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Auxiliary method based on effective medium theory for
biosensing applications using surface plasmon resonance

by
Alejandro Balderas Elizalde

Abstract

In this thesis, an auxiliary method based on the effective medium theory is applied to sur-
face plasmon resonance (SPR) biosensing in order to extract quantitative properties of the
biosensor functionalization. An automatized SPR biosensor array was built to perform inten-
sity measurements in an automatized and controlled manner. Five gold layers with different
Bovine Serum Albumin (BSA) deposition times were measured in the sensor and the re-
fractive index and thickness of the sample were both estimated using the Gradient Descent
method in combination of a theoretical model. These parameters were then introduced into
two distinct effective medium theories in order to change a qualitative description of the sur-
face coverage into a quantitative one. Yielding values of 30 % for the linear effective field
approximation (EFA) and 50 % for the non-linear Quasicrystalline Approximation (QCA).
Finally, a qualitative detection of a BSA-Carbamazapine (CBZ) was done utilizing the sensor
in which there is a significant difference in the response of the sensor compared to the one of
bare gold and BSA.
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Chapter 1

Introduction

The field of plasmonics is a relatively new field of optics that was discovered in the early
twentieth century when physicists were exploring the reflectance spectra arising from the in-
teraction of light with metallic surfaces. In the experiments of Rayleigh and Wood [1, 2] it
was found that by creating periodic structures on the surface of metals and illuminating the
surface at a certain angle generated localized intensity anomalies at certain conditions which
deviated from the traditional bulk behaviour. These anomalies are known as Rayleigh-Wood
anomalies and their generation due to oscillating free-charges in the material are known as
plasmons, which constitute the subject of study in the field of plasmonics. This specific type
of anomaly was theoretically proposed in the early 50’s yet it wasn’t until the late 60’s when
Kretschmann proposed a theoretical and experimental description to generate it by using an
Insulator-Metal-Insulator (IMI) structure [3]. This description, along with the introduction of
the laser allowed for the Surface Plasmon Resonance (SPR) phenomena to be generated with
enough consistency and precision for it to be used as a potential sensing tool.

In recent years the Kretschmann configuration has been used to sense a wide range of
phenomena; from the detection of hazardous gases like NH3, CO or NO2 [4, 5, 6, 7], to sens-
ing bacteria and viruses for diagnostics [8, 9, 10, 11, 12], or detecting small concentrations
of pollutants in air or liquid solutions [13, 14, 15]. All of these applications are possible due
to the functionalization of a layer with a particular antibody for the selective detection of our
material of interest; this by itself allows for the sensor to boast its label-free yet selective
properties.

1.1 Motivation
Water is one of the substances in which we are more interested to detect pollutants since we
rely on it not only for most of our industries, but also for the sustenance of human and animal
life. SPR has been used before to sense trace pollutants like heavy metal particles [16] or pes-
ticides like Atrazine [17] diluted in water since they can have a negative effect if consumed
by either humans, animals or plants. One such substance of interest is Carbamazapine (CBZ):
this is an active ingredient with anticonvulsant applications used in drugs for the treatment of
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CHAPTER 1. INTRODUCTION 2

epilepsy. Recently however, concentrations of this drug have been found in water at a level
that represents a threat [18]. Measurements of waste water have shown a concentration of
193ngL−1 while in the surface of clean water it was found at 17.2ngL−1 [19]. Although con-
sumption of water with these trace concentrations of CBZ isn’t harmful to humans; it has been
found that these concentrations may be harmful or even fatal to microscopic algae and aquatic
organisms [20]. Given that the aquatic ecosystem depends heavily on these microscopic or-
ganisms, it’s of vital importance to monitor the CBZ levels in water.

There are many traditional methods that are used to detect trace concentrations pollu-
tants in water like UV-Vis, Mass Spectroscopy and Chromatography. These methods yield
valuable information about the composition of a solution and they can be used with conjunc-
tion with SPR to obtain a better characterization of a material, however the acquisition of the
traditional tools requires additional spending which isn’t always a possibility in an experi-
ment. Therefore, it’s of great interest to maximize the amount of information obtained from
the tool we are using. In the case of SPR biosensors researchers tend to characterize the sur-
face of the sensor with these previously mentioned methods, yet via the use of an alternative
effective medium theory one can obtain a quantitative description of the functionalization only
by using SPR measurements. Therefore, in this work a Surface Plasmon Resonance biosensor
is built using the Kretschmann configuration. After this the gold surface is functionalized with
Thiols and Bovine Serum Albumin (BSA) and a scattering model is used to determine the ef-
fectiveness of the functionalization using only SPR measurements. Finally, the measurements
are done to detect the Carbamazapine adhesion to the functionalized surface via shifts in the
resonance condition. All of these measurements are fitted to an analytical spectral model such
that additional parameters of the measurements can be shown.

1.2 Solution Overview
The contributions of this thesis are.

• An automated SPR biosensor for the detection of Carbamazapine.

• A complimentary technique using this SPR sensor to characterize BSA deposition over
time.

• A computational model to extract material parameters from intensity measurements.

1.3 Thesis Organization
In chapter 2 a derivation of the SPR phenomena from the wave equations are shown along with
the Transfer Matrix Method formalism to simulate the propagation through homogeneous me-
dia; in chapter 3, Green’s function’s formalism is introduced along with the approximations of
the dispersion media when considering spherical scattering. In chapter 4 the materials used to
build the experimental array and the methods used to obtain the results are presented. Chapter
5 presents the results that are subsequently discussed in chapter 6. Finally, the conclusions
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of this work are presented in chapter 7 along with potential routes of research one can follow
after this project.



Chapter 2

Surface Plasmon Polaritons

Whenever an electromagnetic wave propagates through vacuum it will continue to do so
undisturbed if it doesn’t encounter any materials. However, in reality this is hardly the case
since light ends up meeting matter sooner or later which brings up the field known as light-
matter interactions. These may range from the traditional interactions like refraction to higher
order scattering and coupling phenomena. This coupling phenomena tends to occur more
frequently whenever noble metals are involved in optical frequencies which makes these ma-
terials the preferred choice to observe the SPR phenomena.

In this chapter, an analysis is done on Surface Plasmon Polaritons (SPP); first the dis-
persive behaviour of metals is modeled using the Drude-Lorentz model after which the be-
haviour of the surface plasmons is derived from the wave equation and boundary conditions;
this derivation is done for an interface between 2 different media. After this, the Transfer
Matrix Method is introduced as an alternative to calculate the Reflection and Transmission
spectra of any incident light to an n-layer Kretschmann array. This is accompanied by simu-
lations which show the behaviour of these reflection anomalies and a justification of why they
can be used as biosensors.

