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Computational estimation of system-level gene coexpression
across human tissues

by
Miguel Ángel Cortés Guzmán

Abstract

Large-scale gene coexpression projects have been a valuable resource for researchers involved
in bioinformatics, molecular biology and biomedical sciences as they provide support for
formulating hypotheses regarding gene functions and interactions, as well as for prioritiz-
ing genes in experimental designs. Such projects however, contain results calculated from
all sorts of samples including healthy, disease and experimental condition specimens in ad-
dition to many of them not being based on sequencing technologies. The understanding of
normality in the context of human gene coexpression is pivotal as this helps uncovering new
functional associations for previously known or unknown genes and it serves as a compar-
ison point when studying disease states. Other tools besides the Pearson Correlation Coef-
ficient have not been traditionally explored for large-scale coexpression, potentially letting
more complex non-linear associations between genes pass. In this computer science master
thesis, a system-level coexpression estimation across a variety of normal human tissues is pro-
posed. The objective is not only improve on the current areas of opportunity that exist in the
large-scale coexpression research domain, but to also provide the scientific community with a
novel and useful resource of system-level human coexpression data. Results comprise the first
large-scale coexpression estimation in the literature that exclusively considers normal sam-
ples in the input data that were profiled with sequencing technologies in combination with 3
distinct coexpression metrics considered for calculation: the Pearson Correlation Coefficient,
the Spearman Rank Correlation Coefficient and the highly interpretable Chi-square test of
independence.
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Chapter 1

Introduction

In the course of the last decade, revolutionary advances in the field of molecular biology have
allowed for the characterization of human genes and features associated with them through
sequencing technologies [1]. These technologies make it possible for researchers to obtain
the sequence of building blocks constituting complex molecules such as Deoxyribonucleic
Acid (DNA) and Ribonucleic Acid (ARN) which in turn allows for the study of genes at
the molecular level. Despite the high specialization of these sequencing technologies, every
day they are becoming more accessible and affordable to researchers around the world. As
a result, massive amounts of genomic data generated from these studies have been deposited
in public scientific repositories at a growing rate across the years [2]. This gives rise to the
invaluable opportunity of systematically processing and analyzing these experiments by using
computational tools and techniques to uncover useful biological knowledge from the initial
raw data.

The measurement of a gene’s activity is one capability that sequencing technologies
have made possible at a higher resolution than ever before, this measurement is known as
gene expression and it can be quantified in biological samples for thousands of genes at the
same time [1]. A widely applied analysis consists of comparing gene expression between
samples in different conditions (e.g. Healthy against diseased) while looking for statistically
significant genes differing in their expression [3]. This classic differential expression analysis
provides insight into, for example, what genes are involved in disease or experimental states.
This allows for the generation of hypotheses proposing new diagnostic biomarkers and genes
with patient survival prediction potential [4,5]. Differential expression analysis is an example
of the usefulness of gene expression data even when considering genes just at an individual
level and not studying the relationships between them [6]. However, many other analyses for
gene expression data exist. In some of them, the relationships between genes are pivotal in
helping the discovery of new gene functions and inter-regulations.

Genes do not act alone, but rather they are organized in complex networks of interactions
that require groups of genes to be expressed in a coordinated way to carry out biological
functions [7]. Therefore expression levels of genes may be related directly or indirectly to
one another. This way of studying gene expression provides insight into how genes behave
dynamically in living organisms. It is inspired in the systems biology philosophy where living
organisms can only be understood as a complex system of interactions between its parts [8].
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2 CHAPTER 1. INTRODUCTION

One way to study interactions between genes for large datasets such as the ones gen-
erated by gene expression profiling technologies is by performing gene coexpression analy-
sis [9–14], a technique which uses computational and statistical tools to analyze the patterns
that exist between the expression of pairs of genes.

Over the years, coexpression databases have been developed to provide researchers in
molecular biology and bioinformatics with an accessible and quick reference to a large amount
of coexpression data for many different genes [15–17]. This information is valuable for many
applications including formulating hypotheses regarding gene interactions and functions of
poorly understood genes as well as aiding the design of both laboratory and computational
experiments targeting genes associated with specific biological functions. Researchers may
prioritize the study of genes based on the strength of the relationships present in a network of
coexpressed genes enriched with biological functions of interest. Databases allow researchers
from all areas to access data of this nature without having to select and process expression
data themselves, a task which can quickly turn into a time-consuming process depending on
the volume of the data and that requires considerable programming skills [15–17]. Databases
bring the benefits of coexpression analysis to a broader audience in the scientific community
and propel downstream research.

Although existing human coexpression databases in the literature have been very use-
ful to investigate interesting relationships between genes, none of them consider only nor-
mal samples profiled with sequencing technologies as their source data [9, 15, 17–20]. Such
databases use gene expression measurements obtained with non-state-of-the-art profiling tech-
nologies such as the microarray [21], or include a combination of normal, disease, develop-
mental, and under experimental conditions samples which could not be representative when
trying to study gene coexpression as it is in normal human biology. Additionally, these exist-
ing databases have focused only on the Pearson Correlation Coefficient (PCC) to characterize
the coexpression associations between genes [22]. While the PCC is useful as a metric in
coexpression, other metrics have been applied in different fields to find associations between
variables in large datasets. These metrics could have the potential of uncovering complex
associations between the expression of genes and should be explored in the context of coex-
pression [23].

In this work, relationships between pairs of a vast collection of human genes are quan-
titatively estimated by using gene expression measurements from a variety of healthy human
samples from different tissues as well as a collection of robust statistical and computational
techniques. To the best understanding of the author of this work, this would be the first time
that this kind of estimation is made at a system-level by using only samples from healthy
donors and human gene expression data obtained with sequencing technologies. This estima-
tion is important because it provides a reference baseline data source of human gene coexpres-
sion which does not exist yet and that can be used for comparative purposes, and for guiding
the discovery of the function of previously uncharacterized genes in the context of normal
human biology.

In this chapter, an introduction to coexpression analysis is given as well as the motiva-
tion, research questions, objectives, and general methodology adopted in this master thesis
project. A revision of important theoretical concepts to understand the work and related work
in literature is also addressed. Chapter 2 documents all the statistical and computational tech-
niques required to carry out this work. It also includes the rationale behind novel concepts
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proposed in this project for coexpression estimation at the system-level. Both Chapter 3 and 4
report results obtained in this work. The former deals with results that needed to be obtained
beforehand to make the system-level coexpression estimation proposed robust. The latter con-
tains the main results pertaining coexpression calculation perse. Finally, Chapter 5 discusses
the findings and future work stemming from this project in addition to closing remarks.

1.1 Gene coexpression: concept and use
Gene coexpression analysis is an important tool in systems biology as it allows for studying
genes considering them as interconnected members of biological networks instead of stan-
dalone entities. It is believed that two genes are coexpressed when they exhibit coordinated
behaviors in their expression as evidenced by looking at their expression levels across a com-
mon set of samples [24]. Many of these coordinated behaviors when they exist are commonly
linear (refer to Figure 1.1 for examples), but other kinds of non-linear relationships may also
exist [23].

Figure 1.1: Example of 3 different patterns of relative expression between pairs of genes
quantified with the Pearson Correlation Coefficient p for simulated data (2.5.2). From left to
right: linear positive coexpression in green (as the expression of one gene increases, so does
the expression of the other proportionally), linear negative coexpression in red (as the expres-
sion of one gene increases, the expression of the other proportionally) and no coexpression in
blue (expression of the genes relative to one another is distributed randomly).

The idea behind coexpression analysis is fairly simple in essence: analyze every possible
combination of two genes present in an expression dataset. The latter is done by computing
a coexpression measure whose result is determined by the observed expression across sam-
ples of each pair of genes. Once all pairs have been analyzed, the results can be interpreted
as a graph in which nodes are genes and edges exist between any two genes if a strong co-
expression measure is observed between them. Densely interconnected clusters of nodes in
these coexpression graphs are of great interest as coexpression is correlated with cofunction-
ality [25], or in other words, coexpressed genes have a higher chance of being functionally
related than genes chosen at random. This property of coexpressed genes is especially useful
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when trying to get an idea of what an experimentally unstudied gene does or when looking for
the best candidates to invest in for a study at the lab investigating novel genes participating in
biological processes.

The formulation of hypotheses regarding the function of poorly understood genes based
on their neighbors in the coexpression graph with well-characterized functions is known as
Guilt-By-Association analysis (GBA) [9], a well-known application of coexpression. Another
application would be to study potential disease mechanisms when comparing how gene rela-
tionships estimated through coexpression have changed between healthy controls and disease
states [26]. Disease gene prioritization to save time and resources at the lab is also possible
by looking at a gene’s coexpressed partners involved in the disease of interest and estimating
a likelihood that the candidate gene is also involved [27]. The concept of coexpression can
be extended to not just diseases, but the study of any biological function or feature related
to sets of genes. Coexpression data can be integrated with other information from molecular
profiling experiments such as those characterizing regulatory elements in the human genome,
methylation, and genetic variants to boost the ability of coexpression networks of inferring
gene functions [9].

Important applications of coexpression are summarized in Figure 1.2 where there are
also some basic intuitions into what these applications achieve. More details on coexpression
are given in Section 1.3.2 of theoretical background in this chapter.
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Figure 1.2: Some important applications of coexpression analysis. A: genes that are strongly
coexpressed with a gene known to be implicated in biological functions, diseases, or processes
of interest are good candidates for further research [27]. Coexpression serves as a guide to try
and conduct downstream experiments that are more likely to have interesting findings (e.g.
At the wet lab) potentially saving time and resources over an unguided search for genes as-
sociated with a particular function, disease, etc. B: comparison of the coexpression network
between two conditions. Coexpression relationships may appear, disappear, or change their
strength across conditions [28]. Investigating this provides insight into what gene associations
are behind the observed phenotypes. C: GBA allows for assigning putative functions to poorly
characterized genes based on their coexpressed gene pairs with known functions. Many im-
plementations exist for this, but popular choices include variations of voting algorithms [29].
D: coexpression data is flexible and can be integrated with other kinds of genomic data to
build hybrid networks [9].

1.2 Proposal
This section outlines the scientific needs that this project is attempting to answer as well as
the research questions raising in their development. The objectives of the project are also
mentioned along with the methodological steps to achieve these objectives.

1.2.1 Motivation and justification
This project addresses the following areas of opportunity and needs that currently exist in the
domain of large-scale human coexpression:

• No publicly available coexpression data exists that is calculated only based on healthy
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human tissues to serve as a reference of normal state coexpression, and that is derived
from the most recent gene expression profiling technology

• Only one coexpression metric has been traditionally used as the base for large-scale
gene coexpression projects, trying new metrics may help discover other kinds of co-
expression patterns between genes that the traditional method cannot detect while also
boosting interpretability of the results

• Current coexpression databases hosting data derived from the most recent gene expres-
sion profiling technology only provide the raw data, without options to further explore
coexpressions through visualizations and analysis tools

In this work, a robust system-level human gene coexpression estimation is carried out.
This would be the first time in literature that an estimation of this nature is obtained from Ri-
bonucleic Acid Sequencing (RNA-seq) data and only from reference human samples across
a variety of tissues that overall capture the normal healthy state gene expression observed in
humans. The study of normal states is important as it provides a baseline for later compar-
isons against disease or experimental conditions [30]. The data used derives from RNA-seq,
a technology that provides the best quality for gene expression profiling to this day [31]. This
sets this work in a very reduced group of large-scale coexpression projects that have been built
with RNA-seq data. However, none of these previous projects provide comprehensive visu-
alizations for such data, obligating researchers that wish to check simple analyses to process
the data themselves.

Large-scale coexpression projects have also typically used the PCC [22] as the main
tool for their calculations [15–17]. This well known statistical tool can detect biologically
relevant relationships between genes, but it is limited to reporting only linear correlations. In
this project, another well known statistical tool is applied for the first time to the context of
gene coexpression: the Chi-Square Test of Independence [32]. With this tool, pairs of genes
are investigated in a different way that provides insight into whether if the expression of one
gene is dependant on the expression of the other. The use of the Chi-square statistic is inspired
by the work of Reshef and collaborators where a generalization for multi-level associations is
introduced [23]. As it will be discussed later (1.4.2), the computation time required to apply
the exact method described in the aforementioned work would be very costly, so the Chi-
square statistic is proposed as a faster alternative with the same intuitions.

The use of the Chi-square test is implemented in coexpression analysis by converting
the expression of genes to discrete categories and looking at the distributions of observed and
expected at random counts of these categories. This approach does not assume a linear corre-
lation between continuous gene expression values to hint at a possible biological relationship
between genes and also provides a more intuitive way to interpret coexpression relationships.
This work considers both the Chi-square statistic and the PCC for a vast collection of unique
gene pairs in addition to the Spearman Rank Correlation Coefficient (SRCC) [33], another
very popular correlation metric outside the domain of coexpression that has not been hosted
in any large-scale human coexpression project.

Another improvement that this project seeks over other already existent resources stems
from the possibility of making gene coexpression results more interpretable than ever before.
By using the Chi-square test, it is possible to identify gene expression categories that are
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responsible for an interesting Chi-square statistic when the latter is observed and even test
their significance using a simple post hoc test [34, 35]. It is also possible to identify exactly
which samples contribute the most to the observed Chi-square statistic and if they exhibit
specific characteristics (e.g. Tissue type).

In this work, the tissue of origin of the samples is of particular interest because the
identification of genes that exhibit tissue-specific expression patterns has important impli-
cations in the understanding of certain diseases and potential novel therapeutic strategies to
treat them [36]. The results of this work will make it possible to go one level deeper into the
study of tissue-specific genes by considering tissue-specific coexpression instead of just sin-
gle gene tissue-specific expression. Sample contribution scores for microarray data have been
implemented in other databases [37], but this project will be the first resource that aids the
investigation of the role that different normal human tissues play in particular coexpressions
calculated from RNA-seq data.

1.2.2 Hypothesis and research questions
The hypothesis of this work is that the Chi-square statistic can be used to produce a robust esti-
mation of normal human system-level coexpression that improves the interpretability achieved
by the current coexpression metrics used in literature. Some additional research questions that
are related to this hypothesis are listed here:

• How does the Chi-Square statistic compare to the PCC or the SRCC in terms of calcu-
lated coexpressions?

• What is an effective way of creating a dataset that is representative of human gene
expression at the system-level to serve as an input for coexpression analysis?

• How can the contribution of each human tissue or expression state in the system-level
coexpression be estimated?

1.2.3 Objectives
The main objective of this project is to build a comprehensive high-quality human gene co-
expression resource focusing on normal human samples profiled with RNA-seq. To achieve
this, the following operative objectives must be met:

1. Obtain high-quality RNA-seq gene expression data from a variety of normal human
tissues. See Chapter 2 Section 2.1 and Chapter 3 Section 3.1

2. Create a system-level dataset in which a variety of normal human gene expression states
are represented. See Chapter 3 Section 3.2

3. Compare different strategies for coexpression calculation that utilize the system-level
expression data as input. See Chapter 3 Section 3.3.

4. Compute the coexpression data for all possible unique pairs of genes in the input ex-
pression data using the chi-square, PCC, and SRCC coexpression metrics. See Chapter
4 Section 4.1
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5. Validate the calculations using specific examples of coexpressed genes, comparisons
between metrics, permutation-based tests, literature searches, and comparisons of co-
expression across different types of samples. See Chapter 4 Sections 4.2, 4.4, 4.5 and
4.6

6. Deposit the results in a web-accessible database that incorporates visualization and anal-
ysis tools to add interpretability and complement the raw data which will be at the dis-
posal of the scientific community. Chapter 4 Section 4.7

1.2.4 Methodology
Figure 1.3 summarizes the general methodology of this project. The process starts with data
collection by fetching the gene expression data and associated metadata from the Genotype-
Tissue Expression (GTEx) [38] project corresponding to operative objective number 1. The
heterogeneity in this dataset is explored and characterized in step 2 of the methodology (sec-
ond operative objective) using data mining tools to find different gene expression states that
are represented in GTEx.

Different strategies for system-level coexpression calculation are then tested in step 3
of the methodology to add robustness to the final database calculation and fulfill operative
objective 3. The coexpression data is then computed using both the Chi-square statistic and
classic correlation coefficients for all gene pairs as established in methodology step 4 and
operational objective 4. In step 5 of the methodology, validation analyses, and examples are
presented according to operative objective 5. The final data results obtained are deposited in
a publicly available web resource according to operational objective 6 in the last part of the
methodology.

All analyses will be carried out using the R programming language for statistical com-
puting [39]. The visualizations presented throughout this work are constructed with base R
functions and the ggplot package [40]. Other used R packages are cited throughout the docu-
ment.
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Figure 1.3: Graphic summary of project methodology.
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1.3 Theoretical background
In this section, some important concepts for understanding and carrying out this work are
discussed.

1.3.1 Gene expression
1.3.1.1 Concept

The concept of gene expression originates from the interaction between the three major in-
formational macromolecules in molecular biology: DNA, RNA, and proteins as discussed in
the context of the Central Dogma of Molecular Biology [41]. DNA contains sequences of
the nitrogenous bases adenine, cytosine, thymine, and guanine (nucleotides) whose particular
length and order codify specific genes. This code provides a structure for a process known as
transcription, which involves the creation of RNA transcripts from the DNA mold of a gene.

Transcription happens when cells in living organisms need the function provided by the
protein encoded in a particular gene or set of genes to carry out some process (e.g. Basic
metabolism, response to environmental stimuli, etc.). Each gene in the DNA can be used to
produce an analogous RNA, or very frequently more than one since a single gene mold may
lead to the production of different transcript variants. RNA is a temporal molecule with many
interesting functions, but by far the most important and well-characterized one is to serve as
an information intermediary between DNA and proteins. The translation of RNA to proteins
is carried out by structures known as the ribosomes.

Proteins are in charge of directly carrying out the biological functions that living cells
need to survive, but it is only until a gene is transcribed from DNA into RNA that proteins can
be generated. A key moment in this process is therefore when a gene’s activation is actually
needed by the cell or organism. In this situation, the gene must be expressed from its DNA
mold into RNA molecules. Gene expression in the context of bioinformatics and computa-
tional biology refers to a quantitative measurement of the transcription of genes. Note that
in the intuition given here, protein-coding genes were used to illustrate the concept and im-
portance of gene expression, but there are about 84,485 protein-coding transcripts which only
represent 36.79% of the total known transcripts (229,580) in the human transcriptome (the set
of all human transcripts) [42]. This means that gene expression can also be quantified for tran-
scripts with functions other than being messengers for protein translation, or very frequently
with unknown functions.

1.3.1.2 Microarray Chips

The first technology that allowed for gene expression quantification and that became avail-
able for many researchers was the microarray [21]. It consists of a chip that contains attached
DNA strands (called probes) corresponding to known gene sequences. The idea is to measure
how strongly the RNA extracted from samples of interest binds to these reference probes in
the chip. The process begins by extracting RNA from a sample and converting it to comple-
mentary cDNA (i.e. Reverse transcribe the RNA) to improve its stability because RNA is a
temporal molecule and it can be easily degraded on accident if not converted to a more stable
molecule. cDNAs effectively correspond to the molds from which the studied RNA can be
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produced. If a particular cDNA is present in the collection of cDNAs that were obtained from
biological samples (i.e. the RNA from which it arises was expressed), it is expected that this
cDNA couples with its complementary strand in the chip (a reaction known as hybridization)
proportionally to its abundance in the sample. Before the hybridization reaction, cDNA is la-
beled with a fluorescent dye and the final expression for each probe is reported as an intensity
of the fluorescent signal detected by a specialized automated analyzer.

1.3.1.3 Ribonucleic Acid Sequencing

The next innovation in the field of gene expression profiling came from massive DNA se-
quencing adapted to RNA, a technique known as RNA-seq [43]. This technique has many vari-
ations, but a popular method that is broadly used consists of obtaining cDNA from the RNA
that is extracted from the samples of interest similar to what is done for microarrays. cDNA
is fragmented to specific lengths and additional nucleotide sequences known as adapters are
added at both ends of each cDNA molecule. This is done so that cDNAs can be recognized
by the sequencing machine. Once inside the machine, these cDNAs are amplified producing
multiple copies of each molecule. Afterward and for the sequencing perse, each nucleotide of
each molecule is sequentially exposed to free nucleotides. As expected, only the nucleotide
that compliments the one observed in the target cDNA can bind to the molecule. Every time a
new nucleotide binds to the target cDNA, the machine can recognize the identity of the bind-
ing nucleotide via a color-coding system, so it can keep track of the sequence of nucleotides
that are being used during this process.

The operation of sequentially exposing each nucleotide of a cDNA molecule to free
nucleotides can be carried out in parallel for many cDNA molecules. Once the process fin-
ishes, the machine outputs a file containing strings of text depicting the order and identity of
the nucleotides used to compliment each of the input cDNA molecules. These strings of text
are known as reads and typically there will be several millions of them per sample. These
reads can be mapped to a reference transcriptome, which is a file that has a curated tran-
script sequence-to-gene relation. This is done to know which reads arise from the expression
of which genes. Once this last step is finished, the measurement of expression simply corre-
sponds to the count of reads that match with a particular transcript in the reference transcrip-
tome.

RNA-seq and microarrays produce correlated results when measuring gene expression.
However, RNA-seq has been shown to provide higher resolution for low expression transcripts
in addition to providing better coverage of the transcriptome [44,45]. Microarrays are limited
to quantifying only the expression of the gene probes that are built into the chip and whose
exact sequence has to be known beforehand. Specifically for gene coexpression, the use of
RNA-seq has also been shown to provide substantial advantages over microarrays [9]. The
use of RNA-seq is not straightforward though. There are quite a few sources of bias to be
accounted for when quantifying gene expression via RNA-seq, which will be described next.

1.3.1.4 Read normalization and Transcripts Per Million

As mentioned, one of the steps of the RNA-seq protocol involves the fragmentation of cD-
NAs into smaller chunks to meet the sequencer equipment requirements. The latter implies
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that longer genes transcribing into longer RNA molecules will be represented by more numer-
ous fragmented cDNA molecules in the sequencing experiment when compared to smaller
genes [46]. This causes the final read counts of transcripts to depend not only on expression
level, which is the real target of quantification, but also on the length of the gene. This is
an example of one of the biases that can occur during RNA-seq. To account for these kinds
of bias, several read normalization methods have been proposed. One of these methods ap-
plies a transformation to read counts known as Transcripts Per Million (TPM) which has been
shown to be more consistent with the theoretical concepts behind read normalization than
other transformations and to be robust to gene length [47]. It is also more useful for captur-
ing gene expression variation among transcripts that is attributable to biological sources as
opposed to noisy variations when compared to other normalization methods [48]. TPM read
normalization is defined in a two-step process as:

1.
~r L =

~r

~L
(1.1)

Where ~r ∈ Zn
≥0 is a non-negative integers read counts vector of n genes quantified for 1

sample. Each element of this vector must be scaled (element-wise) by the corresponding
lengths of the genes quantified contained in vector ~L (the number of nucleotides in their
biological sequences) to obtain the scaled vector ~r L.

2.

~r TPM =
~r L

(
∑
~r L)/103

(1.2)

Where ~r TPM is the final TPM normalized vector of the sample in question.

