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Optical flow sensor for droplet-based Lab-on-PCB devices 
 

by 
 

Daniel Hugo Solano Teran 
 
Abstract 

 

Advancements on Lab-on-a-PCB devices nowadays focus on design goals such as 
Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, 
Deliverable to end-users (ASSURED) devices. However, most of these new systems 
present external equipment dependencies, complex set-up processes, low reproducibility 
factors, and intricate manufacturing processes. For many industries (medical, 
pharmaceutical, cosmetics), Lab-on-a-PCB devices are capable of characterizing 
multiphase systems such as cell-in-droplets identification, flow-phase characterization, and 
micromixing detection. Thus, this work presents a new optical droplet detector, employing 
common and cost-effective electronics components. The device consists of a fluid channel 
between a light-emitting diode (LED) and a photo-resistor (LDR), whose voltage variation 
is measured and then processed with an ARDUINO microcontroller. This new sensor can 
determine different multiphase flow properties such as velocity, flow, droplet lengths, and 
volume with high-speed throughput up to 1000 droplets per second. Furthermore, this 
sensor presents a modular electronic design that provides a simple calibration, high 
adaptability, and a standardized fabrication process. Therefore, it creates a cost-effective, 
portable, easy-to-fabricate, and plug-and-play environment for the alignment with the 
ASSURED criteria. 
 
Droplet detection and characterization showed MRE values ranging from 2.4% up to 17%. 
The lowest MRE value was obtained using a two-phase flow system with water-in-air 
droplets at a sampling rate of 2.3 kHz for flow rates starting at 20 up to 425 μL/min. In 
contrast, the highest MRE value reported was under a three-phase flow system for dyed 
and pure water-in-air droplets at a 5 kHz sampling rate at a 250 µL/min flow rate.   
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Chapter 1 
 
Introduction 
Microfluidics has been defined as the science and technology for the analysis of very small 
quantities of samples and reagents (10-9 to 10-18 Liters), carrying out separations and 
detections with high sensitivity and resolutions at low cost and short times [1], [2]. Thus, 
research and work in this area it has uncovered applications in numerous fields, such as 
biology, physics, biotechnology and pharmacy; and has contributed as key component for 
the development of integrated and miniaturized systems, called micro total analytical 
systems (µTAS) or lab-on-a-chip devices (LOC) [3]. However, most of these devices have 
faced difficulties achieving real-life adoption, standardized fabrication processes, and mass 
production [4]. 
 
The use of printed circuit boards (PCB) for lab-on-a-PCB (LOP)devices as a fabrication 
technique for electronic and microfluidic integration is one promising approach for the 
overcome of these problematics with high impact in system integration and mass fabrication 
with low costs, due to its well standardized and mature manufacturing process [3], [4]. 
 
Furthermore, the fabrication of these systems has widely adopted a new criterion, in order 
to match Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, 
Deliverable to end-users, called ASSURED criteria as presented in [5]–[9]. This criterion 
was developed by The World Health Organization Sexually Transmitted Diseases 
Diagnostics Initiative (SDI) as a benchmark for the improvement of sexually transmitted 
infections (STIs) diagnosis [10]. 
 
Most of these devices' fundamental principle relies on the detection and characterization of 
two-phase flows (gas-liquid, liquid-liquid, or nanoparticle-liquid), known as droplet 
microfluidics, with excellent characteristics for chemical, biomedical, biological, and 
industrial applications [11]. This technique reduces complicated experiments in laboratories 
by reducing its size, minimizing reagent consumptions, and increasing the repeatability of 
experiments conducted with a single device. Nonetheless, challenges still in portability due 
to dependencies of external devices [12]–[14], cost-effectiveness, and complex fabrication 
processes in which controlled environment is required [14], [15]. 
 
Hence this research aims to develop a fully integrated cost-effective and portable droplet 
sensor for a Lab-on-a-PCB device with decentralized settings. Reducing the requirement of 
external equipment and human efforts into measuring processes, generating an automated 
Plug-and-Play environment pursuing the ASSURED criteria. This work is composed of five 
chapters, an introduction, methodology, results, experimental improvements, and 
conclusions. 
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1.1. Problem definition 
This work aims to develop an optical sensor for droplet characterization and counting, to 
overcome the difficulties of portability, cost-effectiveness, user-friendliness, and autonomy 
on lab-on-PCB devices. Its main characteristic is a high-speed throughput, up to 1000 
droplets per second for multiple multiphase flow fluids capable of detecting and 
characterizing dispersed droplets using standard electronic components. In addition, to 
achieve the ASSURED criteria, the device design was thought towards its energetic 
consumption, and portability with a working area of 38 by 55 mm, including peripherals for 
the Arduino connection using its USB source for powering the system or an external battery 
if it is required. The use of standard electronic components reduces costs and ease the 
fabrication process by integrating standard PCB fabrication techniques without the need for 
a sophisticated laboratory offering an overall fabrication cost under 20 USD. The resulting 
device has a full autonomous functioning that does not require any human intervention 
during its measurements or detection processes; therefore, it does not require a complex 
training process delivering an easy to use environment.  

 
1.2. Hypothesis and research questions 

This work hypothesizes that using optoelectronics combined with an Arduino UNO 
microcontroller as the fundamental principle for droplet detection and characterization 
can meet the requirements for a precise and accurate droplet-based system, besides, 
to overcome the existing gaps in achieving the ASSURED criteria. Therefore the 
following research questions arise: 
 

• What are the key factors that limit the sensor measurements and throughput? 
 

• Is the Arduino UNO capable of high-speed processing sensor signals? 
 

• How often does the sensor need a calibration process? 
 

• Is it possible for the sensor to detect and characterize optically similar fluid-phases 
in one experiment? 

 
• What are the advantages and disadvantages of choosing a standard PCB fabrication 

process for the sensor? 
 
• What is the impact of using optoelectronics and standard PCB fabrication techniques 

on the achievement of the ASSURED criteria? 
 
Therefore this work proposes a portable, programmable, easy-to-fabricate, user-friendly, 
autonomous, and affordable optical droplet sensor for lab-on-P.C.B. devices to enhance 
the ASSURED criteria completion. The use of standard electronics components reduces its 
fabrication costs and complexity alongside the well-known Arduino-UNO microcontroller to 
develop a user-friendly interface for programmable applications using an in-situ powering 
source. 
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The sensor's fundamental principle is the voltage variation of a photoresistor aligned to the 
microchannel and the light source (LED). It is then processed using the microcontroller to 
detect and calculate the droplet's length, velocity, flow rate, and volume. Furthermore, this 
work aims to demonstrate that with the use of standard components, the sensor output is 
similar to more elaborated sensors in precision and accuracy, also in detection rates of 
droplets per second. 
 
1.3. Objectives 

 
This work's main objective is to develop a portable, programmable, easy-to-fabricate, user-
friendly, autonomous, and affordable optical droplet sensor for characterization and 
quantification of multi-phase fluids in lab-on-a-PCB devices, enhancing the ASSURED 
criteria completion. (High-speed) 
 
The following specific objectives are the guidelines for the proposed optical sensor 
realization: 

 
• To design the electronic system and peripherals using an LED and a photoresistor 

as the primary sensor's functioning principle. 
 

• To fabricate the sensor using standard electronic components and PCB fabrication 
process.   
 

• To program the Arduino UNO microcontroller to capture the device's signal response 
and user inputs using the Arduino IDE software. 
 

• To develop a system for data reading and signal processing using MATLAB software. 
 

• To integrate the hardware and software into a final device. 
 

1.4. State-of-the-art 
Throughout recent years droplet-based microfluidics for LOC devices has gained attraction 
in the research field due to their promising results in numerous fields, such as biology, 
physics, biotechnology, and pharmacy [12]. Therefore many state-of-the-art devices have 
arisen, such as the U-Chip illustrating a fabrication methodology for a cost-effective PCB 
microfluidic device with USB source as the driving unit [16]. Another approach is a PNA-
based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification for 
biosensing applications [7]. Although these few devices are excellent choices for Lab-on-
PCB devices, there is still a gap in achieving ASSURED criteria. The U-chip has not been 
tested on disease detection, and the lifetime of the electrodes is ten minutes as a result of 
degradation. In contrast, the device purposed in [7] has portability issues due to external 
systems' requirements as syringe pumps and source power. However, a more in-depth 
study for state-of-the-art devices in droplet-based systems is shown in the following Table 
1, in which various measuring techniques for droplet detection are compared by their 
features, flow phases, and final specifications. 
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Table 1. State-of-the-art review. 
 

Refere
nce Technique Measurements Flow phases Parameters 

[14] 

Capacitive sensor 
employing interdigital 
electrodes (IDEs) and 
a dielectric film. 

Droplet velocity. 
 
Constant that 
allows to 
distinguish 
different flow 
patterns (Do). 
 
Droplet diameter 
distribution. 

Continuous 
phase: 
deionized 
water. 
 
Dispersed 
phase: olive 
oil. 

Microchannel: 150 µm 
height and 800 µm width. 
Droplet flow: Qo=0.001 
mL/ min, Qw =0.005 mL/ 
min. 
Short slug flow: Qo=0.003 
mL/ min, Qw =0.03 mL/ 
min. 
Long slug flow: Qo=0.004 
mL/ min, Qw =0.06 mL/ min 
No marginal values for 
size nor velocity. 
Sampling frequency: 32.2 
Hz. 

[17] 

Optical diagnosis 
through back-light 
imaging. 
Diffused back-
illumination DBI. 
Camera: Photron 
SA5. 
Global field lens: 
Nikon Sigma 24-70 
mm 31 kfps. 
Near field lens: 
DistaMax lens 150 
kfps. 

Droplet diameter 
distribution. 
Droplet velocity 
distribution. 

Urea-water 
solution spray. 

Minimum diameter 
detected: 21.7 µm. 
 
Droplets over 2000 µm 
were neglected. 

[15] 

Microfluidic 
impedance cytometry 
(MIC). 
In contact Field’s 
Metal (icFM) 
microelectrodes 
Microchannels for 
electrode deposition 
with melted Fermium 
(FM). 

Cellular electrical 
impedance 
Droplet detection. 
Droplet length 
Cell-in-droplet 
quantification. 

Continuous 
phase: 
fluorinated oil 
Dispersed 
phase: 
erythrocyte cell 
suspension in 
1×Phosphate-
buffered saline 
(PBS). 

Microchannel: 20 µm 
height and 20 µm width. 
Droplet volume: ≈ 150 pL. 
Sampling rate: 7200 Hz. 

[18] 

Micro-particle image 
velocimetry (µPIV, 
optical method to 
characterize 
microscale flows by 
tracking the motion of 
particles seeded in the 
flow). 

Droplet velocity 
for different 
droplet sizes in 
the channel 
Droplet velocity 
fields. 
Effect of viscosity 
ratio on flow 
topology. 

Continuous 
phases: Silicon 
oil, HFE7500. 
Dispersed 
phases: 
Water/glycerol, 
pure water. 
Four different 
fluid mixtures. 

Microchannel: 150 µm 
height and 200 µm width. 
Flowrates: 10 µL/h to 
5000 µL/h. 
Variation coefficient of 
velocities: 2% ± 4%. 
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Interfacial tension. 
Capillary number. 

[13] 

Optical detection: 
Light source and 
photo diode. 
Laser source (Laser 
diode, λ = 635 nm). 
CCD camera and 
microscope system. 

Droplet detection. 
Droplet length 
Droplet shape. 

Continuous 
phase: oil. 
Dispersed 
phase: pure 
DI- water. 

Microchannel: 340 µm 
height and 340 µm width. 
Flowrates: 10 µL/h to 
100 µL/h. 

[19] 

Droplet-based 
microfluidic chip for 6-
thioguanine detection 
in human serum using 
surface-enhanced 
Raman scattering 
(SERS). 

SERS scatterings 
plots, from 60 
mono-dispersed 
droplets within 
10s (8 different 
sampling 
positions). 

Continuous 
phase: silicone 
oil (Span 80). 
Dispersed 
phase: AuNPs 
sol (gold 
colloid), B-R 
buffer and 
sample 
solution. 

Microchannel: 90 µm 
height and 
140 µm width 
Flowrates: silicon oil, gold 
colloid, B-R buffer and 
analyte 4.0 µL/ min, 3.0 
µL/ min, 2.5 µL/ min and 
4.0 µL/ min respectively. 
Droplet length: 770 µm. 
Droplet volume: 9.7 nL. 