2.1 Electromagnetic Fields in Matter
The behaviour of EM fields in matter can be described by the material parameters ε and µ
which correspond to the electric permittivity and magnetic permeability of the material in
question. The mathematical description of these fields is given by the macroscopic Maxwell’s
equations [21] which have the following form

∇ ·D = ρf , ∇ ·B = 0, (2.1)

∇× E = −∂B
∂t
, ∇×H = Jf +

∂D

∂t
. (2.2)

In these equations E is the electric field and B is the magnetic induction; however, there
are two additional fields which are the electric displacement field D and the magnetic field
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CHAPTER 2. SURFACE PLASMON POLARITONS 5

H. These fields are derived from the primary fields in order to account for the interactions the
E and B might have on the materials. To find these quantities one can introduce the general
relations that relate both fields along with a material dependent quantity

D(r, t) = ε0E(r, t) + P(r, t), B(r, t) = µ0(H(r, t) + M(r, t)), (2.3)

where P describes the polarizability of the material and M describes the magnetization of
the material. Since this thesis focuses on materials exposed to frequencies within the optical
domain one can assume that M ≈ 0 given that the magnetization scales inversely with the
frequency. In the general relation of the displacement field the polarizability can present a
linear or non-linear dependence with respect to the electric field E, if one works with materials
in the linear regime then the relationship between P and E can be expressed as

P(r, t) = ε0χ(r, t)E(r, t), (2.4)

where the permeability χ contains all the information involving the effects of the field on the
material; in the simplest case of a linear, isotropic, homogeneous and non-dispersive material
then the displacement field can be directly related to the incident electric field via

D = ε0εE, (2.5)

where the material permittivity is defined as a constant ε
ε0

= 1 + χ and contains all the infor-
mation of the response of the field; however, although the material permittivity is a constant
for this ideal case, most materials will show some deviation from this behaviour. Therefore,
a general model is a better approach when wanting to explore the behaviour of materials with
more complex interactions; in order to describe the general behaviour of a linear material one
needs to consider both spatial and temporal variations in the permittivity and the field. This
results in the sum of the individual responses at each point in space which is defined as the
convolution of the permittivity and the incident electric field

D(r, t) =

∫
dt′dr′ε(r− r′, t− t′)E(r, t). (2.6)

By virtue of the convolution theory, this integral expression can be re-expressed as

D(k, ω) = ε0ε(k, ω)E(k, ω). (2.7)

2.2 Drude-Lorentz model
Finding the analytical expression of the permittivity with respect to frequency is of great inter-
est given that it allows for a way to predict the material’s response when the incident temporal
frequency changes. In the early 1900’s Drude proposed a way one could approximate the
permittivity of metals [22]; he did this by proposing a plasma model in which conduction
electrons were modeled as dampened oscillators bound by an ionic core. Since we want to
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approximate the behaviour of conducting materials when an electric field is applied we can
add all of the forces using Newton’s second law to obtain the following equation of motion

m
d2x

dt2
+mγ

dx

dt
+mω2

0x = −eE, (2.8)

where m is the electron mass, γ is a dampening constant relating to relaxation from an ex-
cited state and ω0 is a potential resonance frequency of the electrons. This can correspond to
both interband or intraband transitions inside the specific material and will result in a large
absorption of the electric field. By assuming a harmonic time dependence of the electric field
E = E0e

iωt we know from the equation that our solution will be of the form (x = x0e
iωt). By

plugging in this solution we’re able to obtain an expression connecting x(t) and E

x0m(−ω2 + iωγ + ω2
0) = −eE0,

x0 =
−e

m(ω2
0 − ω2 + iωγ)

E0.

The mean polarization of this array is given by the average charge displacement; assum-
ing a constant number density n we can write the polarization as P = nex0.

P =
−ne2

m(ω2
0 − ω2 + iωγ)

E0.

This can then be substituted into the general expression of the displacement field.

D = ε0E + P, (2.9)

D = ε0

(
1− ne2

ε0m(ω2
0 − ω2 + iωγ)

)
E0. (2.10)

By setting this equal to D = ε0εE we can extract the form of the dielectric function for
a conductor

ε(ω) = 1−
ω2
p

(ω2
0 − ω2 + iωγ)

,

where ωp is the plasma frequency of the material; this model is quite solid in explaining the
dielectric properties of metals around a resonant frequency but fails when one gets far away
from said frequency. This is due to the fact that this model only considers bound electrons
and only considers a single resonant frequency while real atomic orbitals may have many;
additional terms can be added to correct for those effects which will now turn the Lorentz
model into the Drude-Lorentz model [23] which takes the form of

ε(ω) = ε∞ −
ω2
p

iωγD + ω2
−

m∑
n=1

An
(ω2

n − ω2 + iωγL,n)
. (2.11)
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BK7 Prism

x

z

Gold

Figure 2.1: Schematic of a 2 layer system. The interface is located at z = 0 and both media
are large enough to be considered infinite.

2.3 Surface Plasmons
Surface Plasmons originate due to the oscillation of a plasma in the surface/interface of a
material; this oscillation ends up generating a new wave in response to the incident field.
This is similar to how an evanescent wave is generated between two dielectrics and it even
shares some properties like being confined in the direction normal to the interface and only
propagating in the surface; however, these two are different in other aspects and this will have
a stronger effect later on. In order to describe a general electromagnetic field we use the wave
equation; however, assuming a harmonic time dependence ∂

∂t
= iω lets us focus solely on the

distribution of the field by using Helmholtz’s equation

(∇2 + k2)E = 0, (2.12)

where ∇2 is the Laplacian operator and k2 is the magnitude of the wave vector k =
√
εk0.

Given that this comes from the wave equation, the same treatment can be done for the mag-
netic field H. The relation between both fields can be found using Eq. 2.2 which gives

k× E(z) = iωµ0H(z).

Assuming we have an interface between 2 infinite media; we can select our coordinates
in a way that make our problem easier to solve without loss of generality. Fig. 2.1 describes
the configuration chosen where the x− y plane is the boundary and z is the direction normal
to the interface. By limiting the parallel component of the wave vector in the x direction then
the field is homogeneous in y ∂

∂y
= 0 which allows us to write the electric field as

E = E(z)eiβx. (2.13)

In this function; the z and x dependence of the electric field is separable which will make
differentiation easier; however, the E(z) term is a vector containing 3 unknown components
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which means that the Helmholtz equation is a linearly separable system of differential equa-
tions. Given the previous considerations for the electric field the equation can be simplified
to

∂2E(z)

∂z2
+ (k2 − β2)E(z) = 0. (2.14)

This equation allows us to find the form of the z dependent electric field; given that
the surface plasmons are confined in the direction normal to the interface we can assume that
β > k to obtain that E(z) = Ae−kzz where A is a 3 dimensional vector. What follows is an
analysis of our system utilizing the boundary conditions for both the E and H fields; how-
ever, instead of analyzing the 3 components of E and H at the same time decomposition of
this general field can be made. In this case the most useful formalism is to divide the field
into its transverse electric (TE) and transverse magnetic (TM) modes. In the TE mode only
Ex and Ez are non zero while in TM only Ey is non zero, by using this we can analyze each
mode independently to recover properties of the generated surface plasmon.

