
 

 

Instituto Tecnológico y de Estudios Superiores de Monterrey 
 

Campus Monterrey 

 

 

School of Engineering and Sciences 
 

 
 

 

Stability analysis by the EMHPM for regular and multivariable cutting 

tools in milling operations 
 

A thesis presented by 

 

José de la luz Sosa López 
 

Submitted to the 

School of Engineering and Sciences 

in partial fulfillment of the requirements for the degree of 

 

Master of Science 

 

In 

 

Manufacturing Systems 

 

 

 

 

 

 

Monterrey Nuevo León, December 3rd, 2020  



 

 

 
 

Dedication 

 

To my parents. Thanks for all your unconditional confidence, support, patience, and 

encouragement. You were my main motivation for pushing through this work. 

  



 

 

Acknowledgements 

 
First, I thank God for so much love and care.  

I am very grateful to my thesis advisor, Daniel Olvera Trejo, for the trust, 

opportunity, availability, patience, support, and even sleepless nights to help me to carry 

out this work, as well as its support beyond academic subjects. 

I acknowledge doctors Alex E. Zúñiga and Oscar Martínez for their support and the 

opportunity to belong to the research group in which I had a lot of learning. In the same 

way, I thank Cintya Soria and Emiliano Reséndiz, for their support during the completion 

of the master's degree. I also thank my classmates who, with their example, gave impetus 

to motivation to be better, in addition to making my stay at the Tecnológico de Monterrey 

a transcendental experience.  

Likewise, I would like to express my deepest gratitude to my family, to Neftalí Sosa 

and María A. López, who have always trusted me, and have supported me to pursue my 

dreams. To my brothers Erwin and Caleb for always giving me their support. To Edith 

for her understanding, patience, and unconditional support.  

Finally, all of these wouldn’t be possible without the sponsorship granted by 

Tecnológico de Monterrey through the Research Group of Nanotechnology for Devices 

Design, and by the Consejo Nacional de Ciencia y Tecnología de México (CONACYT), 

Project Numbers 242269, 255837, 296176, National Lab in Additive Manufacturing, 3D 

Digitizing and Computed Tomography (MADiT) LN299129 and to the University of the 

Basque Country for its support in publishing an article.  These institutions believed in my 

potential as a professional and researcher. 

 

 

  



 

 

Stability analysis by the EMHPM for regular and multivariable cutting 

tools in milling operations 

 

by 

 

José de la luz Sosa López 

 

Abstract 

 

Machining is a process by which a cutting tool removes material from a workpiece 

through relative movements between to achieve the desired shape. Milling is a common 

form of machining using rotary cutters to remove material by advancing a cutter into a 

work piece. The milling process requires a milling machine, workpiece, fixture, and 

cutter. When milling vibrations occur, they are usually produced by the impact of the 

vibration of the previous cut on the current one, this type of vibrations is known as self-

excited vibration (chatter) since it occurs between the workpiece and the cutting tool. In 

this thesis we predict unwanted vibrations during the material removal process in milling 

using stability lobes.  

Since milling can be studied using a dynamic equation, a new method for solving a 

delay differential equation (DDE) is presented by using second- and third-order 

polynomials to approximate the delayed term using the Enhanced Homotopy 

Perturbation Method (EMHPM). Different simulations are performed first with regular 

and later with multivariable tools. To study the proposed method performance in terms 

of convergency and computational cost in comparison with the first-order EMHPM, 

Semi-Discretization and Full-Discretization Methods, a delay differential equation that 

model cutting milling operation process was used. To further assess the accuracy of the 

proposed method, a milling process with a multivariable cutter is examined to find the 

stability boundaries. Then, theoretical predictions are computed from the corresponding 

DDE finding uncharted stable zones at high axial depths of cut. Time-domain simulations 

based on Continuous Wavelet Transform (CWT) scalograms, Power Spectral Density 

(PSD) charts and Poincaré Maps (PM) were employed to validate the stability lobes found 

by using the third-order EMHPM for the multivariable tool and they were compared with 

experimental results. 
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Chapter 1. Introduction 

 
1.1 Background 

 

In the manufacturing industry, is called machining to the process by which a cutting 

tool removes material from a workpiece through relative movements between both, to 

achieve the desired shape. Although the machining initially focused on the manufacture 

of metallic components such as steel alloys, aluminum, cast iron, among others, this 

process is also used to manufacture non-metallic materials such as composite materials 

(polymers reinforced with carbon fibers) [1] with great application and boom in the 

aeronautical industry, and at the other extreme bio-compatible materials such as titanium 

alloys [2] and even bones [3,4] for medical applications. 

Productivity can be greatly increased when the machine-tool operates at high material 

removal rates, however, great care must be taken to avoid losing the quality of the 

manufactured parts. The automotive, aeronautical, chemical, naval, nuclear, missile and 

structural industries often require engineering parts with excellent accuracy and 

precision [5]. Some factors that can interfere in the efficiency of the manufacture of parts 

within the required standards are [6]: 

▪ Assembly and disassembly of the workpiece on the machine-tool. 

▪ Clamping systems, including clamping of the part in the machine-tool. 

▪ Machining parameters such as spindle speed, depth of cut, and feed rate. 

▪ Strategies and trajectories. 

▪ Selection of tools and tool holder. 

▪ Tool wear. 

▪ Change of tools. 

▪ Refrigerant management. 

▪ Chip evacuation. 

▪ Tool and work piece vibration, including self-excited vibrations and errors due to 

cutting forces. 

▪ Measurement of parts (on machine or in a separate process) 

▪ Machine tool accuracy, including geometric errors in its construction, thermally 

induced errors by sources associated with the cutting process, and errors in the 

cutting path caused by control and structural dynamics. 

 

Therefore, in this work, attention is focused on the selection of technological 

parameters of the cutting process that promote productivity by increasing the material 

removal rate, but at the same time, minimizing the dimensional error caused by the forces 

of cutting and bending of the part and/or tool.  
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In machining processes, vibrations are usually produced by the impact of the 

vibration of the previous cut on the current one, this type of vibrations is known as self-

excited vibration (chatter) since it occurs between the workpiece and the cutting tool as 

showed in Figure 1.1. 

 

 
Figure 1.1 Chatter in milling with 2 degrees of freedom (DOF). Adapted from [7] 

 

 Chatter effects often have consequences such as poor surface finish, dimensional 

accuracy out of tolerance, low material removal rate, increased wear on the work tool, 

etc. [8–10]. Since the precision in the roughness of the part depends on the ability of the 

machine to position itself in the work area, as well as on the structural deformations 

during the process, the justification for modeling and analyzing the static and dynamic 

deformations that arise is observed. in the interaction of the tool-machine and the work 

piece during the machining operation. Thus, the focus of this document is directed to the 

analysis of the dynamic process and its modeling, and the extension of the solution of 

Delay Differential Equations (DDE) which model the dynamics of the process. 

Delayed Differential Equations have been studied for more than 200 years [11]  as 

there are many phenomena in different fields of science and engineering in which not 

only the value at time t but also the response in a previous state 𝑡 − 𝜏, that is, there is a 

dependency on the past behavior determined by a delay value. Since solving a DDE is a 

complicated mathematical task, its solution has been limited, but with the development 

of computational power, since the last decade interest in them has resumed and new 

areas of opportunity have emerged.  

One of the common examples that can be considered when solving systems with 

delay is the prey-predator model proposed by Lotka-Volterra where the growth rate of a 

certain species depends not only on the amount of present food, but also on the previous 

amount (in the gestation period) [12]. Delay systems appear in many engineering 
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problems, such as in the shimmy effect (wheel vibration) [13], in vehicle traffic models 

[14], feedback stabilization problems [15], in the vibration of machine-tools better known 

as chatter [16], etc.   

Although the behavior of systems with periodic delay is not predictable, even for 

simple linear cases; however, the stability analysis of these systems is of vital importance. 

According to the theory of Ordinary Differential Equations (ODE), the stability problem 

is determined by the roots of the characteristic equation: if the real part of all roots is 

negative or is found on the left side of the complex plane, the system will be 

asymptotically stable. However, for the analysis of DDEs the approach is different. 

In the last decades with the development of high speed machining, there has been a 

great interest in the offline prediction of the stability of the process, this technique is based 

on the use of design maps for the optimal selection of cutting parameters, mostly known 

as stability lobes, which draw the boundary that separates stable oscillations from 

unstable ones in the face of different combinations of technological parameters of the 

process. These diagrams allow choosing the value of the parameters or cutting conditions 

under which the process can be carried out without the presence of chatter vibrations, 

which cause unwanted effects such as premature wear of the tool, waste of materials, 

consumables and energy; in addition, in the presence of the chatter, it becomes critical to 

machine materials that are difficult to cut due that, some advanced materials of cutting 

tools such as ceramic, silicon nitride and CBN require strict control of vibration to avoid 

brittle breakage. In recent years there has been further development in high-performance 

machining operations using tools with variable geometry or multivariable tools, since 

these help to suppress vibration, even at low cutting speeds, eliminating the vibration 

phases between adjacent teeth, so multivariable tools can offer high productivity and 

better surface finishes if designed correctly. 

That is why it remains a challenge to develop a fast and accurate computational-

analytical methodology capable of determining the stability properties of the delay 

equation used to model the process.  

In recent years, several researchers have been studying the effects of chatter, to 

mention some are Tlusty [17], Altintas [18], Stépán [19], Park [20], Urbikain [21], Olvera 

[22], Sosa [23], etc., thus, the number of publications regarding “chatter-milling” has had 

a growing trend; to get an idea, Figure 1.2 gives a glimpse of how publications on milling 

chatter have increased until 2020 recovered from Scopus Journal. According to Zhu and 

Liu [24], the different chatter mechanisms can be classified into regenerative chatter, 

mode coupling chatter, frictional chatter and force-thermal chatter. In this work we will 

refer to regenerative chatter, which occurs at frequencies close to, but not equal to, the 

dominant frequencies of the machine tool. 
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Figure 1.2 Chatter publications on milling since 1995.  

 

1.2 Work Organization 

 

This work is summarized as follows. Chapter 2 focuses on the description of the 

Homotopy Perturbation Method (HPM) which is the basis from which we start 

developing the analysis for the study of milling tools. Chapter 3 presents the 

mathematical expressions to solve DDE’s using the homotopy procedure and the 

development of the Enhanced Multistage Homotopy Perturbation Method (EMHPM) to 

observe the solution in time domain for milling operations using the first-second and 

third-order approximation of the method. Chapter 4 studies the application of the first-, 

second- and third-order EMHPM on the milling equation to demonstrate its 

improvement in the convergence rate. Also, the stability lobes analysis in milling for 

regular and multivariable tools are presented. Chapter 5 focuses on theoretical 

predictions with time-domain simulations and experimental validation for a 

multivariable tool. Finally, some conclusions are drawn. 

 

1.3 Objectives 

 

Use the methodology based on the homotopy perturbation method to solve the 

EMHPM with second and third order approximations and apply it in delay differential 

equations. 

Use the EMHPM with second and third order polynomial approximations to solve 

milling equations and predict the stability zone for milling operations through the 

stability lobes in regular and multivariable tools. 

Compare the solution of the EMHPM with the solution of the SDM and FDM in terms 

of convergence and computational time. 

Perform mechanical test in milling operations using the stability lobes to validate 

them with the Continuous Wavelet Transform (CWT), the Power Spectral Density (PSD) 

and Poincaré Maps (PM) and then observe the dominant frequencies in the process and 

detect when chatter is present. 
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1.4 Hypothesis 

 

By solving the EMHPM with second and third order approximations, there will be 

greater convergence in the solution of the differential equations with delay since a 

quadratic polynomial approximation to the delay term will be used in comparison to the 

first order solution that uses a linear approximation,  

The second and third order EMHPM can be used in the solution of milling problems 

for both regular and multivariable tools. 

Continuous Wavelet Transform (CWT) scalograms, Power Spectral Density (PSD) 

charts and Poincaré Maps (PM) of the vibration signal on time when milling, will allow 

to validate the stability lobes generated with the solution of the second and third order 

EMHPM. 

 

1.5 Problem Statement and Context 

 

During a milling process, unstable vibrations also known as self-excited vibration or 

chatter may occur. Chatter reduces the machining efficiency due to low material removal 

rate by reducing the workload and affects surface quality, shortens tool life and 

accelerates tool wear.  

A common technique offline to predict unstable vibrations is the so-called stability 

lobes of the DDE based on Floquet theory, in which a curve describes the limit of stable 

vibration under feasible range values of cutting parameters.  

Different from the uniform pitch cutter, when a variable pitch cutter is used, the 

dynamics model of cutting vibration changes from DDEs with a single delay to DDEs 

with multiple delays. The use of variable pitch cutters has demonstrated to improve 

productivity.  

The stability analysis of the milling process with multiple delays has been studied 

through different methods, therefore, in the present work, the EMHPM is used to solve 

the dynamics of the machining process in milling in which the approximation to the delay 

is performed with polynomials of degree two and three.  

Through this work we try to find a competitive solution method in terms of 

convergency and computational cost, able to solve the DDE present during the milling 

process to obtain the vibration in time domain when milling, and to predict stability lobes 

for regular and multivariable tools. 
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1.6 Solution overview 

 

A new method for solving differential equations with delay is presented by applying 

the homotopy perturbation method and using a second and third order polynomial as an 

approximation to the delay term. This method allows finding an analytical-numerical 

solution that confers advantages of precision and low computational cost. To evaluate 

the advantages of the proposed method, the solution of the milling equation has been 

studied and compared with Matlab’s dde23 routine, as well as with the zero order and 

first order approximation. The proposed method shows a rapidly convergence, allowing 

improvement in computational time; also, is important to point out that the method is 

applicable for both regular and irregular tools.  
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Chapter 2. Milling operation 

 
2.1 Introduction 

 

Throughout the 20th century, an attempt has been made to create a suitable model 

that explains the phenomena that occur during the material removal process in order to 

predict the shape of the chip, the existing forces and the temperatures in the cut. Some 

researchers have used traditional methods such as statistical regression methods and 

response surface methodology to model the processes, others have chosen to apply 

artificial neural networks to model non-linear problems such as machining processes [25]; 

however, there is no fully accepted model that describes the phenomenon in its entirety. 

The material removal process is one of the most important manufacturing techniques to 

obtain a part with the desired shape and dimensions through the removal of material in 

the form of chips. Today there are different metal cutting operations such as turning, 

drilling, boring, grinding, milling, carving, brushing, etc., which are used depending on 

parameters such as geometry and the application that is going to be given to the final 

piece. 

 

2.2 Mechanics of orthogonal cutting 

 

Most of the cutting operations generate forces in three dimensions so that the 

modeling is geometrically complex, that is why the explanation of the material removal 

mechanism is started using the orthogonal cutting model. In orthogonal cutting the 

material is removed by the cutting edge of the tool that is perpendicular to the relative 

feed direction between the tool and the workpiece Figure 2.1. 

 

 
 

Figure 2.1 Schematic of the orthogonal cutting process. Adapted from [26] 
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This basic model of chip formation (known as the Merchant model) considers that 

the material shear occurs in the so-called shear plane, which is usually a very narrow 

area. The force on the process material 𝐹𝑅 is decomposed into 𝐹𝑡 (tangential force) which 

has the same direction as the cutting speed and the feed force 𝐹𝑓 which is in the direction 

of the depth of cut 𝑎𝑝. The force 𝐹𝑅 can be decomposed in the direction of the rake face 𝐹𝛾 

(friction force) and its normal 𝐹𝛾𝑛 or in the plane of shear 𝐹𝑠 (shear force) and its normal 

𝐹𝑛𝑠.  

Although this model is not unequivocal, it allows qualitative judgments and 

calculations, as well as an approximate calculation of thermal fields. Thanks to the rise of 

computation and more sophisticated models, simulation has become a natural tool to 

deal with the non-linearities involved. 

Orthogonal cutting is not directly applicable to many use cases of corner radius, 

chamfer, or chip breaker geometries. It is practical to carry out a series of experiments to 

identify certain parameters that relate the shear forces of a specific geometry and the 

work material to have a model of forces close to reality. Therefore, it is common to define 

the cutting forces mechanistically as a function of the cutting parameters (feed per tooth 

(𝑓𝑧) and axial depth (𝑎𝑝)) and coefficients of shear and friction cuts for each of the 

tangential and forward directions. 

 

t tc z p te p

f fc z p fe p

F = K f a + K a

F = K f a + K a
 (2.1) 

 

Constants 𝐾𝑡𝑐 and 𝐾𝑓𝑐 as well as the non-contributing coefficients in shear 𝐾𝑡𝑒, 𝐾𝑓𝑒 are 

directly calibrated with experiments for a specific tool-material combination. It must be 

taken into consideration that when there is wear on the edges of the tool, the shear 

coefficients are affected. To consider the effect of chip thickness on friction and shear 

angles, the specific shear pressure (𝐾𝑡, 𝐾𝑓) is occasionally expressed as a non-linear 

function of chip thickness. 

 
c

c

- p

t T

-q

f F

K = K h

K = K h
 (2.2) 

 

where 𝑝𝑐 and 𝑞𝑐 are cutting force constants that must be determined with experiments at 

different linear advances. Because some metals exhibit different shear coefficients at 

different speeds, it is necessary to consider this phenomenon in certain applications. 
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2.3 Milling process 

 

Milling is a cutting process in which a rotary tool executes relative movements on a 

part. The rotating action of the tool allows the section of material to be pulled out of the 

part in interference with the tool (chip) [25]. The milling process is one of the important 

machining processes besides turning. The movements are powered by the degrees of 

freedom of the machine, and the geometries that can be manufactured are limited by the 

degrees of freedom and the geometry of the edges of the tool. In recent years, thanks to 

the great boom in machine tool technology, milling has evolved to become a method with 

which it is possible to machine a wide range of products. 

Machining centers, being composed of multiple axes, allow different operations to be 

carried out on the same machine; In addition to specific applications, milling is 

increasingly used to make holes, cavities, surfaces that were previously turned, 

threading, etc., which is why milling is a versatile and more efficient machining method.  

During milling, each of the edges of the tool removes a certain amount of metal, the 

geometry of the tool, as well as the direction of advance of the piece also play an 

important role in the removal of chips. Also, in milling operation it is possible to find two 

general cases of the interaction tool-workpiece, one in which the piece advances in favor 

of the direction of rotation of the tool and the second that is opposite to the first, this 

phenomenon has impact especially at the beginning and to the end of the cut.  

In up-milling, the feed direction of the part is opposite to that of the rotation of the 

tool in the cutting area, the chip thickness starts from zero and increases its value to a 

maximum towards the end of the cut Figure 2.2. In this case, when an edge of the tool 

hits the workpiece, there are reaction forces that block the tool from the piece, so the 

cutting edge is forced to begin its task of removing material, there is a great friction which 

causes the temperature of the region where the phenomenon occurs to rise, and therefore, 

when the temperature increases, greater surface resistance is presented, which causes 

greater difficulty in removal by the successive edges of the tool.  

 

a 

 

b 

 
 

Figure 2.2 a) Up-milling and b) down-milling operation 
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On the other hand, during down-milling, the forward direction of the work piece is 

the same as the direction of rotation of the tool in the cutting area, which is why the chip 

thickness has the maximum value at the beginning of the cut and is reduced to zero when 

the cut ends; since the edge of the tool begins by cutting a significant thickness of chip, 

friction and process temperatures are significantly reduced, thus minimizing surface 

resistance, in addition to the reaction forces resulting from cutting also causing a kind of 

attraction of the piece of work towards the tool, which is a beneficial effect for the 

incidence of the following edge. 

 

2.4 Force Models in the milling process 

 

Cutting force models are essential in modeling conventional milling processes used 

to calculate milling power consumption, prediction of stable machining conditions 

(without vibration), determination of surface location errors, and design of machine-tools 

and cutting tools. Machining process models are often generated from rigorous 

experiments, as they involve the effect of multiple inputs, such as depth of cut, feed rate, 

speed of cut, tool geometry, work piece geometry, state of wear of the tool, among others 

[27]. 

One of the most used tools for roughing and finishing operations are the end mill 

cutters with helix angle 𝛽, diameter 𝐷 and 𝑧𝑛 teeth. To develop analytical expressions of 

the cutting process, the reference system of the tool is located on the axis of rotation of 

the tool and the lower plane. 

The axial depth 𝑎𝑝 is measured in the axial direction and the angle 𝜙 that describes 

the orientation of the first tooth is measured from the 𝑦-axis, also the angle of the teeth 

𝑖𝑧 = 1, … , 𝑧𝑛 is described by 𝜙𝑖𝑧
. 

Due to the helix angle, the position angle of each cutting edge varies with height 

according to the expression 𝜓 = 𝑘𝛽𝑎𝑝, where 𝑘𝛽 = 2 tan 𝛽/2𝐷. Therefore, the angular 

position of edge 𝑖𝑧 at depth 𝑎𝑝 is  

 




 iz

n

2 (iz-1)
(z)= + - k z

z
 (2.3) 

 

Forces in the tangential (𝑑𝐹𝑡𝑗), radial (𝑑𝐹𝑟𝑗) and axial (𝑑𝐹𝑎𝑗) directions that act on 

the differential elements of each cutting edge and with length 𝑑𝑧 as seen in Figure 2.3,are 

expressed as: 
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( ) ( )( )

( ) ( )( )

( ) ( )( )

 

 

 

 
 

 
 

 
 

z

z

z

t ,iz j tc iz i te

r ,iz j rc iz i re

a ,iz j ac iz i ae

dF ,z = K h z + K dz,

dF ,z = K h z + K dz,

dF ,z = K h z + K dz

 (2.4) 

 

where the chip thickness is: 

 

( ) ( ) =iz z izh ,z f sin z  (2.5) 

 

 
 

Figure 2.3 Helical milling cutter geometry. Adapted from [16] 

 

In (2.5) 𝑓𝑧 is the material removal rate (mm/rev per tooth), the cutting forces are 

expressed as a function of the variation of the chip area ℎ𝑖𝑧(𝜙𝑖𝑧(𝑧))𝑑𝑧 and the contact 

length (𝑑𝑧). 𝐾𝑡𝑐, 𝐾𝑟𝑐 and 𝐾𝑎𝑐 are specific shear force coefficients due to shear in the 

tangential, radial and axial directions respectively, while 𝐾𝑡𝑒, 𝐾𝑟𝑒 y 𝐾𝑎𝑒 are due to friction. 

The cutting forces are projected onto the tool coordinate system in the feed (𝑥), normal 

(𝑦), and axial (𝑧) directions using the transformation 

 

( )

( )

( )

  

  



− −

−

x,iz iz t,iz iz r,iz iz

y,iz iz t,iz iz r,iz iz

z,iz iz a,iz

dF (z) = dF cos (z) dF sin (z),

dF (z) = dF sin (z) dF cos (z),

dF (z) = dF

 (2.6) 

 

Substituting the differential forces from eq. (2.4) and chip thickness from eq. (2.5) in 

(2.6) we obtain 
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( )
( )

 

( )
( )

 

( )

 


 

 


 



 
− − − +   

 
 − − 

 
− − − +   

 
 − 

z tc iz r c iz

x,iz iz

t e iz r e iz

z tc iz r c iz

y,iz iz

t e iz r e iz

z,iz iz ac z

1
f K sin 2 (z) K 1 cos 2 (z)

2dF (z) = dz,

K cos (z) K sin (z)

1
f K 1 cos 2 (z) K sin 2 (z)

2dF (z) = dz,

K sin (z) K cos (z)

dF (z) = K f s  +iz aein (z) K dz

 (2.7) 

 

To find the coefficients that characterize the tool with the material, it is necessary to 

carry out a set of experiments at different feed rates per tooth 𝑓𝑧 but keeping the radial 

immersion and the axial depth at a fixed value.  

To avoid having the runout effect of the tool in the results, cuts are made with full 

radial immersion. The average total force per revolution is calculated per tooth, since the 

material cut by each tooth is the same. The mean is independent of the helix angle, which 

leads us to replace 𝑑𝑧 = 𝑎𝑝, 𝜙𝑖𝑧
(𝑧) = 𝜙 y 𝑘𝛽 = 0 in equations (2.7). Integrating and 

dividing by the pitch angle 𝜙𝑝 = 2𝜋/𝑧𝑛, result the average forces per tooth within the 

cutting zone 𝜙𝑠𝑡 ≤ 𝜙 ≤ 𝜙𝑒𝑥: 

 

( )  

( )  

 













    
 

    
 

 


 
− − + − +   

 

 
− + − +   

 

− +

ex

st

ex

st

ex

st

n p z n p

x tc r c t e r e

n p z n p

y tc r c t e r e

n p

z ac z ae

z a f z a
F = K cos 2 K 2 sin 2 K sin K cos

8 2

z a f z a
F = K 2 sin 2 K cos 2 K cos K sin

8 2

z a
F = K f cos K

2

 (2.8) 

 

Executing cuts in full immersion allows the simplification of Eq. (2.8) since 𝜙𝑠𝑡 = 0 y 

𝜙𝑒𝑥 = 𝜋. Average forces can be expressed by a linear function of feed per tooth as: 

 

( ) +
x,y,z x,y,zx,y,z iz c z eF (z) = K f K  (2.9) 

 

where 𝐾𝑐𝑥,𝑦,𝑧
, 𝑓𝑧 and 𝐾𝑒𝑥,𝑦,𝑧

 are calculated by linear regression. In this way, for full 

immersion the force coefficients are evaluated through (2.8) and (2.9) resulting in the 

following expressions 
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− −

yc ye xc xe zc ze
tc te rc re ac ae

n p n p n p n p n p n p

4 K K 4 K K K 2 K
K = ,K = ,K = ,K = ,K = ,K =

z a z a z a z a z a z a
 (2.10) 

 

Eq. (2.10) can be written as 

 

  
− −

yc ye xc xe z c ze
tc te rc re ac ae

n p n p n p n p n p n p

4 F F 4 F F F 2 F
K = ,K = ,K = ,K = ,K = ,K =

z a z a z a z a z a z a
 (2.11) 

 

The procedure is repeated for each cutting geometry; therefore, milling force 

coefficients cannot be predicted prior to testing for new designs using mechanistic 

models. 

 

Forces in a multivariable tool 

 

When we have a multivariable tool where the pitch angle and helix angles are not 

uniform, a way to find the specific cutting coefficients for each tooth is by making 

experimentation with a radial immersion of 25% of the tool, with this immersion we can 

obtain by experimentation the forces and observe the effect on each flute. The  Eq. (2.8) 

requires to be evaluated  at the  entry and exit angle, if the radial immersion is 25 percent, 

𝜙𝑠𝑡 =
2𝜋

3
, and 𝜙𝑒𝑥 = 𝜋.  

Figure 2.4 shows a representation of a multivariable tool which is discretized by disks 

due that when the pitch and helix angles are variables, there are an infinite number of 

delays, and in order to limit them, a way to solve the problem is by discretizing the tool 

in a specific amount of disks of thickness ∆𝑎, this conceptualization of the tool will be 

discussed in Section 4.4. 

