 
329.5 rs3130649 6 30803254 183 380 337 418 FLOT1 CD 
266.25 rs10952869 7 75846453 184 260 203 418 SRRM3 CD 

204 rs10941516 5 40522212 185 63 150 418 PTGER4 CD 
139.5 rs1516975 8 129548193 186 180 123 69 MYC CD 
280.75 rs1177283 2 61348804 187 232 286 418 KIAA1841 CD 
168.75 rs7848647 9 117569046 188 132 210 145 TNFSF15 CD 
168.25 rs10500264 19 33750314 189 208 175 101 SLC7A10 CD 
290.25 rs4029774 17 40428961 190 268 285 418 STAT5A CD 
280.5 rs2823269 21 16793467 191 218 295 418 NRIP1 CD 
105.25 rs10889676 1 67722567 192 58 76 95 IL23R CD 
264.75 rs1000141 2 234242347 193 92 356 418 SAG CD 

298 rs7105981 11 4980153 194 334 246 418 APEH UC 
168.5 rs11178234 12 70819638 195 175 165 139 KCNMB4 CD 
322.75 rs3902025 17 38119254 196 336 341 418 GSDMA CD 
311.25 rs5751086 22 41768862 197 383 247 418 TEF CD 
232.25 rs8050730 16 25965289 198 142 171 418 HS3ST4  

104 rs11078928 17 38064469 199 105 87 25 GSDMB CD 
279.25 rs10398 11 308180 200 254 245 418 IFITM2 CD 

184.75 rs747063 20 50102203 201 238 193 107 NFATC2 
Acute 
periodontitis 

213.5 rs10749771 1 67573730 202 117 117 418 C1orf141 CD 
179 rs10801677 1 198628483 203 62 33 418 PTPRC CD 

254.5 rs1479008 4 57017493 204 234 162 418 KIAA1211 IBD 
224.25 rs10513140 3 141218057 205 349 209 134 RASA2 CD 
164.75 rs35263917 3 41952852 206 248 131 74 ULK4 CD 
327.75 rs3865452 19 41211056 207 331 355 418 COQ8B CD 

180 rs2513638 11 115412993 208 249 170 93 CADM1 CD 
320.75 rs7955946 12 66912923 209 303 353 418 GRIP1 Gerd 
157.5 rs1420872 16 50807779 210 104 195 121 CYLD CD 
207.75 rs2284176 6 30875622 211 317 219 84 GTF2H4 CD 
325.75 rs7725523 5 40372223 212 308 365 418 PTGER4 CD 
302.5 rs17745066 2 46488081 213 319 260 418 EPAS1 Vitiligo 
310 rs739134 22 42089623 214 352 256 418 C22orf46 CD 
281 rs13003464 2 61186829 215 250 241 418 PUS10 CD 

325.75 rs11584383 1 200935866 216 324 345 418 GPR25 CD 
290.5 rs8090824 18 57147798 217 269 258 418 CCBE1 CD 
294.5 rs876187 14 98478564 218 294 248 418 C14orf177 CD 
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292 rs1032070 17 40618251 219 276 255 418 ATP6V0A1 CD 
291.5 rs10177578 2 217885659 220 290 238 418 TNP1 Gerd 
249.5 rs11165328 1 95630461 221 217 142 418 TLCD4, TMEM56 CD 
139.25 rs3742704 14 88477882 222 161 106 68 GPR65 CD 

313 rs59278059 8 49589181 223 337 274 418 EFCAB1 CD 
234.5 rs735277 8 27534727 224 346 216 152 CCDC25 RA 
152 rs7758736 6 32758394 225 190 107 86 HLA-DQA2 CD 
304 rs4572134 11 42916859 226 271 301 418 API5 CD 

340.25 rs7919913 10 5926216 227 389 327 418 ANKRD16 CD 

260.25 rs1944564 18 75071036 228 210 185 418 GALR1 
 Spondylosis and 
allied disorders 