Repeating the process for all sample vectors in a dataset will yield a TPM normalized
expression matrix. TPM read normalization is performed to counter the gene length and se-
quencing depth bias existent in RNA-seq protocols. However, there are still other considera-
tions when working with gene expression data such as the fact that the distribution of TPMs is
very skewed. This makes additional data transformations useful for downstream analysis [49].
Other frequent problems are the so-called batch effects, which consist of technical variations
in RNA-seq experiments that introduce unwanted variance to the measurements. An example
is when some samples of an experiment are prepared for sequencing by different laboratory
personnel. To assess these and other kinds of batch effects, another level of normalization
techniques focused on the samples of the expression matrix may be employed before moving
on to analyze the gene expression data [50]. A powerful and widely used method belonging
to this group is Quantile Normalization (QN) (2.3.1) [51].

1.3.1.5 Availability of gene expression data

Over the years, both microarray and RNA-seq technologies have become increasingly avail-
able and accessible to researchers around the world. The latter has led to the generation of
a huge amount of gene expression data which is used in publications and is shared with the
scientific community through repositories such as the Gene Expression Omnibus (GEO) [52],
a resource which nowadays hosts results for over 100,000 expression profiling experiments.
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Despite this, the availability of gene expression data specifically from reference samples (i.e.
Normal healthy samples) is limited in terms of quantity when compared to the numerous ex-
periments obtaining data from disease states or samples under specific artificial stimuli [53].
Attempting to maximize the number of reference samples by compiling and combining data
from different expression profiling projects sounds attractive to obtain sufficient samples for
some downstream analysis, but differences between equipment and methods across experi-
ments can be troublesome [53].

Thankfully, there exist some human expression profiling projects which focus on pro-
ducing gene expression data for a large number of reference samples under standardized con-
ditions. The biggest project to this day doing this is the GTEx project, which has been profiling
samples from post-mortem donors with RNA-seq since 2013 [38]. This is the source of the
gene expression data used in this work which will be described thoroughly in Chapter 2 (2.1).

1.3.2 Details on gene coexpression
Gene coexpression was introduced in this chapter as a way to study the relative trends of
expression that exist between gene pairs and to estimate coordinated expression behaviors
between groups of genes. Here the process to carry out this analysis is described in more
detail.

1.3.2.1 Gene coexpression as networks

The idea behind coexpression analysis is to compute a correlation or association metric (most
commonly the PCC in literature) between all possible unique pairs of genes. So for a M ∈
Rnxm gene expression matrix with n genes and m samples, the total number of coexpression
metrics to compute ncoexp corresponds to all possible combinations without repetition of 2
elements that can be obtained from a n elements set (see Figure 1.4 for a small example). This
is a case of the general combinations formula which can be written as:

ncoexp =
n · (n− 1)

2
(1.3)

This number of metrics corresponds exactly to the number of values in the lower (or
upper) triangle without the diagonal of a X ∈ Rnxn gene by gene square matrix which many
computational tools for correlation calculation return on a matrix input. Figure 1.5 shows how
the number of coexpressions to calculate increases with the number of genes considered in a
gene expression dataset.

Coexpression databases are focused precisely on providing researchers with the results
of large-scale coexpression calculations comprising massive coexpression matrices. In these
kinds of projects, a large number of genes and samples are considered and the computation
of the coexpression matrix may be done several times for robustness [15]. Databases provide
the scientific community with an already calculated knowledgebase of coexpression which
otherwise would be logistically and computationally difficult to obtain from scratch.
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Figure 1.4: Example of input and output in a coexpression analysis. A: expression matrix of
30 genes (rows) by 2000 samples (columns). The matrix is ordered using Hierarchical Clus-
tering (HC) with correlation distance (2.4.3.1). Groups of genes that have similar expression
profiles across samples can already be identified here. B: resulting coexpression matrix which
is symmetric with genes in both columns and rows. Color scales are shown in each panel.
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Figure 1.5: Quadratic order growth in number of possible coexpressions relative to the num-
ber of input genes.

Coexpression matrices may be downloaded from a database or obtained manually from
processing a small gene expression experiment considering a few genes and some control/treatment
samples. Regardless of the origin, a usual generic coexpression workflow is as follows:

1. Establish criteria for considering a given pair of genes as truly coexpressed: many dif-
ferent approaches are possible in this step varying from the very simple hard threshold
method, which consists of keeping only measurements whose absolute value is greater
than a certain value (see Figure 1.6 for a small example), to more sophisticated statisti-
cal methods [54]

2. Interpret true coexpression values as an adjacency matrix: a network may already be
built from this interpretation where nodes are genes and edges exist between a pair of
nodes if the coexpression between the genes was considered true in the last step. The
edges of the network may be weighted according to the intensity of the coexpression
measure as shown in Figure 1.6

3. Find clusters of densely connected genes (called modules in coexpression terminology)
in the coexpression graph: these modules effectively represent groups of genes that had
an overall high coexpression measurement between them by the metric used in coex-
pression analysis. Genes belonging to a module, therefore, have a higher chance of
being functionally related to one another than genes chosen at random. For this step,
techniques in graph theory become invaluable tools to characterize these coexpressed
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gene modules. Many tools exist in the literature that facilitate this analysis including the
popular Weighted Gene Coexpression Analysis (WGCNA) [55]. This tool finds mod-
ules of highly coexpressed genes based on hub genes which are nodes in the graph that
have many edges connected to them. WGCNA performs additional transforms to the
coexpression matrix which require the initial coexpressions to be in the range [−1, 1]
(as it is the case for any PCC calculation), but many other techniques are available to
use for module detection that will work with any coexpression metric [56]

4. Analyze coexpression modules for biological significance: use gene set enrichment anal-
ysis or gene overrepresentation analysis to test if the genes in the modules have a statis-
tically significant overlap with well-characterized sets of genes with known biological
functions [57, 58]. From here it is possible to generate hypotheses, for example, that
maybe uncharacterized genes in the modules are associated with certain functions or
that maybe a known gene is associated with additional and previously undescribed pro-
cesses for that gene

The extent of the gene coexpression network can also be variable. For instance, one may
choose to analyze only the top coexpressed genes with a gene of interest and the significant
connections between them to generate a local network relative to the chosen gene (i.e. Only
using parts of the coexpression matrix). It could be that the objective is to analyze the data
globally by constructing a network with all significant coexpressions between all possible
pairs of genes (i.e. Using the complete coexpression matrix). This flexibility of being able
to control the depth of the gene coexpression network analysis is a nice property of gene
coexpression data.

1.3.2.2 Large-scale coexpression

The term ”large-scale coexpression” does not have a formal definition in the scientific lit-
erature pertaining to coexpression nor it considers a specific number of genes/samples for a
project to be classified as large-scale. The term is used here to refer to projects whose aim
is to compute coexpression data for tens of thousands of genes across thousands of samples
with a database-driven focus. This implies these projects deal with a total number of gene
pairs in the scale of the hundreds of millions (like this master thesis work) or even in the scale
of billions [16]. Large-scale coexpression projects distinguish themselves from other works
whose main focus is to study coexpression for specific sets of genes that are perhaps relevant
for particular diseases or biological functions. A typical approach in these smaller projects
is to find the differentially expressed genes between a control and a phenotype of interest.
Coexpression analysis is then carried out only on these genes which are usually in the scale
of thousands and the number of samples used also tends to be more limited [59].

Carrying out coexpression analysis when working with a few thousand genes and a few
hundred samples is usually not a problem in a standard computer nowadays. Tools such as the
previously described WGCNA are very user friendly for this purpose as they consist of full
pipelines that take an expression matrix as input and output clustered modules of coexpressed
genes. Modules may be directly sent to gene set enrichment or overrepresentation analysis.
However, many conceptual and computational complications arise when the idea is to obtain
coexpression analysis results from a large number of genes and samples.
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Figure 1.6: Example of a gene coexpression network obtained from applying a hard threshold
to a gene coexpression matrix (continuation of Figure 1.4). Groups of nodes which are densely
connected are frequently involved in interesting biological functions.
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Large-scale coexpression projects frequently have as an objective to provide their robust
estimations of coexpression data to other researchers in the scientific community. This is done
via databases, which have a format based on gene lists. These lists display all the results for
a single gene (i.e. All metrics for that gene when paired with all others) while sorting them
in descending order according to the strength of the coexpression. The idea is to provide
all possible gene pairs of a query gene with their corresponding coexpression evaluation on
demand. This way users can check the associations with their genes of interest in an efficient
manner. If they require several genes for their analyses, a bulk download of already calculated
coexpression is also typically available.

1.3.2.3 The problem of sample type overrepresentation

When working with large-scale coexpression, input samples will likely be unbalanced regard-
ing the gene expression state they represent (e.g. A tissue or experimental condition) because
some types of samples are more easily obtained than others. This prevents the objective of
obtaining a coexpression estimation that approximates the overall trends across all types of
samples. This problem has also been characterized as a situation of high redundancy in the
input samples. Consider a hypothetical dataset that has 100 samples total: 50% of the samples
are from skin, muscle, fat, brain, and liver (10 each). The remaining 50 samples are all blood
samples. If one naively proceeds to coexpression analysis using the full dataset as it is, the
resulting coexpression patterns can be biased towards the patterns observed in blood.

In general, for the example given previously, it can be said that those blood samples are
redundant among themselves (i.e. It is expected that they are very similar in terms of gene ex-
pression and hence contribute the same kind of information to the coexpression analysis). The
same is expected for the other tissues, but the culprit for an overall high ”redundancy sum”
in the dataset is blood as its higher sample counts contribute more to the overall redundancy.
The latter is true if all the blood samples are indeed very similar among them. However, if
there were two significantly distinct groups of blood samples, then members of one group
would not be redundant when compared with members of the other. In pioneer studies using
expression data from simpler organisms like the bacteria Escherichia Coli, it has been demon-
strated that high sample redundancy in a dataset can be detrimental for the accurate building
of coexpression networks [60].

Some strategies to tackle the problem of sample type overrepresentation are discussed
in chapter 2. They include a literature approach, as well as ideas proposed in this work (2.6).

1.3.2.4 Gene coregulation

Gene coregulation is a term that is very frequently mentioned in coexpression analysis because
it is of great interest to investigate this via coexpression data. Coregulation and coexpression
are related but comprise different kinds of biological phenomena.

The concept of coregulated genes refers to a set of genes with shared underlying mech-
anisms that control their rates of expression in a coordinated manner such as Transcription
Factors (TFs) [25]. TFs are genes that regulate the expression of others at a DNA level and
that frequently are hub genes in coexpression networks [61]. If two genes that are coexpressed
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are known to be regulated by a common TF, then they are not only coexpressed but also po-
tentially coregulated.

Note that a pair of genes may share a common TF, but what truly makes them coregu-
lated is the fact that the TF influences their expression rates in a synchronized manner rather
than separately for each one of them. Evidence of the latter (although not definitive proof)
would be that the analyzed pair of genes are coexpressed among themselves, otherwise, their
expression levels would behave randomly relative to one another despite having a common
TF. Note as well that one may come across the statistical finding that a pair of genes are coex-
pressed without necessarily having to attribute that to a common TF. Therefore coregulation
entails coexpression, but not the other way around. Investigating coregulation requires the
triangulation of coexpressions with TFs or other regulatory mechanisms. Some large-scale
coexpression projects have provided separate gene lists in their databases focusing on the
coexpression measures between query genes and TFs to facilitate the study of this phenom-
ena [16].

1.4 Related work

1.4.1 Large-scale human coexpression projects
In the literature, there have quite a few large-scale coexpression projects working with human
gene expression data. Three of them stand out for providing robust estimations of human
coexpression in general by considering samples of a variety of types and working with either
RNA-seq data or only normal tissue data. These characteristics are pivotal in this master thesis
work and hence of great interest during literature revision.

1.4.1.1 COXPRESSdb

COXPRESSdb is a large-scale coexpression project with its own publicly available database
which has seen 4 major updates since its original release in 2008 [15,62–65]. This database is
focused on coexpression from an evolutionary point of view as it currently hosts results for 12
organisms including Homo Sapiens. Many of their result validation experiments are based on
searching for conserved coexpression edges across species (a concept known as supportabil-
ity) which makes a given pair of genes more likely to be truly coexpressed. In the beginning,
the database was built solely off microarray data, but nowadays it also hosts human coex-
pression calculated from RNA-seq experiments accounting for 17,067 genes. This database is
the most complete in the literature in terms of data delivered to the user. Additional features
are provided apart from gene lists of coexpressed gene pairs and general gene information.
Notable mentions of these extra features are:

• It is possible to visualize the scatter plot of every coexpression in the gene lists (only
for microarray data)

• A list of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in which the
queried gene is present is given along with the gene list [66]
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• A score of the contribution to the coexpression by the top contributing samples is given
along with the origin (name of source expression experiment) of such samples (only
available for microarray data)

• For each gene in a gene’s coexpressed genes list, it is possible to see in which Gene
Ontology (GO) biological classes and KEGG pathways the gene belongs [67]

• For each gene in a gene’s coexpressed genes list, one can ask for a local coexpression
network considering the gene in question and all its top coexpressed neighbors with
their respective involvement in KEGG pathways noted

• It is possible to visualize the average expression of a pair of coexpressed genes across
the different tissues (samples include normal, disease, and experimentally treated tissues
and cells) considered in COXPRESSdb

It is worth noting that COXPRESSdb is not dedicated exclusively to capturing coexpres-
sion in normal healthy tissues or on samples that have not been put under artificial stimuli. As
noted in their expression pages [68], the microarray data (the data for which scatter plots and
other visuals are available) include cancer (e.g. Breast, flash-frozen, microdissected ductal
tumor cells) and experimentally treated (e.g Skin taken 96 hours after exposure to 5% nickel
sulfate) samples in addition to normal samples. COXPRESSdb uses the PCC as the base for
computing coexpression. However, they propose the transformation of the PCC to the Mu-
tual Rank (MR) measure. For a pair of coexpressed genes A and B, the MR represents the
geometric mean arising from the rank of B in A’s gene list and the rank of A in B’s gene
list [69]. The MR is the only metric available when querying a gene and obtaining its gene list
in COXPRESSdb.

COXPRESSdb has traditionally addressed the problem of sample type overrepresenta-
tion with the use of a Weighted PCC (1.3.2, 2.6). This technique was used in the first 3 major
versions of the project, but as of the latest version of COXPRESSdb, the authors have moved
from the Weighted PCC strategy to a Principal Component Analysis (PCA) based one for the
computation of their most recent coexpression data [15]. PCA is a very popular technique
in data science which basically consists of producing linear combinations of variables in a
dataset [70]. The combinations are called Principal Components (PCs) and they maximize the
variance observed in the dataset’s objects across variables (2.4.1).

The most recent process followed in COXPRESSdb consisted of applying PCA to a
17,067 (genes) by 10,485 (samples) matrix of human RNA-seq expression data obtained
through Sequence Read Archive queries [71]. 10,485 PCs were obtained representing linear
combinations of the sample vectors. Only the first 1000 PCs accounting for a large propor-
tion of the total variance were retained and 1000 submatrices were assembled containing 100
randomly selected PCs from the original big matrix of 1000 PCs. Coexpression analysis is car-
ried out on each of the submatrices. The final value for the coexpression between gene x and
gene y is the minimum observed for these genes across the 100 realizations of coexpression
analysis.

The idea behind the described strategy is to summarize different gene expression states
that exist in the input data by considering the variance between them as the new input da-
tum. More intuitively, this corresponds to performing coexpression analysis ”on the variance”
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across samples in the initial dataset. One problem that can arise from this strategy is that it
becomes more difficult to pinpoint what kinds of samples are contributing to the observed
coexpression. This observation is derived from what is discussed by some literature on PCA
analysis for expression data [72]. Using this technique could therefore make it difficult to later
tell exactly which tissue or condition is contributing to a particular coexpression. This is not
one of the main interests in COXPRESSdb, so this technique is more attractive for them.

1.4.1.2 Genefriends

Genefriends was published in 2012 and saw its most recent major update in 2014 [16, 27].
The latest version of this database is inspired by COXPRESSdb as it adopted the Weighted
PCC strategy and MR metric for the computation of the coexpression data. For Genefriends,
human expression RNA-seq data was fetched from SRA resulting in measurements for 44,248
genes across 4,133 samples after pre-processing. Similarly to COXPRESSdb, Genefriends in-
cludes samples challenged with some stimuli or under disease/developmental conditions (e.g.
Embryonic cells). The focus of Genefriends is to be a GBA tool to identify potential novel
genes involved in complex diseases [9]. Genefriends provides fewer visualization tools to the
user compared to COXPRESSdb, but it features some things that COXPRESSdb does not:
they include the raw PCC in the coexpressed gene lists in addition to the MR, they imple-
ment a separate coexpressed TFs gene list for each queried gene and they allow to carry out
enrichment analysis of coexpressed genes via the Database for Annotation, Visualization and
Integrated Discovery (DAVID) [73].

1.4.1.3 Human Gene Correlation Analysis

Human Gene Correlation Analysis (HGCA) is another large-scale expression project with its
own public database. This one is based completely on microarray data. The database was
released in 2012 without any major updates justifying a new publication since then [17].
Nevertheless, it is an important pioneer work because it is the only database (to the best
knowledge gained while reviewing literature related to this work) that is specifically built
using only normal healthy samples from a diversity of human tissues. Such samples (4,732)
were manually selected from initial queries yielding 62,000 samples in GEO. The focus of
this database is similar to that of Genefriends. It is based on the PCC computation between
54,000 microarray probes. No specific strategy for countering sample type overrepresentation
and redundancy was applied in this work.

1.4.1.4 Comparative summary of principal large-scale coexpression projects

Table 1.1 summarizes the main features studied during the literature revision performed for
this work regarding existent large-scale projects focused on human coexpression. Features are
defined as follows:

• Available raw data source: type of gene expression profiling technology used to obtain
the input data
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• Available explorable data source: the gene expression profiling technology for which it
is possible to visualize expression distributions and/or gene pair scatter plots inside the
project’s database

• Available analyzable data source: the gene expression profiling technology from which
the coexpression data derives. These data can be used to construct coexpression net-
works and/or perform enrichment/overrepresentation analysis inside the project’s database.

• Base coexpression metric: statistical measure used for calculating coexpressions

• Sample characteristics: spectrum of sample conditions used to estimate coexpression

Table 1.1: Comparison of principal large-scale coexpression projects in literature

Feature COXPRESSdb Genefriends HGCA
Available raw data source Microarray and RNA-seq RNA-seq Microarray

Available explorable data source Microarray None None
Available analyzable data source Microarray RNA-seq Microarray

Base coexpression metric PCC PCC PCC

Sample characteristics

Normal +
disease +

experimental conditions +
developmental stages

Normal +
disease +

experimental conditions +
developmental stages

Normal

1.4.1.5 Other large-scale coexpression projects

Quite a few more interesting large-scale coexpression projects exist that have focused on
producing results for Homo sapiens, but according to the literature review performed, all of
these are based solely on microarray data like COEXPEDIA, STARNET or GENEVESTI-
GATOR [18–20]. Others are focused on a single type of samples such as MIrExpress [74],
a project that can be considered as large-scale coexpression since it considers 20,283 human
genes and 6,909 samples. However, all of the samples correspond to immune cells as the
project is solely dedicated to researching coexpressions in this particular human system.

1.4.2 Discovering associations in large datasests
While revising the concepts behind coexpression analysis, it has been established that the idea
of the technique goes about finding trends or relationships between the expression of pairs of
genes. Outside the context of gene expression, the essence of this problem is encountered
in many domains that deal with large datasets. The PCC is also a popular measure in these
domains to find relationships of dependence between two random variables. It is no surprise
that this tool has been widely applied in coexpression analysis.

Despite the popularity of the PCC, research has been done to investigate other options
for finding associations in large datasets. One of these ideas, which was developed in the work
of Reshef and collaborators [23], has inspired for the first time the use of the Chi-square statis-
tic for coexpression as proposed in this master thesis. In the cited paper, a grid-based strategy
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using mutual information is presented. The idea is that for each pair of random variables, a
matrix of possible grid bins dividing the scatter plot defined by the variables is constructed.
The matrix is defined by varying both the number of cutoffs and values of the cutoffs indi-
cating the bins. The best way to bin the scatter plot is determined by the configuration that
gives the maximum information gain. This is reported as the Maximal Information Coefficient
(MIC), the measure of association proposed in the discussed paper.

The work by Reshef and collaborators answers to the need for a general and equitable as-
sociation measure [23]. General refers to the capability of the measure of identifying relation-
ships driven by any kind of function and even relationships that cannot be well characterized
by a single function such as superpositions of functions. Equitable means that the measure
should not be more prone to favor the identification of associations when they are driven by a
certain type of function at equal levels of noise. The PCC is an example of a measure that is
equitable but not general as it fails to report interesting associations that are not linear. On the
other hand, measures such as the SRCC and mutual information-based estimators that do not
perform the steps of MIC tend to be more general, but favor the detection of certain functions
over others even at equal levels of noise (e.g. Linear over sinusoid functions, etc.)

Although the use of MIC for gene coexpression would be interesting, in this work it was
decided that the first approximation in that direction would be done with the Chi-square test of
independence. This is done to avoid increased computation times required for a workflow us-
ing MIC. In such a scenario, one would have to explore different values to bin gene expression
and different numbers of bins for each pair of genes. The Chi-square test is mathematically
related to mutual information and also uses a grid-based strategy by binning the scatter plot
of the random variables tested [75]. It is expected that this test can give a good proxy for
tackling coexpression from the point of view discussed here. MIC has proved to be useful at
identifying associations that other tools cannot in different sets of real data including genomic
and microbiological data [23]. It will be interesting to see what the Chi-square proxy can do
in coexpression analysis.

1.5 Summary of introductory concepts
To finalize the introduction to this master thesis work, here are summarized the key points that
have been discussed in this chapter:

• Gene expression is a quantitative measurement of how active a gene is in a biological
sample.

• The state-of-the-art technology for quantifying gene expression is RNA-seq. The output
of RNA-seq consists of read counts for different transcripts in the profiled samples.
These read counts need to be normalized to account for factors such as gene length and
batch effects.

• Gene coexpression analysis looks at the expression of genes in pairs and tries to deter-
mine if there exists a coordinated behavior between the expression of the pair
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• Genes that are coexpressed have a higher chance of being functionally related than
genes picked at random. This allows for the opportunity to use coexpression to hypoth-
esize about the function of poorly characterized genes and to prioritize genes for further
research.

• Large-scale coexpression projects are frequently dedicated to building databases com-
prising a huge amount of coexpression data derived from tens of thousands of genes
and thousands of samples. These databases are valuable because they allow researchers
from all fields to access robust coexpression results for validation or secondary analyses.

• Current large-scale human coexpression projects hosting databases have not focused on
generating data from normal samples profiled with RNA-seq at the same time. These
projects have also only used the PCC metric as their sole mean to explore coexpression
between genes.

• Other measures of association exist besides the classic PCC that could help to identify
meaningful coexpressions between genes. Some of these measures consider the expres-
sion of genes in discrete bins and can detect non-linear associations and relationships
between pairs of variables which are genes in the context of coexpression.