 

 
Figure 2.4 Multivariable milling tool discretized in disks. Recovered from [28] 
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Solving Eq. (2.8) with this consideration  we have that 

 

 




 




 



     
+ − + −             

       
− − + +                    

n p n p

xc t c r c xe t e r e

n p n p

yc t c r c ye t e r e

n p

zc ac

       

      

     

z a z a3 4 3 3 1
F = K 2 K , F = K K ,

8 2 3 2 2 2 2

z a z a4 3 1 1 3
F = 2 K K , F = K K ,

8 3 2 2 2 2 2

z a
F = K ,

4
 n p

z e ae ,                              
z a

F =            K
6

   

 (2.12) 

 

Like the procedure for a regular tool, to obtain the specific cutting coefficients 

experimentation is required using different feed rates and evaluating the forces in each 

flute to obtain the specific cutting coefficients in each edge. 
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Chapter 3. Mathematical modeling of machining 

 
3.1 Differential Equations solved with homotopy perturbation methods 

 

Dynamic systems can be modeled to describe different systems such as mechanical, 

biological, or physical. These models allow us to observe, for example, the future rate of 

change of a variable that depends on the current state of a system. There are many 

phenomena in different fields of science and engineering that involve not only the value 

at time 𝑡 but also the response in an earlier state 𝑡 − 𝜏, that is, there is a dependency on 

past behavior determined by the delay value 𝜏. In cases where the net force depends on 

the current values and some past values (history) such as position and speed, the system 

is described using a differential delay equation (DDE). The material removal process is 

one of the most important manufacturing processes to obtain a part with the desired 

shape and dimensions through the removal of chip material; however, during the 

process, vibrations may occur due to the repercussion of the vibration of the previous cut 

on the current one, this type of vibrations is known as self-excited vibration or chatter, 

since it occurs between the workpiece and the cutting tool. Chatter reduces the machining 

efficiency (due to low material removal rate by reducing the workload) and surface 

quality, shortens the tool durability and accelerates the tool wear. Since the regenerative 

chatter is caused by the phase differences between wavy surfaces left by the adjacent 

teeth, it can be suppressed by adjusting the pitch angle between the adjacent teeth. The 

use of variable pitch cutters to improve the stability of the milling process is built on this 

idea. Different from the uniform pitch cutter, when the variable pitch cutter is used, the 

dynamics model of cutting vibration changes from DDEs with single delay to DDEs with 

multiple delays [29]. In the machining of heat-resistant materials such as titanium alloys, 

which are widely used in the aeronautical sector, there is an increased risk of vibrations 

due to high cutting forces, to control and suppress chatter vibrations, the use of 

piezoelectric actuators embedded in the tool holder [30], electromagnetic actuators 

integrated into the spindle system [31] and tunable clamping table [32] has been 

analyzed. In the milling process, the use of variable pitch cutters has demonstrated to 

improve productivity [33]. An alternative to vibration suppression is stability lobes, 

which try to predict under which parameters or cutting conditions the milling process 

remains stable or free of vibration.  

The milling process can be modeled by nonlinear equations, several perturbation 

methods have been proposed to find solutions to nonlinear equations, however, most of 

these are only applied to problems in which the nonlinearity present in the physical 

system is small, which limits its application. To eliminate this limitation, the Homotopy 

Perturbation Method (HPM) proposed by Ji-Huan He [34–36] can be used, this method 
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is a coupling of the  traditional perturbation method and homotopy theory used in 

topology, and consists initially using a simple solution that continually approaches the 

study problem through a parameter that converges to unity.  

The application of HPM has been effective in solving various problems, it has served 

as the basis for solving epidemic models [37], problems of systems of linear equations 

[38], up to the solution of non-linear second-order differential equations [39], which 

usually define the dynamic behavior of mechanical systems. 

With the HPM few approximations are required to achieve precise solutions, 

examples of them are oscillators and non-linear dynamic models, studied in [40–43], 

however, the HPM is an asymptotic method that relies on some assumptions that limit 

their convergence as the solution evolves away from the initial conditions. 

Liao, author of Homotopy Analysis Method (HAM), states in [44] that HPM is a 

particular case of HAM when the control parameter takes the value ℎ. Methodologies are 

susceptible to improvement, as well as to different types of errors in particular 

applications, so their usefulness should not be disqualified when areas of opportunity are 

found, but rather modifications should be made to make them more powerful and robust 

methods. Abbasbandy used the idea of solution by subintervals in the solution of the 

Ricatti equation [45] and also Chen, Hendi, Bashiri, and Biazar made use of the HPM to 

analyze models of the Volterra integral equation in [46–49]. Hosein [50] proposed to 

modify the linear operator proposed by He in such a way that it was stable and called it 

“Enhanced Homotopy Perturbation Method” (EHPM). On the other hand, Odibat 

proposed the expansion in the Taylor series of the terms of the independent variable to 

improve the convergence of the HPM [51]. Hashim and Chowdhury proposed a 

methodology to obtain the solution of systems of differential equations of first order by 

means of multiple intervals and called it Multistage Homotopy Perturbation Method 

(MHPM), in which they obtained good results [52–55]. Ramos in [42], in addition to 

stating that in the case of ordinary differential equations the HPM and the decomposition 

technique are identical, which is confirmed in [56], he also sustains that both methods are 

subject to the same limitation as he calls “noisy” terms, referring to those that appear in 

successive terms in the solution series and that are canceled when determining the final 

series of the solution. This makes difficult to prove that the solution converges and does 

not guarantee that a finite number will achieve a certain approximation. In this sense, he 

also proposed a methodology by subintervals which he called the Piecewise Homotopy 

Method. On the other hand, Olvera proposed a method called the Enhanced Multistage 

Homotopy Perturbation Method (EMHPM), which generalizes the multistage homotopy 

method to obtain the solution of nonlinear differential equations with variable 

coefficients, which include time variable terms [57]. In this method, although interval 

solutions are used, it does not mean that solutions are produced in sections, but rather 

that a continuous analytical solution is obtained at any instant in time. The results 
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generated by this method were compared against the results of Hosein [50] and Odibat 

[51], in order to justify the need for the proposed method. 

The EMHPM solves the evolutionary equations by subintervals through the 

temporary auxiliary transformation, this means that the EMHPM uses a combination of 

continuous functions over the time domain analyzed, however, it should not be confused 

with the Finite Element Method which approximates the solution as a linear combination 

of piecewise functions over small intervals [58–60]. 

 

3.2 HPM procedure 

 

HPM rapidly converges on published literature papers where few approximations 

are necessary to achieve precise solutions. The basic idea of HPM, is illustrated through 

the following nonlinear differential equation: 

 

− = A(u) f(r)  0, r  (3.1) 

 

with the boundary condition: 

 

 
=  

 

u
B u, , 0 r

x
 (3.2) 

 

where 𝐴 is a differential operator, 𝑓(𝑟) is a known analytic function, 𝛺 is the domain, 𝐵 

is a limit operator, Γ is the limit of the domain. The operator 𝐴 can be divided into a linear 

part 𝐿 and a non-linear part 𝑁, thus, eq. (1) can be rewritten as 

 

+ =L(u) N(u) f(r)  (3.3) 

 

Applying the principles of topology, a homotopy is constructed 𝑣(𝑟, 𝑝): Ω × [0,1] →

ℝ that satisfies 

 

( ) ( ) ( ) ( ) ( ) ( )  0,1       0v, p = 1- p L v - L u + p A v - =  r   0, p , f rH  (3.4) 

 

That can be expressed as 

 

( ) ( ) ( ) ( ) ( ) ( )0 0, 0= − + + − =  v p L v L u pL u p N v f rH  (3.5) 

 

where 𝑝 𝜖 [0,1] is an embedding parameter, 𝑢0 is a proposed initial approximation to Ec. 

(3.1) that also satisfies the boundary conditions.  
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Since 𝑝 ∈ [0,1], it is observed that  

 

( ) ( ) ( )

( ) ( ) ( )
0,0 0

,1 0

= − =

= − =

v L v L u

v A v f r

H

H
 (3.6) 

 

The change in 𝑝 from zero to one cause 𝑣(𝑟, 𝑝) to change from 𝑢0(𝑟) to 𝑢(𝑟). In 

topology, this is called deformation and in the same context 𝐿(𝑣) − 𝐿(𝑢0) and 𝐴(𝑣) − 𝑓(𝑟) 

is called homotopy. He in [34] assumed that eq. (3.5) could be expressed as a power series 

on 𝑝. 

 
2 3

0 1 2 3= + + + +v v pv p v p v  (3.7) 

 

considering 𝑝 = 1 the approximate solution of eq. (3.1)  is  

 

0 1 2 3
1

lim
→

= = + + + +
p

u v v v v v  (3.8) 

 

Application case of HPM 

 

In order to show the precision achieved with the choice of the linear operator, the 

following non-linear equation was analyzed [50]: 

 

( )t 2Y-Y+e Y = 0, Y 0 = c  (3.9) 

 

where 𝑌 is the independent variable, 𝑡 is the time, and 𝑐 is a constant. For this equation, 

the linear part 𝐿 and the nonlinear part 𝑁 can be chosen as: 

 

( ) ( ) t 2 L Y = Y-Y, N Y e  = Y  (3.10) 

 

Therefore, using equation (3.5), the homotopy is as follows: 

 

( ) ( ) ( ) ( ) ( ) ( )0 0 0   , 0,= − + + =   = cY p L Y L y pL y p yY tNH  (3.11) 

 

And eq. (3.11) is represented as: 

 

( ) ( ) ( ) ( ) 2

0 0 0 0, 0 = − − − + − + = 
tY p Y Y y y p y y p e YH  (3.12) 
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Substituting at equation (3.12)  the second order expansion 𝑌 = 𝑌0 + 𝑝𝑌1 + 𝑝2𝑌2, we 

have: 

 

( ) ( ) ( )( ) ( ) ( ) ( )
2

2 2 2

0 1 2 0 1 2 0 0 0 0 0 1 2, 0= + + − + + − − + − + + + =tY p Y pY p Y Y pY p Y y y p y y pe Y pY p YH  (3.13) 

 

also, we know that 

 

( ) ( )
2

2 2 2 3 2 2 4 2

0 1 2 0 0 1 0 2 1 2 1 22 2 2+ + = + + + + +t tpe Y pY p Y pe Y pY Y p Y Y p YY p Y p Y  (3.14) 

  

then, developing eq. (3.13), 

 

( ) ( ) ( )

( )

2 2

0 1 2 0 1 2 0 0 0 0

2 2 3 4 3 2 5 2

0 0 1 0 2 1 2 1 2

,

2 2 2

= + + − + + − + + − +

+ + + + +t

Y p Y pY p Y Y pY p Y y y py py

e pY p Y Y p Y Y p YY p Y p Y

H
 (3.15) 

 

grouping by powers of 𝑝, the general solution for the equation (3.9) is obtained: 

 
0

0 0 0 0

1 2

1 1 0 0 0

2

2 2 0 1

   

   

  

: 0

: 0

: 2 0 

− − + =

− + − + =

− + =

t

t

p Y Y y y

p Y Y y y e Y

p Y Y e Y Y

 (3.16) 

 

The initial approximation is 𝑦0 = 𝑐, since 𝑐 is a constant, its derivative �̇�0 = 0. Hosein, 

in [50] considered 𝑦0 = 0, so: 

 

( )

( )

( )

0

0 0 0

1 2

1 1 0 1

2

2 2 0 1 2

           

2

             

  

0

       :     

0        

: 0, 0

0, 0 0

: 0  ,

− =

− + = =

− + = =

=

t

t

p Y Y Y

p Y Y e Y Y

p Y Y e Y

c

Y Y

 (3.17) 

 

solving equation (3.17), and using the Laplace transform at 𝑝0:  

 

   0 0 0− =Y YL L  (3.18) 

 

by Laplace it is known that ℒ{𝑓′(𝑡)} = 𝑠𝐿{𝑓(𝑡)} − 𝑓(0), ℒ{𝑓(𝑡)} = 𝐹(𝑠), then:  

 

  ( ) ( )( )   ( )  0 0 00 0
    0    0  , 0= − = =

s s
Y s Y Y Y YL , L L  (3.19) 

 

Substituting eq. (3.19) in (3.18), and knowing that 𝑌0(0) = 𝑐, we have: 
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( )( ) ( )

( ) ( )

( )

0 0

0

0

0

1

1

− =

− =

=
−

s s

s

s

s Y c Y

Y s c

c
Y

s

-

 (3.20) 

 

now, by using the inverse Laplace transform: 

 

( ) 1 1

0
1

− −  
=  

− 
s

c
Y

s
L L  (3.21) 

 

It is known from Laplace's equations that the transform of 𝑒𝑎𝑡 is 

 
1

=
−

ate
s a

 (3.22) 

 

and since 𝑐 is a constant, and 𝑎 is equal to one, then the solution at 𝑝0 is: 

 

( )0 = tY t ce
 (3.23) 

 

Solving for 𝑝1 from equation (3.17): 

 

   2

1 1 0− = − tY Y e YL L  (3.24) 

 

substituting eq. (3.23) in (3.24), 

 

  ( ) 
   

2

1 1

2 3

1 1

− = −

− = −

t t

t

Y Y e ce

Y Y c e

L L

L L

 (3.25) 

 

using equation (3.22), we have that ℒ{𝑐2𝑒3𝑡} =
𝑐2

𝑠−3
, so: 

 

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )( )

2

1 11 1

2

1

2

1

0 , 0 0
3

1
3

1 3

   − = =
−

− = −
−

= −
− −

s s

s

s

c
s Y Y Y Y

s

c
Y s

s

c
Y

s s

-

 (3.26) 

 

Equation (3.26) can be rewritten as  
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( )( )

2

1 3 1 3
+ = −

− − − −

A B c

s s s s
 (3.27) 

 

so, it is necessary to find the values of 𝐴 and 𝐵 

 

( ) ( )

( )( ) ( )( )

23 1

1 3 1 3

− + −
= −

− − − −

A s B s c

s s s s
 (3.28) 

 

since the denominator is the same on both sides of the equation, it turns out that: 

 

( ) ( ) 23 1− + − = −A s B s c  (3.29) 

 

It is observed that to find the solution of 𝐴 and 𝐵, we must substitute in equation 

(3.29), 𝑠 = 1 and 𝑠 = 3. So, in the first case: 𝐴(1 − 3) + 𝐵(1 − 1) = −𝑐2, and in the second 

case with 𝑠 = 3, 𝐴(3 − 3) + 𝐵(3 − 1) = −𝑐2, when solving the equations the solution of 𝐴 

and 𝐵 turns out to be:  

 
2 2

2
  ,

2
 = = −

c c
A B  (3.30) 

 

therefore, eq. (3.26) is written as follows: 

 

( ) ( ) ( )

2 2

1

/ 2 / 2

1 3

−
= − +

− −
s

c c
Y

s s
 (3.31) 

 

Using the inverse Laplace transform we have ℒ−1{𝑌1(𝑠)} = ℒ−1 {
𝑐2

2

𝑠−1
+

−
𝑐2

2

𝑠−3
} which is 

rewritten as: ℒ−1{𝑌1(𝑠)} =
c2

2
ℒ−1 {

1

𝑠−1
} −

𝑐2

2
ℒ−1 {

1

𝑠−3
}. By using equation (3.22) the solution 

is reached at 𝑝1: 

 

( ) ( )
2

3

1
2

= −t tc
Y t e e  (3.32) 

 

Substituting the eq. (3.23) and (3.32) in (3.17) for  𝑝2, it is obtained: 

 

( ) ( )

  ( ) 

2
3

2 2

3 5 3

2 2

2 0
2

 
− + − = 

 

− = −

t t t t

t t

c
Y Y e ce e e

Y Y c e eL L

 (3.33) 
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Following a similar procedure to that developed for the previous solutions: 

 

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )( ) ( )( )

3

2 22 2

3

2

3

2

1 1
0 , 0 0

5 3

1 1
1

5 3

1 1

1

 

5

 

1 3

 
 

− = − = 
− − 

 
− = − 

− − 

 
= −  − − − − 

s s

s

s

s Y Y Y c Y
s s

Y s c
s s

Y c
s s s s

-

 (3.34) 

 

Equation (3.34) can be written as  

 

( ) ( ) ( ) ( ) ( )( ) ( )( )
3 3 1 1

1 5 1 3 1 5 1 3

      
+ − + = −            − − − − − − − −      

A B C D
c c

s s s s s s s s
 (3.35) 

 

To find the values of 𝐴, 𝐵, 𝐶 and 𝐷, we will first solve 𝐴 and 𝐵 and then we will find 

the values of 𝐶 and 𝐷. Thus, for 𝐴 and 𝐵 we have: 

 
( ) ( )

( )( ) ( )( )

35 1

1 5 1 5

− + −
= −

− − − −

A s B s c

s s s s
 (3.36) 

 

since the denominator is the same on both sides of the equation, it turns out that: 

 

( ) ( ) 35 1− + − =A s B s c  (3.37) 

 

It is observed that to find the solution of 𝐴 and 𝐵, we must substitute in equation 

(3.37) 𝑠 = 1 and 𝑠 = 5. So, in the first case: 𝐴(1 − 5) + 𝐵(1 − 1) = 𝑐3, and in the second 

case with 𝑠 = 5, 𝐴(5 − 5) + 𝐵(5 − 1) = 𝑐3, when solving the equations the solution of 𝐴 

and 𝐵 turns out to be: 

 
3 3

4
   ,

4
 = − =

c c
A B  (3.38) 

 

To C and D, we have: 

 
( ) ( )

( )( ) ( )( )

33 1

1 3 1 3

− + −
=

− − − −

C s D s c

s s s s
 (3.39) 

 

since the denominator is the same on both sides of the equation, it turns out that: 
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( ) ( ) 33 1− + − =C s D s c  (3.40) 

 

It is observed that to find the solution of 𝐶 and 𝐷, we must substitute in equation 

(3.40) 𝑠 = 1 and 𝑠 = 3.  

In the first case, 𝐶(1 − 3) + 𝐷(1 − 1) = 𝑐3, and in the second case with 𝑠 = 1, 

𝐶(3 − 3) + 𝐷(3 − 1) = 𝑐3, when solving the equations the solution of 𝐶 and 𝐷 turns out 

to be: 

 
3 3

2
   ,

2
 = − =

c c
DC  (3.41) 

 

Equation (3.34) can be written as  

 

( )

3 3

2

1 1 1 1

4 1 5 2 1 3

− −   
= + − +   

− − − −   
s

c c
Y

s s s s
 (3.42) 

 

using the inverse Laplace transform we have  

 

( ) 
3 3

1 1

2

1 1 1 1

4 1 5 2 1 3

− −  − −   
= + − +    

− − − −    
s

c c
Y

s s s s
L L  (3.43) 

 

which is rewritten as 

 

( ) 
3 3

1 1 1

2

1 1 1 1

4 5 1 2 3 1

− − −   
= − − −   

− − − −   
s

c c
Y

s s s s
L L L  (3.44) 

 

by using (3.22), 𝑌2(𝑡) =
c3

4
(𝑒5𝑡 − 𝑒𝑡) −

c3

2
(𝑒3𝑡 − 𝑒𝑡) and simplifying, the solution is 

 

( ) ( )
3 3

5 3

2
4 2

= + −t t tc c
Y t e e e  (3.45) 

 

so, the solution of (3.17) is: 

 

( )

( ) ( )

( ) ( )

0

2
3

1

3 3
5 3

2

2

4 2

=

+

=

=

−

−

t

t t

t t t

Y t e

Y t e e

Y e

c

c
e

c

t e
c

 (3.46) 
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Approximations obtained in (3.46), correspond to the second order solution 

calculated in [57] when 𝑐 = 1. 

 
Application of the EHPM 

 

After analyzing the HPM, although the non-linear differential equation (3.9) is stable, 

the linear part suggested in (3.10) generates an undesired behavior, so Hosein et al. in 

[50] proposed modifying the linear operator to make it stable by adding and subtracting 

𝑌 in the equation, and named the method “Enhanced Homotopy Perturbation Method" 

(EHPM). Under this consideration, Eq. (3.9) is rewritten to select a stable operator: 

 

( )+ −t 2Y Y+e Y 2 c Y = 0, Y 0 =  (3.47) 

 

The linear and non-linear parts are represented by: 

 

( ) ( )+ −t 2L Y = Y Y, N Y = e Y   2Y  (3.48) 

 

The homotopy of Eq. (3.47) is represented by Eq. (3.11), so following the previous 

procedure we have: 

 

( ) ( ) ( ) ( ) 2

0 0 0 0, 2 0 = + − + + + + − = 
tY p Y Y y y p y y p e Y YH  (3.49) 

 

Substituting in equation (3.49) the second order expansion 𝑌 = 𝑌0 + 𝑝𝑌1 + 𝑝2𝑌2, we 

have: 

 

   

( ) ( ) ( )( ) ( ) ( )

( ) ( )

2 2

0 1 2 0 1 2 0 0 0 0

2
2 2

0 1 2 0 1 2

,

2

= + + + + + − + + + +

+ + − + +t

Y p Y pY p Y Y pY p Y y y p y y

pe Y pY p Y Y pY p Y

H

 (3.50) 

 

solving equation (3.50): 

 

( ) ( ) ( ) (

)

2 2 2 2 3

0 1 2 0 1 2 0 0 0 0 0 0 1 0 2

4 3 2 5 2 2 3

1 2 1 2 0 1 2

, 2 2

2 2 2 2

= + + + + + − − + + + + + +

+ + − − −

tY p Y pY p Y Y pY p Y y y py py e pY p Y Y p Y Y

p YY p Y p Y pY p Y p Y

H
 (3.51) 

 

grouping by powers of 𝑝, we have the general solution for (3.47) 

 
0

0 0 0 0

1 2

1 1 0 0 0 0

2

2 2 0 1 1

: 0

: 2 0

: 2 2 0

   

   

   

+ − − =

+ + + + − =

+ + − =

t

t

p Y Y y y

p Y Y y y e Y Y

p Y Y e Y Y Y

 (3.52) 
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Hosein considered 𝑦0 = 0, so that �̇�0 = 0, then: 

 

( )

( )

( )

0

0 0 0

1 2

1 1 0 0 1

2

2 2 0 1 1 2

                                

 

0

       :     

: 0, 0

2 0, 0 0

: 2

 

         2 0, 0

+ =

+ + − = =

+ + − = =

=

t

t

p Y Y Y

p Y Y e Y

Y

c

Y Y

p Y Y e Y Y Y

 (3.53) 

 

Previously Eq. (3.9) was solved using the Laplace transform, now Eq. (3.47) is solved 

using the integration method. Solving Eq. (3.53), the differential equation at 𝑝0 can be 

expressed as 𝑑𝑌0/𝑑𝑡 = −𝑌0, so it can be presented as 𝑑𝑌0/𝑌0 = −𝑑𝑡. By integrating the 

equation, we have 

 

( )

0

0

0In

= −

= − +

 
dY

dt
Y

Y t const

 (3.54) 

 

applying the properties of logarithmic functions and exponentials, equation (3.54) is 

presented as follows: 

 
( )0In

0

− +

−

=

=

Y t const

t const

e e

Y e e
 (3.55) 

 

Due that 𝑒𝑐𝑜𝑛𝑠𝑡 will be a constant, the solution of 𝑌0 is:  

 

0

−= tY ce  (3.56) 

 

Using the solution of 𝑌0, it is solved for 𝑌1 at 𝑝1,  the equation is rewritten as: 

 

( ) ( )

( )

2
1

1

21
1

21
1

2

2

2

− −

− −

−

+ = − +

+ = − +

+ = −

t t t

t t

t

dY
Y e ce ce

dt

dY
Y c e ce

dt

dY
Y c c e

dt

 (3.57) 

 

Equation (3.57) has the form of first order linear ordinary differential equation: 

 

( ) ( ) ( )' + =y x p x y q x  (3.58) 
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Notice that equation (3.57) can be expressed as 

 

( )21
1 2+ = −t tdY

e e Y c c
dt

 (3.59) 

 

The reverse product rule for the differential equation states that  

 

( ) 
+ =

d f gdg df
f g

dt dt dt
 (3.60) 

 

so, substituting 𝑒𝑡 =
𝑑

𝑑𝑡
(𝑒𝑡) in the second term of the (3.59), we have: 

 

( )
( )21

1 2+ = −

t

t
d edY

e Y c c
dt dt

 (3.61) 

 

applying the reverse product rule to the left-hand side, we obtain: 

 

( ) ( )2

1 2= −td
e Y c c

dt
 (3.62) 

 

integrating both sides with respect to 𝑡: 

 

( ) ( )2

1    2= − 
td

e Y dt c c dt
dt

 (3.63) 

 

( )2

1 12−= − +tY e c c t c  (3.64) 

 

evaluating to find 𝑐1 by substituting the initial condition 𝑌1(0) = 0, at eq. (3.64) 

 

( )0 2

10 2 0−= − +e c c c  (3.65) 

 

we find that 𝑐1 = 0, so,  

 

( )2

1 2 −= − tY c c te  (3.66) 

 

Using the solution of 𝑌0, and 𝑌1, now it is solved for 𝑌2 at 𝑝2, 

 

( )( ) ( )( ) ( )2 2

2 2 22 2 2 2 , 0  0     − − −+ = − − + − =t t t tY Y e ce c c te c c te Y  (3.67) 
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Equation (3.67) can be rewritten as 

( )2

2 2 2 3 2−+ = − +tY Y ce t c c  (3.68) 

 

( )2

2 2 2 3 2+ = − +t te Y e Y ct c c  (3.69) 

 

we substitute 𝑒𝑡 =
𝑑

𝑑𝑡
(𝑒𝑡) in the second term of (3.69), then, the equation becomes: 

 

( )
( )22

2 2 3 2+ = − +

t

t
d edY

e Y ct c c
dt dt

 (3.70) 

 

applying the reverse product rule to the left-hand side of (3.70), we obtain 

 

( )
( )

2 22 3 2= − +

td e Y
ct c c

dt
 (3.71) 

 

integrating both sides with respect to 𝑡, we have 

 

( )
( )

2 22 3 2= − + 
td e Y

dt ct c c dt
dt

 (3.72) 

 

( )2 2

2 13 2−= − + +tY e ct c c c  (3.73) 

 

evaluating to find 𝑐1 by substituting the initial condition 𝑌2(0) = 0, at eq. (3.73) 

 

( ) ( )20 2

10 0 3 2−= − + +e c c c c  (3.74) 

 

we find that 𝑐1 = 0, so, the solution of 𝑌2 is given by 

 

( )2 2

2 3 2−= − +tY e ct c c  (3.75) 

  

Application of the HPM through the Taylor series 

 

To improve the convergence of the HPM, Odibat in [51] proposed the expansion of 

the independent variable by using Taylor series, in such a way that it is possible to rewrite 

equation (3.9) as: 
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( )
n !0



=


n

2t
Y-Y+ Y = 0, Y 0 = c 

n
 (3.76) 

 

For simplicity, the linear operator 𝐿(𝑦0) =
𝑑𝑦0

𝑑𝑡
 is used, so that the homotopy of Eq. 

(3.76) can be represented as follows: 

 

( ) 1 2

0 0,
!

+= − + − +
n

n t
Y p Y y py pY p Y

n
H  (3.77) 

 

To force the initial approximation 𝑌0 = 𝑐, it was necessary to include the term 𝑝𝑛+1. 

