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Markets never give in: an asset price bubble analysis 

 
By 
 

Carlos Armando Franco Ruiz 
 
Abstract 

This thesis aims to analyze asset price bubbles, where we developed, in Chapter 

I, a brief historical crashes description and a bibliometric analysis of 2,494 articles. In 

Chapter II, we studied the presence of financial bubbles in fifty stocks that constitute the 

S&P 500 index, using the generalized augmented Dickey-Fuller (GSADF) test proposed 

by Phillips et al. (2011, 2015). We found one hundred six bubbles in fifteen assets and 

detected that in the last decade (2010-2020), there is an increasing pace of this 

phenomenon. 

In Chapter III, we developed the ability of the Normal Inverse Gaussian distribution 

(NIG) to fit the returns of eight stocks where we found in the previous chapter at least one 

bubble-type behavior in the period from January 3, 2000, to December 31, 2009 (1P), 

and from January 4, 2010, to April 29, 2020 (2P). For the first period, the NIG could fit the 

mentioned segment; therefore, we estimate at different levels of confidence the VaR and 

CVaR for the in-sample-data (1P). We took the maximum expected loss and shortfall 

values and applied them to the out-of-the-sample (2P). In conclusion, we obtained a good 

adjustment to the second period (2P) and found the NIG differences compared to the 

Generalized Hyperbolic (GH) are just marginal. At the same time, we benefit the NIG is 

close under convolution and minor computational effort evaluation. 

In Chapter IV, we implemented a model-based clustering method of the Gaussian 

mixture model to categorize previously identified asset price bubbles and three dropdown 

scenarios of the S&P 500 index for 2020. We took an approach based on the price-driven 

identification: bubble size and crash size. We obtained different Gaussian cluster models 

and concluded that the Gaussian mixture model is a gold standard for further 

investigations. Finally, in Chapter V, we developed the previous chapters' final remarks 

that include all supervisors' valuable feedback. 
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1. INTRODUCTION 
 
 

“I can calculate the movement of the stars, but not the madness of men”.1  

According to the definition of the Real Academia Española, greed is understood as the 

excessive desire for wealth or vehement desire for some good things. On the other hand, 

fear is anguish over a real or imaginary risk, damage, or suspicion or apprehension that 

someone has that something opposite happens to what they want. This conceptualization 

is the economic agents’ behavior when they buy high and sell low, once euphoria is 

exhausted and madness vanishes. 

 

Financial bubbles embody and highlight the holy grail or the long-awaited 

opportunity of a free lunch in the financial market's discipline. Non a simple task, “no 

warning can save a people determined to grow suddenly rich”2. Humans have not learned 

from their mistakes throughout history, and it is a lesson that they should understand. In 

the 21st century, in recent economic history, this lecture has been repeated more 

frequently than ever, the Dotcom crisis, the 2008 crisis, the explosion in the Bitcoin's price, 

and for more than a decade a steady increase in general in major stock indexes since 

2009.  

 

However, we must not forget the systemic study of the boom and crash of the so-

called Tulip Mania, South Sea Bubble, the Great Depression, among others, that could 

function as fingerprints or keys for future events around the corner. 

 

1.1 MOTIVATION 
 

Asset price bubbles have been a rude awakening for investors, central bankers, 

and policymakers due to their unpredictability and fascination, yet these great shocks are 

often misunderstood. There is a misconception that these events are unpredicted; 

nevertheless, we can keep providing information on the existing complex system that 

 
1 Quote attributed to Sir Isaac Newton in his participation in the financial bubble of the South Sea Company of 1720. 
2 Quote attributed to Samuel Jones Loyd, known as Lord Overstone. 
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financial time series and, in particular, exuberant episodes represent, changing in some 

sense the paradigm between the academic and the practitioner perspectives. 

 

1.2 PROBLEM STATEMENT AND CONTEXT 
 

Asset price bubbles are as old as human greed; nevertheless, this concept has 

gained popularity, posing the need to study these exuberant periods. They can affect the 

entire financial markets systematically, causing losses of trillions of dollars worldwide of 

the stock market capitalization. 

 

One major issue regarding the stylized facts of financial assets series is the 

continuous adoption of the normal distribution to fit these times series. The problem lies 

within the nature of financial assets, and it increases when we are in the presence of a 

bubble-type behavior, where fat-tails are not considered in risk management. 

 

Several academics have made a wide range of attempts to capture the exuberant 

nature of financial series and identify bubbles to neutralize its harmful effects. 

Nonetheless, there is not a standard approach to foresee the start and end of such 

phenomena. Hence, we established the main objectives of this investigation: 

 

1. Encourage the detection of financial bubbles. 

2. Consider the ability of non-normal distributions to fit time-series returns. 

3. Categorize financial bubbles according to certain factors. 

 

1.3 RESEARCH QUESTION 
 

How would financial practitioners identify, fit, and categorize asset price bubbles in 

complex past, present, and future financial markets? 
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1.4 SOLUTION OVERVIEW 
 

We must comprehend the essential characteristics of financial assets such as they 

possess heavy-tails; if not, we will not recognize asset price bubbles' features. 

Consequently, in this thesis, we proposed in first place for market excesses the 

application of a well-known identification test developed by Phillips et al. (2011, 2015). 

Secondly, we suggest the implementation of the NIG distribution to fit bubble-type 

behavior periods. Thirdly, we proposed a categorization of financial bubbles according to 

the bubble and crash size. 

 

1.5 DISSERTATION STRUCTURE 
 

Chapter I presents a description of the concept of a financial bubble and a brief 

historical crashes explanation from Tulip Mania, passing through South Sea Company, 

the Great Crash of 1929, the Dotcom bubble, the Great Financial crisis, and the Bitcoin 

crash, to name a few of the remarkable dropdowns humankind has perceived. Finally, we 

developed a state-of-the-art approach by using a bibliometric analysis of 2,494 articles. 

 

In Chapter II, we studied fifty shares that constitute the S&P 500 index, where we 

applied the GSADF test to identify multiple bubbles in these assets. From this test, we 

detected 106 bubbles in 15 assets. 

 

On the other hand, in Chapter III, we took the 15 assets from the previous chapter, 

made a smaller sample according to specific criteria, and proved that the NIG distribution 

could fit episodes that contain bubble-type behaviors. Therefore, we estimated with the 

NIG and GH distribution different VaR and CVaR levels of the in-sample data and applied 

to the out-of-the-sample period to observe how they adjust. 

 

In Chapter IV, we create an asset price bubble categorization through two 

concepts, bubble size and crash size, by applying a Gaussian finite mixture model to 17 

explosive behaviors previously identified. Furthermore, we set three possible fall 
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scenarios in 2020 of the S&P 500 index, and show that the analysis of financial bubbles 

is a complex dynamic movement. 

 

Finally, in Chapter V, we mentioned the final remarks that, from our point of view, 

could help the lector to go deep in the information about financial bubbles in order to fulfill 

the suggestion of all supervisors. 
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2. CHAPTER I: UPS AND DOWNS OF THE FINANCIAL 
MARKETS 
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2.1 WHAT IS A BUBBLE? 
 

The initial question would be what is the definition of a “bubble” or what we should 

understand by this concept. Bubbles have existed throughout history with abnormal 

moments of euphoria and panic. Aliber and Kindleberger (2017) defined it as “a generic 

term for the increases in the prices of securities or currencies in the mania phase of the 

cycle that cannot be explained by the changes in the economic fundamentals” (p. 21). 

Durlauf and Blume (2008) described bubbles as a dramatic price increase followed by 

collapse or when the price exceeds the asset's fundamental value. This exuberance in 

prices usually is the precedent of a crisis. 

 

Tirole (1982) stated that an asset's price is the sum of the fundamental and 

speculative value. The uncertain value is what he called the “price bubble” (p. 1,172). 

Likewise, Blanchard and Watson (1982) indicated that the price is the sum of two 

components, the fundamental value, and the bubble, but as “bubbles can take many 

forms,” a general classification for its discovery is complicated (p. 13). Whereas Flood 

and Garber (1980) specified that “a price bubble exists when the expected rate of market 

price change is an important factor determining current market price,” and they pointed 

out that given their presence, the explanation of their path and termination is of utmost 

importance (p. 745 - 760). 

 

Evans (1991) described a bubble as an eruption that grows in a specific phase and 

then collapses. West (1987) refers to speculative bubbles as self-fulfilling rumors of 

potential stock price fluctuations that later drop (“popping”), reflecting a market 

overreaction (p. 553-559). Allen and Gale (2000) typically punctuate asset price bubbles 

in three phases in a more recent approach. The first is financial liberalization, where 

central banks increase loans or carry out other similar activities accompanied by a 

continuous increase in assets that can last for several years. The second phase is when 

the bubble bursts where the fall periods go from a few days to more extended periods. 

Finally, the last contemplates the default of different economic agents who borrowed to 

buy assets with inflated prices. 
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Consequently, we note that convergence to a single definition is not yet stipulated; 

however, we could generally define it as an ascending acceleration above an asset's 

fundamental value. To provide insight or overview applied to the definitions provided 

above, we will show some examples of historical crashes in the next section. 

 

2.2 BRIEF HISTORICAL CRASHES 
 

After the second collapse during the 21st century in the years to come, the 

prosperity of continued growth in financial markets reborn. Since the S&P 500 index's 

highest price during the 2008 crisis, around 1,565.15 on October 9, 2007, it has increased 

116.35 percent to 3,386.15 on February 19, 2020. Nevertheless, the fear of a market 

collapse awoke after a pandemic broke out, where the S&P 500 index fell almost 32 

percent in a month. In Fig. 1, we exposed a calendar heat map of the previous stock 

index's daily returns from 2015 to April 17, 2020, where we noticed the collapse in this 

period. 

 

Fig. 1 Calendar heat map of the daily returns of the S&P500 index from 2015 to April, 17, 2020. The author created the image. 
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So, once again, investors notice that securities prices could not rise forever. The 

speculative frenzy of a bubble comes from the birth of financial markets. People see in a 

“boom” unlimited potential returns, but when the “bust” appears, people panic, and their 

gains dissipate. The previous scenario is not new; it has repeated in many historical 

financial crashes. As Horace (Quintus Horatius Flaccus) said: "A heart well prepared for 

adversity in bad times hopes, and in good times fears for a change in fortune." 

 

2.2.1 THE TULIP MANIA 
 

The Dutch created a thriving economy at the beginning of the sixteenth century, 

where the Netherlands was in a period of great prosperity and a driving force for a newly-

created global economy (Day, 2004). Amsterdam became the top commercial emporium 

and represented the center of the trade of the northwestern part of Europe (Sornette, 

2017). In this framework, aimed at an environment where economic agents sought the 

accumulation of wealth and cultivated expensive tastes, caused the emergence of the 

tulip futures market. 

 

Consequently, tulips represented a luxury asset and, therefore, the participants' 

wealth in this market. Speculation on the tulip bulbs represented at that historical moment 

a safe investment. By the year 1634, buying tulip futures contracts in fall and winter for 

future delivery was ongoing practice. During most of the tulip speculation, high prices 

centered on bulbs with a mutation called "breaks," caused by a virus. Nevertheless, the 

premium for the ultra-rare breaks did not last long as new varieties depressed the prices 

for older ones (Day, 2004, p. 151-163).  

 

Speculation intensified due to the frenzy of what the Dutch called “windhandel,” 

which is the buying and selling of futures without the goods’ current possession (Sarna, 

2010). These relationships were prohibited, but a continuous informal market was on par 

(Day, 2004). Finally, tulip prices collapsed in February 1637 when “the contract price of 

tulips … reached a level that was about 20 times higher than in both early November 
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1636 and early May 1637” (Thompson, 2007, p. 99). It is worth mentioning that Thompson 

establishes a different point of view on tulipmania (2007). 

 

2.2.2 SOUTH SEA COMPANY 
 

The South Sea Company is the first stock market crash in England in 1720. 

Schachter, Gerin, Hood, and Anderassen (1985) argued that it is “the villain of the 

colossal scam,” where the creation of the Company emerged in May 1711, by an Act of 

Parliament which offered a promising solution for the National Debt. This scheme 

contemplated that short-term public debt holders could exchange debt instruments for 

shares of the South Sea Company. The government-guaranteed an annuity to this 

Company, which permitted a 5% interest on the stock. As an incentive for investors, 

England granted the monopoly of trade to South America (Spanish ports). However, 

during 1711 and 1720, Spain and England were in a period of war or continuous hostility, 

so the “monopoly was at best a chimera.” Nevertheless, these measures produced 

interest for speculators and investors of those times (p. 324). 

 

This bubble culminated in a story of mass frenzy, political corruption, and public 

upheaval (Sornette, 2017). To understand the political and economic context, it is 

necessary to know that England wanted to vent its national debt in those moments of high 

tension. “… for its time, [it was] an intricate piece of financial engineering. The 

government’s benefits were plain: they could dispense with the irredeemables, reduce 

interest rates on the National Debt, and earn £7.5 million. The benefits to the Company 

were more opaque [sic]” (Deringer, 2015, p. 652). 