In a medium without any free charge or currents the boundary conditions are defined by
the parallel and normal components of the fields in the following manner

E
‖
1 = E

‖
2, ε1E

⊥
1 = ε2E

⊥
2 , (2.15)

H
‖
1 = H

‖
2, H⊥1 = H⊥2 . (2.16)

Where the ⊥ and ‖ symbols corresponding to the field components parallel and perpen-
dicular to the interface. Now that a set of coordinates is chosen and the boundary conditions
are defined we can begin to solve this problem by solving each mode independently.

2.3.1 TE mode
In this mode the electric field only has a y component while the magnetic field has an x and
z components; since the perpendicular component is the one in the z direction our boundary
conditions can be written as

Ey1 = Ey2, (2.17)√
ε1ε0
µ0

β · Ey1 =

√
ε2ε0
µ0

β · Ey2, (2.18)√
ε1ε0
µ0

kz1 · Ey1 =

√
ε2ε0
µ0

kz2 · Ey2. (2.19)

Where the fields are evaluated at z = 0 and an undefined x, by plugging in our expres-
sions for the field from Eq. 2.13; we reach the following condition regarding the dispersion
relation of the perpendicular wave vector component kz

Aye
iβx ε0
µ0

(kz1 + kz2) = 0. (2.20)
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From this expression we note that the sum of each perpendicular wave vector isn’t 0
since both are positive quantities. ε0/µ0 6= 0 and the exponential isn’t always zero. This
means that the only way for this condition to be valid is for the amplitude of the electric
field to be equal to zero which means that there wont be a surface plasmon generated for TE
polarized waves. From here we can now focus on the remaining polarization to test for an
additional condition.

2.3.2 TM mode
In this mode the electric field now has 2 components (x, z) while the magnetic field only
has the y component. By following a similar procedure as before [24] we can evaluate our
boundary conditions as follows

Ex1 = Ex2, (2.21)
ε1Ez1 = ε2Ez2, (2.22)

(βEz1 − kz1Ex1) = (βEz2 − kz2Ex2). (2.23)

By combining Eq. 2.18 and 2.19 one can recover the following expressions relating the field
magnitudes without any oscillating components

|E1x| = |E2x|, (2.24)
ε1E1z = ε2E2z. (2.25)

By plugging these into the third condition, we can recover a non-trivial dispersion relation for
kz and kx, namely

βEz1(
ε2 − ε1
ε2

) = Ex(kz1 − kz2). (2.26)

We can define the field components in terms of the parallel and perpendicular field com-
ponents by using∇·D = 0 at each medium, which results in the following expression relating
both fields βEx + kzEz = 0. By substituting the z field in terms of Ex we get the dispersion
relation for the propagation of the surface wave along the interface

β2 = (kz1 − kz2)kz1
(

ε2
ε2 − ε1

)
, (2.27)

β = k0

√
ε1ε2
ε1 + ε2

. (2.28)

When one is looking for any type of resonance phenomena, it’s recommended to find
discontinuities in the dispersion relation. For this case the resonance condition is given as
ε1 = −ε2, since that would lead to the divergence of the plasmon propagation constant β.
For this to happen the real components of their respective dielectric functions need to have
opposite signs which is usually the case with metals and dielectrics in the optical regime.
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Figure 2.2: Dispersion relations including the plasmon propagation constant. a) For the two
layer system the light line and the propagation constant can be identified yet they only cross
at the bulk plasmon resonance (y = 1). b) For the 3-layer system the light lines may cross
at points other than the bulk plasmon resonance, this intersection allows for the coupling of
light and generation of the Surface Plasmon Resonance.

The dispersion relations for β and k1 are shown in Fig 2.2a. The simulation was done by
using the Drude-Lorentz model in Eq. 2.11 and adjusted using the parameter values in [25].
We will notice that the intersection of the curve takes place at a frequency where ε1 = −ε2,
which corresponds to the bulk plasma frequency of gold. However, we are interested in a
surface plasmon which occurs whenever an medium’s dispersion curve intersects the beta
curve before the plasma frequency. In order to achieve this condition one would have to
introduce an additional material into the system which will cause additional resonance. When
that occurs the surface modes of the plasmons couple with the incident light and a surface
mode occurs; this system can be visualized in Fig. 2.3.

BK7 Prism

d

Air

Gold x

z

Figure 2.3: A 3 layer system (also known as the Kretschmann configuration) made of a BK7
prism, a gold layer of thickness d and an infinite outer medium of air. Given this system and
the dispersion relation in 2.2b any light incident from the BK7 prism will generate a plasmon
mode in the Air-Gold interface.

So when one has a system with at least three layers then the SPR phenomena can be
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obtained via coupling; however, this isn’t limited exclusively to 3-layer systems. One can
engineer multilayer systems or even large periodic structures which can extend from 3 to even
10 or more layers. One could potentially test the configurations using the same method as
before yet the analytical expressions of the plasmon propagation become tedious to solve.
Therefore, a different method is used in order to simulate the propagation of the incident
electric field along any multilayered system via the use of 2x2 matrices.

2.4 Transfer Matrix Method
The Transfer Matrix Method (TMM) [26] exists as a way to facilitate the simulation of mul-
tilayered systems, this method has seen a large use in SPR biosensor design via simulations
since it allows for the calculation of reflectance and transmittance, which are used to deter-
mine the resonance conditions and the sensitivity of our sensor. Another reason why this is so
compatible with this particular application is that the input parameters of this model are the
layer’s thickness and permittivity which are key factors in achieving resonance condition. An
additional use of this is that it allows for the simulation of a sensor with any number of layers
like in Fig. 2.4.

𝑬𝑖

𝑬𝑅

𝑬𝑇

𝑑1

𝑛2 𝑛5𝑛4𝑛3 𝑛7𝑛6

𝑑2 𝑑3 𝑑4 𝑑5

Figure 2.4: Visualization of a system where the TMM can be applied; the fields on the left
side correspond to the incident Ei and reflected Er fields while the field on the right hand
side is the transmitted field Et. Each of the finite layers is characterized by a thickness di and
refractive index ni.

This method works by representing the effect of each interface and layer with a matrix;
doing so allows to operate these matrices onto a field of interest which will result in a method
similar to the ray transfer matrix except that this method is applied to electric fields. One can
represent this propagation using the following formula

[
Ei
Er

]
= M

[
Et
0

]
, (2.29)

where Ei is the incident field, Er is the reflected field and Et is the transmitted field, while M
is a 2x2 matrix with unknown coefficients. In order explore the behaviour of the method we
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can inspect the case of system with 2 layers (the one we analyzed for the bulk plasmon in the
previous section). This corresponds to having only one interface which results in the simplest
possible case to simulate with this method. Before trying to find the coefficients of the matrix
we define Fresnel’s coefficients [27] which tell us the relationships between the amplitudes of
the incident, transmitted and reflected fields, given by

Er = rEi, Et = tEi. (2.30)

where r indicates the reflection coefficient and t is the transmission coefficient. By
using these relations and multiplying the matrix by the right hand vector we get a system
of 2 equations and 2 unknowns. The elements of the matrix are the coefficients relating the
response of the boundary with respect to the incident field.