Substituting the fourth order expansion 𝑌 = 𝑌0 + 𝑝𝑌1 + 𝑝2𝑌2 + 𝑝3𝑌3 + 𝑝4𝑌4 in equation 

(3.77), we have: 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

2 3 4 2 3 4

0 1 2 3 4 0 0 0 1 2 3 4

2 2
2 3 4 2 2 3 4

0 1 2 3 4 0 1 2 3 4

2 3
2 2

3 2 3 4 4 2 3 4

0 1 2 3 4 0 1 2 3 4

4
2

5 2 3 4

0 1 2 3 4

,

2 6

24

= + + + + − + − + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

+ + + +

Y p Y pY p Y p Y p Y y py p Y pY p Y p Y p Y

p Y pY p Y p Y p Y p t Y pY p Y p Y p Y

t t
p Y pY p Y p Y p Y p Y pY p Y p Y p Y

t
p Y pY p Y p Y p Y

H

 (3.78) 

 

By expanding and grouping the terms of equal order up to 𝑝4, we have: 

 
0

0 0

1 2

1 0 0 0

2 2

2 1 0 1 0

2
3 2 2

3 2 0 2 1 0 1 0

3
4 2 2 2

4 3 0 3 1 2 0 2 1 0 1 0

: 0

: 0

: 2 0

: 2 2 0
2

: 2 2

   

   

   

   

0   
6

  2

− =

+ − + =

− + + =

− + + + + =

− + + + + + + =

p Y y

p Y y Y Y

p Y Y Y Y tY

t
p Y Y Y Y Y tY Y Y

t
p Y Y Y Y YY tY Y tY t Y Y Y

 (3.79) 

 

solving, and considering that 𝑦0 = 𝑐, we have, for 𝑝0: 

 

0 0

0 0 0 ,  ,    = − = = 
dY dy

Y y Y c
dt dt

 (3.80) 

 

Substituting 𝑌0 in 𝑝1, we have �̇�1 = 𝑌0 − 𝑌0
2 = 𝑐 − 𝑐2, so that when applying the 

integral ∫ �̇�1 𝑑𝑡 = ∫(𝑐 − 𝑐2) 𝑑𝑡, the solution of 𝑌1 is obtained. 

 

( )2

1 = −Y c c t  (3.81) 
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Similarly, solving for  𝑝2 we have �̇�2 = (𝑐 − 𝑐2)𝑡 − 2𝑐((𝑐 − 𝑐2)𝑡) − 𝑡𝑐2 = 𝑐𝑡 − 𝑐2𝑡 −

2𝑐2𝑡 + 2𝑐3𝑡 − 𝑡𝑐2, so the integral ∫ �̇�2 𝑑𝑡 = ∫ 𝑡(𝑐 − 4𝑐2 + 2𝑐3) 𝑑𝑡 is applied to obtain: 

 

( )
2

2 3

2 4 2
2

= − +
t

Y c c c  (3.82) 

 

rearranging, the solution to 𝑌2 is: 

 

3 2 2

2 2
2

 
= − + 
 

c
Y c c t  (3.83) 

 

At 𝑝3, from Eq. (3.79) we have that �̇�3 = 𝑌2 − 2𝑌0𝑌2 − 𝑌1
2 − 2𝑡𝑌0𝑌1 −

𝑡2

2
𝑌0

2 so, the same 

procedure is followed to apply the integral 

 

( )( ) ( )( )
2 2

2
3 2 2 3 2 2 2 2

3 2 2 2 2
2 2 2

     
= − + − − + − − − − −     

     
 

c c c t
Y dt c c t c c c t c c t tc c c t dt  (3.84) 

 

then, the solution of 𝑌3 is: 

 

4 3 2 3

3

13
3

6 6

 
= − + − + 
 

c
Y c c c t  (3.85) 

 

Similarly, to 𝑝4 we have 

 

( )( )

( )( ) ( )( )

4 3 2 3 4 3 2 3 2 3 2 2

4

3
2

3 2 2 2 2 2 2

13 13
3 2 3 2 2

6 6 6 6 2

2 2
2 6

         
= − + − + − − + − + − − − + −         

         

   
− + − − − − −   

   

 



c c c
Y dt c c c t c c c c t c c t c c t dt

c t
tc c c t t c c t t c c c t c dt

(3.86) 

 

by solving Eq. (3.86) we have: 

 

( )

( ) ( ) ( )

4 2 4 4
4 3 2 5 4 3 4 3 2 5 4 3

4

4 4 4 4
4 3 2 2 3 4 2 3 2

13 13
3 2 6 2 4 2 4

6 6 4 3 3 4 4

2 4 2
4 4 4 24

  
= − + − + + − + − + − + − + − + +  
   

− + − + − + − + − + −

c t c t t
Y c c c c c c c c c c c c

t t t t
c c c c c c c c c

 (3.87) 

 

after solving we get: 

 

5 4 3 2 4

4

29 5
4

6 3 24

 
= − + − + 
 

c
Y c c c c t  (3.88) 
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The second-order solution obtained from Hosein is compared with the second-order 

solution, using the homotopy method from He, with Odibat's fourth-order equation and 

with the numerical solution calculated from the fourth-order Runge-Kutta method in 

Matlab (ode45). It is clearly observed in Figure 3.1 that the Hosein solution tends to 

coincide with the numerical solution while the other solutions diverge. 

 

  
Figure 3.1 Solution comparison between Runge-Kutta and other authors of (3.9) 

 

Application of the EMHPM 

 

Since the solutions obtained by the MHPM diverge when the coefficients are 

dependent on time, to improve this drawback, Olvera in [57], proposed an extension of 

the MHPM to consider the general case in which the non-linear equation contains terms 

of the independently variable, he called this extension Enhanced Multistage Homotopy 

Perturbation Method (EMHPM). 

In the algorithm proposed by Olvera in EMHPM, the HPM solution is sought by 

subintervals using the transformation 𝑢(𝑡) = 𝑈𝑖(𝑇) where 𝑈𝑖 represents a single 

approximate solution by subinterval and also satisfies the initial condition 𝑈𝑖(0) =

𝑢𝑖−1 (𝑡𝑖−1). The new time variable is subject to the condition: 0 ≤ 𝑇 ≤ (𝑡𝑖 − 𝑡𝑖−1); 

furthermore, 𝑢𝑖(𝑡) represents the approximate solution in the 𝑖-th subinterval. The initial 

proposed solution is given by: 𝑈𝑖0 = 𝑢𝑖−1 (𝑡𝑖−1) where 𝑡𝑖−1 represents the time at the end 

of the previous subinterval, that is, the final value of the approximate solution of a 

subinterval corresponds to the initial condition of the next subinterval.  

To establish the homotopy that allows finding the solution of a differential equation, 

the following assumptions are made:  

1. The linear operator 𝐿(𝑈𝑖) is chosen as 𝐿(𝑈𝑖) =
𝑑

𝑑𝑇
𝑈𝑖 where the initial solution 

proposed is the initial condition 𝑢𝑖−1 (𝑡𝑖−1), that is, 𝑈𝑖0 = 𝑢𝑖−1 (𝑡𝑖−1). To simplify 

the notation, it is used: 𝑢𝑖−1 ≡ 𝑢𝑖−1 (𝑡𝑖−1).  

2. Since the homotopy is defined in the 𝑖-th subinterval, the relation 𝑇 = 𝑡 − 𝑡𝑖−1 is 

introduced which must satisfy the condition: 0 ≤ 𝑇 ≤ (𝑡𝑖 − 𝑡𝑖−1); where 𝑡 

represents the current time. So, the solutions of 𝑘-th order are obtained by 
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integrating with respect to 𝑇 while the terms related to the independent variable 𝑡 

are assumed to be constant in this 𝑖-th subinterval.  

 

Therefore, the approximate solution of order 𝑚 of the differential equation, according 

to the methodology proposed by the EMHPM, can be written as 

 

( ) ( )1 1

0

, , , ,− −

=

=
m

i i ik i

k

u T t u U T t u  (3.89) 

 

The solution 𝑢𝑖𝑘(𝑇, 𝑡, 𝑢𝑖−1) is valid only in the 𝑖-th subinterval (𝑡𝑖−1, 𝑡𝑖]. To construct 

the solution 𝑢(𝑡) in this 𝑖-th subinterval, the next relation is used 

 

( ) ( )1− −i iu t u t t  (3.90) 

 

So, the approximate solution of 𝑢 at time 𝑡𝑖 is given by: 

 

( ) ( ) ( )1 1 1, , 0, ,− − + − = =i i i i i i i i i iu t u t t t u u t u u  (3.91) 

 

Also, it is considered that the solution 𝑢(𝑡) for a subinterval (𝑡0, 𝑡1) is divided into 𝑗 

subintervals which do not have to be equally spaced: (𝑡0, 𝑡1], (𝑡1, 𝑡2], … , (𝑡𝑗−1, 𝑡𝑗], but for 

simplicity it will be used in the work equidistant, unless otherwise specified. Finally, the 

approximate solution of 𝑢(𝑡) is obtained by coupling the solutions 𝑢𝑖(𝑡). To know the 

level of precision of the modifications proposed to the method, Olvera analyzed equation 

(3.9) in which the solutions developed by other authors do not converge. The homotopy 

of equation (3.9) is represented by eq. (3.11), the linear operator is 𝐿(𝑌𝑖) = �̇�𝑖, while the 

non-linear one is given by 𝑁(𝑌𝑖) = 𝑒𝑡𝑌𝑖
2 − 𝑌𝑖.  

The third-order expansion 𝑌𝑖 = 𝑌𝑖0 + 𝑝𝑌𝑖1 + 𝑝2𝑌𝑖2 + 𝑝3𝑌𝑖3, is used to rewrite the set of 

first-order linear equations that results from grouping the terms of equal power of 𝑝. 

 

( ) ( ) ( )

( )

2
2 3 2 3

0 1 2 3 0 0 0 1 2 3

2 3

0 1 2 3

, = + + + − + + + + + −


+ + +


t

i i i i i i i i i i i

i i i i

Y p Y pY p Y p Y y py p e Y pY p Y p Y

Y pY p Y p Y

H
 (3.92) 

 

Also, knowing that 

 

( ) (

)

2
2 3 2 2 3 2 2 3

0 1 2 3 0 0 1 0 2 0 3 1 1 2

4 4 2 5 6 2

1 3 2 2 3 3

2 2 2 2

2 2

+ + + = + + + + + +

+ + +

t t

i i i i i i i i i i i i i i

i i i i i i

pe Y pY p Y p Y pe Y pY Y p Y Y p Y Y p Y p Y Y

p Y Y p Y p Y Y p Y
 (3.93) 

 

by solving the equation (3.93), we have 
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( ) ( ) (

) ( )

2 3 2 2 3 2 2

0 1 2 3 0 0 0 0 1 0 2 0 3 1

3 4 4 2 5 6 2 2 3 4

1 2 1 3 2 2 3 3 0 1 2 3

, 2 2 2

2 2 2

= + + + − + + + + + + +

+ + + + − + + +

t

i i i i i i i i i i i i i i i

i i i i i i i i i i i i

Y p Y pY p Y p Y y py pe Y pY Y p Y Y p Y Y p Y

p Y Y p Y Y p Y p Y Y p Y pY p Y p Y p Y

H
 (3.94) 

 

Grouping by powers of 𝑝, we have the general solution for equation (3.9): 

 

( )

( )

( )

0

0 0 0

1 2

1 0 0 0 1

2

2 0 1 1 2

3 2

3 0 2 1 2

                                      

                   

                       

          

: 0, 0

: 0, 0 0

: 2 0, 0 0

: 2 0,

− = =

+ + − = =

+ − = =

+ + − =

i i i

t

i i i i i

t

i i i i i

t t

i i i i i

p Y y Y c

p Y y e Y Y Y

p Y e Y Y Y Y

p Y e Y Y e Y Y ( )3  0 0=iY

 (3.95) 

 

Solving and considering that 𝑦𝑖0 = 𝑐, and �̇�𝑖0 = 0 we have for 𝑝0: 

 

0 0 0 0 0   , ,    = = = i i i i iY dT y dT Y y Y c  (3.96) 

 

𝑌𝑖0 is replaced at 𝑝1: �̇�𝑖1 + 𝑒𝑡𝑐2 − 𝑐 = 0 and then it is integrated ∫ �̇�𝑖1 𝑑𝑇 =

∫(𝑐 − 𝑒𝑡𝑐2) 𝑑𝑇 in order to have the value of 𝑌𝑖1 

 
2

1 = − t

iY cT e c T  (3.97) 

 

Similarly it is solved in 𝑝2, so that �̇�𝑖2 + 2𝑒𝑡𝑐(𝑐𝑇 − 𝑒𝑡𝑐2𝑇) − (𝑐𝑇 − 𝑒𝑡𝑐2𝑇) = 0. The 

integral ∫ �̇�𝑖2 𝑑𝑇 = ∫((𝑐𝑇 − 𝑒𝑡𝑐2𝑇) − 2𝑒𝑡𝑐2𝑇 + 2𝑒2𝑡𝑐3𝑇) 𝑑𝑇, is applied, so that we have:  

 
2 2 2

2 2 2 3 2

2
2 2

= − − +
t

t t

i

cT e c T
Y e c T e c T  (3.98) 

 

rearranging, the solution to 𝑌𝑖2 is written as 

 

( )2 2 2

2

1
2 3 1

2
= − +t t

iY cT e c e c  (3.99) 

 

Now, by substituting the found values of 𝑌𝑖0, 𝑌𝑖1, 𝑌𝑖2 in 𝑝3,  

 

( ) ( ) ( )
2

2 2 2 2 2 2 2

3

1 1
2 2 3 1 2 3 1 0

2 2

 
+ − + + − − − + = 

 

t t t t t t t

iY e c cT e c e c e cT e c T cT e c e c  (3.100) 

 

rearranging, we have 

 

( ) ( )2 2 2 2 2 2 2 2 2 2 3 2 3 4 2

3

1
2 3 1 2 3 1 2

2
= − + − − + − + −t t t t t t t t

iY cT e c e c c e T e c e c e c T e c T e c T  (3.101) 
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applying the integral to (3.101), 

 

( ) ( )

( ) ( )

2 2 2 2 2 2 2 2 2 2 3 2 3 4 2

3

3 2 2 2 3 2 2 2 3 2 3 3 3 4 3

3

1
2 3 1 2 3 1 2

2

1 1 1 2 1
2 3 1 2 3 1

6 3 3 3 3

 
= − + − − + − + − 

 

= − + − − + − + −

 
t t t t t t t t

i

t t t t t t t t

i

Y dT cT e c e c c e T e c e c e c T e c T e c T dT

Y cT e c e c c e T e c e c e c T e c T e c T

 (3.102) 

 

after simplifying, 

 

( )3 3 3 2 2

3

1
4 12 7 1

6
= − − + −t t t

iY cT e c e c e c  (3.103) 

 

so, the solution of equations (3.95) generates 

 

( )

( )

0

2

1

2 2 2

2

3 3 3 2 2

3

1
2 3 1

2

1
4 12 7 1

6

=

= −

= − +

= − − + −

i

t

i

t t

i

t t t

i

Y c

Y cT e c T

Y cT e c e c

Y cT e c e c e c

 (3.104) 

 

It is observed that the solutions can be generalized recursively: 

 

( ) ( )1 1

1

1

1 1
0

−

− − −
=

 
= − 

 

k

t

ik ini k i k n
n

T
Y Y e Y Y

k
 (3.105) 

 

with the condition 𝑘 > 0. 

In Figure 3.2 the solution obtained by the EMHPM using the third approximation 

and subintervals of size ∆𝑡 = 0.01 is compared with the solution obtained with ode45. It 

can be seen right there how a third order approximation is enough for the proposed 

solution of Eq. (3.9) to tend to converge towards the solution obtained by means of 

numerical integration with high precision, which none of the previously discussed 

solutions could achieve. 

Also, to analyze the scope of the EMHPM method, this methodology will be applied 

to obtain approximate solutions of non-linear differential equations which are of great 

importance in engineering. 
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Figure 3.2 Solution of (3.9) with Runge Kutta ode45 vs. EMHPM 

 

3.3 Delay Differential Equations 

 

In the mathematical description of a physical process, it is generally assumed that the 

behavior of the process under consideration depends only on the current state; however, 

there are situations in which this assumption is not fulfilled and the use of a "classical" 

model in systems analysis and design can lead to poor performance. In such cases, the 

best is to consider that the behavior of the system also includes information about the 

previous state. These systems are called time delay systems. In fact, time delays occur so 

frequently, in almost all situations, that to ignore them is to ignore reality [61]. 

Delay Differential Equations (DDE) are widely used to describe physical phenomena 

of interest in mechanics, biology, medicine, chemistry, physics, engineering, economics, 

robotics, among others. Since the introduction of the first lag models, many publications 

have appeared with theorems and solution methods that also include stability issues [62–

65]. 

 In this work we develops the generalized EMHPM procedure proposed by Olvera 

in [57] to solve DDEs from the introduction of a “new time scale” in the MHPM derived 

by Hashim and Chowdhury, which was used to obtain solutions approximates of 

ordinary differential equations [52]. 

With the EMHPM, which is based on the solution by subintervals, precise solutions 

are achieved under a numerical-analytical procedure, the method is programmed as a 

routine in Matlab © and then compared with the numerical solutions of the routine dde23 

in the same environment described by Shampine and Thompson in [66]. 

Let us consider the simplest delay differential equation of the form 

 

( ) ( ) 0+ − =x t x t  (3.106) 

 

with initial condition 𝑥(0) = 𝑐, the independent variable 𝑥 is scalar 𝑥(𝑡) ∈ ℜ, the point on 

𝑥 means differentiation with respect to the time 𝑡, and 𝜏 is the value of the delay. To 

evaluate Eq. (3.106) at 𝑎 ≤ 𝑡 ≤ 𝑏, the term 𝑥(𝑡 − 𝜏) must be represented by a known 

function 𝑥(𝑡) at [𝑎 − 𝜏 ≤ 𝑡 ≤ 𝑎]. That is, if at 𝑎 = 0, the solution of Eq. (3.106) can be 
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obtained on the interval (0, 𝜏] assuming that the function in the initial period must satisfy 

the initial condition. Using this first solution, it is possible obtain the solution of Eq. 

(3.106) in the next 𝑖-th interval [(𝑖 − 1)𝜏, 𝑖𝜏], 𝑖 = 2,3 … , 𝑗 where 𝑗 is an integer 2 ≤ 𝑗 ≤ ∞ 

that determines up to what value of time the equation is solved with. With this approach, 

the HPM can be applied assuming that the function that describes the interval of size 

equal to the delay is 𝒙𝜏0(𝑇) = 𝑐, hence the first interval of the solution is given by 𝒙𝜏1(𝑇), 

valid in [0, 𝜏]. Applying it, in terms of Eq. (3.5), the homotopy function for Eq. (3.106) is 

constructed. 

 

( ) 01 1, 0X X x
 = + =p pH  (3.107) 

 

Substituting in equation (3.107) the first order expansion 𝑿𝜏1 = 𝑿0
𝜏1 + 𝑝𝑿1

𝜏1, we have 

 

( ) ( ) 01 1 1

0 1, 0X X X x
  = + + =p p pH  (3.108) 

 

expressing in terms of the identical powers of 𝑝: 

 

( ) ( )

( )

01 1

0 01 1 1

0

0 0

1

1 1 1

: 0, 0

: 0, , 0 0

                             

                        

X X X

X x X X X

 

   

= = =

+ = = − =

p c

p
 (3.109) 

 

solving, we have for 𝑝0: 

 
1 1

0 0  ,    0  X X
 = = dT dT c  (3.110) 

 

at 𝑝1: 

 
01

1  X X
 =− = −  dT dT cdT  (3.111) 

 

by solving we have 

 
1

1X
 = −cT  (3.112) 

 

Hence, the first order solution of (3.107) is given by: 

 
1 ( )x
 = −T c cT  (3.113) 
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Eq. (3.113) represents the exact solution of Eq. (3.106) over the first interval. If the 

same procedure is continued, it can be shown that the exact solution of Eq. (3.107) for the 

second and third intervals, respectively, is given by 

 

( )

2

3

2

2 2 3

1
( )

2

1 1 1
( ) 2

2 2 6

x

x







  

= − − +

= − + − − + −

T c c cT cT

T c c c c c T cT cT

 (3.114) 

 

The EMHPM can be applied for delayed nonlinear differential equations with 

variable coefficients, using the following equation 

 

( ) ( ) ( ) ( ) ( )02    1   and  cos   00,  x x xx
  − =+ − == =xt t t c  (3.115) 

 

where the solution 𝒙𝜏0(𝑇) = 𝑐1 is defined in the interval (−𝜏, 0]. To find the solution 𝒙𝜏1 

corresponding to the interval [0, 𝜏] the representation of the equation (3.115) is proposed 

as 

 

( ) ( )( )01 1 1
2

, cos 0X X x X
   = + − =

  
p p tH  (3.116) 

 

The variable 𝑿 depends on the time 𝑇 for which 0 ≤ 𝑇 ≤ 𝜏. Substituting in equation 

(3.116) the second order expansion  𝑿𝜏1 = 𝑿0
𝜏1 + 𝑝𝑿1

𝜏1 +  𝑝2𝑿2
𝜏1, we have: 

 

( ) ( ) ( )( )01 1 1 1 1 1 1
2

2 2

0 1 2 0 1 2, cos 0X X X X x X X X
       = + + + − + + =

  
p p p p t p pH  (3.117) 

 

which is expanded as 

 

( ) ( ) ( ) ( )(
( ) ( ) )

01 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2
2 2

0 1 2 0 0 1 0 2 0 1

2 2
2 3 2 3 4

1 1 2 0 2 1 2 2

, cosX X X X x X X X X X X X

X X X X X X X X

          

       

= + + + − + + + +


+ + + +


p p p p t p p p

p p p p p

H

 (3.118) 

 

expressing in terms of the identical powers of 𝑝: 

 

( ) ( )

( )( ) ( )

( )

01

01 1 1

1 1 1

0

0 0 1

2
1

1 0 1

2

2 0 1

                                                                    

                           

                       

: 0, 0

: cos 0, 0 0

: 2cos 0,

X X X

X x X X

X X X



  

  







= = = = =

= − + = =

= =

p T c T

p t

p t ( )

( ) ( )( ) ( )

1

1 1 1 1 1

2

2
3

3 0 2 1 3

 

0 

0 0

: cos 2

          

               0, 0

X

X X X X X



    

=

= + = =p t

 (3.119) 
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Solving, we have for 𝑝0: 

 
1 1

0 0 1X X
 = = dT c  (3.120) 

 

at 𝑝1: 

 

( )( )01 1
2

1 0cosX x X
 = − + dT t dT  (3.121) 

 

As it integrates with respect to 𝑇, and considering that 𝑿0
𝜏1 = 𝑐1, the solution is 

expressed as follows: 

 

( )( ) ( )( )0 01 2 2

1 1 1cos cosX x x
   = − + = − −T c t T c t  (3.122) 

 

at 𝑝2: 

 

( )( )1 1 1

2 0 12cosX X X
  = dT t dT  (3.123) 

 

( ) ( )( )( )( )01 2

2 1 12cos cosX x
  = − − t c T c t dT  (3.124) 

 

( ) ( )( )( )01 2 2

2 1 1cos cosX x
  = − −c T t c t  (3.125) 

 

at 𝑝3: 

 

( ) ( )( )1 1 1 1
2

3 0 2 1cos 2X X X X
   = + dT t dT  (3.126) 

 

by substituting 𝑿0
𝜏1 , 𝑿1

𝜏1  and 𝑿2
𝜏1 and solving we have: 

 

( ) ( ) ( ) ( )( )0 01

3
4 2 2 2

3 1 1cos 3 cos 4 cos
3

X x x
    = − +

T
t c t c t  (3.127) 

 

so, the solutions for the powers of 𝑝 are: 

 

( )( ) ( )( )

( ) ( )( )( )

( ) ( ) ( ) ( )( )

1

0 01

01

0 01

0 1

2 2

1 1 1

2 2

2 1 1

3
2

4 2 2

3 1 1

cos cos

cos cos

cos 3 cos 4 cos
3

X

X x x

X x

X x x



 



 

 

 

  

=

= − + = − −

= − −

= − +

c

T c t T c t

c T t c t

T
t c t c t

 (3.128) 
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Then, the approximate solution of Eq. (3.115), using the EMHPM, is given by 

 

( )1 1 1 1 1

0 1 2 3x X X X X
     + + +T  (3.129) 

 

In this case, the solution of 𝒙𝜏1(𝑇) is approximate because its exact solution is not 

known. To obtain 𝒙𝜏2, we calculate again the approximation of by means of the EMHPM 

with the assumption that the function that describes the delay remains constant. 

Therefore, to determine 𝒙𝜏2, the homotopy of Eq. (3.115) is used for the interval (𝜏, 2𝜏] 

 

( ) ( )( )2 2 1 2
2

, cos 0X X x X
    = + − =

  
p p tH  (3.130) 

 

substituting in equation (3.130) the second order expansion 𝑿𝜏2 = 𝑿0
𝜏2 + 𝑝𝑿1

𝜏2 + 𝑝2𝑿2
𝜏2, 

we have: 

 

( ) ( ) ( )( )2 2 2 2 1 2 2 2
2

2 2

0 1 2 0 1 2, cos 0X X X X x X X X
        = + + + − + + =

  
p p p p t p pH  (3.131) 

 

After solving the previous equation, we obtain: 

 

( )( )

( ) ( )( )( )

( ) ( ) ( ) ( )( )

2

2 1

2 1

2 1 1

0 2

2

1 2

2 2

2 2 2

3
2

4 2 2

3 2 2

cos

cos cos

cos 3 cos 4 cos
3

X

X x

X x

X x x



 

 

  



 

  

=

= − +

= − −

= − +

c

T c t

c T t c t

T
t c t c t

 (3.132) 

 

It is observed that Eq. (3.128) and (3.132) represent approximate solutions to Eq. 

(3.115) but evaluated at different intervals of size equal to the delay. Therefore, the 

approximate third-order solution of Eq. (3.115) can be generalized if it is solved by 

intervals using the homotopy of the form 

 

( ) ( )( )1
2

, cos 0X X x X
   − = + − =

  
i i i ip p tH  (3.133) 

 

Following the previous methodology, 

( )( )

( ) ( )( )( )

( ) ( ) ( ) ( )( )

1

1

1 1

0

2

1

2 2

2

3
2

4 2 2

3

cos

cos cos

cos 3 cos 4 cos
3

X

X x

X x

X x x



 

 

  



 

  

−

−

− −

=

= − +

= − −

= − +

i

i i

i i

i i i

c

T c t

cT t c t

T
t c t c t

 (3.134) 
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from Eq. (3.134), the 𝑘-th order approximation of Eq. (3.115) can be written as 

 

( ) ( ) ( )1

1 1

1

0

1

1

0

cos

X

X x X X



   −

−

− −

=

=

 
= − + 

 


i

i i i i

k

k n k n

n

c

T
g k t

k

 (3.135) 

 

where 𝑘 > 0, 𝑔(𝑘) = 1 when 𝑘 = 1 and 𝑔(𝑘) = 0 otherwise. 