 

The South Sea Company scheme came to an end when the Sword Blade 

Company failed under the Bank of England’s demanding redemption of its notes or their 

payment in specie on September 24. There is uncertainty about whether the Bank of 

England terminated the scheme; however, it is clear that it denoted that credit was 

restricted (Neal, 1993). Notwithstanding, the chaos began since the Parliament awarded 
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the contract of assuming most of the National Debt at the beginning of February 1720 

(Schachter et al., 1985). 

 

2.2.3 THE GREAT CRASH OF 1929 
 

After almost a century, we continue to gather information from the fall of October 

29, 1929, where investors (as in any other time) had a belief that assumed unlimited 

horizons. For the general public, the Great Crash and the Great Depression are 

synonymous; however, they do not make the same cataclysm for economists. The first 

refers to the decline in stock prices in October 1929, while the second involves a 

tremendous drop in real output between 1929 and 1933 (Romer, 1990). There are 

different positions regarding this dichotomy, and in particular, on what variables could 

have caused the Great Recession, as Friedman and Schwartz pointed out in “A monetary 

history of the United States, 1867-1960,” or Bernanke in “Irreversibility, uncertainty, and 

cyclical investment,” to name a few. In this order of ideas, Romer raises an “uncertainty 

hypothesis,” where she investigated that the extreme variability of stock prices caused 

uncertainty about people’s future income levels and, therefore, postponed the purchase 

of the irreversible durable goods. This view is relevant because it exemplifies the 

difference between the collapses of 1929 and 1987, where consumers perceived the 

latter as a one-time aberration (1990, p. 599-602).  

 

The boom of the 1920s headed to a bubble (Ribstein, 2003). After World War I and 

a post-war recession, from 1922 to 1929, the GNP grew at an annual average of 4.7 

percent, while unemployment remained at an average of 3.7 percent (White, 1990). 

Heilbroner and Milberg (2008) comment that few Americans were approaching an 

economic calamity. The rise of the stock market had attracted (according to these 

authors), perhaps 10 million investors who perceived an increase in their capital without 

any effort. Speculation was in the environment; however, the risk was justifiable. So that 

a person who invested a thousand dollars a year since 1921 in some representative stock, 

by 1925, would have had six thousand dollars and by 1928 would have reached twenty 

thousand dollars. It is worth mentioning that this growth trend was only the beginning 
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since by mid-1929, industrial shares’ average increased almost the same as the previous 

year. For the eighth month of 1929, the profits obtained during the summer period 

exceeded the returns of the entire year of 1928. On Tuesday, October 29, 1929, 

everything fell; for example, at the end of the session on that day, investors sold 

16,410,000 shares while thirty billion dollars vanished in just a few weeks. By 1933, one 

out of every two dollars disappeared from final production. 

 

2.2.4 DOTCOM BUBBLE 
 

The wealth potential in a new market that causes a bubble in some specific sector 

is not new. Occasionally, the appearance of bubbles in the market represents a bleak 

outlook for investors and workers. However, opportunities arise that can make companies 

that survive after the bubble collapse become profitable economic agents. In this order of 

ideas, before the beginning of the dotcom bubble, the internet’s rapid growth attracted 

interest from investors and entrepreneurs (Panko, 2008). 

 

Before the new millennium, the previous decade consisted of seeking market 

leadership that used the internet as a profit generator, and not as a complementary tool 

to its core business. Within this bubble, Razi, Tarn, and Siddiqui (2004) divided them into 

two categories, controllable and uncontrollable causes. The first one refers to strategic, 

operational, and technical reasons, while the latter likewise has technical and behavioral 

causes. These authors contemplated that the bubbles’ causes are not attributable to a 

single factor but rather to a combination of variables, such as the behavior of a complex 

system. 

 

The “prediction of the financial pundits” of the dotcom bubble became true wherein 

a short time, the surprising growth of several stock prices during the 1990s finished and 

collapsed (Bose and Pal, 2006, p. 960). In a broader explanation Kaizoji, Leiss, Saichev, 

and Sornette (2015) mentioned that “the valuation of the Internet stock index went from 

a reference value 100 in January 1998 to a peak of 1,400.06 in March 9, 2000, 

corresponding to an annualized return of more than 350%! A year and a half later, the 
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Internet stock valuation was back at its pre-1998 level” (p. 290). In addition to the above, 

by February 2000, “the Internet sector equaled 6 percent of the market capitalization of 

all US public companies and 20 percent of all publicly traded equity volume” (Ofek and 

Richardson, 2003, p. 1,113). 

 

2.2.5 THE GREAT FINANCIAL CRISIS 
 

The 2008 crisis turned out to be a more complex credit crunch than the previous 

problems that the markets have had, because this time, financial innovation allowed an 

alternative to packaging and reselling assets. This situation paired with the offer of 

mortgages to individuals lacking the adequate economic and credit profile; however, the 

2008 crisis originated due to the risk mispricing of these products. These new financial 

products consisted of subprime and other types of mortgages, later sold as sophisticated 

instruments. Despite the composition of these assets, the rating agencies gave high 

ratings, which would mean that they were considered safe. However, the framework that 

caused assets to be related based on the movement of house prices caused foreclosures 

on mortgages to increase due to the fall in these prices (Mizen, 2008). 

 

Yeo (2010) mentioned that the 2008 global financial crisis is often referred to as 

the largest socio-economic-political event since the 1950s. He pointed out that the 

evolutionary process of the collapse of financial markets developed in four stages, 

possibly with an additional fifth stage. The first stage began in the first month of 2007 

when financial institutions reported losses caused to mortgage defaults. The second 

stage joined the problem that was already happening to the United States. The rapid fall 

in houses' value within a slow economic scenario caused catastrophic damage to the 

property markets in the United Kingdom and other parts of the European Union. Phase 

three started in January 2008, where the global banking credit spreads for AA-rated 

companies widened over 175 points, causing a shutdown of the asset securitization 

markets. After the rescue of Bear Sterns and its absorption by JP Morgan-Chase, the 

crisis' effects had already spread, opening the fourth stage. Since September 2008, 

several institutions faced a bailed out; however, when US regulators failed to rescue 
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Lehman, the problem took over the world due to the importance and relationship that this 

institution represented in the mortgage market and insurance. In an equally discouraging 

context, the United States and other leading economies went into a technical recession, 

resulting in a global recession. Finally, for the last phase, around the third quarter of 2009, 

this author states that the United States and, to a certain extent, the United Kingdom, are 

in the process of stabilizing their economies. 

 

2.2.6 BITCOIN CRASH 
 

In a scenario where financial transactions were only carried out almost exclusively 

through trust third parties, where there were certain deficiencies such as 1) weaknesses 

of the trust-based model, 2) non-reversible transactions, and 3) cost of mediation 

(transaction costs), for example. The need arose to make electronic payments using 

cryptography instead of a trusted third party (Nakamoto, 2008). Under this approach, the 

concept of cryptocurrency became a buzzword both in industry and academia and, in fact, 

for the general public (Zheng, Xie, Dai, Chen, and Wang, 2017). 

 

Media disseminated concepts such as blockchain and cryptocurrency, relating 

them to Bitcoin's definition despite their conceptual differences. We can link Bitcoin from 

its use as a means of payment in the deep web market place Silkroad to be part of the 

Financial Action Task Force (FATF) in its report called Virtual Currencies Key Definitions 

and Potential AML / CT Risks. From a general perspective, this financial innovation 

applicable to different areas of knowledge is impressive for a simple reason: Bitcoin's 

underlying structure is fascinating (Griffin, 2014). 

 

Consequently, Bitcoin's relevance lies in the potential existing on the effects on 

payment systems and possibly monetary systems. Likewise, "Bitcoin can be understood 

as the first widely adopted mechanism to provide absolute scarcity of a money supply" 

(Böhme, Christin, Edelman, and Moore, 2015, p. 214-215). These authors have detected 

the risks or possible risks that involve this virtual currency. One of them is relevant in 

studying financial bubbles because they indicated that Bitcoin retainers face market risk 



 

 26 

derived from fluctuations in the exchange rate between this cryptocurrency and other 

currencies. They mentioned that a "user might dismiss the short-term price spikes before 

mid-2013 as part of the price of using a new currency. But the sharp movements from 

late 2013 through 2015 would be a source of concern, both for users considering Bitcoin 

for transactions and for those using it as a store of value" (Böhme et al., 2015, p. 226). 

 

In this sense, Glaser, Zimmermann, Haferkorn, Weber, and Siering (2014) pointed 

out that in January 2011, each Bitcoin was worth $0.3, while in November 2013, the price 

increased dramatically to $1,300. Consequently, financial market regulators wondered 

about the usefulness of this cryptocurrency, referring to the fact that users were not using 

Bitcoin as a medium of exchange but as a speculative financial asset. Similarly, Swartz 

(2014) exposes that Bitcoin's demand is increasing based on the public; however, its uses 

have remained constant. Consequently, according to some exchanges, the acquisition of 

this cryptocurrency shows its purchases as a speculative tool. 

 

Bitcoin's peculiar history did not stop with the previous explosive price behavior. 

However, as of December 12, 2017, this virtual currency reached a maximum daily 

closing price of $18,674.48, according to information extracted from Bloomberg. Thus, 

concerning the $0.3 value in 2011, this increase meant a 6,224,726.67 percent change, 

while for a $0.05 price per Bitcoin on July 22, 2010, it represents a 37,348,860 percent 

increase. It is worth mentioning that their collapses are as distinctive as their rises. 

 

2.3 A STATE-OF-THE-ART APPROACH 
 

2.3.1 BIBLIOMETRIC ANALYSIS 
 

Based on the work of Zhou, Chen, and Huang (2019) where they carried out a 

scientometric analysis of the financial bubbles of a total of 1,048 articles downloaded from 

Web of Science (WoS) from the period 1994 to October 26, 2017, with the “financial 

bubble” research topic. Hence, we carried out a bibliometric analysis using 

the bibliometrix R package, where the study period was extended from 1972 to April 18, 
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2020, to visualize the largest number of Scopus articles available. For 2,494 articles, the 

search words were the following: financial bubble, asset price bubble, stock market 

bubble, or bubble. The selection of the subject area was Economics, Econometrics, and 

Finance. 

 

In Fig. 2 and Table 1, we observe the evolution of articles published since 1972 

with an annual percentage growth rate of 9.050773. It is worth mentioning that there were 

no publications in this database during the years 1973, 1974, 1975, 1976, 1978, 1981, 

and 1982. Although we were only in the fourth month of 2020, the growth in publications 

of asset price bubbles has been increasing. 

 

 

Fig. 2 Number of articles per year. 
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Table 1. Number of articles per year. 

Year 1972 1977 1979 1980 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 

Articles 1 1 1 1 2 2 2 5 2 10 9 6 5 11 

               

Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Articles 19 17 22 23 13 32 26 28 42 30 39 39 51 55 

               

Year 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Articles 63 74 94 100 161 135 175 184 190 188 169 179 224 64 

 

In Table 2, we indicate the top ten of the most productive authors based on the 

number of articles and articles fractionalized. We omitted the first line of results due to the 

accumulation of anonymous articles denoted as NA NA, where Prof. Didier Sornette 

stands out in this category. Table 3 shows the first ten articles with the highest number of 

total citations (TC) and the cited manuscripts by the yearly average number of times 

(TCperYear). 

Table 2. Top ten most productive authors. 

Number Authors Articles Authors Articles Fractionalized 

1 Sornette Didier 28 Sornette Didier 11.4 

2 Irwin Scott H. 13 Jarrow Robert 8.67 

3 Protter Phillip 13 Mcmillan David G. 7.33 

4 Su Chi-Wei 13 Irwin Scott H. 6.17 

5 Jarrow Robert 12 Westerhoff Frank 5.83 

6 Shi Shuping 11 Huang MeiChi 5.5 

7 Hommes Cars 10 Protter Phillip 5.33 

8 Phillips P.C.B. 10 Tsai I.C. 5.33 

9 Westerhoff Frank 10 Engsted Tom 5.17 

10 Yu Jun 10 Shi Shuping 5.08 

 



 

 29 

Table 3. Top ten most cited manuscripts. 

Number Authors Manuscripts TC TCperYear 

1 
De Long, J. 

Bradford, et al. 

Positive feedback investment strategies and 

destabilizing rational speculation. 
1,007 32.5 

2 

Scheinkman, 

Jose A., and Wei 

Xiong. 

Overconfidence and speculative bubbles. 686 38.1 

3 Boyer, Robert. 

Is a finance-led growth regime a viable 

alternative to Fordism? A preliminary 

analysis. 

467 22.2 

4 Engel, Charles. 
The forward discount anomaly and the risk 

premium: A survey of recent evidence. 
450 18 

5 

Chen, Joseph, 

Harrison Hong, 

and Jeremy C. 

Stein. 

Forecasting crashes: Trading volume, past 

returns, and conditional skewness in stock 

prices. 

415 20.8 

6 

Abreu, Dilip, and 

Markus K. 

Brunnermeier. 

Bubbles and crashes. 393 21.8 

7 

Brown, John 

Seely, and Paul 

Duguid. 

Balancing act: How to capture knowledge 

without killing it. 
345 16.4 

8 

Efendi, Jap, Anup 

Srivastava, and 

Edward P. 

Swanson. 

Why do corporate managers misstate 

financial statements? The role of option 

compensation and other factors. 