Ei = M11Et,
Et
Ei

=
1

M11

= t, (2.31)

Er = M21Et,
Er
Ei

=
M21

M11

= r. (2.32)

From these equations we can write the matrix elements (1,1) and (2,1) in terms of the
reflection and transmission coefficients.

M11 =
1

t
, M21 = M11r =

r

t
. (2.33)

In order to find out the form of the second column one would need to study the behaviour
of a slightly more complex system of 3 layers, which won’t be done in this thesis and can
be consulted in the following resource [28]. This ends up giving the boundary matrix the
following form

M =
1

t

[
1 r
r 1

]
. (2.34)

This matrix offers a valid description for the boundary between two semi-infinite media.
However, when studying the n+ 1 layer system the phase change induced by the propagation
of the field through different media needs to be taken into account. Doing so, the matrix repre-
senting additional boundaries takes the following form, where waves travelling in 2 different
directions are taken into account

Mi =
1

t i

[
e−iki,⊥di 0

0 eiki,⊥di

] [
1 r
r 1

]
, (2.35)

where ki,⊥di = nik0di cos(θi) and the i’th index corresponds to the i’th finite layer of thickness
di. Now with this new propagator matrix we can calculate the final state for any system of
n+ 1 layers via the following formula.
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Msys =
n∏
i=1

Mi. (2.36)

After calculating the system matrix one can calculate the system’s reflection coefficient
the same way it was defined in Eq. 2.13, except that the coefficients correspond to the final
matrix. With this result we can now simulate any 1D system we want and engineer the input
and layer parameters to obtain a desired response based on the application desired application
or line of research. What follows are examples of some simulations done for our specific
application of an SPR biosensor using a 3 and a 4 layer system.

2.4.1 TMM Reflectance simulations for an IMI system.
By limiting the system to only 3 components, one can explore a smaller subset of parameters
and results from which we can visualize the effectiveness of this configuration as a way to
sense sample. The input parameters of this 3 layer system are.

• An incident light beam with a fixed wavelength λ and travelling at an incident angle θi

• An initial dielectric with a purely real permittivity
√
ε1 = n1 and an infinite thickness.

• A metallic nanolayer of a complex refractive index n2(ω)

• A metallic layer of thickness d.

• An output dielectric layer with a purely real permittivity n3 and an infinite thickness.

Yet out of these parameters there are a few that can fixed in the simulations due to the
available experimental materials like the wavelength λ = 633nm corresponding to a HeNe
laser, the initial dielectric n1 = 1.514 (BK7 prism) and the metallic nanolayer made of gold
n2 = 0.178 − 3.44i are fixed. The selection of these features were based on the standard
configuration choices of SPR biosesnsors (Gold and BK7 prism) [29]. With these fixed pa-
rameters in mind; the two remaining parameters were modified in order to visualize the vari-
ations in the signal response. In Fig 2.5a, the effects of changing the metal’s thickness while
keeping the other parameters constant can be observed. In Fig 2.5b, the additional effect of
changing the refractive index of the output media is analyzed as well. These images allow us
to get an idea of the range of values our 2 free parameters may take that given the physical
phenomenon we’re studying.

From these simulations one can determine that the gold nanolayer thickness is bounded
between 0-100nm and the output refractive index is bounded between 1-1.514 RIU. When
translating this to an experimental situation of performing measurements using the same prism
and gold layer but with different samples we obtain similar observations to those seen in Fig.
2.5b. That is; if the properties of the sample change then this will translate to a different re-
fractive index and to a different resonance angle. It is the process of associating this refractive
index change with a physical or chemical change in the sample that allows for the sensing
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applications of this phenomena.

An important consideration to keep in mind is the sensitivity of the resonance angle to
changes in the exiting media’s refractive index. At small values of n3 the sensitivity can be
as high as 60◦(RIU)−1; that is, the resonance angle is translated 60 degrees when the exiting
media has a refractive index of 2. This would seem good yet issues arise when consider-
ing that the sensor’s sensitivity isn’t constant, it actually starts to decrease as the resonance
angle increases so the effective range of our sensor is in fact 1.0-1.2 RIU. By limiting the
angular resolution to 0.1◦ which corresponds to traditional angular resolutions then for this
configuration the sensitivity is 0.0016RIU

deg
.
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Figure 2.5: Simulations of IMI structures taking into account variations of the gold and last
insulator. a) The gold’s thickness is varied. At thicknesses below 25nm the phenomena ap-
proaches the behavior of total internal reflection while at thicknesses above 75 the plasmonic
response is minimized as the bulk behaviour is achieved. b) The output refractive index is
varied. Changes in the refractive index cause a shift in the SPR angle yet as the refractive
index approaches that of BK7 the plasmonic response dissapears.

2.4.2 TMM Reflectance simulations for a IMII system.
Although 3 layers are usually enough for some SPR applications, sometimes additional sur-
faces are added to the system due to functionalization (adding antibodies to allow for attach-
ment of a sample) or to the tuning of the physical parameters of the sensor (sensitivity and
dynamic range). In principle this is geometrically similar to the 3 layer case except that there
is one additional finite layer of thickness δ3. Just like in the previous case the input parameters
for the TMM simulation are shown.

• Incident media is BK7 n1 = 1.514

• Electric field with λ = 633nm travelling to the first interphase with an angle θi.

• Second layer made of gold n2 = 0.178− 3.44i and δ2 = 50nm.

• Output media is air n4 = 1
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Figure 2.6: Simulations of IMII structures taking into account variations of the third layer’s
properties. a) Variations of the layer’s thickness with a fixed refractive index shows that
despite a large thickness of 100nm the plasmonic response isn’t diminished. b) Variations of
the refractive index with a fixed thickness show that the IMII system has a wider dynamic
range while being able to detect a refractive index of 1.8 RIU.

The only free parameters of the system correspond to the third layer from which we can
vary the thickness d3 and the refractive index n3. The effects of changing the refractive index
of the third layer can be seen in Fig. 2.6b for a thickness of 50nm while the effects of the
thickness can be visualized in Fig. 2.6a where the refractive index is fixed at 1.3 which was
out of the range of the previous sensor.

From this simulations it can be seen that the properties of the sensor have greatly im-
proved when compared to the 3 layer sensor. There is a wider refractive index dynamic range
(1-1.8) and layers of up to 75nm can be detected; however, there is a disadvantage with this
increased range. In experimental measurements one has a limited angular resolution to obtain
the reflectance measurements; if the angular resolution is too high then the sensor might not
be able to distinguish between 2 different refractive indexes. Therefore, that needs to be taken
into consideration whenever one builds an SPR sensor.