Figure 3.3 shows the approximate solution of Eq. (3.115) obtained by the EMHPM 

compared with the numerical solution provided by the dde23 routine in Matlab, 

assuming the initial solution scenarios 𝑥𝜏0(𝑇) = cos(𝜋(𝑇 + 1)), 𝑥𝜏0(𝑇) = 𝑒𝑇+1, 𝑥𝜏0(𝑇) = 1 

and subintervals of size ∆𝑡 = 0.01. The dde23 routine is an algorithm based on the Runge-

Kutta formula for the solution of delayed differential equations with constant delays. It 

is observed that both solutions coincide for the time interval shown. 

 

 
Figure 3.3 Solutions of Eq. (3.115) by the EMHPM and the dde23 routine. 

 

Generalized EMHPM for DDE solutions 

 

Consider the periodic differential equation with -dimensional delay of the form 

 

( ) ( ) ( ) ( )x A B x = + −t t x t t  (3.136) 

 

where 𝑨(𝑡 − 𝜏) = 𝑨(𝑡), 𝑩(𝑡 − 𝜏) = 𝑩(𝑡), 𝒙 = [𝒙, �̇�]𝑇 is the vector of states  and 𝜏 is the 

delay time, following the procedure proposed by the EMHPM, the above equation can 

be written equivalently as 

 

( ) ( ) ( )x A x B x− i t i t iT t T  (3.137) 

 

where 𝒙𝑖(𝑇) expresses the solution of order 𝑚 for Eq. (3.137) in the 𝑖 −th subinterval that 

must also satisfy the vector of initial conditions 𝒙𝑖(0) = 𝒙𝑖−1.  𝑨𝑡 and 𝑩𝑡  represent the 

matrices in which each of its elements are evaluated at time 𝑡. In order to approximate 

the delay term in Eq. (3.137), the period [𝑡0 − 𝜏, 𝑡0] is discretized by 𝑁 equally spaced 
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points as shown in Figure 3.4. As part of the proposed methodology, it is assumed that 

the function that describes the term of the delay 𝒙𝑖
𝜏(𝑇) that corresponds to the subinterval 

[𝑡𝑖−𝑁 , 𝑡𝑖−𝑁+1] is approximated by a constant value, that is: 

 

( ) ( )1x x x

− + −= i i N i NT T  (3.138) 

 

Olvera in [67], proposed to call it zero-order EMHPM when the delay term is approached 

by a constant, and it should not be confused with the approximation order m of the 

solution. Figure 3.4 shows graphically this procedure. 

 

 
Figure 3.4 Scheme for the approximation of the delayed term by a zeroth-order (solid black 

line) 

 

Continuing with the HPM technique, the homotopy of Eq. (3.137) can be written as: 

 

( ) ( ) ( ) ( ) ( )0 0, 0X X x x A X B −= − + − + =i i i i t i t i Np L L pL p xH  (3.139) 

 

Substituting the expansion of order m, 𝑿𝑖 = 𝑿𝑖0 + 𝑝𝑿𝑖1 + 𝑝2𝑿𝑖2 + ⋯ + 𝑝𝑚 and 

considering that the initial condition is equal to the final value of the previous 

subinterval, that is, 𝒙𝑖0 = 𝒙𝑖−1, we obtain: 

 

( ) ( ) ( ) ( )  (

)

2 2

0 1 2 0 0 0 1 2,X X X X X x x X X X

X x −

= + + + + − + − + + +

+ +


m

i i i i im i i t i i i

m

im t i N

p p p p p p A p p

p B

H
 (3.140) 

 

grouping by powers of 𝑝: 

 

( ) ( )

( )

( )

0

0 0 0 1 0 1

1

1 0 0 1

2

2 1 2

1

                           

                

                                          

 

: 0, 0

,

 

      

,

: 0 0

: , 0

     

0

      : ,

X x X x X x

X x A X B x X

X A X X

X A X

− −

−

−

− = − = =

+ = + =

= =

=

i i i i i i

i i t i t i N i

i t i i

m

im t i m

p

p

p

p ( ) 0                       0X =im

 (3.141) 
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Knowing that �̇�𝑖0 = �̇�𝑖−1 = 0, when integrating the previous equations, we have,  

at 𝑝0:  

 

0 1X x −= = i idT dT const  (3.142) 

 

The initial constant is 𝒙𝑖−1, so: 

 

0 1X x −= =i iconst  (3.143) 

 

at 𝑝1: 

 

( )1 0X A X B −= + i t i t i NdT x dT  (3.144) 

 

solving and knowing that 𝑿𝑖0 = 𝒙𝑖−1 

 

1 1  X A x B x− −= +i t i t i NT T  (3.145) 

 

at 𝑝2:  

 

( ) ( )2 1 1  X A X A A x B− −= = +  i t i t t i t i NdT dT T T x dT  (3.146) 

 
2 2

2

2 1
2

 
2

X A Ax B x− −= +i t ti t i N

T T
 (3.147) 

 

for 𝑝𝑚:  

 

( )1

1 
!

X AA x B x
−

− −= +
m

m

im t i t i N

m

t

T

m
 (3.148) 

 

So, the solution of equations (3.141) can be expressed recursively: 

 

( ) ( ) ( )( )1
, 1,2,3...X A X B x −−

= + =ik t t i Ni k

T
g k k

k
 (3.149) 

 

Finally, the solution of Equation (3.136) is obtained by adding each approximation 

𝑿𝑖𝑘: 

 

( ) ( )
0

X X
=


m

i ik

k

T T  (3.150) 
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First-order EMHPM 

 

The solution of equation (3.136) given by equation (3.150) can be improved if a 

higher-order polynomial representation is used for 𝒙𝑖
𝜏(𝑇). If a first-order polynomial 

representation is used for 𝒙𝑖
𝜏(𝑇), it is called first-order EMHPM, and the function that 

describes the subinterval of the delay [𝑡𝑖−𝑁 , 𝑡𝑖−𝑁+1] will have the form: 

 

( ) ( )1

1
x x x x


− − + −

−
 + −i i N i N i N

N
T T  (3.151) 

 

Figure 3.5 shows the representation of the solution if a first-order approximation is 

used. 
 

 
Figure 3.5 a) Scheme for the approximation of the delayed term by a first-order. 

 

by substituting equation (3.151) in Eq. (3.137) we obtain: 

 

( ) ( ) ( ) ( )1

1 1
x A x B x B x B x

 
− − − +

− −   
−  − +   

   
i t i t i N t i N t i N

N N
T T T T  (3.152) 

 

Constructing the homotopy for the previous equation: 

 

( ) ( ) ( ) ( ) ( ) ( )0 0 1

1 1
,X X x x A X B x B x B x

 
− − − +

 − −    
= − + − + − +    

    
i i i i t i t i N t i N t i N

N N
p L L pL p T TH  (3.153) 

 

Substituting the expansion of order 𝑚, 𝑿𝑖 = 𝑿𝑖0 + 𝑝𝑿𝑖1 + 𝑝2𝑿𝑖2 + ⋯ + 𝑝𝑚 and 

considering that the initial condition is equal to the final value of the previous 

subinterval, that is, 𝒙𝑖0 = 𝒙𝑖−1, and 𝒙𝑖1(0) = 𝒙𝑖2(0) = ⋯ = 𝒙𝑖𝑚(0) = 0 it is obtained: 

 

( ) ( ) ( ) ( ) (

) ( ) ( )

2 2

0 1 2 0 0 0 1 2

1

,

1 1

X X X X X x x A X X X

X B x B x B x
 

− − − +

= + + + + − + − + + +


− −    
+ + − +    

    

m

i i i i im i i t i i i

m

im t i N t i N t i N

p p p p p p p p

N N
p T T

H

 (3.154) 
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grouping by powers of 𝑝: 

 

( ) ( ) ( ) ( )

0

0 0 0 1 0 1

1

1 0 0 1 1

                                                                            

 

: 0, 0,         

:

      

       
1 1

, 0  

X x X x X x

X x A X B x B x B x X
 

− −

− − − +

− = − = =

− −   
+ = + − + =   

   

i i i i i i

i i t i t i N t i N t i N i

p

N N
p T T

( )

( )

2

2 1 2

1

                                                                                                          

                                                          

0

: , 0 0

: ,

X A X X

X A X
−

= =

=

i t i i

m

im t i m

p

p ( ) 0                                            0  X =im

 (3.155) 

 

knowing that �̇�𝑖0 = �̇�𝑖−1 = 0, when integrating the previous equations, we have, 

at 𝑝0:  

 

0 1X x −= = i idT dT const  (3.156) 

 

the initial constant is 𝒙𝑖−1, so: 

 

0 1X x −= =i iconst  (3.157) 

 

at 𝑝1: 

 

( ) ( )1 0 1

1 1
X A X B B x B x

 
− − − +

 − −    
= + − +    

    
 i t i t i N t i N t i N

N N
dT x T T dT  (3.158) 

 

solving and knowing that 𝑿𝑖0 = 𝒙𝑖−1 

 

( ) ( )
2 2

1 1 1

1 1

2 2
 X A x B x B x B x

 
− − − − +

− −   
= + − +   

   
i t i t i N t i N t i N

T N T N
T T  (3.159) 

 

at 𝑝2:  

( )

( ) ( )

2 1

2 2

2 1 1

1 1

2 2
 

X A X

X A A x B B x B x
 

− − − − +

=

 − −   
= + − +    

    

 

 

i t i

i t t i t i N t i N t i N

dT dT

T N T N
dT T T x dT

 (3.160) 

 

( ) ( )
2 2 3 3

2

2 1 1

1

2 6 6
 

1

2
X AA x B x B x A xA B

 
− − − − +

− −   
= + − +   

   
i t i t i N t i N tt t Nt i

T T T N T N  (3.161) 

 

for 𝑝𝑚:  
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( )
( )

( )
1

1 1

1 1 1

! 1 !
 X A x xA x xAB B



+
−

− − − − +

− − 
= + + − + 

+  

m m

t t

m m
m

im t i t i N t i N i N

T T N

m m
 (3.162) 

considering that 𝑿𝑖0
𝑎 = 𝒙𝑖−1 and  𝑿𝑖0

𝑏 = 0, the equation 𝑿𝑖𝑘 is expressed recursively: 

 

, 1,2,3X X X= + =a b

ik ik ik k  (3.163) 

 

( ) ( ) ( )( )

( ) ( ) ( )

1

11

1

1

X A X B x

X A X B x x


−−

− − +−

= +

 −  
= + − +  

+   

a a

ik t t i Ni k

b b

ik t t i N i Ni k

T
g k

k

T N
g k T

k

 (3.164) 

 

Finally, the approximate solution of Eq. (3.136), using the EMHPM, can be obtained 

by substituting Eq. (3.163) in Eq. (3.150). 

 

Second-order EMHPM 

 

If a second-order polynomial representation is used for 𝒙𝑖
𝜏(𝑇) in the equation (3.136) 

the solution obtained is called second-order EMHPM. Here it is performed using the 

Lagrange polynomial interpolating equation, the period [𝑡0 − 𝜏, 𝑡0] is discretized by 𝑁 

equally spaced points as shown in Figure 3.6. 

 

 
Figure 3.6 a) Scheme for the approximation of the delayed term by a second-order. 

 

To obtain the function that describes the subinterval of the delay [𝑡𝑖−𝑁 , 𝑡𝑖−𝑁+2] for 

𝒙𝑖
𝜏(𝑇) we proceed to solve the Lagrange equation, which is presented below 

 

( ) ( ) ( )

( )

0

0,

=

= 

=

−
=

−





n

n i i

i

n
i

i

i i k k i

f x L x f x

x x
L x

x x

 (3.165) 
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In this case, it is necessary to make use of the discretization 𝒙𝑖−𝑁, 𝒙𝑖−𝑁+1, 𝒙𝑖−𝑁+2. Using 

the Lagrange Equation, we have:  

 

( )
( )( )

( )( )
( )

( )( )

( )( )
( )

( )( )

( )( )
( )1 2 0 2 0 1

2 0 1 2

0 1 0 2 1 0 1 2 2 0 2 1

− − − − − −
= + +

− − − − − −

x x x x x x x x x x x x
P x f x f x f x

x x x x x x x x x x x x
 (3.166) 

 

where 𝑓(𝑥0) = 𝒙𝑖−𝑁 , 𝑓(𝑥1) = 𝒙𝑖−𝑁+1, 𝑓(𝑥2) = 𝒙𝑖−𝑁+2,  and  𝑥0 = 0, 𝑥1 = ∆𝑡, 𝑥2 = 2∆𝑡. Here, 

the 2 from 𝑃2(𝑥) is to represent that it applies in the second-order. The equation can be 

rewritten as follows: 

 

( )
( )( )

( )( )
( )

( )( )

( )( )
( )

( )( )

( )( )
( )2 1 2

2 0 2 0

0 0 2 0 2 2 0 2
x x x− − + − +

− −  − −  − −
= + +

− −   −  −   −  −
i N i N i N

x t x t x x t x x t
P x

t t t t t t t t
 (3.167) 

 

Considering 𝑥 = 𝑇, and solving, the equation becomes: 

 

( )
( ) ( ) ( )

( )
( )

( )

( )
( )

( )

( )
( )

22 2 2

2 1 22 2 2

2 2 2

2 2
x x x− − + − +

−  −  +  −  − 
= + +

 −  
i N i N i N

T T t T t t T T t T T t
P x

t t t
 (3.168) 

 

putting together the terms with common denominator: 

 

( )
( ) ( ) ( )( )( ) ( )( )( )

( )

( )

( )
( )

22 2
2

2

2 12 2

2 2 2

2

x x
x

− − +

− +

−  −  +  + −  − 
= −

 

i N i N

i N

T T t T t t T T t T T t
P x

t t
 (3.169) 

 

then, the equation is: 

 

( )
( )

( )
( )

( )
( )

( )
2 2 2

2 2 12 2 2

2
1

2 22 2
x x x− − + − +

     
     = − − + + − − −
               

i N i N i N

T T T T T T T
P x

t t t tt t t
 (3.170) 

  

From Figure 3.6, it is observed that ∆𝑡 =
𝜏

𝑁−1
, then solving and grouping, the equation 

is rewritten: 

( ) ( )
2 2

2 1 2 1 2

1 3 1 1
2 2

2 2 2
x x x x x x x

 
− − − + − + − − + − +

− −     
= + − + − + − +     

     
i N i N i N i N i N i N i N

N N T
P x T  (3.171) 

 

so, the function that describes the delay subinterval is expressed as: 

 

( ) ( )
2 2

1 2 1 2

1 3 1 1
2 2

2 2 2
x x x x x x x x


 
− − − + − + − − + − +

− −     
 + − + − + − +     

     
i i N i N i N i N i N i N i N

N N T
T T  (3.172) 

 



46 

 

 

Using the HPM technique, and considering (3.172), we proceed to construct the 

homotopy as follows, 

( ) ( ) ( ) ( )

( )

0 0 1 2

2 2

1 2

1 3 1
, ( 2

2 2

1
2

2

X X x x A X B x B x x x

B x x x





− − − + − +

− − + − +

−   
= − + − + + − + − +   

   

− 
− + 

 

i i i i t i t i N t i N i N i N

t i N i N i N

N
H p L L pL p T

N T
  (3.173) 

 

Substituting in the previous equation the expansion of order 𝑚, 𝑿𝑖 = 𝑿𝑖0 + 𝑝𝑿𝑖1 +

𝑝2𝑿𝑖2 + ⋯ + 𝑝𝑚𝑿𝑖𝑚, grouping in powers of 𝑝 and considering the initial condition  𝒙𝑖0 =

𝒙𝑖−1, and 𝒙𝑖1(0) = 𝒙𝑖2(0) = ⋯ = 𝒙𝑖𝑚(0) = 0, the following first order linear differential 

equations are obtained 

 

( )

( )

0

0 1

2 2
1

1 1 1 2 1 2

2

2 1

1

   

   

   

 

: 0,

1 3 1 1
: 2 2

2

 

2 2

:

:  

X x

X A x B x B x x x B x x x

X AX

X AX

 

−

− − − − + − + − − + − +

−

− =

− −     
= + + − + − + − +     

     

=

=

i i

i t i t i N t i N i N i N t i N i N i N

i i

m

im i m

p

N N T
p T

p

p

(3.174) 

 

integrating the set of Eq. (3.174), it is obtained that, 

 

( )

0 1

22 3

1 1 1 2 1 2

2 2 2 3

2 1 1 2

2

1 3 1 1
2 2

2 2 2 6

1 1 1 1 3 1
2

2 2 6 2 2

1 1

24

X x

X A x B x B x x x B x x x

X A x B x A B x x x

A

 





−

− − − − + − + − − + − +

− − − − + − +

=

− −     
= + + − + − + − +     

     

−   
= + + − + − +   

   

− 
 
 

i i

i t i t i N t i N i N i N t i N i N i N

i t i t i N t t i N i N i N

N T N T
T T

N
T T T

N
( )

( )

( )

( )
( )

4

1 2

1 1 1

1 1 2

2

1 2

1 22

2

1 1 1 1 3 1
2

! ! 1 ! 2 2

11
2

2 !

B x x x

X A x A B x A B x x x

A B x x x





− − + − +

− − +

− − − − + − +

− +

− − + − +

− +

−  
= + + − + − + 

+  

−
− +

+

t t i N i N i N

m m m m m

im t i t t i N t t i N i N i N

m m

t t i N i N i N

T

N
T T T

m m m

N
T

m

 (3.175) 

The solution for second order EMHPM is expressed in recursively form of 𝑿𝑖𝑘(𝑇) as 

 

, 1,2,3....X X X X= + + =a b c

ik ik ik ik k  (3.176) 

 

where 
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0 1, 0 0 0  X x X X−= = =a b c

i i i i
 (3.177) 

 

and 

 

( )( )

( )

( 1)

( 1) 1 2

2 2

( 1) 1 2

1 3 1
( ) 2

1 2 2

1
( ) 2

2 2

X A X B x

X A X B x x x

X A X B x x x





− −

− − − + − +

− − − + − +

= +

 −    
= + − + −    

+     

 − 
= + − +   +   

a a

ik t i k t i N

b b

ik t i k t i N i N i N

c c

ik t i k t i N i N i N

T
g k

k

T N
g k T

k

T N T
g k

k

 (3.178) 

 

The solution of (3.136) is obtained by adding each of the approximations 𝑋𝑖𝑘 from 

(3.176) using (3.150). 

 

Third-order EMHPM 

 

For the polynomial representation of the third-degree, the function that describes the 

delayed term 𝐱𝑖
𝜏(𝑇) is approximated by a polynomial of order three. The Lagrange 

interpolator is used accordingly. In this case, it is necessary to employ the 𝐱𝑖−𝑁 , 𝐱𝑖−𝑁+1,

𝐱𝑖−𝑁+2,  𝐱𝑖−𝑁+3 discrete values. Figure 3.7 presents the scheme used for the solution of a 

polynomial of order three. 

 

 
Figure 3.7 a) Scheme for the approximation of the delayed term by a third-order. 

 

Following the same procedure described above for the second-order EMHPM, the 

function that describes the delayed interval is: 

 

( )
( )( )( )

( )( )( )
( )

( )( )( )

( )( )( )
( )

( )( )( )

( )( )( )
( )

( )( )( )

( )( )( )
( )

1 2 3 0 2 3

3 0 1

0 1 0 2 0 3 1 0 1 2 1 3

0 1 3 0 1 2

2 3

2 0 2 1 2 3 3 0 3 1 3 2

− − − − − −
= + +

− − − − − −

− − − − − −
+

− − − − − −

x x x x x x x x x x x x
P x f x f x

x x x x x x x x x x x x

x x x x x x x x x x x x
f x f x

x x x x x x x x x x x x

 (3.179) 
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where 𝑓(𝑥0) = 𝒙𝑖−𝑁 , 𝑓(𝑥1) = 𝒙𝑖−𝑁+1, 𝑓(𝑥2) = 𝒙𝑖−𝑁+2, 𝑓(𝑥3) = 𝒙𝑖−𝑁+3, and  𝑥0 = 0, 𝑥1 = ∆𝑡, 

𝑥2 = 2∆𝑡, and 𝑥3 = 3∆𝑡. Considering 𝑥 = 𝑇, ∆𝑡 =
𝜏

𝑁−1
 and solving, the equation becomes: 

 

( )
3 2 3 23 3

2 2

3

3 23
2

1 2

33 2

1 1 11 1 1 5 1
1

6 6 2 2

1 1 1 3 1
3 2

2 2

1 1

6 2

x

x x

    

   

 

−

− + − +

  − − − − −         
= − + − + + − +                        

 −  − − −       
− − + +                  

− − 
− 

 

i N

i N i N

T N N N T N N
P x T T T

N T N N N
T T T

T N T N
2

3

1

3
x


− +

 −   
+         

i N

T N

 (3.180) 

 

after rearranging, the function that describes the delayed interval is: 

 

( )

( ) ( )

1 2 3

2 32 3

1 2 3 1 2 3

1 11 3 1
3

6 2 3

1 1
2 5 4 3 3

2 6

x x x x x x

x x x x x x x x





 

− − − + − + − +

− − + − + − + − − + − + − +

−   
 + − + − + +   

   

− −   
− + − + − + − +   

   

i i N i N i N i N i N

i N i N i N i N i N i N i N i N

N
T T

N T N T
 (3.181) 

 

Following the EMHPM procedure, the solution of (3.136) recursively 𝐗𝑖𝑘(𝑇) is 

expressed as 

 

, 1,2,3....X X X X X= + + + =a b c d

ik ik ik ik ik k  (3.182) 

 

where 

 

0 1, 0 0 0 0X x X X X−= = = =a b c d

i i i i i
 (3.183) 

 

and 
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So, the solution of (3.136) is obtained by adding each of the approximations 𝐗𝑖𝑘.   

 

3.4 Analysis of the EMHPM 

 

Mathieu equation 

 

Having clear the EMHPM procedure, its accuracy is evaluated through the 

differential Mathieu equation with delay, whose form is expressed as: 

 

( )
2

cosx x x x


  
  

+ + + = −  
  

t
k b t

T
 (3.185) 

 

where 𝑘, 𝛿, 휀, 𝜏 y 𝑇  are system parameters. Therefore, following the EMHPM procedure, 

Eq. (3.185) is first written in its equivalent form by subintervals 

 

( ) ( ) ( )1x x x x − ++ + i i t i i NT k T b T  (3.186) 

 

where 𝒙𝑖(𝑇) expresses the solution of order m for Eq. (3.186) in the 𝑖 −th subinterval that 

must also satisfy the initial conditions 𝒙𝑖(0) = 𝒙𝑖−1, and �̇�𝑖(0) = �̇�𝑖−1. Through the 

representation in state space of (3.186), results the more general matrix equation given by 

 

( ) ( ) ( )1x A x B x − += +i t i t i NT T T  (3.187) 

 

where 

 
1 0 0 0

,
0

   A B


   
= =   

− −   
t t

t tk b
 (3.188) 

 

and 𝛼𝑡 = (𝛿 + 휀 cos(𝑡)) is a periodic term. 

Combinations of specific values have been chosen to show the capacity of the method 

in a case where the system is stable and unstable according to [68]. For an unstable case, 

the values for 𝑘 = 0.2, 𝛿 = 3, 휀 = 1, 𝑇 = 𝜏 = 2𝜋 and 𝑏 = −1.  

Solution of Eq. (3.185) through the EMHPM  is shown in Figure 3.8, compared with 

the numerical integration obtained using the Matlab routine dde23 in a time interval 

twice the period 2𝑇, considering 𝑁 = 50 discretization and the following values that 

describe the solution: a period  𝑇 before zero 𝑥−50(𝑇) = 𝑥−49(𝑇) = ⋯ 𝑥0(𝑇) = 0.001 and 

�̇�−50(𝑇) = �̇�−49(𝑇) = ⋯ �̇�0(𝑇) = 0. 
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Figure 3.8 Solution of Mathieu's equation with delay, 𝑁 = 50 and 𝑚 = 4. 

 

In Figure 3.8, it is observed that in the first interval of solution of size 𝑇[0, 𝑇], the 

solutions with approximations to the delay of zero, first, second and third order are 

exactly the same since the displacement and velocity before 𝑡 = 0 were assumed 

constants, that is, the delay approximation is reduced to a zeroth-order approximation. 

This is contrasted by the following interval of size equal to the period 𝑇[𝑇, 2𝑇] where it is 

evident that with the first, second and third order approximations to the delay a better 

approximation to the delay subinterval is achieved. On the other hand, the computational 

time of the EMHPM implementation in Matlab is listed in Table 3.1. 

 

Table 3.1 Computational time required for the solution of Mathieu's equation. 

EMHPM 

N m dde23 [ms] First-order 

[ms] 

Second-order 

[ms] 

Third-order 

[ms] 

15 

20 

40 

50 

60 

80 

5 

4 

3 

2 

2 

5 

5.2 

6.0 

7.5 

7.8 

8.4 

8.5 

0.09 

1.0 

1.6 

1.7 

2.2 

4.9 

1.5 

1.8 

2.8 

3.3 

3.2 

8.9 

2.5 

2.8 

4.4 

4.0 

4.9 

15.9 

The order of solution and number of discretization intervals in the EMHPM routine 

were chosen as the minimum sufficient to guarantee convergence. 

 

Dynamic milling solution 

 

To exemplify the use of the EMHPM to obtain the solution of the differential equation 

with delay, the mathematical model of milling in a degree of freedom commonly used in 

the literature  is applied [23,67–69], which is given as 
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( ) ( )
( )

( ) ( )( )22 ( )  + + = − − −
p xx

n n

m

a h t
x t x t x t x t x t

m
 (3.189) 

 

where 휁 is the modal damping ratio, 𝜔𝑛 is the natural frequency of the workpiece, 𝑎𝑝 is 

the axial depth of cut, 𝑚𝑚 is the modal mass, 𝜏 represents the time delay corresponding 

to the hitting period between each tooth of the tool and ℎ𝑥𝑥(𝑡) is the specific cutting force 

in the x-direction due to flexibility in x-direction, which was calculated depending on the 

position of the tool 

 

( ) ( )
1

( ) ( ) sin ( ) cos ( ) sin ( )   
=

= +
nz

xx iz iz tc iz nc iz

iz

h t g t t K t K t  (3.190) 

 

𝑧𝑛 is the number of edges of the tool, 𝐾𝑡𝑐 and 𝐾𝑛𝑐 are the average specific cut coefficients 

in the tangential and normal direction, respectively, and 𝜙𝑖𝑧(𝑡) is the angular position of 

each left edge described by 

 

( )2 / 60 2 /  = +iz nn t iz z  (3.191) 

 

where 𝑛 is the spindle speed in 𝑟𝑝𝑚 and the function 𝑔((𝜙𝑖𝑧)(𝑡)) is a window function, 

which is one while the current edge 𝑖𝑧 is cutting material, otherwise it takes the value 

zero.  