343 24.5 

9 

Phillips, Peter CB, 

Yangru Wu, and 

Jun Yu. 

Explosive behavior in the 1990s Nasdaq: 

When did exuberance escalate asset 

values? 

333 33.3 

10 Lux, Thomas. 

The socio-economic dynamics of speculative 

markets: interacting agents, chaos, and the 

fat tails of return distributions. 

329 14.3 
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In Fig. 3, we show the corresponding authors' countries with the highest number 

of articles published, the USA tops the list, and for the second place, which is the United 

Kingdom, it has 257.33 percent more articles. In Table 4, we displayed the most relevant 

sources, and in Table 5, the most relevant keywords. On the other hand, an interesting 

fact that calculates the authors' dominance ranking, as proposed by Kumar and Kumar 

(2008), where Jarrow Robert and Allen Franklin dominate their research for a k = 10. 

Likewise, for Lotka's law coefficients for scientific productivity, the estimated Beta 

coefficient is 2.435754 with a goodness of fit equal to 0.8773638, and the Kolmogorov-

Smirnoff two-sample test provides a p-value of 0.1813004 that means there is not a 

significant difference between the observed and the theoretical Lotka distributions. 

 

 

Fig. 3 Corresponding author’s countries. 
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Table 4. Top ten most relevant sources. 

Number Sources Articles 

1 Economics Letters  48 

2 Journal of Economic Dynamics and Control 48 

3 Economic Modelling 45 

4 Journal of Economic Behavior and Organization 36 

5 Applied Economics 35 

6 Applied Economics Letters 34 

7 Journal of Real Estate Finance and Economics 33 

8 Quarterly Review of Economics and Finance 30 

9 Journal of Banking and Finance 28 

10 Journal of Monetary Economics 28 

 

Table 5. Top ten most relevant keywords. 

Number 
Author Keywords 

(DE) 
Articles 

1 Bubbles 236 

2 Bubble 101 

3 Monetary policy 94 

4 Financial crisis 73 

5 Speculative bubbles  52 

6 Rational bubbles 50 

7 House prices 49 

8 Housing bubble 48 

9 Cointegration 40 

10 Asset price bubbles 38 
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Finally, in Fig. 4, we create a co-citation network analysis for fifty references, 

displaying the intellectual picture in financial bubble researchers. Simultaneously, in Fig. 

5, we developed a keyword co-occurrences analysis of fifty terms, where we find five 

clusters. In the first cluster (purple color), we have the following keywords: stochastic 

systems, bubbles (in fluids), oil prices, oil trade, crude oil, costs, commerce, energy 

market, price determination, economics, investments, economic impact, and commodity 

price. In the red cluster, we have the terms of Markov chain, econometrics, price 

dynamics, numerical method, market conditions, stock market, housing market, and 

China. Then, in the blue cluster, words such as Europe, North America, Japan, Asia, 

Eurasia, and far east are contemplated.  

On the other hand, in the green cluster, the keywords are investment, United 

States, European Union, financial market, economic development, inflation, financial 

crisis, United Kingdom, monetary policy, macroeconomics, central bank, interest rate, 

financial system, economic growth, and banking. Lastly, we obtained the orange cluster 

where it presents a different branch of knowledge; however, it is related to some concepts 

of the clusters mentioned above. We have keywords such as article, human, humans, 

controlled study, nonhuman, procedures, chemistry, and particle size in this group. 
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Fig. 4 Co-citation Network of thirty references. 

 

 

Fig. 5 Keyword Co-ocurrances of fifty terms. 

  

Consequently, from this bibliometric analysis of the financial bubbles, we obtained 

the general panorama of the investigations carried out in 2,494 articles from 1972 to April 

18, 2020. The results in this subject are of ongoing interest, and we can appreciate that 

more researchers have followed this line of study over time.  This type of analysis allows 
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us to highlight the prominent authors who published on asset price bubbles. In our case, 

it is Professor Didier Sornette and P.C.B. Phillips, as well as to understand that this topic 

is booming due to the events in early 2020. Moreover, at the time of writing this work, we 

have witnessed 

1. The outbreak of a pandemic (COVID-19), 

2. The collapse of different stock market indices, and 

3. The price collapse of May's oil futures contracts that turned into negative 

numbers. 

4. The COVID-19 second outbreak. 

The previous experiences are a sequence of abnormal events that no one 

expected to occur. In Sornette's (2017) words, abnormal means "essentially impossible. 

The fact that they occurred tell us that the market can deviate significantly from the norm" 

(p. 50). 
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3. CHAPTER II: POTENTIAL EXUBERANCE IN THE XXI 
CENTURY 
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3.1 INTRODUCTION 
 

After the fall of the financial markets in 2008, individuals continue with the same 

expectations and human desires regarding the acquisition of wealth, greed, and the firm 

belief that everything done is correct. Nowadays, there is uncertainty if we are still in 

economic and financial recovery, or perhaps we are in preparation for a magnificent fall 

of divine proportions, something that has been called in the industry as the everything 

bubble. In March 2020, the markets’ instability got tested; they suffered losses more 

remarkable than one digit due to the COVID-19 outbreak’s uncertainty. 

 

We have not appreciated and learned from past mistakes, especially in the 

financial markets. Probably there are diverse interests about the real objective of the 

financial system. Likewise, there exists a possibility that our thinking, our selfish thinking, 

has inflicted damage to the natural order of the markets. One problem is that we, as 

human beings, focus on the information from what just occurred yesterday, and we 

diminish the knowledge importance from one month, one year, or a decade ago. One of 

the most remarkable socio-economic-political events, the 2008 crisis, has been forgotten 

like ashes going through the air. It seems that we have put on a shelf those memories 

like an old book getting dust over time. 

 

The nearest revival of the 2008 crisis was the collapse that accompanied the first 

pandemic outbreak in 2020. We are talking of the word “accompanied” and not “caused” 

because causation is not a straightforward job. We cannot explain the natural evolution 

of financial bubbles as in “real” life with one variable, instead it is an interaction of multiple 

variables with no linear relations. 

 

We decided to magnify our research on cryptocurrencies (Cerecedo-Hernández, 

Franco-Ruiz, Contreras-Valdez & Franco-Ruiz, 2019) to a more general context on the 

potential exuberance in the financial markets within the top fifty of the S&P 500 index 

regarding their Index weight and starting date January 1, 2000. This chapter was 

developed by detecting financial bubbles through transitioning from the assignment of a 

stationary process to a unit root, including a “mildly explosive” process, and returning to 
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a stationary process (Zhang & Wu, 2018). The detection mentioned above derived from 

the investigations carried out by Phillips, Wu, and Yu (2011) and Phillips, Shi, and Yu 

(2015), where we developed the Sup Augmented Dickey-Fuller (SADF) and generalized 

sup Augmented Dickey-Fuller (GSADF) tests, respectively. Likewise, we incorporate the 

modification proposed by Harvey, Leybourne, Sollis, and Taylor (2016) of the 

implementation of a wild bootstrap rather than Monte Carlo simulations because the 

“supremum-based test has a non-pivotal limit distribution under the unit root null, and can 

be quite severely over-sized, thereby giving rise to spurious indications of explosive 

behavior” (p. 548). 

 

3.2 THEORETICAL FRAMEWORK 
 

Recently, Phillips et al. (2011, 2015) developed an innovative and persuasive 

approach to identify bubbles. Phillips et al. (2011), in their seminal paper, defined financial 

exuberance and introduced a “new econometric methodology based on forward recursive 

regression tests and mildly explosive regression asymptotics to assess the empirical 

evidence of exuberant behavior in the Nasdaq stock market index” (p. 202). In order to 

explain explosive behavior in economic variables, they related their proposal to rational 

bubble literature. In this context, Diba and Grossman (1988) applied the standard unit 

root tests to levels and differences of the U.S. Standard and Poor’s Composite Stock 

Price Index data from 1871 to 1986 and rejected the presence of a bubble. So, they 

mentioned: 

 

A rational bubble reflects a self-confirming belief that an asset’s price 

depends on a variable (or combination of variables) that is intrinsically 

irrelevant – that is, not part of market fundamentals – or on truly relevant 

variables in a way that involves parameters that are not part of market 

fundamentals. (p. 520). 



 

 38 

However, Evans (1991) argued that standard unit root cointegration tests could not 

distinguish between a stationary process and an occasionally falling bubble model. Thus, 

these are not adequate tools to identify exuberance. In this context, Phillips et al. (2011) 

interpreted Greenspan’s famous term “irrational exuberance” to signal that the market is 

overvalued and might be a risk of a financial bubble. One of the possible reasons why 

explosive behavior does not receive much attention, according to Campbell, Champbell, 

Campbell, Lo, Lo, and MacKinlay (1997), was that “empirically there is little evidence of 

explosive behavior” (p. 260). Nevertheless, Evans (1991) stated that exuberance is not a 

constant; instead, it is a temporary behavior and may likely be a first-order integrated 

process I(1). Phillips et al. (2011) denoted: 

 

This article has proposed a new approach to testing for explosive behavior 

in stock prices that makes use of recursive regression, right-sided unit root 

tests, and a new method of confidence interval construction for the growth 

parameter in stock market exuberance… The present econometric 

methodology shows how the data may be studied as a mildly explosive 

propagating mechanism. (p. 221-22). 

In the same year, 2011; Phillips, and Yu (2011) modified the previously proposed 

methodology to identify bubble behavior in Phillips et al. (2011). The improvements 

consist of three main aspects: 

 

1. The initial observation is selected based on an information criterion, allowing 

sharper identification of the bubble birth date. 

2. They developed a method for testing bubble migration; subsequently, they 

established a new limit theory. 

3. The paper studied the subprime crisis. 

 

Phillips, Shi, and Yu (2014) detailed the importance of the null and alternative 

hypotheses and the regression model specification and give guidelines for implementing 
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right-tailed unit root tests. We can find more tests for explosive behavior in Homm and 

Breitung (2011), yet they confirmed the SADF outperforms the other tests. 

 

Phillips et al. (2015) developed a new recursive flexible method for long historical 

time series. They proposed the generalized sup ADF test (GSADF), a version of the 

SADF, for multiple bubbles instead of just for one explosive behavior. Their findings 

summarized as follows: 

 

1. SADF and the GSADF tests are consistent in the detection of a single bubble in a 

certain period. 

2. The SADF has a problem when the sample has two bubbles. For the first one, the 

detection is consistent, whereas, for the second, the estimations are duration-

dependent. 

3. The GSADF can detect multiple bubbles, and the results hold irrespective of 

bubble duration. 

4. The simulation results corroborate the asymptotic theory, where the GSADF is 

more reliable than the SADF. 

 

The SADF “procedure uses recursively calculated right-sided unit root test 

statistics based on an expanding window of observations up to the current data point…” 

while the GSADF “use a moving window recursion of sup statistics based on a sequence 

of right-sided unit root tests calculated over flexible windows of varying length taken up 

to the current data point” (Phillips et al., 2015, p. 1,080). 

 

Later, Lee and Phillips (2016) employed the same econometric methods described 

above (SADF and GSADF) to investigate the possible impact of bubbles and provide 

insights into the relationship between bubble-type behavior and financial returns. Phillips 

(2016) constructed a model of asset market exuberance, and with some modifications, 

the model can capture the cross-market speculative relation and negative market 

sentiment. 
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Moreover, Phillips and Shi (2018) strengthened the GSADF test by exploring 

different collapse scenarios and proposed an alternative reverse regression for bubble 

implosion. Likewise, Phillips and Shi (2019) proposed a mechanism for financial market 

crises and collapses modeling. It is appropriate to capture the abrupt market falls. We will 

observe the SADF and GSADF application to different markets or cumulative approaches 

in the next paragraphs. 

 

Pavlidis, Yusupova, Paya, Peel, Martínez-García, Mack, and Grossman (2016) 

studied the housing market’s explosive behavior using real house prices, price-to-income 

ratios, and price-to-rent ratio in order to analyze the narrative connections with the 

housing exuberance of the 2008 crisis. They applied the two recursive univariate unit root 

tests (SADF and GSADF). Moreover, they proposed a novel approach for “a panel setting 

to exploit the large cross-sectional dimension” (p. 419-420). They found exuberance in 

periods previous to the global recession. Likewise, Escobari and Jafarinejad (2016) tested 

for the existence of bubbles in four Real Estate Investment Trust (REIT) using the SADF 

and GSADF tests. Their results showed statistically significant evidence of speculative 

behavior in the REIT index, Equity, Mortgage, and Hybrid REITs (p. 224). 

 

Li, Tao, Su, and Lobont (2018) applied the generalized sup Augmented Dickey-

Fuller test method (GSADF) to look for explosive bubbles in the Bitcoin (BTC), especially 

in its price difference between China and the US. They found six bubbles for China and 

five bubbles for the latter (p. 91-92). Cerecedo-Hernández et al. (2019) extended the 

previous research for four other cryptocurrencies. We found for Ethereum, Ripple, Bitcoin 

Cash, and EOS representing the largest market capitalization after Bitcoin with ten, 

seven, six, and seven explosive bubbles, respectively (p. 726). 