336.5 rs7704367 5 158821493 229 281 418 418 IL12B CD 
318.75 rs2711981 4 39039258 230 390 237 418 TMEM156 CD 
186.75 rs11066301 12 112871372 231 228 188 100 PTPN11 CD 
312.25 rs9483751 6 135128858 232 350 249 418 ALDH8A1 CD 
302.75 rs1551398 8 126540051 233 298 262 418 TRIB1 CD 
201.75 rs1536780 13 94708442 234 242 205 126 GPC6  CD 
327.25 rs1015563 20 6690101 235 326 330 418 BMP2 CD 
194.75 rs10822047 10 64424284 236 191 244 108 ADO CD 
133.75 rs12547052 8 84492735 237 176 82 40 RALYL  
330.75 rs605790 6 142879589 238 347 320 418 ADGRG6 UC 
332.25 rs682666 13 101706701 239 353 319 418 NALCN  
371.25 rs9842389 3 173276758 240 409 418 418 NLGN1  
87.25 rs115884658 6 31864538 241 30 49 29 ATP6V0A1 CD 
185.5 rs753173 10 30778738 242 264 155 81 MAP3K8  
302.5 rs2823289 21 16841195 243 199 350 418 NRIP1 CD 
283.25 rs13064993 3 149403563 244 280 191 418 WWTR1 CD 
293.75 rs451686 12 70840890 245 209 303 418 KCNMB4 CD 
241.75 rs4532399 5 40467272 246 97 206 418 PTGER4 CD 
247.5 rs7589485 2 28645120 247 148 177 418 FOSL2 CD 
311.25 rs34762726 3 49689210 248 202 377 418 BSN CD 
232.5 rs1860180 17 32628064 249 282 261 138 CCL11 CD 
247.75 rs7076156 10 64415184 250 127 196 418 ZNF365 CD 
284.5 rs1396733 2 28642747 251 197 272 418 FOSL2 CD 

339.5 rs7786795 7 51721558 252 370 318 418 COBL 

Acute infective 
polyneuritis/guill
ain-barre 
syndrome 

359.75 rs1886684 1 92975938 253 398 370 418 EVI5 CD 
263.75 rs6651252 8 129567181 254 184 199 418 MYC CD 

300.5 rs61736408 11 35456061 255 297 232 418 PAMR1 
Spondylosis and 
allied disorders 
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168.25 rs3091316 17 32593974 256 102 218 97 CCL2 CD 
282.5 rs3805495 5 40755568 257 226 229 418 TTC33 CD 
181 rs61839660 10 6094697 258 267 132 67 IL2RA CD 

343.25 rs2301436 6 167437988 259 356 340 418 CEP43, FGFR1OP CD 
260 rs10077785 5 131801158 260 194 168 418 IRF1 CD 

228.25 rs6845304 4 88280502 261 279 224 149 HSD17B11 UC 
305.75 rs11178010 12 70366794 262 300 243 418 MYRFL CD 
267.25 rs8113472 19 10608064 263 205 183 418 KEAP1 CD 
154.25 rs1051738 19 10577843 264 154 116 83 PDE4A  
365.75 rs10484530 6 167461562 265 362 418 418 CEP43, FGFR1OP CD 

94.5 rs6710480 2 158958605 266 61 34 17 UPP2  
197.75 rs790088 17 71588183 267 277 158 89 SDK2  

345 rs7469903 9 105524913 268 373 321 418 CYLC2 MS 
251 rs11139654 9 85220698 269 174 143 418 RASEF  
325 rs9303898 18 2312881 270 358 254 418 METTL4 CD 
366 rs11808092 1 93073228 271 416 359 418 EVI5 CD 
233 rs2066842 16 50744624 272 86 156 418 NOD2 CD 

279.25 rs7749057 6 32448904 273 201 225 418 HLA-DRA  
285.5 rs7138344 12 70837122 274 179 271 418 KCNMB4 CD 
303.5 rs1402246 3 34589121 275 262 259 418 PDCD6IP CD 
318 rs11244 6 32780724 276 285 293 418 HLA-DOB CD 