2.5 Gradient Descent
In order to adjust the SPR reflectance measurements with the theoretical curves one can use
an optimization method to do so; in this case the gradient descent method will be used due to
the availability of an analytical expression and the ease of programming the method. The way
this method works is similar to Newton’s method in principle; however, instead of using a
matrix operator this one combines the use of a gradient operator and a concave error function
[30]. The most commonly used function in this type of problems is the mean squared error
function since it’s normalized for any arbitrary amount of points, it has a minimum value of 0
and it’s guaranteed to have at least one minima due to the function being raised to the second
power
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MSE =
1

2N

N∑
i=1

(yi − ŷi)2, (2.37)

where N corresponds to the number of data points we have available, yi are the measured
values and ŷi is the model’s estimation for that point. In the case where the model depends
solely on one variable the minima is found by calculating the derivative and setting it equal
to 0; however, in the case of the a multivariate function the gradient operator is used which
involves calculating the partial derivative over every variable. If one applies the gradient
operator to the mean squared function the resulting vector is

∇MSE =
1

N

N∑
i=1

(yi − ŷi) (−∇ŷi) , (2.38)

where the gradient will result in a 1×n vector where n corresponds to the number of variables
being optimized. This vector will be pointing to the direction where the function will experi-
ence the maximum growth; therefore, in order to obtain the direction of greatest decrease in
value all that’s needed is to add a negative sign. This leaves the following iterative formula
for gradient descent

xi+1 = xi − γ∇F (xi), (2.39)

xi+1 = xi +
γ

N

N∑
i=1

(yi − ŷi(xi)) (∇ŷi(xi)) , (2.40)

where x is the vector containing the n variables to be estimated and γ is a carefully selected
constant in order to regulate the speed of convergence. The selection of this constant is im-
portant since if the constant is too large the method will miss the global solutions and it might
even diverge, however, if the value is too small then the speed of convergence will be small
as well and one might become trapped in a local minimum without reaching the global solu-
tion.



Chapter 3

Effective Field Theory

In the previous section we have shown how we’re able to extract information from a small
layer of material using the SPR phenomena and the TMM method; however, we are assuming
that the layers are perfectly homogeneous which is a valid assumption if the deposition pro-
cess was done carefully or if the thickness is larger than the dimensions of the constituents.
If the dimensions of the constituents is comparable to the layer thickness then the situation
becomes more complicated since the homogeneous layer assumption is no longer valid. This
can end up affecting performance of the sensor since the functionalization might not be as
effective which will result in a decrease of the sensor’s response. A traditional approach to
characterize the quality of functionalization, would be to use other characterization techniques
to test for surface deposition like spectroscopy or even electron microscopy which are com-
pletely valid approaches; however, this isn’t always possible in research since the machines
needed to perform these techniques are often very expensive. Therefore, a theory that is able
to describe this complex medium’s constituents and relate them to an equivalent homogeneous
layer would allow for the quantitative characterization of the functionalization.

In this chapter, we’ll begin by introducing the concept of Green’s function and how it can
be used to solve the Helmholtz equation containing source terms. Afterwards, the problem
of multiple spherical scatterers will be where certain considerations will be shown in order
to arrive at 2 distinct approximate dispersion relations. These will then be introduced and
simulated for the calculation of 2 new parameters of interest which are the volume filling
fraction and the mean particle radius.

3.1 Green’s Function’s applied to Helmholtz’s equation
Helmholtz’s equation is defined as a linear differential equation, this means that the equation
can be represented in the form of

LE = f, (3.1)

where L is an operator, E is the solution and f corresponds to one or multiple source terms
which end up interacting with the field. What’s usually done in these cases is that one con-
siders a specific geometry to solve like in the previous section and then the equation is solved

17
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either analytically or by proposal of an Ansatz to extract a dispersion relation. The issue
here is that whenever there is a change in the domain or the boundary conditions the process
would need to be repeated for new operators or source terms. A solution to this situation can
be found by proposing the simplest possible source term for the equation: the Dirac Delta
function which turns the previous equation into

LE = δ(s− x). (3.2)

In the case of a linear differential operator, this problem has a unique solution which
will change in response to any changes in the domain. The function that solves this problem
is known as Green’s function [31] which is any function that satisfies the following equation

LG(x, s) = δ(s− x), (3.3)

where s is a parameter that will describe the translation dependency of the linear operator L.
If there is no such dependency then Green’s function can be written in terms of G(x − s)
and the solution can be written in terms of the superposition of Green’s functions in a region
of space. The main use of this function is to find its analytical form and then use it to find
the solution for any source term via a convolution operation, it is in this convolution where
the boudnary conditions are taken into account. In the case of the scalar inhomogeneous
Helmholtz’s equation with a point source in an arbitrary media described by the wave vector
amplitude k = ω2µε, the differential equation that yields Green’s function for this operator is

(∇2 + k2)g = −δ(r − r′), (3.4)

where g represents Green’s function, ∇2 + k2 represents the linear operator of the equation
and δ(r − r′) is the Dirac delta function which is used to represent the point source. In order
to find an analytical solution, the Fourier transform is applied to this equation which leads to
the following form of Green’s function

g(r, r′) = g(r − r′) =
eik|r−r

′|

4π|r − r′|
, (3.5)

this form of the function is the form of a spherical wave with unit amplitude. If one wants
to extend the analysis of this function for the 3 dimensional Helmholtz equation, then the
equation needs to be written in operator form as

∇×∇×G− k2G = Iδ(r − r′), (3.6)

where I corresponds to the unit dyadic operator and G is the dyadic Green function. The
dyadic form of the Green function can be recovered from the original solution we found
before via the following operator
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G =

(
I +

1

k
∇∇

)
g(r, r′). (3.7)

With that in mind then Eq. 3.6 now fully represents the Helmholtz equation in a homo-
geneous media containing one source; however, we’re interested in exploring the behaviour
of this equation when the domain isn’t homogeneous. For this we can assume a simple case
of a spherical particle with radius a and an associated wavevector k. This would lead to a
modification to the differential equation in terms of a space dependent permittivity and to two
distinct Green’s functions: one for free space and one for the particle. This new piece-wise
equation takes the following form

∇×∇×Gs − k2mGs = Iδ(r− r′) + (k2(r)− k2m)Gs, (3.8)

where Gs is Green’s function and k is a piece-wise function depending on our position in
space. If we’re inside the particle then it’s equal to the kp of the particle while outside of the
particle it’s equal to that of the medium km. This will make it so the equation applies for every
region in space which allows us to write Green’s function of this new equation as a weighted
sum of the functions in different regions of space

Gs(r, r
′) = G0(r, r

′) +

∫
Vp

drG0(r, r
′′)(k2p − k2m)Gs(r

′′, r′), (3.9)

where Vp corresponds to the region of space where the particle of interest is located. This
integral will give as a result Green’s function for the case of a single spherical particle in a
medium. In order to ease the transition to a multiple particle problem it’s useful to replace the
integrals and functions by their equivalent operators; although the function is still the same,
this helps the visualization and treatment of the functions. The scattering operator takes the
form of