 

Caspi, Katzke, and Gupta (2018) used the GSADF to date-stamp periods of oil 

price explosivity in the US from January 1876 to January 2014. They established that 

there should be caution in interpreting results in storable commodities because not 

necessarily an explosive period has to be a bubble. Moreover, these authors mentioned 

there exist a possibility that explosivity as a bubble identification could be an “indicative 
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of adjustments from previously managed or manipulated pricing schedules toward a more 

fundamental level (whichever way defined)” (p. 583-584). On the other hand, Sharma and 

Escobari (2018) found strong evidence of explosive episodes in three energy indices 

(crude oil, heating oil, and natural gas) and five energy spot prices (West Texas 

Intermediate, Brent, heating oil, natural gas, and jet fuel) obtaining the critical values by 

Monte Carlo simulations (p. 419). 

 

Hu and Oxley (2018) took two historical crashes, the well-known South Sea 

Company and the Mississippi Company, as well as six underresearched 18th-century 

financial series. They applied the right-tailed unit root test (GSADF) and considered non-

stationary volatility where critical values originate in a wild bootstrap simulation developed 

by Harvey et al. (2016). 

 

Chang, Gil-Alana, Aye, Gupta, and Ranjbar (2016) explored the GSADF test for 

the BRICS (Brazil, Russia, India, China, and South Africa) stock markets 1990-2013 

period. Furthermore, Hu and Oxley (2017) used the generalized sup ADF (GSADF) to 

investigate the exchange rate bubbles in some G10, Asian, and BRICS countries from 

March 1991 to December 2014. They pointed that “explosiveness in the asset price does 

not, on its own, imply the existence of rational bubbles, where it is necessary to consider 

the role player by economic fundamentals in asset prices” (p. 439). 

 

Escobari, Garcia, and Mellado (2017) searched for exuberance in Latin American 

equity markets, where bubbles appear to begin earlier and stay for a more extended 

period than the S&P 500 index. They proposed a similar recursive procedure based on 

Phillips-Perron. They concluded that the Augmented Dickey-Fuller-based and the 

Phillips-Perron-based tests coincide 92.9% of the times in the analyzed sample. 

 

Long, Li, and Li (2016) determined that gold’s price reacts faster to political and 

economic uncertainties than other commodities and mentioned that, in general, the 

GSADF method locates explosiveness more accurately than the SADF. Furthermore, 

once again, they confirmed gold is a haven for investors where its price emerged rapidly 
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“soon after the beginning of the subprime mortgage crisis as panic investors transferred 

assets from property market to the gold market and the gold price reacted to economic 

turmoil more rapidly than prices of other commodities” (p. 1,162). 

 

More recently, Kurozumi (2020) compared the ADF and CUSUM type detectors 

and proves that the local asymptotic theory is more helpful in understanding the properties 

of these tests. The former is better to detect middle to late breaks, while the latter is 

suitable for detecting exuberance in early and short-range. Monschang and Wilfling 

(2020) showed Monte Carlo simulations exhibit substantial size distortions and that the 

backward SADF (BSADF) test used to date-stamp exuberance proposed in Phillips et al. 

(2011) outperforms variants such as the sign-based test statistic of Harvey, Leybourne, 

and Zu (2020). Nevertheless, we should be careful because the BSADF tends to date-

stamp non-existing bubble-type behavior, and revealed data frequency is a sensible 

choice to the practitioner of these tests. 

 

Therefore, the evidence shows the SADF and the GSADF are tests with increasing 

popularity in different scientific fields. Exuberance identification in asset prices or in any 

other academic subjects is a complex assignment. Just to give an example, Kräussl, 

Lehnert, and Martelin (2016) investigated after the record-breaking prices in the art 

market is there was a speculative bubble. To answer this question, they tested Phillips et 

al. (2011) modeling approach and identified two historical speculative bubbles and 

explosive behavior in today’s fine art market segments (p. 99). 

 

3.3 TESTING FOR EXPLOSIVE BEHAVIOR 
 

3.3.1 AUTOREGRESSIVE PROCESS 
 

First of all, we have to make a review of an Autoregressive Process. The notation 

follows Hamilton (1994). 

 

A first-order autoregression AR (1) satisfies the following difference equation: 
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!! = # + %!!"# + &!                               (1) 

 

where, &!	has mean zero and variance ($, and they are not correlated 

 

)(&!) = 0            (2) 

 

)(&!$) = 0            (3) 

 

)(&! , &%) = 0                    (4) 

 

For an AR (2), 

 

!! = # + %#!!"# + %$!!"$ + &!                             (5) 

 

or, in lag operator notation, 

 

(1 − %#0 − %$0$)!! = # + &!                   (6) 

 

Equation (5) is stable provided that the roots of 

 
(1 − %#1 − %$1$) = 0          (7) 

 

lie outside the unit circle, so if this condition is satisfied, the AR (2) process is covariance-

stationary. 

 

Following (5), for an AR(p), 

 

!! = # + %#!!"# + %$!!"$ +⋯+ %&!!"& + &!                 (8) 

 

with roots, 
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31 − %#1 − %$1$ −⋯− %&1&4 = 0        (9) 

 

Now, following Pavlidis et al. (2016) and Caspi (2013) in order to have a usual 

notation of the SADF and GSADF tests, we made some arranges to (8), 

 

∆!! = 6'#,'$ + 7'#,'$!!"# + ∑ 9)
'#,'$∆!!") + &!

*
)+#       (10) 

 

where !! denotes a generic times series so that  it can be the price or, for example, 

a ratio, ∆!!") for : = 1,… , < are the differenced lags of the time series and &!~>(0, ('#,'$$ ) 

is the error term. Likewise, ?1 and ?2 denote fractions of the total sample size, < is the 

maximum number of lags included in the specification, and 6'#,'$, 7'#,'$, and 9)
'#,'$ are 

regression coefficients. Finally, ?, is the fractional window size of the regression, defined 

by ?, = ?2 − ?1, and 	?0 is an initial fixed window. 

 

3.3.2 SADF TEST 
 

The change from a random walk with a drift to a mildly explosive behavior indicates 

the origin of exuberance under the assumption that fundamentals belong to a class of 

first-order integrated process I(1). Equation (10) is similar to the Augmented Dickey-Fuller 

test, but now we are considering an expanding window and a right-tailed version of the 

standard unit root test. In consequence, we are interested in testing the null hypothesis, 

A- = 7'#,'$ = 0, while the alternative hypothesis A# = 7'#,'$ > 0 tells us it is a mildly 

explosive behavior. 

 

If we set ?1 and ?2 as fixed to the first and last observations respectively, such that 

 

?, = ?0 = 1            (11) 
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We obtained a right-tailed version of the standard Augmented Dickey-Fuller unit root 

test. Nevertheless, the critical values for testing the null hypothesis differ from the usual 

one because we need the right tail of the test. Fig. 6 is a graphic example of the ADF 

procedure. 

 

 
Fig. 6 Illustration of the Augmented Dickey-Fuller procedure extracted from Caspi (2013). 

 

On the other hand, for the SADF test, we established, ?1, as the starting point of 

the estimation window. Second, we determined the endpoint, ?2, according to a minimum 

window size choice ?0. Finally, we estimated the regression recursively and kept 

increasing the window size ?2C[?0,1]. The previous process repeats itself one observation 

at a time. We will get for each estimation an ADF statistic denoted as FGH'$, until it covers 

the whole sample. 

 

Next, we defined the SADF’s test statistic as the supremum value of FGH'$, 

expressed as follows: 

 

IFGH(?0) = JKL'$.['-,#]{FGH'$}         (12) 

 

Equation (12) tells us the SADF will find the largest ADF statistic through all the 

expanding window. Hence, if the right-tailed test is sufficiently large, we will get at least 

one explosive behavior. Fig. 7 is a graphic example of the SADF procedure. 
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Fig. 7 Illustration of the SADF procedure extracted from Caspi (2013). 

 

3.3.3 GSADF TEST 

 

For the multiple periodically collapsing bubbles, GSADF, the test takes a more 

flexible window where ?1 can vary. The GSADF allows ?1 and ?2 to change, gaining 

power against the SADF. We defined the GSADF’s test statistic as follows, while Fig. 8 

is a graphic example of the GSADF procedure. Likewise, Phillips et al. (2015) 

recommended a dating strategy that includes a backward SADF statistic (BSADF) to 

improve accuracy. 

 

OIFGH(?0) = JKL'$.['-,#],'#.[-,'$"'-]{FGH'#'$}       (13) 

 

 
Fig. 8 Illustration of the GSADF procedure extracted from Caspi (2013). 

 

The BSADF statistic relates to the GSADF statistic, 

 

OIFGH(?0) = JKL'$.['-,#]	{PIFGH'$(?0)}       (14) 
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3.4 POTENTIAL EXUBERANCE IN THE S&P 500 INDEX 
 

We carried out an analysis of the fifty shares with the most significant weight that 

constitute the S&P 500 index of May 14, 2020. We studied the potential exuberance with 

the SADF and GSADF methodology since the beginning of the 21st-century. With this 

S&P 500 index sample, we consider a little more than 55 percent of its constituents (55.17 

percent). One of the primary motivations for carrying out this analysis arises from the 

research where we detected explosive behaviors in Ethereum, Ripple, Bitcoin Cash, and 

EOS (Cerecedo-Hernández et al., 2019). However, that the combined capitalization of 

cryptocurrencies based on the study by Mossavar-Rahmani, Nelson, Weir, Minovi, Ubide, 

Asl, Dibo, and Rich (2018) is less than one percent of world GDP, the innovation that 

represents the internal structure of cryptocurrencies deserved special investigation and 

scrutiny. 

 

Therefore, the study of some stocks of the S&P 500 index is transcendental 

because it is one of the most representative indices of the real situation of the United 

States market, which according to the website of the S&P Dow Jones Indices, a division 

of S&P Global, stipulates that the S&P 500 “is widely regarded as the best single gauge 

of large-cap US equities. There is over USD 9.9 trillion indexed or benchmarked to the 

index, with indexed assets comprising approximately USD 3.4 trillion of this total. The 

index includes 500 leading companies and covers approximately 80% of available market 

capitalization.”3 It has a composition of 505 companies between different sectors, 

according to the same official page mentioned above. We can observe the sector 

breakdown in Fig. 9. 

 
3 https://us.spindices.com/indices/equity/sp-500 
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Fig. 9 S&P 500 index sector breakdown percentages. 

 

The fifty shares studied were the following. We extracted the daily adjusted prices 

from Yahoo Finance. The next constituents of the S&P 500 index are in order by weight.4 

 
1. Microsoft Corporation / MSFT 

2. Apple Inc. / AAPL 

3. Amazon.com Inc. / AMZN 

4. Facebook Inc. Class A / FB 

5. Alphabet Inc. Class A / GOOGL 

6. Alphabet Inc. Class C / GOOG 

 
4 https://www.slickcharts.com/sp500 

7. Johnson & Johnson / JNJ 

8. Berkshire Hathaway Inc. Class B / BRK-

B 

9. Visa Inc. Class A / V 

10. Procter & Gamble Company / PG 

11. UnitedHealth Group Incorporated / UNH 
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12. JPMorgan Chase & Co. / JPM 

13. Intel Corporation / INTC 

14. Home Depot Inc. / HD 

15. Mastercard Incorporated Class A / MA 

16. Verizon Communications Inc. / VZ 

17. Pfizer Inc. / PFE 

18. AT&T Inc. / T 

19. Merck & Co. Inc. / MRK 

20. NVIDIA Corporation / NVDA 

21. Netflix Inc. / NFLX 

22. Walt Disney Company / DIS 

23. Cisco Systems Inc. / CSCO 

24. PepsiCo Inc. / PEP 

25. Exxon Mobil Corporation / XOM 

26. Bank of America Corp / BAC 

27. Walmart Inc. / WMT 

28. Adobe Inc. / ADBE 

29. Chevron Corporation / CVX 

30. PayPal Holdings Inc. / PYPL 

31. Coca-Cola Company / KO 

32. Comcast Corporation Class A / CMCSA 

33. Abbott Laboratories / ABT 

34. AbbVie Inc. / ABBV 

35. Bristol-Myers Squibb Company / BMY 

36. salesforce.com inc. / CRM 

37. Amgen Inc. / AMGN 

38. Thermo Fisher Scientific Inc. / TMO 

39. Eli Lilly and Company / LLY 

40. Costco Wholesale Corporation / COST 

41. McDonald's Corporation / MCD 

42. Medtronic Plc / MDT 

43. Oracle Corporation / ORCL 

44. Accenture Plc Class A / ACN 

45. NextEra Energy Inc. / NEE 

46. NIKE Inc. Class B / NKE 

47. Union Pacific Corporation / UNP 

48. Broadcom Inc. / AVGO 

49. Philip Morris International Inc. / PM 

50. International Business Machines 

Corporation / IBM
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From this database, we obtained the descriptive statistics of the daily adjusted 

prices and their correlations. Table 6, and Annex I show the summary. 

 
Table 6. S&P 500 index daily adjusted prices sample descriptive statistics. 