317.25 rs6073315 20 42718605 277 309 265 418 JPH2 

Allergy or 
anaphylactic 
reaction to drug 

342 rs7608910 2 61204856 278 284 388 418 PUS10 CD 
124.75 rs9292777 5 40437948 279 74 66 80 PTGER4 CD 
225.5 rs4263839 9 117566440 280 103 101 418 TNFSF15 CD 
206 rs740495 19 1124835 281 221 186 136 SBNO2 CD 

199.5 rs12624279 2 28634790 282 186 207 123 FOSL2 CD 
306.5 rs11745587 5 131796922 283 275 250 418 IRF1 CD 
356.25 rs1736168 2 71880211 284 371 352 418 DYSF  
378.25 rs3099844 6 31448976 285 392 418 418 MICB CD 
330.5 rs6913309 6 32339840 286 314 304 418 HLA-DRB5 CD 
372.25 rs1926554 10 35344969 287 366 418 418 CUL2 CD 

118 rs4655690 1 67659896 288 55 56 73 IL23R CD 
324.5 rs9981974 21 16759963 289 257 334 418 NRIP1 CD 
302.75 rs6441841 3 44450564 290 198 305 418 TCAIM Acute gastritis 
268.75 rs2241874 2 234247627 291 130 236 418 SAG CD 
383.75 rs181362 22 21932068 292 407 418 418 UBE2L3 CD 

309 rs4871611 8 126537570 293 272 253 418 TRIB1 CD 
330.75 rs13251655 8 119760559 294 323 288 418 TNFRSF11B CD 
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337 rs2844702 6 30912481 295 338 297 418 MUCL3, DPCR1 CD 
335 rs6850861 4 178236402 296 348 278 418 NEIL3  

341.75 rs9405897 6 6052055 297 335 317 418 NRN1 

 Spondylosis 
without 
myelopathy 

304.25 rs7217052 17 21452282 298 261 240 418 C17orf51 CD 
337.75 rs263156 6 142907515 299 306 328 418 ADGRG6 UC 

327 rs7562674 2 172259687 300 311 279 418 METTL8 CD 
220.5 rs17399261 2 222994084 301 278 189 114 CCDC140 CD 
327.5 rs7775397 6 32261252 302 222 368 418 TSBP1, C6orf10 CD 
291.5 rs4378078 9 139375962 303 188 257 418 SEC16A CD 
342.25 rs1046974 2 234255547 304 274 373 418 SAG CD 
376.75 rs12985380 19 51861176 305 400 384 418 ETFB CD 
309.5 rs17215589 3 41831203 306 245 269 418 BMS1P4 CD 
346.25 rs2293158 17 40447558 307 321 339 418 STAT5A CD 
229.25 rs593400 10 30762088 308 310 194 105 MAP3K8 CD 
382.75 rs7756521 6 30848253 309 386 418 418 DDR1 CD 
368.5 rs11008080 10 30802799 310 365 381 418 MAP3K8 CD 
123 rs6576498 15 26223788 311 98 57 26 ATP10A Psoriasis 
307 rs7736920 5 40520217 312 204 294 418 PTGER4 CD 

316.25 rs1383261 6 32765451 313 259 275 418 HLA-DQB1 CD 
174 rs2522051 5 131797578 314 109 144 129 IRF1 CD 
367 rs170773 8 19008265 315 355 380 418 PSD3 CD 
325 rs389884 6 31940897 316 293 273 418 DXO CD 

154.25 rs1992660 5 40415067 317 56 114 130 PTGER4 CD 
266.25 rs9822268 3 49719729 318 177 152 418 APEH CD 
298.25 rs1885276 1 67568824 319 167 289 418 C1orf141 CD 
383.5 rs12240347 10 35359475 320 378 418 418 CUL2 CD 
209 rs10995251 10 64398466 321 211 154 150 ADO CD 
302 rs12789493 11 76275703 322 158 310 418 LRRC32 CD 
351 rs4821116 22 21973319 323 357 306 418 UBE2L3 CD 