[12] 

CMOS camera 
attached to a 
microfluidic device. 
Automatic image 
processing algorithm 
based on differencing-
based motion 
detection. 

Droplet detection. 
Droplet counting. 

Continuous 
phase: high 
purity mineral 
oil. 
Dispersed 
phase: 
phosphate- 
buffered saline 
and 8% 
polyethylene 
glycol 
diacrylate pre-
polymer. 

Microchannel: 100 µm 
height and 
200 µm width 
Flowrates: from 0.3 µL/ 
min and 
1.3 µL/ min max. 
CMOS rate: 64 images per 
4 sec. Max throughput: 12 
droplets/ sec with 8% error 
rate. 

 
 
A capacitive sensor is presented in [14], where interdigital electrodes called IDEs, and a 
dielectric film are its operating principle for droplet detection.  This sensor can measure 
droplet velocity, a constant to distinguish differences in flow patterns called Do, and finally, 
it calculates a distribution for droplet diameters. Although this work describes promising 
results in droplet detection and characterization, its dependency on an external power 
source arises an obstacle towards portability. 

 
Another approach is presented in [17], using optical diagnosis through back-light imaging 
with a high-speed capture camera setup. This technique characterizes droplets expelled 
from a urea-water solution in engine exhaust-like conditions focusing on their diameter and 
velocity. The minimum diameter detected was 21.7 µm, with the exception that 
measurements over 2000 µm were neglected. Even though this system offers a different 
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approach, it is important to mention that similar setups with high-speed cameras are used 
to complement and validate droplet-based devices such as described in [14]. 

 
Microfluidic impedance cytometry MIC provides promising results in cell detection and 
classification, as described in (Panwar 2018). The device uses in-contact field's Fermium 
microelectrodes called icFM, which allows the system to detect and measure droplets using 
electrical impedance. This method's advantage is that it can detect cells or particles trapped 
inside of droplets within volumes of 150 pL at 10 Hz of frequency. However, this device's 
main obstacle is its portability due to external dependencies such as the driving unit and a 
power source. 

 
Surface-enhanced Raman scattering (SERS), combined with a droplet-based microfluidic 
chip for 6-thioguanine (6-TG, a cancer drug) detection in human serum, is presented in [19]. 
This device takes the advantages of a PDMS microfluidic device for micro mixing a solution 
of 6-TG, a Britton-Robinson buffer, and gold nanoparticles, which are the substrate for the 
SERS tests. The chemical adsorption between 6-TG and gold nanoparticles takes place 
inside the droplet, and it is measured with SERS in six different places throughout a 
serpentine microchannel. The setup allows analyzing and comparing 6-TG reactions at the 
beginning and the end of the channel. Therefore this system describes excellent results 
towards specific droplet characterization. Nonetheless, it becomes a system that requires 
a laboratory with a SERS machine to replicate experiments. 

 
The last device presented in Table 1, is the integration of a CMOS camera with a microfluidic 
device that detects and counts droplets using an automatic image processing algorithm 
based on motion detection [12]. This system was tested using flowrates from 0.3 µL/min up 
to 1.3 µL/min with a maximum throughput of 12 droplets per second, and an error rate of 
8.9%. Although this setup offers a more portable environment with just the dependency of 
a syringe pump, the rate detection is low compared to robust systems that can detect 
droplets at a higher flow rate [18]. 

 
As a result of the study of these state-of-the-art devices, the most common difficulty found 
is portability due to dependencies to powering sources, microscopes, cameras, and syringe 
pumps, which hinders their functionality outside of controlled laboratories or environments. 
Furthermore, the electrodes fabrication processes for sensing droplets such as in [14], [15] 
need controlled laboratories. However, as they are built within the microfluidic device, this 
limits their reproducibility. Therefore, as many of these systems have successfully achieved 
a specific application, it is essential to develop new design and fabrication methodologies 
on behalf of achieving the desired ASSURED criteria for LOC systems.  
 
 
1.5. Solution overview 
This work describes an optical detector for counting and characterizing droplets inside 
microchannels. Its operation principle relies on the alignment of a light source, the 
microchannel, and a light sensor. The light source is a light-emitting-diode (LED), and the 
light sensor is a photoresistor or light-dependent resistor (LDR). This arrangement develops 
an environment where whenever a droplet crosses through this "sensing area," it varies the 
read signal from the LDR, indicating a change of phase in the channel. Furthermore, the 
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LDR needs to be insulated from the surroundings to minimize external noise appearance 
into the reading signal. The setup for this sensor is described as shown in Figure 1. 

 
Figure 1. Optical droplet detector operation principle. 

 
LDR signals are recorded using the Arduino UNO microcontroller to calculate the system 
features: droplet detection, counting, velocity, length, flow rate, and volume. The signal 
processing and algorithms for calculations are treated using MATLAB [20] for signal and 
results visualization. 
 
The timing diagram for expected signals and behavior of the sensor's operation principle is 
described in Figure 2, in which the voltages for the continuous and dispersed phase are 
expressed by Vc and Vd, respectively. Besides, the phase changing, and the detection 
regions represent the time required for a droplet to enter and exit the sensing area. 
 
As shown in Figure 2, the signal response changes whenever the dispersed phase (droplet) 
is clearer or darker than the continuous phase. Figure 2-A describes a case in which 
droplets are more transparent than the continuous-phase allowing more light to be sensed 
by the photoresistor; thus, Vd decreases compared to Vc, resulting in a positive phase 
transition voltage (∆V). On the other hand, the signal of Figure 2-B shows a darker 
dispersed phase, in which Vd is greater than Vc; therefore, the phase transition voltage is 
negative. 
 
Therefore, for developing this system the first step is to design the electrical circuit using 
the USB connection from the Arduino microcontroller for powering the device. Furthermore, 
the fabrication of the printed circuit boards was done using the ferric chloride etching 
technique. 
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Figure 2. Optical droplet detector ideal expected signals and timing diagrams. 

 
After the fabrication process, the programming stages take place for developing the Arduino 
UNO and MATLAB algorithms to read, record, store, process, and calculate the data. The 
microcontroller was programmed using Arduino IDE [21], focusing on its analog to digital 
converter transferring the recorded data from the LDR to the MATLAB environment using 
the USB connection. Inside the MATLAB environment, the data is reconstructed in a voltage 
vs. time signal using a filter to reduce possible noise extracted from the raw data, afterward 
using an algorithm to identify local maxima and minima, the calibration or calculation 
processes can begin accordingly. 
 
The latest step is to combine the software and hardware into one system in conjunction with 
the microcontroller. The final prototype is presented in Figure 3, in which the electronic 
design, the microcontroller, and a microchannel are unified into one device. The figure also 
describes the alignment of the sensor's insulated components (LED and LDR) with a 
microchannel. The final device shows two fundamental circuit boards, one for the main 
sensor components and another for the integration and compatibility with Arduino UNO. 
This arrangement allows an enhanced maintenance environment and the opportunity to 
develop new designs for the principal sensor with reduced microfluidic channels. 
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Figure 3. Optical droplet detector final prototype. 
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Chapter 2 
 
Methodology 
Throughout this section, we describe and analyze the process and techniques used to 
develop the optical droplet senor for lab-on-a-PCB devices. These methods involve 
electronic design and fabrication, Arduino microcontroller [22] and MATLAB [20] 
programming, statistical methods, and a final assembly. 
 
The microcontroller programming section focuses on the ports and user interface needed 
to read, save, and transfer the photoresistor signals through the USB connection. On the 
other hand, MATLAB algorithms receive the microcontroller data and calculate the desired 
droplet features such as length, velocity, volume, and flow rate.   
 
The statistical methods implemented was designed to study a variable behavior which its 
distribution is unknow and it is the key component for the sensor’s calibration process.  
 
 
2.1 Electronic design. 
 
This sensor's operation principle is the variation of the light intensity in multi-phase 
microfluidic flow, generated from a light source and a detector, which in this case is an LED 
and LDR, respectively. Therefore, an electronic PCB design was developed using Eagle 
software [23] in order to connect and adjust the required components and peripherals to a 
final PCB. The circuit’s power supply is the five volts delivered by the Arduino USB 
connection. Thus the electronic schematic is classified into four linked circuits, as shown in 
Figure 4. 
 

 
Figure 4. Optical droplet sensor electrical schematic. 
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Figure 4-A describes a voltage divider for turning on the sensor's light source. To calculate 
the resistor value R1 the Ohm’s law was used in conjunction with the forward voltage (VF), 
and current (IF) values extracted from the LED datasheet as shown in (1) in which (VS) 
stands for the source voltage in this case 5 V, and R is the resistance value, (R1) in this 
case. The LED used in this sensor is a Surface Mount Device (SMD) 1206 green LED with 
a VF value of 2 V and an IF of 20 mA [24].  

 

R=
VS-VF

IF
 (1) 

 
Replacing the values in (1) the resistor R1 final value is 150 Ω. However, to ensure that the 
LED does not work on its limit region, we choose a 220 Ω 0.25-Watt resistor [25], as shown 
in Figure 4-A.  
 
Figure 4-B describes the LDR circuit. Similar to Figure 4-A, this circuit uses a voltage divider 
configuration with a 10 MΩ photoresistor [26] to sense light variations and a 100 kΩ variable 
resistor for calibration processes. The potentiometer adjusts the voltage of the LDR 
delivered to the next stage. The values used in the experiments for the best signal reading 
and interaction with the next stage are in the region of 75 to 90 kΩ. 
 
The electronic schematic's in Figure 4-C shows a transistor switching circuit, which allows 
a BC558 bipolar junction transistor (BJT) with a PNP configuration [27] to behave as a 
switch, turning on a standard 5 mm LED [28] whenever the voltage between the Emitter 
and Base pins is above 0.7 volts called the saturation region. Furthermore, the transistor's 
voltage output from the Collector pin is connected to peripherals pins that allow compatibility 
with the Arduino microcontroller. 
 
Similarly to R1, (1) was used to calculate the R2 resistance for the IN_LED. Whenever the 
transistor is in the saturation region, 5 V is generated in its Collector. The standard 5mm 
red LED used in this circuit has similar characteristics as the SMD LED from part A: 10 mA 
for its IF, and 2 V for VF. Therefore the R2 resistance calculated value using (1) with the 
values mentioned before is 300 Ω. Nonetheless, to protect the IN_LED for high current 
peaks, we decided to use a 330 Ω 0.25-Watt resistance [25] for R2, as shown in Figure 4-
C. 
 
The variation of VR1 (Figure 4-C) affects the voltages of the flow phases and controls the 
transistor on stage C, which at low voltages, the LED will not turn ON. It is essential to check 
the potentiometer position whenever repeated experiments are required to reduce errors in 
the calibration process and the final measurements. 
 
After the electronic design, the printed circuit boards (PCBs) were designed using the same 
software as the electronic schematic (Eagle), considering the dimensions that the use of 
the ferric chloride etching fabrication technique can achieve. The final PCB design divided 
the electronic schematic into two boards to separate the sensing area (microfluidic channel, 
LED, and LDR) with the rest of the components. 
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First, the Arduino interface PCB connection was designed, called Arduino Shield. This 
circuit board contains all the device's electronic components except the LED and LDR from 
the primary sensor. This design used Arduino datasheet [22] specifications to locate pins 
for the PCB and microcontroller interaction, in addition to specific connectors for the main 
sensor PCB conjunction, as shown in Figure 5. The final design dimensions are 57.15 mm 
in length and 38.10 mm in width. 

 
Figure 5. PCB Arduino shield. 

 
After the design process was finished, the Arduino interface PCB 3D-design was 
implemented using Fusion 360 software [29], described in Figure 6 to visualize the required 
results after the fabrication process. 
 

 
Figure 6. Arduino shield PCB final design. 
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Figure 7 describes the PCB designed for the sensing area (SMD LED and LDR). This 
design allows the circuit board to detach from the Arduino shield connection to ease 
maintenance and work with future strategies using the same pins to include a microchannel 
in the PCB. This board's size is 57.15 mm length and 25.40 mm width, as shown in the 
figure. 
 

 
Figure 7. Sensor PCB (LED + LDR). 

 
Similarly to the Arduino shield, this PCB was 3D implemented using Fusion 360, as shown 
in Figure 8 This figure describes a desired detachable board in which future work can 
develop microchannel devices and integrate them into the sensor without difficulties. 
Although this PCB shows a desire position for the LDR and SMD LED, the final application 
must have an additional microchannel and the insulation coating for reducing noise 
readings. 
 