# Symbol Sample Mean Standard 
deviation Median Minimum Maximum Range Skewness Kurtosis 

1 AAPL 5,113 59.24 69.10 26.59 0.81 326.32 325.51 1.39 1.40 

2 ABBV 1,844 58.37 18.91 53.14 24.65 108.30 83.66 0.39 -0.89 

3 ABT 5,113 26.73 20.45 17.47 5.62 98.00 92.38 1.38 1.14 

4 ACN 4,724 61.85 51.60 37.29 8.87 214.95 206.08 1.15 0.23 

5 ADBE 5,113 70.40 78.96 35.29 8.32 383.28 374.96 2.00 2.97 

6 AMGN 5,113 84.27 52.34 55.11 25.10 240.80 215.70 1.07 -0.19 

7 AMZN 5,113 387.38 554.09 125.83 5.97 2,410.22 2,404.25 1.79 1.98 

8 AVGO 2,701 114.34 94.87 87.63 11.83 319.27 307.44 0.56 -1.15 

9 BAC 5,113 21.02 9.79 18.38 2.80 42.69 39.89 0.41 -0.93 

10 BMY 5,113 29.89 16.82 24.49 10.27 68.82 58.54 0.64 -1.09 

11 BRK-B 5,113 98.29 53.35 78.91 27.40 230.20 202.80 0.91 -0.41 

12 CMCSA 5,113 16.76 11.52 10.41 4.54 47.19 42.65 0.97 -0.47 

13 COST 5,113 85.17 71.04 50.02 19.82 323.34 303.52 1.43 1.30 

14 CRM 3,991 52.05 47.53 36.56 2.40 193.36 190.96 1.06 0.12 

15 CSCO 5,113 22.51 11.49 18.33 6.59 61.40 54.80 1.34 0.75 

16 CVX 5,113 61.39 32.42 56.78 15.06 122.60 107.54 0.16 -1.29 

17 DIS 5,113 50.75 37.32 29.68 10.83 150.74 139.90 0.89 -0.65 

18 FB 1,999 112.92 58.20 114.60 17.73 223.23 205.50 -0.05 -1.27 

19 GOOG 3,951 507.04 356.37 330.75 49.82 1,526.69 1,476.87 0.91 -0.40 

20 GOOGL 3,951 512.54 359.80 332.32 50.06 1,524.87 1,474.81 0.88 -0.48 

21 HD 5,113 64.73 59.02 30.79 13.58 245.38 231.79 1.34 0.55 

22 IBM 5,113 98.41 35.81 91.49 35.96 163.32 127.36 0.10 -1.58 

23 INTC 5,113 23.53 12.18 18.55 8.48 67.75 59.27 1.28 0.78 

24 JNJ 5,113 63.98 34.83 46.69 20.18 155.51 135.33 0.94 -0.52 

25 JPM 5,113 44.15 28.29 32.29 9.38 138.75 129.37 1.47 1.14 

26 KO 5,113 24.10 13.03 18.65 8.66 59.61 50.94 0.58 -0.92 

27 LLY 5,113 48.84 26.56 38.38 18.26 162.17 143.91 1.57 1.98 

28 MA 3,506 79.72 78.56 51.74 3.29 344.03 340.74 1.33 0.90 

29 MCD 5,113 66.23 53.42 47.69 7.66 217.27 209.61 1.09 0.29 

30 MDT 5,113 48.60 21.59 38.57 19.02 120.55 101.53 1.20 0.39 

31 MRK 5,113 37.25 17.14 31.31 14.17 91.29 77.11 1.13 0.62 

32 MSFT 5,113 38.04 33.81 22.44 11.70 188.19 176.49 2.16 4.10 

33 NEE 5,113 63.68 56.98 40.75 7.63 282.22 274.59 1.50 1.65 

34 NFLX 4,515 72.52 109.88 14.52 0.37 439.17 438.80 1.72 1.68 

35 NKE 5,113 25.49 26.47 12.61 1.00 104.29 103.29 1.09 0.02 



   
 

 51 

36 NVDA 5,113 44.37 69.30 14.37 2.26 314.51 312.25 2.06 2.90 

37 ORCL 5,113 26.15 13.53 24.70 6.34 59.10 52.75 0.46 -0.93 

38 PEP 5,113 59.21 30.60 48.71 18.66 146.00 127.34 0.90 -0.28 

39 PFE 5,113 20.86 8.25 18.55 7.67 43.69 36.02 0.80 -0.25 

40 PG 5,113 52.08 24.48 46.19 14.32 126.30 111.98 0.85 0.40 

41 PM 3,052 60.38 21.55 63.30 19.01 104.99 85.97 -0.18 -0.90 

42 PYPL 1,214 69.50 28.70 73.94 30.63 123.91 93.28 0.18 -1.44 

43 T 5,113 20.15 7.70 18.48 7.77 38.43 30.66 0.44 -0.91 

44 TMO 5,113 84.21 77.76 50.64 11.78 342.71 330.93 1.42 1.16 

45 UNH 5,113 74.44 75.19 43.36 5.00 303.99 298.99 1.47 0.92 

46 UNP 5,113 50.00 48.78 27.10 3.57 186.09 182.53 1.05 0.00 

47 V 3,050 63.99 51.57 49.94 8.48 212.95 204.47 0.95 -0.15 

48 VZ 5,113 27.51 13.34 20.92 10.31 60.78 50.46 0.76 -0.69 

49 WMT 5,113 53.01 21.77 42.19 29.88 131.75 101.87 1.36 1.16 

50 XOM 5,113 51.38 19.06 54.66 18.01 82.04 64.04 -0.31 -1.32 
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As we can notice, the number of observations depends on the available 

information; our study’s most extensive data set has 5,113 daily adjusted prices from 

January 3, 2000, to April 29, 2020. The S&P 500 index sample had significant 

upward changes, as we can analyze from Table 6; thus, the average percentual 

increase from the minimum to the maximum price is over six thousand. The five 

stocks with the most remarkable growth are NFLX, AMZN, AAPL, NVDA, and MA. 

In Annex I, we calculated the correlation matrix of the daily adjusted prices 

from July 6, 2015, to April 29, 2020, because the series in this period share the same 

start date. Interestingly, Bristol-Myers Squibb Company (BMY) with 44 of the 49 

companies and Exxon Mobil Corporation (XOM) with 40 of the 49 companies are 

negatively correlated. On the other hand, AT&T Inc. (T) has in all observations a 

positive correlation of less than 0.7, and International Business Machines 

Corporation (IBM) has a positive correlation of less than 0.7 with 47 of 49 companies. 

We found 1,846 of 2,500 observations from the correlation matrix with a value higher 

than 0.7, excluding for obvious reasons the main diagonal, meaning there is a strong 

linear relation in the sample. 

We use last month’s price for each stock to change the daily data to a monthly 

data set. We employed the SADF and GSADF tests to identify exuberance and date 

bubble-type periods with the new data set. We made calculations of the model with 

2,000 replications and applied wild bootstrap to obtain the critical values. First, we 

ran the SADF as an initial method to analyze if we could identify at least one 

explosive behavior. Despite the rejection of the SADF’s null hypothesis, we only 

consider the possible existence of a bubble-type behavior if we could reject the null 

hypothesis of the GSADF test. 

Nevertheless, in Table 7, we identified the stocks that could no reject the null 

hypothesis of the SADF as “N”, while the stocks that reject the null hypothesis of the 

SADF but not the GSADF, we denoted them as “N*”. We decided on this condition 

because, as mentioned above, the GSADF outperforms the SADF in detecting 

explosive behavior. Therefore, for the fifty stocks we analyzed, only for fifteen assets, 

we can assert the possible presence of exuberance. 
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We interpret the start date of the bubble-type when the GSADF statistic (blue 

line) is above the critical value (red line) while we defined the end date when the 

GSADF statistic (blue line) goes below the critical value (red line) and highlight the 

date-stamp with “pink” color. We graph the estimated result for Microsoft Corporation 

according to the GSADF test, with 95% confidence intervals in Fig. 10. For this stock, 

we identified two possible explosive behavior: 

1. From July 31, 2014 to January 30, 2015. 

2. Beginning in January 21, 2017 but has not ended yet. 

 

 
 

Fig. 10 In the image above, we noticed the adjusted daily price (black line) of Microsoft Corporation since January 1, 
2000, with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild 
bootstrap simulations (red line) and the for forward Augmented Dickey-Fuller (ADF) sequence (blue line). 
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We graph the estimated result for Amazon according to the GSADF test, with 

95% confidence intervals in Fig. 11. For this stock, we identified ten possible 

bubbles: 

1. From June 30, 2003 to February 27, 2004. 

2. From December 31, 2010 to January 31, 2011. 

3. From April 29, 2011 to November 30, 2011. 

4. From September 28, 2012 to October 31, 2012. 

5. From February 28, 2013 to April 30, 2013. 

6. From May 31, 2013 to August 30, 2013. 

7. From September 30, 2013 to March 31, 2014. 

8. From June 30, 2015 to August 31, 2015. 

9. From September 30, 2015 to January 29, 2016. 

10. From May 31, 2016 to October 31, 2018. 
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Fig. 11 In the image above, we noticed the adjusted daily price (black line) of Amazon.com Inc. since January 1, 2000, 
with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap 

simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for Visa Class A according to the GSADF test, 

with 95% confidence intervals in Fig. 12. For this stock, we identified eight possible 

bubbles: 

1. From February 29, 2012 to May 31, 2012. 

2. From July 31, 2012 to April 30, 2014. 

3. From May 30, 2014 to August 31, 2015. 

4. From October 30, 2015 to January 29, 2016. 

5. From March 31, 2016 to June 30, 2016. 

6. From August 31, 2016 to November 30, 2016. 

7. From February 28, 2017 to December 31, 2018. 

8. From January 31, 2019 to March 31, 2020. 
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Fig. 12 In the image above, we noticed the adjusted daily price (black line) of Visa Inc. Class A since January 1, 2000, 
with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap 

simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 
We graph the estimated result for UnitedHealth Group according to the 

GSADF test, with 95% confidence intervals in Fig. 13. For this stock, we identified 

six possible bubbles: 

1. From February 27, 2004 to April 30, 2004. 

2. From November 30, 2004 to March 31, 2006. 

3. From June 30, 2011 to July 29, 2011. 

4. From March 30, 2012 to April 30, 2012. 

5. From March 31, 2014 to April 30, 2014. 

6. From October 31, 2014 to February 28, 2019. 
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Fig. 13 In the image above, we noticed the adjusted daily price (black line) of UnitedHealth Group Incorporated since 
January 1, 2000, with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as 

wild bootstrap simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for Home Depot according to the GSADF test, 

with 95% confidence intervals in Fig. 14. For this stock, we identified four possible 

bubbles: 

1. From February 29, 2012 to October 31, 2016. 

2. From November 30, 2016 to October 31, 2018. 

3. From April 30, 2019 to May 31, 2019. 

4. From June 28, 2019 to March 31, 2020. 
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Fig. 14 In the image above, we noticed the adjusted daily price (black line) of Home Depot Inc. since January 1, 2000, 
with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap 

simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for Mastercard according to the GSADF test, 

with 95% confidence intervals in Fig. 15. For this stock, we identified seven possible 

bubbles: 

1. From August 31, 2011 to September 30, 2011. 

2. From November 30, 2011 to January 31, 2012. 

3. From March 30, 2012 to May 31, 2012. 

4. From November 30, 2012 to March 31, 2015. 

5. From April 30, 2015 to January 29, 2016. 

6. From April 28, 2017 to December 31, 2018. 

7. From February 28, 2019 to March 31, 2020. 
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Fig. 15 In the image above, we noticed the adjusted daily price (black line) of Mastercard Incorporated Class A since 
January 1, 2000, with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as 

wild bootstrap simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 
We graph the estimated result for NVIDIA Corporation according to the 

GSADF test, with 95% confidence intervals in Fig. 16. For this stock, we identified 

four possible bubbles: 

1. From February 28, 2006 to May 31, 2006. 

2. From August 31, 2007 to November 30, 2007. 

3. From November 30, 2015 to January 29, 2016. 

4. From May 31, 2016 to October 31, 2018. 
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Fig. 16 In the image above, we noticed the adjusted daily price (black line) of NVIDIA Corporation since January 1, 
2000, with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild 

bootstrap simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for Netflix according to the GSADF test, with 

95% confidence intervals in Fig. 17. For this stock, we identified nine possible 

bubbles: 

1. From February 26, 2010 to December 31, 2010. 

2. From March 31, 2011 to August 31, 2011. 

3. From January 31, 2014 to March 31, 2014. 

4. From July 31, 2015 to September 30, 2015. 

5. From November 30, 2015 to December 31, 2015. 

6. From March 31, 2017 to June 30, 2017. 

7. From July 31, 2017 to August 31, 2017. 
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8. From September 29, 2017 to July 31, 2018. 

9. From August 31, 2018 to October 31, 2018. 

 

 
 

Fig. 17 In the image above, we noticed the adjusted daily price (black line) of Netflix Inc. since May 23, 2002, with its 
date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap simulations 

(red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for Walt Disney Company according to the 

GSADF test, with 95% confidence intervals in Fig. 18. For this stock, we identified 

seven possible bubbles: 

1. From August 30, 2002 to September 30, 2002. 

2. From January 31, 2007 to February 28, 2007. 

3. From March 28, 2013 to August 30, 2013. 

4. From September 30, 2013 to August 31, 2015. 

5. From October 30, 2015 to December 31, 2015. 
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6. From March 31, 2017 to May 31, 2017. 