 

1 ( )
( ( ))

0

  


→  
= 

→

st j ex

iz

t
g t

otherwise
 (3.192) 

 

angles 𝜙𝑠𝑡 and 𝜙𝑒𝑥 are the angular positions where each cutting edge enters and leaves 

the workpiece. In up-milling 𝜙𝑠𝑡 = 0 and 𝜙𝑒𝑥 = cos−1(1 − 2𝑎𝑑), conversely, in down-

milling, 𝜙𝑠𝑡 = cos−1(2𝑎𝑑 − 1) and 𝜙𝑒𝑥 = 𝜋 , where 𝑎𝑑 is the radial immersion ratio of the 

cut.  

Radial immersion is the width of the cut in relation to the diameter of the cutter, it is 

expressed as 𝑎𝑑 = 𝑎𝑒/𝐷, 𝑎𝑒 is the radial width of the cutter in engagement in the cut, and 

𝐷 is the diameter of the tool. 

Using the EMHPM procedure, Eq. (3.189) is rewritten by subintervals 

 

( ) ( ) ( ) ( )( ),2

12 ( )x x x x x  − ++ +  − −
p xx t

i n i n i i i N

m

a h
T T T T T

m
 (3.193) 

 

where 𝒙𝑖(𝑇) represents the solution of order 𝑚 for Eq. (3.189) in the 𝑖 −th subinterval that 

satisfies the initial conditions 𝒙𝑖(0) = 𝒙𝑖−1, �̇�𝑖(0) = �̇�𝑖−1, ℎ𝑥𝑥,𝑡 = ℎ(𝑡) and 𝑥𝑖
𝜏 is 
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represented by Eq. (3.151). Making the transformation 𝒙𝑖 = [𝒙𝑖, �̇�𝑖]
𝑇, Eq. (3.193) can be 

rewritten as a system of first-order linear differential equations represented in matrix 

form as: 

 

1( ) ( ) ( )x A x B x − += +i t i t i NT T T  (3.194) 

 

where for a regular tool the matrix 𝐀 and 𝐁 are represented as: 

 

2

0 1 0 0

( ) ( ),
2 0

  A B
 

   
   

= =   − − −
      

p xx p xxt t

n n

m m

a h t a h t

m m

 (3.195) 

 

𝐀𝑡 and 𝐁𝑡 correspond to the periodic matrix evaluated at time 𝑡. For demonstration 

purposes, time-domain simulations were computed for a full-immersion down-milling 

operation to obtain the solution of Eq. (3.189). We used the parameters employed by 

Insperger et al., in [68] where the stability lobes were also calculated.  

The modal parameters 𝑓𝑛 = 922 Hz, 𝜔𝑛 = 5793 rad/s, 휁 = 0.011 and 𝑚𝑚 = 0.03993 kg 

corresponds to a single degree of freedom. The tangential and normal cutting coefficients 

are 𝐾𝑡𝑐 = 6 × 108 N/m2 and 𝐾𝑛𝑐 = 2 × 108 N/m2 respectively for an end-mill with 𝑧𝑛 = 2. 

The time-domain solution was computed using the EMHPM considering 𝑁 = 76 discrete 

intervals and 𝑚 = 7.  

Two sets of cutting conditions were chosen for a fixed spindle speed with value of 

𝑛 = 12000 rpm where the axial depth of cut of 𝑎𝑝 = 1.5 mm corresponds to a stable 

cutting operation while that for an unstable operation 𝑎𝑝 = 3 mm was chosen.  

In Figure 3.9 we plot the second- and third-order EMHPM solutions and compare it 

with the zeroth- and first-order EMHPM and with the dde23 routine in Matlab, which is 

used to integrate DDE. 

 

a) 
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b) 

 
Figure 3.9 Approximate solution of Eq. (3.189) using the EMHPM, 𝑛 = 12000 𝑟𝑝𝑚, 𝑎𝑑 = 1,  

a) stable operation 𝑎𝑝 = 1.5 𝑚𝑚, b) unstable operation 𝑎𝑝 = 3 mm 

 

Numerical comparison between methods 

 

In order to observe the rate of convergence of the zeroth-, first-, second- and third-

order EMHPM, we chose the stable case with cutting conditions 𝑎𝑝 = 1.5 mm, 𝑎𝑑 = 1 and 

𝑛 = 12000 rpm presented in Figure 3.10a, and the unstable case with cutting conditions 

𝑎𝑝 = 3 mm, 𝑎𝑑 = 1 and 𝑛 = 12000 rpm showed in Figure 3.10b. The rate of convergence 

was analyzed by computing the absolute error between the solution with N discrete 

intervals and a converged solution. All methods were compared against itself using the 

solution provided with N = 200 discrete intervals, which are considered the converged 

solution.  

In Figure 3.10a it is observed that the convergence is better for the second- and third-

order than the zeroth and first-order, however, the difference of convergence between 

second- and third-order with the parameters used was negligible. On the other hand, 

Figure 3.10b shows that for few discrete intervals the third-order EMHPM had the fastest 

convergence in comparison with the second-, the first and the zeroth-order EMHPM. 

However, the second- and third-order curves behaved very similarly after N = 50 discrete 

intervals.  

It is important to mention that for a typical stability solution in the ranges of spindle 

speed 5000–10000 rpm, N = 40 discrete intervals will be enough to have accurate 

predictions.   
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a) 

 
b) 

 
Figure 3.10 Convergence rate of absolute error between zeroth-, first-, second- and third-

order EMHPM for down-milling operation. Cutting parameters for a) 𝑎𝑝 = 1.5 mm, 𝑎𝑑 = 1 

and n=12000 rpm, b) 𝑎𝑝 = 3 mm, 𝑎𝑑 = 1 and n=12000 rpm. 

 

At Figure 3.11 the comparison of the absolute error between zeroth-, first-, second- 

and third-order is plotted, using as reference the Matlab solution dde23 with 𝑁 = 1000. 

Here, the parameters employed are 𝑎𝑝 = 1.5 mm, and  𝑛 = 12000 rpm and the radial 

immersion is varied as shown in Figure 3.11. A step of 10 is used from 10 to 200 

discretization, while from 200 to 1000 a step of 100 is used. An initial condition of a 

constant 𝑐 = 0.001 for the position is used and 0 for the velocity. It is evident that the 

convergence of the first, second and third order solutions occurs with fewer discretization 

than with the zero-order one. 

a) 

 

b) 
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c) 

 

d) 

 
Figure 3.11 Absolute error with different discretization for zeroth-, first-, second- and third-

order vs solution dde23 

The computation time for different discretization in the time-domain simulations 

with different order of solution is presented in Figure 3.12 for values of 𝑎𝑑=0.05, 0.1, 0.5 

and 1.  The computational time presented in the figure is the minimum obtained of 10 

samples. It is observed that as the order of solution increases, the time also increases 

slightly. However, since it is not significant, the feasibility of being able to use the second- 

and the third-order solution is considered, in addition to the fact that a faster convergence 

has been observed in those solutions as showed in Figure 3.10. 

a) 

 

 b) 

 
c) 

 

 d) 

 
Figure 3.12 Computation time for different discretization in zeroth-, first-, second- and third-

order EMHPM vs solution dde23 of Matlab with a) 𝑎𝑑=0.05, b) 𝑎𝑑=0.1, c) 𝑎𝑑=0.5, d) 𝑎𝑑=1. 
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Knowing that the second- and the third-order EMHPM are better than the zeroth- 

and the first-order EMHPM, in Figure 3.13 the second- and the third-order solutions are 

analyzed varying the number of discretization N, and the order m of the solution. 

Figure 3.13a shows the influence on the second-order solution of the EMHPM when 

compared against the evaluation of itself for 𝑁 = 1001, while that Figure 3.13b 

corresponds to the solution of the third-order EMHPM. The initial constant 𝑐 = 0.001 is 

used for the position and 0 for the velocity, with parameters 𝑧𝑛 = 2, 𝑎𝑑 = 1, 𝑎𝑝 =

1.5 𝑚𝑚 and 𝑛 = 12000 𝑟𝑝𝑚. 

To be able to compare with the different discretization, interpolations are carried out 

in such a way that it is guaranteed to have the values in the same time that is evaluated 

for the different discretization.   

To select the solution with the smallest absolute error and with the smallest 

approximation order 𝑚 = 4, it is observed in the Figure 3.13 that discretization with 𝑁 ≥

40 must be chosen, also, it is observed a very similar result when comparing the two 

methods.  

 

a) 

 
b) 

 
Figure 3.13 Influence of the number of discretization N and the order m of solution for the 

EHPM of a) second and b) third order with constant initial condition 

 

Similarly, the influence of the discretization N and of the order 𝑚 for the third-order 

EMHPM is analyzed if a quadratic curve is taken as an initial condition instead of a 

constant value, Figure 3.14a, and if a straight line is taken as the initial condition.  
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For the quadratic curve the function for the position is 𝑑 = 𝑥2, evaluated from √0.002 to 

√0.001 and for the velocity is 𝑣 = 𝑥2, evaluated from -3 to √0.001 both with N points.  

a) 

 
b) 

 
Figure 3.14 Influence of the number of discretization N and the order m of solution for the 

third-order EHPM with a) cuadratic initial condition, b) straigth line initial condition. 

 

For the initial condition with a straight line, the position and the velocity used a line 

evaluated from 0.005 to 0.001 with N points. By observing Figure 3.14, and Figure 3.13 

the results are similar, so it is not observed an improvement from a constant initial 

condition. 
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Chapter 4. Stability in Delay Differential Equations 

 
4.1 Introduction to the stability of systems with time delay 

 

In the field of engineering and research, Delay Differential Equations (DDE) play a 

very important role. Many phenomena that occur are modeled with this type of 

equations, and to understand their behavior it is necessary to know the influence of each 

of the parameters influencing the system. The stability graphs are diagrams in the plane 

of two or more parameters of the system that allow to observe graphically under which 

combination of these parameters the system becomes stable or unstable. In some cases, it 

is possible to construct the stability graphs in a closed form by analyzing the characteristic 

equation, but in many other cases it is only possible by approximating the monodromic 

operator. Another way is to perform numerical simulations in the time domain to capture 

the interrupted nature of the process, then the evolution over time of the phenomenon is 

visualized and analyzed to determine whether it was stable. However, this technique as 

a tool for determining stability graphs is computationally inefficient compared to those 

based on the monodromic operator approximation. 

Because the reliability of the chatter prediction is limited by the inaccuracy of the 

dynamic model of the system, some researchers have proposed using the parameters as 

random variables and basing the stability calculation on estimating the probability for 

each combination of cutoff parameters among them is the work of Totis [70] where the 

calculation can be very computationally demanding. Pérez-Canales [71] proposed the 

entropy approximation method which is an approach with high robustness, high 

computational efficiency and with a sense of online monitoring; relates the randomness 

of the content of the acceleration signal in unstable cases, in contrast to stable cases, in 

order to characterize the milling process with a reduced number of samples. 

There are several models based on the time domain using the Floquet monodromic 

operator approach that seek the optimization of the process to increase vibration-free 

productivity. According to the theory developed by Floquet, the stability properties are 

determined by the monodromic operator of the finite system that approximates the DDE. 

Various approaches to prediction of stability lobes are found in the literature. Stability 

lobes are design maps that allow you to visually identify areas that suggest higher 

productivity without unstable vibrations. These are calculated based on the process 

variables, which directly or indirectly affect the equation of motion. Commonly, the 

parameters are the spindle speed as it defines the delay or delays, and the cutting area 

that is a function of the axial depth of cut 𝑎𝑝 and the immersion in the radial direction 𝑎𝑒.  

Altintas and Budak [72] developed the first analytical solution in the frequency 

domain that allows the prediction of the lobes through the average of the directional 
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coefficients that define the force during the process. This method allows accurate 

analytical predictions except for cuts with very low radial immersion which causes a 

highly uninterrupted cut. Davies [73] showed that at low radial immersions, traditional 

vibration regeneration theory is not able to predict accurately; however, shortly 

afterwards, Merdol and Altintas in  demonstrated that stability frontiers at low radial 

immersions can be predicted through the so-called multifrequency method if a higher 

number of harmonics of the shear force is considered on the eigenvalue solution. Bayly 

[69] analyzed the double-period bifurcation phenomenon that appears in low radial 

inmersions using the Time Finite Element Analysis (TFEA) approach. The approximate 

solution is obtained by means of a discrete map that relates the position and velocity at 

the beginning of each element with the end, so that the eigenvalues of the discrete map 

are used to determine the stability boundaries.  

Another method that forms a finite transition matrix, as an approximation of the 

monodromic operator of infinite dimension, is the Semi-Discretization method proposed 

by Insperger and Stépán in [74], in this, the delay terms are discretized while those that 

are not dependent on the delay remain unchanged, and the periodic coefficients in time 

are approximated by piecewise constant functions, later they made an update of the 

method for periodic systems for a single delay [68]. In addition, they demonstrated that 

second or higher order approximations of the delay term do not produce a solution with 

better convergence compared to the first order one, but rather generate an increase in 

computational time [75,76]. On the other hand, Butcher et al. [77] developed a technique 

based on Chebyshev polynomials and the use of placement points to obtain the solution 

of the delay equation by using a differentiation matrix, the stability boundaries are 

determined from the eigenvalues of the transition matrix that maps the solution over the 

placement points from one period to another. 

Ding et al. [78] presented a method that they named Full-Discretization Method (FD) 

based on a direct integration scheme for the prediction of milling stability, which 

indicated that it provided greater computational efficiency than the Semi-Discretization 

method developed by Insperger in [68]. However, Insperger in [79] describes that the 

methods are similar since they both approximate the differential equation with delay by 

means of a series of ordinary differential equations, in addition he indicates that the FD 

is an alternative method of the SD but with a slightly different conception that produces 

a slow convergence. Soon after, Ding et al. [80] proposed an improvement called Second-

order Full-Discretization Method that indicates improved convergence, so they indicate 

that they developed a method with computational accuracy and efficiency, then, in [81] 

they released another numerical scheme based on the equation integral and numerical 

integration formulas. They divide the shear period into free vibration (when the 

analytical solution is known) and forced vibration, whose approximate solution is 

required to solve the resulting integral equation.  
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To obtain the numerical solution of the integral equation during the forced vibration 

phase, the time interval of interest is equally discretized. By applying milling to a degree 

of freedom with respect to the FD method, there is an improvement in the computation 

time of 63% up to 95% for full immersion and 0.05% immersion operations. All the 

exposed methods offer the same solutions. 
 

4.2 Stability for regular tools with EMHPM 
 
Stability by first-order EMHPM 

 

The matrix representation for the calculation of the dynamic stability of differential 

equations with delay with the EMHPM is given by 

 

( ) ( ) ( ) ( )x A B x = + −t t x t t  (4.1) 

 

where )A A(t + = (t) , )B B(t + = (t) , 𝒙 = [𝒙, �̇�]𝑻 is the vector of states and 𝜏 is the value of 

the delay in time; which was described in section 3.3 by the EMHPM and written 

equivalently as  

 

( ) ( ) ( )x A x B x− i t i t iT t T  (4.2) 

 

where 𝒙𝑖(𝑇) expresses the solution of order 𝑚 for Eq. (4.1) in the 𝑖 −th subinterval that 

must also satisfy the vector of initial conditions 𝒙𝑖(0) = 𝒙𝑖−1, 𝑨𝑡  and 𝑩𝑡 represent the 

matrices in which each of its elements are evaluated at time 𝑡.  

To approximate the delay term 𝒙𝑖
𝜏(𝑇) in Eq. (4.2), the time interval of size equal to the 

delay value [𝑡0 − 𝜏, 𝑡0] is discretized by 𝑁 points not strictly equal spaced, however, for 

simplicity and without losing generality, the subintervals are considered to be of equal 

size.  

To calculate the stability of the differential equation (4.1) using the first-order 

EMHPM, the solution (3.150) for first-order EMHPM reviewed in Chapter 3 must be 

rewritten by grouping each of the discrete values 𝐱i, 𝐱𝑖−𝑁+1, 𝐱𝑖−𝑁, resulting 

 

1 1( ) ( ) ( ) ( )x P x Q x R x− − + − + +i i i i i N i i NT T T T  (4.3) 

 

where 
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Stability by second-order EMHPM 

 

To calculate the stability of the differential equation (4.1) using the second-order 

EMHPM, the solution (3.150) for second-order EMHPM must be rewritten by grouping 

each of the discrete values 𝐱i, 𝐱𝑖−𝑁+2, 𝐱𝑖−𝑁+1, 𝐱𝑖−𝑁, resulting 

 

1 2 1( ) ( ) ( ) ( ) ( )'x P x Q x Q x R x− − + − + − + + +i i i i N i i N i i NiT T T T T  (4.5) 
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 (4.6) 

 
Stability by third-order EMHPM 

 

Similarly, to compute the stability lobes for the third-order EMHPM, the solution of 

the differential equation (4.1) for third-order EMHPM is rewritten, which results 

 

1 3 2 1( ) ( ) ( ) ( ) ( ) ( )" 'x P x Q x Q x Q x R x− − + − + − + − + + ++i i i i i N i i N i i N i i NT T T T T T  (4.7) 

 

where 
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For this case, only the solution of Eq. (4.3) is a function of the vectors 𝒙𝑖, 𝒙𝑖−𝑁+3, 

𝒙𝑖−𝑁+2, 𝒙𝑖−𝑁+1 and 𝒙𝑖−𝑁, since the subinterval is defined by the vectors 𝒙𝑖−𝑁+3, 𝒙𝑖−𝑁+2, 

𝒙𝑖−𝑁+1, 𝒙𝑖−𝑁, and the initial condition is always 𝒙𝑖.  

From Eq. (4.3) a discrete mapping can be defined through a matrix that allows 

calculating the behavior of the next discretization based on the previous ones. The 

equality that defines this relationship is given by: 

 

1w D w −=i i i  (4.9) 

 

where 𝒘𝑖 is a vector of coefficients of dimension equal to the number of states by the 

number of discretization 𝑁, which contains all vectors from 𝒙𝑖−1 to 𝒙𝑖−𝑁 

 

 1 1 1 2, , , ,w x x x x− − − − −=
T

i i i i i N  (4.10) 

 

The matrix 𝐃𝑖 for the third-order EMHPM has the form: 
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The Floquet transition matrix 𝚽 is calculated over the main period 𝜏 = (𝑁 − 1)/ Δ𝑡, 

coupling each of the discrete maps 𝐷𝑖, 𝑖 = 1, 2, … , (𝑁 − 1), to obtain:  

 

1 2 2 1...Φ D D D D− −= N N
 (4.12) 

 

Thus, the stability of Eq. (4.1) is determined by calculating the eigenvalues of the 

transition matrix given by Eq. (4.12). The eigenvalues of the transition matrix (4.12) are 

actually the Floquet multipliers. If the modulus of greatest magnitude is greater than or 

equal to one, it implies that the system will behave in an unstable way, otherwise it will 

have a stable behavior. 

It is important to point out that in the case of the second-order EMHPM, the matrix 

𝐃i is like the matrix of the third-order EMHPM but without the matrix 𝐐𝑖
′′, while that in 

the case of the first-order EMHPM the matrix 𝐃i is like the matrix of the third-order 

EMHPM but without the matrix 𝐐𝑖
′′ and without the matrix 𝐐𝑖

′. 

 

4.3 Analysis of stability in milling for a regular tool in one degree of freedom 

 

Sometimes, when vibration is present, a single, well-defined dominant mode may 

occur, as in thin-wall milling. In this case the stability graphs consist of an infinite series 

of stability lobes that are associated to the Hopf bifurcation or to the bifurcation of a 

period. The equation that describes the movement of the milling model in a degree of 

freedom analyzed by Bayly in [82] is written as 

 

( ) ( )
( )

( ) ( )( )22 ( )  + + = − − −
p xx

n n

m

a h t
x t x t x t x t x t

m
 (4.13) 

 

where 𝜔𝑛 is the natural frequency of the workpiece, 휁 is the modal damping ratio, 𝑎𝑝 is 

the axial depth of cut, 𝑚𝑚 is the modal mass of the tool, the chip thickness is described 

from the difference of the current position and the delay period 𝜏 (which corresponds to 

the striking period between each tooth of the tool), ℎ(𝑡) represents the specific cutting 

coefficient, which is calculated depending on the angular position in time of each of the 

teeth on the tool neglecting the helix angle, 

 

( ) ( )
1

( ) ( ) sin ( ) cos ( ) sin ( )   
=

= +
nz

xx iz iz tc iz nc iz

iz

h t g t t K t K t  (4.14) 

 

𝑧𝑛 is the number of edges of the tool, 𝐾𝑡𝑐 and 𝐾𝑛𝑐 are the average specific cut coefficients 

in the tangential and normal direction, respectively, and 𝜙𝑖𝑧(𝑡) is the angular position of 

each left edge described by 
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( ) ( )2 / 60 2 /  = +iz nt n t iz z  (4.15) 

 

where 𝑛 is the spindle speed in 𝑟𝑝𝑚 and the function 𝑔((𝜙𝑖𝑧)(𝑡)) is a window function, 

which is one while the current edge 𝑖𝑧 is cutting material, otherwise it takes the value 

zero. 

 

1 ( )
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→  
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→

st j ex

iz

t
g t
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 (4.16) 

 

angles 𝜙𝑠𝑡 and 𝜙𝑒𝑥 are the angular positions where each cutting edge enters and leaves 

the workpiece. For up-milling 𝜙𝑠𝑡 = 0 and 𝜙𝑒𝑥 = cos−1(1 − 2𝑎𝑑), while that for down-

milling, 𝜙𝑠𝑡 = cos−1(2𝑎𝑑 − 1) and 𝜙𝑒𝑥 = 𝜋 , 𝑎𝑑 is the radial immersion ratio of the cut. 

Using the EMHPM procedure, Eq. (4.13) is rewritten by subintervals 
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 (4.18) 

 

In order to validate its effectiveness, and determine the minimum order of solution 

that allows obtaining a reliable answer, Eq. (4.18) is solved using the third-order EMHPM, 

with parameters . 𝜔𝑛 = 5793 𝑟𝑎𝑑/𝑠, 휁 = 0.011, 𝐾𝑡𝑐 = 6 × 108 𝑁/𝑚2, 𝐾𝑛𝑐 = 2 × 108 𝑁/𝑚2, 

and 𝑚𝑚 = 0.03993 𝑘𝑔 as used in [68] for approximations of 𝑚 = 3, 4, 5 and 7 using two 

different numbers of discretization 𝑁 = 21, and 𝑁 = 41.  𝑁 = 41 is used to compare with 

Insperger's work [68] while that 𝑁 = 21 demonstrates convergence limitations.  

The results are shown in Figure 4.1 with grid resolution of 401 × 201 for spindle 

speed and axial depth respectively. It is observed that the fifth order solution 𝑚 = 5 (in 

red color) matches well with the higher order solution 𝑚 = 7 when using 𝑁 = 41; 

however, it is perceived that this does not imply that the convergent solution for 𝑁 = 21 

is the same for a greater number of discretization.  
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a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

  
Figure 4.1 Comparison of the order of the solution using the EMHPM with first- order 

approximation for stability analysis in one degree of freedom 

 

When both columns of Figure 4.1 are compared, it is also observed that, for lower 

revolutions, the dynamics demands a greater number of discretization to capture the 

phenomenon in greater detail. However, when increasing the number of discretization, 

the subintervals become smaller, which, without losing precision, tolerates a lower order 

of solution and consequently a decrease in the computation time.  
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In short, when 𝑁 = 21 discretization, the EMHPM converges to a solution when the 

order of the approximation 𝑚 = 5 but by increasing the number of discretized intervals 

to 𝑁 = 41, the solution can be converged from 𝑚 = 4 (in magenta color). This is valid 

regardless of the cut immersion. 

 
EMHPM convergence for milling in ODF 

 

A common practice is to analyze the convergence of the modulus of a certain 

multiplier of the transition matrix for a specific combination of system parameters [68]. 

However, here the convergence is analyzed according to the order of the solution as a 

function of the number of discretization 𝑁 = 20, 40, 60, 80, 100 (see Figure 4.2) by 

calculating the norm of the matrices of size 11 × 11 that collect equally spaced 

combinations of chosen parameters from the mesh of Figure 4.2.  

The first, second and third column represents the solution for the first-, second- and 

third-order EMHPM, and the first, second, third and fourth row represents values of ad 

0.05, 0.1, 0.5 and 1 respectively. The purpose is to analyze how the solution order 𝑚 

affects, since as seen in Figure 4.2, when there are lower spindle speeds, a higher order 

solution is required.  

From the analysis of Figure 4.1 it can be deduced that for N=41 discretization and any 

radial immersion value, it is sufficient to use a fourth order solution m=4 to calculate 

reliable stability boundaries, since it is observed that higher-order solutions do not 

provide an improvement over the stability frontiers. 

Figure 4.2 was graphed varying the discretization, as well as the order of solution 

and it was compared against 𝑁 = 100 and 𝑚 = 10 using the square norm.  

It is observed that for immersion of 0.05 for first, second and third order, the stability 

of all the 𝑁 occurs approximately with 𝑚 = 5, for 𝑎𝑑 = 0.1 approximately it occurs with 

𝑚 = 6, with 𝑎𝑑 = 0.5 for 𝑁>40 the stability also occurs with m=6, while with full 

immersion for 𝑁 > 40 stability occurs with 𝑚 = 8.  

In addition, it is observed that there is no significant difference in the comparison for 

immersion of 0.05, 0.1 and 0.5 but for full immersion it is observed that, by increasing the 

discretization, there is an improvement when going from first order to second and third 

order. 
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a) b) c) 

   
d) e) f) 

   
g) h) i) 

   
j) k) l) 

   
Figure 4.2 Convergence of the EMHPM, first, second and third column represents the 

solution for the first-, second- and third-order EMHPM, and the first, second, third and 

fourth row represents values of ad 0.05, 0.1, 0.5 and 1 respectively. 

 

It was decided to analyze how the stability for full immersion behaves when 

increasing the mesh from 11𝑥11 to 100𝑥100 (Figure 4.3).  The results show that when 

increasing the mesh, the stability for the first order with N=40 looks smoother than with 

the 11x11, but in the others there is no significant improvement, and considering that the 

computation time becomes much larger, it is concluded that it is not feasible to increase 
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the mesh to that degree. The line for 𝑁 = 20 is not observed since it is outside the range 

shown, and neither does it present an improvement. 

 

a) b) c) 

   
Figure 4.3 Convergence of the EMHPM of a) first-, b) second- and c) third-order for a degree 

of freedom as the order of the solution varies for different values of discretization for full 

immersion. 

 

In Figure 4.4 the comparison between the computation times for first, second and 

third order is shown using 𝑎𝑑 = 0.05 . To obtain the computation time for each order, it 

was decided to keep 𝑚 = 6, it was analyzed for different discretization and the time 

obtained was divided between the 11𝑥11 mesh. It is observed that for small discretization 

the computation time is slightly longer for third-order, this is because the number of 

operations carried out with third-order is more; however, by increasing the discretization 

the difference is smaller, since the operations become recursive and tend to be similar to 

those of the first and second order. 

 

 
Figure 4.4 Computation time with different discretization for the first-, second-, and third-

order solution of the EMHPM with 𝑎𝑑=0.05, m=6 vs the reference with 𝑁 = 100 and 𝑚 = 10. 