 
Figure 8. Sensor PCB final design. 
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Figure 9 describes a final assembly of the PCBs designed and the Arduino microcontroller. 
This figure illustrates the form and shape that the device will have after the fabrication 
process and the interactions between the designed circuit boards and the Arduino. 
 

 
Figure 9. Optical droplet detector assembly. 

 
 
2.2  PCB fabrication. 
 
To fabricate the printed circuit boards designed in the previous section, we used the ferric 
chloride etching technique, which does not require controlled environments or sophisticated 
devices to manufacture PCBs. This technique is the most effective in terms of cost-
effectiveness, requirements, and time-consuming for simple one layered PCBs. 
Nevertheless, it is possible to fabricate multiple layers and complex boards, yet the 
procedures can increase its difficulty and depends on the technician's experience.  
 
The materials required for the Arduino shield's fabrication from Figure 6 and the sensor 
board from Figure 7 are the following: 
 

• Single-sided copper-clad laminated PCB board. 
• Electrical components from de designs. 
• Soldering iron kit. 
• Driller. 
• Ferric chloride. 
• PCB toner transfer paper. 
• Iron. 
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The first step in the fabrication is to print the designs into the transfer paper using a toner 
printer and cut the PCB board to the designed sizes using a handsaw. The PCBs were then 
cleaned using a polisher adapter for the drill and washed with isopropyl alcohol before 
transferring the tracks into the copper layer. The PCB layout is then aligned to the copper 
side of the cleaned boards to apply pressure and controlled heat with the iron into the paper 
until the toner adheres in the copper. Once the paper residuals were removed from the 
PCBs using water, the boards were immersed into ferric chloride for chemical etching of the 
copper that is not covered with the transferred toner. The final step is to remove the toner 
from the final PCB using acetone. 
 
Finally, the circuit boards were drilled using electronic design specifications, and then the 
components were soldered into the board with the soldering iron kit. The final assembled 
device is shown in Figure 10 with the integration of the Arduino UNO. 
 

 
Figure 10. Optical droplet sensor assembly. 

 
 
2.3 Image processing for droplet measurement. 
In order to characterize the droplets before each experiment to compare results obtained 
with the proposed device, we used images from a microscope along with a calibration scale 
of 1 mm with 0.01 mm divisions, as shown in Figure 11. 
 
 



16 

Chapter 2. Methodology                                                                                                         10 
 

 

 

 
Figure 11. Calibration scale for droplets measurements. Each division represents 

0.01 mm for a total length of 1 mm. 
 
Once the images were extracted, we used ImageJ software (ref) for droplet length 
measurements. The first step is to calibrate the number of pixels for the known scale. 
Several measures, 20 approximately, were taken to obtain a mean value for the pixels to 
reduce the errors. This process is described in Figure 12, in which section A describes eight 
measures and the final mean value for the number of pixels (highlighted in black) , taken 
from the scale presented in section B. 
 

 
Figure 12. ImageJ calibration results. A) Summarized measurements and mean 

calculation in pixels. B) Pixel selection from the 1 mm calibration scale. 
 
After the ratio of pixels per distance is set in the program, the process for measuring the 
droplet length follows a similar approach, taking several measurements with ImageJ in order 
to obtain a final mean value in millimeters with its standard deviation. Figure 13, presents 
the measurement procedure for a green droplet in the sensor. The mean value obtained 
after ten length samples is 4.658 ± 0.038 mm, as described in section A, highlighted in 
black. Section B shows the dyed droplet used for measurements. 
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Figure 13. ImageJ droplet measurement. A) Summarized data and results in 

millimeters. B) Dyed-water droplet measured. 
 
 
2.4  Programming. 
 
This section is divided into two main parts, Arduino IDE [21] and MATLAB [20] 
programming, due to their algorithms objective and platforms are different. However, they 
complement each other to produce the final system. Arduino programming essentially 
focuses on the photoresistor voltage reading and recording controlled by the user. On the 
other hand, MATLAB collects the Arduino data and concentrates on signal processing and 
calculations for the desired droplet characteristics.  
 
2.4.1 Arduino IDE. 
This section describes the algorithm used to read the data from the LDR in addition to 
enable an environment in which the user can control when to start/stop the signal recording. 
These features have been programmed into the Arduino microcontroller ATmega328P [30] 
using the Arduino IDE software [21]. 
 
This algorithm's workflow is first to configure the microcontroller using its 10-bit analog to 
digital converter (ADC) pin A2 to read the BC558 collector output [27]. After the 
configuration, the user can use push buttons connected to the digital pins 1 and 6 to begin 
or stop the signal recording turning ON a recording indicator red LED [28] connected to pin 
10. The structure for all the inputs and outputs of the microcontroller is shown in Figure 14. 
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Figure 14. Arduino inputs and outputs connections. 

 
Therefore, to illustrate the Arduino IDE program, we designed a flow diagram presented in 
Figure 15. The first step is to set up the input/output (I/O) pins, which are the indicator LED 
and the STOP and REC buttons connected to the pins 10, 2, and 6.  Then the ADC set up 
for the ATmega328P takes place in order to achieve a high-speed throughput. Finally, the 
program starts a loop process. When the user presses the REC button, the LED recording 
indicator turns on, and the sensor starts recording and printing the signal on the Arduino's 
IDE serial monitor until the Stop button is pressed. When the recording process is stopped, 
the program prints the number of samples taken from the recording and calculates its 
frequency, then waits until the user starts a new recording. 
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Figure 15. Arduino IDE algorithm flow diagram. 

 
The ATmega328P ADC has a vital function in the sensor's throughput due to its sampling 
rate frequency. The ADC standard setup uses a 128-division factor (prescaler) between the 
system clock frequency and the ADC input clock, and it takes 13 ADC clock cycles to finish 
a conversion [30]. Therefore, we used (2) to calculate the maximum microcontroller 
sampling rate (FS). 
 

FS= (
ADC clock
prescaler ) ÷ Conversion cycles (2) 

 
Thus, replacing the previously mentioned values, the maximum FS is 9615.38 Hz. However, 
since the microcontroller is processing additional I/O data (buttons and digital pins), the 
sampling rate using standard configurations was 2300 Hz, approximately tested utilizing the 
algorithm. 
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Although we thought this sampling frequency was enough to achieve a high-speed 
throughput, it was revealed (discussed in the Results section) that the final rate was around 
400 droplets per second.  
 
To increase these results, we modified the ADC registers to read the analog port with Auto-
triggered interruptions and change the prescaler to 8 for a higher sampling frequency speed. 
To change the Prescaler, we used the ATmega328P datasheet for changing the ADC 
register bits (APDS0, APDS1, and APDS2), as shown in Table 2. 
 

Table 2. ATmega328P ADC Prescaler Selections [30]. 
 

ADPS2 ADPS1 ADPS0 Division Factor 
0 0 0 2 
0 0 1 2 
0 1 0 4 
0 1 1 8 
1 0 0 16 
1 0 1 32 
1 1 0 64 
1 1 1 128 

 
To enable the Auto-triggered mode, interruptions, and the ADC itself, some bits of the 
register A of the ADC needs configuration, as shown in Table 3. The Auto Trigger mode is 
enabled by changing the bit 5 (ADATE) of the register A to 1. Similarly, the interruptions are 
enabled by the bit 3 (ADIE), and the ADC itself is controlled by the bit 7 (ADEN). 
 

Table 3. ATmega328P ADC register A bits [30]. 
 
Bit 7 6 5 4 3 2 1 0  
(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA 
Read/ 
Write R/W R/W R/W R/W R/W R/W R/W R/W   
Initial 
Value 0 0 0 0 0 0 0 0   

 
Therefore, using (2) with an 8 Prescaler and bits 5, 3, and 7 of the ADC register A changed 
to 1, the Arduino's maximum sampling frequency is 153.8 kHz. However, testing the results 
with the algorithm, the final sampling frequency obtained is approximately 5000 Hz 
increasing the sensor's throughput up to 1000 droplets per second. The final Arduino IDE 
code is described in Appendix A. 
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2.4.2 MATLAB. 
The algorithms programmed in this section read, store, and filter the data obtained from the 
Arduino to calculate in-flow-droplet properties such as velocity, flow rate, volume, and length 
using MATLAB software [20]. Therefore, Figure 16 describes the workflow for this section. 
The first step is to read, store, and convert the data using the serial monitor connection 
between Arduino and the computer. Then the data is reconstructed, filtered, and plotted to 
examine its response. Afterward, the program detects the signal's local maxima and minima 
to begin a calibration process, calculating a constant called "interfacial distance" 
represented by “λ”. Once the calibration process is done, λ is used to calculate the in-flow-
droplet features. 
 

 
Figure 16. MATLAB algorithm flow diagram. 
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The workflow presented in Figure 16 describes complex algorithms for signal processing, 
analysis, and statistical methods, which could overload the ARDUINO microcontroller if 
integrated into the same processor and impact the sensor's high-speed throughput directly. 
Therefore, we selected the MATLAB environment to read, analyze, and process the signal 
obtained due to its high adaptability to build a stand-alone program that could run on any 
computer without any MATLAB license. The alternative of using a high-speed 
microcontroller, such as the Intel Edison, Raspberry PI, among others, to embed the entire 
system in one platform could be a possible solution; however, it will increase fabrication 
costs and maintenance complexity. 
2.4.2.1 Serial monitor set up. 
This algorithm's serial monitor configuration was designed using the "serialport ()" MATLAB 
function, using the COM4 port and 250,000 baud-rate, since the maximum sampling 
frequency is 153,800 Hz for the Arduino's algorithm as discussed in the previous section. 
Whenever the recording process is finished, since the Arduino uses a 10-bit ADC converter, 
each sample value varies from 0 to 1024, describing 0 and 5 volts, respectively. Therefore, 
we used equation (3) to transform the acquired data from bits to volts following the 
ATmega328P datasheet [30]. DB represents the value in bits extracted from the Arduino, 
VREF is the ADC voltage reference, which is 5 volts, and VIN describes the result expressed 
in volts. 
 

VIN=
DB * VREF

1024  (3) 

 
To calculate the samples' time vector, we used the inverse of the sampling frequency 
extracted from the Arduino algorithm obtaining the rate in seconds, thus generate an equally 
separated vector starting at zero seconds until the last sample. Figure 17 describes a raw 
signal in volts vs. seconds extracted from a random water-in-air droplet at 370 µL/min. 
 
As shown in Figure 17, the raw signal extracted from the Arduino denotes noise compared 
with the ideal signal presented in Figure 2, due to the Arduino's sampling rate, resolution, 
and external factors. Therefore, we used a Savitzky-Golay smoothing filter [31] to reduce 
distortions. 
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Figure 17. Raw signal for a water in air droplet at 370 µl/min. 

2.4.2.2 Signal filtering. 
The Savitzky-Golay filter change each point of the signal using a combination of the nearby 
values contained in a specific sized frame called "window" centered at the point. The filter's 
basis uses the moving average algorithm, as shown in equation (4), in which a (k) 
represents the number of data points to the left and right of the given point (xs), and (L) 
represents the window length, which is: L=2k +1 [32]. 
 

x𝑠→x̂𝑠=
1
L ∑ xs+r

k

r=-k

 (4) 

 
Therefore, to generalize this idea, Savitzky-Golay filters in MATLAB use a least-squares 
fitting with an nth-order polynomial through the window's signal values. The fitted 
polynomial curve's central point is taken as the new smoothed data point, for a given point 
x𝑠 as shown in (5). 
 