Gs = G0 +G0UGs, (3.10)

where U = (k2− k2m) is analogous to a potential function. In order to expand it to N particles
we would just need to add all the volume integrals in every sphere of all space, for the next
equation the s subscript will be dropped since it can’t refer to a single scatterer now

G = G0 +
N∑
l=1

G0U lG. (3.11)

To obtain a full description of this scattering medium one should take into account the
configurational average of the particles. Specifically, the dependence this average might have
with respect to other quantities since in [32] it is shown that this average depends on the aver-
age assuming one particle is fixed. This one depends on the average with 2 particles fixed and
it continues going in this pattern. This leads to a very large system of hierarchical equations
which need to be truncated at a certain point in order to reach an analytical solution. The
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dispersion relations reached at the first order and second order truncations will be analyzed
during the remainder of the chapter under the low frequency assumption. If one is interested
in the complete derivation of these equations they may consult the following resource [33].

3.2 Approximation of Dispersion Relations

3.2.1 Considerations of the medium
In the approximations of the dispersion relations there are 2 additional material parameters
that are considered in the calculations: The volume filling fraction f and the particle radius
a. Out of these two the first one can be used to derive an additional property of the material
which is the surface coverage Ω, these two quantities are defined as

f =
N 4

3
πa3

V0
, (3.12)

Ω =
Nπa2

A0

, (3.13)

where Ω is the percentage of the surface area covered by the particles, N is the number of
particles, A0 is the total area of the surface the particles are in contact with and V0 is the total
volume of the medium being studied. Therefore, Ω and f represent the total area and volume
occupied by the particles. In the case of a monolayer one can assume that the total volume
takes the form of V0 = A02a; by plugging this into the previous expression of f and setting
f = CΩ one can reach the following relation.

f = CΩ, (3.14)

N 4
3
πa3

A02a
= C

Nπa2

A0

, (3.15)

2

3
= C. (3.16)

Under these assumptions the surface coverage can be calculated by the use of the volume
fraction Ω = 3

2
f . Since the surface coverage is a fraction, the value of Ω is bounded between

zero and one. This places a constraint on the maximum volume filling fraction at 2
3

since
any greater value will result on a surface coverage exceeding one. This constant can change
depending on how many layers one considers in their analysis but for any case considering
spheres filling up rectangular volumes, the volume fraction will never reach one.

Another important detail to consider is that in the case of a monolayer the surface will
never be fully covered when considering spherical particles. This can be seen by considering
the configuration at which spheres have the highest packing density, by doing the maximum
surface area covered by a monolayer at this configuration it’s found that the maximum cov-
erage is π

4
≈ 0.785. Therefore, the maximum surface coverage possible in a monolayer
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configuration is 0.785 which further reduces the maximum filling fraction to 0.471. With this
in mind a normalized surface coverage can be defined as

ΩN =
1.5f

0.785
, (3.17)

where ΩN is the normalized surface coverage and can range from zero to one where one
represents the maximum surface coverage possible by spheres forming a monolayer.

3.2.2 Effective Field Approximation
If one stops the calculation after fixing only one particle, this will result in a case where
the particles aren’t interacting with each other. This will result in measurement of the phe-
nomenon that highly impact the resulting media but only at sparse concentrations, this reduc-
tion of effects is why this is known as the Effective Field Approximation. Combined with the
previously mentioned low frequency approximation this results in the following dispersion
relation for the effective medium

ε = εm+3εmfγ

(
1 + i

2x3mγ

3

)
, (3.18)

γ =

(
εp
εm
− 1
)

(
εp
εm

+ 2
) , (3.19)

where ε is the effective permittivity of the medium, εm is the permittivity of the medium
the particles are suspended in, f is the volume fraction the particles occupy, γ is equal to
the Clausius-Mossotti factor of the medium and xm = kma is the size parameter where a
is the radius of the scattering particle. In this case we note that the approximation is linear
in terms of the volume fraction and that it considers both a real and imaginary component
of the refractive index where that imaginary component is related to the scattering effects of
the spheres. It is also noted that the real and imaginary components of the permittivity are
separable which yields the following equations

εr = εm (1 + 3fγ) , (3.20)

εi = 2ε
5
2
mk

3
0a

3γ2f. (3.21)

These two permittivity components can be simulated independently for different values of f
and a which can be observed in Fig. 3.1a and Fig. 3.1b. For these simulations the parameters
of εp = 3.57, εm = 1 and λ = 633nm; it’s important to note that although the previous section
established a maximum volume filling fraction of 0.471 due to the consideration of a particle
monolayer, the simulations will filling fractions from 0 to 1 which can occur yet the medium
at that point may no longer be considered a particle monolayer.
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For the application of an SPR biosensor one usually works from the refractive index
measurements and recovers the volume fraction and particle radius rather than the other way
around. Given that we have two equations with two unknown parameters (f and a) we are
able to obtain an analytical expression for the volume fraction and the radius
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Figure 3.1: Simulation of permittivity components according to EFA, both components show-
ing a linear behaviour with respect to f . As f approaches one: a) The real permittivity
converges to 3γ + 1 for all particle sizes. b) The imaginary permittivity converges to a value
that does change with the nanoparticle size due to the size parameter xm.

f =

(
εr
εm
− 1
)

3γ
, (3.22)

a =

(
εi

2ε
5
2
mk30γ

2f

) 1
3

. (3.23)

3.2.3 Quasicrystalline Approximation
If one considers the 2nd term of the hierarchy of equations and again use the low frequency
approximation then they reach the following dispersion relation

ε = εm +
3εmfγ

1− fγ

(
1 + i

2x3mfγ
2(1− f)4

(1− fγ)2(1 + 2f)2

)
. (3.24)

Although no new variables have been added to the model, it has a more complex form by
involving non-linear dependencies of f which leads to a behaviour that adheres closely to the
. Despite the additional complexity one has by considering additional interactions between
particles, this dispersion relation can be separated into its real and complex components as
well which allows for the analytic calculation of the volume filling fraction and the particle
radius
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εr = εm

(
1 +

3fγ

1− fγ

)
, (3.25)

εi =
2ε

5
2
mk30a

3fγ2(1− f)4

(1− fγ)2(1 + 2f)2
. (3.26)

This in turn allows for a similar procedure to the one done in the previous section to
take place in which the real and imaginary components of the permittivity can be simulated
by varying the volume filling fraction and the nanoparticle size. The results of these simula-
tions can be seen in Fig. 3.2 with the same parameters as before. Instantly the difference in
behaviour can be seen since now the real permittivity does reach the particle permittivity for
a volume fraction of one while the imaginary component is bounded and approaches zero in
the same case.
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Figure 3.2: Real 3.2a and imaginary 3.2b components of the permittivity according to the
QCA approximation. As f tends to 1, the real component is able to reach the particle’s
permittivity while the imaginary component reaches zero which denotes a transition in the
media.