 

Since the rate of convergence was proved in Chapter 3 for time-domain simulations, 

we explored the convergence of the methods applied to the stability analysis. The stability 

lobes computed with the second- and third-order EMHPM for regular milling tools were 

compared with its predecessor for radial immersion value of 𝑎𝑑 =1 and the other 

parameters indicated above as it was used in [79]. 
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Figure 4.5 shows the stability diagrams for spindle speed in the range 2000–3000 

rev/min where the precision of the method was compromised due to the higher value of 

the time delay. While the shaded gray area represents the stability lobes computed with 

N = 200 discrete intervals in all subfigures, in each subfigure solid black lines draw the 

stability frontier for a specific discrete interval and using the first-, second- or third-order 

EMHPM. In Figure 4.5 the first, second and third column represents the solution for the 

first-, the second- and the third-order EMHPM respectively, while the first and the second 

row was for N = 60 and N = 100 discrete intervals, respectively.  

 
(a) (b) (c) 

     
(d) (e) (f) 

     
(g) 

  
Figure 4.5 Stability diagrams for down-milling operation. The first (a,b,c) and second (d,e,f) 

rows of subfigures correspond to N = 60 and N = 100 discrete intervals, respectively. First 

(a,d), second (b,e) and third (c,f) columns correspond to the first-, second- and third-order 

EMHPM, respectively. Subfigure (g) shows a comparison between the third-order EMHPM 

(red line), SDM (dot black line), FDM (dash black line), and Chebyshev (dot blue line) 

methods with N = 60 discrete intervals. 
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It is observed that the error achieved in the third-order EMHPM was less than those 

attained for the first-order and second-order EMHPM solutions. This confirms that the 

third-order EMHPM had the highest rate of convergence.  

The results were also compared, in Figure 4.5g, with the semi-discretization method 

(SDM) presented by Insperger and Stépán in [68] (dot black line) and with the full-

discretization method (FDM) presented by Ding et al. in [78] (dash black line), and the 

Chebyshev collocation method (dot blue line) discussed in [83,84]. It is observed that the 

EMHPM converged faster than the SDM and FDM, although the solution with the 

Chebyshev method converges faster.  

Table 4.1 list the results for computation times for a different number of discretized 

intervals together with the absolute error between stability frontiers. Notice that the 

solution obtained with the EMHPM with N = 60 discrete intervals was faster than the 

SDM and the FDM and even the error was less in the solution by the EMHPM. For N = 

100 discrete intervals the computation time for the FDM was similar to the solution 

obtained with the EMHPM but it was demonstrated that the solution by second- and 

third-order EMHPM requires a smaller number of discretized intervals to converge to the 

solution and using a smaller amount of computation time. Notice the error for the SDM 

was not calculated since there was no stability frontier in some values of spindle speed. 

It is noticeable that exists a significant improvement in the rate of convergence from 

first-order to second-order and third-order EMHPM, however, the difference between 

the second- and the third-order EMHPM is negligible if the number of discretized 

intervals increase. There is no best method between second- and third-order EMHPM in 

terms of rate of convergence and computation time since the precision depends on the 

nature of the studied problem. However, it is easy to prove that a higher-order 

approximation (fourth- and fifth-order EMHPM) could drastically increase the 

computational time without a significant improvement in the solution. The solution also 

was compared with the Chebyshev method, which, as far as we know is the method that 

converges faster. 

Table 4.1 Comparison of convergence for different methods for down-milling 

operation with 𝒂𝒅 = 𝟏. 

Method 
𝑵 = 60 𝑵 = 100 

Time (s) Error Time (s) Error 

First-order EMHPM 46.98 1.6276 171.03 0.3203 

Second-order EMHPM 54.85 0.3507 194.53 0.0568 

Third-order EMHPM 60.58 0.3458 208.69 0.0563 

FDM 61.26 1.4097 200.49 0.3998 

SDM 278.03 - 570.04 - 

Chebyshev 36.02 0.0024 90.11 4.385E-13 
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Chebyshev is a spectral convergence method, but it does not necessarily mean that 

there is convergence to the solution we are looking for (although for this solution 

Chebyshev had a faster convergence and precision), Chebyshev is based on a linear 

theory while the EMHPM allows to solve non-linear problems, in addition the EMHPM 

has the flexibility to improve the time of computation by decreasing the number of 

discretization and increasing the order of solution. 

It is important to point out that the level of convergence does not depend only on the 

number of discretization but is a ratio of the natural frequency with respect to the 

discretization value of the delay. The influence of the size of the subinterval as well as the 

ratio of the natural frequency with respect to the size of the subinterval are key points.  

 

4.4 Stability of DDE with multiple delays through the EMHPM 

 

The EMHPM can be generalized for stability analysis of DDEs having multiple 

delays. A multivariable tool contains some of the following characteristics: uneven pitch 

between teeth, and/or at least one helix angle with a different value from the others. This 

analysis was developed by Compeán et al., in [85] by using the first-order EMHPM, 

where the methodology for the characterization of the cutting coefficients for a 

multivariable tool was discussed, and the dynamic behavior was studied from the 

productivity point of view. Since the angular spacing at the beginning of the edge is 

different between teeth (pitch) and the different values of helix angles of the edges 

between adjacent teeth, the angular spacing between teeth at a specific height changes 

continuously, which produces an infinite number of delays. A common approach to deal 

with the DDE with an infinite number of delay is to discretize the tool by cutting disks in 

the axial direction with a thickness ∆𝑎𝑑𝑠𝑘 to induce a DDE with a finite number of delays. 

A single disk still has the same number of flutes (discrete flutes) and considering that the 

maximum delay in the process is the period of rotation of the tool or the spindle rotation 

period 𝜏𝑇, then, it can be discretized in 𝑁 − 1 intervals. 

The angular position between two adjacent teeth in each cutting disk changes 

according to the axial position of the referred disk and is related to the expression 𝜓 =

𝑘𝛽𝑎𝑝, where 𝑘𝛽 = 2 tan 𝛽/2𝐷. Here 𝐷 is the diameter of the tool and 𝜓 represents the 

cutting-edge offset angle due to the helix angle. A certain interval can be associated with 

a discrete time delay of each tooth 𝑖𝑧 and disk 𝑙 using the following formulation. 

 

,

,
( 1)

2





 
= − 

 
iz

iz l

l roN und N  (4.19) 

 

where 𝛿𝜙𝑖𝑧,𝑙 is the angular pitch between consecutive teeth for each disk, the round 

function converts the argument to the nearest integer. In (4.19) 𝑁𝑖𝑧 , is a table (matrix) of 

dimension 𝑖𝑧 ×  𝑙. Since this procedure could generate several delayed terms and some 
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of them with the same value of discrete time delay due to the discretization scheme, it is 

required to collect all the different (non-repeated) discrete time delays 𝑑𝑛 from 𝑁𝑖𝑧,𝑙. 

So, without losing generality, the DDE with multiple delays is read as 

 

( )

( )max

min

( ) ( ) ( ) ( )x A x B x 
=

= + −
n

n

d

d

d d

t t t t  (4.20) 

 

where x is the vector of states, 𝐀(𝑡 + 𝜏𝑇) = 𝐀(𝜏𝑇), 𝐁𝑑(𝑡 + 𝜏𝑇) = 𝐁𝑑(𝜏𝑇) and 𝜏𝑇 is the 

period of rotation of the spindle. Following the EMHPM procedure, Eq. (4.20) can be 

written equivalently by intervals as: 

 

( )

( )max
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( ) ( ) ( )x A x B x


=

−  
n

d

n

d

d

i t i t i

d d

T T T  (4.21) 

 

being 𝐱𝑖(𝑇) the solution by intervals of order 𝑚 for Eq. (4.20) in the 𝑖 − 𝑡ℎ interval that 

satisfies the initial condition 𝐱𝑖(0) = x𝑖−1, the matrices 𝐀𝐭 and 𝐁𝑡
𝑑 represent the values of 

the matrices 𝐀(𝑡) and 𝐁𝑑(𝑡) evaluated at time 𝑡 respectively.  

 
Multivariable tool milling stability using First-order EMHPM. 

 

To approximate the term associated with the discrete delays 𝒙𝑖
𝜏𝑑(𝑇) of Eq. (4.21), 

similar to the methodology used for regular tools, the interval of the period 𝜏𝑇 , [𝑡0 − 𝜏𝑇 , 𝑡0] 

is discretized in 𝑁 − 1 intervals that can be equal size as seen in Figure 4.6. For simplicity, 

intervals of equal size ∆𝑡 = 𝜏𝑇/(𝑁 − 1) are chosen. Then it is assumed that the function 

𝐱𝑖
𝜏𝑑 

 (𝑇), which is defined in the interval [𝑡𝑖−𝑑−1, 𝑡𝑖−𝑑], for the first-order EMHPM has the 

representation of the form: 

 

( ) ( ) ( )1 1

1
x x x x x
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 −
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N
T T T  (4.22) 

 

Defining 𝒙𝒊 ≡ 𝒙𝒊(𝑻𝒊) o simplify the notation, and substituting Eq. (4.22) in Eq. (4.21), 

the following equation is obtained:  
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Figure 4.6 Representation of the first-order polynomial approximation for the delay 

subinterval 

 

where 
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here ℎ𝑦𝑦 is the specific cutting coefficient, which is calculated depending on the position 

in time of the tool: 
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Continuing with the EMHPM procedure, it is assumed that the homotopy for the 

solution of Eq. (4.23) has the form 
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Substituting the expansion of order 𝑚, 𝑿𝑖 = 𝑿𝑖0 + 𝑝𝑿𝑖1 + 𝑝2𝑿𝑖2 + ⋯ + 𝑝𝑚 and 

considering that the initial condition is equal to the final value of the previous 

subinterval, that is, 𝒙𝑖0 = 𝒙𝑖−1, and 𝒙𝑖1(0) = 𝒙𝑖2(0) = ⋯ = 𝒙𝑖𝑚(0) = 0, it is obtained: 
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grouping by powers of 𝑝: 
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by solving (4.28), we get 
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 (4.29) 

 

Eq. (4.29) can be written recursively as 

 

, 1,2,3....X X X= + =a b

ik ik ik k  (4.30) 

 

where 𝐗𝑖0
𝑎 = 𝐱𝑖−1, 𝐗𝑖0

𝑏 , = 0 and 
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 (4.31) 

 

the solution of order 𝑚 for Eq. (4.23) is obtained by adding each of the approximations 𝑘 

of Eq. (4.30). 

Similar to Eq. (4.3), to obtain the stability graphs of Eq. (4.20) the solution of Eq. (4.30) 

is rewritten by grouping the discrete states, which results:  
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where 
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the approximate solution using the EMHPM given by Eq. (4.32) is used to define a 

discrete map such as shown in (4.9), with a matrix of coefficients 𝑫𝑖 with dimension  

(𝑁 − 1)(𝑧𝑛) × (𝑁 − 1)(𝑧𝑛). The coefficients of the matrix 𝑫𝑖 are given by: 

 
1 1 2 20 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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n nd d

i i i i i i i

i

P Q R Q R Q R

I

I

I

I

I
D

I

I

I

I

0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.34) 

 

The transition matrix 𝚽 over the period 𝜏𝑇 = (𝑁 − 1)/ Δ𝑡 is determined by coupling 

each solution 𝑥𝑖 through the discrete map 𝑫𝑖, 𝑖 = 1, 2, … , (𝑁 − 1). However, it is important 

to note that the computational cost can be significantly reduced by computing only the 

transition matrix up to the maximum delay without losing precision in the calculation of 

the eigenvalues: 

 

max max 1 2 1...Φ D D D D−= N N
 (4.35) 
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The stability graphs of Eq. (4.20) are determined by computing the eigenvalues of the 

transition matrix calculated by Eq. (4.35). 

 
Multivariable tool milling stability using Second Order EMHPM. 

 

Following a similar procedure to that used for the multivariate tool with first-order 

EMHPM, the stability prediction for the multivariate tool with second-order EMHPM can 

be performed.  

To approximate the term associated with the discrete delays 𝒙𝑖
𝜏𝑑(𝑇) of Eq. (4.21), the 

interval of the period 𝜏𝑇 , [𝑡0 − 𝜏𝑇 , 𝑡0] is discretized in 𝑁 − 1 subintervals. Figure 4.7 

schematize the second-order polynomial approximation. 

 

 
Figure 4.7 Representation of the second-order polynomial approximation for the delay 

subinterval. 

 

Then it is assumed that the function 𝒙𝑖
𝜏𝑑(𝑇), which is defined in the subinterval 

[𝑡𝑖−𝑑−1, 𝑡𝑖−𝑑+1], for the second order EMHPM has the representation of the form: 
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 (4.36) 

 

Defining 𝒙𝑖 ≡ 𝒙𝑖(𝑇𝑖) to simplify the notation, and substituting Eq. (4.36) in Eq. (4.21), 

the following equation is obtained: 
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Continuing with the HPM, and substituting the expansion of order 𝑚, 𝑿𝑖 = 𝑿𝑖0 +

𝑝𝑿𝑖1 + 𝑝2𝑿𝑖2 + ⋯ + 𝑝𝑚, considering that the initial condition is equal to the final value of 

the previous subinterval, that is, 𝒙𝑖0 = 𝒙𝑖−1, and 𝒙𝑖1(0) = 𝒙𝑖2(0) = ⋯ = 𝒙𝑖𝑚(0) = 0, (4.37) 

has the form: 
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 (4.38) 

 

after applying the EMHPM to solve the set of second-order differential delay equations, 

we get: 
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 (4.39) 

 

Eq. (4.39) can be written recursively as 

 

, 1,2,3....X X X X= + + =a b c

ik ik ik ik k  (4.40) 

 

where 𝑿𝑖0
𝑎 = 𝒙𝑖−1, 𝑿𝑖0

𝑏 , = 𝑿𝑖0
𝑐 = 0 and 
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the solution of order 𝑚 for Eq. (4.37) is obtained by adding each of the approximations 𝑘 

of Eq. (4.40).  

Similar to Eq. (4.5), to obtain the stability graphs, the solution of Eq. (4.40). is rewritten 

by grouping the discrete states, which results in: 
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 (4.43) 

 

The approximate solution given by Eq. (4.42) is used to define a discrete map 

following the same procedure as semi-discretization method in [68], as showed in the 

solution of the first-order EMHPM presented above.  

 
Multivariable tool milling stability using Third-order EMHPM. 

 

In a similar way to the solution described for the second order EMHPM, it is 

performed for the third order approximation as observed in Figure 4.8.  
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Figure 4.8 Representation of the third-order polynomial approximation for the delay 

subinterval. 

 

It is assumed that the function 𝐱𝑖
𝜏𝑑 

 (𝑇), which is defined in the interval [𝑡𝑖−𝑑−1, 𝑡𝑖−𝑑+2], 

for the third-order EMHPM has the representation of the form: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( )

1 1 1 2

2
2

1 1 2

3
3

1 1 2

1 11 3 1
3

6 2 3

1
2 5 4

2

1
3 3

6

x x x x x x

x x x x

x x x x









− − − − − − + − +

− − − − + − +

− − − − + − +

 −  
 + − + − + +   

  

 −
− + − + 

 

 −
− + − + 

 

d

i i d i d i d i d i d

T

i d i d i d i d

T

i d i d i d i d

T

N
T T

N T

N T

 (4.44) 

 

Defining 𝐱𝑖 ≡ 𝐱𝑖(𝑇𝑖) to simplify the notation, and substituting (4.44) in Eq. (4.21), the 

following equation is obtained: 
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by solving Eq. (4.45), we get 
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 (4.46) 

 

Eq. (4.46) can be written recursively as 

 

, 1,2,3....X X X X X= + + + =a b c d

ik ik ik ik ik k  (4.47) 

 

where 𝐗𝑖0
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the solution of order 𝑚 for Eq. (4.45) is obtained by adding each of the approximations 𝑘 

of Eq. (4.47). To obtain the stability graphs the solution of Eq. (4.47) is rewritten by 

grouping the discrete states, which results in: 
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The approximate solution given by Eq. (4.49) is used to define a discrete map such as 

(4.9), where the coefficients of the matrix 𝑫𝒊 are given by 
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For the second order approximation, the matrix 𝐃𝐢 is like the matrix of the third order 

but without the terms having 𝑸𝒊
′′, instead it will be a zero. 

The transition matrix 𝚽 over the period 𝜏𝑇 = (𝑁 − 1)/ Δ𝑡 is determined by coupling 

each solution 𝒛𝑖 through the discrete map 𝑫𝒊, 𝑖 = 1, 2, … , (𝑁 − 1). However, the 

computational cost can be reduced by computing only the transition matrix up to the 

maximum delayed term without losing precision in the calculation of the eigenvalues: 

 

max max 1 2 1...Φ D D D D−= N N
 (4.52) 

 

The stability graphs of  (4.20) are determined by computing the eigenvalues of the 

transition matrix calculated by Eq. (4.52). The results of the EMHPM have been 

corroborated with the stability lobes in the study of multivariate tools [86–93].  

 

4.5 Numerical Analysis of the algorithm for multivariable tool 

 

The solution of tools with variable pitch and helix angles for milling operation with 

one degree of freedom is plotted over time and compared with the solution of the 

algorithm for regular tools, this is done for the solution of third order EMHPM (Figure 

4.9) the parameters used for the multivariate tool algorithm are tool diameter 𝐷 = 10 𝑚𝑚, 

number of disks=10, 𝑧𝑛 = 2, the pitch angle between the cutting edges is 180°, the helix 

angle is maintained 1°, 𝜔𝑛 = 5793 𝑟𝑎𝑑/𝑠, 휁 = 0.011, 𝑚𝑚 = 0.03993 𝑘𝑔, 𝐾𝑡𝑐 = 6 × 108 𝑁/

𝑚2, 𝐾𝑛𝑐 = 2 × 108 𝑁/𝑚2, 𝑎𝑑 = 1, 𝑛 = 12000 𝑟𝑝𝑚, ∆𝑎𝑝 = 0.15, 𝑚 = 7, 𝑁 = (75 × 𝑧𝑛) + 1. 

For the regular tool algorithm, we use 𝜔𝑛 = 5793 𝑟𝑎𝑑/𝑠, 휁 = 0.011, 𝑚𝑚 = 0.03993 𝑘𝑔, 

𝐾𝑡𝑐 = 6 × 108 𝑁/𝑚2, 𝐾𝑛𝑐 = 2 × 108 𝑁/𝑚2, 𝑎𝑑 = 1, 𝑛 = 12000 𝑟𝑝𝑚, 𝑎𝑝 = 1.5 𝑚𝑚, 𝑚 = 7, 

𝑁 = 76. In both, we start from a constant initial condition for the period prior to time zero 

of 𝑐 = 0.001 𝑚 for position and zero for velocity. It is clearly observed in Figure 4.9 that 

the solution of the algorithm proposed by Compeán in [85] of a multivariate tool 

converges with the algorithm used in Chapter 3 for a regular tool. 

 
Figure 4.9 Comparison of solution with regular tool algorithm vs multivariate tool algorithm 

for third-order EMHPM, with values of 𝑛 = 12000 𝑟𝑝𝑚, 𝑧𝑛 = 4, 𝑎𝑑 = 1, 𝑎𝑝 = 1.5 𝑚𝑚. 
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The solutions of the first-, second-, and third-order approximations of the EMHPM 

are solved using the multivariable tool algorithm and they are compared with the 

solution of dde23 from Matlab (Figure 4.10). Although the three solutions are very 

similar, the second and third order are better aligned, which is due to a better 

approximation by increasing the order from solution. 

   
Figure 4.10 Numerical comparison of the EMHPM solutions of milling equation Eq. (4.13) 

with the dde23 MATLAB routine. For a stable milling operation 𝑎𝑝 = 1.5 mm, 𝑎𝑑 = 1 and 

𝑛 = 12000 rpm with 10 disks.  

 

The solutions of the multivariable tool algorithm showed in Figure 4.11  are obtained 

for a tool of diameter of 10 mm with 4 flutes, a 400 x 200 mesh is used for the spindle 

speed and depth respectively, 𝜔𝑛 = 5793 𝑟𝑎𝑑/𝑠, 휁 = 0.011, 𝑚𝑚 = 0.03993 𝑘𝑔, 𝑎𝑑 =

1, 𝑚 = 7, 𝑁 = 75 × 𝑧𝑛 𝐾𝑡𝑐 = 6 × 108 𝑁/𝑚2 and 𝐾𝑛𝑐 = 2 × 108 𝑁/𝑚2 for each flute, the 

pitch angles are of 90° and the helix angles are set 1°.  

  
a) b) 

    
Figure 4.11 a) Stability lobes for multivariable tool in approximation of first-, second- and 

third-order, b) zoom in to observe the difference between methods. 

 

If the solution is compared with the solution of the code for a regular tool, we expect 

to have a similar result with a slight difference attributed to the fact that the algorithm of 

the regular tool does not include the helix angle. 
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In Figure 4.11a the solutions for the first, second and third order of the multivariate 

algorithm are compared, it is observed that the solutions are very similar; however, in 

Figure 4.11b, it is observed that the second and third order solutions coincide better, as 

expected.  

Similarly, the comparison of the solution for the third-order EMHPM for 

multivariable tool is carried out against the solution of the Semi-discretization method 

proposed by Insperger in [68], in order to validate the algorithm. Figure 4.12 presents the 

results with a 400𝑥200 mesh with 𝑎𝑑 = 1 for a tool with 2 edges equally spaced, helix 

angles 𝛽 = 1°, 𝑚 = 7, and 𝑁 = 75 × 𝑧𝑛 used with the third-order algorithm in a down-

milling operation with full immersion. 

 

 
Figure 4.12 Third-order EMHPM for multivariable tool vs Semi-Discretization, 𝑎𝑑 = 1,      

𝑧𝑛 = 2, 𝛽 = 1° 
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Chapter 5. Validation of the milling tool 

 
5.1 Experimental characterization of one degree of freedom milling equation and 

cutting force model 

 

In the scheme showed below in Figure 5.1 is represented the methodology used to 

validate a multivariable milling tool using the algorithm of 3rd-order EMHPM. 

 
 

 
Figure 5.1 Methodology to validate a multivariable milling tool 

 
Experimental Modal Analysis 

 

An experimental workpiece was assembled with a 7075T6 aluminum block with 

dimensions of 101 mm × 172 mm supported by two thin plates (walls) with a thickness 

of 4.5 mm. This assembly mimics a DOF as described in Eq. (4.13). The workpiece 

assembly was rigidly fixed to the workbench of a Makino F3 machining center. For modal 

analysis, tap testing was performed using a 352C68 PCB Piezotronics accelerometer and 

an impact hammer model 9722A500. The signals were acquired with a Polytec VIB-E-220 

data acquisition card and processed with VibSoft signal analyzer software as shown in 

Figure 5.2a.  

Escalera in [94] obtained the modal parameters 휁 = 0.068, 𝑚𝑚 = 3.8 kg, 𝑓𝑚 = 132 Hz, 

and 𝜔𝑛 = 829  rad/s for the tool described in the next section. 

 

 

 

Cutting Forces 
characterization

Modal parameters
Characterization of the 

milling tool
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Experimental determination of cutting coefficients 

 

The force model in Eq. (4.25) is used to predict the cutting force magnitude for a given 

depth of cut. It is based on a mechanistic approach that assumes a relationship between 

forces and the uncut chip thickness by means of the cutting coefficients. The cutting force 

model is established by introducing cutting (shearing) and edge coefficients for the 

tangential and normal directions of the milling tool. The characterization procedure 

assumes the linear relationship between the averaged experimental cutting forces �̃� and 

the feed rate fz in x- and y- directions. This relationship is established as follows: 

 

= +z c eF f F F   (5.1) 

 

Here, 𝐹�̃� and 𝐹�̃� are the cutting shear and edge components, respectively. The 

experimental forces at each feed rate are measured, and the cutting-edge components 𝐹�̃�  

and 𝐹�̃� are evaluated  

 

4 ,   4= = −
yc xc

tc nc

n p n p

F F
K K

z a z a
 (5.2) 

 

A multivariable cutter provided by a local toolmaker was characterized by using the 

Eq (5.2) and the experimental setup shown in Figure 5.2b. Table 5.1 summarizes the main 

geometric characteristics of the multivariable tool.  

Table 5.1. Main geometric parameters of multivariable tool according to [94]. 

 

Diameter 12.7 mm 

Cutting length 25 mm 

Coating type Uncoated 

Number of teeth 4 

Helix angles  39°, 37°, 39°, 41° 

Pitch angles 80°, 100°, 70°, 110° 

 
a) b) 

  
Figure 5.2 Scheme of the experimental setup for a) the modal analysis and b) cutting forces 

characterization.  
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A total of 5 cuttings were performed for full radial immersion in aluminum 7075T6 

during dry machining. The forces were recorded by using a dynamometer 9257B Kistler 

and the spindle speed is set at 3000 rpm based on the dynamometer’s natural frequency 

to avoid the amplification of milling forces.  

The force signals were acquired using a VibSoft-20 acquisition card at a sample rate 

of 48 kHz and processed in a custom-made MATLAB app to remove drift and noise. 

Cutting forces data were collected for the axial depth of cut of 2 mm and four values of 

feed per tooth 0.05, 0.10, 0.15 and 0.20 mm, so the resulting cutting coefficients  𝐾𝑡𝑐 for the 

tooth 1, 2, 3 and 4 were 1215 × 106 N/m2, 1369 × 106 N/m2, 897 × 106 N/m2 and 

1799 × 106 N/m2 respectively, while that the coefficients 𝐾𝑛𝑐 for the tooth 1, 2, 3 and 4 

resulted 272 × 106 N/m2, 520 × 106 N/m2, 801 × 106 N/m2 and 859 × 106 N/m2 

respectively. 

 
Stability analysis of 1 dof milling with multivariable tool 

 

The stability lobes computed for the multivariable tool using the third-order EMHPM 

with a mesh of 400 × 200 (𝑛 × 𝑎𝑝) are shown in Figure 5.3 together with stability lobes 

for a regular tool (angles of 90° and helix angles of  30° for all flutes). An approximation 

of order 𝑚 = 7 was used with 𝑁 =241 and 𝑎𝑑 = 1 mm. Notice from Figure 5.3 that the 

stable zone obtained for the multivariable tool is significantly larger, meaning that the 

critical depth of cut is higher in most spindle speeds, which allows having more global 

productivity. It is also observed in the range of spindle speed between 2,000 – 3000 rpm, 

a stable peninsula formed with axial depth ranging from 11 to 20 mm or higher values of 

critical depth of cut. For instance, for the multivariable cutter at 2500 rpm, the critical 

depth of cut 𝑎𝑝 is 2.17 mm, however it becomes stable again as shown in Figure 5.3 for 

the interval values between 11 to 20 mm. To validate this unexpected behavior, we 

performed several time-domain simulations using the third-order EMHPM solution 

described by Eq. (4.49).  
a)  b) 

  
Figure 5.3 a) Comparison of stability lobes for regular (black solid line) and multivariable 

(red solid line) cutters by using the third-order EMHPM; b) zoom in on chosen cutting 

conditions for time-domain simulations. The selected points are marked as follows: unstable 

(cross mark), stable (circle mark), transition (plus mark) cutting conditions.  
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The solution obtained with the stability lobes in Figure 5.3 were also compared with 

the solution in time-domain using the mean of the peaks for the first 10 periods.  