7. From July 31, 2019 to August 30, 2019. 

 

 

 
 

Fig. 18 In the image above, we noticed the adjusted daily price (black line) of Walt Disney Company since January 1, 
2000, with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild 

bootstrap simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for Adobe Inc. according to the GSADF test, 

with 95% confidence intervals in Fig. 19. For this stock, we identified six possible 

bubbles: 

1. From November 30, 2004 to January 31, 2005. 

2. From October 31, 2013 to April 30, 2014. 

3. From October 30, 2015 to January 29, 2016. 

4. From May 31, 2016 to June 30, 2016. 
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5. From August 31, 2016 to November 30, 2016. 

6. Beginning in December 30, 2016 but has not ended yet. 

 

 
 

Fig. 19 In the image above, we noticed the adjusted daily price (black line) of Adobe Inc. since January 1, 2000, with its 
date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap simulations 

(red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for PayPal according to the GSADF test, with 

95% confidence intervals in Fig. 20. For this stock, we identified three possible 

bubbles: 

1. From May 31, 2017 to February 28, 2018. 

2. From April 30, 2019 to May 31, 2019. 

3. From June 28, 2019 to July 31, 2019. 
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Fig. 20 In the image above, we noticed the adjusted daily price (black line) of PayPal Holdings Inc. since July 6, 2015, 
with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap 

simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for NexEra Energy Inc. according to the 

GSADF test, with 95% confidence intervals in Fig. 21. For this stock, we identified 

twelve possible bubbles: 

1. From August 31, 2004 to September 30, 2004. 

2. From November 30, 2004 to October 31, 2005. 

3. From October 31, 2006 to June 29, 2007. 

4. From September 28, 2007 to January 31, 2008. 

5. From July 31, 2012 to August 31, 2012. 

6. From March 28, 2013 to May 31, 2013. 

7. From January 31, 2014 to July 31, 2014. 



   
 

 65 

8. From November 28, 2014 to April 30, 2015. 

9. From May 29, 2015 to June 30, 2015. 

10. From January 29, 2016 to November 30, 2016. 

11. From February 28, 2017 to March 31, 2017. 

12. Beginning in April 28, 2017 but has not ended yet. 

 

 

 
 

Fig. 21 In the image above, we noticed the adjusted daily price (black line) of NextEra Energy Inc. since January 1, 2000, 
with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap 

simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for NIKE according to the GSADF test, with 

95% confidence intervals in Fig. 22. For this stock, we identified eleven possible 

bubbles: 

1. From December 31, 2003 to April 30, 2004. 
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2. From September 30, 2004 to March 31, 2005. 

3. From November 30, 2006 to June 30, 2008. 

4. From February 28, 2011 to March 31, 2011. 

5. From January 31, 2012 to June 29, 2012. 

6. From March 28, 2013 to March 31, 2014. 

7. From May 30, 2014 to September 30, 2016. 

8. From February 28, 2017 to March 31, 2017. 

9. From April 30, 2018 to October 31, 2018. 

10. From February 28, 2019 to May 31, 2019. 

11. From December 31, 2019 to January 31, 2020. 

 

 

 
 

Fig. 22 In the image above, we noticed the adjusted daily price (black line) of NIKE Inc. Class B since January 1, 2000, 
with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap 

simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 
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We graph the estimated result for Union Pacific Corporation according to the 

GSADF test, with 95% confidence intervals in Fig. 23. For this stock, we identified 

thirteen possible bubbles: 

1. From January 31, 2006 to February 28, 2006. 

2. From March 31, 2006 to July 31, 2006. 

3. From January 31, 2007 to February 28, 2007. 

4. From March 30, 2007 to August 31, 2007. 

5. From October 31, 2007 to June 30, 2008. 

6. From July 31, 2008 to September 30, 2008. 

7. From March 31, 2011 to August 31, 2011. 

8. From June 29, 2012 to June 30, 2015. 

9. From December 29, 2017 to October 31, 2018. 

10. From November 30, 2018 to December 31, 2018. 

11. From April 30, 2019 to May 31, 2019. 

12. From July 31, 2019 to August 30, 2019. 

13. From December 31, 2019 to January 31, 2020. 
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Fig. 23 In the image above, we noticed the adjusted daily price (black line) of Union Pacific Corporation since January 1, 
2000, with its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild 

bootstrap simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We graph the estimated result for Broadcom Inc. according to the GSADF 

test, with 95% confidence intervals in Fig. 24. For this stock, we identified four 

possible bubbles: 

1. From June 30, 2011 to July 29, 2011. 

2. From February 28, 2014 to June 30, 2015. 

3. From August 31, 2016 to March 29, 2018. 

4. From March 29, 2019 to May 31, 2019. 
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Fig. 24 In the image above, we noticed the adjusted daily price (black line) of Broadcom Inc. since August 6, 2009, with 
its date-stamp extracted from the GSADF. In the image below, we observed the critical values as wild bootstrap 

simulations (red line) and the forward Augmented Dickey-Fuller (ADF) sequence (blue line). 

 

We summarized the above results in Table 7., where denoted the following 

information: 

1. Company: the name of the company we studied. 

2. Initial Date: the start date of the information extracted from Yahoo Finance. 

3. SADF: in case we rejected the null hypothesis of the SADF test, we assigned 

a “Y” label to the row. 

4. Bubble ID: the number of bubble-type behavior we found applying the GSADF 

test for each stock.  

5. Start and End: both columns show the birth and collapse of each exuberance 

found. 

6. Duration: the number of months between the Start and End columns. 

7. GSADF / significance level: the rejection of the null hypothesis with a 

significance level of 1% or 5%. 

It is noteworthy that we selected monthly data because we wanted to study 

the S&P 500 index sample according to the minimum time interval required to 

consider a “short bubble.” Additionally, Gerlach, Demos, and Sornette (2019) 

analyzed the price trajectory of “bubbles” and determined that this short-term 

behavior’s minimum duration should exceed thirty days. 
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Table 7. GSADF test summary for fifty stocks of the S&P 500 index. 

Company Initial Date SADF Bubble ID Start End Duration GSADF / significance level 

Microsoft Corporation 03/01/2000 Y 
1 31/07/2014 30/01/2015 6 

1% 
2 31/01/2017 NA 40 

Apple Inc. N 

Amazon.com Inc. 03/01/2000 Y 

1 30/06/2003 27/02/2004 8 

1% 

2 31/12/2010 31/01/2011 1 

3 29/04/2011 30/11/2011 7 

4 28/09/2012 31/10/2012 1 

5 28/02/2013 30/04/2013 2 

6 31/05/2013 30/08/2013 3 

7 30/09/2013 31/03/2014 6 

8 30/06/2015 31/08/2015 2 

9 30/09/2015 29/01/2016 4 

10 31/05/2016 31/10/2018 29 
Facebook Inc. Class 
A N 

Alphabet Inc. Class A N 

Alphabet Inc. Class C N 

Johnson & Johnson N 

Berkshire Hathaway 
Inc. Class B N 

Visa Inc. Class A 03/01/2000 Y 

1 29/02/2012 31/05/2012 3 

5% 

2 31/07/2012 30/04/2014 21 

3 30/05/2014 31/08/2015 15 

4 30/10/2015 29/01/2016 3 

5 31/03/2016 30/06/2016 3 

6 31/08/2016 30/11/2016 3 

7 28/02/2017 31/12/2018 22 

8 31/01/2019 31/03/2020 14 
Procter & Gamble 
Company N 

UnitedHealth Group 
Incorporated 03/01/2000 Y 

1 27/02/2004 30/04/2004 2 

5% 

2 30/11/2004 31/03/2006 16 

3 30/06/2011 29/07/2011 1 

4 30/03/2012 30/04/2012 1 

5 31/03/2014 30/04/2014 1 

6 31/10/2014 28/02/2019 52 
JPMorgan Chase & 
Co. N 

Intel Corporation N 

Home Depot Inc. 03/01/2000 Y 

1 29/02/2012 31/10/2016 56 

5% 2 30/11/2016 31/10/2018 23 

3 30/04/2019 31/05/2019 1 
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4 28/06/2019 31/03/2020 9 

Mastercard 
Incorporated Class A 25/05/2006 Y 

1 31/08/2011 30/09/2011 1 

5% 

2 30/11/2011 31/01/2012 2 

3 30/03/2012 31/05/2012 2 

4 30/11/2012 31/03/2015 28 

5 30/04/2015 29/01/2016 9 

6 28/04/2017 31/12/2018 20 

7 28/02/2019 31/03/2020 13 
Verizon 
Communications Inc. N 

Pfizer Inc. N 

AT&T Inc. N 

Merck & Co. Inc. N* 

NVIDIA Corporation 03/01/2000 Y 

1 28/02/2006 31/05/2006 3 

5% 
2 31/08/2007 30/11/2007 3 

3 30/11/2015 29/01/2016 2 

4 31/05/2016 31/10/2018 29 

Netflix Inc. 23/05/2002 Y 

1 26/02/2010 31/12/2010 10 

5% 

2 31/03/2011 31/08/2011 5 

3 31/01/2014 31/03/2014 2 

4 31/07/2015 30/09/2015 2 

5 30/11/2015 31/12/2015 1 

6 31/03/2017 30/06/2017 3 

7 31/07/2017 31/08/2017 1 

8 29/09/2017 31/07/2018 10 

9 31/08/2018 31/10/2018 2 

Walt Disney 
Company 03/01/2000 Y 

1 30/08/2002 30/09/2002 1 

5% 

2 31/01/2007 28/02/2007 1 

3 28/03/2013 30/08/2013 5 

4 30/09/2013 31/08/2015 23 

5 30/10/2015 31/12/2015 2 

6 31/03/2017 31/05/2017 2 

7 31/07/2019 30/08/2019 1 

Cisco Systems Inc. N 

PepsiCo Inc. N 

Exxon Mobil 
Corporation N 

Bank of America 
Corp N 

Waltmart Inc. N 

Adobe Inc. 03/01/2000 Y 

1 30/11/2004 31/01/2005 2 

1% 
2 31/10/2013 30/04/2014 6 

3 30/10/2015 29/01/2016 3 

4 31/05/2016 30/06/2016 1 
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5 31/08/2016 30/11/2016 3 

6 30/12/2016 NA 41 

Chevron Corporation N 

PayPal Holdings Inc. 06/07/2015 Y 

1 31/05/2017 28/02/2018 9 

5% 2 30/04/2019 31/05/2019 1 

3 28/06/2019 31/07/2019 1 

Coca-Cola Company N 

Comcast Corporation 
Class A N 

Abbott Laboratories N 

AbbVie Inc. N 

Bristol-Myers Squibb 
Company N 

salesforce.com Inc. N 

Amgen Inc. N 

Thermo Fisher 
Scientific Inc. N 

Eli Lilly and Company N* 

Costo Wholesale 
Corporation N* 

McDonald's 
Corporation N* 

Medtronic Plc N 

Oracle Corporation N 

Accenture Plc Class 
A N 

NextEra Energy Inc. 03/01/2000 Y 

1 31/08/2004 30/09/2004 1 

1% 

2 30/11/2004 31/10/2005 11 

3 31/10/2006 29/06/2007 8 

4 28/09/2007 31/01/2008 4 

5 31/07/2012 31/08/2012 1 

6 28/03/2013 31/05/2013 2 

7 31/01/2014 31/07/2014 6 

8 28/11/2014 30/04/2015 5 

9 29/05/2015 30/06/2015 1 

10 29/01/2016 30/11/2016 10 

11 28/02/2017 31/03/2017 1 

12 28/04/2017 NA 37 

NIKE Inc. Class B 03/01/2000 Y 

1 31/12/2003 30/04/2004 4 

5% 

2 30/09/2004 31/03/2005 6 

3 30/11/2006 30/06/2008 19 

4 28/02/2011 31/03/2011 1 

5 31/01/2012 29/06/2012 5 

6 28/03/2013 31/03/2014 12 

7 30/05/2014 30/09/2016 28 

8 28/02/2017 31/03/2017 1 
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9 30/04/2018 31/10/2018 6 

10 28/02/2019 31/05/2019 3 

11 31/12/2019 31/01/2020 1 

Union Pacific 
Corporation 03/01/2000 Y 

1 31/01/2006 28/02/2006 1 

5% 

2 31/03/2006 31/07/2006 4 

3 31/01/2007 28/02/2007 1 

4 30/03/2007 31/08/2007 5 

5 31/10/2007 30/06/2008 8 

6 31/07/2008 30/09/2008 2 

7 31/03/2011 31/08/2011 5 

8 29/06/2012 30/06/2015 36 

9 29/12/2017 31/10/2018 10 

10 30/11/2018 31/12/2018 1 

11 30/04/2019 31/05/2019 1 

12 31/07/2019 30/08/2019 1 

13 31/12/2019 31/01/2020 1 

Broadcom Inc. 06/08/2009 Y 

1 30/06/2011 29/07/2011 1 

5% 
2 28/02/2014 30/06/2015 16 

3 31/08/2016 29/03/2018 19 

4 29/03/2019 31/05/2019 2 
Phillip Morris 
International Inc. N 

International 
Business Machines 
Corporation 

N 

 

On the one hand, and just as a reminder, for the stocks labeled with an “N” 

we could not reject the null hypothesis of the SADF test. In contrast, the stocks 

labeled with a “N*” rejected the null hypothesis of the SADF test but not the 

generalized sup Augmented Dickey-Fuller test (GSADF). On the other hand, the 

maximum duration of exuberance found in the S&P 500 index sample was 56 

months and belonged to Home Depot (HD), from February 29, 2012, to October 31, 

2016, while the average duration was of 8.4 months. Plus, it is essential to mention 

that the marker “NA” in the column named “End” indicates the current explosive 

behavior has still not collapsed. 