[
 
 
 
 
 
 
𝑥𝑠−𝑘

⋮
𝑥𝑠−1

𝑥𝑠

𝑥𝑠+1

⋮
𝑥𝑠+𝑘]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑏0 + 𝑏1(𝑡𝑠 − 𝑘∆𝑡) + 𝑏2(𝑡𝑠 − 𝑘∆𝑡)2 + ⋯+ 𝑏𝑛(𝑡𝑠 − 𝑘∆𝑡)𝑛

⋮
𝑏0 + 𝑏1(𝑡𝑠 − 1∆𝑡) + 𝑏2(𝑡𝑠 − 1∆𝑡)2 + ⋯+ 𝑏𝑛(𝑡𝑠 − 1∆𝑡)𝑛

𝑏0 + 𝑏1(𝑡𝑠 − 0∆𝑡) + 𝑏2(𝑡𝑠 − 0∆𝑡)2 + ⋯+ 𝑏𝑛(𝑡𝑠 − 0∆𝑡)𝑛

𝑏0 + 𝑏1(𝑡𝑠 + 1∆𝑡) + 𝑏2(𝑡𝑠 + 1∆𝑡)2 + ⋯+ 𝑏𝑛(𝑡𝑠 + 1∆𝑡)𝑛

⋮
𝑏0 + 𝑏1(𝑡𝑠 + 𝑘∆𝑡) + 𝑏2(𝑡𝑠 + 𝑘∆𝑡)2 + ⋯+ 𝑏𝑛(𝑡𝑠 + 𝑘∆𝑡)𝑛]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑎0 + 𝑎1(−𝑘) + 𝑎2(−𝑘)2 + ⋯+ 𝑎𝑛(−𝑘)𝑛

⋮
𝑎0 + 𝑎1(−1) + 𝑎2(−1)2 + ⋯+ 𝑎𝑛(−1)𝑛

𝑎0 + 𝑎1(0) + 𝑎2(0)2 + ⋯ + 𝑎𝑛(0)𝑛

𝑎0 + 𝑎1(1) + 𝑎2(1)2 + ⋯ + 𝑎𝑛(1)𝑛

⋮
𝑎0 + 𝑎1(+𝑘) + 𝑎2(+𝑘)2 + ⋯+ 𝑎𝑛(+𝑘)𝑛]

 
 
 
 
 
 
 

 

(5) 
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Consequently, we designed a Savitzky-Golay smoothing filter applying a 0.15 smoothing 
factor [33], a scalar ranging from 0 to 1, adjusting the filter smoothing level implemented in 
MATLAB software.  The smoothing results increase as the value gets close to 1, and values 
near 0 produce a less smoothed output. Additionally, this factor adjusts the fixed size in 
which the signal data is divided for each iteration “window”. Consequently, the best 
smoothing factor tested using flow rates from 70 to 670 µl/min was 0.15 which was 
implemented in the algorithm. The results from the designed filter are shown in Figure 18 
which describes the filtered signal from Figure 17, validating a greater similarity compared 
with the ideal expected signals from Figure 2. However the smoothing factor remains as a 
constant that the user can modify in order to achieve the best fitting results, which will be 
the minimum value required to obtain a noise-free signal, in order to reduce loss of signal 
information. 
 
 

 
Figure 18. Savitzky-Golay filtering results (). 

 
2.4.2.3 Number of droplets calculation. 
The next step is to count the number of droplets after the signal is filtered. Therefore, the 
algorithm shifts the y-axis (Voltage) subtracting the mean value of the signal to have the 
zero volts in approximately in the middle of the peaks, as shown in Figure 19. Thus, it counts 
the number of zero-crossing and divides the result by two, due to the signal for a single 
droplet must cross zero twice. 
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Figure 19. Shifted signal for Zero-crossing detection. 

Thus, using equation (6) replacing the number of zero-crossing, which in Figure 19 is two 
for a single droplet, the final result is one. 
 

Number of droplets =
Number of "Zero − Crossings"

2
 (6) 

2.4.2.4 Local maxima and minima. 
After the signal is filtered and the number of droplets extracted, the algorithm extracts the 
local maxima and minima, due to its vital information for calibration processes or in-flow-
droplet characteristics calculations. To find local maxima and minima, we used the 
"findpeaks" function from MATLAB [34]. This function was programmed with five 
customizable characteristics to optimize peaks finding in signal shapes similar to Figure 18 
and Figure 2, which are: peaks number, minimum distance, prominence, minimum height, 
and threshold.  
 
As the name states, the number of peaks is the maximum number of peaks retrieved by the 
algorithm, which set up to double the number of droplets expected. The minimum distance 
between each peak was established to twice the sampling rate.  Minimum peak prominence 
is a constant that represents how much the peak stands out due to its intrinsic height and 
its location relative to other peaks, fixed at 10e-4 for the algorithm. The minimum height 
describes the minimum value required for a peak to be considered local maxima or minima; 
this is fixed as the mean Y-Axis value. The threshold is a nonnegative real scalar that 
establishes the minimum height difference between a peak and its neighbors, set up with a 
1e-11 value. 
 
The function applied to the signal from Figure 18 to find local maxima and minima is 
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described in Figure 20, where the red triangles indicate the peaks localized automatically. 

 
Figure 20. Local maxima and minima for a filtered signal. 

2.4.2.5 Calibration process. 
Before the in-flow-droplet characteristics calculations, the last step is to begin a calibration 
process to determine the interfacial distance (λ). For this objective, it is required that the 
user runs a controlled experiment for adjusting the interfacial distance using a constant flow 
rate. The calibration process utilizes specific signal characteristics as shown in Figure 20. 
The first important variable is the voltage difference between a pair of maxima and minima 
peaks denoted by (∆V), followed by its time difference expressed as (∆TC). Therefore, to 
calculate λ in millimeters, we first calculated the slope (m) in volts per second using (7) 
between these peaks due to its linear behavior. 
 

m = 
∆V
∆TC

 (7) 

 
Afterward, the experiment velocity (VE) in millimeters per second is calculated dividing the 
known flow rate for the controlled experiment (Q) by the cross-sectional area of the 
microfluidic channel (A0), which diameter is 762 µm, as shown in (8). 
 

VE  =  
Q

A0
=

Q

π ∗ 0.7622

4

=
Q

0.4560
 (8) 

 
Consequently, the interfacial distance λ in millimeters is calculated by multiplying the 
inverse of (m) by VE and ∆V as shown in (9). 
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λ = 
VE

m  * ∆V = 
VE
∆V
∆TC

 * ∆V = VE * ∆TC (9) 

 
Notice that there will be two approximately equal λ values during the calibration process 
due to the two pairs of peaks for maxima and minima for a droplet in a signal. This number 
increases proportionally to the number of droplets used as well as the flow rates. Therefore, 
to predict a final value, we used the statistical Bootstrapping simulation technique, 
simulating 1000 times the calibration results obtain a final mean λ value and a 95% 
confidence interval, discussed in-depth the next section. 
 
The interfacial distance “λ" represents the distance that the droplet needs to travel in the 
microchannel to enter the detection region, or in other words, the fixed distance related to 
the ∆TC in the phase changing region described in Figure 2. As described in the figure, this 
interfacial distance will be approximately equal for both the droplet's entrance and exit from 
the detection region when there is a good alignment between the photoresistor and the 
LED. Furthermore, this constant is related to the microchannel's light dispersion, capable 
of enlarging or shortening the sensing area, conditioned by the photoresistor's 5 millimeters 
length. 
 
Therefore this interfacial distance “λ” is a suitable parameter for establishing the minimum 
length required to detect a droplet. The results for testing this parameter demonstrate values 
ranging from 1.25 up to 3.00 mm. Thus, to assure the correct droplet's measurement, their 
minimum length was set at 3 mm for this prototype.    
 
After the calibration process is done, the device is ready to record new data and calculate 
the in-flow-droplet characteristics: velocity, flow rate, length, and volume. Therefore, we use 
equation (10) to calculate the droplet velocity (VS) in which ∆TC is extracted as equation (7) 
for the new signals. 
  

VS = 
𝜆

∆TC
 (10) 

 
The resolution for the velocities measurements depends on the minimum change in time 
that the sensor could detect, which is the sampling rate. As shown from the different ADC 
configurations, the device's sampling rates are 2.3 and 5 kHz, which extracts a sample for 
the signal every 4.34*10-4 and 2.00*10-4 seconds, respectively. Therefore, the resolution 
for velocities measurements is 1.08*10-3 mm/s for slow sampling rates and 5.00*10-4 mm/s 
for high-speed sampling rates. 
 
Equation (11) calculates the droplet length (ℓ) by using the droplet velocity extracted from 
(10), and the total detection time (∆TC +∆TD), in which ∆TD is extracted as shown in Figure 
20. 
 

ℓ    = VS*(∆TC+∆TD) 
         = VS*∆TC + VS*∆TD 

ℓ    = λ+(VS*∆TD)       
(11) 
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The resolution for the lengths' measurements follows the same pattern as the velocities, 
which is entirely related to the sampling frequency. Therefore, the calculated resolution for 
slow sampling rates is 1.08*10-3 mm, and for high-speed sampling rates is 5.00*10-4 mm. 
 
The flow rate (QS) is calculated by multiplying the measured velocity VS by the cross-
sectional area A0, as shown in (12). 
 

QS = VS*A0 (12) 
 
The flow rate resolution is directly proportional to the velocities resolutions by A0. Therefore, 
the resolution for slow sampling rates is 4.93*10-4 mm^3/s, and 2.28e-4 mm^3/s for high-
speed sampling rates.   
 
The last in-flow-droplet parameter calculated is the volume (𝜐), as it is described in equation 
(13), extracted by multiplying the droplet length ℓ by the cross-sectional area  A0. 
 

𝜐 = ℓ * 𝐴0 (13) 
 
The volume resolution is directly proportional to the length’s resolutions by A0. Therefore, 
the resolution for slow sampling rates is 4.93*10-4 mm^3, and 2.28e-4 mm^3 for high-speed 
sampling rates.  
 
The resolutions presented in this section are the minimum and theoretically expected by 
considering only the ADC sampling frequency.  It will require additional errors expected 
such as in the calibration process, microchannel, LED and LDR alignment, and peak 
selections for the maxima and minima detection. 
 
For measurements comparison we used the mean relative error (MRE) between measured 
and expected values as described in (14). For more than two MREs the final value will be 
the average of the results. 
 

MRE = 
|𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 −  𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
*100%  (14) 

 
2.5 Statistical methods. 
This section's statistical methods are based on confidence intervals using Bootstrapping 
simulation to estimate a mean value for the interfacial distance. This technique is useful 
whenever the population's distribution is unknown, which is characteristic of λ values. 
 
The bootstrap simulation methodology builds the confidence interval by drawing random 
bootstrap samples from the data with replacement (λ1,  λ2, …,λn). Each bootstrap sample 
is the same size as the data, and it may contain duplicated values due to the replacement 
values of the sampling. This procedure is illustrated in Table 4; the first column represents 
the number of the bootstrap sample, followed by the second containing the samples (λ*1, 
 λ*2, …,λ*n). The third and last column the mean for each bootstrapping sample. 
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The minimum bootstrap samples suggested by the literature is 1000, to have a more 
accurate result [35]. 
 

Table 4. Bootstrap sampling technique. 
 

Sample Sample Values  Sample Mean  
1 λ*1 λ*2 … λ*𝑛 𝜆1

̅̅̅ 
2 λ*1 λ*2 … λ*𝑛 𝜆2

̅̅ ̅ 
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

1000 λ*1 λ*2 … λ*𝑛 𝜆1000
̅̅ ̅̅ ̅̅ ̅ 

   𝜆̅ 
 
Therefore, the 95% confidence interval is calculated using the 97.5 and the 2.5 percentiles 
for the upper and lower limit, respectively. The 97.5 percentile is the average of the 975th 
and 976th values from the ordered Table 4. Similarly, the 2.5 percentile is the average of 
the 25th and 26th values.  
 
In addition to the confidence intervals, the final λ value is calculated using the average of 
the entire sample mean column of Table 4, which represents the end of the calibration 
process. The final MATLAB code is described in Appendix B. 
 
2.6 Assembly. 
This section describes the prototype's final assembly, converging a single device the 
designed hardware and software. Furthermore, it presents the requirements and 
configurations for the sensor to run experiments. 
 
 
Using the final hardware assembly described in Figure 10, we uploaded Arduino's software 
into the ATmega38P microcontroller and started the MATLAB program to read and process 
the sensor's signals. Once this procedure is done, the device is ready for measuring. 
 
Figure 21 describes the experimental set up for the sensor. It uses a New Era Pump 
Systems syringe pump [36] connected to the microchannel in order to control the 
microfluidic flow. Additionally, it illustrates the connection required between a computer and 
the microcontroller to read, process, and record the signal using MATLAB.   
 



30 

Chapter 2. Methodology                                                                                                         10 
 

 

 
Figure 21. Experimental set-up. 

 
The drops were prepared by suctioning the dispersed phase's solution into the 
microchannel using a syringe until approximating the desired size of the droplet. This 
procedure was repeated until forming a system of various drops separated by the 
continuous phase, which for the experiments reported in this work is air. 
 