Chapter 2

Materials and methods

In this chapter, the gene expression data used in this work for the estimation of normal hu-
man gene coexpression proposed is revised in detail. All the computational techniques and
statistical tools used to obtain the results presented in Chapters 3 and 4 are also reviewed.

2.1 The Genotype-Tissue Expression project data
The GTEx project is the source of all gene expression data used in this work. It comprises
a high-quality collection of samples from post-mortem human donors whose expression has
been profiled using RNA-seq. The first publication of the project was made in 2013 [38]. It is
founded by the National Health Institute (NIH) of the United States. The initiative had in mind
the study of expression Quantitative Trait Loci (eQTLs), which are variations in the DNA
sequence that have an effect on gene expression. However, the data generated for this purpose
provides invaluable opportunities to study human gene expression in the context of many
other analyses. Over the years GTEx has been growing in terms of the number of samples
they consider becoming the largest unified resource of normal human RNA-seq.

2.1.1 Donor exclusion criteria
The GTEx project has attempted to assemble a large resource of human gene expression while
also seeking to obtain it from overall healthy individuals. Data in GTEx represents a good
proxy to what is observed in normal human biology.

Exclusion criteria for donors of the GTEx project are summarized in Table 2.1. Donors
from both genders and any ancestry group were included. While it is not possible to guarantee
that all samples from all donors in GTEx represent an ideal normal and healthy state, this is
the biggest expression profiling project which has searched for the collection of non-diseased
samples across a variety of human tissues [76].

25
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Table 2.1: GTEx donors exclusion criteria

Criteria Parameters
Post-mortem interval More than 24 hours

Age Less than 21 or more than 70
History of viral infections Human immunodeficiency virus or hepatitis

History of cancer
Metastatic cancer or

chemotherapy/radiotherapy in the last 2 years before death
Blood transfusion In the last 48 hours before death
Body Mass Index Less than 18.5 or more than 35

Expert pathologist examination Abnormal findings in the histological analysis

2.1.2 Tissues and profiled genes
In this master thesis, the version 8 release of GTEx is used. The ”Gene TPMs” expression ma-
trix file was downloaded from https://www.gtexportal.org/home/datasets in
March 2019. This file was confirmed as not changed or updated since then as of September
14th, 2020. The file contains TPM normalized RNA-seq gene expression read counts for a col-
lapsed gene model based on the Encyclopedia Of DNA Elements (ENCODE) human genome
release 26 (GRCh38.p10) (1.3.1.4) [42]. A single gene can be expressed through different
transcript variants, so this collapsed gene model produces only one expression value per gene
through merging and ambiguity resolving [77].

From the original expression data, 16,704 samples obtained from 981 distinct donors
representing 52 normal human tissues were considered for downstream analysis (Figure 2.1).
GTEx includes Brain Cortex and Brain Frontal Cortex tissue types but as documented in their
webpage [78], these tissues are essentially the same (e.i. Replicates) except for the time of
sample taking from the donors. Brain cortex was taken together with the other non-brain sam-
ples of the donors (e.i. Earlier) while Brain Frontal Cortex was sampled later at a specialized
center. The same situation applies to the Brain Cerebellum and Brain Cerebellar Hemisphere
tissues.

Note that in the distribution shown in Figure 2.1, it is evident that the sample tissue
types are unbalanced. This creates an instance of the sample type overrepresentation problem
(1.3.2.3). This is important because the coexpression estimation proposed in this work intends
to cover in a uniform way the variety of human tissues provided in GTEx.

https://www.gtexportal.org/home/datasets
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Figure 2.1: Tissue type distribution of GTEx data used in this work.

Originally, the expression matrix contains measurements for 52,600 genes across all
samples yielding the distribution shown in Figure 2.2. However, as it is common when work-
ing with gene expression data, low expression genes must be identified and filtered out as their
measurements may be indistinguishable from noise that affects downstream analyses [79]. It
is frequent to refer to these low expressed genes as simply ”not expressed” if they have con-
sistently low expression values across a set of samples. In the following section, a criterium
to identify these genes is described.
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Figure 2.2: Distribution of logarithmically transformed TPMs (for visualization as TPMs
in their raw scale are typically skewed) in the original GTEx expression matrix. Zero valued
TPMs in raw scale are dropped as a result of the logarithmic transform. The red line indicates a
value of 0.1 TPM in raw scale (-1 in loagrithmic scale), a frequently used value for considering
genes as expressed in these data (2.1.3.)

2.1.3 Consideration of expressed genes
Due to its quality and importance, GTEx data has been used in many publications. There have
been good results in different kinds of analyses considering a low expression criteria of 0.1
TPM. More specifically, a gene has been considered expressed for downstream analysis if
it has values greater than the 0.1 threshold in at least 20% of the samples. This approach is
used by GTEx authors themselves in the construction of an eQTLs database [76,77]. It is also
used by several authors of recent works performing different analyses on GTEx expression
data as depicted in Table 2.2. In this work, the criterium of greater than or equal to 0.1 TPM
in 20% of the total samples is taken into account as an initial filter for considering genes as
expressed similarly to the works cited. In this specific case, 20% of the total samples in the
dataset represents 3,341 samples.
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Table 2.2: List of recent works using the GTEx data and criteria for gene filtering > 0.1 TPM
in at least 20% of samples

Paper Journal and Citation
The GTEx Consortium atlas of genetic
regulatory effects across human tissues Science [80].

eQTLMAPT: Fast and Accurate eQTL
Mediation Analysis With Efficient
Permutation Testing Approaches

Frontiers in Genetics [54].

Pseudogenes Provide Evolutionary Evidence for the
Competitive Endogenous RNA Hypothesis Molecular Biology and Evolution [81].

Hepatocyte gene expression and DNA methylation as
ancestry-dependent mechanisms in African Americans npj Genomic Medicine [82].

Transcriptome Analysis of the Human Tibial Nerve Identifies
Sexually Dimorphic Expression of Genes Involved in

Pain, Inflammation, and Neuro-Immunity
Frontiers in Molecular Neuroscience [83].

Molecular insights into genome-wide association
studies of chronic kidney disease-defining traits Nature Communications [84].

2.2 Identification of tissue-specific genes
Using exclusively the consideration of expressed genes described in the last section could
come across some issues. Consider the situation in which a gene is not expressed globally
in more than 20% of the samples but maybe when looking at individual tissues, the gene is
clearly specifically expressed for some tissue. Figure 2.3 depicts some descriptive examples.
In panel A, the Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) gene is expressed in
all samples of all tissues as all measurements are more than 0.1 TPM on the raw scale or -1
on the logarithmic scale. This gene has no problems meeting the expression criteria described
in the last section. In panel B, the Uromodulin (UMOD) gene is not expressed in the majority
of samples in GTEx as most TPMs fall below the red dotted line at 0.1 TPM raw scale or -1
logarithm. In fact, after doing the calculations, UMOD would not be considered as expressed
by the criterium defined in the previous section. However, in Figure 2.3 it is clear that in some
tissues UMOD is indeed expressed even at more than 10-fold the initially considered expres-
sion threshold (green dotted line at 1 TPM raw scale or 0 in logarithm). This is especially
obvious in the Kidney Cortex tissue.
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Figure 2.3: TPM distributions of two genes in different GTEx tissues. A: example of a gene
expressed across all GTEx samples. B: example of a gene expressed only in a subset of sam-
ples.
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To investigate and recover genes expressed only in particular tissues, in this work it is
proposed to use two metrics which can be calculated for all genes. The first one is the Max
Percentage of Expression (MPE) defined as:

MPEg = max1≤i≤T (~x g) (2.1)

Where ~x g is a vector of length T (the number of tissues present in the dataset) containing
the percentage of samples in which gene g is expressed for each tissue. This metric requires
setting a TPM expression threshold to consider the gene expressed in a sample. The idea is
to identify what is the tissue in which the gene is more frequently expressed relative to the
number of samples in the tissue.

The second metric is the Logarithmic Max Mean Expression (LMME) defined as:

LMMEg = log(max1≤i≤T (~y g)) (2.2)

Where ~y g is a vector of length T containing the average gene expression of gene g
for each tissue in the dataset. The idea is to locate the tissue in which the highest average
expression is observed for gene g.

By visualizing the distributions of MPE and LMME for a set of candidate tissue-specific
genes, it is possible to identify genes that have both a high percentage of expression and
high expression levels for at least one tissue since the maximum of each metric is taken. The
logarithm in LMME is precisely applied for visualization as the distribution of TPMs in the
raw scale is highly skewed.

2.3 Gene expression data preparation
The gene expression data preparation procedures described in this section are carried out
after the identification of expressed genes and tissue-specific genes (2.1.3, 3.1). They aim
to improve the distributional properties of the data and to account for possible batch effects
affecting the experiments.

2.3.1 Logarithmic transform
When measured, gene expression distributions frequently contain lots of values close to 0 and
some very high values in comparison. These high values can be on the scale of 10 thousand
TPMs or even more. To address this skewness in the distribution of gene expression measure-
ments, it is common to transform the original measurements using a logarithmic operator. In
this work, a box-cox transform with parameters λ1 = 0 and λ2 = 1 is used to prepare the
expression data for downstream analysis [85]. This transform has the form:

Yij = log10(Xij + 1) (2.3)

Where Xij is each cell in a gene expression matrix and Yij is the corresponding cell in
the transformed matrix. A logarithmic base of 10 is commonly used as it allows to more easily
interpret the data after the transform. To convert back to the raw scale, one only has to think
of a particular measurement as 10 to the power of any given transformed datum. Adding one
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(or any number) before taking the logarithm is known as adding a pseudocount in the context
of gene expression. It ensures that measurements that are originally 0 are not undefined after
the transform. This procedure has the property that expression values that were initially zero
remain as zero after applying the formula.

2.3.2 Quantile Normalization
Gene expression data frequently suffers from the so-called batch effects which introduce un-
wanted variations in the measurements. In this work, the QN technique is used to diminish the
impact of these effects [51]. Algorithm 1 shows the steps to perform QN on a gene expression
matrix. QN assumes that samples should have approximately the same statistical distributions
across genes. Deviations from this, therefore, are considered to be due to technical rather
than biological variation. To correct this, QN forces the distribution of every sample to be
the same by taking the average expression of each quantile as a reference [50]. Quantiles can
be conceptualized as genes ranked equally by expression value across samples. The resulting
normalized expression matrix after applying QN has higher comparability between samples
than the original matrix.

Algorithm 1: Quantile Normalization
input : An expression matrix E with n genes in the rows and m samples in the columns
output: A normalized matrix Q with same dimensions as E

Function QN(E):
// Sort the sample vectors of E in ascending order
Q← initializeMatrix(n, m);
for j ← 1 to m do

Q[, j]← sort(E[, j]);
end

// Average each row vector after sorting and assign the mean as the
value of all elements in the row

a← initializeVector(n);
for i← 1 to n do

a[i]← mean(Q[i, ]);
Q[i, ]← a[i];

end

// Reorder the column vectors so that the individual values match
their original positions in E

b← initializeVector(m);
for j ← 1 to m do

b← reorder(Q[, j], E[, j]);
Q[, j]← b;

end
return Q

2.4 Gene expression heterogeneity characterization
In this work, some data mining techniques are used to characterize the different gene expres-
sion states that are captured in GTEx data. It is of interest to find groups of samples whose
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expression profiles are similar to consider all the different gene expression states with equal
importance in the downstream coexpression analysis. Details on this can be found in the next
Chapter (3.2). This section only contains a technical overview of the used methods.

2.4.1 Principal Component Analysis
PCA is a linear algebra-based technique that allows for the creation of linear combinations
that successively maximize the variance across the p variables of a dataset X [70]. X consists
of a matrix of p column vectors and n row observations. The ”new variables” captured in the
linear combinations are the PCs and they have the property of being uncorrelated with each
other. PCA is popular in domains working with large datasets as it allows for efficient and
meaningful data exploration due to its variance maximization property. While PCA does not
reduce the dimensionality of datasets perse, it allows for prioritizing the strongest PCs (those
capturing most of the variance) and for discarding a large number of PC dimensions that have
smaller effects in the trends describing the data.

The idea behind PCA is to find the direction along which the variance of the observa-
tions in X is maximized after they have been projected into a line or plane which reduces the
dimensionality of X by one. To achieve this, the concept of eigenvalues and eigenvectors is
used. It is proven result that the unit eigenvectors of the covariance matrix of dataset X rep-
resent the lines or planes with the desired characteristic of successive variance maximization
after they have been sorted descendingly by their eigenvalue [70]. The latter can be applied
repeatedly to know what lines or planes are adequate to successively project the data into new
low-dimensional spaces.

Eigenvectors are special vectors whose direction does not change after being passed
through a linear transformation. Such a transformation in this case is represented by the co-
variance matrix of X . The only effect that the transform has over these vectors is that it can
scale them (e.i. change their longitude) by a constant factor λ which is also the eigenvalue
of the eigenvector. These constants in PCA directly represent the variance of the observations
after projection into its corresponding eigenvectors, so they are the objective of maximization.

When all eigenvectors have been found, many computational tools for PCA calculation
consider them all in a pxp matrix W where the first column represents the eigenvector with
the largest eigenvalue and the last column the eigenvector with the smallest eigenvalue. After
this, the final observations-by-PCs matrix Y can be calculated by computing:

Y = (W TXT )T (2.4)

Note that Y has the same dimensions as X , but now it is expressed in terms of the
eigenvectors of the covariance matrix of X . From here, the strongest PCs may be selected for
downstream analysis to take advantage of the properties of PCA. One will usually dispense
with the PCs that give very little information about the data.

2.4.2 t-distribution Stochastic Neighbor Embedding
t-distribution Stochastic Neighbor Embedding (t-SNE) is a technique originally developed by
van der Maaten and Hinton [86]. It allows for the visualization of high-dimensional datasets
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by producing low-dimensional embeddings that preserve the local and global structure of
the original data in general. In PCA the priority is keeping dissimilar observations far apart
by maximizing variance during the projection of points in lower dimensions. In t-SNE, the
priority is keeping similar points together in non-linear low-dimensional representations of
the data. This makes t-SNE more appealing for visualizing potential groups of observations
that could be present in the data.

t-SNE starts by computing the euclidean distances between all pairs of observations in
a dataset X with n row observations and p column features or variables. xi indicates the ith
row vector in X . These distances are transformed into probabilities using the Gaussian prob-
ability density function centered at each xi. These probabilities indicate the likelihood of xi
picking any xj as its nearest neighbor. The standard deviation of the Gaussians is determined
relative to a user-provided parameter called perplexity which intuitively controls the number
of points which will be considered close to xi. These points, therefore, are more likely to
be considered nearest neighbors of xi. The idea is to randomly project the data points into a
lower-dimensional p − 1 space and then recalculate the probabilities between all data points
using a t-distribution density function. The resulting probabilities will initially not match their
analogs in the higher-dimensional space. However, the data points in the embedding may be
re-arranged iteratively to fix this. The t-distribution is used in the embedding to avoid exces-
sive crowding of points which is a problem with Gaussians.

The probabilities in high-dimensional space should be maintained in low-dimensional
embeddings of X if the embedding is correctly modeled. The difference between these prob-
abilities is measured with a metric called Kullback-Leibler (KL) divergence which t-SNE
minimizes:

KL(P ||Q) =
∑
i

∑
j

pijlog
pij
qij

(2.5)

Where P is the joint probability distribution in high-dimensional space and Q the joint
probability distribution is low-dimensional space. pij can be interpreted as the probability of
xj being selected as a nearest neighbor of xi in the high-dimensional space. The same applies
to qij in the low-dimensional space. t-SNE may be used successively until a target number
of dimensions (usually 2) is reached. It is worth mentioning that contrary to PCA, it is not
advisable to use the results of t-SNE as input for other analyses. The reason for this is that t-
SNE preserves the relative nearest neighbors structure in the original data, but not necessarily
distance or density [87]. t-SNE is therefore primarily a visualization tool.

2.4.3 Clustering
Clustering is the problem of grouping objects with similar characteristics together while keep-
ing dissimilar objects in different groups [88]. It is an instance of unsupervised classification
as no prior labels of any sort are given along with the objects. More formally, for a dataset
X with n objects represented as row vectors and p feature column vectors, k subsets of the
objects in X should be found such that:

S1 ∩ S2 ∩ . . . ∩ Sk = ∅ (2.6)
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Any object xi belonging to some subset S belongs only to that subset and no others. This
means the intersection of all S is empty thus making the collection of subsets a true partition.
Many ways to cluster objects in a dataset exist. Different distance functions may be used
to characterize the similarity between objects across the features of the dataset. Also, many
algorithms for clustering have been described. Two of these algorithms used in this work are
reviewed in this section.

2.4.3.1 Hierarchical clustering

Hierarchical clustering (HC) algorithms have many variants. Here only agglomerative HC
(AHC) is described which is the algorithm that is used in this work. In AHC, every object
starts in its own cluster, so there are as many clusters as data points. The objective is to merge
similar clusters iteratively until all objects converge into a single cluster [88]. By keeping
track of every instance of two clusters merging, it is possible to construct a dendrogram that
indicates which clusters merged and at what point in the algorithm this happened. Typically, it
will be up to the user to decide at what point to ”cut” the dendrogram to get a specific partition
of objects.

During the first iteration of AHC, it is easy to figure out how similar any cluster is to
every other cluster because these only consist of one data point. A routine computation of the
distance between points in the corresponding feature dimension of the dataset will do in this
first step. Euclidean distance is the most commonly used distance function. For later iterations,
clusters will start having more than one object giving rise to the question of how to measure
the distance between clusters. This part of the algorithm is known as linkage. There are many
ways to do linkage including measuring the distance between the farthest points of the two
clusters, between the nearest, or even by taking the average distance between all combinations
of points.

The particular linkage method chosen in this work is Ward’s method [89]. It optimizes
an objective function to choose how to merge clusters. The standard objective function returns
the difference of the variances among objects in a cluster after and before merging. This value
is minimized in order to keep clusters as compact as possible in every iteration. AHC is very
popular in genomics as it allows for visualizing objects (e.g. Genes, samples, or both at the
same time) in dendrogram-ordered heatmaps. In these visualizations, highly similar objects
can be grouped together and the patterns of their measurements can be clearly seen graphically
across the colored heatmap cells.

2.4.3.2 Louvain-Jaccard clustering

The Louvain community detection algorithm is a graph-based clustering technique [90]. It has
been used successfully in genomics to find groups of similar samples and cells [91]. The input
is a k-Nearest Neighbors (kNN) graph constructed from a distance matrix computed for all
possible pairs of objects in the dataset using some distance function chosen by the user. The
algorithm begins by putting each node (object) in the graph in its own cluster at first. Louvain
clustering works with a measure known as modularity [92], that intuitively represents the
number of observed edges in a cluster minus the number of edges expected at random.



36 CHAPTER 2. MATERIALS AND METHODS

Modularity is maximized iteratively until no gain in modularity is possible by reassign-
ing nodes to different clusters. All nodes in a cluster are then aggregated into a single node
in a new graph and the process is repeated. Edges of the input graph may be weighted to
influence modularity according to domain knowledge. In this work, Jaccard weights are used
(Louvain-Jaccard clustering) [91]. These weights are defined as:

wE(i,j) =
| {∀k | E(k, i)} ∩ {∀k | E(k, j)} |
| {∀k | E(k, i)} ∪ {∀k | E(k, j)} |

(2.7)

Where E(i, j) denotes an edge between sample i and sample j in the kNN graph. The
numerator corresponds to the cardinality of the intersection between all nodes connected to
sample i and all connected to sample j (e.i. The shared neighbors). The denominator is similar
but for the union of these sets instead. The effect of applying these weights to all edges in the
graph is that samples with a high number of shared neighbors relative to their total number of
neighbors will tend to cluster together.

2.4.3.3 Clustering validation indices

Results of clustering algorithms are to some extent dependant on the parameters used to run
them. For instance, for the algorithms reviewed in this section, one could vary the cut points in
the HC dendrogram or the number of nearest neighbors used as a base for the Louvain-Jaccard
clustering input graph. To help estimate what parameters result in better clustering partitions,
many validation indices have been designed to assess the quality of clustering.

Two very popular internal validation indices are the Silhouette index [93] and Dunn’s
index [93, 94]. They receive the denomination of internal because they rely only on the clus-
tering itself and not on external labels or data for their evaluations. The Silhouette index for
any object i in a clustering partition is defined as:

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2.8)

Where a(i) is the average distance (usually euclidean) from object i to the other objects
that have been assigned to the same cluster as i. b(i) is the distance from object i to its closest
neighbor that has been assigned to a different cluster. This index will vary in the range [−1, 1]
where -1 indicates a very likely misassignment because objects in other clusters are more
similar to i than the objects in the same cluster as i. 1 indicates that the cluster assignment is
very likely to be correct. To obtain a global Silhouette index for the partition, the index of all
objects is averaged. Dunn’s index is defined as:

D(C) =
minCk,Cl∈C,Ck 6=Cl

(mini∈Ck,j∈Cl
dist(i, j))

maxCm∈C diam (Cm)
(2.9)

Where C is the clustering partition to evaluate consisting in m clusters C. The numer-
ator indicates the minimum distance between any two objects i and j belonging to different
clusters. The denominator indicates the maximum diameter diam found between any two ob-
jects belonging to the same cluster. The idea is that the clustering algorithm should produce
a partition with high inter-cluster variability and low intra-cluster variability. Dunn’s index
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evaluates this by only looking at the extreme cases in the partition. The result is a value in the
range [0,∞] which should be maximized.

2.5 Coexpression metrics
In this section, 3 different statistical tools for studying and estimating associations between
two random variables are reviewed. These measures are by no means the only tools that can
be used to characterize these associations or even specifically coexpression, but they represent
the ones used for downstream coexpression analysis in this work.

2.5.1 Chi-square test of independence
One of the most useful tools in statistics to compare groups consisting of different categories is
the Chi-square statistic which can be obtained through a Chi-square test of independence [95].
A basic example of the use of this test would be comparing two groups of patients with the
same illness. One group receives treatment and the other does not. Once the treatment period
for the first group is finalized, a survey is carried out where each patient from both groups
answers if whether or not they notice improvement over their illness. Naturally, one would
anticipate patients that received treatment to feel better in general. In other words, one would
anticipate that the observed frequency of patients who received treatment and that felt better
(e.i. The intersection) was greater than that expected by random chance. Moreover, one could
also anticipate the same for those patients who did not receive treatment and that did not feel
better. The other two cases, which are feeling better with no treatment or not feeling better with
treatment would probably have less than expected counts as the patients have distributed more
prominently in the first two mentioned groups. The Chi-square test analyses this information
and summarizes it in a statistic.

The Chi-square test can easily be extended to analyze many categories. Take for instance
the proposal that is being made in this work: consider two vectors ~x and ~y containing gene
expression values for two different genes across a common set of n samples. These vectors,
which initially contain real numbers, may be discretized using various criteria and techniques.
Consider the case where 3 categories have been independently defined for each vector: low
expression, medium expression and high expression. Each value in the vectors is classified
into one and only one of these categories.