Furthermore, we realized it was necessary to visualize the interaction of the 

106 “bubbles” found in a graph, so in Fig. 25, we established each exuberance for 

the fifteen stocks that rejected the null hypothesis of the GSADF test. In other words, 
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we showed the links between the “bubbles” across the S&P 500 index. Also, in Table 

8, we showed the assets’ sector with at least one financial bubble detected. 

 
Fig. 25 Exuberance periods defined according the GSADF in fifteen stocks of the S&P 500 index. 

 

 

Table 8. Sector breakdown. 

Sector breakdown Quantity Percentage 

Communication Services 2 13.33% 

Consumer Discretionary 3 20.00% 

Health Care 1 6.67% 

Industrials 1 6.67% 

Information Technology 6 40.00% 

Utilities 2 13.33% 

Total 15 100.00% 

 

We identified twenty-two “bubbles” that ended before December 31, 2010, 

and eighty-four that occurred after or still do not finish until April 29, 2020. Hence, 

we were able to detect that the identified financial bubbles belong in a forty percent 
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to the Information Technology sector, and in second place, the Consumer 

Discretionary takes place. Consequently, the exuberance evolution in the XXI 

century has increased in some stocks of the S&P index where NextEra Energy Inc, 

NIKE Inc. Class B, and Union Pacific Corporation have more than ten “bubbles.” 

 

3.5 CONCLUSION 
 

In conclusion, we have presented an analysis of fifty stocks of the S&P 500 

index from January 3, 2000, to April 29, 2020, where for fifteen of them, we were 

able to find at least more than one bubble-type behavior according to the generalized 

sup Augmented Dickey-Fuller (GSADF) test. Given the results and the ascent 

appearance of exuberance in one of the most important stock market indices in the 

United States and the world, we notice an almost uninterrupted regime where the 

markets keep growing since the end of the 2008 crisis. Therefore, in more than a 

decade, financial assets have been increasing their demand at higher values, sky-

rocketing price performance, and possibly going beyond their fundamental value in 

many cases. We only examined fifty stocks of the entire index; despite the selected 

components that constituted around 50 percent of the index, we found 30 percent of 

the sample with at least one “bubble” in the XXI century. Consequently, the 

exuberant trend could be in the entire market. 
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4. CHAPTER III: NORMAL INVERSE GAUSSIAN 
EPISODES 
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4.1 INTRODUCTION 
 

In retrospect, macroeconomic theorists were the first to define financial 

bubbles’ possible existence or describe them as “growing bubbles.” Camerer (1989) 

showed an explosive solution in dynamic models even if agents have rational 

expectations. “The short story of formal theory about growing bubbles is an 

intellectual struggle between attempts to rationalize the possibility of bubbles, 

because they may occur, and attempts to rule our bubbles because they are 

arbitrary” (p. 7). 

 

The standard definition of financial bubbles is a rapid price increase that 

deviates from its fundamental value. They are apparently observable conditions, but 

it is clear that their detectability is not a straight forward job. The previous chapter 

showed a statistic methodology to identify explosive behaviors, where financial 

assets are appropriately included. In other words, the generalized sup Augmented 

Dickey-Fuller (GSADF) detects multiple bubbles (Phillips et al., 2015); however, it 

does not give us more information about the identified exuberance. Therefore, in this 

chapter, we analyzed the implications of financial bubbles regarding their fit to the 

Normal Inverse Gaussian (NIG). This section is based on our previous research 

(Núñez, Contreras-Valdez, & Franco-Ruiz, 2019); nevertheless, we extended the 

research to the asset price bubbles identified in the previous chapter. 

 

4.2 THEORETICAL FRAMEWORK 
 

Blanchard and Watson (1982) refer to leptokurtosis as a general 

characteristic of financial returns. Moreover, it seems widely accepted in the 

literature that leptokurtosis is a characteristic of speculative bubbles (Meese, 1986; 

Camerer, 1989). Nevertheless, Evans (1986) mentioned the statistical property 

derived from kurtosis, autocorrelation, and a non-zero median in the distribution of 

price changes due to market fundamentals rather than a bubble-type behavior. We 

should not only focus on the kurtosis because it is a limited deviation measure from 
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Gaussian statistics; well-known returns’ distribution is leptokurtic and fat-tailed5 (Lux 

and Sornette, 2002).  

 

Koedijk, Schafgans, and De Vries (1990) specified that the appropriate 

distribution would depend on the degree of tail-fatness. Hence, the normal 

distribution will be dismissed immediately due to “the excessive amount of outliers 

in the data.” (p. 94). Additionally, they applied extreme value theory as a way to 

explain the next three problems: 

 

1. The class of distribution function. 

2. Parameters consistency over subsamples. 

3. Distribution effects of aggregation over time. 

 

Jansen and De Vries (1991) investigated the tail behavior instead of the entire 

distribution of stock returns to find explanations about the probability mass in the 

tails. They employed an extreme value theory approach. Consequently, Loretan and 

Phillips (1994) researched methods for testing the assumption that time series’ 

unconditional variance is constant over time because they observed that many 

financial datasets have heavy tails. They raised the question of how volatility should 

be studied and the appropriate methods to model volatility. 

 

Meanwhile, Pagan (1996) elaborated holistic research on financial 

econometrics. He concentrated on three types of series; stock prices, interest rates, 

and exchange rates, given that “financial data appears in many forms…”, where he 

made emphasis that each time series has “its own idiosyncrasies.” (p. 16).  

 

Eberlein and Keller (1995) mentioned that the “normal distribution is a poor 

model for stock returns,” unlike the hyperbolic distributions that can fit with high 

accuracy (p. 284). Eberlein and Prause (2002) mentioned the results concerning the 

 
5 It refers to the tails' probability weight, so we mean by fat-tailed distributions to distributions that have fatter 
tails than the normal distribution. 
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GH, hyperbolic, and the normal inverse Gaussian (NIG) are much closer to the 

empirical distribution, so the generalized hyperbolic distributions “seem to be tailor-

made to describe the statistical behaviour of asset returns.” (p. 245). Therefore, we 

can use the GH distribution and its subclasses to calculate the Value-at-Risk (VaR) 

and obtained a closer empirically potential loss given a level of probability. Rydberg 

(1999) showed that the NIG diffusion process has a good fit for major US stocks log 

returns. 

 

Cont (2001) stated: 

 

“… the result of more than half a century of empirical studies on financial time 

series indicates that this is the case if one examines their properties from a 

statistical point of view:   the seemingly random variations of asset prices do 

share some quite non-trivial statistical properties. Such properties, common 

across a wide range of instruments, markets and time periods are called 

stylized empirical facts.” (p. 224) 

Hence, we should understand stylized facts like common factors or properties 

observed in diverse financial markets, where Cont (2001) describe the following 

properties: 

 

1. Absence of autocorrelations 

2. Heavy tails 

3. Gain/loss asymmetry 

4. Aggregational Gaussianity 

5. Intermittency 

6. Volatility clustering 

7. Conditional heavy tails 

8. Slow decay of autocorrelation in absolute returns 

9. Leverage effect 
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10. Volume/volatility correlation 

11. Asymmetry in time series 

 

Also, he mentioned some issues about statistical estimation, which are 

“implicit in almost any statistical analysis of asset returns.” (Cont, 2001, p.224). 

Those issues are stationarity, ergodicity, and finite sample properties of estimators. 

 

Among many models that have been scrutinized, the class of hyperbolic 

distributions is an excellent candidate besides the normal distribution. Barndorff-

Nielsen (1977) introduced this class of distribution, where we can determine the 

generalized hyperbolic (GH) distribution by five parameters to fit empirical 

distributions to financial assets. The following paragraphs make a quick overview of 

several applications of NIG in financial and actuarial sciences.  

 

Fosberg and Bollerslev (2002) find volatilities constructed with summations of 

squared returns conditioned on lagged squared daily returns are “inverse Gaussian” 

distributed, with a normal distribution for volatility – standardized daily returns. They 

prove that the out-of-sample prediction for three years, using a NIG adjusted daily 

GARCH model, fit Euro/Dollar exchange rates well. The GARCH NIG model is 

recently introduced to literature and proves to provide an accurate representation of 

rate dynamics. 

 

Boyarchenko and Levendorskii (2002) derive formulas for European barrier 

options and touch-and-out options considering that under an equivalent martingale 

measure, stock returns follow a Lévy process, considering the presence of Brownian 

Motions, NIG processes, hyperbolic processes, and other finite mixtures of the 

processes mentioned. This development comes in aid in the definition of pricing 

formulas. 

 

Karlis and Lillestöl (2004) propose the estimation of NIG parameters via 

Markov chain Monte Carlo scheme based on the Gibbs algorithm for estimating a 
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sample from a multivariate probability distribution, under a Bayesian estimation 

scheme. Albrecher and Predota (2004) compare NIG average option prices with the 

corresponding B-S prices, considering Asian European style average options 

(arithmetic and geometric). They assume an exponential Levy process for the price 

of assets and NIG distributed logarithmic returns. The study shows accurate 

approximations between the pricing methods. The use of the Esscher equivalent 

measure is an important assumption made in the study, and the authors justify its 

use according to utility and equilibrium theory (Gerber and Shiu, 1994). The 

presence of the Esscher equivalent measure in the NIG model offers a simple 

structure that is exploited to obtain approximations for geometric and arithmetic 

average option pricing. One observation that proves the simplicity of Esscher’s price 

calculation under NIG model is that the Esscher transform of a random variable, 

which is NIG distributed, is again NIG distributed. They conclude their study with a 

comparison of prices, showing that the NIG approximation outperforms the Turnbull-

Wakeman approximation and the Lévy approximation.  

 

Rasmus, Asmussen, and Wiktorsson (2004) study Russian and barrier option 

pricing problems considering the assumption of exponential NIG and Lévy 

processes through simulation. They address the issue simulating discrete grids and 

the neglection of minimum and maximum between grid points. They propose the 

simulation of large jumps and using a Brownian motion approximation for the rest of 

jumps, using formulas for minima and maxima.  

 

Chang et al. (2005) test the symmetry for a NIG distribution proposing a 

Likelihood Ratio Test. They use the EM (Expectation-Maximization) type algorithm 

(Karlis, 2002) to find the distribution estimates. One impressive result is that the 

testing power for the NIG increases as its asymmetry increases. This development’s 

primary conclusion is that the proposed likelihood ratio test proved to detect 

asymmetric behavior. 
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Venter, Jongh, and Griebenow (2005) develop an extension to the Lindhodt’s 

(2002) model, introducing the NIG approach to fitting a GARCH model for financial 

return series open, close, high, and low prices are used. Since the normal innovation 

distribution for the GARCH model produces light tails for the return process, the use 

of NIG means to amend the need for a more realistic approach.  

 

Kassberger and Kiesel (2006) suggest a model using the multivariate version 

of the NIG distribution to capture some features of hedge funds returns. They intend 

to develop a risk management framework using parameters of Generalized 

Hyperbolic distributions, aiming to describe the properties of univariate and 

multivariate returns, given the characteristics of hedge funds performance (non-

normality of returns). Given that EVT methodologies and VaR estimations tend to 

use the tail data and discard the rest of the observations, the calibration process 

becomes difficult due to the few observations available. To address this problem, the 

authors advocate using NIG distribution, a model that does not suffer from the same 

shortcomings as EVT and VaR modeling. It is demonstrated that this asset class 

shows pronounced skewness and excess kurtosis, making the GH – NIG distribution 

suitable for these returns.  

 

Benth, Groth, and Kettler (2006) propose using a Monte Carlo method based 

on the sampling of three uniform independent variables to simulate variates from the 

NIG distribution to create a quasi-Monte Carlo algorithm. Their study considers 

valuation for vanilla call options and Asian options and analyzes the underlying 

dynamics of assets based on the observer option prices. They use the algorithm to 

determine the NIG scale parameter for log-returns distribution of Asian options and 

evaluate the Value at Risk estimation for a non-linear portfolio with NIG random 

variables modeled returns.  

 

Albrecher, Ladoucette, and Schoutens (2007) bring up the weakness of one 

factor Gaussian models in fitting prices for several synthetic CDO tranches. Given 

the one-factor model, including different distributions, the authors unify the 
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approaches using NIG, Variance-Gamma, and Brownian Variance Gamma. One-

factor models describe one factor Lévy model, applied to work a sizeable 

homogeneous portfolio. This approximation is used to calculate the tranches’ 

premium and to determine a loss distribution. The flexibility obtained from VG, NIG, 

and BVG allows more effective determination of dependence structures and tail 

dependence.  Kalemanova, Schmid, and Werner (2007) develop a similar study, in 

which they prove the inefficiency of t-Student distribution in CDO’s pricing, given that 

this distribution is not stable under convolution. Aside from this, the computational 

force required to develop large applications, especially asset allocation 

determination, is not easily achieved. Using NIG distribution and parameters helps 

improve the computational time required and creates better and more flexible 

dependence structures in LHP (large homogeneous portfolios) models.  