Although the relationship of the permittivity’s components with respect to f and a have
become more complex, it’s still possible to recover 2 equations that give values of f and a
for given values of measured permittivities. Starting with the real part one can recover the
volume fraction

εr
εm

= 1 +
3fγ

1− fγ
, (3.27)

fγ

(
εr
εm

+ 2

)
=

εr
εm
− 1, (3.28)

f =

(
εr
εm
− 1
)

γ
(
εr
εm

+ 2
) . (3.29)
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This result can be seen as a ratio of the Clausius-Mossotti factor and it’s equal to one
whenever the medium’s factor is equivalent to that of the particle. Using the imaginary com-
ponent one can recover a formula for the radius in terms of f

a3 =
εi(1− fγ)2(1 + 2f)2

2ε
5
2
mfγ2(1− f)4

, (3.30)

a =

(
εi(1− fγ)2(1 + 2f)2

2ε
5
2
mk30fγ

2(1− f)4

) 1
3

. (3.31)

With these two functions, one can work with SPR measurements in order to extract
material properties.

3.2.4 Simulation of EFA and QCA
The following section will show a comparison between the first and second order approxi-
mation. Both models will have the same parameters used in the previous section εm = 1,
εp = 3.57, λ = 633nm but now the nanoparticle radius will be fixed at a = 30nm. The results
are shown in Fig. 3.3a and Fig. 3.3b and show the distinct behaviour of both the first and
second order approximations.
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Figure 3.3: Real and complex components corresponding to each model. The nature of the
expansions can be seen more clearly by viewing the behaviour of both the a) Real and b)
Imaginary permittivity. Although both theories offer good agreement in the results for f <
0.05, there is a large diveregence in the behaviour in the imaginary component which may
lead to drastically different results.

In these graphs it’s clearly visible that EFA is a first order approximation of the per-
mittivity given that it appears to be a straight line tangential to the QCA approximation at
small values of the volume fraction. Although the results given by QCA appear to be physi-
cally consistent, it has the disadvantage that it usually overestimates the particle radius. This
usually isn’t a problem but given that these approximations depend on the low frequency ap-
proximation it is assumed that ka � 1. Usually this can hold for values around 0.2 since the



CHAPTER 3. EFFECTIVE FIELD THEORY 25

term is raised to the cube but in some situations the overestimation breaks the low frequency
assumption which might result in some unreliable predictions.



Chapter 4

Materials and Methods

In this section the materials used for the preparation of both the samples and the construction
of the biosensor are presented. The resolution and range of the angular measurements are
shown as well along with the following data processing needed to extract the numerical results
from the measurments.

4.0.1 Sample preparation
Eight gold nanolayers of unknown thicknesses were acquired for the purposes of this exper-
iment; one was left as a control layer for the calibration of our sensor and determination of
the thickness. The preparation method for the Thiols, BSA and CBZ conjugates was done in
accordance to the quenching methods presented in [34]; after this preparation, 6 of the remain-
ing gold layers had different time exposure to the BSA solution (0s, 30s, 60s, 90s, 120s) while
the other two gold layers were exposed for 30 seconds to the BSA-CBZ conjugate solution.

4.0.2 Experimental array
In order to generate the plasmons, the Kretschmann configuration shown in Fig. 4.1 was uti-
lized with a HeNe 633nm 5mW polarized laser from Thorlabs given the requirement of TM
polarized light in order to generate the plasmons. 3 silver coated mirrors (PF10-03-P01) were
used for the correct alignment of the laser with the axis of symmetry of the cylindrical prism.
The functionalized gold nanolayer was then attached to the flat side of the prism utilizing an
refractive index matching oil; this prism was then mounted onto a dual stepper motor which
allowed for greater control over the measurement conditions like range of the angular sweep,
angular step and angular velocity. With this the data was then sent to a computer and exported
as a .txt file for its subsequent analysis.

The measurements were done by doing an intensity sweep in angles between 30 and 70
with steps of 0.1◦, the measurements were repeated 5 times for each layer with the results be-
ing averaged to account for the slight variations in intensity due to ambient noise. Afterwards,
the same steps were repeated for the rest of the prepared samples in the same manner while
making sure to wash the prism with acetone between measurements in order to prevent cross
contamination. Once the data was obtained and averaged this was then processed in Python
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for visualization purposes and the curve fitting via the Gradient Descent method; first, this
method was programmed in order to adjust the model to the control layer. Afterwards, the
third layer parameters (real refractive index, imaginary refractive index and layer thickness)
were estimated for each deposition time of BSA and CBZ such that the R2 parameter is max-
imized. The gradient descent model was evaluated 1000 times for each averaged measured
signal to generate a 95 % confidence interval for the calculated values which are equal to 3
standard deviations from the mean. With the obtained values, the EFA and QCA dispersion
relations are then used to calculate the volume filling fraction f and the particle radius a.
An additional procedure is done using Eq. 3.17 in order to calculate the normalized surface
coverage fraction which gives a quantitative value of the area covered by the substance.

𝜃𝑖

z

xBK7

Sample attached to gold

Photodetector
Incident Light

Figure 4.1: Experimental Kretschmann configuration with 4 layers. We have the BK7 prism
as the first semi-infinte media; afterwards, the gold and the sample before reaching the semi-
infinite air media. Light is picked up by the Photodetector which then sends the data to the
computer to be analyzed later.
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Results

By taking the measurements of the BK7-Gold-Air system and using Gradient Descent the
optimum gold thickness was determined in order to calibrate the system to the acquired gold
chips. These results can be visualized in Fig. 5.1 where the analytical model is compared to
the real measurements from our sensor in the range of 43 degrees to 48 degrees.
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Figure 5.1: The experimental measurements (blue dots) plotted against the TMM model (blue
line). The thickness of 38± 0.12nm minimizes error function of the model with respect to the
measurements and shows a good agreement with the experimental peak location.

Afterwards; the same gradient descent method was applied to the measurements made
to the other gold sensors that were deposited different times in the BSA conjugate. For these
cases the R2 value or normalized MSE was used in order to determine the goodness of fit of
the model. The experimental measurement of those layers can be visualized with their respec-
tive model fit in Fig 5.2b with the estimated parameters shown in Table 5.1.

With this in mind the two scattering models are now used to calculate the particle’s
effective radius with respect to time; first the measured refractive index is squared in order
to convert it to permittivity and then the parameter values are introduced into the equations
shown in Section 3.1.2 which yielded the volume filling fraction (f ), normalized surface cov-
erage (ΩN ) and the particle radius (a) in Table 5.2. Of these values only the normalized surface
coverage calculated with Eq. 3.17 and the particle radius are visualized in Figures 5.3a and
5.3b respectively. Finally; the fitting process was repeated for the BSA-CBZ measurement
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which can be seen in Fig. 5.4 and Table 5.3. The estimated nanoparticle radius was found to
be 0.5nm for EFA and 19.5nm for QCA.