The final assembly allows the user to record the reading signal into the MATLAB 
environment for processing and calculations, delivering the number of droplets detected, 
velocity, flow rate, length, and volume as outcomes.  The expected signals will depend on 
the dispersed phase's light absorption characteristics, showing higher voltages for darker 
fluids than transparent, following the behavior described in Figure 2. 
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Chapter 3 
 
Results 
Throughout this section, we will discuss two sets of experiments. The first group was 
obtained using the standard functions from the Arduino to read the sensor's signal for pure-
water tests. The second group was extracted by modifying the ATmega328P 
microcontroller registers for an enhanced sampling frequency. The experimental set-up 
used for the experiments follows the configuration described in Figure 21. 
 
3.1 Standard ADC sampling rate. 
In order to test the device, water-in-air droplets driven by the syringe pump were used inside 
the sensor's microchannel. The dispersed phase was arranged in three different slugs or 
droplets of 6.5054, 4.8882, and 5.1848 mm, described in Figure 22-A. Additionally, Figure 
22-B represents the flow direction and displacement of the droplets inside the microchannel. 
The droplet’s lengths were measured using ImageJ [37]. 
 

 
 

Figure 22. Three experimental water-in-air droplets and flow displacement. 
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Figure 23 describes the response signal for the experiment at 200 μL/min constant flow 
rate, this signal shows how the voltage drops whenever the dispersed phase (water) passes 
through the sensing area. The continuous phase voltage (Vc) for this signal is 1.7725 V and 
the dispersed phase voltage (V𝑑) is 1.7529 V, at a 2.3 kHz sampling rate.  
  

 
Figure 23. Water-in-air raw signal recorded at 200 μL/min constant flow rate. 

 
3.1.1 Calibration process. 
In order to calibrate the sensor, ten experiments were carried with the three droplets 
mentioned above, starting at 20 μL/min flow rate up to 425 μL/min with intervals of 45 μL/min 
as described in Table 5. 
 

Table 5. Calibration experiments for standard ADC configuration. 
Experiment  Flow rate (µL/min) 

1 20 
2 65 
3 110 
4 155 
5 200 
6 245 
7 290 
8 335 
9 380 
10 425 
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The filtered signal for this microcontroller configuration is shown in Figure 24. Due to the 
reduced sampling rate, the best smoothing factor for the Savitzky-Golay filter was increased 
to 0.35 compared to the one described in the previous section. Additionally, the figure  
describes all the signal characteristics taken to calculate the interfacial distance (λ) using 
equations (7), (8), and (9). 
 

 
Figure 24. Filtered signal for a 200 μL/min constant flow rate. 

 
Therefore, applying the algorithm for local maxima and minima to the extracted signals and 
replacing the desired points in the equations mentioned above, we obtained six 
approximately equal λ values, three using decreasing voltages and three for the raising. 
These calculations were done automatically using the MATLAB algorithm. The results are 
described in Table 6. 
 

Table 6. λ results for the calibration process signals. 
 

Experiment Q (µL/ 
min) Droplet 

λ 
Decreasing 

(mm) 

λ 
Raising 

(mm) 

1 20 
1 2.8402 2.9127 
2 2.8616 2.6392 
3 2.638 2.884 

2 65 
1 2.839 2.8458 
2 2.8694 2.5882 
3 2.6373 2.8544 
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3 110 
1 2.7192 2.7087 
2 2.7203 2.6281 
3 2.5719 2.6879 

4 155 
1 2.8009 2.8409 
2 2.9359 2.6945 
3 2.6465 2.9488 

5 200 
1 2.7374 2.7085 
2 2.6821 2.6478 
3 2.6406 2.6673 

6 245 
1 2.8666 2.7896 
2 2.7695 2.6116 
3 2.7582 2.8652 

7 290 
1 3.0328 2.9234 
2 2.9595 2.7156 
3 2.8552 3.0016 

8 335 
1 2.6571 2.6461 
2 2.6604 2.6387 
3 2.6939 2.6925 

9 380 
1 2.7244 2.7091 
2 2.7954 2.6252 
3 2.8868 2.6435 

10 425 
1 2.9387 2.728 
2 2.7761 2.7234 
3 2.7261 2.715 

 
Once the λ's values were extracted, we used the Bootstrapping simulation as described in 
the previous section to simulate 1000 times these experiments to construct a 95% 
confidence interval and find the mean λ value. Similar to the previous calculations, MATLAB 
automatically delivers the bootstrapping simulation results.  
 
Hence, the calculated 95% confidence interval for the mean λ value has a lower bound of 
2.7323 mm and an upper bound of 2.7869 mm. Consequently, the final λ value for this 
calibration process is 2.7582 mm. 
 
3.1.2 Tests. 
The velocities extracted from the sensor were calculated using a MATLAB algorithm with 
equations (9) and (10). These were compared with the experimental velocities from Table 
5, calculated separately using (8). Furthermore, from equation (10) for velocities and (12) 
used to calculate flow rate, we can conclude that they are proportionally related to the 
microchannel's cross-sectional area (A0), describing the same pattern shifted by A0. 
Therefore Figure 25 describes these results and includes a comparison with the real 
reference values, in which the left Y-axis represents velocities and the right Y-axis flow 
rates. The X-axis represents the number of the droplet measured. 
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Figure 25. Sensor's velocities and flow rates measurements vs. theoretical 

references 
 
As shown in Figure 25, the difference between the reference values versus the sensor's 
measurements are not significant. Therefore, we calculated the mean relative error (MRE), 
resulting in a 2.4% error between the theoretical and measured values.  
 
However a more in-depth study of the errors is shown in Figure 26, which describes the 
mean relative error per experiment for both sensor's velocity and flow rate measurements 
since they are proportional to each other. The X-axis represents the flow rate for each 
independent experiment, and their mean relative error percentage values are described in 
the Y-axis. From the figure, we can observe that measurements are below 5.5% (Q = 290 
µL/min) error compared with their real reference values.  
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Figure 26. MRE in % per experiment for velocities and flow rate measurements. 

 
 
Furthermore, droplet lengths and volume were calculated using equations (11) and (13), 
respectively, similarly to the velocities and flow rates, droplet lengths and volume are 
proportionally related by A0. Figure 27 describes the sensor results compared with their 
theoretical reference values. The left Y-axis denotes droplet length in millimeters and the 
right Y-axis volume in microliters for a total of the three droplets measured ten times at 
different flow rates in the ten experiments. The mean relative error for both length and 
volume resulted in 8.04%. 
 
Figure 28 describes the mean relative errors for the length and volume measurements. 
Similarly to Figure 25, the X-axis describes the experiment flow rate and the Y-axis the 
percentage error. We can observe that according to the MRE for these measurements, half 
of the experiments have less than 7% relative error; however, the experiment under the flow 
rate of 290 (μL/min) has a 14% error increasing the total MRE error. Although MRE for 
length and volume is higher than velocity and flow rate, it remains under 10%, which gives 
promising results compared with state-of-the-art systems. 
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Figure 27. Sensor's length and volume measurements vs. theoretical references. 

 
 

 
Figure 28. MRE in % per experiment for length and volume measurements. 
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3.2 High speed ADC sampling rate. 
To test the device using a high-speed ADC sampling rate (5kHz) configuration described in 
the Programming section, we designed nine experiments using three water-in-air droplets 
at different flow rates, similar to previous tests. The droplets' lengths measured using 
ImageJ  are 3.877, 5.275, and 5.914 mm, as shown in Figure 29. 
 

 
Figure 29. High-speed sampling rate droplets configuration. 

 
The raw signal response for an experiment using a 670 µL/min flow rate is described in 
Figure 30. This signal describes the same behavior as previous results. The voltage drops 
whenever the dispersed phase passes through the sensing area. For this signal, the 
continuous phase voltage is 1.735 V, and the dispersed phase voltage is 1.686 V, extracted 
from the figure. 
 

 
Figure 30. Raw signal extracted at 670 μL/min constant flow rate. 
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3.2.1 Calibration process. 
The new sampling rate requires to calculate a new interfacial distance for these droplets 
and high-speed acquisition data. Therefore nine experiments were carried with the 
droplets above mentioned, starting at 70 μL/min flow rate up to 870 μL/min with intervals 
of 100 μL/min as described in Table 7. 
 

Table 7. Calibration experiments for standard high-speed sampling rate. 
 

Experiment  Flow rate (µL/min) 
1 70 
2 170 
3 270 
4 370 
5 470 
6 570 
7 670 
8 770 
9 870 

 
Figure 31 describes the filtered signal used for calculations. The high-speed sampling 
configuration reduced the Savitzky-Golay smoothing factor to 0.2 due to the additional 
samples taken in the same period. Similarly to Figure 24, this figure shows the 
characteristics taken to calculate λ for equations (7), (8), and (9). 
 

 
Figure 31. Filtered signa for a 670 µL/min flow rate. 
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Therefore, after extracting the local maxima and minima points from the signals, we 
calculated λ for the experiments. Table 8 describes the 54 λ values calculated before the 
bootstrapping simulation. 
 
 

Table 8. λ results for high-speed sampling configurations 
 
 

 
 
Using the data presented in Table 8, we generated the bootstrap simulation process for a 
95% confidence interval. The lower bound for this simulation appeared in 1.5873 mm and 
the upper bound at 1.6972 mm, demonstrating that λ does not vary much from one 
experiment to another. The mean λ value calculated from the bootstrapping simulation 
is 1.6426 mm. 
 
 

Experiment 
Q (µL/ 
min) Droplet 

λ Decreasing 
(mm) 

λ Raising 
(mm) 

1 70 
1 1.8092 1.5385 
2 1.8767 1.4398 
3 2.0256 1.6271 

2 170 
1 2.0167 1.7160 
2 1.2500 1.4600 
3 1.5023 1.9471 

3 270 
1 1.5512 1.6953 
2 1.3440 1.4861 
3 1.6025 2.1946 

4 370 
1 1.7904 1.8931 
2 1.4253 1.4307 
3 1.5307 1.5470 

5 470 
1 1.4738 1.5391 
2 1.3329 1.6559 
3 1.4188 1.9582 

6 570 
1 1.4457 1.8124 
2 1.2582 1.4540 
3 1.9207 1.5707 

7 670 
1 1.6510 1.7735 
2 1.4711 1.6324 
3 1.7032 1.6373 

8 770 
1 1.8292 1.8292 
2 1.6885 1.8854 
3 1.8292 1.8292 

9 870 
1 1.4658 1.5993 
2 1.5357 1.5612 
3 1.5675 1.6534 
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3.2.2 Tests. 
The velocities were measured using equations (9) and (10) inside the MATLAB algorithm 
and then compared with the experimental velocities extracted from Table 7 using equation 
(8). Additionally, the flow rate was measured using equation 12. Both results are presented 
in Figure 32 due to the velocities are proportionally related by (A0) to the flow rates. The 
left Y-axis represents velocities and the right Y-axis flow rates. The X-axis represents the 
number of the droplet measured. 
 

 
Figure 32. Sensor's velocities and flow rates measurements vs. theoretical 

references for high-speed sampling rate. Red stars represent measurements for 70, 
270, 470, 670 and 870 μL/min. Orange stars are measurements for 170, 370, 570 and 

770 μL/min. 
 

As shown in Figure 32, the differences between the reference values versus the sensor's 
measurements are not significant, except at 570 µL/m, where the sensor's results vary the 
most related to droplet number 2. However, the mean relative error (MRE) for these 
measurements resulted in a 7.92% error between the theoretical and measured values. 
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Opposed to Figure 25, where no overlapping is observed, the results described in Figure 
32 show overlapped measurements in the regions from 570 to 770 µL/min. For 
measurements at 570 µL/min from the right Y-axis, an overlapped measurement for droplet 
2 shifted up to the region of the 670 µL/min responses or its analogous velocity in the left 
Y-axis. Similarly, measurements at 770 µL/min describe the overlapping in a similar way, 
to the 670 µL/min region for all the droplets tested. Therefore, from this particular section 
(570 to 770 µL/min with their corresponding velocities), we can conclude that the minimum 
flow rate between detections to avoid overlapped results would be 200 µL/min, or 7.3092 
mm/s for velocities (right and left Y-axis, respectively). This will assure for a future group of 
measurements to be closer to the target and to reduce their dispersion.   
 
Figure 33 presents the MRE per experiment for the sensor's measurements for velocities 
and flow rates versus the theoretical values. This figure shows that the highest error 
percentage was obtained in experiment number two at 170 µL/min with an MRE of 12.17%, 
followed by experiments at 270, 370, 570, and 770 µL/min, which MREs are close to 10%. 
However, experiments 70, 470, 670, and 870 µL/min presented error values below 7%. 
 
 

 
Figure 33. High-speed sampling measurements MREs. 