319.5 rs1884444 1 67633812 324 162 374 418 IL23R CD 
361.25 rs7246953 19 10621108 325 339 363 418 TYK2 CD 

325 rs11209030 1 67737775 326 213 343 418 IL12RB2 CD 
181.25 rs3785142 16 50787147 327 90 160 148 CYLD CD 
323.5 rs10489631 1 67601115 328 215 333 418 C1orf141 CD 
315 rs1321157 1 67654110 329 181 332 418 IL23R CD 
129 rs6896969 5 40424426 330 72 71 43 PTGER4 CD 

266.25 rs10781499 9 139266405 331 155 161 418 CARD9 CD 
371 rs6456156 6 167522300 332 376 358 418 CCR6 CD 

327.25 rs2675677 10 75648249 333 212 346 418 PLAU CD 
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327 rs6981209 8 13416666 334 258 298 418 DLC1 
Ulcerative colitis 
(chronic) 

324 rs7563345 2 234143244 335 220 323 418 ATG16L1 CD 
372.5 rs3117582 6 31620520 336 318 418 418 APOM CD 
174.5 rs2201841 1 67694202 418 76 100 104 IL23R CD 
191.5 rs3197999 3 49721532 418 144 127 77 MST1 CD 
211 rs4077515 9 139266496 418 178 173 75 CARD9 CD 
225 rs162907 5 131580152 418 189 197 96 PDLIM4 CD 
237 rs3024493 1 206943968 418 287 172 71 IL10 CD 

244.25 rs9611613 22 41961831 418 315 166 78 CSDC2 CD 
256.75 rs12540583 7 102760511 418 322 208 79 NAPEPLD CD 
273.5 rs11955347 5 131567924 418 233 296 147 P4HA2 CD 
277.5 rs7211774 17 56257984 418 163 111 418 TSPOAP1 IBD 
287.75 rs3859118 16 50252235 418 136 179 418 TENT4B, PAPD5 CD 
295.25 rs4785452 16 50842077 418 106 239 418 CYLD CD 

325 rs7936562 11 76278258 418 172 292 418 LRRC32 CD 
326.25 rs2136187 5 131577894 418 160 309 418 P4HA2 CD 
326.5 rs3131383 6 31704294 418 243 227 418 CLIC1 CD 
329.25 rs80043692 17 56247306 418 173 308 418 OR4D2  
331.5 rs3849969 10 75525999 418 214 276 418 SEC24C CD 
331.75 rs1736135 21 16805220 418 131 360 418 NRIP1 CD 

334 rs1876143 5 40521648 418 185 315 418 PTGER4 CD 
338 rs3131379 6 31721033 418 246 270 418 MSH5 CD 

338.5 rs10065787 5 131436486 418 207 311 418 SLC22A4 CD 
343.75 rs7381376 6 32767673 418 225 314 418 HLA-DQB1 CD 
348.25 rs11715915 3 49455330 418 343 214 418 AMT CD 
351.25 rs10740418 10 75519322 418 286 283 418 SEC24C CD 

356 rs2167566 2 61519408 418 263 325 418 USP34 CD 
359.25 rs3117577 6 31727474 418 302 299 418 MSH5 CD 

360 rs6431655 2 234162415 418 229 375 418 ATG16L1 CD 
360.25 rs4746143 10 75477298 418 289 316 418 BMS1P4 CD 
360.5 rs181359 22 21928641 418 299 307 418 UBE2L3 CD 
361.25 rs558702 6 31870326 418 223 386 418 ZBTB12 CD 
361.5 rs2518934 2 61794498 418 368 242 418 XPO1 CD 
363 rs3117574 6 31725230 418 244 372 418 MSH5 CD 

363.25 rs9276644 6 32745043 418 333 284 418 PSMB9 CD 
364.75 rs11800409 1 93181013 418 397 226 418 EVI5 CD 