The surface was graphed using matlab, and contours of levels 0.0001, 0.0005, 0.001, 

0.01, 0.05, 0.1, 0.5, 1 and 2 mm were explored as shown in Figure 5.4. It is observed that it 

gives a good approximation, but the time required to obtain the simulation is increased 

to many hours. 

 

 
Figure 5.4 Comparison for the Floquet solution and the solution in time-domain using the 

mean of the peaks for the first 10 periods. 

 

Furthermore, the simulated vibrations for the chosen cutting conditions were 

analyzed using the Continuous Wavelet Transform (CWT), the Power Spectral Density 

(PSD) and Poincaré Maps (PM). The CWT is a time-frequency representation of a signal 

that offers the capability to observe how frequencies evolve in time.  

The scalograms display the absolute value of CWT of the simulated vibration and 

therefore, they are used to detect chatter phenomena that appear when milling with a 

multivariable tool. The PSD is based on the Fourier transform that provides the 

transformation from the time-domain to the frequency-domain. Also, PSD is defined as 

the squared value of the signal and describes the power of a signal or time series 

distributed over different frequencies [95]. Moreover, a PM represents points in phase 

space which are sampled every spindle rotation [96].  The frequencies 𝑓 of the CWT and 

PM were normalized 𝑓𝑛 = 𝑓 𝑓ℎ⁄   according to the spindle frequency 𝑓ℎ. When milling with 

a regular milling tool the excitation frequency 𝑓𝑒 is equal to 𝑧𝑛 times frequencies of the 

spindle speed 𝑓ℎ but in a multivariable tool, there are several excitation frequencies since 

the angular spacing between teeth change as a function of the axial depth of cut.  

Figure 5.5 illustrates the CWT, PSD and PM for simulated vibrations using the 

multivariable tool with different axial depths denoted as cutting conditions A, B, and C 

for the axial depths of cut of 1.0, 1.7, and 1.7 mm respectively. Figure 5.5a-c refer to the 

vibrations of the cutting conditions A marked in Figure 5.3, using a regular tool.  
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The scalogram in Figure 5.5a identifies point A as a stable cutting since normalized 

cutting frequencies present a dominant value of 𝑓𝑛 = 3.2 which corresponds to the natural 

frequency 𝑓𝑚 = 132 Hz. This is also confirmed by the PSD analysis shown in Figure 5.5b. 

The PM illustrated in Figure 5.5c shows a vibration that decreases with time and sampled 

data concentrated in the center confirms a typical stable case. When the axial depth of cut 

is increased to 1.7 mm, the stability diagram predicts unstable cutting conditions 

according to the stability lobes for the regular tool. This case is denoted with cutting 

conditions B and the corresponding scalogram (shown in Figure 5.5d) illustrates how the 

intensity of the dominant frequency increases with time even when the excitation 

frequency is the same as the case in A.  

 

a) b) c) 

   
 

d) e) f) 

   
g) h) i) 

   
Figure 5.5 Analysis of cutting conditions A, B and C.  CWT scalograms: a), d), g); PSD: b), e), 

h) and PM: c), f), i) corresponds to the cutting conditions A, B and C respectively. 
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The PM diagram shown in Figure 5.5f, exhibits a vibration far from zero. In fact, the 

PM diagram shows that the vibration amplitude grows exponentially because our 

equation of motion does not consider nonlinear effects such as those that appear when 

the tool loses contact with the workpiece. Both cutting conditions A and B agree with the 

stability boundaries in Figure 5.3. Now, the cutting conditions B are used but with a 

multivariable tool which is referred to as cutting conditions C. The CWT plotted in Figure 

5.5g describes completely different results since there are no single dominant frequencies 

in comparison with cutting conditions A, but appears several frequencies around 𝑓𝑛 = 3.2 

and close to 𝑓𝑛 = 1 that reduce in intensity with time, suggesting a stable cutting. Figure 

5.5i illustrates how the vibration amplitude approaches to zero when using a 

multivariable tool in contrast to the PM obtained for the regular tool and exhibit in  Figure 

5.5f. This can be explained by observing that there are several excitation frequencies due 

to the irregular pitch and helix angles, that break a single excitation frequency avoiding 

regenerative chatter phenomena. 

Figure 5.6 illustrates the CWT, PSD and PM for simulated vibrations using the 

multivariable tool with different axial depths denoted as cutting conditions D, E, F and 

G for the axial depths of cut of 2.3, 3.0, 8.55, and 18 mm respectively. Notice that a stable 

case C was already validated when the axial depth is 1.7 mm in Figure 5.5g-i, that 

corresponds to cutting conditions under the stability boundaries shown in Figure 5.3.  

 
a) b) c) 

   
d) e) f) 
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g) h) i) 

   
j) k) l) 

   
Figure 5.6 Analysis of cutting conditions D, E, F and G. CWT scalograms: a), d), g), j); PSD:  

b), e), h), k) and PM: c), f), i), l) corresponds to the cutting conditions D, E, F and G 

respectively. 

 

For case D, a transient cutting condition was chosen very close to the critical axial 

depth of cut. It is interesting to point out that transition cutting conditions in the CWT 

scalogram shown in Figure 5.6a not only shows frequencies with higher intensity in 

comparison with the stable case B, but also present shifted frequencies that vary in 

intensity every single revolution. This shifting suggests a marginally stable cutting 

condition that is confirmed by the PM illustrated in Figure 5.6c, where circular trajectories 

are described close to the center point. 

Unstable vibrations that appear for case E are because of the intensity of frequencies 

increase exponentially with time, see Figure 5.6d. Notice that other frequencies arise with 

time close to the values of 𝑓𝑛 = 0.5 and 𝑓𝑛 = 1.5. These frenquencies also occur for cutting 

conditions D which is an indication of the appearance of chatter phenomena. In contrast 

to Figure 5.5i for a stable case, Figure 5.6f exhibits few trajectories because the vibration 

amplitude is out of the range selected (± 1 mm). The qualitative and quantitative dynamic 

behaviour due to cutting conditions F, and illustrated in Figure 5.6g-i, were classified as 

transition cutting behaviour. Here, a more severe shifting in frequencies is observed in 

the scalogram (Figure 5.6g). From Figure 5.6g, it is seen that drastic shifting occurs in time 

domain in the range of normalized frequencies from 3.5 to 6. It is also evident in the PM 

showed in Figure 5.6i, that the amplitude of vibration remains below 1 mm during several 

revolutions of the tool but the amplitude of vibration never aproaches to the center point, 
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in contrast to the stable cutting condition C shown in Figure 5.5i in which the oscillation 

aplitudes aproaches fo the center.   

An interesting dynamic behaviour is observed in the milling cutting process when 

the cutting conditions are selected in the middle of the stable peninsula, above unstable 

cutting conditions such as E cutting conditions. The axial depth of the cut was increased 

from the unstable axial depth of cut of 3 to 18 mm, 6 times higher of the stable cutting 

condition C, and 2 times higher than the unstable condition E. Since the vibration quickly 

decreases in a few revolutions no dominant frequencies appear in the CWT and PSD fails 

to clearly identify a dominant frequency since the vibration amplitude decreases to zero 

after few revolutions, as confirmed by the PM shown in Figure 5.6l.  

Figure 5.7 shows the normalized excitation frequencies that the multivariable tool 

produces for a fixed spindle speed of 2500 rpm. The total number of disks of 50 μm of 

thickness was grouped in sets of each millimeter in the axial direction. The waterfall plot 

in Figure 5.7 explains that a stable peninsula is formed above 11 mm because the 

workpiece is excited with several frequencies simultaneously. For instance, for a milling 

operation with the axial depth of cut of 1 mm (stable cutting), 80 discrete disks were cut 

with four normalized excitation frequencies values (3.3, 3.6, 4.5 and 5.1). On the other 

hand, when milling at 18 mm (stable cutting), there are 14 normalized excitation 

frequencies (3.30, 3.35, 3.39, 3.44, 3.49, 3.54, 3.60, 4.55, 4.64, 4.73, 4.82, 4.92, 5.02 and 5.13), 

most of them with at least 115 discrete disks. 

 

 

Figure 5.7 The number of discrete disks and discrete excitation frequencies as a function of 

axial depth of cut for the multivariable tool. 

 

5.2 Experimental validation with new parameters of the tool 

 

To validate the results obatined with the simulation, more experimental 

characterization was made. The experimental workpiece was assembled with a 7075T6 

aluminum block of 101 mm × 179 mm supported by two thin plates (walls) with a 

thickness of 4.5 mm. The workpiece assembly was rigidly fixed to the workbench of a 

Makino F3 machining center.  
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For modal analysis, tap testing was performed using a Dytran 3035BG accelerometer 

with sensibility of 105.7 mV/g, and an impact hammer model 9722A500. Figure 5.8 

presents the assembly arrangement and the process to obtain the modal parameters.   

 

a) b) 

  
Figure 5.8 a) Arrangement of the assembly and b) test to obtain the modal parameters 

 

The signals were acquired with a Polytec VIB-E-220 data acquisition card and 

processed with VibSoft signal analyzer software as shown in Figure 5.2a. Using the CutPro 

8 software, the modal parameters were fitted resulting the values 휁 = 0.0423, 𝑚𝑚 = 5.88 

kg, 𝑓𝑚 = 157.5 Hz, and 𝜔𝑛 = 989.6  rad/s before the characterization of the tool and 휁 =

0.0328, 𝑚𝑚 = 6.14 kg, 𝑓𝑚 = 159.3 Hz, and 𝜔𝑛 = 1000.9  rad/s after the characterization of 

the tool. 

 
Determination of cutting coefficients 

 

A multivariable cutter provided by a local toolmaker was characterized by using the 

Eq. (5.2) and the experimental setup shown in Figure 5.2b.  

Table 5.2 summarizes the main geometric characteristics of the multivariable tool. 

Notice that the parameters of Table 5.1 are different that the parameters for the tool 

examined at presented in Table 5.2, so although the lobes are similar, they are not equal 

and the simulated results obtained previously in Figure 5.5 and Figure 5.6 also differ with 

the results obtained with the new parameters.  

A total of 4 cuttings were performed for full radial immersion in aluminum 7075T6 

during dry machining. The forces were recorded by using a dynamometer 9257B Kistler 

and the spindle speed was set at 1500 rpm based on the dynamometer’s natural frequency 

to avoid the amplification of milling forces. The force signals were acquired using a 

VibSoft-20 acquisition card at a sample rate of 48 kHz and processed in a custom-made 

MATLAB app to remove drift and noise.  
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Table 5.2. Main geometric parameters of experimental multivariable tool. 

 

Diameter 12.7 mm 

Cutting length 25 mm 

Coating type Uncoated 

Number of teeth 4 

Helix angles  40.71°, 38.73°, 36.33°, 38.6° 

Pitch angles 110°, 80°, 100°, 70° 

 

Cutting forces data were collected for the axial depth of cut of 1.5 mm and four values 

of feed per tooth 0.03, 0.06, 0.09 and 0.12 mm, so the resulting average cutting coefficients  

were 𝐾𝑡𝑐 = 975.1517 × 106 N/m2 and 𝐾𝑛𝑐 = 298.7496 × 106 N/m2; since those 

coefficients were the average, those values were used for each tooth. Figure 5.9 shows the 

workpiece assembled on the dynamometer to capture the signal of the cutting forces. 

 

 
Figure 5.9 Experimental test to obtain the cutting forces 

 

A characterization with a 25 percent of radial immersion was also performed, to 

analyze influence of the forces when we study it by edges. To obtain the cutting force 

coefficients when we have 𝑎𝑑 = 0.25 Eqs. (2.12) are used, so we combine the experimental 

signal of the forces in X and Y and by linear regression we obtain the specific coefficients; 

we did not employ the equations for forces in Z since the model was considered to be in 

ODF. 

In Figure 5.10 it is represented the scheme where we can observe the angle when the 

edge of the tool start to cut the workpiece and when it leaves the workpiece, when cutting 

with radial immersion of the tool 25 %. It is observed that for this configuration 𝜙𝑠𝑡 =
2𝜋

3
 

and 𝜙𝑒𝑥 = 𝜋. 
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Figure 5.10 Scheme for the representation of 𝜙𝑠𝑡 and 𝜙𝑒𝑥 for radial immersion of 25 %. 

 

After analyzing the force signals in x-y for each tooth obtained experimentally and 

evaluating Eq. (2.12), we obtained the specific cutting coefficients listed in Table 5.3. 

Table 5.3. Specific cutting coefficients characterized by edges with radial immersion of 

25% for multivariable tool. 

 𝐾𝑡𝑐 (× 106 𝑁/𝑚2) 𝐾𝑟𝑐 (× 106 𝑁/𝑚2) 

Tooth 1 1596.984672 287.5141278 

Tooth 2 1296.676141 487.945012 

Tooth 3 2406.422162 799.772147 

Tooth 4 1554.751903 529.221760 

 
Experimental analysis of 1 dof milling with multivariable tool 

 

The stability lobes computed for the multivariable tool before (black line) and after 

(blue dotted line) the characterization using the third-order EMHPM with a mesh of 

200 × 160 (𝑛 × 𝑎𝑝) are shown in Figure 5.11 using the parameters of Table 5.2, and 

considering that in all teeth the values of 𝐾𝑡𝑐 and 𝐾𝑟𝑐 are 975.1517 × 106 N/m2 and 

298.7496 × 106 N/m2 respectively. 

The modal parameters to graph the lobes before the test, were 휁 = 0.0423, 𝑚𝑚 = 5.88 

kg, and 𝑓𝑚 = 157.5 Hz, and after the test we obtain the parameters 휁 = 0.0328, 𝑚𝑚 =

6.14 kg,  and  𝑓𝑚 = 159.3 Hz.  An approximation of order 𝑚 = 7 was used with 𝑁 =241 

and 𝑎𝑒 = 3.175 mm.  

To validate the lobe, several time-domain simulations were performed using the 

third-order EMHPM solution described by Eq. (4.49). Experiments for n=2500 rpm, until 

6000 rpm with increments of 500 rpm were developed with axial depth of 1, 2, 3, 4 and 5 

mm as indicated in Figure 5.11 with 𝑎𝑑 =25 %. 
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Figure 5.11 Stability lobes of multivariable tool for experimentation with 𝑎𝑒 = 3.175 mm, 

black line represents the lobes for modal parameters at the beginning of the characterization 

and red lines for the end of the characterization. Circles represent stable cases; squares 

represent cases with hopf frequencies, and triangles cases with flip frequencies. 

 

Also, we graphed the lobes using the modal parameters after the test, with the 

specific cutting coefficients presented in Table 5.3 and with the parameters of the tool 

presented in Table 5.2; Figure 5.12 present the lobes.  

 

 
Figure 5.12 Stability lobes of multivariable tool for experimentation with 𝑎𝑒 = 3.175 mm, and 

with specific cutting forces obtained with characterization by edges. Circles represent stable 

cases; squares represent cases with hopf frequencies, and triangles cases with flip 

frequencies. 

 

It is clearly observed that when we characterize the forces with full immersion, and 

obtain the average cutting coefficients, there are a difference in the lobes if we 

characterize the forces by edges, however more study needs to be developed in the 

analysis. 

 
Tool characterization 

 

Figure 5.13 shows the arrangement to characterize the multivariable tool, there it is 

observed a laser vibrometer of doppler effect CLV-2534 employed in the test to obtain the 

vibrations.  
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Figure 5.13 Experimental arrangement to characterize the milling tool 

 

Figure 5.14 shows by way of example the signals acquired during a series of tests 

with an increment of 500 rpm at a constant depth of 1 mm. Figure 5.14b shows the zoom 

in of the tachometer signal for the test with n=3000 rpm and 𝑎𝑝=1, while that Figure 5.14d 

shows the zoom in of the velocity signal for n=3000 rpm. 

 

a) b) 

  
c) d) 

  
Figure 5.14 Signals obtained with n=2500, 3000, 3500, 4000, 4500 rpm, 𝑎𝑝=1 mm, a) tachometer 

signal, b) zoom in of the tachometer signal, c) velocity signal, d) zoom in of the velocity. 
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The simulated vibrations for the chosen cutting conditions were analyzed using the 

Continuous Wavelet Transform (CWT), the Power Spectral Density (PSD) and Poincaré 

Maps (PM).  The frequencies 𝑓 of the CWT and PM were normalized 𝑓𝑛 = 𝑓 𝑓ℎ⁄   according 

to the spindle frequency 𝑓ℎ. Figure 5.15 illustrates the CWT, PSD and PM for simulated 

vibrations using the multivariable tool with different axial depths and spindle speeds.  

 
a) b) c) 

   
d) e) f) 

   
g) h) i) 

   
j) k) l) 
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m) n) o) 

   
p) q) r) 

   
Figure 5.15 CWT, PSD and Poincaré diagrams to validate experimental tests. 

 

The scalogram in Figure 5.15a identifies the test near to the stable cutting, but in a 

transition region, normalized cutting frequencies present a dominant value of 𝑓𝑛 =4 which 

is almost the natural frequency 𝑓𝑚 = 157.5 Hz. Since the dominant frequency is almost 

the natural frequency, the amplitude is high. This is also confirmed by the PSD analysis 

shown in Figure 5.15b. The PM illustrated in Figure 5.15c shows the vibration which 

confirms the transient zone. The scalogram in Figure 5.15d presents a case near to the 

stable cutting, with the normalized cutting frequency near to the natural frequency, the 

PSD analysis showed in Figure 5.15e also confirms it. The PM illustrated in Figure 5.15f 

shows a slight vibration that confirms a case approximating to a stable condition.  

Figure 5.15g suggest that the lobes are crossing near to this region, the cutting 

frequency presented in Figure 5.15h confirms the result presented in the scalogram, and 

poincaré diagram in Figure 5.15i also indicates that there is a transient condition. For 𝑎𝑝=4 

and n=2500 rpm it is observed that there is a region of instability which confirms that the 

stability lobes are to the left of that position, several frequencies are around the dominant. 

At n=5000 rpm with 𝑎𝑝=5 it is observed in the Figure 5.15m-o that it is also a region 

unstable, but at n=6500 and 𝑎𝑝=5, it is observed how the vibration is reduced, showing 

that the stability lobes goes near to this region. Annex A present more CWT, PSD and PM 

for experiments with different axial depth and spindle speeds. 

An exploration was realized with a depth of 15 mm, at different spindle speeds, 

Figure 5.16 present the results for the lobes with the multivariable tool using  휁 = 0.0328, 

𝑚𝑚 = 6.14 kg, 𝑓𝑚 = 159.3 Hz, and 𝜔𝑛 = 1000.9  rad/s with the average cutting coefficients 

obtained previously in full immersion, 𝐾𝑡𝑐 = 975.1517 × 106 N/m2 and 𝐾𝑛𝑐 = 298.7496 ×
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106 N/m2. Notice that a lobe with the coefficients calculated by edges should be included, 

since the influence of the specific cutting coefficients could change the lobes 

significatively. 

 

 
Figure 5.16 Stability lobes of multivariable tool for experimentation with 𝑎𝑒 = 1 mm 

 

Figure 5.17 illustrates the CWT, PSD and PM for simulated vibrations using the 

multivariable tool with different spindle speeds maintaining the axial depth to 15 mm, 

𝑎𝑒 for the essays was 1 mm.  

 PSD and Poincaré of Figure 5.17b,c shows a region in the stable zone, normalized 

cutting frequencies present a dominant value of 𝑓𝑛 =4 which is almost the natural 

frequency, however, the scalogram in Figure 5.17a appears to indicate that the zone is 

unstable. The PM illustrated in Figure 5.17f shows clearly for n=3000 rpm an unstable 

condition which is confirmed by the CWT and the PSD.  

The CWT in Figure 5.17j shows a dominant frequency of 2 times the spindle 

frequency, PSD and PM in Figure 5.17k,l shows that the tool is working in a zone that is 

almost stable. In Figure A.5 of the the annexes A more experiments are presented for the 

axial depth of 15 mm. More investigation needs to be efectuated to understant fully the 

behaviors that are given with multivariable tools and that present multifrequencies due 

to the geometry of the tool. 

 
a) b) c) 
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d) e) f) 

   
g) h) i) 

   
j) k) l) 

   
   

Figure 5.17 Analysis of cutting at 15 mm, with different spindle speeds. 
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Conclusions 
 

In this work, quadratic and cubic polynomials were used to approximate the delayed 

terms of delay differential equations. Numerical simulations shown that using second- 

and third-order  EMHPM improve convergence rate and require less computational time 

when compare to the first-order EMHPM, and to Semi-Discretization and Full-

Discretization methods, since fewer approximations or less discrete intervals are needed 

to reduce the computation time. 

To further assess the applicability of the proposed method, the third-order EMHPM 

was used for determining the stability bounds in one-degree-of-freedom milling 

operation with a multivariable tool, demonstrating that the stability zone is improved in 

comparison with a regular tool. For instance, at 2500 rpm the critical axial depth of cut is 

1.3 mm using the regular milling tool. However, using the multivariable tool, the critical 

axial depth of cut was increased until 2.17 mm but more interesting, a stable zone appears 

above 8.55 mm. 

The CWT scalograms, PSD charts and PM were employed to validate the stability 

lobes found by using the third-order EMHPM for the multivariable tool. Numerical 

solutions confirmed the system dynamics behavior predicted by the third-order 

EMHPM.    

Based on the above results, this work provides evidence the third-order EMHPM can 

be used to study dynamic phenomena that appear at higher axial depths of cut due to the 

multivariable design of the tool, which breaks the excitation frequencies at lower depth 

of cut. 
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Annexes 
 
Annex A. Characterization of the multivariable tool varying the spindle speed and the 
depth of cut 

 
a) b) c) 

   
d) e) f) 

   
g) h) i) 

   
j) k) l) 
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Figure A1. CWT, PSD and PM for 𝑎𝑝=1 mm, 𝑎𝑒=3.175 mm, with spindle speed from 

2500-7000 rpm with increments of 500 rpm. 

 
a) b) c) 
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Figure A2. CWT, PSD and PM for 𝑎𝑝=2 mm, 𝑎𝑒=3.175 mm, with spindle speed from 

2500-7000 rpm with increments of 500 rpm. 

 
a) b) c) 

   
d) e) f) 
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Figure A3. CWT, PSD and PM for 𝑎𝑝=3 mm, 𝑎𝑒=3.175 mm, with spindle speed from 

2500-7000 rpm with increments of 500 rpm. 

 
a) b) c) 
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Figure A4. CWT, PSD and PM for 𝑎𝑝=4 mm, 𝑎𝑒=3.175 mm, with spindle speed from 

2500-7000 rpm with increments of 500 rpm. 
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Figure A5. CWT, PSD and PM for 𝑎𝑝=5 mm, 𝑎𝑒=3.175 mm, with spindle speed from 

2500-7000 rpm with increments of 500 rpm. 
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Figure A6. CWT, PSD and PM for 𝑎𝑝=15 mm, 𝑎𝑒=1 mm, with spindle speed from 

2500-3500 rpm and from 5000-7000 rpm with increments of 500 rpm.  
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Annex B. Matlab Codes 

 

B.1 Algorithm for milling in ODF with regular tool with dde23 vs zeroth to third order 

EMHPM 
 

function dde23_ddeEMHPM 

disp('Milling equation solution') 

%Modal parameters 

wn=922*2*pi;amort=0.011;mm=0.03993; 

%Specific cutting coefficients 

Ktc=6E8;Knc=2E8; 

%EMHPM parameters 

N=75+1; k=7;  

% Tool parameters and cutting conditions 

zn=2; n=12000; ad=1;ap=0.0015; ntau=8; %number of cycles 

phi_st=acos(2*ad-1);phi_ex=pi; 

tau=60/(zn*n); Tincr=tau/(N-1); 

tfin=ntau*tau; dsct1=N; % points in tau 

tt=linspace(-tau,tfin,(dsct1-1)*(ntau+1)+1)'; 

tspan=[0,tfin];  

tdde=linspace(0,tfin,(dsct1-1)*(ntau+1)+1);  

dde=@(t,y,z) 

milling_dde(t,y,z,wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex); 

sol=dde23(dde,tau,@history,tspan); 

xdde=deval(sol,tdde); 

%% Recursive zeroth order, initial condition c=[0.001 0] 

xi_cero=zeros((dsct1-1)*(ntau+1)+1,2);  

c=[0.001 0]; 

xi_cero(1:dsct1,[1,2])=xi_cero(1:dsct1,[1,2])+c; 

for it=dsct1+1:(dsct1-1)*(ntau+1)+1  

    xi_tau_N=xi_cero((it-dsct1),[1,2]);  

xi0=xi_cero((it-1),[1,2]);  

xi_cero(it,[1,2])=funcion_recursiva0(Tincr,tt(it),k,xi_tau_N,xi0, 

wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex); 

end 

%% Recursive first order EMHPM 

xi=zeros((dsct1-1)*(ntau+1)+1,2);  

c=[0.001 0]; 

xi(1:dsct1,[1,2])=xi(1:dsct1,[1,2])+c; 

for it=dsct1+1:(dsct1-1)*(ntau+1)+1  

    xi_tau_N=xi((it-dsct1),[1,2]);  

    xi_tau_N_=xi((it-dsct1+1),[1,2]); 

    xi0=xi((it-1),[1,2]); 

xi(it,[1,2])=funcion_recursiva1(Tincr,tt(it),k,xi_tau_N,xi_tau_N_,

xi0,tau,N,wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex);  

end 

%% Recursive second order 

xidos=zeros((dsct1-1)*(ntau+1)+1,2);  

c=[0.001 0]; 

xidos(1:dsct1,[1,2])=xidos(1:dsct1,[1,2])+c; 
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for it=dsct1+1:(dsct1-1)*(ntau+1)+1  

    xi_tau_N=xidos((it-dsct1),[1,2]);  

    xi_tau_N_=xidos((it-dsct1+1),[1,2]); 

    xi_tau_NN_=xidos((it-dsct1+2),[1,2]); 

    xi0=xidos((it-1),[1,2]); 

xidos(it,[1,2])=funcion_recursiva2(Tincr,tt(it),k,xi_tau_N, 

xi_tau_N_,xi_tau_NN_,xi0,tau,N,wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,

phi_ex); 

end 

%% %Recursive third order 

xitres=zeros((dsct1-1)*(ntau+1)+1,2); 

c=[0.001 0]; 

xitres(1:dsct1,[1,2])=xitres(1:dsct1,[1,2])+c; 

for it=dsct1+1:(dsct1-1)*(ntau+1)+1 

    xi_tau_N=xitres((it-dsct1),[1,2]); 

    xi_tau_N_=xitres((it-dsct1+1),[1,2]); 

    xi_tau_NN_=xitres((it-dsct1+2),[1,2]); 

    xi_tau_NNN_=xitres((it-dsct1+3),[1,2]); 

    xi0=xitres((it-1),[1,2]); 

xitres(it,[1,2])=funcion_recursiva3(Tincr,tt(it),k,xi_tau_N, 

xi_tau_N_,xi_tau_NN_,xi_tau_NNN_,xi0,tau,N,wn,ap,amort,mm,Ktc,Knc,

n,zn,phi_st,phi_ex); 

end 

%% %Plotting 

figure (2) 

figure1 = figure (2); 

axes1 = axes('Parent',figure1); hold(axes1,'on'); 

plot(tdde,xdde(1,:),'LineWidth',3,'LineStyle','-','Color',[.5 .5 .5]); 

plot(tt(1:2:end)',xi_cero(1:2:end,1),'LineWidth',1.5,'Marker','none','