 
Furthermore, droplet lengths and volume were calculated using equations (11)  and (13), 
respectively. Figure 34 describes the sensor results compared with their theoretical 
reference values. The left Y-axis denotes droplet length in millimeters with a green dotted 
line at 3.877, 5.275, and 5.914 mm, showing the experiments' expected values. Additionally, 
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the right Y-axis indicates the volume in microliters for the experiments in which the green 
line indicates the expected values at 1.768, 2.406, and 2.697 µL, respectively. The mean 
relative error for both length and volume resulted in 10.85%. 
 

 
Figure 34.Sensor's length and volume measurements vs. theoretical references for 

high-speeds sampling rate. 
 
Finally, describes the MRE values for the measured lengths and volume at high-speed 
sampling rates. The results show two main groups characterized by errors above and below 
10%, which their averages results in the final 10.85% MRE value. Even though the 
measurements have presented increased errors, they show promising results for multiple 
droplet characterization using the presented sensor. 
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Figure 35. MRE values for measured lengths and volume using high-speed 

sampling rate. 
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Chapter 4 
 
Calibration process and experimental improvements. 
We described a robust calibration process that used a wide range of flow rates and 
experiments to obtain λ’s right estimate throughout the presented results. However, when 
a reduced number of experiments is used during this process, the sensor's accuracy may 
vary, increasing the MRE of the characteristics measured.  
 
Therefore, to tackle this problem, we include a distribution fitting in the calibration process 
for λ results before the bootstrapping process. This method uses the interquartile range 
(IQR) for the λ values obtained for a distribution fitting using MATLAB [20], which is further 
randomly sampled in the bootstrapping simulation, as described in previous chapters. 
Figure 36 describes the enhanced calibration process. 
 

 
Figure 36. Enhanced calibration process. 

 
Kernel distribution was selected as the fitting target distribution because it represents a 
nonparametric estimation of a random variable's probability density function [38], reflecting 
the characteristics of any possible λ value in the experiments.   
 
4.1 Experimental tests with dyed-water droplets 
The enhanced calibration process was tested using two sets of experiments with green 
dyed water. Assessing these improvements and demonstrating the presented sensor's 
potential to detect and measure similar and different phases.  
 
The droplets' solution was prepared using 30 μL of green food dye per 1 mL of deionized 
water. As shown in Figure 37, three random droplets or slugs were extracted from the 
solution and measured using ImageJ software. Results show three droplets with 
5.792±0.06, 4.979±0.04, and 5.523±0.03 mm length, respectively. 
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Figure 37. Dyed-water droplets for enhanced calibration testing. 

 
These droplets' calibration process was under two constant flow rates, 100 and 500 µL/min, 
respectively. Figure 38 describes the raw signal response at 100 µL/min; higher voltages 
represent the presence of dark droplets with a Vd value of 1.798 volts compared to the 
continuous phase (air) voltage value of 1.755 volts, as hypothesized in Figure 2, where Vd 
is above Vc in signal readings. 

 
Figure 38. Raw signal for dyed-water droplets recorded at 100 μL/min. 



47 

Chapter 4. Calibration process and experimental improvements.                                      45 
 

 

The process for λ calculations previous bootstrapping follows the pattern described 
previously with a small variation of the smoothing factor decreased to 0.12 for preserving 
most of the signal information. The filtered signal for a 100 µL/min flow rate is described in 
Figure 39, with its parameters for calculation. 
 

 
Figure 39. Filtered signal for dyed-water droplets recorded at 100 μL/min. 

 
Table 9 presents the three droplets' λ calculated values at the two different flow rates, 
leading to twelve responses, that presents variations for the decreasing values at 500 
µL/min. 
 

Table 9. Dyed-water droplets λ calculated values. 
 
 
 
 
 
 
 
 
 
Therefore, we obtained the results presented in Figure 40 extracting the IQR for Kernel 
distribution fitting. The figure shows that the distribution is well fitted to the IQR histogram, 
demonstrating that the distribution describes a very similar behavior for the calculations of 
the calibration experiments, allowing us to simulate 1000 times random experiments using 
bootstrapping. 

Experiment Q (µL/ min) Droplet 
λ Decreasing 
(mm) 

λ Raising 
(mm) 

1 100 
1 2.6431 2.3098 
2 2.7732 2.3938 
3 2.8134 2.4691 

2 500 
1 3.2782 2.2988 
2 3.8118 2.2220 
3 3.6912 2.8580 



48 

Chapter 4. Calibration process and experimental improvements.                                      45 
 

 

 
Figure 40. λ boxplot, IQR selection, and final fitted distribution. 

 
After the simulation process for this calibration process, the final calculated λ value is 
2.6570 mm, with 95% confidence intervals of 2.5229 and 2.7840 mm for the lower and the 
upper bounds. 
 
Thus, we calculated the velocities and flow rate for the calibration experiments shown in 
Figure 41. The expected velocities are 3.65 and 18.27 mm/s for the 100 and 500 μL/min 
flow rates, respectively. As shown in the figure, only the last measurement varies the most 
compared to the rest of the values, leading to an MRE of 6.13% for the global calculations. 

 
Figure 41. Flow rate and velocities measurements for dyed-water droplets. 
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Figure 42 describes the MRE values for the velocity and flow rate measurements, showing 
values around 4% for the first experiment (100 µL/min) and an increase in the error up to 
8.2% for the second experiment. These results indicate that higher flow rates will increase 
the MRE of the expected results, as expected from the hypothesis. 

 
Figure 42. MRE values for velocities and flow rates measurements using dyed-water 

droplets. 
 
Measured droplet lengths and volume are compared with their theoretical values of the 
calibration experiments in Figure 43. As shown from the figure, final measured values are 
similar to the theoretical values obtained using different techniques, as ImageJ for droplet 
lengths. The MRE calculated for these measurements exhibits an 8.65% error for both 
properties since they are proportionally related. 

 
Figure 43. Dyed-water droplets lengths and volume measurements. 
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The MRE values per experiment for the measured lengths and volume are presented in 
Figure 44. The results confirm higher error values for the first experiment with 12.28%, as 
expected from Figure 43. However, the MRE values are reduced to 5.03% for the second 
experiment. Although the measurements describe higher MRE for low flow rates, 100 
µL/min in this specific example, the overall results for this calibration process and tests 
exhibit a good sensor's performance with a total MRE under 10%. 
 

 
Figure 44. MRE values for lengths and volume measurements using dyed-water 

droplets. 
 
We performed further tests with this calibration result (λ=2.6570 mm) for two randomly 
generated dyed droplets at a random flow rate. The resulting droplets are shown in Figure 
45, which lengths are 6.457±0.052 and 5.652±0.038 mm (calculated with ImageJ), tested 
at 226 µL/min. 
 

 
Figure 45. Random dyed-water droplets for calibration testing.  
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Table 10 describes the results for this test in which all parameters are measured velocity, 
flow rate, length, and volume with its respective relative error. The velocity and flow rate 
results exhibit a non-significant MRE increase of 7.6% from 6.13% obtained in the 
calibration process. Nevertheless, the measured lengths and volume errors are increased 
to 15.23%; this may suggest that the sensor outcomes deliver more accurate results for 
velocity and flow rate measurements, as shown from previous experiments this increased 
error values in length and volume measurements. 
 

Table 10. Calibration process testing results for dyed-water droplets. 
  Droplet 1 Droplet 2 

MRE Sensor's 
results Expected Relative 

Error 
Sensor's 
results Expected Relative 

error 
Velocity 
(mm/s)  8.9031 8.2596 7.79% 8.8711 8.2596 7.40% 7.60% 

Flow rate 
(µL/min) 243.6089 226.0000 7.79% 242.7325 226.0000 7.40% 7.60% 

Length 
(mm) 7.4202 6.4570 14.92% 6.5301 5.6520 15.54% 15.23% 

Volume 
(µL) 3.3839 2.9446 14.92% 2.9780 2.5775 15.54% 15.23% 

 
 
4.2 Three-phase flow experimental tests. 
To test the device for multiple phases, we designed an experiment utilizing pure and dyed 
water as dispersed phases and air as the continuous phase. The droplets are described in 
Figure 46, which lengths are  5.198 mm for the pure-water droplet and 4.883mm for the 
dyed-water droplet. The measurements were extracted using ImageJ software.  We used 
100 and 500 μL/min constant flow rates for this test's calibration process and their 
theoretical data as references for comparison. 
 

 
Figure 46. Three-phase flow experimental droplets. 
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The recorded signal at 100 μL/min is described in Figure 47, showing lower voltages for the 
pure-water (PW) phase and higher values for dyed-water (DW), as expected from the 
previous experiments and the Figure 2. The dispersed phases voltages are 1.7205 V for 
PW denoted by VdPW and 1.789 V for DW phase denoted by VdDW. Additionally, the 
continuous phase voltage (air) is 1.754 V, represented by VcAir. 

 
Figure 47. Signal recording for three-phase flow experiment at 100µL/min constant 

flow rate. 
 
The signal filtering process follows the same procedure as two-phase flow experiments, 
with a slight increase of the smoothing factor than previous experiments, using a 0.15 value 
for optimal results.  describes the filtered signal from Figure 48 at 100uL/min, indicating the 
measurements' relevant regions. 
 
In contrast to the two-phases experiments, the signal local maxima and minima extraction 
has presented difficulties in finding all the required points for the algorithm calculations. 
However, by using the MATLAB user's interface, we could extract these points manually 
and import them to our workspace to assess the experiment. 
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Figure 48. Three-phase flow filtered signal at 100 μL/min constant flow rate. 

 
The interfacial distance (λ) was calculated using the same procedures as previous tests 
after importing the local maxima and minima. Thus, Table 11 describes the λ experiments' 
computed values at 100 and 500 μL/min flow rates extracted for a decreasing and raising 
signal. These results show values gathering around 2.5 mm approximately, implying a non-
significant difference between pure-water λ and dyed-water λ. 
 

Table 11.λ values calculated for three-phase flow experiments. 
 
 
 
 
 
 
 
 
Therefore, we calculated the final λ value by using the improved procedure previously 
explained. Figure 49 describes the boxplot for the λ’s obtained in Table 11, showing 
symmetric results without outliers. Furthermore, we extracted the IQR for the final 
distribution fitting presented in the right panel of figure. After the bootstrapping simulation, 
the λ value obtained for these three-phase flow experiments is 2.4485 mm. 

Experiment Q (µL/ min) Droplet 
λ Decreasing 
(mm) 

λ Raising 
(mm) 

1 100 1 2.5605 2.6292 
2 2.9252 2.8514 

2 500 1 2.0685 2.0028 
2 2.2988 2.3061 
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Figure 49. λ boxplot, IQR selection, and final fitted distribution for three-phase flow 

experiments. 
 
To assess this calibration process, we compare the measurements obtained from the 
sensor with theoretical reference values. Figure 50-A describes the velocities and flow rate 
results comparison, showing an increased error for the experiment at 500 μL/min. Thus, 
Figure 50-B shows the MRE values for each experiment at 100 and 500 µL/min, 
respectively, which confirms a higher error at 500 μL/min with 13.33%, compared with 
10.42% at 100 µL/min. The total MRE for velocities and flow rate measurements for these 
tests is 11.87%. 

 
Figure 50. Three-phase flow velocities and flow rate measurements. A) Expected vs 

measured values. B) MRE values in % for each experiment.  
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A similar approach was used for droplet lengths and volume measurements. Figure 51-A 
describes the expected vs. measured results, which follows a similar behavior from previous 
results showing higher errors at the highest flow rate tested. Therefore, each experiment's 
MRE values are shown in Figure 51-B, revealing an 18.40% error at 500 μL/min and an 
8.34% error at 100 µL/min. The final MRE value for these measurements is 13.37%. 
 

 
Figure 51. Three-phase lengths and volume measurements. A) Expected vs 

measured values. B) MRE values in % for each experiment. 
 
We performed a further experiment using two random droplets using pure and dyed water 
at a 250 μL/min flow rate to test this calibration result. Figure 52 describes the 6.151 mm 
pure-water and 5.481 mm dyed-water droplets used for this test. The lengths were 
calculated using ImageJ software. 
 
The calibration assessment results are shown in Table 12, which describes all the 
measurements performed with their respective MRE compared with expected values. 
Velocities and flow rate results exhibit increased MRE values of approximately 17%, with a 
final 17.37% MRE for both droplets. Similar results are shown for lengths and volume 
measurements, with a 16.75% MRE final value, due to a 19.04% error for pure-water and 
a 14.46% for the dyed-water droplet. Additionally, the total number of droplets detected by 
the sensor confirms the presence of the two droplets tested. 
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Figure 52. Pure-water and dyed-water droplets for calibration testing. 