Table 2.3 shows an example of a contingency table, which is the structure from which
one may compute a Chi-square statistic. Observed counts (Obs) can be found highlighted in
yellow. these are simply the cardinalities of the intersections of the corresponding categories
for both genes. A useful intuition for interpreting these tables and the observed counts consist
of interpreting it by rows. For example, in the first row, the distribution of the samples that
have a low expression for gene x is conceptualized in terms of all possible expression levels
of y [32]. The same concept applies to columns (gene y) relative to the rows. The green cell
shows the total number of samples n (length of both gene vectors) which one would obtain
by summing the observed counts from all cells. To calculate the expected counts for each cell
i, j the following expression is used:
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Expeci,j =
MR

i ·MC
j

n
(2.10)

WhereMR
i are the row marginals for row i andMC

j are the column marginals for column
j. These marginals are shown in blue in the example Table 2.3. They are simply the sum of
the row or column observed counts. Expected counts show the anticipated cell frequency if
the counts of the table were distributed randomly while taking into account the observable
number of samples in the studied categories. For example, when computing the expected
count for low expression on gene x and high expression on gene y, the total number of low
expression counts for x across all categories and the total number of high expression counts for
y across all categories are taken into account in the marginals. Once the observed and expected
counts for each cell i, j have been obtained, the Chi-square of the cell shall be obtained by the
expression:

χ2
i,j =

(Obsi,j − Expeci, j)2

Expeci,j
(2.11)

The Chi-square of a cell will increase with bigger differences between observed and
expected counts. It will tend to 0 when these values are similar. The final Chi-square statistic
for the pair of genes in question is simply the sum of all individual Chi-square cell values:

χ2 =
∑

χ2
i,j (2.12)

Example Table 2.3 shows the final Chi-square in red. In this case, it is indeed a very high
Chi-square when compared to statistics arising from random data with the same structure. This
suggests that the counts of expression levels observed for this pair of genes as a whole are
shifted compared to a random distribution. The latter at the same time suggests the existence
of some sort of biological interaction between the genes that causes the expression levels to
not behave randomly, but in a rather coordinated way. A given expression level in gene x tends
to correspond with a specific level of expression of gene y. Notice how it is possible to tell
the exact contribution of each one of the cells to the final statistic. In the example, it is easy to
see that most of the contribution comes from samples that have low expression in gene x and
high expression in y.
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∑
χ2
i,j = 213.23 Gene y x Marginals

Categories
Low

Expression
Medium

Expression
High

Expression
Obs

Row sums

Low
Expression

Obs = 342
Expec = 384
χ2
1,1 = 4.5

Obs = 16
Expec = 17
χ2
1,2 = 0

Obs = 53
Expec = 11
χ2
1,3 = 163.5

411

Medium
Expression

Obs = 931
Expec = 911
χ2
2,1 = 0.4

Obs = 45
Expec = 39
χ2
2,2 = 0.8

Obs = 0
Expec = 26
χ2
2,3 = 25.8

976

Gene x
High

Expression

Obs = 599
Expec = 578
χ2
3,1 = 0.8

Obs = 20
Expec = 25
χ2
3,2 = 1

Obs = 0
Expec = 16
χ2
3,3 = 16.4

619

y Marginals
Obs

Column sums 1872 81 53
∑
Obsi,j = n = 2006

Table 2.3: Example of contingency table and the information extracted from it to compute the
Chi-square statistic. The data displayed is real data obtained in this study.

The significance of each cell in a contingency table may be subject to a statistical test.
There are several approaches for this including a Fisher exact test which delivers more exact
p-values when the sample size is low and the observed values in the cells are also low [35].
However, an asymptotic approach is usually enough if the sample size is not reduced [34].
With the asymptotic method, the significance can be computed by finding the standard resid-
uals of each cell:

stdresi,j =
Obsi,j − Expeci,j

Expeci,j
(2.13)

Each standard residual stdres can be used as a z-score to assign a p-value to the cell
using the Standard Normal Distribution. Because of this, the Chi-square test is highly infor-
mative about the source of the statistic. This is one of the nice properties that this test has.
It is also a non-parametric test that does not have special requirements regarding variance or
homoscedasticity of the input data [95]. A p-value for the final Chi-square statistic may be ob-
tained by looking at the random Chi-square distribution that matches the degrees of freedom
(DFs) of the contingency table used in the test. DFs are given by:

DFs = (|catR|+ |catC |)− 2 (2.14)

Where |catR| is the number of categories in the rows and |catC | the number of categories
in the columns. For the example in Table 2.3, the random distribution arising from df = 4
would be used to compute the area under the curve between 0 and the obtained statistic (χ2 =
213.23). Taking the complement of this probability is the p-value of the test, which in this case
is virtually 0. From here, a significance level of 5% may be used to reject the null hypothesis
in this specific example. The null hypothesis is that the tested contingency table follows a
random distribution, implying that the expression levels of the genes are independent of one
another.
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2.5.1.1 K-means for gene expression discretization

Gene expression needs to be discretized to carry out the computation of the Chi-square statistic
for coexpression. In this work, the k-means clustering algorithm is used for this purpose [96].
Very much like other clustering algorithms (2.4.3), k-means finds groups of objects in a dataset
that have high similarity among themselves and low similarity with other groups. In this con-
text, however, the goal is only to find the values in a gene expression vector x that bin the
vector into k bins such that the within-bin variance is minimized and the between-bin vari-
ance is maximized. For this task, what k-means has to do simplifies to a breaks optimization
problem where only the values that separate extreme objects between clusters are of interest.

K-means begins by initializing k random or user-provided centroids. Each data point
is assigned to its closest centroid determined by some distance function. The centroids are
then updated with the mean of the data points that have been assigned to them. The process
is repeated iteratively until some stopping criterion is met. The algorithm is usually applied
to multi-dimensional data, but in this work specifically, it is applied to each gene expression
vector separately. This means that k-means will work with the gene expression values in a
1-dimensional line similar to what is done in breaks optimization.

To discretize the GTEx gene expression vectors, a parameter of k = 3 centroids to
obtain 3 expression categories per gene is used. These categories represent low, medium and
high expression. Since k-means can be sensitive to data outliers, the extreme values of every
gene vector are ignored when finding the values that bin the vector into the desired categories.
More specifically, values with a gene expression magnitude greater than 99.8% of the rest of
the values in the vector or lesser than 0.02% are ignored for the k-means runs. The centroids
are not initialized randomly, but rather at the values of the quantiles 0, 0.5, and 1 for each
gene vector (without the extreme values). This allows for a deterministic discretization of
each vector into the desired gene expression categories.

2.5.2 Pearson Correlation Coefficient
The most widely used statistical tool for coexpression analysis is the PCC [22]. The PCC
has been shown to be a good estimator of known confirmed gene functional associations and
hence it is also expected to be trustworthy in the discovery of potential novel associations. Re-
garding the performance of the PCC, it is known that features derived from PCC coexpression
can predict the relationships existent between well-characterized genes with known shared
biological functions [97]. This has been tested with genes involved in the same metabolic
pathways (e.g. Glycolysis, immunoglobulin synthesis, etc.) as documented in projects that or-
ganize curated biological pathway annotations such as GO [67]. The typical definition of the
PCC of a population’s sample can be used to calculate the correlation of expression between
a pair of genes:

rxy =

∑n
i=1(xi − x̄) · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2
(2.15)

Where xi is the ith element (sample) of the expression vector of gene x and x̄ is the
mean of all values in the vector. The same definitions apply for gene y. Both vectors have
length n which is the number of samples used for calculation (expression is measured for
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both genes in the same samples). The mathematical expression in the numerator corresponds
to the covariance between the genes and the denominator standardizes it by the product of the
standard deviations of each of the genes.

The PCC can take any value between [−1, 1] and it does not have units. As the PCC
approaches 1, it is said that the analyzed correlation is positive (as gene x increases in expres-
sion so does y). As it approaches -1, a negative correlation is said to take place (as gene x
increases in expression, y decreases, or vice versa). If the result is close to 0 there is evidence
of no correlation. In other words, the behavior of one gene can be described as random with
respect to the other. The computational calculation of the PCC is easy and well suited for large
datasets, but as addressed before (1.4.2), the measure is not general. Only linear relationships
may be detected with the PCC.

2.5.3 Spearman Rank Correlation Coefficient
The SRCC can also be used to estimate coexpression [33]. Traditionally, it has not being used
for large-scale coexpression projects, but it is a popular choice in many domains for correla-
tion analysis. For calculating the SRCC, the pair of input gene vectors must be ranked before
the correlation calculation (increasing computing time). However, it allows for detecting other
non-linear relationships between the variables such as exponential trends [23]. The definition
of the SRCC for a population’s sample is given here:

rsxy =

∑n
i=1(x

s
i − x̄ s) · (ysi − ȳ s)√∑n

i=1(x
s
i − x̄ s)2 · (

∑n
i=1(y

s
i − ȳ s)2

(2.16)

Where xsi in the context of gene expression is the rank of the ith biological sample in
the expression vector of gene x relative to all other values in x. x̄ g is the mean of the ranks
of x. The same definitions apply for gene y. Note that this formulation is correct even in the
case of tied ranks when one must assign a fractional rank to the tied observations (average
tie-breaking method). The interpretation of the SRCC has the same intuition as the PCC.

2.6 System-level coexpression calculation strategies
The problem of sample type overrepresentation has already been discussed as an important
consideration for coexpression calculation in the large-scale context (1.3.2.3). Three strategies
for mitigating this problem are considered and investigated. These are described in this section
and summarized graphically in Figure 2.4.
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Figure 2.4: Coexpression methods studied to address sample type overrepresentation and re-
dundancy in the input gene expression data. For simplicity, it is assumed that samples are
being visualized in 2 dimensions via some tool such as t-SNE (2.4.2). A: each color repre-
sents a tissue type or high-level cluster made of similar tissue types. Subclusters inside these
groups may be present. All samples are taken for coexpression analysis without further con-
siderations in the naive method. B: calculate the similarity of each sample with all other sam-
ples. Weight down samples if there are more samples alike (redundant samples are weighted
down more). At the moment of computing coexpression, sample importance is shrinked based
on weights deriving from sample similarities (redundancy). C: start by clearly identifying all
tissues/clusters and also subclusters if there are any. Average each cluster and compute coex-
pression. The new ”samples” are centroids. D: sample each tissue/cluster n times, taking k
samples in each iteration. In the example shown n = 2 and k = 2. To get final coexpressions
take quantiles (e.g. quantile 0 or minimum) or some summary statistic like average.
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2.6.1 Naive method
This strategy is really just for comparison purposes as this method ignores the existence of
possible bias in coexpression calculation due to certain types of samples being overrepre-
sented in the input data. It simply uses all samples available for coexpression calculation
without further considerations (See Figure 2.4 panel 1).

2.6.2 Weighted coexpression
This is the strategy that has been used in the literature of large-scale coexpression [62]. The
idea is to reduce the importance of samples that are very similar to each other and whose
characteristics are overrepresented in the data at the moment of calculating the coexpression
(see Figure 2.4 panel 2). For clarity, the procedure is described here in terms of the PCC, but
it can technically be adapted to any coexpression metric. The Weighted Pearson Correlation
Coefficient (WPCC) is defined as:

rwxy =

∑n
i=1wi · (xi − x̄) · (yi − ȳ)√∑n

i=1wi · (xi − x̄)2 ·
∑n

i=1wi · (yi − ȳ)2
(2.17)

The WPCC computation is very similar to that of the regular PCC described in Equation
2.15. However, the WPCC weights the covariance and variances with the term wi which refers
to the weight of each sample i in the gene vectors x and y. The weights are calculated in a
three-step process:

1. Find the PCC between all unique pairs of samples: here Equation 2.15 can be used
taking x and y as sample vectors whose elements are n genes. The output of this step
is a triangular matrix which is rotated and copied to the other triangle of a B ∈ Rmxm

square matrix. m is the number of samples in the expression dataset. The diagonal of
this matrix is composed of only ones representing the correlation of each sample with
itself

2. Compute a redundancy matrix from B using:

Ji,j =
max(0, Bi,j − C)

1− C
(2.18)

Where Ji,j is each cell of a square J ∈ Rmxm redundancy matrix. C is a user threshold
that indicates the minimum value of PCC at which two samples will start being consid-
ered as redundant. Any PCC value equal or lesser than the threshold will be transformed
into a redundancy of 0 while greater values will be scaled to (0, 1]. 1 indicates that sam-
ple i and sample j have maximum redundancy among themselves

3. Compute the weight of each sample i by applying:

wi =
1√∑m
j=1 Ji,j

(2.19)

The latter expression indicates that for each row vector in J , one must sum all the
values of these vectors including the redundancy between a sample and itself. Taking



44 CHAPTER 2. MATERIALS AND METHODS

the reciprocal of the square root of the sum is the weight for the sample in question.
Once this is done, wi can be applied in Equation 2.17 to compute the WPCC of all
possible unique gene pairs

Since the weight for any sample i in the WPCC becomes smaller as the redundancies
sum for the same sample becomes larger, the samples with larger redundancy will contribute
less to the PCC at the moment of calculating gene coexpression (See Figure 2.4 panel 2).

2.6.3 Average coexpression
Average coexpression is a strategy proposed in this work. It consists of simply computing
high dimensional gene expression centroids for each tissue. Coexpression is then calculated
with the resulting ”samples” which are vectors containing the mean gene expression of each
tissue. The idea is to balance the dataset by summarizing all samples of each tissue in a single
expression vector. In fact, this strategy can generalize to summarizing any partition of samples
and not just a tissue-based partition (see 2.4 panel 3).

2.6.4 Balanced Repeated Sampling
The Balanced Repeated Sampling (BRS) method is a strategy proposed in this work. It tries
to mitigate sample redundancy by randomly sampling with uniform probability and without
replacement exactly k samples of each tissue or cluster of a sample partition for coexpression
calculation. The procedure is repeated s times (realizations) to obtain s gene coexpression
matrices. The final coexpression matrix can be obtained by taking the minimum or the mean
of each cell with the same indices across the s matrices. Samples may be drawn more than
once across the s realizations, but only once during a particular realizations.

Algorithm 2 follows the BRS process. It is also documented in the algorithm that any
order statistic may be used to obtain the final coexpression matrix and not just the quantile 0
(minimum). Just as the average method, this strategy can work with any partition of samples
and not just a tissue-based one. The number of samples that can be taken from each group of
samples has an upper bound given by the size of the smallest group (see Figure 2.4 panel 4).
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Algorithm 2: Balanced Repeated Sampling coexpression calculation
input : An expression matrix E with n genes in the rows and m samples in the columns, a partition P of p

classes over the row samples of E, the number of objects k to sample per class in P per sampling
repetition, the number of sampling repetitions s, the desired quantile q across repetitions to
compute the final result

output: A triangular coexpression matrix of all unique combinations of 2 genes from a set of n genes

Function BRS(E, P , k, s, q):
// Obtain s submatrices of E, each with p ∗ k samples
M1,M2, . . . ,Ms ← initializeMatrix(n, p ∗ k);
for i← 1 to s do

// Initialize set of object identifiers which will be sampled in
this iteration

K ← ∅;
for j ← 1 to p do

// Sample k elements from class j
K ← K ∪ sample({x ∈ P | x = j}, k);

end
Mi ← subsetMatrix(E, K);

end
// Obtain s square coexpression matrices, where only the lower or

upper triangle is used
X1, X2, . . . , Xs ← initializeMatrix(n, n);
for i← 1 to s do

Xi ← coexpression(Mi);
end
// Obtain the final coexpression matrix Y by finding the desired

quantile across equally indexed cells in the lower (or upper)
triangular matrices

Y ← initializeMatrix(n, n);
for i← 2 to n do

for j ← 1 to i− 1 do
Y [i, j]← getQuantile([M1[i, j],M2[i, j], . . . ,Ms[i, j] ], q);

end
end
return Y ;

2.7 Gene expression data transformations for coexpression
Additionally to the choice of possible coexpression measures and the choice of coexpression
strategies that can be used (2.5, 2.6), there is also the possibility to transform the gene ex-
pression data before coexpression calculation to obtain certain properties that may help the
analysis. The transforms reviewed in this section change the gene expression datum after rou-
tine normalization (2.3). They are used for some experiments presented in Chapter 3.

2.7.1 Z-score normalization
Z-score normalization is a popular data transformation in several domains including genomics
[98]. It consists in performing the following for each gene vector ~x in the expression matrix:
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zi =
xi − µx

σx
(2.20)

Where zi is the z-score transformed version of the ith element xi of gene vector ~x. µx is
the mean of vector ~x and σx the standard deviation. The idea of z-score is to center the distribu-
tion of values in ~x around 0 to describe gene expression in terms of deviations from the mean
expression. The transform works best when the original expression distribution approaches a
normal distribution. In this case, the transformed distribution will also be approximately sym-
metric. The latter means that z-scores with the same magnitude but different signs are equally
likely. On the other hand, for initially skewed distributions this is not necessarily true, thus
making z-scores less comparable between them.

2.7.2 Principal Component Analysis regression
PCA is a technique that allows for capturing the variance observed across the features of a
dataset through linear combinations known as PCs (2.7.2). In the gene expression context,
consider a group of samples belonging to the same tissue or cluster. One could say that it is
expected that such samples have very little biological variation between them as they all have
the same biological origin. A great proportion of variation between the samples, for example,
characterized through PCA, could therefore be attributable to other unwanted sources such as
technical variation or batch effects representing confounding artifacts in the gene expression
data.

Parsana and collaborators have investigated the effect of removing potential sources of
unwanted variation from expression data in subsequent coexpression analysis by subtracting
strong PCs from the data [99]. PCA in these experiments is performed with samples as obser-
vations and genes as features. The transformation consists of finding the regression residuals
for each gene vector in the expression matrix as indicated by:

Êi = Ei − [µi + (βi × L1:p)] (2.21)

Where Êi is the residualized expression vector of gene i resulting from subtracting the
predicted values vector of a linear model (in square brackets) from the original expression
vector Ei. In the linear model [100], µi is the intersect and L1:p represent the top p PCs.
Each PC will be weighted by their corresponding fitted coefficients β. The ”top” principal
components in the cited work are determined with a permutation-based approach [101], but
can also be decided by a captured cumulative variation threshold criteria.

In the source paper of this transformation, authors were not working with large scale
coexpression and only restricted their analyses to the 5000 most variable genes. To translate
the concept to large-scale coexpression, in this work the most variable genes per group of
samples are first found to guide the transformation. To do this for each group of samples,
a scatter plot of the Median Absolute Deviation (MAD) and the ratio MAD over median of
each gene is analyzed via a Local Regression (LOESS) [102]. The ratio MAD over median
expression is analogous to the coefficient of variation for standard deviation and mean. LOESS
is used to fit a smooth curve of local quadratic polynomials to the scatter plot (see Figure 2.5
for an example).
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Using a fitted LOESS model as a reference helps to identify genes with high variability
relative to their expression levels across samples of the analyzed tissue or cluster. From there,
another filter is applied that discards genes with low overall expression by simply looking at
the distribution of median expression values as shown in Figure 2.6. Similar patterns across
groups of samples were found in this analysis when looking for the most variable guide genes,
so the same parameters of cutoffs are considered for all groups of samples.

Figure 2.5: Example identification of most variable guide genes by LOESS on a group of
Lung samples. A: distribution of the expression medians for each gene across Lung samples.
B: distribution of the ratio expression MAD over expression median for each gene across
Lung samples. C: scatter plot of genes with their median expression in the x-axis and ratio
MAD over median in the y-axis. The fitted LOESS curve is shown in red. C: shaded white area
indicates the area under the fitted curve and the 10% of genes with the smallest measurements
that surpass the fitted curve. Genes falling in this area are filtered out.
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Figure 2.6: Some of the genes remaining after applying the filter shown in Figure 2.5 have
very low median expression. They are filtered out here if their values lay to the left of the
red line shown in this histogram. The final result comprises a set of genes with overall high
median expression and high MAD over median expression ratio for the analyzed group of
samples (Lung in this example).

2.8 Biological pathways validation of coexpression
It is expected that all reviewed system-level coexpression strategies (2.6) but the naive one
can do a good job at preventing the sample type overrepresention problem (1.3.2.3). How-
ever, the effect that each method can have on the discovery of coexpressions is not obvious.
A way to compare this effect is required. Comparing coexpression results for several meth-
ods is traditionally difficult as the ground truth is not known. In other words, the set of all
true coexpressions between genes is not fully known. Despite the latter, there is a way to get
an approximation of the ground truth by using biological knowledge and database resources.
This is a very frequently used strategy to evaluate coexpression pipelines relative to one an-
other [99]. It consists of assuming that any pair of genes in the same biological pathway are
coexpressed.

By gathering curated biological pathways information as the observed data and consid-
ering the output of the different coexpression methods as the predicted data, a strategy similar
to what is done when evaluating a binary classifier in machine learning can be applied [103].
This can be attempted because coexpression is correlated with shared functionality between
genes [25].
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2.8.1 Evaluation of coexpression performance
For the analysis based on biological pathways, the True Positives (TPs) and False Positives
(FPs) are of particular interest as evaluation indicators. TPs constitute pairs of genes that have
at least one biological pathway in common and that come up as coexpressed in a method’s
analysis. The FPs are pairs that do not share biological pathways but that are detected as
coexpressed. These indicators are important because they provide information on how many
correct (or at least highly likely to be correct) coexpressions are detected. they also speak about
how many potential mistakes could have been made. More specifically, the False Discovery
Rate (FDR) is analyzed and defined as:

FDR =
FP

FP + TP
(2.22)

The FDR is in the range [0, 1]. It represents the proportion of FPs relative to the total
positives (coexpressed genes) predicted by a method. FDR has been chosen to evaluate this
kind of analysis based on biological pathways in the literature before [60,99]. The complement
of the FDR (e.i. 1 − FDR) is the Positive Predictive Value (PPV), also known as precision.
The PPV is preferred in this work for intuition reasons as the evaluation with the PPV is better
when the value is higher while with FDR it would be better if the value is lower.

The objective of the analysis is to compute the PPV for a series of thresholds set across
the range of the coexpression metric. For instance, in the context of the PCC, absolute value
coexpressions greater than a certain value will be considered as true coexpressions and the
rest discarded. The PPV is computed when calling the retained gene coexpressions as the
predicted positives. The process is repeated for increasingly stricter thresholds allowing for
the creation of a PPV-PCC thresholds curve which depicts the performance of the evaluated
method under different settings.

Another important metric to pay attention to is the total number of pairs of coexpressed
genes found. This can be thought of as the number of edges in the coexpression graph. One of
the objectives in large-scale coexpression analyses is to favor the discovery of novel associa-
tions between genes. Discovery is more likely when more coexpressed genes are found. The
PPV can also increase solely because fewer coexpressions are being called as true by a given
method. It is less likely to call FPs if there are fewer overall positives, so it is important to
assess the number of coexpression edges along with the PPV to fairly evaluate methods.

2.8.2 Biological databases
For the experiments performed to compare coexpression strategies based on biological path-
ways information, the following databases are queried using the MIGSA R package [104] to
access Enrichr’s [105] repository:

• BioCarta 2016 [106]

• GO Biological Process 2018 [67]

• KEGG 2019 Human [66]

• Comprehensive Resource of Mammalian Protein Complexes (CORUM) [107]
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• Panther 2016 [108]

• Reactome 2016 [109]

• WikiPathways 2019 Human [110]

A simple filter for the words ”mouse”, ”disease”, ”defect” and ”cancer” was applied to
all the pathways and gene sets fetched from these databases. Some of them contained iden-
tified pathological gene interactions and mouse data. Pathways with more than 50 genes are
discarded to keep only the most specific ones, an idea applied by Obayashi and collabora-
tors [15]. Potential coexpressions between members of smaller pathways or gene sets are
more likely to be true due to the specificity of the function. Some of the pathways are just
different versions of the same pathway for different databases, but this is not a problem for
the analysis.