369 rs4795893 17 32574448 418 316 324 418 CCL2 CD 
369.25 rs9366076 6 167373708 418 328 313 418 RNASET2 CD 
371.5 rs11799915 1 197582780 418 359 291 418 DENND1B CD 
371.75 rs2241876 2 234186734 418 313 338 418 ATG16L1  CD 
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372 rs497309 6 31892484 418 340 312 418 DXO CD 
373 rs3816769 17 40498273 418 388 268 418 STAT3 CD 

373.25 rs915652 6 31749142 418 239 418 418 VARS1, VARS CD 
375.5 rs272885 5 131667736 418 283 383 418 SLC22A4 CD 
375.75 rs7004689 8 119769036 418 367 300 418 TNFRSF11B CD 
376.25 rs2187668 6 32605884 418 251 418 418 HLA-DQA1  
380.25 rs3095352 6 30805921 418 354 331 418 IER3 CD 

381 rs3115671 6 31734345 418 270 418 418 VWA7 CD 
382 rs11706370 3 49441091 418 345 347 418 RHOA CD 

382.25 rs3101017 6 31733466 418 344 349 418 VWA7 CD 
382.5 rs460106 22 21806401 418 327 367 418 UBE2L3 CD 
385 rs3130655 6 30823710 418 369 335 418 IER3 CD 

388.25 rs2858331 6 32681277 418 341 376 418 HLA-DRB5 CD 
389.25 rs17582416 10 35287650 418 385 336 418 CUL2 CD 
389.5 rs3909130 6 30874165 418 351 371 418 GTF2H4 CD 
390.25 rs4430924 2 61703856 418 396 329 418 USP34 CD 
390.5 rs9276711 6 32757297 418 375 351 418 PSMB9 CD 
392.5 rs12537160 7 51733827 418 408 326 418 COBL  
393.5 rs1270942 6 31918860 418 360 378 418 CFB CD 
394.5 rs126092 22 42178441 418 394 348 418 MEI1 CD 
397.25 rs9468845 6 30869593 418 399 354 418 GTF2H4 CD 
397.5 rs139553 22 42187199 418 412 342 418 MEI1 CD 
398 rs3812594 9 139368953 418 374 382 418 SEC16A CD 

399.5 rs4821112 22 21964761 418 405 357 418 UBE2L3 CD 
403.25 rs7099036 10 35349574 418 415 362 418 CUL2 CD 
403.75 rs8408 6 30867666 418 361 418 418 GTF2H4 CD 
404.5 rs2694642 2 61596180 418 413 369 418 C2orf74 CD 
404.5 rs5754217 22 21939675 418 364 418 418 UBE2L3 CD 
405 rs2074506 6 30890483 418 418 366 418 VARS2 CD 

405.5 rs916920 6 30877202 418 401 385 418 GTF2H4 CD 
407.75 rs2517449 6 30919701 418 377 418 418 MUCL3, DPCR1 CD 
408.25 rs4618569 6 30855251 418 379 418 418 DDR1 CD 

409 rs12529876 6 167461501 418 382 418 418 CEP43, FGFR1OP CD 
409.5 rs11498 2 61370819 418 384 418 418 C2orf74 CD 
410.25 rs8139993 22 41995335 418 387 418 418 DESI1 CD 
411.25 rs8082391 17 40398973 418 391 418 418 C22orf46 CD 
412.25 rs2239517 6 30865115 418 395 418 418 DDR1 CD 

414 rs2252760 6 30892377 418 402 418 418 VARS2 CD 
414.25 rs2535327 6 30826904 418 403 418 418 DDR1 CD 
414.5 rs1264309 6 30875899 418 404 418 418 VARS2 CD 
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415 rs1264303 6 30882513 418 406 418 418 VARS2 CD 
416 rs1264333 6 30844314 418 410 418 418 DDR1 CD 
417 rs2844654 6 30838688 418 414 418 418 VARS2 CD 

417.75 rs7738138 6 30887344 418 417 418 418 VARS2 CD 
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