 
Although these outcomes show higher MRE values than two-phase flow measurements, 
they reveal promising results for multiple-phase flow characterization. With minor 
improvements, these MRE values can be reduced to obtain more accurate and precise 
measurements. 
 

Table 12. Three-phase flow calibration testing results. 
  Droplet 1 Droplet 2 

MRE Sensor's 
results Expected Relative 

Error 
Sensor's 
results Expected Relative 

error 
Velocity 
(mm/s)  7.5157 9.1367 17.74% 7.5833 9.1367 17.00% 17.37% 

Flow rate 
(µL/min) 205.6450 250.0000 17.74% 207.4957 250.0000 17.00% 17.37% 

Length 
(mm) 4.9798 6.1510 19.04% 4.6886 5.4810 14.46% 16.75% 

Volume 
(µL) 2.2710 2.8051 19.04% 2.1382 2.4995 14.46% 16.75% 

Number 
of 
droplets 
detected 

2 
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Finally, the mean relative errors reported for individual experiments throughout this chapter, 
and chapter 3 describes a random behavior compared to the hypothesis that the higher the 
flow rate, the higher the error. This response's analysis was related to the bootstrapping 
simulation due to its randomness when sampling from the data loaded. Therefore, when 
the interfacial distances calculated are loaded into the simulation, the process could 
randomly select more data from either slow or high rates. Although this procedure could 
increase the error in some individual experiments, the global MRE values after the 
calibration process for many experiments will not vary significantly due to the 1000 random 
samples taken from λ data loaded, which values are approximately equal. On the other 
hand, the local maxima and minima algorithm could introduce errors in some individual 
experiments due to minor mismatches within the signal peaks (maxima or minima). 
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Chapter 5 
 
Conclusions and future work. 
In this work, we developed a new optical flow sensor for lab-on-a-PCB devices, integrating 
microfluidics and electronics into a single portable, affordable, user-friendly, and 
autonomous system capable of detecting and characterizing droplets velocities, flow rate, 
lengths, and volume. 
 
The use of printed circuit board PCB techniques reduced the final prototype's fabrication 
costs using common standard components, such as LED and LDR, as the operation 
principle and peripherals that enabled the compatibility with the ARDUINO microcontroller.  
Additionally, these elements ease the fabrication process in a way that there is no 
requirement for sophisticated laboratories or equipment. Therefore, the final prototype 
follows a standardized fabrication process developing an affordable, portable, and easy-to-
fabricate device with a 38 by 55 mm working area and a 20 USD fabrication costs, including 
the microcontroller. 
 
The ARDUINO UNO microcontroller demonstrated excellent performance in terms of high-
speed data processing and easy-to-use platform due to its wide range of libraries and its 
compatibility with MATLAB, promoting a software blending. This software combination of 
ARDUINO IDE and MATLAB enhanced the system's communication with the macroworld 
and developed a tunable plug-and-play environment. 
 
The algorithm's improvements showed an increased sampling rate, from 2.3 kHz using a 
standard configuration up to 5 kHz configuring the ATmega328P ADC registers. Thus, the 
sensor's throughput can detect and characterize 1000 droplets per second with a detection 
time of 0.2 milliseconds per droplet. These results confirm superior or similar detection 
speeds compared with state-of-the-art devices: [14] describes a sampling rate of 32.2 Hz, 
[15] presents a 7200 Hz device, and [12] which system throughput is 12 droplets/second. 
 
Therefore, integrating the fabrication process and algorithms into a single device developed 
the final portable, affordable, easy-to-use, autonomous device with a plug-and-play 
environment for the alignment with the ASSURED criteria.  The experimental tests present 
promising results for detecting and characterizing multiple dispersed phases in one 
microchannel using a single device, establishing a remarkable difference between state-of-
the-art systems. 
 
Pure-water-in-air droplets detection and characterization revealed MRE values of 2.4% for 
velocities and flow rates at 2.3 kHz sampling rate, increasing up to 7.92% for higher 
sampling rate (5 kHz) and flow rates (70 to 870 µL/min). Droplet length and volume 
measurements started with an MRE value of 8.04%, with a slight increase of 10.85 % for 
the fastest sampling rate (5 kHz) and higher flow rates (70 to 870 µL/min). These results 
demonstrate a reasonable accuracy for multi-parameter measurements delivered by a 
single device, with similar MRE values compared with state-of-the-art systems, as 
presented in [18] with approximately 6%, and [12] that presented errors of 8%. 
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Dyed water was used to change the dispersed phase color to assess the sensor's 
performance for a darker fluid. The results presented an MRE of approximately 6% for 
velocities and flow rate (100 and 500 μL/min) measurements and 8.65% for lengths and 
volume at a sampling rate of 5 kHz. These results were tested by measuring new random 
dyed-water droplets at a new constant flow rate at 226 µL/min showing a similar 7.6% MRE 
value for velocities and flow rates and an increased 15.23% for lengths and volume also at 
a sampling rate of 5 kHz. Although the velocities and flow rate errors follow the accuracy 
found with pure-water droplets, the increased error in lengths and volume measurements 
could be due to a certain degree of hydrophilicity of the microchannel walls reshaping the 
droplets while flowing. 
 
Finally, to assess the most complicated scenario, a three-phase flow was tested combining 
pure and dyed water as dispersed phases while keeping the air as the continuous phase. 
Although the final MRE values found were around 17% for velocities, flow rate (250 µL/min), 
lengths, and volume measurements at a sampling rate of 5kHz, these errors present 
promising results for measuring multiple characteristics of multiple phases in a single 
sensor, which significantly stands out from any other device shown in the state-of-the-art. 
 
Droplet detection and characterization showed MRE values ranging from 2.4% up to 17%. 
The lowest MRE value was obtained using a two-phase flow system with water-in-air 
droplets at a sampling rate of 2.3 kHz for flow rates starting at 20 up to 425 μL/min. In 
contrast, the highest MRE value reported was under a three-phase flow system for dyed 
and pure water-in-air droplets at a 5 kHz sampling rate at a 250 µL/min flow rate. 
 
In comparison with state-of-the-art devices, the sampling rates achieved in this work are 
approximately 156 times faster than [14], and up to 70% of the 7.2 kHz reported in [15]. 
Consequently, the flow rates measured in our experiments were approximately 156 faster 
compared to [14], ten times faster than [18], and 500 times faster than [13]. Moreover, the 
throughput of our device (1000 droplets per second) is 83 times faster than [12]. Likewise, 
the detection, counting, and characterization demonstrated in this work are for multi-phase 
flow systems, compared with [12]–[15], [17]–[19]; in which results are only reported for two-
phase systems. Finally, the errors reported in this work are comparable with [18] and [12]. 
 
Considering all the sensor's parameters and characteristics, we can conclude that it has 
promising results in many fields such as drug delivery, micromixing detection, considering 
some improvements in the microchannels, and reducing the sensing area. However, the 
current state of the prototype with minor adjustments in the microchannels could be 
implemented in the application of detecting hydraulic oil contamination as described in [39], 
in which the flow rates used (40 µL/min up to 640 µL/min) are comparable to the reported 
throughout this work, for droplets volume of 0.215 µL to 0.305 µL. 
 
Therefore, this new optical flow sensor for Lab-on-PCB devices demonstrates a high-speed 
throughput for the detection, counting, and multi-feature characterization of droplets in 
multiple-phase flow systems. In addition, the device fulfills the ASSURED criteria and is 
compatible with printed circuit boards' fabrication processes and use standard electronic 
components. The device’s modularity enables to incorporate new microfluidic components 
based on soft lithography, with further reduction of the device dimensions. 
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5.1 Future work.  
This device's development opens a new atmosphere for improvements, from algorithms to 
hardware, in benefit of its accuracy, precision, and miniaturization. The use of an SMD LDR 
could drastically reduce the sensors' sensing area, increasing its accuracy for smaller 
droplets detection and characterization. Additionally, the device's modularity enables the 
design of a smaller microchannel embedded into the sensor's PCB for a specific application; 
an example of this new design is presented in Appendix C.  
 
As described from the three-phase flow assessment, the algorithm will require a revision to 
detect local maxima and minima for keeping a fully automated process. In addition, an 
improved algorithm for λ calculations with specific functions for darker and more transparent 
phases could potentially decrease the MRE values. 
 
Further improvements on the device could replace the SMD LED with different light sources 
with different wavelengths up to the range of UV or IR. The implications of changing the 
light source of the device's operation principle will depend on the wavelength region used; 
whenever this falls in the visible spectrum, this will not represent significant changes in the 
sensor and could enabled colorimetric analysis. However, for using UV or IR sources it will 
be necessary to replace the LDR with their specific receptors. Therefore, this generates 
further implications in the device's interfacial distance and sensing area; nevertheless, it 
could add some degree of material characterization features embedded in the system 
based on fluorescence and spectroscopic methods, respectively. 
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Appendix A 
Arduino IDE code. 
 
Aint button1=2; 
int button2=6; 
 
int button1State=HIGH; 
int button2State=LOW; 
 
int ledRec=10; 
long numSamples=0; 
long t, t0; 
char buf[16]; 
void setup() 
{ 
  Serial.begin(250000); 
  //SET ADC PARAMETERS.................. 
  ADCSRA = 0;             // clear ADCSRA register 
  ADCSRB = 0;             // clear ADCSRB register 
  ADMUX |= (2 & 0x07);    // set A2 analog input pin 
  ADMUX |= (1 << REFS0);  // set reference voltage (REFS0=0 & REFS1=0 -> 
AREF=EXTERNAL) 
  ADMUX |= (0 << REFS1);  // set reference voltage 
  ADMUX |= (0 << ADLAR);  // left align ADC value to 8 bits from ADCH register 
 
  // sampling rate is [ADC clock] / [prescaler] / [conversion clock cycles] 
  // for Arduino Uno ADC clock is 16 MHz and a conversion takes 13 clock cycles 
  //ADCSRA |= (1 << ADPS2) | (1 << ADPS0);    // 32 prescaler for 38.5 KHz 
  //ADCSRA |= (1 << ADPS2);                     // 16 prescaler for 76.9 KHz 
  ADCSRA |= (1 << ADPS1) | (1 << ADPS0);    // 8 prescaler for 153.8 KHz 
  //ADCSRA |= (1 << ADPS1);    // 4 prescaler for - KHz 
   
  ADCSRA |= (0 << ADATE); // disable auto trigger 
  ADCSRA |= (0 << ADIE);  // disable interrupts when measurement complete 
  ADCSRA |= (0 << ADEN);  // disable ADC 
  ADCSRA |= (0 << ADSC);  // stop ADC measurements 
 
  //SET I/O PARAMETERS........................ 
  pinMode(button1, INPUT_PULLUP); 
  pinMode(button2,INPUT); 
  pinMode(ledRec,OUTPUT); 
  digitalWrite(ledRec,LOW); 
  numSamples=0; 
} 
 
ISR(ADC_vect) 
{ 



62 

 

 

  //byte x = ADCH;  // read 8 bit value from ADC 
  uint16_t x = ADC; 
  //Serial.println(x); 
  Serial.println(itoa(x, buf, 10)); 
  numSamples++; 
  
} 
   
void loop() 
{ 
  button1State = digitalRead(button1); 
  button2State = digitalRead(button2); 
  //Serial.println(numSamples); 
   
  if(button1State==LOW && digitalRead(ledRec)==LOW) 
  { 
    digitalWrite(ledRec,HIGH);        
    ADCSRA |= (1 << ADATE); // enable auto trigger 
    ADCSRA |= (1 << ADIE);  // enable interrupts when measurement complete 
    ADCSRA |= (1 << ADEN);  // enable ADC 
    ADCSRA |= (1 << ADSC);  // start ADC measurements 
    t0=micros(); 
    numSamples=0;    
  } 
  if (button2State==HIGH && digitalRead(ledRec)==HIGH) 
  { 
    digitalWrite(ledRec,LOW); 
    ADCSRA = 0;             // clear ADCSRA register 
    ADCSRB = 0;             // clear ADCSRB register 
    ADCSRA |= (0 << ADATE); 
    ADCSRA |= (0 << ADIE); 
    ADCSRA |= (0 << ADEN);  // disable ADC 
    ADCSRA |= (0 << ADSC);  // stop ADC measurements    
     
    t = micros()-t0;  // calculate elapsed time 
 
    Serial.println(numSamples); 
    Serial.println((float)numSamples*1000/t); 
    Serial.println("stop"); 
    //Serial.println(" KHz"); 
    //delay(2000); 
    // restart 
    t0 = micros(); 
  } 
   
} 
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Appendix B 
MATLAB code 
 
% Signal post processing  

% Load Data 

file = '100.mat'; 

load (file); 

[filepath,name,ext] = fileparts(file); 

q=str2num(name); 

figure 

plot(sT,sVolts); 

title(name); 

% Get sampling frequency. 

dt = mean(diff(sT)); 

Fs = 1 / dt % Hz 

Fs=ceil(Fs); 

newFs=Fs; 

  

%% SMOOTHING  

z2 = smoothdata(sVolts,'sgolay','SmoothingFactor',0.15); 

figure 

% Get # of Droplets 

nDrpts=getDropletsNumber(z2) 

plot(sT,z2) 

title(name); 

hold on  

%% EXTRACT PEAKS MANUALY 

pts=vertcat(points.Position); 

res=orderPeaksManually(pts,q); 

%% Find peaks 

mx=max(z2); 

mn=min(z2); 

center=mx-((mx-mn)/2); 

% Top line 

dp=mean(z2(50)); 

pk=mx-dp; 

MpkDis=(sT(2)-sT(1))*2; 

nPeaks=nDrpts*2; 

[pks,locs]=findpeaks(z2,sT,'NPeaks',nPeaks+2,'MinPeakProminence',1

0e-10,'Threshold',9e-11,... 