2.9 Coexpression data analysis
In this section, some tools used to explore and validate the coexpression data once calculated
are reviewed.

2.9.1 Permutation tests
A permutation or randomization test can be broadly defined as a non-parametric technique
that compares an observed distribution of test statistics with a distribution obtained for the
same statistic and the same data but with rearranged labels (null distribution) [111]. When
significant associations are observed in the non-permuted data, it is expected that upon rear-
ranging the labels and recalculating the statistic, that these associations will disappear. This
implies that the significant associations observed are not produced by chance. Distributions
of permuted and non-permuted input data used to calculate the target statistics are the same
since no foreign values are introduced in the process. The latter makes both of the resulting
distributions of statistics comparable.

In this work, a permutation-based approach is used to demonstrate that a large number
of coexpression associations resulting from the system-level human coexpression estimation
are not driven by chance. Gene-wise permutation-based tests are also used to estimate the
weight of specific groups of samples in the system-level human coexpression calculated. This
is done by recalculating coexpression once the gene expression measurements for the group
of samples in question have been substituted by randomly selected values in other sample
groups (4.5).

2.9.2 Statistical tests
2.9.2.1 Hypergeometric test

The hypergeometric test is useful to check the statistical significance of set intersections [58].
In this work, it is applied to characterize the coincidences between coexpressed genes found
using distinct coexpression metrics. The test computes a p-value based on the size of the
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intersection k between the two sets tested (the value that a random variable X takes). The
probability mass function of the hypergeometric distribution given by:

P (X = k) =

(
K
k

)(
N −K
n− k

)
(
N
n

) (2.23)

Where K is the size of the first set. In this context, such set is a collection of genes
found to be coexpressed with some gene. N is the size of the universe (total genes) and n is
the size of the second set. The parameters K, N , and n determine the mass function under
which the intersection size k is evaluated. A small p-value (usually < 0.05) would indicate
that the observed overlap between sets of coexpressed genes is very likely not due to chance.

2.9.2.2 Correction of p-values by False Discovery Rate

When performing several related hypotheses tests, the probability that some of the significant
results represent wrong rejections of the null hypothesis (type 1 errors) increases naturally due
to the number of tests performed. An example of this would be testing the overlaps between
coexpressed genes given by different metrics for many genes. To account for this, several
p-value correction methods exist. In this work, a correction by FDR or Benjamini-Hochberg
method is used [112]. It consists of computing a vector of adjusted p-values ~q using:

qi =


pi, if ri = n

qi−1, if qi−1 <= pi
(
n
ri

)
n
ri
, if qi−1 > pi

(
n
ri

) (2.24)

Where pi is the ith p-value of a vector ~p containing the unadjusted p-values sorted in
descending order. n is the total number of p-values. ri is the rank of pi so that the biggest
unadjusted p-value has a rank n and the smallest rank 1. Once computed, the p-values in ~q
shall be interpreted as their unadjusted counterparts in terms of significance.

2.9.2.3 Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a paired non-parametric statistical test that helps to deter-
mine if two samples come from different populations by looking at their mean ranks [113]. A
null distribution of the test’s statisticW has mean 0 and variance n(n+1)(2n+1)

6
. n is the number

of paired observations in the tested samples whose difference is not equal to 0. The observed
statistic can be calculated with:

W =
n∑

i=1

[sign (x2,i − x1,i) · ri] (2.25)

Where x2,i and x1,i are pairs of observations from each of the two samples tested sorted
in increasing order by the values resulting from their absolute differences. sign() is a function
that returns the sign of the number used as input. ri is the corresponding rank of a pair of ob-
servations where the pair that has the smallest absolute difference has rank 1. When obtained,
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the observed W statistic may be compared to its matching null distribution by using a criti-
cal value to obtain a p-value. In this work, the Wilcoxon signed-rank test is used to compare
paired results between coexpression metrics (4.4.3).



Chapter 3

Preparation for system-level coexpression

In this chapter, results obtained before proceeding to the calculation of system-level coex-
pression are presented. These results had to be obtained before the main results of the project
that are presented in Chapter 4 as they provide the base for subsequent robust coexpression
calculation. Details on the data, methods, and algorithms used are documented in Chapter 2.

3.1 Tissue-specific genes
The original GTEx expression matrix was processed with a general low expressed genes filter
resulting in a new matrix of 31,494 genes that remained from the initial 56,200 (2.3). The
24,706 genes that were initially filtered out were investigated to see if they were tissue-specific
and worth to keep for downstream analysis. The metrics used for this purpose were the MPE
and LMME (2.2). This is done because the initial consideration of expressed genes does not
account for tissue-specific genes which are only expressed in specific subsets of samples. In
this work, the term ”tissue-specific gene” is used loosely since it is not required for a gene to
be expressed in exclusively one tissue for it to be considered specific. Instead, the term is used
here to refer to genes that are expressed in some subset of samples where subsets represent
tissue types. If a gene is clearly expressed in at least one tissue (could be more), and it is not
expressed in more than 20% of samples across all tissues, then it is termed tissue-specific in
this work.

For the analysis, tissues with very low sample counts (less than 50 samples) were not
considered. For each of the 24,706 tissue-specific candidate genes, the MPE and LMME met-
rics were computed. In the case of the MPE, the TPM threshold to consider a gene expressed
in any sample was increased 10-fold to 1 TPM compared to the 0.1 threshold used in the first
general gene filter (2.3). This is done in order to have higher confidence when considering a
gene expressed for a particular tissue or tissues only.

Figure 3.1 shows the scatter plot of the paired MPE and LMME metrics for each of the
analyzed genes. Histograms of the distributions of both metrics are also shown along with a
density plot. There is particular interest in the upper-right area of the plot as genes there have
a high average expression in at least one tissue. Genes with a high percentage of expression
in at least one tissue are also in this area.

53
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Figure 3.1: Investigated genes for tissue specificity. Genes highlighted in red are rescued from
the initial general gene filter due to good evidence that they are tissue specific. Detail on these
genes can be seen in figure 3.2.

Based on the observed trend, it is proposed that in order to consider a gene as tissue-
specific and include it in the project for downstream analysis, it must have an MPE greater than
or equal to 66% and a LMME greater than or equal to 0.69897 (TPM of 5 in the raw scale).
These criteria are visually estimated to capture those genes which are tissue-specific with high
probability. Only 1,953 genes out of the 24,706 genes investigated fulfilled the requirements
established through visualization of the MPE and LMME metrics. These genes are rescued
from the initial gene filter based on all samples in the dataset which had left them out. There
is enough evidence to suggest that these genes are expressed, just not globally, and rather on
specific tissues. This quality distinguishes these genes from non-expressed noisy genes. In the
end, a grand total of 33,447 genes are considered for downstream analysis.

As shown in Figure 3.2, it was detected that the majority of rescued genes exhibit their
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MPE and LMME in the testis tissue. This is consistent with literature observations in which
testis is regarded as a tissue with a high number of tissue-specific genes [114].

Figure 3.2: Tissue type in which the MPE or LMME is observed for GTEx genes recovered
from the initial general low expressed genes filter. The tissue of MPE and LMME tends to be
the same across genes except for a few exceptional cases (circled in red). All genes shown are
rescued due to them having a high mean expression in some tissue (> 5 TPM in raw scale)
and a high percentage of expressed samples in some tissue (> 66%). This does not have to
be exclusively for one tissue. The MPE and LMME of one gene passing the threshold may
correspond to different tissues each.
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3.2 Characterization of GTEx gene expression states
The present work has as an objective to capture coexpression relationships between genes
that are representative of normal human biology as a whole. For this purpose, several types
of samples across a variety of tissues are considered. Some strategies are proposed to make
sure that samples from certain types that are more numerous in the input data do not become
overrepresented in the coexpression calculations (2.6). However, some of these strategies as-
sume that samples are already categorized into non-redundant groups. In other words, that the
tissue partition of the GTEx samples has highly similar samples labeled with the same tissue
and dissimilar samples with different tissues.

To check the latter assumption that GTEx tissues represent well defined and distinct
gene expression states, Louvain-Jaccard clustering (as implemented by the igraph R package)
was performed (2.4.3.2) [115]. If tissues represent a nice partition of GTEx samples, then
it is expected that clustering the samples would render a similar partition. To assign nearest
neighbors to each sample in the dataset for clustering, it is necessary to calculate the similar-
ity between the gene expression profiles of all possible unique pairs of samples. Finding these
similarities using, for example, euclidean distance, is very computationally expensive in the
original gene expression high dimensional space. To simplify this task, PCA was used to gen-
erate linear combinations of gene expression values that successively maximize the variance
across samples (2.4.1) [70].

PCA is useful in this setting because it captures the main differences between samples.
Even when considering a cumulative variance captured by the PCs as high as 99% of the
total dataset variance, a dimensionality reduction from 33,447 genes (original dimensionality
across the genes) to 6,947 PCs is achieved. The input kNN graph for the Louvain-Jaccard
clustering is therefore calculated from a 16,704- samples-by-6,947 PCs matrix.

A t-SNE was also computed to be able to visualize the sample’s high dimensional PCs
in a 2-dimensional embedding [86]. The Barnes-Hut implementation of t-SNE was used to
calculate an exact embedding (e.i Theta parameter of 0) with perplexity 50, a learning rate of
200, and 5000 iterations [116]. Figure 3.3 shows the t-SNE scatter plot with points labeled by
tissue type. Interesting observations include that many samples from certain tissues seem to
have very similar expression profiles to those observed in a different tissue at least in t-SNE
space. Notable examples include a clear mix of Breast and Adipose Subcutaneous samples, a
very heterogeneous mix of the Skin tissues (sun and not sun-exposed), a mix of the intestinal
tissues Colon Transverse, Colon Sigmoid, and Illeum (the last portion of the small intestine),
a mix of esophagus and stomach samples (potentially corresponding to the gastroesophageal
junction region) and a mix of samples from several parts of the central nervous system among
others.



3.2. CHARACTERIZATION OF GTEX GENE EXPRESSION STATES 57

Figure 3.3: GTEx samples t-SNE plot based on 6,947 PCs with tissue type point aesthetics
shown.

For deciding the nearest-neighbors parameter for the kNN graph which has to be com-
puted prior to clustering, all possible values between 10 and 150 were explored. The Silhou-
ette Index [93], Dunn Index [94], modularity [92], number of clusters and size of the smallest
cluster were used as error estimators as presented in Figure 3.4. Partitions across all tested
ranges have very similar Silhouette and Dunn indices as evidenced by the range of the values
obtained. However, there are some k values that offer slightly better performance.

For the minimum cluster size estimator, it was sought that this would not exceed a value
of 89. Thanks to the t-SNE plot with the tissue labels in Figure 3.3, it was a known intuition
that the Kidney Cortex (85 samples) and Kidney Medulla (4 samples) tissues would probably
form a very well defined group and that this would be the smallest cluster. On the other
hand, smaller sizes of smallest cluster were associated with worse validation indexes. Another
observation from the t-SNE plot was that there is a tendency of different tissues, in general, to
merge together as opposed to samples in one tissue creating subgroups. A notable exception
is Whole Blood, which clearly separates into 2 subgroups potentially due to the moment in
which samples were taken [117]. Despite this, in general, fewer clusters are expected than
initial tissue types. Modularity has a decreasing trend as the number of clusters increases, but
for the value proposed (dotted lines in Figure 3.3), it is still bigger than 0.95.
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Figure 3.4: Clustering error estimators for different partitions of the GTEx samples obtained
with the Louvain-Jaccard algorithm. Dotted lines indicate a k = 125 parameter.

Once the clustering partition was found, the previously computed t-SNE was plotted
again, but labeling the points with cluster memberships instead of tissue types. As shown in
Figure 3.5, the t-SNE visualization agrees very well with the partition found for the samples
through clustering despite the fact that t-SNE information is not used for the clustering in any
way. This is encouraging because a clearer separation of samples has been achieved when
compared to the tissue-type partition seen in Figure 3.3. The names of the clusters shown in
the legend of Figure 3.5 correspond to manual annotations of the clusters based on the main
tissue-types found in each cluster. The latter is done to have a more descriptive description of
clusters instead of simply numeric labels (i.e. Just 1, 2, ... 34). A detailed description of the
tissue type composition of each cluster is given in Table 3.1.
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Figure 3.5: GTEx samples t-SNE plot based on 6,947 PCs with Louvain-Jaccard clustering
point aesthetics shown.

Table 3.1: Tissue compositions of Louvain-Jaccard clusters found in the GTEx data.

Cluster Total samples Composition
Adipose Subcutaneous 909 Adipose Subcutaneous: 72.39% Breast Mammary Tissue: 22.22% Adipose Visceral: 2.97% Artery Coronary: 0.77% Skin Sun Exposed: 0.44% & 7 more
Adipose Visceral 533 Adipose Visceral: 96.25% Artery Coronary: 1.88% Artery Aorta: 0.56% Colon Transverse: 0.38% Lung: 0.38% & 3 more
Adrenal Gland 258 Adrenal Gland: 100%
Aorta & Coronaries 661 Artery Aorta: 64.75% Artery Coronary: 31.77% Artery Tibial: 2.72% Esophagus Gastroesophageal Junction: 0.3% Adipose Visceral: 0.15% & 2 more
Artery Tibial 651 Artery Tibial: 98.31% Artery Coronary: 0.77% Adipose Subcutaneous: 0.46% Uterus: 0.31% Ovary: 0.15%
Basal Ganglia 690 Caudate: 35.07% Nucleus accumbens: 33.62% Putamen: 29.28% Hypothalamus: 0.58% Amygdala: 0.43% & 4 more
Brain CAH 958 Brain Cortex: 26.41% Frontal Cortex: 21.5% Anterior cingulate cortex: 18.16% Hippocampus: 17.22% Amygdala: 14.93% & 6 more
Brain HNS 536 Hypothalamus: 35.26% Spinal cord: 29.48% Substantia nigra: 25.37% Hippocampus: 5.6% Nucleus accumbens: 2.05% & 5 more
Breast 262 Breast Mammary Tissue: 97.33% Skin Sun Exposed: 1.15% Bladder: 0.76% Adipose Subcutaneous: 0.38% Cervix Endocervix: 0.38%
Cerebellum 458 Cerebellum: 52.62% Cerebellar Hemisphere: 46.72% Brain Cortex: 0.22% Hypothalamus: 0.22% Spinal cord: 0.22%
Esophagus & Vagina Mucosa 679 Esophagus Mucosa: 81.59% Vagina: 15.17% Minor Salivary Gland: 2.95% Cervix Ectocervix: 0.29%
Feminine Reproductive 218 Uterus: 64.22% Vagina: 20.18% Cervix Endocervix: 4.13% Ovary: 4.13% Cervix Ectocervix: 3.21% & 3 more
Gastroesophageal Junction 1013 Esophagus Muscularis: 50.44% Esophagus Gastroesophageal Junction: 36.43% Stomach: 9.08% Prostate: 1.78% Bladder: 1.38% & 4 more
Heart Atrial Appendage 433 Heart Atrial Appendage: 97.92% Heart Left Ventricle: 1.15% Artery Coronary: 0.69% Lung: 0.23%
Heart Left Ventricle 433 Heart Left Ventricle: 98.38% Heart Atrial Appendage: 1.15% Artery Coronary: 0.46%
Intestines 1 506 Colon Transverse: 60.28% Small Intestine Terminal Ileum: 32.02% Colon Sigmoid: 6.32% Thyroid: 0.59% Artery Coronary: 0.4% & 2 more
Intestines 2 461 Colon Sigmoid: 73.97% Colon Transverse: 20.17% Small Intestine Terminal Ileum: 5.21% Stomach: 0.43% Esophagus Gastroesophageal Junction: 0.22%
Kidney 89 Kidney Cortex: 95.51% Kidney Medulla: 4.49%
Liver 226 Liver: 100%
Lung 577 Lung: 99.65% Amygdala: 0.17% Whole Blood: 0.17%
Minory Salivary Gland 142 Minor Salivary Gland: 99.3% Breast Mammary Tissue: 0.7%
Muscle Skeletal 806 Muscle Skeletal: 99.63% Artery Tibial: 0.12% Minor Salivary Gland: 0.12% Skin Sun Exposed: 0.12%
Nerve Tibial 626 Nerve Tibial: 98.88% Esophagus Muscularis: 0.48% Vagina: 0.32% Artery Coronary: 0.16% Prostate: 0.16%
Ovary 169 Ovary: 100%
Pancreas 328 Pancreas: 100%
Pituitary 282 Pituitary: 100%
Prostate 231 Prostate: 96.97% Bladder: 1.73% Vagina: 1.3%
Skin 1300 Skin Sun Exposed: 53.31% Skin Not Sun Exposed: 46.46% Adipose Subcutaneous: 0.08% Artery Tibial: 0.08% Vagina: 0.08%
Spleen 241 Spleen: 100%
Stomach 264 Stomach: 99.62% Colon Transverse: 0.38%
Testis 361 Testis: 100%
Thyroid 649 Thyroid: 99.85% Fallopian Tube: 0.15%
Whole Blood 1 400 Whole Blood: 100%
Whole Blood 2 354 Whole Blood: 100%

Additionally, HC was performed on a matrix containing the percentage of samples that
each tissue (columns) contributes to each cluster (rows) to graphically visualize how sam-
ples from each tissue are distributed across found clusters (2.4.3.1). This is presented in a
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heatmap in Figure 3.6 where it is possible to see how samples in the original partition of
GTEx tissues have rearranged into a different representation of gene expression states found
via clustering. The HC dendrogram is manually edited for a better visualization. The partition
of samples found through clustering is not perfect as evidenced by some potential outliers in
some clusters which are detectable in Figure 3.5. However, the clustering partition represents
a less redundant depiction of the gene expression states represented in the GTEx data when
compared to the tissue-based partition.

Figure 3.6: Distribution of tissue sample counts across Louvain-Jaccard clusters found in
GTEx data. Sample percentages were clustered using HC and the resulting ordering of sam-
ples was edited for a cleaner visualization.

3.3 Performance of different system-level coexpression strate-
gies

Results comparing distinct system-level coexpression strategies to tackle the problem of sam-
ple type overrepresentation are presented here (2.6, 1.3.2.3). Although these strategies address
the aforementioned problem, it is initially unclear which one should be preferred over the oth-
ers for coexpression calculation in this project. An analysis based on a biological pathways
evaluation framework is presented (2.8). This sheds light on what methods are more robust at
the moment of identifying coexpressed genes.

The experiment is set up with a total of 7,568 biological pathways and gene sets retrieved
from biological databases (2.8.2). A total of 11,759 unique genes participating in one or more
of these pathways were also retrieved. For testing each of the coexpression methods with-
out exceedingly high computational costs, the experiment was carried out on a representative
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random sample of 5000 genes. Since the obtained genes in the pathways use ENTREZ identi-
fiers [118], the ENSEMBL identifiers [119] that GTEx uses were mapped to ENTREZ using
the biomaRt tool [120]. After filtering out genes that failed to map to ENTREZ, ambiguously
mapped genes (i.e. A single ENTREZ mapped to multiple ENSEMBL) were assigned the ex-
pression of the ENSEMBL gene with the highest mean expression from within all ENSEMBL
that mapped to the ambiguous ENTREZ. 20,619 genes remained with proper ENTREZ identi-
fiers in the GTEx data. 11,180 of these were present in the genes from the retrieved pathways.
In the end, the random sample of 5000 genes was drawn from the overlap of 11,180 genes.

All possible gene pairs in the set of 5000 test genes that had pathways in common
according to the assembled reference pathway compendium were registered. 130,135 gene
pairs with this characteristic were found. These pairs will be used as an approximation to the
ground truth in order to evaluate the resulting coexpressions from the different investigated
methods. For this analysis, only the PCC was used with the purpose of avoiding extensive
computation time. PPVs were calculated for each possible absolute value PCC threshold in
the range [0, 0.9] with a step of 0.05 (2.8.1). When a particular coexpression was greater than
or equal to the threshold, it was regarded as a discovery (predicted positive) and tested against
the pathways compendium.

Sample weights for the weighted coexpression method were computed before subset-
ting the 5000 genes used in the experiment in order to obtain a representative result for this
method. For the same algorithm, a correlation threshold of 0.4 for the calculation of sample
redundancy is used as reported by the authors of this method in COXPRESSDB’s documen-
tation (2.6.2) [121]. For the average coexpression method and the BRS method, both the
tissue-based partition of samples as given originally by GTEx (only tissues with more than 50
samples are considered) and the clustering-based partition found in the last section were used.

For BRS, values of k = b(66.6∗min(| {x ∈ P |x = p}| ))/100c (i.e. Two thirds the size
of the tissue or cluster with the least samples) and of s = 20 are used as sampling size and
number of realizations respectively. This is done to make it highly likely that all samples are
considered at least once for coexpression calculation in some of the 20 realizations (2.6.4). For
computing the final coexpressions when using BRS, taking the minimum across realizations
was tested. A randomly selected realization of BRS was also analyzed.

3.3.1 Expression without further transformations
First, the results obtained by the researched large-scale coexpression calculations strategies
when working with routine normalized expression without further transformations are pre-
sented (2.3). The PPV values for each threshold and for each method were used to build the
curves shown in Figure 3.7. The same plot also shows how many discoveries each method
achieved independently from if they were TPs of FPs. In order to summarize the performance
of the methods in general across all thresholds, the area under each of these curves is calcu-
lated and shown in Table 3.2.
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Figure 3.7: Results of pathways based evaluation of different system-level coexpression cal-
culation strategies when presented with gene expression data without further transformations
aside from routine normalization. A: PPV across different PCC thresholds. B: number of
coexpression edges in a logarithmic scale returned by each method at different thresholds.
Balanced method refers to the BRS algorithm.

Results show that the best overall area under the PPV curve was achieved by the BRS
method working with a cluster-based partition of samples. Comparing BRS cluster against
BRS tissue is particularly interesting as both methods employ a conservative strategy by taking
the minimum of 20 realizations for coexpression calculation. Despite this, there is a notable
difference in the PPV of both methods. Initially, it seems that differences could be driven by
the number of samples considered for coexpression calculation. BRS tissue considers a total
of 47 ∗ 56 = 2, 912 samples (the number of tissues with more than 50 samples times two-
thirds of the smallest tissue) and BRS cluster considers only 34 ∗ 59 = 2, 006 (the number of
clusters times two-thirds of the smallest cluster). However, the PPVs of BRS tissue are worse
than the naive or weighted method which considers all of the samples for calculation. The
average coexpression method also performs worse when working with the tissue partition as
opposed to the clustering partition.
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Table 3.2: Overall Predictive Positive Value results for a biological pathways-based evaluation
of system-level coexpression strategies.