Time(s) nr (RIU) ni (RIU) d (nm) R2

0 1.0003± 5.35e-4 (3.499± 8.312)e-11 0.025± 0.03 0.999± 6.3e-4
30 1.0597± 3.05e-4 (1.143± 0.314)e-5 35.11± 0.29 0.995± 9.4e-4
60 1.0716± 2.13e-3 (2.625± 0.429)e-5 35.13± 0.49 0.986± 7.5e-3
90 1.0890± 8.69e-4 (2.041± 0.623)e-5 35.10± 0.37 0.976± 5.6e-3
120 1.0955± 8.32e-4 (2.053± 0.443)e-5 35.18± 0.33 0.954± 8.9e-3

Table 5.1: Estimated parameters of the Thiol-BSA Effective Medium using the TMM model
by assuming a BK7-Gold-Sample-Air system. The estimated parameters of the sample are
the real refractive index nr, the imaginary refractive index ni, the layer thickness d and the
fitness score of the model R2
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Figure 5.2: a) Effective Medium’s thickness over time. b) Adjustement of the TMM model of
4 layers to each measurement done.

Time(s) f-EFA f-QCA ΩN -EFA ΩN -QCA a-EFA (nm) a-QCA(nm)
0 0.14± 1.29e-3 0.28± 7.27e-3 0.27± 5.21e-3 0.55± 2.82e-2 0.008± 0.003 2.57± 1.31
30 8.89± 5.83e-2 17.36± 8.15e-2 16.99± 9.09e-2 33.18± 1.39e-1 0.251± 0.077 10.33± 0.74
60 10.71± 1.32e-1 20.81± 4.17e-1 20.48± 2.88e-1 39.77± 5.51e-1 0.413± 0.053 13.93± 0.82
90 13.42± 1.51e-1 25.86± 4.74e-1 25.65± 2.95e-1 49.38± 5.62e-1 0.328± 0.085 13.45± 0.95
120 14.37± 1.09e-1 27.58± 3.28e-1 27.46± 2.74e-1 52.70± 5.37e-1 0.371± 0.092 14.75± 0.93

Table 5.2: Estimated average parameter models for both QCA and EFA for different BSA
exposure times with a 95 % confidence interval. The volume filling fraction f and the surface
coverage ΩN are shown as percentages.
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Figure 5.4: The fitted TMM model compared to the measurements of the samples immersed
30 seconds in BSA.

nr (RIU) ni (RIU) d (nm) R2

BSA-CBZ 1.117± 6.56e-3 (4.38± 1.31) e-5 40.79± 3.72e-1 0.967± 6.6e-3

Table 5.3: Tabulated estimated parameters for the BSA-CBZ effective medium using the
TMM model assuming a BK7-Gold-Sample-Air medium.

f -EFA f -QCA ΩN -EFA ΩN -QCA a-EFA (nm) a-QCA (nm)
BSA-CBZ 18.01± 4.45e-1 34.41± 7.82e-1 34.44± 5.91e-1 65.23± 9.11e-1 0.503± 0.105 19.5± 1.12

Table 5.4: Estimated effective medium parameters for the BSA-CBZ conjugate.
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Discussion

After the initial measurement of the bare gold layer for calibration purposes it was found that
the gold’s layer thickness is of 38nm; with this in mind the value was used for all the future
measurements of both BSA and BSA-CBZ in order to remain consistent with the procedure.
With respect to the different deposition times of BSA it can be seen in Table 5.1 that the real
component of the refractive index increases linearly for small times before reaching saturation
at about 120s. This is an interesting result since it shows that from SPR data the optimal BSA
quenching time can be obtained qualitatively since after 90 seconds there is a large decrease in
the change of refractive index. This was validated by the application of the effective medium
theory on these values since both theories showed the same saturation behaviour albeit with
different surface coverages with QCA predicting a higher normalized surface coverage of ap-
proximately 50 % whilst EFA predicted 25 %. Another interesting result can be seen in the
estimated thickness of the effective medium’s layer seen in Fig. 5.2a which starts close to
zero and converges quickly to 35nm. This result validates the desired attachment of the BSA
to the Thiols as well as the formation of a monolayer.

The complex refractive index behaviour follows a similar behaviour compared to the
layer thickness; although variations do occur along time the radius still remains in the same
order of magnitude which indicates that the detection of these complex components don’t
correspond to numerical errors. By observing the behaviour of the BSA nanoparticles in Fig.
5.3b it can be seen that the radii converges to 13nm for the QCA approximation which is a
valid size for a polymer yet the EFA yields values in the Angstrom scale which is far too
small for a complex molecule. There are however certain issues with this approximation since
according to literature BSA corresponds to a spheroid particle with dimensions a = 7nm and
b = 2.1nm [35] which corresponds to a sphere of mean radius of 3.1nm. Given the large dif-
ference between theoretical and experimental results it can be seen that perhaps the second
order approximation might not be enough in order to estimate the radius effectively in this
SPR biosensor.

After the characterization of the surface deposition of BSA the sensing the results from
the BSA-CBZ measurements were analyzed. What was seen here is that there is a change in
both the real component of the refractive index denoted by an increase and an increase in the
medium’s thickness. As it can be seen in Fig. 5.4 the individual signals of Gold, BSA and the
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BSA-CBZ conjugate can be differentiated both in the experimental data and the fitted model
which indicates that SPR biosensing can be used to determine the presence of CBZ in the
surface but it’s not associated to a specific concentration and it’s detection limit doesn’t allow
for the resolution needed for freshwater applications since this sample has a concentration in
the µg/L−1 range.



Chapter 7

Conclusions and Future work

7.1 Conclusions
In conclusion a functionalzed SPR biosensor capable of detecting Carbamazapine was built;
by building the experimental Kretschmann configuration Fig. 4.1 and the experimental array
shown in the Materials and Methods section, one is able to detect the presence of CBZ yet by
processing said measurements with the analytical effective medium theory one can obtain a
quantitative descrption of the functionalized chip to further optimize the preparation process.
Out of the two scattering models used it’s clear that QCA outperforms EFA in terms of better
representing the physics in the sensor by estimating physically consistent nanoparticle sizes
so although the estimated effective radius is several times bigger than the real values; this is a
more plausible solution when compared to the Angstrom sized particles predicted by EFA.

7.2 Future work
As a next step one could apply the coherent potential theory in order to further improve the
nanoparticle size approximation; since the coherent potential considers that the medium’s re-
fractive index does change as more material is added, this might result in a more complete
model without modifying explicitly the hierarchy of equations. A downside to this is that the
dispersion relation will have an analytical yet non-linear form which will have to be solved
by the use of computational methods.

Regarding the sensing of CBZ, the current design is only able to give a qualitative de-
tection (yes or no answer). In the future a model relating the concentration of CBZ with the
sensor response should be obtained in order to be able to use the sensor in real applications.
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