    'MinPeakDistance',MpkDis,'MinPeakHeight',center); 

[pksn,locsn]=findpeaks(-

z2,sT,'NPeaks',nPeaks,'MinPeakProminence',10e-4,'MinPeakHeight',-

center); 

plot(locs,pks,'*',locsn,abs(pksn),'*') 

%plot(locsn,abs(pksn),'bo') 
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%% ORDER PEAKS CW 

% Extract maximun and minimum points 

% 1= High peak 

% 0= Low peak 

Max=[locs,pks]; 

Min=[locsn,abs(pksn)]; 

tagM=ones(length(Max),1); 

tagm=zeros(length(Min),1); 

Max=[Max,tagM]; 

Min=[Min,tagm]; 

% 

res2=orderPeaksCW(Max,Min); 

%% Add q  

qs=[100 500]; 

qs=repelem(qs,6)'; 

sVec3=[sVec qs]; 

%% 

sVec2=res; 

%% Adding Data 

sVec=[sVec;res]; 

%% ORDER PEAKS! 

Max=[locs,pks]; 

Min=[locsn,abs(pksn)]; 

  

tagM=ones(length(Max),1); 

tagm=zeros(length(Min),1); 

  

Max=[Max,tagM]; 

Min=[Min,tagm]; 

  

res=orderPeaks(Min,Max); 

% EXTRACTING PAIRS OF POINTS (DRECREASE RAISE of SIgnal) 

Des=[]; 

Rais=[]; 

for i=1:length(res)-1 

    if res(i,3)==1 && res(i+1,3)==0 

        Des=[Des;res(i,1:2) res(i+1,1:2) q]; 

    elseif res(i,3)==0 && res(i+1,3)==1 

        Rais=[Rais;res(i,1:2) res(i+1,1:2) q]; 

    end 

end 

SignalVec=[Des;Rais]; 

%% First Loop 

sVec=SignalVec; 

%% Adding Data 

sVec=[sVec;SignalVec]; 

%% Lambda Estimatimation 

%lambda2=estimateLambdaFunctn(res); 
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%lambda3=estimateLambdaFunctn(res); 

lambda=estimateLambdaFunctn(sVec); 

%lambda=aux; 

  

%% Bootstrapping 

bootLambda=bootstrp(2000,@mean,lambda); 

uLambda=mean(bootLambda) 

sLambda=std(bootLambda) 

%figure;histogram(bootLambda); 

%% CI 

conf=0.95 

Lb=quantile(bootLambda,(1-conf)/2) 

Ub=quantile(bootLambda,1-((1-conf)/2)) 

 

%% Load Signal Parameters 

load 'sVec.mat' 

%% PARAMETERS 

ndrops=2; 

nExperiments=1; 

Qs=250; 

RealLengths=[6.151  5.481]; 

sVec=sVec2; 

%% VELOCITIES CALCULATION 

%Qs=100:400:500; 

Qs = transpose(repelem(Qs,ndrops)); 

% 

%Qs=[20;20;20] 

Ao=pi*(0.762^2)/4; 

Vt=(Qs./60)./Ao; 

Vm=getVelocities(sVec,uLambda); 

size=length(Vm)/2; 

Vres=zeros(size,1); 

  

  

nAns=ndrops*2; 

index=0; 

  

for i=1:nAns:length(Vm) 

    for j=1:ndrops 

        aux=index+j; 

        Vres(aux)=mean([Vm(j+i-1) Vm(j+i-1+ndrops)]); 

    end 

    index=aux; 

end 

figure 

plot(Vt,'*') 

hold on 

plot(Vres,'o') 



66 

 

 

hold off 

legend('Vt', 'Vm') 

grid 

  

% Error 

VelErr=abs(Vt-Vres)./Vt; 

VelMRE=mean(VelErr) 

figure;bar(VelErr) 

  

% Calculate Mean Error per Experiment 

c=length(VelErr); 

ExpErr=[]; 

VelExpErr=[]; 

for i=1:ndrops:c 

    for j=1:ndrops 

        ExpErr=[ExpErr;VelErr(i+j-1)]; 

    end 

    VelExpErr=[VelExpErr; mean(ExpErr)]; 

    ExpErr=[]; 

end  

figure;bar(VelExpErr) 

%% FLOW RATE  

% Qm = Vm * Ao 

Qm=(Vres.*Ao).*60; 

% Errors 

QErr= abs((Qm-Qs)./Qs); 

QMRE= mean(QErr); 

% 

figure 

plot(Qs,'*') 

hold on 

plot(Qm,'o') 

hold off 

legend('Qt', 'Qm') 

grid 

%% NEW METHOD DROPLET LENGTH 

DTd=[]; 

for i=1:2:length(sVec)-1 

    aux=abs(sVec(i+1,1)-sVec(i,3)); 

    DTd=[DTd;aux]; 

end 

  

DlengthWT=DTd.*Vres; 

DLenght=DlengthWT+uLambda; 

  

% Comparing lenghts 

vRealL=repmat(RealLengths,1,nExperiments)'; 

LengthErr=abs(vRealL-DLenght)./vRealL; 
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LengthMRE=mean(LengthErr) 

% PLOT DROPLET LENGTH COMPARISSON  

figure 

stem(vRealL) 

xlabel('Sample number') 

ylabel('Length (mm)') 

xticks(0:1:27); 

xlim([0 29]) 

ylim([3 8]) 

hold on  

stem(DLenght,'*') 

hold off 

legend('DLt', 'DLm') 

grid 

% Calculate Mean Error per Experiment 

c=length(LengthErr); 

ExpErr=[]; 

ResErr=[]; 

for i=1:ndrops:c 

    for j=1:ndrops 

        ExpErr=[ExpErr;LengthErr(i+j-1)]; 

    end 

    ResErr=[ResErr; mean(ExpErr)]; 

    ExpErr=[]; 

end  

figure;bar(ResErr) 

%% CALCULATE DROPLET LENGTH 

% Vm * DTc 

DTd=[]; 

DTcD=[]; 

DTcR=[]; 

nAns=ndrops*2; 

for i=1:nAns:length(sVec) 

    if i<length(sVec) 

        for j=1:ndrops 

            Rf=sVec(j+i-1+ndrops,3); 

            Ro=sVec(j+i-1+ndrops,1); 

            Df=sVec(j+i-1,3); 

            Do=sVec(j+i-1,1); 

            aux = Ro - Df; 

            DTd=[DTd;aux]; 

            DTcD=[DTcD;Df-Do]; 

            DTcR=[DTcR;Rf-Ro]; 

        end 

    end 

end 

DlengthWT=DTd.*Vres; 

DLenght=DlengthWT+uLambda; 
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% Comparing lenghts 

vRealL=repmat(RealLengths,1,nExperiments)'; 

LengthErr=abs(vRealL-DLenght)./vRealL; 

LengthMRE=mean(LengthErr) 

% PLOT DROPLET LENGTH COMPARISSON  

figure 

stem(vRealL) 

xlabel('Sample number') 

ylabel('Length (mm)') 

xticks(0:1:27); 

xlim([0 29]) 

ylim([3 8]) 

hold on  

stem(DLenght,'*') 

hold off 

legend('DLt', 'DLm') 

grid 

% Calculate Mean Error per Experiment 

c=length(LengthErr); 

ExpErr=[]; 

ResErr=[]; 

for i=1:ndrops:c 

    for j=1:ndrops 

        ExpErr=[ExpErr;LengthErr(i+j-1)]; 

    end 

    ResErr=[ResErr; mean(ExpErr)]; 

    ExpErr=[]; 

end  

figure;bar(ResErr) 

%% Calculating Errors 

%https://mathworld.wolfram.com/RelativeError.html 

AbsErr = abs(DLenght-vRealL); 

  

RelErr = (AbsErr./vRealL); 

LengthMRE=mean(RelErr); 

%% 

AbsErr2 = abs(DLength2-vRealL); 

  

RelErr2 = (AbsErr2./vRealL); 

LengthMRE2=mean(RelErr2); 

%% CALCULATE DROPLET VOLUME 

VolT=vRealL.*Ao; 

VolM=DLenght.*Ao; 

VolErr=abs(VolM-VolT)./VolT; 

VolMRE=mean(VolErr); 

% Plot 

figure 

stem(VolT) 
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xlabel('Sample number') 

ylabel('Volume (mm^3)') 

xticks(0:1:30); 

xlim([0 30]) 

ylim([1.5 3.5]) 

hold on  

stem(VolM,'*') 

hold off 

legend('Vol_T', 'Vol_M') 

grid 

 
%% GET the IQR of Lambda 

boxplot(lambda) 

q = quantile(lambda,[0.25 0.75]); 

iqrLambda = lambda(lambda>q(1) & lambda<q(2)); 

%% DISTRIBUTION FITTING 

% Fit the Lamdba values to 'Normal' distribution 

pd = fitdist(iqrLambda,'Kernel') 

%% Check de fitting  

x_pdf = [1:0.1:5]; 

y = pdf(pd,x_pdf); 

figure 

histogram(iqrLambda,'Normalization','pdf') 

line(x_pdf,y,'LineWidth',3,'Color','r') 

%legend('? Histogram','Fitted distribution') 

legend({'? Histogram','Fitted distribution'},'FontSize',14) 

%% Manual Bootstrapping + CI 

conf=0.95; 

n=1500; 

v=zeros(1,n); 

for i=1:n 

    vaux=random(pd,1,12); 

    v(i)= mean(vaux); 

end 

uLambda=mean(v) 

Lb=quantile(v,(1-conf)/2) 

Ub=quantile(v,1-((1-conf)/2)) 

 
function nDroplet = getDropletsNumber (signal) 

% Extract differences between Min and Max 

sDiff=(max(signal)-min(signal))/3; 

% Signal Limits  

lLimit=min(signal)+sDiff; 

%cLimit=min(signal)+(2*sDiff); 

uLimit=max(signal)-sDiff; 

%Check crossing the limits by ZERO CROSSING 

zcd = dsp.ZeroCrossingDetector; 

numZeroCrossL = zcd(signal-lLimit); 
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zcd = dsp.ZeroCrossingDetector; 

numZeroCrossU = zcd(signal-uLimit); 

nDroplet = (numZeroCrossL+numZeroCrossU)/2; 

 
function lambda = estimateLambdaFunctn(vecPoints) 

    Ao=pi*(0.762^2)/4; 

    Vt=(vecPoints(:,5)./60)./Ao; 

    dx=vecPoints(:,3)-vecPoints(:,1); 

    dy=vecPoints(:,4)-vecPoints(:,2); 

    m=dy./dx; 

    %um=mean(m); 

    rate=Vt./m; 

    lambda=rate.*dy; 

    %lambda=mean(lambda); 

end 

 
function vm = getVelocities(vecPoints,lambda) 

    dt=vecPoints(:,3)-vecPoints(:,1); 

    vm=lambda./dt; 

end 
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Appendix C 
Future design for a reduced microchannel and sensing area.   
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