Method Area under PPV curve
Naive 0.02739

Weighted 0.02655
Average Tissue 0.01780
Average Cluster 0.02144

One Realization of BRS Tissue 0.02337
Min BRS Tissue 0.02428

One Realization of BRS Cluster 0.03105
Min BRS Cluster 0.03256

There is evidence that suggests that the cluster partition may be making a difference
independently from the number of samples used for analysis. From the results shown in the
last section, it can be said that some samples that are in different tissues as defined by GTEx
have high redundancy between them. Although not rigorously proven, high redundancy on
input datasets for coexpression has been empirically linked to worse performance in this kind
of analysis based on biological pathways [60]. What is observed in this particular analysis
fits the same pattern. Clustering of the input samples before coexpression analysis has been
done before in the literature [122], resulting in improvements in downstream coexpression
analyses.

Other remarks of this analysis include the number of found coexpressions at differ-
ent thresholds shown in Figure 3.7 panel B. BRS cluster seems to be the most conservative
method, predicting the least amount of coexpressed genes in general. For example, at a PCC
threshold of 0.4, BRS predicts about 106 coexpressions taking the minimum across realiza-
tion and a bit more looking at just one realization of the 20. The next method with the least
predicted coexpressions is the naive method with about 106.25 coexpressions. The amount of
predicted coexpressions is clearly related to the PPV of each method as more conservative
methods have fewer chances of calling FPs. This kind of relationship is also observed in other
studies of this spirit in literature [99].

3.3.2 Z-score normalized and Principal Component regressed expres-
sion

The performance obtained for different gene expression transformations additional to routine
normalization was also tested in the context of the biological pathways-based coexpression
performance analysis. For this, the same experimental setup described in the previous section
was used with the only difference being that this time only the BRS strategy working with a
cluster-based partition of samples was evaluated. Only this algorithm is tested as it seemed to
be the best performing method on routine normalized data without further transforms (referred
to here as ”untransformed data” for practical purposes).

The gene expression transformations tested consist of a z-score normalization performed
in a cluster-wise fashion (i.e. the transform is applied to the gene vectors of each cluster
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separately) and a cluster-wise PCA regression (2.7). The regression is tested by choosing the
top PCs dynamically with a permutation-based approach and at different cumulative variance
thresholds (70%, 80%, and 90%).

Figure 3.8 shows the results of the analysis. Transforming the input gene expression
data before coexpression calculations seems to improve the overall PPVs obtained compared
to not performing any transform. This is observed especially for the z-score transform which
seems to improve the PPVs dramatically. However, when examining the number of predicted
coexpressions, this transform also finds a notably smaller number of coexpressions compared
to the numbers observed when using untransformed data or PCA regression transformed data.
Regarding the PCA regression transform, it also seems to improve PPV values over the ones
observed when not transforming, but this improvement is not observed for PCC values in
which it is harder to decide if a coexpression should be considered as true or not (less than 0.7
PCC for example).

Figure 3.8: Biological pathways-based performance of the BRS algorithm working with ad-
ditional expression transformations. Results for the untransformed data are also included for
comparison and are now shown in blue. A: PPV across different PCC thresholds. B: number
of coexpression edges in a logarithmic scale returned by each method at different thresholds.
Balanced method refers to the BRS algorithm.

Additionally, the effect of the tested transformations on the gene expression data was
characterized via HC in a representative sample of the expression matrix. 1000 random genes
and 300 random samples total were taken from different random clusters as seen in Figure
3.9. Notably, sample clusters found using the untransformed data are not respected by the
transforms in spite of these being applied to each cluster separately. HC dendrograms were
recomputed for each transform in Figure 3.9. It was expected that the expression data would
change scale due to the transforms, but it was also theorized that a similar clustering to that
observed in the untransformed data would be obtained. This last assumption turned out to be
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wrong as the transforms clearly modify gene expression to the point were previously defined
clusters become unmeaningful.

Figure 3.9: Effect of z-score and PCA regression transformations on gene expression data. A:
untransformed data (only routine normalized). As expected, HC clusters agree well with the
Louvain-Jaccard clusters found before (3.2). Clusters represented in the random sample taken
for this visualization are showns in the heatmap’s column colorbar. B: HC of cluster-wise
z-score transformed gene expression. C: HC of cluster-wise PCA regressed gene expression
data. In this case top PCs are selected by a 80% cumulative variance criterium.





Chapter 4

Estimation of system-level coexpression

Results covered so far in Chapter 3 include the estimation of gene expression states in the
input data, evaluations of the discovery of coexpressions by different system-level calculation
strategies, and the effect of some data transformations on the gene expression. After reviewing
them, it was decided that the first version of the computational estimation of system-level
human coexpression proposed in this work would be done using the BRS procedure based
on the clustering partition without further transformations to the gene expression apart from
routine normalization. The reasoning behind not using some of the studied additional gene
expression transforms at least for now is that gene expression states seemed to become less
well defined upon applying them. They caused substantial changes to the gene expression that
did not maintain the original clustering of the data. For the specific case of the cluster-wise
z-score transform, applying this technique to the input gene expression also seemed to greatly
reduce the amount of found coexpressions as demonstrated in the last section.

4.1 Implementation
BRS was applied using the same parameters as in the preliminary tests which consist of a
sampling size of k = 59 samples per cluster and number of realizations s = 20 (2.6.4). This
is done to calculate system-level coexpression for a total of 33,447 human genes using the
Chi-square, PCC, and SRCC metrics (2.5). Each realization of BRS considered a balanced
dataset consisting of 33,447 genes and 2,006 samples resulting from taking 59 samples from
each of the 34 clusters representing distinct gene expression states in the GTEx data. Just
as in the preliminary tests, the final robust estimation of coexpression for any pair of genes
is computed by taking the minimum measurement observed for the pair in question across
the 20 realizations. In order to optimize computation times, C++ functions to calculate the
coexpression metrics were implemented and executed from R using the Rcpp package [39,
123]. To optimize disk space and memory usage, integer versions of the metrics were handled
instead of their floating-point representations by keeping enough digits to specify the value of
a measure to 2 decimal points of precision.

In the case of the Chi-square calculations, some special cases were programmed to han-
dle situations in which the expected counts of a given cell in the test were extremely low. The
latter can lead to misleadingly large Chi-square statistics. If any expected value was lesser

67
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than 1
n+1

where n = 2006 (number of samples used), it was automatically set to the afore-
mentioned ratio. Another precaution consisted of checking if the Chi-square contribution of a
given cell was greater than 5 in combination with an expected value less than 0.1. When this
was true, an expected value of exactly 0.1 would be considered and the Chi-square contribu-
tion of the cell was recalculated. These special cases do not affect the obtained distributions of
Chi-squared values significantly, but they do help in getting rid of some inconsistencies that
could arise during a minority of calculations.

4.2 Distributions of observed and expected Chi-square statis-
tics

As a result of the coexpression estimation, 559,334,181 measurements for each of the three
coexpression metrics were obtained. Note that the actual process of calculation involves com-
puting this amount of coexpression measurements times 20 for each metric as specified by the
BRS strategy (2.6.4).

The distribution arising from the robust BRS calculation can be seen in Figure 4.1 (blue
line). Some other relevant distributions are also shown for comparative purposes. The gray
curve corresponds to the resulting distribution after carrying out a gene-wise permutation of
discretized gene expression values in 1 of the 20 expression matrices used in BRS. Only values
within the same gene vector are shuffled and coexpression is recalculated for this permuted
realization. The gray curve almost perfectly fits the distribution in black which lies behind
it. The black curve corresponds to the random Chi-square distribution that agrees with the
parameters of the coexpression estimation (4 DFs). The fact that the null distribution of the
coexpression estimation fits the random reference distribution suggests that strong Chi-square
values observed in one of 20 realizations of the estimation (red line) and the robust minimum
estimation are not due to chance.

The FDR line (in green) in Figure 4.1 was estimated by dividing the area under the curve
of the null distribution (gray) over the area of the minimum robust estimation (blue) distribu-
tion. Areas are bounded by different increasing Chi-squared cutoff points and the highest value
considered in the histogram. When considering all Chi-squared values for the computation,
the FDR is large because the null distribution is a lot denser for non-significant statistics close
to 0. When stricter cutoffs are set (i.e. by moving them to the right of the x-axis), the distribu-
tion of observed statistics quickly becomes denser and the FDR drops. If one was to consider
all coexpressions above a certain Chi-squared value as significant, then about FDR ∗ 100
percent of those coexpressions would be mistaken rejections of the null hypothesis (type 1
error). Figure 4.2 shows the discussed distributions in terms of cumulative counts.
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Figure 4.1: Chi-squared distributions related to the system-level coexpression calculation pro-
posed in this work. The histogram is represented in a lineplot style to make the visualization
of multiple distributions clearer. Blue line: distribution of robust minimum chi-squared statis-
tics across 20 realizations. Red line: distribution of one of 20 realizations (randomly selected)
computed as part of the BRS process. Gray line: null distribution estimated by permuting
the labels of the discretized gene expression vectors prior to calculating 1 realization of BRS
(same realization index used for red line). Black line: random Chi-square distribution with a
parameter of 4 DFs (mostly concealed behind the gray line due to a great fit).
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Figure 4.2: Zoomed-in cumulative distributions version of Figure 4.1. This figure puts in
context just how dense the observed distributions are at stronger Chi-square values when
compared to the reference random distributions or the one arising from the permuted input
data. The dotted line marks the minimum (approximate) Chi-square value needed to obtain a
p-value lesser than 0.05 if the random distribution at 4 DFs is used as a reference. Using such
criteria is unrealistic for the distributions obtained as even in the case of the minimum robust
estimation, about 80% of the total calculated coexpressions would be significant. Statistical
significance was not taken as a good way of determining if two genes were truly coexpressed
in this work. A more rank-based approach of interpreting the results is used. The issue is
further discussed in Chapter 5.

4.3 Comprehensive coexpression visualizations
In this section, the most basic unit of obtained results is presented: the coexpression scatter
plot. Thanks to the implementation of the Chi-square test in the coexpression calculations, it is
possible to add a lot of useful information to such plot. This helps evaluating a coexpression at
the individual level and extract meaningful intuitions from it. In this work, this plot is referred
to as the contingency scatter plot.
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Below is a detailed explanation of the components of the contingency scatter plot visu-
alization for gene coexpression shown in Figure 4.3:

Figure 4.3: Contingency scatter plot for single coexpression visualization. The example pre-
sented is chosen as it appears to feature a relationship which can be decently modeled by both
a linear and non-linear function. It exemplifies the variety and complexity that exist among
gene expression data in the context of coexpression. APOE: apolipoprotein E gene, FLII:
actin remodeling protein FLII gene. This coexpression is interesting from the literature point
of view as APOE has been implicated in cytoeskeleton biological pathways [124]. A: scat-
ter box area with samples plotted as the points. B: contingency table of Chi-squared test. C:
legend mapping of gene expression states to plotted samples. D: calculation source of the plot-
ted data. E: coexpression measurements by 3 different metrics (Chi-square is χ2, PCC r and
SRCC ρ). F: cells of contingency table contain color-coded observed and expected counts in
addition to their individual Chi-square values. G: color background of table cells indicate the
results of a post-hoc asymptotic test for the significance of the cell (red denotes significantly
more observed counts than expected and blue the opposite). H (dotted lines): gene expression
values that bin each gene into 3 discretized categories. I: rug plot.

A Scatter box: plotting area for the points which represent a sample each. The shapes and
labels of points indicate the cluster of origin of the sample and the original GTEx tissue
label that is contained within the cluster. Expression measurements for both genes are
uniformized (min-max scaling) to the range [0, 1] so that it is easy to obtain a more
visually comparable square plot. The latter does not affect the results of any of the
coexpression measures. Moreover, the labels of values shown along the x and y axes still
correspond to the logarithm base 10 of the TPMs for each gene. Since genes were not
further transformed apart from routine normalization during calculations, these values
may be easily interpreted.
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B Contingency table: same table as used during the actual Chi-square test for the two
genes in question. The table is accommodated to match the gene expression levels
shown in the scatter box. The down-right corner considers the samples that are low-
expressed for both genes. Expression of the genes in the x and y axes increases as one
moves right or up respectively.

C Gene expression states legend: maps the samples plotted in the scatter box through col-
ors to one of the gene expression states characterized with clustering as (3.2). Addition-
ally, a shape mapping was also added where different shapes signify different tissues in
the original GTEx sample partition that are captured into one of the clusters.

D Calculation source: as a result of using the BRS algorithm for the robust calculation
of system-level coexpression, it is possible to plot any of the 20 realizations that exist
for any individual coexpression. Usually, it is of interest plotting the realization giv-
ing the minimum coexpression measurement (denoted as db:min). This part of the plot
clearly states this to avoid confusion. Naturally, the minimum realization is determined
by a particular measurement out of the 3 available. Throughout this document, the Chi-
square measurement is used as a reference to plot the source data in the case of the
minimum. The other two metrics will correspond to the realization plotted for consis-
tency, but may not necessarily be the global minimum across all realizations for those
specific metrics.

E Coexpression measurements: these are the results of the computation of the 3 different
coexpression measurements considered in the estimation. Chi-square is denoted χ2, the
PCC (pearson) as r and the SRCC (spearman) as ρ.

F Contents of contingency table cells: each one of these cells contains the observed counts
or number of samples falling in the corresponding 2-dimensional bins of the scatter box.
They also have the expected counts if the samples were distributed at random according
to the row and column marginals. The Chi-square contribution to the overall statistic of
the test is also shown. A color mapping to each one of these numbers can be found at
the top of the contingency table.

G Contingency table cells background: this is colored according to the results of a post-
hoc asymptotic test that determines if there is significantly more (red) or less (blue)
observed than expected counts in the cell. The significance of the test is considered at
a standard value of 0.5. When the test is not significant, the background will appear
without color.

H Values binning gene expression: these dotted lines represent the cutoffs calculated via
the k-means algorithm that discretize the gene expression measurements of each gene
(2.5.1.1). The resulting 2-dimensional binning of samples enters the Chi-square calcu-
lation as the observed counts.

I Rug plot: one appears for each gene. They summarize the density of the distribution of
the continuous gene expression data. Rug plots consist of 1-dimensional visualizations
that simply draw a line at the values corresponding with points in the scatter box. Lines
become crowded in areas with greater densities of points.
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The contingency scatter plots allow for detecting exactly what combinations of gene ex-
pression categories are responsible for the observed overall Chi-squared statistic. For example,
in Figure 4.3 it is clear that in terms of the Chi-square, the coexpression is actively happening
when APOE and FLII vary inversely in their expressions. If one gene is low-expressed, the
other one is high-expressed and vice versa. This is easily verifiable by the fact that it is exactly
the cells in the diagonal of the contingency table that significantly describe this behavior. Note
that this specific pattern suggests what is precisely described by a linear relationship. This is
why the PCC is also at the higher end of its scale in this example.

Contingency scatter plots also aid at detecting which gene expression states contribute
more to the overall coexpression between genes. In Figure 4.3 it is interesting that the cell with
the most contribution to the overall Chi-square contains samples exclusively from brain gene
expression states (cell is labeled F). This is another example of the additional information
that the contingency scatter plot gives which can be very insightful regarding what is actually
happening and where. APOE is a widely researched gene in the nervous system because of its
connections to neurodegenerative disorders. The particular coexpression shown in Figure 4.3
has a high chance of being biologically meaningful as APOE has been shown to downregulate
several genes associated with actin (FLII remodels this protein), myosin, and microtubules in
the nervous system [124]. The association detected in the plot is strong and was observed
primarily in brain gene expression states.

4.4 Chi-square and correlation coefficients comparison
In this section, some examples comparing coexpressions obtained with different metrics dur-
ing the system-level coexpression estimation are shown. This also serves as a way to validate
coexpression estimation by assessing the agreement that different metrics have at the mo-
ment of detecting coexpressed gene pairs. For all these comparisons, the minimum across 20
realizations of each metric is used.

4.4.1 Patterns of coexpressed gene pairs
4.4.1.1 Chi-square and Pearson Correlation Coefficient

Three genes were carefully selected as examples for this comparison. They represent cases
whose coexpression gene lists ordered by estimation strengths have distinct levels of overlap
between the Chi-square and PCC. The latter will be further demonstrated later in another
analysis (4.4.2).

Figure 4.4 clearly shows that Chi-square and PCC are correlated coexpression metrics.
The parabola pattern observed is stereotypical when comparing different association measures
with the PCC [23]. Here it is confirmed that such a pattern is in fact observed for the Chi-
square in the context of coexpression. The parabola shape is given by a high density of points
with both a low Chi-square and a close to 0 PCC (zone A or parabola vertex), as well as
by points exhibiting a positive or negative correlation which tend to correspond to high Chi-
square values (point patterns or parabola arms heading towards zones F and E).
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Figure 4.4: Comparison of isocitrate dehydrogenase 1 gene (IDH1) calculated coexpressions
by Chi-square and PCC. The main scatter plot shows a gene pair (composed of IDH1 and
every other possible gene in the estimation) at each point along with the distributions of their
respective Chi-square and PCC. A point density plot is also shown in the top-right corner
of the main scatter plot. The red circle/ellipse covers values of around 100-500 Chi-square
and -0.2 to 0.2 PCC. Its purpose is to indicate the denser zone of disagreement between the
two metrics. Smaller labeled scatter plots correspond to an example coexpression found at
the corresponding labeled zone in the main scatter plot. To consult legend mappings of the
samples represented in the labeled scatter plots see Figure 4.3.

Zone A of Figure 4.4 corresponds to calculations that indicate no effective coexpression
from both the Chi-square and the PCC point of view as seen in the example shown between
IDH1 and the protein patched homolog 1 gene (PTCH1). Zones B-D are of particular interest
as they represent gene pairs with probable non-linear coexpression relationships among them
as they have a high Chi-square measurement, but low PCC. Zones E and F are where strong
coexpressions that can be modeled with linear functions between the gene pairs lie as they
render both a strong Chi-squared and PCC. The Chi-squared/PCC patterns observed for this
gene should be representative of what happens for most genes (4.4.2).

The next example is depicted in Figure 4.5. This time around, BRCA2 should be repre-
sentative of extreme cases in which Chi-squared and PCC fit the stereotypical parabola trend
better than average (4.4.2). Note the augmented density and length of the parabola arms in the
BRCA2 example as compared to the IDH1 example in Figure 4.4. This implies more linear
relationships between BRCA2 and its gene pairs. Density in the zone where combinations of
high Chi-square values and close to 0 PCC appear (implying non-linear relationships) is also
decreased when comparing it to the corresponding zone for IDH1.
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Figure 4.5: Comparison of DNA repair associated BRCA 2 gene (BRCA2) calculated co-
expressions by Chi-square and PCC. The main scatter plot shows a gene pair (composed of
BRCA2 and every other possible gene in the estimation) at each point along with the dis-
tributions of their respective Chi-square and PCC. A point density plot is also shown in the
top-right corner of the main scatter plot. The red circle/ellipse covers values of around 100-
500 Chi-square and -0.2 to 0.2 PCC. Its purpose is to indicate the denser zone of disagreement
between the two metrics. Smaller labeled scatter plots correspond to an example coexpression
found at the corresponding labeled zone in the main scatter plot. To consult legend mappings
of the samples represented in the labeled scatter plots see Figure 4.3.

The last example for comparing Chi-squared and PCC is depicted in Figure 4.6. From
observations derived from this work, ANG should be representative of extreme cases in which
Chi-squared and the PCC fit the stereotypical parabola trend worse than average (4.4.2). Note
the greatly diminished length of the parabola arms in the ANG example as compared to IDH1
in Figure 4.4. This implies less linear relationships between ANG and its gene pairs. Density in
the zone where combinations of high Chi-square values and close to 0 PCCs lie is augmented.
The parabola shape seems to be infiltrated by a series of points around zone C which do not
vary much in terms of PCC but that vary greatly in Chi-square. It is worth mentioning that
the example coexpressions are shown for ANG evidence a strong component of a particular
cluster (Liver) driving high Chi-squared values in zones of high disagreement between Chi-
square and PCC.
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Figure 4.6: Comparison of angiogenin gene (ANG) calculated coexpressions by Chi-square
and PCC. The main scatter plot shows a gene pair (composed of ANG and every other possible
gene in the estimation) at each point along with the distributions of their respective Chi-square
and PCC. A point density plot is also shown in the top-right corner of the main scatter plot. The
red circle/ellipse covers values of around 100-500 Chi-square and -0.2 to 0.2 PCC. Its purpose
is to indicate the denser zone of disagreement between the two metrics. Smaller labeled scatter
plots correspond to an example coexpression found at the corresponding labeled zone in the
main scatter plot. To consult legend mappings of the samples represented in the labeled scatter
plots see Figure 4.3.

4.4.1.2 Chi-square and Spearman Rank Correlation Coefficient

Similar to what was done in the case of the Chi-square statistic and the PCC, here are presented
carefully chosen examples that depict distinct levels of similarities and differences between
the Chi-square statistic and the SRCC.

Figure 4.7 resembles what was observed between the Chi-square and PCC metrics in
the average case. The parabola shape is maintained in this example with the SRCC as well.
For the case of the SRCC, this trend can not be considered as representative of the average
case (4.4.2), but it can be seen as an example in which there is a moderately good agreement
between these metrics.
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Figure 4.7: Comparison of AT-rich interactive domain-containing protein 5B gene (ARID5B)
calculated coexpressions by Chi-square and SRCC. The main scatter plot shows a gene pair
(composed of ARID5B and every other possible gene in the estimation) at each point along
with the distributions of their respective statistics. A point density plot is also shown in the
top-right corner of the main scatter plot. The red circle/ellipse covers values of around 100-
500 Chi-square and -0.2 to 0.2 PCC. Its purpose is to indicate the denser zone of disagreement
between the two metrics. Smaller labeled scatter plots correspond to an example coexpression
found at the corresponding labeled zone in the main scatter plot. To consult legend mappings
of the samples represented in the labeled scatter plots see Figure 4.3.

Figure 4.8 illustrates a case in which there is a high agreement between the Chi-square
and SRCC measures. The parabola trend is present, but it has widened, causing the density
of points in the disagreement zone (red ellipse) to be lower when compared to the ARID5B
case. Labeled coexpressions are very interesting in this example as some of them correspond
to immunoglobulin related genes which hold both linear (panel E) and non-linear (panel D)
associations with IGHA1.
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Figure 4.8: immunoglobulin heavy constant alpha 1 gene (IGHA1) calculated coexpressions
by Chi-square and SRCC. The main scatter plot shows a gene pair (composed of IGHA1
and every other possible gene in the estimation) at each point along with the distributions
of their respective statistics. A point density plot is also shown in the top-right corner of the
main scatter plot. The red circle/ellipse covers values of around 100-500 Chi-square and -
0.2 to 0.2 PCC. Its purpose is to indicate the denser zone of disagreement between the two
metrics. Smaller labeled scatter plots correspond to an example coexpression found at the cor-
responding labeled zone in the main scatter plot. To consult legend mappings of the samples
represented in the labeled scatter plots see Figure 4.3.