LineStyle',':','MarkerFaceColor',[1 0 0],'Color',[0 0 0]); 

plot(tt(1:3:end)',xi((1:3:end),1),'LineWidth',1,'Marker','o', 

'LineStyle','none','Color',[0 0 0]); 

plot(tt(1:5:end)',xidos((1:5:end),1),'LineWidth',1,'Marker','x', 

'LineStyle','none','Color',[0 0 0]); 

plot(tt(1:7:end)',xitres((1:7:end),1),'LineWidth',1,'Marker', 

'square','LineStyle','none','Color',[0 0 0]); 

xlabel('Time (s)','FontWeight','normal','FontName','Times New 

Roman','Color',[0 0 0]); 

ylabel('Displacement (m)','LineWidth',1,'FontName','Times New Roman', 

'Color',[0 0 0]); 

legend('dde23','Zeroth-Order EMHPM','First-Order EMHPM','Second-Order 

EMHPM','Third-Order EMHPM'); 

title('EMHPM Milling Function') 

set(axes1,'FontName','Times New Roman','FontSize',22,'FontWeight', 

'normal','XColor',[0 0 0],'YColor',[0 0 0],'ZColor',[0 0 0]); 

legend1 = legend(axes1,'show'); 

set(legend1,'FontWeight','normal','Orientation','horizontal', 

'NumColumns',3,'Location','southoutside'); 

xlim(axes1,[0 tt(end)]); box on 

set(gcf,'position',[1,1, 1000 550]) 

fprintf('done') 

end 
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%% 

function 

Xout=funcion_recursiva0(T,t,k,xi_tau_N,xi0,wn,ap,amort,mm,Ktc,Knc,n,zn

,phi_st,phi_ex) 

xi=zeros(k+1,2); 

xi(1,:)=xi0; 

hxx=0; 

for iz=1:zn 

    phi_iz=mod((2*pi*n/60)*t+(2*pi*(iz-1)/zn),2*pi); 

    if (phi_iz>=phi_st)&&(phi_iz<=phi_ex), gg=1; 

    else, gg=0; 

    end 

    hxx=hxx+gg*sin(phi_iz)*(Ktc*cos(phi_iz)+Knc*sin(phi_iz)); 

end 

for itek=2:k+1 

    ik=itek-1; 

    if ik==1 %(if k=1) 

        g=1; 

    else 

        g=0; 

    end 

    A=[0 1; -wn^2-(ap/mm)*hxx -2*amort*wn]; 

    B=[0 0; (ap/mm)*hxx 0]; 

xi(itek,[1,2])=((T/ik)*(A*[xi(itek-1,[1,2])']+g*B*[xi_tau_N]'))'; 

    xi(itek,[1,2])=((T/ik)*(A*xi(itek-1,[1,2])'+g*B*(xi_tau_N)'))'; 

end 

Xout=sum(xi); 

end 

%% 

function 

Xout=funcion_recursiva1(T,t,k,xi_tau_N,xi_tau_N_,xi0,tau,N,wn,ap, 

amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex) 

xia=zeros(k+1,2); 

xib=zeros(k+1,2); 

xia(1,:)=xi0; 

hxx=0; 

for iz=1:zn 

    phi_iz=mod((2*pi*n/60)*t+(2*pi*(iz-1)/zn),2*pi); 

    if (phi_iz>=phi_st)&&(phi_iz<=phi_ex), gg=1; 

    else, gg=0; 

    end 

    hxx=hxx+gg*sin(phi_iz)*(Ktc*cos(phi_iz)+Knc*sin(phi_iz)); 

end 

for itek=2:k+1 

    ik=itek-1; 

    if ik==1  

        g=1; 

    else 

        g=0; 

    end 

    A=[0 1; -wn^2-(ap/mm)*hxx -2*amort*wn]; 

    B=[0 0; (ap/mm)*hxx 0]; 
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xia(itek,[1,2])=((T/ik)*(A*(xia(itek-1,[1,2])')+ 

g*B*(xi_tau_N)'))'; 

xib(itek,[1,2])=((T/itek)*((A*(xib(itek-1,[1,2])'))+  

g*((N-1)/tau)*T*((-B)*(xi_tau_N)'+B*(xi_tau_N_)')))'; 

end 

sum(xia); 

Xout=sum(xia)+sum(xib); 

end 

% %% 

function 

Xout=funcion_recursiva2(T,t,k,xi_tau_N,xi_tau_N_,xi_tau_NN_,xi0,tau,N,

wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex) 

xia=zeros(k+1,2); 

xib=zeros(k+1,2); 

xic=zeros(k+1,2); 

xia(1,:)=xi0; 

hxx=0; 

for iz=1:zn 

    phi_iz=mod((2*pi*n/60)*t+(2*pi*(iz-1)/zn),2*pi); 

    if (phi_iz>=phi_st)&&(phi_iz<=phi_ex), gg=1; 

    else, gg=0; 

    end 

    hxx=hxx+gg*sin(phi_iz)*(Ktc*cos(phi_iz)+Knc*sin(phi_iz)); 

end 

for itek=2:k+1 

    ik=itek-1; 

    if ik==1 

        g=1; 

    else 

        g=0; 

    end 

    A=[0 1; -wn^2-(ap/mm)*hxx -2*amort*wn]; 

    B=[0 0; (ap/mm)*hxx 0]; 

xia(itek,[1,2])=((T/ik)*(A*(xia(itek-1,[1,2]))'+ 

g*B*(xi_tau_N)'))'; 

xib(itek,[1,2])=((T/(ik+1))*((A*(xib(itek-1,[1,2]))')+  

g*((N-1)/tau)*T*B*(-(3/2)*(xi_tau_N)'+2*(xi_tau_N_)'-

0.5*(xi_tau_NN_)')))'; 

xic(itek,[1,2])=((T/(ik+2))*((A*xic(itek-1,[1,2])')+ 

g*(((N-1)/tau)^2)*((T^2)/2)*B*((xi_tau_N)'-2*(xi_tau_N_)'+ 

(xi_tau_NN_)')))'; 

end 

sum(xia); 

Xout=sum(xia)+sum(xib)+sum(xic); 

end 

%% 

function Xout=funcion_recursiva3(T,t,k,xi_tau_N,xi_tau_N_,xi_tau_NN_, 

xi_tau_NNN_,xi0,tau,N,wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex) 

xia=zeros(k+1,2); 

xib=zeros(k+1,2); 

xic=zeros(k+1,2); 

xid=zeros(k+1,2); 



122 

 

 

xia(1,:)=xi0; 

hxx=0; 

for iz=1:zn 

    phi_iz=mod((2*pi*n/60)*t+(2*pi*(iz-1)/zn),2*pi); 

    if (phi_iz>=phi_st)&&(phi_iz<=phi_ex),  gg=1; 

    else, gg=0; 

    end 

    hxx=hxx+gg*sin(phi_iz)*(Ktc*cos(phi_iz)+Knc*sin(phi_iz)); 

end 

for itek=2:k+1 

    ik=itek-1; 

    if ik==1 

        g=1; 

    else 

        g=0; 

    end 

    A=[0 1; -wn^2-(ap/mm)*hxx -2*amort*wn]; 

    B=[0 0; (ap/mm)*hxx 0]; 

xia(itek,[1,2])=((T/ik)*(A*(xia(itek-1,[1,2]))'+ 

g*(B)*(xi_tau_N)'))'; 

xib(itek,[1,2])=((T/(ik+1))*((A*(xib(itek-1,[1,2]))')+  

g*((N-1)/tau)*T*B*((-11/6)*(xi_tau_N)'+3*(xi_tau_N_)'-

(3/2)*(xi_tau_NN_)'+(1/3)*(xi_tau_NNN_)')))'; 

xic(itek,[1,2])=((T/(ik+2))*((A*xic(itek-1,[1,2])')+ 

g*((T^2)/2)*(((N-1)/tau)^2)*B*(2*(xi_tau_N)'-

5*(xi_tau_N_)'+4*(xi_tau_NN_)'-(xi_tau_NNN_)')))'; 

xid(itek,[1,2])=((T/(ik+3))*((A*xid(itek-1,[1,2])')+ 

g*((T^3)/6)*(((N-1)/tau)^3)*B*(-(xi_tau_N)'+3*(xi_tau_N_)'-

3*(xi_tau_NN_)'+(xi_tau_NNN_)')))'; 

end 

Xout=sum(xia)+sum(xib)+sum(xic)+sum(xid); 

end 

%% 

%Function for dde 

function dydt = 

milling_dde(t,y,z,wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex) 

hxx=0; 

for iz=1:zn 

    phi_iz=mod((2*pi*n/60)*t+(2*pi*(iz-1)/zn),2*pi);  

    if (phi_iz>=phi_st)&&(phi_iz<=phi_ex) 

        gg=1; 

    else 

        gg=0; 

    end 

    hxx=hxx+gg*sin(phi_iz)*(Ktc*cos(phi_iz)+Knc*sin(phi_iz)); 

end 

dydt = [y(2); -2*amort*wn*y(2)-wn^2*y(1)-(ap*hxx/mm)*(y(1)-z(1))]; 

end 

% 

function out=history(t) 

out=[0.001+0*t 0+0*t]; %c=[0.001 0] 

end 
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B.2 Algorithm for milling in ODF with multivariable tool with dde23 vs third order 

EMHPM 
 

% Specific cutting coefficients 

Ktc=[6 6]*1E8; Krc=[2 2]*1E8; 

% Modal parameters 

omg=922*2*pi; zta=0.011; msa=0.03993; 

% Tool parameters 

D=10*1E-3; %diameter of the tool 

pitch=[180 180]*pi/180; %pitch angles 

ang_hel=[1 1]*pi/180; %helix angles 

zn=length(pitch); Ndiscos=10; n=12000; dlt_ap=(1.5e-3)/Ndiscos;  

% EMHPM parameters 

N=75*zn+1; k=7; 

% Cutting conditions 

aD=1; updw=-1; ntau=4; dsct1=N; 

% Initialization 

fprintf('surf: 00%%'); 

for itn=1:length(n) 

    fprintf('\b\b\b%2d%%',floor(100*itn/length(n))); 

    for it_ap=1:length(dlt_ap) 

        tau=60/n(itn); 

        Tincr=tau/(N-1); 

        tfin=ntau*tau; 

        tt=linspace(-tau,tfin,(dsct1-1)*(ntau+1)+1)'; 

        retraso_ang=zeros(length(zn),length(Ndiscos)); 

        Tau_N=retraso_ang; phi_0=retraso_ang; 

%         Discretization of the tool axially 

        for Ndiscos=1:Ndiscos 

            for iz=1:zn 

                if iz==1, iz_previous=zn;  

                else,  iz_previous=iz-1; 

                end 

retraso_ang(iz,Ndiscos)=pitch(iz_previous)+(Ndiscos-

1)*dlt_ap(it_ap)*2*(tan(ang_hel(iz))-

tan(ang_hel(iz_previous)))/D; 

Tau_N(iz,Ndiscos)=round((N-1)*retraso_ang(iz,Ndiscos)/ 

(2*pi)); 

% Calculation of the position angle associated with each 

cutting edge per disk 

phi_0(iz,Ndiscos)=mod(pitch(iz)-(2*tan(ang_hel(iz))/D)* 

(Ndiscos-1)*dlt_ap(it_ap)-sum(pitch(1:iz)),2*pi); 

            end 

        end 

        % 

        if updw==1, phi_st=0; phi_ex=acos(1-2*aD); 

        elseif updw==-1, phi_st=acos(2*aD-1);  phi_ex=pi; 

        end 

        % Mechanistic model of cutting forces 

        hyy=zeros(zn,Ndiscos,N-1); 
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        % Calculation of cutting forces on each discretization 

        for iN=1:ntau*N-1  

            % Searching for disks that are cutting 

            phi_iN=mod(phi_0+(iN)*2*pi/(N-1),2*pi);  

            hyy_cut=zeros(zn,Ndiscos); 

            phi_cut=find(phi_iN>=phi_st & phi_iN<=phi_ex);  

            filo_cut=mod(phi_cut,zn);  

            filo_cut(filo_cut==0)=zn;  

% Calculation of cutting forces on edges that meet the 

condition           

hyy_cut(phi_cut)=sin(phi_iN(phi_cut)).*(Ktc(filo_cut)'.*cos

(phi_iN(phi_cut))+Krc(filo_cut)'.*sin(phi_iN(phi_cut))); 

hyy(:,:,iN)=hyy_cut;  

        end 

val_Nmin=min(min(Tau_N)); val_Nmax=max(max(Tau_N)); 

siz=size(Tau_N);  

        elements=zeros(val_Nmax-val_Nmin+1,(siz(1,1)*siz(1,2)+1)); 

        for i=1:(val_Nmax-val_Nmin+1) 

            val=length(find(Tau_N==val_Nmin+i-1));  

            elements(i,1)=val_Nmin+i-1;  

elements(i,2:val+1)=elements(i,2:val+1)+ 

find(Tau_N==val_Nmin+i-1)';  

        end 

        iN_=(ntau*N)-1; iF_=val_Nmax-val_Nmin+1; 

        Force=zeros(length(iN_),length(iF_)); 

        %Sum of all forces on time 

        for iN=1:iN_    

            hyy_iN=hyy(:,:,iN); 

for i_F=1:iF_   

Force(iN,i_F)=sum(hyy_iN(elements(i_F,2:(length(find 

(elements(i_F,2:end)))+1)))); 

            end 

        end 

        %% 

        % Recursive third order multivariable  

        zi_tres=zeros((dsct1-1)*(ntau+1)+1,2); 

        c=[0.001 0]; 

        zi_tres(1:dsct1,:)=zi_tres(1:dsct1,:)+c; 

        Ba_retardo=[0 0; 0 0]; 

        Bb_retardo=[0 0; 0 0]; 

        Bc_retardo=[0 0; 0 0]; 

        Bd_retardo=[0 0; 0 0]; 

        iN=0; 

        for it=dsct1+1:(dsct1-1)*(ntau+1)+1 

            zi0=zi_tres((it-1),:); % el anterior 

iN=iN+1;  

zi_tres(it,:)=funcion_recursiva3(Ba_retardo,Bb_retardo, 

Bc_retardo,Bd_retardo,Tincr,k,it,zi_tres,zi0,tau,N,omg, 

dlt_ap(it_ap),zta,msa,Force,val_Nmax,val_Nmin,iN); 

        end 

    end 
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end 

%% dde23 

N=((N-1)/zn)+1; ad=aD; wn=omg; amort=zta; mm=msa; 

Ktc=Ktc(1); Knc=Krc(1); 

ap=dlt_ap*Ndiscos; 

phi_st=acos(2*ad-1);phi_ex=pi; 

tau=60/(zn*n); Tincr=tau/(N-1); ntau=ntau*2;  

tfin=ntau*tau;  

dsct1=N;  

tspan=[0,tfin];  

tdde=linspace(0,tfin,(dsct1-1)*(ntau+1)+1);  

dde=@(t,y,z) 

milling_dde(t,y,z,wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex); 

sol=dde23(dde,tau,@history,tspan); 

xdde=deval(sol,tdde); 

%% 

figure (2) 

figure1 = figure (2); 

axes1 = axes('Parent',figure1); 

hold(axes1,'on'); 

plot(tdde,xdde(1,:),'LineWidth',3,'LineStyle','-','Color',[.5 .5 .5]); 

plot(tt(1:2:end)',zi_tres((1:2:end),1),'LineWidth',1,'Marker','x', 

'LineStyle','none','Color',[0 0 0]); 

xlabel('Time (s)'); ylabel('Displacement (m)'); 

legend('dde23','Third-Order EMHPM'); 

title('EMHPM Milling Function') 

xlim(axes1,[0 tt(end)]); box on 

set(gcf,'position',[1,1, 870 490]) 

fprintf('done') 

%% 

function 

Zout=funcion_recursiva3(Ba_retardo,Bb_retardo,Bc_retardo,Bd_retardo,T,

k,it,zi,zi0,tau,N,omg,dap_xdisco,zta,msa,Force,val_Nmax,val_Nmin,iN) 

zia=zeros(k+1,2); 

zib=zeros(k+1,2); 

zic=zeros(k+1,2); 

zid=zeros(k+1,2); 

zia(1,:)=zi0; 

A=[0 1; -omg^2-dap_xdisco*sum(Force(iN,:))/msa -2*zta*omg]; 

for itek=2:k+1 

    ik=itek-1; 

    if ik==1 

        g=1; 

    else 

        g=0; 

    end 

    for d=val_Nmin:val_Nmax 

        dn=d-val_Nmin+1; 

        B=[0 0; (dap_xdisco/msa)*sum(Force(iN,dn)) 0]; 

        Ba_retardo(:,:)=B*(zi(it-d-1))'+Ba_retardo(:,:); 

Bb_retardo(:,:)=((N-1)/tau)*T*B*(-(11/6)*zi(it-d-1)+3*zi(it-

d)-(3/2)*zi(it-d+1)+(1/3)*zi(it-d+2))'+Bb_retardo(:,:); 
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Bc_retardo(:,:)=(((N-1)/tau)^2)*((T^2)/2)*B*(2*zi(it-d-1)-

5*zi(it-d)+4*zi(it-d+1)-zi(it-d+2))'+Bc_retardo(:,:); 

Bd_retardo(:,:)=(((N-1)/tau)^3)*((T^3)/6)*B*(-zi(it-d-

1)+3*zi(it-d)-3*zi(it-d+1)+zi(it-d+2))'+Bd_retardo(:,:); 

    end 

zia(itek,:)=((T/ik)*(A*(zia(itek-1,:))'+ 

g*[0;(Ba_retardo(2,1,:))]))'; 

zib(itek,:)=((T/(ik+1))*((A*(zib(itek-1,:))')+ 

g*[0;(Bb_retardo(2,1,:))]))'; 

zic(itek,:)=((T/(ik+2))*((A*(zic(itek-1,:)'))+ 

g*[0;(Bc_retardo(2,1,:))]))'; 

zid(itek,:)=((T/(ik+3))*((A*(zid(itek-1,:)'))+ 

g*[0;(Bd_retardo(2,1,:))]))'; 

end 

Zout=sum(zia)+sum(zib)+sum(zic)+sum(zid); 

end 

%% function for dde 

function dydt = 

milling_dde(t,y,z,wn,ap,amort,mm,Ktc,Knc,n,zn,phi_st,phi_ex) 

hxx=0; 

for iz=1:zn 

    phi_iz=mod((2*pi*n/60)*t+(2*pi*(iz-1)/zn),2*pi);  

    if (phi_iz>=phi_st)&&(phi_iz<=phi_ex) 

        gg=1; 

    else 

        gg=0; 

    end 

    hxx=hxx+gg*sin(phi_iz)*(Ktc*cos(phi_iz)+Knc*sin(phi_iz)); 

end 

dydt = [y(2); -2*amort*wn*y(2)-wn^2*y(1)-(ap*hxx/mm)*(y(1)-z(1))]; 

end 

% 

function out=history(t) 

out=[0.001+0*t 0+0*t]; 

end 

 

B.3 Algorithm for stability with multivariable tool using the third order EMHPM 

 
function thesis_STBLBS_vHLX_vPCH 

disp('Estabilidad de fresado en un grado de libertad con herramientas 

multivariable, Orden 3 Jose Sosa...') 

%Valores de entrada  

% Parámetros del EMHPM 

m_aprx=7; N=241; 

% Barrido de los parámetros del sistema  

n_dsk=160;  

n_s=linspace(1.5E3,8E3,200); ap_s=linspace(1E-3/n_dsk,18E-3,n_dsk);  

dlt_ap=(ap_s(end)-ap_s(1))/(n_dsk); 

% Coeficientes de fuerza específica  

Ktc=[1 1 1 1]*975.1517E6; Krc=[1 1 1 1]*298.7496E6;  
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% Parámetros modales  

omg=158.8*2*pi; zta=3.36e-2; msa=6.13; 

% Parámetros de herramienta  

D=12.7E-3; %diametro 

ptch=[110 80 100 70]*pi/180; %angulo entre filos  

hlx=[40.71 38.73 36.33 38.6]*pi/180; %angulo entre hélices 

k_bta=2*tan(hlx)/D; z_n=length(hlx); %numero filos 

aD=1E-3/D; %relación de inmersión radial del corte 

% Condiciones de corte  

updw=-1;   

if updw==1, phi_st=0; phi_ex=acos(1-2*aD);  

elseif updw==-1, phi_st=acos(2*aD-1); phi_ex=pi;  

end 

% Inicializar variables 

lambda_fEMm=zeros(length(n_s),length(ap_s));  

Tau_N=zeros(z_n,n_dsk); retraso_ang=Tau_N; phi_0=Tau_N; 

% Discretización de la herramienta axialmente 

for i_dsk=1:n_dsk %desde el primer disco hasta el último 

    for iz=1:z_n %para cada filo 

        if iz==1 

            iz_previous=z_n; 

        else 

            iz_previous=iz-1; 

        end  

        % Cálculo de retardo asociado con cada filo por disco  

retraso_ang(iz,i_dsk)=ptch(iz_previous)+(k_bta(iz)-

k_bta(iz_previous))*dlt_ap*(i_dsk-1); 

        Tau_N(iz,i_dsk)=round((N-1)*retraso_ang(iz,i_dsk)/(2*pi)); 

% Cálculo del ángulo de posición asociado con cada filo por 

disco 

phi_0(iz,i_dsk)=mod(ptch(iz)-k_bta(iz)*(i_dsk-1)*dlt_ap-

sum(ptch(1:iz)),2*pi);  

    end 

end 

% Modelo mecanístico de fuerzas de corte  

hyy=zeros(z_n,n_dsk,N-1);  

% calculo de fuerzas de corte en cada discretizacion 

for iN=1:N-1  

    % Búsqueda de los discos que se encuentran cortando  

    phi_iN=mod(phi_0+(iN)*2*pi/(N-1),2*pi);  

    hyy_cut=zeros(z_n,n_dsk);  

    phi_cut=find(phi_iN>=phi_st & phi_iN<=phi_ex);  

    filo_cut=mod(phi_cut,z_n);  

    filo_cut(filo_cut==0)=z_n; 

    % Cálculo de las fuerzas de corte en filos que cumplen condición 

hyy_cut(phi_cut)=cos(phi_iN(phi_cut)).*(-Ktc(filo_cut)'.* 

sin(phi_iN(phi_cut))+Krc(filo_cut)'.*cos(phi_iN(phi_cut)));  

    hyy(:,:,iN)=hyy_cut;  

end 
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% Implementación del algoritmo  

% Redimensionamiento al máximo retardo  

N_=N; N=max(max(Tau_N))+1; %encuentra el maximo del maximo de los 

vectores de retardo 

% Construcción de la matriz del mapa  

Di=zeros(N+1,N+1); Di(4:N+1,3:N)=eye(N-2);  

Di(3,1:2)=[1 0];  

% Iniciar el barrido de los parámetros del sistema  

for iap=1:length(ap_s)  

    for in=1:length(n_s)  

        T=60/n_s(in); 

        dt=T/(N_-1); D=eye(N+1);  

        % Cálculo de la matriz de transición aproximada  

        for iN=1:N_-1  

            Di(1:2,1:N+1)=zeros(2,N+1);  

            hyy_iN=hyy(:,1:iap,iN);  

            ind_cut=find(hyy_iN); %encuentra elementos que no son cero 

tau_cut=unique(Tau_N(ind_cut)); %da una sola vez cada valor 

de la matriz sin repetirlo. 

            % Construcción matriz A del sistema dinámico  

A=[0 1; -omg^2-dlt_ap*sum(hyy_iN(ind_cut))/msa -2*zta*omg];  

            if ~isempty(tau_cut)  

                % Cuando existen discos en corte  

                for itau=1:length(tau_cut)  

ind_cut_tau= find(hyy_iN~=0 & 

Tau_N(:,1:iap)==tau_cut(itau));  

                    % Construcción de las matrices B del sistema 

                    B=dlt_ap*sum(hyy_iN(ind_cut_tau))/msa; 

                    Q=zeros(2,4); P=eye(2); Ak=P; kt=1;  

                    % Cálculo de las matrices aproximadas P, Q y R  

                    for ik=1:m_aprx  

                        kt=kt*dt/ik; AkBkt=Ak(:,2)*B*kt;  

Q=[Q(:,1)+AkBkt*(dt/(ik+1))*((N_-1)/T)* 

(1/3)+AkBkt*((dt^2/(ik+2))/(ik+1))*   

(((N_-1)/T)^2)*(-1)+AkBkt*((dt^3/(ik+3))/ 

((ik+2)*(ik+1)))*(((N_-1)/T)^3), 

Q(:,2)+AkBkt*(dt/(ik+1))*((N_-1)/T)+ 

AkBkt*((dt^2/(ik+2))/(ik+1))*(((N_-1)/T)^2)* 

(-7/2)+AkBkt*((dt^3/(ik+3))/((ik+2)*(ik+1)))* 

(((N_-1)/T)^3)*(9/2),Q(:,3)+AkBkt*(dt/(ik+1))* 

((N_-1)/T),Q(:,4)+AkBkt]; 

Ak=Ak*A; P=P+Ak*kt;  

                    end 

Q(:,2)= Q(:,2)-(15/2)*Q(:,1); Q(:,3)= Q(:,3)-

3*Q(:,1)-2*Q(:,2); Q(:,4)= Q(:,4)-(1)*Q(:,1)-

(1)*Q(:,2)-(1)*Q(:,3); 

                    % Construcción de la matriz del mapa i-ésimo  

                    Di(1:2,1:2)=P; ind_=tau_cut(itau)+1;  

                    Di(1:2,ind_-2:ind_+1)=Di(1:2,ind_-2:ind_+1)+Q;  

                end 

            else 
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                % Cuando no existen discos en corte  

                P=eye(2); Ak=P; kt=1;  

                for ik=1:m_aprx 

                    kt=kt*dt/ik; Ak=Ak*A; P=P+Ak*kt;  

                end  

                Di(1:2,1:2)=P;  

            end 

            % Cálculo de la matriz de transición actual  

            D=Di*D;  

        end 

% Cálculo y almacenamiento del multiplicador de Floquet de 

mayor magnitud  

        lambda_fEMm(in,iap)=max(abs(eig(D)));  

    end 

end 

figure 

contour(n_s,ap_s*1E3,lambda_fEMm',[1 1],'LineColor',[1 0 0], 

'LineWidth',2); hold on 

xlabel('Spindle speed [rev/min]'); ylabel('Axial depth of cut [mm]') 

title(['\rm 3rd EMHPM, \itN=', num2str(N_), ', aD=', num2str(aD)]) 

legend('Variable tool design','Fontsize',16) 

fprintf('Hecho...') 

end 
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