Figure 4.9 depicts a case with a very low correlation between the Chi-square statistic and
the SRCC. For the first time, the stereotypical parabola shape becomes almost nonexistent. It
would seem as if many coexpressions stayed invariant for Chi-square while varying greatly
for the SRCC. Upon inspecting the labeled coexpressions, it becomes clear that the BSND
gene, very much like the case of ANG in Figure 4.6, exhibits cluster specificity (for Kidney
in this case). It seems like in these kinds of coexpressions driven by tissue or cluster-specific
genes, both the PCC and the SRCC differ more from Chi-square.
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Figure 4.9: Comparison of Barttin gene (BSND) calculated coexpressions by Chi-square and
SRCC. The main scatter plot shows a gene pair (composed of BSND and every other possible
gene in the estimation) at each point along with the distributions of their respective statistics.
A point density plot is also shown in the top-right corner of the main scatter plot. The red
circle/ellipse covers values of around 100-500 Chi-square and -0.2 to 0.2 PCC. Its purpose is
to indicate the denser zone of disagreement between the two metrics. Smaller labeled scatter
plots correspond to an example coexpression found at the corresponding labeled zone in the
main scatter plot. To consult legend mappings of the samples represented in the labeled scatter
plots see Figure 4.3.

4.4.1.3 Pearson Correlation Coefficient and Spearman Rank Correlation Coefficient

It is known that the PCC and SRCC produce similar results when the input data complies with
certain distributional properties [125]. However, during the construction of the examples that
have been addressed in this section, some situations in which the PCC and SRCC were quite
different did occur.

Before taking a look at a case with notable differences, first in Figures 4.10 and 4.11,
examples of moderate and high agreement between PCC and SRCC are presented. The metrics
are clearly correlated linearly, but can frequently produce differently ordered coexpressed
pairs in terms of coexpression strength (4.4.2).
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Figure 4.10: Comparison of retinoblastoma transciptional corepresor 1 gene (RB1) calculated
coexpressions by PCC and SRCC. The main scatter plot shows a gene pair (composed of RB1
and every other possible gene in the estimation) at each point along with the distributions
of their respective statistics. A point density plot is also shown in the top-right corner of the
main scatter plot. Smaller labeled scatter plots correspond to an example coexpression found
at the corresponding labeled zone in the main scatter plot. To consult legend mappings of the
samples represented in the labeled scatter plots see Figure 4.3.

Figure 4.11: Comparison of B-cell lymphoma 6 member B gene (BCL6B) calculated coex-
pressions by PCC and SRCC. The main scatter plot shows a gene pair (composed of RB1
and every other possible gene in the estimation) at each point along with the distributions
of their respective statistics. A point density plot is also shown in the top-right corner of the
main scatter plot. Smaller labeled scatter plots correspond to an example coexpression found
at the corresponding labeled zone in the main scatter plot. To consult legend mappings of the
samples represented in the labeled scatter plots see Figure 4.3.
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Figure 4.12 describes a case in which PCC and SRCC produce rather different results.
From this example, it seems yet again like the possible culprits of these disagreements between
metrics are cluster-specific genes. HIST3N is in fact expressed with selectivity on the Testis
cluster. Moreover, with this observation, the involvement of these kinds of cluster-specific
genes was spotted for all combinations of metrics at situations where they produced the most
different results between them.

Figure 4.12: Comparison of histone cluster 3 gene (HIST3H3) calculated coexpressions by
PCC and SRCC. The main scatter plot shows a gene pair (composed of HIST3H3 and every
other possible gene in the estimation) at each point along with the distributions of their respec-
tive statistics. Note that the decimal precision used during coexpression estimations makes the
points look oddly arranged in the plot, but this does not affect the analysis. A point density
plot is also shown in the top-right corner of the main scatter plot. Smaller labeled scatter plots
correspond to an example coexpression found at the corresponding labeled zone in the main
scatter plot. To consult legend mappings of the samples represented in the labeled scatter plots
see Figure 4.3.

4.4.2 Coexpressed gene pairs rank analysis
Here the coexpression measures are compared in terms of the top associations they detect. The
top 100 coexpressed genes with each gene in the estimation were retrieved for each metric.
The size of the intersection between these sets of 100 genes was computed. Each gene’s
top coexpressed pairs according to one metric are compared with their similes from the two
other measures separately. The significance of the intersection sizes according to the size of
the two intersecting sets (always 100) and the universe of genes (33,447) is assessed via a
hypergeometric test (2.9.2.1).

Starting with the comparison of Chi-square and PCC, Figure 4.13 shows the distribu-
tion of intersection sizes resulting from the aforementioned experiment. In order to obtain a
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significant result by the hypergeometric test after a Benjamini-Hochberg correction (2.9.2.2),
at least 2 genes should appear in both the top 100 of Chi-square and the top 100 of PCC for
any given gene. The distribution reveals that these measures agree on 60-70 genes on average,
something expected due to the correlation seen between these metrics in the last section. Note
that the intersection size of the genes used as examples in the last section is indicated here.
They correspond to extreme values in the distribution and one average case.

Figure 4.13: Distribution of overlaps between top 100 coexpressed pairs of each gene calcu-
lated by Chi-Square and PCC. Lines show where the overlaps of some example genes lie as
well as the minimum number of overlaps for the intersections to be significant. The red bar
indicates intersection sizes which do not result on a significant hypergeometric test.

Figure 4.14 shows the results for the Chi-square/SRCC case. The distribution is very dif-
ferent from that observed in the Chi-squared/PCC experiment. There are quite a few cases in
which the overlap between the metrics is very low and in many even 0. The average number of
overlaps, in this case, is not very informative as there could even be a mixture of distributions
consisting of a logarithmic curve near zero and another one resembling a Gaussian centered
at about 65. Colored lines indicate the intersection size values for the genes used as examples
in the last section.
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Figure 4.14: Distribution of overlaps between top 100 coexpressed pairs of each gene calcu-
lated by Chi-Square and SRCC. Lines show where the overlaps of some example genes lie as
well as the minimum number of overlaps for the intersections to be significant. The red bar
indicates intersection sizes which do not result on a significant hypergeometric test.

The results for the PCC/SRCC comparison can be seen in Figure 4.15. The obtained
distribution is quite similar to that observed for the Chi-square/SRCC case, only with a greater
number of significant overlaps. Observations gathered so far indicate that the SRCC is the
measure that produces the most different results from all computed measures at least in terms
of strongly coexpressed genes.
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Figure 4.15: Distribution of overlaps between top 100 coexpressed pairs of each gene calcu-
lated by PCC and SRCC. Lines show the minimum number of overlaps for the intersections
to be significant. The red bar indicates intersection sizes which do not result on a significant
hypergeometric test.

4.4.3 Coexpressed gene pairs in literature
Looking at agreements between metrics and examples of coexpressed genes helps to vali-
date the calculations. However, it is also desirable to test the found coexpressions against re-
ported interactions between genes for further validation. If strong associations between genes
found via coexpression agree with gene pairs that are already known to be associated, this
would support the overall trustworthiness of the coexpression results. It should be possible to
demonstrate that strong associations in the calculations point to interesting gene relationships
instead of random unrelated gene pairs. To investigate this, the top 50 coexpressed gene pairs
of several genes in the calculations were searched in literature papers.

A systematic literature search was done with the help of the Pubtator tool [126]. This
resource has an R package bundled with records of scientific publications mentioning genes
with ENTREZ identifiers [118]. This tool was chosen because it builds a local database that
is perfect for quickly dealing with numerous queries. Figure 4.16 presents the results of this
analysis. The used publications database focuses only on genes with ENTREZ identifiers, so
only a subset of 17,584 genes involved in the coexpression estimations was analyzed. These
genes had ENTREZ identifiers, were mentioned in at least one of the publications compiled
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by the pubtatordb package, and had at least one gene pair in their top 50 coexpressed partners
with a mention in at least one publication. Details of the distributions observed in the particular
case of Chi-square coexpression are shown in Figure 4.17.

Statistical significance between each coexpression metric and its corresponding random
run was assessed with the Wilcoxon signed-rank test in Table 4.1 (2.9.2.3). The differences
between occurrences of top coexpressed gene pairs in literature observed with each metric
were also addressed in Table 4.2. All metrics as employed in the calculations of this work
prove to be significantly more useful at finding interesting gene associations compared to what
is possible by random chance. Interestingly, all metrics also perform significantly differently
between them. The PCC is the metric that calls more top coexpressed pairs that also appear
together in the literature publications.

Figure 4.16: Violin plots of the occurrences distributions of gene pairs appearing together
in scientific publications. Occurrences have been log-scaled to improve visualization. Distri-
butions in blue correspond to occurrences when querying every gene in the analysis paired
with each of its top 50 coexpressed partners (i.e. 17,584 times 50 queries were issued). Dis-
tributions in red are similar, but the 50 pairs for each gene are picked randomly instead of
by coexpression strength. Distributions arising from random queries have a higher density
around smaller occurrence values, indicating that gene pairs mentioned together in literature
are hard to find randomly. Distributions in blue show higher overall density in higher occur-
rence values, indicating that strongly coexpressed pairs correspond better to pairs mentioned
in literature than random pairs.
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Table 4.1: Literature mentions of top coexpressed gene pairs against mentions of randomly
chosen gene pairs.

Coexpression
Metric

Sum of gene pairs appearing in publications Wilcoxon test
Top 50 Coexpressed Random 50 p-value

Chi-square 552,222 43,321 < 2.2× 10−16

Pearson 655,260 44,564 < 2.2× 10−16

Spearman 592,335 27,846 < 2.2× 10−16

Figure 4.17: Distributions of observed and at random Chi-square coexpressed gene pairs in
literature publications. Mentions of pairs of genes are more frequent when the pairs are picked
according to coexpression strength (top 50 coexpressed with each gene of the 17,584 tested).



4.4. CHI-SQUARE AND CORRELATION COEFFICIENTS COMPARISON 87

Table 4.2: Pairwise Wilcoxon signed-rank test between coexpression metrics. Occurrences in
the literature of the top 50 coexpressed gene pairs with each of 17,584 tested genes are the
input for the test.

p-values Chi-square Pearson Spearman
Chi-square

Pearson 8.48× 10−10

Spearman 0.0007 0.005

4.4.4 Number of associations per gene
Another interesting comparison between metrics is to look at the number of associations that
each gene has with other genes in the project (i.e. Gene pairs with strong coexpression mea-
surements). One way to analyze this is to establish a threshold for each metric above which an
association between genes will be considered. To find a reasonable threshold, the cumulative
distributions of all coexpressions for the 3 computed metrics were visualized as shown in Fig-
ure 4.18. The value for each of the metrics at which 95% of all coexpressions are accumulated
was found. All associations with greater magnitude than these threshold values are therefore
within the top 5% of all results independently of the implicated genes. With these thresholds
defined, it is now possible to check the number of associations per gene. The thresholds were
rounded to 300, 0.35, and 0.3 for Chi-square, PCC, and SRCC respectively. This is done for
convenience as the number of associations at different predefined thresholds was calculated a
priori before defining these specific thresholds during the parsing of coexpression results to a
database format that is presented later (4.7.1)

A comparative histogram is presented in Figure 4.19 where the distribution of the num-
ber of associations per gene for each metric can be seen. In this figure there are also noted
some interesting genes which had the maximum number of associations for the different co-
expression metrics. The maximum for Chi-square was the nuclear body protein SP110 with a
baffling number of 11,546 associations. While many of these associations could be attributed
directly or indirectly to the biological activity of SP110, it is unfeasible to think that all of
them are in fact relevant from a biological point of view. Other genes have a reasonable num-
ber of associations by means of the 300 Chi-square threshold. This suggests that depending on
the gene, the number of associations might need to be determined with dynamic thresholds.
However, it is still useful to investigate the number of associations with a set threshold as it
provides insight into what kind of genes are frequently associated with others and can help
validate the calculations.

In the case of SP110, it makes sense that this gene is associated with many other genes
as it is a chromatin regulator that directly interacts with DNA, histones, and protein com-
plexes [127]. The importance of this gene in the regulation of expression of many other genes
is highlighted by the fact that mutations in SP110 and other members of the Speckled Pro-
tein family of genes are associated with multi-organ diseases such as Multiple Sclerosis and
Crohn’s Disease [127]. The gene with the most associations by the PCC was the DEAD-box
helicase 25 (DDX25), a gene for which a great number of associations is also biologically
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justified. DEAD-box helicases are required for the process of transcription perse, for process-
ing precursor messenger RNA (mRNA), and for ribosome biosynthesis among other functions
that relate them with many genes [128]. Neugrin (NRGN) was the gene with the most asso-
ciations by the SRCC. Once again, it makes sense that a gene such as this has a high number
of associations because NRGN is directly implicated in a complex that mediates ribosomal
biosynthesis in the mitochondria [129]. Ribosomes are the molecular structures in charge of
translating mRNAs to proteins, so genes related to ribosomes are frequently coexpressed with
many genes [16]. The fact that these kinds of genes are popping up with a high number of
associations in the analyses carried out of this work is a sign of the correctness of the calcu-
lations. Upon inspecting genes that had zero associations for all metrics it was observed that
the majority of these comprise unannotated genes of the RP11 or RP13 type.

As part of the exploration of the number of associations per gene deriving from the
coexpression calculation carried out in this work, 21 interesting genes were inspected (Table
4.3). These genes are known genes associated with cancer. Hence they are expected to be
associated with other genes due to the great impact they have over normal human biology
when they become disturbed by the disease process. As expected, all of these genes have
associations with others by all metrics.

Table 4.3: List of example cancer associated genes and their number of associations by metric.
Order of appearance is given by the number of associations by Chi-square statistic.

Gene Chi-Square PCC SRCC

FAM135B 6,378 4,916 2,938
PARK7 5,642 3,365 4,199
SOD1 5,443 2,793 3,201
PCLO 5,043 3,478 2,593
TP53 4,691 2,256 3,162

ZNF569 3,615 4,187 3,598
BMPR2 3,249 2,359 3,390
BRCA2 2,165 1,915 2,782

IGF1 2,061 1,489 2,838
ADAMTS7 1,815 1,722 2,735

KDM6A 1,174 1,013 1,311
ACTB 1,120 813 1,417
IDH1 540 751 1,395

BRCA1 408 563 310
MUC4 370 508 284
MCU 366 415 856

DNMT3A 295 632 943
CUBN 217 244 1,047

MUC17 137 175 89
KRAS 115 525 531
ESR1 95 345 1,890
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Figure 4.18: Cumulative distributions of observed coexpression values for all metrics. For
each metric, the value accumulating 95% of the calculated coexpressions in the minimum of
20 distribution is indicated. A: Chi-square statistic. B: PCC. C: SRCC.
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Figure 4.19: Distribution of the number of associations per gene per coexpression metric.
Overall, the Chi-square statistic seems to have the most genes with a high number of asso-
ciations as this distribution has a more dense tail compared to the correlation coefficients.
All metrics have cases of genes for which no associations are found with any other gene in
the data according to the selected thresholds. For descriptive statistics, the median and MAD
are chosen over mean and variance as the distributions are skewed. Interestingly, Chi-square
has the smallest median and MAD number of associations per gene despite exhibiting several
genes with more associations than the maximum observed for the correlation coefficients.

4.5 Gene expression states contribution to system level co-
expression

In the system-level coexpression estimation, a balanced collection of samples from different
gene expression states is used as input for the calculations. The observed coexpression mea-
sures resulting from this estimation reflect what is discovered globally as a combination of
trends across all gene expression states. A natural question to ask is: in what proportion do
different gene expression states support specific coexpression measurements? To be able to
answer this question, Algorithm 3 was devised as a heuristic to investigate this specifically for
the Chi-square measure.

The idea is to repeat the estimation of coexpression but using a ”permute one cluster
out” strategy where it is possible to compare the observed statistic without any permutations
to each one of the permuted realizations. This allows for estimating the importance of the
corresponding clusters. If the difference between the observed statistic and the permuted one
is small, this implies that the permuted samples were not very relevant to the calculation. On
the other hand, if a great difference ensues, then it means that the permuted samples were key
for the coexpression.
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Algorithm 3: Estimate the contribution to Chi-square coexpression of a particular class
in a partition of samples
input : An expression matrix E with n genes in the rows and m samples in the columns, the column

indices p of the samples in a particular cluster
output: A coexpression matrix of chi-square measures

Function partContrib(E, p):
// Obtain the limits between gene expression categories as given by

k-means in the non-permuted data
L← initializeMatrix(n, 2);
c← initializeVector(n);
for i← 1 to n do

c← kmeans(E[i, ]);
// Get the gene expression value that separates low expression

from medium expression, and medium expression from high
expression

L[i, ]← findLimits(c, E[i, ]);
end
// Permute each gene vector in E
M ← initializeMatrix(n, m);
for i← 1 to n do

M [i, ]← sample(E[i, ], n);
end
// Replace the currently processed cluster in E with the permuted

data at the same position in M
for i← 1 to n do

E[i, p]←M [i, p]
end
// Discretize each gene vector in E with the expression limits found

when no cluster is permuted
for i← 1 to n do

for j ← 1 to m do
if E[i, j] < L[i, 1] then

// Low expression
E[i, j]← 1 ;

else if E[i, j] > L[i, 2] then
// High expression
E[i, j]← 3 ;

else
// Medium expression
E[i, j]← 2 ;

end
end

end
Y ← coexp(X);
return Y ;

Algorithm 3 was run 34 times (one for each cluster) to obtain the distributions shown in
Figure 4.20. For this experiment, one realization of the 20 in the global estimation was used as
a reference (the same 1 of 20 shown in Figure 4.1). The latter means that the expression matrix
used as an input for said realization was the one undergoing each of the permutations (i.e. It
was kept the same for all the ”permute one cluster out” runs) and subsequent coexpression



92 CHAPTER 4. ESTIMATION OF SYSTEM-LEVEL COEXPRESSION

calculation. This reference realization is labeled as ”not permuted” in Figure 4.20. The distri-
bution that was more affected by the permutation procedure was by far the one corresponding
to the Testis cluster. This implies that this cluster has a very marked contribution in more co-
expressions than any other gene expression state. This clicks with the fact that many of the
genes in the input data that exhibit some degree of tissue-specificity are Testis-specific (3.1).
Expression is an obvious prerequisite for coexpression, so the associations of these numerous
testis-specific genes are frequently driven only by samples of this cluster.

Figure 4.20: Chi-square distributions found by permuting one cluster at a time in the input
matrix of 1 of 20 realizations of the BRS procedure (curve labeled as ”not permuted” de-
rives from this original matrix). Lower ranks (e.i. Bigger numbers) assigned in the legend
signify a lower amount of coexpressions that remained approximately the same after permut-
ing compared to before permuting. This histogram is plotted in lineplot style to allow for the
visualization of multiple distributions at once. Curves have been smoothed to gain resolution
when lines become crowded. The smoothing does not change the rank of the clusters nor
causes the counts’ values to change significantly.

Figure 4.21 illustrates the concept of the ”permute one out” technique more graphically.
The example was chosen for validation by searching an external tissue-specific genes database
where the UMOD gene was found as Kidney-specific [130]. The coexpressions for such gene
were retrieved from the calculated data.
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Figure 4.21: Example of a Kidney-driven coexpression between the uromodulin (UMOD)
gene and the solute carrier family 12 member 1 gene (SLC12A1). A: observed coexpression
in the reference realization of BRS (labeled db:16). B: Kidney realization of the ”permute one
cluster out” experiment. The Chi-square statistic after permuting the Kidney samples is less
than 1% the original calculated statistic.

The biggest changes between the permuted Kidney realization and the observed refer-
ence Chi-square were checked. It is very clear that before the cluster is permuted, the coex-
pression is driven solely by Kidney samples. Moreover, in the rest of the clusters, there is
even an obvious relationship of no coexistence between genes. When one is expressed, the
other one is basically at 0 expression. Upon permuting the Kidney cluster, the association is
destroyed. As of now, a very simple metric permScore is used for measuring these effects for
all gene expression states across the hundreds of millions of coexpressions estimated in this
project:

permScoreic = 100− [(χ2
ic ∗ 100)/χ2

ir] (4.1)
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Where χ2
ic is the Chi-square statistic obtained for coexpression i after permuting cluster c

in the input data. χ2
ir is the analogous statistic calculated from the reference data r in which no

cluster is permuted. For the example in Figure 4.21, the permScore is 99.75%. This indicates
that when Kidney samples are permuted, 99.75% of the initial association observed between
the genes disappears. The permScore metric comprises a way for quickly knowing if any
particular coexpression is strongly supported by some specific gene expression states.

One important annotation to make is that using permScore does not always lead to
a positive or 0 value. Sometimes the Chi-square obtained after permuting one cluster out
can increase instead of decreasing or staying the same when compared to the reference. An
example of this situation is shown in Figure 4.22 where it can be seen that the increased
statistic after the permutation is a product of chance. This can be said because the sample
causing the increase in the Chi-square statistic is of the same cluster that is being permuted.
Many other studied examples like this exhibited similar patterns. Negative permScore values
can be interpreted in a similar fashion to 0 values because permuting the cluster in question
does not decrease the real observed coexpression.

4.6 Estimation for comparison of coexpression by covari-
ates

An additional experiment inspired by a series of recent 2020 publications using the GTEx data
to investigate the effect of different covariates such as gender in gene expression [131] was
performed (such papers are discussed further in the last chapter of this work). One realization
of gene coexpression data (Chi-squared) was calculated on some selected subsets of samples
representing different covariate levels across gene expression states. The covariates used are
the ones that are freely accessible as GTEx metadata. The idea is to allow for exploration
of similar concepts to those presented in the aforementioned papers, but for coexpression
relationships instead of single gene expression. Balance of gene expression states was also
sought for these calculations, but it proved to be harder due to limited numbers of samples
representing certain covariable levels in some gene expression states. The exact composition
of samples used is documented in this section for each covariable.
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Figure 4.22: Example of a coexpression that strengthens upon permuting a cluster (in this
case Kidney). A: observed coexpression in the reference realization of BRS (labeled db:16).
B: Kidney realization of the ”permute one cluster out” experiment.

4.6.1 Gender
Gender of the GTEx donors is distributed across the gene expression states estimated in this
work as shown in Figure 4.23. The two levels of this covariable are simply described as:

• Female: samples from female donors (5,562 samples total).

• Male: samples from male donors (11,142 samples total).
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Figure 4.23: Distribution of GTEx donors gender across the gene expression states that were
characterized in this work (3.2).

Gene expression matrices were assembled that only considered samples from female or
male donors respectively. Logically, and as seen in Figure 4.23, some gene expression states
are exclusive (or nearly exclusive) of a certain gender. These need not be considered for this
experiment as they will not be comparable. Such clusters are Prostate, Feminine Reproduc-
tive, Testis, and Ovary. 34 samples from each of the other clusters were randomly chosen to
assemble the input gene expression matrices. One exception was made with the Kidney clus-
ter, which only counted with 20 samples for females. In the case of the latter cluster, only
20 samples were taken for both genders. After calculating coexpression with these gender-
specific inputs, resulting distributions were plotted in Figure 4.24.
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Figure 4.24: Coexpression Chi-squared distributions resulting from gender-separated gene
expression. As expected, distributions are extremely similar since it is a known result that the
effect of gender on individual gene expression is overall small [131]. This histogram is plotted
in lineplot style to allow for a clearer visualization of both distributions at once.

After examining some coexpressions that had big differences between genders, most of
them involve chromosome Y genes such as the ones exemplified in Figure 4.25. Even if this
is expected, interesting additional information may still be obtained from these comparisons.
For example, in Figure 4.25, the coexpression is not supported globally by all clusters in
males as one may initially assume. Only brain gene expression states support the observed
statistic. The coexpression is not only gender-specific but also encountered exclusively in the
brain of males. Another example shown in Figure 4.26 presents a case of a female-specific
coexpression. This example was actually found through a literature revision which yielded
sex-biased genes in their expression [132]. It was hypothesized that these genes may have
sex-biased coexpressed pairs due to their selective expression. Some of the biggest differences
in coexpressions involving these genes between females and males were checked.
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Figure 4.25: Example of a coexpression with a big difference (as quantified by Chi-square)
between genders. SRY-box transcription factor gene (SOX1) and taxilin gamma pseudogene
(TXLNGY). A: coexpression as observed males. B: coexpression as observed in females.
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Figure 4.26: Example of a coexpression with a big difference (as quantified by Chi-square)
between genders. X-inactive specific transcript gene (XIST) and far upstream element binding
protein (FUBP1). A: coexpression as observed males. B: coexpression as observed in females.
Coexpression in females is given by all gene expression states.

4.6.2 Age
This covariable is freely provided by GTEx in a binned format (i.e. Predefined categories such
as 40-49, 50-59, etc.). As some of these bins contained very few samples from certain clusters,
these categories were rebinned into 3 major groups as shown in Figure 4.27:

• < 50: donors of less than 50 years of age (5,102 samples total).

• 50-59: donors that have between (inclusive) 50 and 59 years of age (5,392 samples
total).

• > 59: donors that have more than 59 years of age (6,210 samples total).
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Figure 4.27: Distribution of GTEx donors age across the gene expression states that were
characterized in this work (3.2).

For each age group, a gene expression matrix was assembled that exclusively considers
samples from donors of each group. 40 samples from each cluster were randomly chosen
to assemble these matrices. One exception was made with the Kidney cluster, which only
counted with 19 samples for one of the age groups defined. In the case of the latter cluster,
only 19 samples were taken for all age groups. Upon calculating coexpression with these age-
specific input gene expression matrices, the distributions shown in Figure 4.28 summarize the
results.
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Figure 4.28: Coexpression Chi-squared distributions resulting from age-separated gene ex-
pression. As expected, distributions are similar since it is a known result that the effect of age
on individual gene expression is small [133]. However, there are still subtle changes that can
be observed between the age variable levels. Age> 59 has more density in weaker Chi-square
values as apposed to the other two categories. The 50-59 group seems to have less density for
stronger values. This histogram is plotted in lineplot style to allow for the visualization of mul-
tiple distributions at once. Curves have been smoothed to gain resolution when lines become
crowded. The smoothing does not cause the counts’ values to change significantly.

After examining some coexpressions that had big differences between age groups, even
the ones with the greatest differences derive from subtle changes in the gene expression of
the involved pairs. The Chi-square test can detect these subtle changes during coexpression
calculation. One of these cases is presented in Figure 4.29 where the gene expression of the
pair shown diminishes on the more aged group of donors specifically for the Intestines 1 clus-
ter. This is what mainly drives the change in the observed statistics. The latter is concordant
with literature as age only explains a small fraction of the variance in gene expression and this
variance is on its majority tissue-specific [133].
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Figure 4.29: Example of a coexpression with a big difference (as quantified by Chi-square)
between age groups. Ankyrin repeat and death domain containing 1B gene (ANKDD1B) and
heterogeneous nuclear ribonucleoprotein 26 A1 pseudogene (HNRNPA1P26). A: coexpres-
sion as observed in the < 50 group. B: coexpression as observed in the > 59 group.

4.6.3 Post mortem interval
Ischemia time or Post Mortem Interval (PMI) of the GTEx samples is the time in minutes
that passes from the death of the donor to the obtention of the sample. It is freely given in
the GTEx metadata as integer values. These values are discretized into two categories repre-
senting low and high ischemia times respectively using a similar strategy to what is done for
discretizing gene expression (2.5.1.1). The two obtained categories are distributed across the
gene expression states estimated in this work as shown in Figure 4.30. These levels of this
covariate are described as:

• 0-648: samples with a PMI between 0 and 168 (inclusive) minutes (9,313 samples total).

• ≥ 648: samples with a PMI greater than or equal to 649 minutes (7,053 samples total).
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Figure 4.30: Distribution of GTEx samples PMI categories across the gene expression states
that were characterized in this work (3.2).

Gene expression matrices were assembled that only consider samples from the low or
high ischemia groups respectively. As seen in Figure 4.30, one of the Whole Blood gene
expression states has almost no samples in any of the 2 PMI groups. The reason for this is
that most of the samples in that cluster have negative PMI values (e.i. They were taken before
the death of the donor). Considering these samples would make groups less comparable as
there are almost no samples from that cluster with higher PMIs. That Whole Blood cluster is
removed from the experiment and 22 samples from each of the other clusters were randomly
chosen to assemble the input gene expression matrices. Two exceptions were made with the
Pituitary and Spleen clusters, which did not have 22 samples for both PMI categories. In these
cases, only 1 sample and 20 samples respectively were taken for both groups. After calculating
coexpression with these PMI-specific inputs, Chi-square distributions were obtained as shown
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in Figure 4.31.

Figure 4.31: Coexpression Chi-squared distributions resulting from PMI-separated gene ex-
pression. Distributions are similar since it is a known result that the effect of cold ischemia on
individual gene expression is overall small [117]. Nevertheless, a small gain in the density for
stronger Chi-square values in the low ischemia group is notable. This histogram is plotted in
lineplot style to allow for the visualization of multiple distributions at once. Curves have been
smoothed to gain resolution when lines become crowded. The smoothing does not cause the
counts’ values to change significantly.

After examining some coexpressions that had big differences between PMI categories,
most of them derive from subtle changes in the gene expression of the involved pairs. The
Chi-square test can detect these subtle changes during coexpression calculation. The example
shown in Figure 4.32 depicts one such case which involves an intensification of the expres-
sion of two hemoglobin related genes in the high ischemia group when compared to the low
ischemia group. The upregulation in the expression of these kinds of genes due to hypoxia in
tissues other than Whole Blood has been shown for individual genes [117]. It can be explored
through the PMI-based estimation that this is also reflected at the coexpression level.
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Figure 4.32: Example of a coexpression with a big difference (as quantified by Chi-square)
between PMI categories. Hemoglobin subunit alpha 1 gene (HBA1) and hemoglobin subunit
alpha 2 gene (HBA2). A: coexpression as observed in the 0-648 PMI group. B: coexpression
as observed in the ≥ 648 PMI group.

4.7 Results accessibility
As stated originally in the objectives of this work, one of the aspirations of the project was to
share the results with the scientific community. This prevents others from having to go through
the long process that has been documented throughout this master thesis to use the data. The
intent is to provide other researchers with the possibility of using the data for their own anal-
yses. A grand total of 57,611,420,643 individual calculations were made during this project
after putting together the robust system-level coexpression estimation for Chi-Square, PCC,
and SRCC across 20 realizations of the BRS algorithm, the estimation of the contribution
of the gene expression states to individual coexpressions, and the coexpressions by covariate
levels.
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To make all the aforementioned data available, a Java Server Pages (JSP) architecture
created by Dr. Victor Treviño (advisor of this master thesis) was used. The data was parsed
and organized into a database queryable format by the author of this thesis. The R programs
that can be called from JSP for in-web visualizations of coexpression data were also created
by the author of this thesis. A description of the features of this web tool is provided in this
section.

4.7.1 Web tool navigation
The web tool, which is available at http://bioinformatica.mty.itesm.mx:8080/
Chi2Expression/index.jsp, hosts an easy to understand interface that is based on a
gene search page (see Figure 4.33). This page acts as the home of the database and allows
users to search for any gene of interest. Searches can be made by gene symbol, ENTREZ
identifier [118], ENSEMBL identifier [119], cytoband [134] or gene description. Once a gene
of interest has been selected, an option to retrieve its list of coexpressed genes will appear.

Figure 4.33: Web tool gene search page. A: choosing columns to be shown in the gene search
table. B: download options. C: general bar searching every column. D: tabs to navigate the
genes returned by the search. E: column-specific search bars. F: button to open the gene list of
the gene of interest once highlighted in the search table. In this example the highlighted row
is the phosphatidylinositol-4,5-biphosphate 3-kinase catalytic subunit alpha gene (PIK3CA).

In the gene list page (see Figure 4.34), users will be presented with all the coexpression
results for the selected gene. This means that there is access to all estimations in which the
selected gene participates (33,446 for each gene) regardless of if they comprise strong associ-
ations or not. Gene lists are sorted decreasingly by default according to the Chi-square value
obtained in the robust minimum estimation (2.6), but they may be re-sorted decreasingly or
increasingly by any of the columns in the gene list.

http://bioinformatica.mty.itesm.mx:8080/Chi2Expression/index.jsp
http://bioinformatica.mty.itesm.mx:8080/Chi2Expression/index.jsp


4.7. RESULTS ACCESSIBILITY 107

Figure 4.34: Web tool gene list page (PIK3CA example). A: inspect coexpression button.
It plots a contingency scatter plot (4.3). B: download options. C: buttons to sort by desired
column. D: column-specific search bars. These support expressions such as greater than or
equal, lesser, etc. Multiple filters can be applied at once. E: summary statistics. F: the gene list
has many more columns additional to the ones shown here. They contain the information of
the contributions to the coexpressions by the rest of the clusters, the estimation by covariates,
and a column of differences between covariate levels for gender, age, and PMI. G: dropdown
menu to switch the source of the contingency scatter plots. All estimations are available for
plotting including the robust minimum, permuted clusters, and covariate estimations. Each
one of the realizations of BRS is also available for visualization (4.1).

4.7.2 Built-in functions
The main goal of the web tool is to provide the coexpression data to interested users by
allowing them to download individual gene lists or the entirety of data in bulk depending on
their needs. However, a couple of handy functions that are nice to have inside the webpage to
quickly explore the data were also added to the web-tool.
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Figure 4.35: Example of in-web tool contingency scatter plot visualization of PIKCA3 and
one of its top coexpressed gene pairs, the rho associated coiled-coil containing protein kinase
1 (ROCK1).

The first handy feature consists in being to visualize any coexpression with the help of
the contingency scatter plots designed in this work (4.3). A program was designed specifically
for this that can compute the plots on the fly in an efficient manner upon user request from any
data source shown in the columns of the gene table. An example of how it looks embedded
in the gene list page can be seen in Figure 4.35. The second handy feature consists of a
queue list which is automatically built with the genes that the user has clicked in the gene list
page (see Figure 4.36). The list allows for quickly navigating the plots produced so far and
also features external links to gene information databases to check the full description of the
genes, functions, genomic context, etc. A summary table for the pair of genes in question is
also provided.
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Figure 4.36: Example queue list in gene list pages of the web tool. A: clickable list for quick
navigation of the genes selected so far in the gene list as shown in Figure 4.34. B: external
links to detailed information of the gene pair of interest (in this case a top coexpressed pair of
PIKC3A called ROCK1). C: continuation of the summary table shown holds the data for the
remaining clusters and covariates. Note that both the permScore metric defined in Equation
4.1 (User data) can be seen as well as the ”raw” Chi-square. These raw values are obtained
from the cluster permutation experiments to estimate their contributions to the reference statis-
tic (Chi2 Ref).





Chapter 5

Discussion and conclusions

In this final chapter, important results and observations regarding the work done are discussed.
Thoughts on future work related to this research are also addressed as many potential interest-
ing investigations can derive from the work done so far. Final remarks on the project are also
given.

5.1 Discussion
In this work, a robust process for estimating large-scale system-level human coexpression
using computational and statistical methods was performed and described. The project was
mainly motivated by areas of opportunity in the domain of large-scale coexpression projects.
No resources with results focused on normal human coexpression that used RNA-seq as the
source of their input data existed before the realization of this work. The discussion presented
here is thought under the light of the results produced for each objective introduced in Chapter
1.

The first results obtained were related to properly characterizing the input gene expres-
sion data intended to enter the coexpression calculation process. It was observed that GTEx
tissues initially featured highly similar samples that were labeled differently (e.g. Adipose
Subcutaneous and Brest samples) as well as dissimilar samples that were labeled the same
(e.g. Whole Blood). The differences and similarities between samples were better described
by a clustering partition found in this work that allowed to conceptualize the GTEx samples in
terms of less redundant gene expression states or clusters (3.2). The partition of samples found
was more suited for the downstream analyses when compared to the original GTEx samples
tissue-based partition. However, it was noticeable at least in t-SNE space that there were still
some sample clustering assignments that could potentially be improved. This could be at-
tempted with advanced clustering validation techniques such as co-association matrices [135]
or the Validity Index using supervised Classifiers (VIC) [136]. It is not expected, however,
that downstream analyses vary much with slight improvements of the clustering partition.

Finding well-defined and non-redundant gene expression states was important in this
work because the goal was to produce a coexpression estimation which was representative of
humans as a whole. By identifying groups of highly similar samples, it was made sure that no
particular sample type was overrepresented during coexpression calculation. Without defining
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the groups, doing this was imprecise and difficult. Not doing it would bias the results towards
what is observed only in the overrepresented subset of samples. Several strategies were appro-
priate for addressing this problem once the groups of samples were defined. To decide which
one allowed for a more adequate discovery of coexpressions, experiments based on biological
pathways were carried out (3.3). Adequate was defined as a balance between a method’s abil-
ity to identify coexpressions that are highly likely to be true based on documented biological
pathways/gene sets and the method’s total discovered coexpressions. As some gene expres-
sion data transformations were also considered as variants of the methods, these were also
tested taking into account if they disrupted the initial gene expression states defined before
coexpression calculation.

Once the coexpression estimation was completed, one of the main findings was that the
Chi-square statistic is reliable as a metric to estimate gene coexpression in a large-scale set-
ting. This observation is supported by the fact that the statistic is correlated with the PCC
(4.4.1.1), a metric which is the standard measure used in many works including large-scale
and smaller coexpression analyses. When looking at the most strongly coexpressed pairs for
the majority of genes, which are usually the pairs of interest in coexpression analysis, there
is an agreement of about 65% between Chi-square and PCC when comparing the top 100
coexpressed pairs found by each metric (4.4.2). Even in the cases where the percentages of
agreement were smaller, they were still statistically significant by an FDR-corrected hyper-
geometric test for 33,445 genes out of the 33,447 that were considered in this work. Since
the Chi-sqaure statistic is reliable, one can enjoy the additional benefits it offers in terms of
interpretability of individual coexpression relationships 4.3.

Despite identifying that the Chi-square and PCC yielded similar results on average, it
was also shown that there exist certain genes for which the correlation between the metrics is
noticeably smaller (4.4.1.1). These genes seemed to exhibit some degree of tissue or cluster-
specificity, thus making associations in which they are involved more complex to describe.
Since these kinds of genes only get a chance to be coexpressed with other genes in the tissues
or clusters in which they are expressed in the first place, it is frequent to encounter patterns
in the coexpression scatter plot that are difficult to characterize only with linear functions. In
such cases, the Chi-square was much more sensitive to detecting associations driven by these
tissue or cluster-specific genes.

Results also showed that in terms of top coexpressed genes with each gene, the SRCC
was the metric that produced the most different results when compared to the other two met-
rics. It was particularly interesting to find that the pair Chi-square/PCC agreed more on what
were the top coexpressed pairs of each gene compared to the pair PCC/SRCC. Broadly speak-
ing, the PCC and SRCC usually produce very similar results in the literature outside coexpres-
sion [125]. The latter applies to input data with certain distributional assumptions. In practice,
while dealing with the complexity of real biological data, there were several genes for which
the SRCC and PCC did not manage to agree on with statistical significance (4.4.2). It was also
observed that these genes with different top coexpressed pairs depending on if they were mea-
sured with PCC and SRCC seemed to be tissue or cluster-specific. The agreement between
Chi-square/SRCC was even less than that of PCC/SRCC (4.4.2).

In Chapter 2 it was mentioned that the significance of the Chi-square statistic can be
assessed by looking at the random Chi-square distribution with the appropriate parameters
(2.5.1). Initially, it was anticipated that it would be possible to do this with the calculated
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coexpressions to assess how many genes were truly coexpressed with each gene. However,
once the calculations were complete, it was discovered that the resulting Chi-square distri-
butions of observed values were highly skewed. The robust minimum distribution featured
a whooping percentage of 80% coexpressions (447,467,345 out of 559,334,181) that would
be interesting by the statistical significance criteria. This was mentioned at the moment to be
unrealistic (4.2). Small additional experiments were made to investigate this further and two
sources impacting the shape of the calculated distributions were identified:

• Tissue-specific genes as seen in Figure 5.1

• Sample size as seen in Figure 5.2

The tissue-specific genes observation is obviously a particularity of coexpression anal-
ysis, but the sample size effect is domain-independent. The issue is well-characterized not
just for the Chi-square, but for many statistical tests [137]. In instances where the sample size
is large, the tests still behave as they are supposed. It can therefore be said that the found
associations do exist however subtle. Thanks to the sample size, the tests will be powerful
enough that they can detect very mild associations. This does not mean that all these statisti-
cally significant associations are useful to know or are practical in some way (in fact the great
majority of them will not be). Practical significance must be considered along with statistical
significance in these cases.

Regarding the estimation of the contribution of gene expression states to individual co-
expressions (4.5), Algorithm 3 was a nice first approximation for solving the problem since
it allowed for easily identifying coexpressions driven by a strong cluster-specific component
even inside the web-tool created. However, applying the algorithm to some instances in which
the permuted cluster was not important for the particular coexpression in question would result
in an increase of the Chi-square statistic when compared to the reference (a realization without
any permuted clusters). This was explainable due to the way expected counts changed upon
permutation and could be interpreted as the cluster in question not being important for the co-
expression. Nevertheless, it is thought that it can be confusing to other researchers consulting
the data. It is believed that there should be a metric that is more robust for these instances.
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Figure 5.1: Removing tissue-specific genes from a quick estimation using a representative
random sample of 1000 genes and 7 samples per gene expression state made the resulting
distribution less dense for strong Chi-square values (2.2).
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Figure 5.2: Increasing the number of samples considered for a quick estimation on a constant
representative random sample of 1000 genes causes the Chi-square distribution to gain density
for stronger Chi-square values.

5.2 Future work
Due to the nature of the work carried out in this master thesis, there are many research ques-
tions and potential analyses that could stem from the data generated and the observations
made. For instance, during the year this work was completed, a series of publications address-
ing specifically the GTEx data were published in the Science journal. Important topics such
as the role of gender in gene expression across tissues were investigated in these papers [131].
In another work, phenome-wide and genome-wide association studies combined with gene
expression data were used to predict the outcome of clinical trials for new drugs. This rep-
resents an important step towards reducing unnecessary time and financial expenses caused
by failed trials [138]. The idea is that all these kinds of analyses that are possible using gene
expression data can be extended to their gene coexpression versions. These analyses would be
able to take advantage of the extra information that coexpression yields regarding interactions
between genes. The complexity of the analyses will go up for sure, but it may be possible to
come to conclusions that otherwise would remain unexplored by only using gene expression
data.

Some promising ideas that have been on the table as a continuation of the work done
here comprise the creation of a genomic coexpression map where the data can be studied in
the context of neighboring genes in the human genome at a DNA sequence level. In general,
it is thought that genes with similar expression profiles and that need to be expressed at the
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same time tend to be clustered together in the human genome [139]. The data produced in
this work can help investigate this further with good coverage across the human genome.
Another interesting possibility lies in classifying coexpression types in terms of the scatter
plot patterns describing them. There are many examples of linear coexpression relationships
between genes, but what about other patterns such as exponential, crossed lines, or even non-
functional associations such as no-coexistence? [23]. It would be very interesting to see what
patterns may be uncovered from a vast collection of coexpressions present in normal human
biology such as the one created here.

Future work could also be sought from a wet lab validation point of view. This means
looking for some promising and previously undescribed gene pairs that could be interesting
for a better understanding of some biological function. The prioritization of these gene pairs
would be guided by the data estimated in this work. Therefore this would be a way to start
using the knowledge gained from this computational project and apply it to a molecular biol-
ogy experiment. Dr. Victor Treviño and the author of this thesis continue to work on the web
tool presented in this project to facilitate the exploration of the coexpression data by other re-
searchers and favor the translation of the knowledge produced to practical applications (4.7).

Regarding the future of large-scale coexpression computational projects, a natural con-
tinuation of the same line of thought presented here would be to try to compute the coexpres-
sion data using MIC [23]. This is the metric that originally inspired the use of a grid-based
strategy such as the Chi-square statistic in this master thesis work. There is the concern re-
garding how feasible this would be due to the more computationally intensive process that
needs to be followed for MIC computation, but it is definitely worth the try as it could repre-
sent a more robust metric for coexpression while keeping some of the interpretability features
that the Chi-square test has in the context of coexpression.

5.3 Conclusions
The main contributions of this work can be summarized as follows:

• Characterization of non-redundant gene expression states in an important dataset of
normal human tissues such as the GTEx project (3.2)

• Implementation of a strategy (BRS) for large-scale coexpression which prevents sample
type biases in downstream calculations and that performs better than the traditionally
used method in literature (weighted coexpression) for this purpose in a comparison
based on biological pathways and reference gene sets (2.6.4, 3.3)

• Estimation of large-scale human coexpression data based exclusively on normal sam-
ples, based on data originating from RNA-seq, and calculated for three different coex-
pression metrics (Chapter 4). All of this combined for the first time in the literature.

• Usage of the Chi-square statistic in the context of large-scale coexpression for the first
time in the literature demonstrating its reliability and usefulness at the moment of inter-
preting individual coexpression relationships between genes (4.3, 4.4)
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• Description and application of a permutation-based algorithm to estimate the contribu-
tion of specific types of samples to individual coexpressions calculated with the Chi-
square test of independence (4.5)

• Sharing of all computed data with the scientific community through a web tool that
incorporates highly comprehensive individual coexpression visualizations as well as
download options for further analysis by interested researchers (4.7)

As a final remark of this master thesis project, the author wishes to express the success-
ful fulfillment of the initially established project goals. This includes the assembly of a gene
expression dataset suitable for downstream system-level coexpression calculations using dif-
ferent metrics and a robust method for ensuring that the results are representative of normal
human coexpression associations.

Insight was provided into how different coexpression metrics compare to each other.
The Chi-square statistic was used for the first time in the context of large-scale coexpression
proving to be a valuable tool when interpreting individual coexpression associations. Other
features related to coexpression relationships between genes were characterized including
the importance of different gene expression states at the moment of calculating the observed
coexpression statistics, as well as the potential effect that some covariates have on observed
coexpressions.

Work culminated with the depositing of the results in a web tool that makes all esti-
mations obtained publicly available and that is already available online. The advisor and the
author of this work think that this tool will be very valuable to other researchers since it is the
first resource of its kind to host results derived from normal human gene expression quantified
with sequencing technologies. The work presented throughout this master thesis project com-
prises an important step towards a better understanding of interactions between human genes
in normality from a systems biology point of view.
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[9] Sipko van Dam, Urmo Võsa, Adriaan van der Graaf, Lude Franke, and João Pe-
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