 

Kilic (2007) proposes an extension of a fractionally integrated GARCH model 

with the incorporation of a NIG distribution, in order to be able to determine time 

variation, fat tails, and some symmetry characteristics for financial returns. 

Comparing GARCH and FIGARCH models for log exchange returns using normal, 

t-student, and NIG error distributions show that the use of NIG outperforms the other 

distributions, both in-sample fit and predictive ability for 1-day and 5-days forecasts. 

  

Wilhelmsson (2009) proposes the utilization of NIG distribution for Value at 

Risk calculation and calibration of varying variance, skewness, and kurtosis in the 

model. NIG being closed under convolutions and having a closed-form density 

makes it a suitable choice for fitting data to the distribution. In the paper, the author 

compares NIG – ACD (Autoregressive conditional density) and NIG-S&ARCH 

(Stochastic and Autoregressive conditional heteroskedastic) volatility models 

(Jensen and Lunde, 2001), having the first one providing enough independent VaR 

exceptions in six levels evaluated. According to Basel rules, NIG based models 

accurately determine capital requirement, meaning that there is no need for further 

calibration nor additional capital requirements. NIG – ACD outperforms NIG-S & 

ARCH models in-sample fitting and out sample density forecasts and VaR estimates. 
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The author identifies the importance of the conditional variance, conditional 

skewness, and time-varying kurtosis estimation parameters gained with this model. 

Given that the standard’s industry for risk modeling and VaR calculation uses 

GARCH-n models, these results indicate the need to actualize the requirements and 

methodologies defined in Basel.  

 

Frestad, Benth, and Koekebaker (2010) analyze Nordic electricity swaps and 

returns, identifying risk premia, negative return for short positions, and non-normal 

daily returns. They test the four-parameter NIG distribution to determine the model’s 

ability to observe stylized facts and a better fitting compared to normal distribution. 

This study proves again that NIG applications come useful for pricing derivatives and 

measuring VaR estimates. The authors compare stable distributions with NIG, and 

they find out that NIG law outperforms the stable law for most cases.  

 

Jeannin and Pistorious (2010) propose computing barrier options prices and 

Greeks when these options show to be driven by a hyper-exponential Lévy process. 

Considering several other approaches applied for barrier option prices and some 

sensitivities, they adopt a CGMY Lévy density and the Wiener Hopf factorization to 

derive analytical formulas for Laplace transform when knocked in or out option 

prices. With such results, the authors also derive the sensitivities delta, gamma, and 

theta. Prices and greeks are obtained by inverting Laplace transformations 

employing Abate and White’s algorithm. The numerical illustration included in the 

study implements this algorithm for VG and NIG Lévy models. Compared to Monte 

Carlo, the relative error rate was around 0.5%-2.5%.  

 

Hainaut and Macgilchrist (2010) propose the derivation of an interest rate 

model driven by a NIG process instead of the Brownian Motion. NIG can capture 

excess kurtosis and skewness, typical of interest rates distribution nature. Better 

fitting for bond returns and better capturing asymmetry and leptokurtic of short-term 

rates are additional motivations for choosing the NIG. The authors compare this 

development with the Hull and White model, except for the NIG process replacing 
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the BM. They calibrate for prices using a pentanomial tree to reproduce the four 

moments of the NIG mean-reverting process. The numerical tests for NIG application 

outperform the White-Hull model with a significant margin. It also provided a new 

characterization of a parameter, distinguishing curve shapes, and fitting steep 

volatility curves. 

 

Godin, Mayoral, and Morales (2012) address the contingent claim pricing 

problem employing distorted operators. This methodology was first applied by Wang 

(2000) in insurance risk pricing, using normal distortion risk “quantile-based” 

measures. The distortion operation effectively derives the Black Scholes formula, 

considering normal distribution for asset prices (Hamada and Sherris, 2003). Given 

the nature of financial assets returns, and the presence of asymmetry and fat tails. 

Several studies prove that non-gaussian distributions, specifically those from 

Generalized Hyperbolic family, adjust better to these qualities. The authors propose 

a distortion operator based on NIG distribution and acquire the option formula within 

a mean-correcting class of equivalent martingale measures. They also develop a 

simulation exercise to illustrate how NIG distortion operator shows improved 

robustness compared with other asset price models that work with normal based 

and student operators.  

 

Hofer and Mayer (2013) address the problem-pricing lookback options for 

exponential Lévy models, using Laplace transforms and the fist passage time 

distribution for Hyper Exponential Jump Diffusion processes. In the numerical results 

of this investigation, the authors derive prices and sensitivities for the lookback 

options using the Gaver-Stehfest algorithm for the inversion of Laplace transform 

and compare the results with Monte-Carlo approximations for the HEJD process. 

They fit a NIG process to the HEJD process and compare the prices with a Monte 

Carlo simulation of the NIG process.  

 

Von Hammerstein et al. (2014) take Levy models for prices driven by NIG and 

VG processes to determine low-cost strategies for given payoffs in a Lévy market, 
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where prices are based on the Esscher martingale measure. Authors compare NIG 

and VG processes to the Black-Scholes model, and derive cost-efficient strategies 

for path independent payoffs; provide a cost-efficient version of put-call parity; and 

determine hedging strategies for cost-efficient payoffs, providing delta hedging 

formulas for the cost-efficient strategies for European call and put option. They 

demonstrate that all formulas derived are tractable, and hedging strategies can be 

determined accurately. They provide numerical examples that prove the 

improvement acquired by switching to the cost-efficient strategy developed in this 

paper. Also, prove that efficiency losses modeled through different Lévy processes 

produce similar magnitudes, defining that results are model-independent.  

 

Yamazaki (2014) presents an approximation of exotic option pricing for 

underlying asset prices driven by time changed Lévy processes. Time-change 

processes are considered useful for capturing random time changes effect on 

stochastic volatility, a flexible jump generating framework, and leverage effect. By a 

Gram Charlier expansion, the author derives a pricing formula that produces 

accurate approximations for average option prices, with efficient computational 

effort. By this, they avoid the use of Monte Carlo simulation, as it is time-consuming 

and tends to produce inaccurate estimations. The author adopts the Heston Model 

and a VG-CIR and NIG-CIR to describe the asset price dynamics for the numerical 

examples. NIG-CIR takes the normal inverse gaussian process as background Lévy 

process, and the CIR process for capturing the activity rate process of the time 

change, with 6 to 7 iterations, the models can accurately approximate the prices for 

average continuously monitored and discretely monitored call options. 

 

Chuang and Brockett (2014) take the Lee-Carter mortality model 

improvements made by MBMM (Mitchell et al. 2013), where mortality rates growth 

rates are fitted over time and age instead of the growth rate itself. The authors unify 

these two concepts and models for the determination of longevity/mortality linked 

derivatives. Given that mortality rates are not traded themselves, the derivative must 

be priced on an incomplete market, so a stochastic model for mortality rate must be 
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adopted to determine equivalent martingale measures. The authors propose to 

model the mortality rate growth with Mitchel’s MBMM model and link this model with 

martingale pricing; they introduce a Lévy process for the dynamic mortality modeling. 

They adapt the MBMM modeling for the martingale pricing measure using a NIG 

distribution specification and apply an Esscher transform to obtain the measure, 

capturing jumps and kurtosis and skewness in mortality growth rates. Results are 

compared to the LifeMetrics index and show that in sample estimations can 

reproduce prices under the mentioned model. Another remark is that the model 

derives higher forward rates, lower premiums, and reduced hedging costs for 

longevity risk.  

 

Kirkby (2017) presents a method for discretely monitored barrier options and 

occupation time derivatives pricing using exponential Lévy models. It is essential to 

highlight that there are no closed formulas for analytical valuation for this class of 

path-dependent exotic contracts. The authors make use of a backward induction 

method, which is based on the projection frame approach. Compared to the COS 

method, non-orthogonal basis expansions are considered altogether with a 

biorthogonal basis for determining the orthogonally projected density. The authors 

devise an automated parameter selection method to enable pricing without the 

user’s intervention and facilitate direct calibration, so the grid size and tolerance 

meeting are automatically determined. CPU times for NIG and other Lévy processes 

outperformed the computational efficiency compared to the COS method. They 

demonstrate the convergence of their model through several numerical 

approximations and using a Toeplitz representation of intermediate value 

coefficients, and they derive accurate prices for the derivates.  

 

Cao et al. (2020) determine the modeling for VIX derivatives via a two-factor 

model with infinite-activity jumps to reduce pricing errors. VIX has two methodologies 

for pricing; from instantaneous volatility (usually considering finite-activity jumps as 

well), the alternative methodology determines the VIX dynamics and, in a second 

process, the pricing formulae for derivatives prices, considering stochastic volatilities 
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and long term mean reversion. For the jump process, authors select the VG and NIG 

processes; VG for finite variation and NIG for infinite variation. To obtain an accurate 

model calibration, they combine the UKF (Unscented Kalman Filter) and QMLE 

(Quasi Maximum Likelihood Estimation) joint estimation approaches on the VIX and 

VIX derivatives data. Several two-factor models were put to the test in order to 

determine the most efficient configuration. Results indicate that infinite activity jump 

models perform better given VIX derivatives’ nature and the pricing process, mostly 

when high-frequency data is involved. It is also noted that the two-factor model OU-

NIG is better than the model developed with a Variance Gamma process factor. The 

NIG factor model gave better results for short maturity derivatives, Lévy jump 

structures suit to the high-frequency occurrences and small jump events that 

compose the structure of VIX derivatives. 

 

Barndorff-Nielsen (1977) defined the NIG mathematically as follows: 

 

Q(R; 6, 7, T, U) = V(6, 7, T, U)W X2"3
4
Y
"#
Z# [U6W X

2"3

4
Y\ exp	(7R)                                    (1) 

where, 

V(6, 7, T, U) = `"#6aRL3Ub6$ − 7$ − 7T4                                                                 (2) 

where, 

W(R) = √1 + R$                                                                                                         (3) 

 

Z# is the modified Bessel function of third order, 6, 7, T, and U are parameters 

that satisfy 0 ≤ 7 ≤ 6, T	C	e, and 0 < U. Such that 6 represents the flatness of the 

density, which represents the values concentration around the T (mean). 7 indicates 

the skewness and U states the scale. It is noteworthy that in this chapter we use the 

original parameterization of Barndorff-Nielsen (1977) and in order to obtain the 

parameters that fit the empirical data, we have to apply a maximum likelihood 

estimation process.  
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The primary study object is the assets’ returns. Nevertheless, as far as we 

know, no one has studied the fit of a theoretical distribution in periods of bubble-type 

behavior until our proposal that developed it through the normal inverse Gaussian 

(NIG) distribution on the returns of bitcoin (BTC). The NIG was able to fit every 

segment despite the bubble rise and collapse. Likewise, the NIG has a similar 

adjustment to the generalized hyperbolic (GH) distribution in the out-of-sample tests 

(Núñez et al., 2019). 

 

4.3 DATA 
 

Considering the GSADF test summary for fifty stocks of the S&P 500 explored 

in Chapter II Table 7, we selected the time series according to two criteria. First, it 

had to begin on January 3, 2000; and second, it must present bubble-type behavior 

in the period from January 3, 2000, to December 31, 2009 (1P), and from January 

4, 2010, to April 29, 2020 (2P). Therefore, the time series that accomplished these 

characteristics are Amazon.com Inc., UnitedHealth Group Incorporated, NVIDIA 

Corporation, Walt Disney Company, Adobe Inc., NextEra Energy Inc., NIKE Inc. 

Class B, and Union Pacific Corporation. The next Table exhibit the descriptive 

statistics of each analyzed period of the assets’ logarithmic daily adjusted returns 

mentioned above obtained from Yahoo Finance. 

 
Table 9. Descriptive statistics summary of eight stocks of the S&P 500 index. 

Asset / Period Sample Mean Std. Dev Median Min Max Range Skew Kurtosis 

AMZN 1P 2,512 0.0002 0.0400 0.0000 -0.2800 0.3000 0.5800 0.4500 8.1300 

AMZN 2P 2,596 0.0011 0.0200 0.0000 -0.1400 0.1500 0.2800 0.1300 6.8300 

UNH 1P 2,512 0.0006 0.0200 0.0000 -0.2100 0.3000 0.5000 0.3100 18.1500 

UNH 2P 2,596 0.0009 0.0200 0.0000 -0.1900 0.1200 0.3100 -0.4700 12.7500 

NVDA 1P 2,512 0.0006 0.0500 0.0000 -0.4300 0.3500 0.7900 -0.3000 10.1500 

NVDA 2P 2,595 0.0011 0.0300 0.0000 -0.2100 0.2600 0.4700 0.1500 9.9500 

DIS 1P 2,512 0.0001 0.0200 0.0000 -0.2000 0.1500 0.3500 0.0000 7.6000 

DIS 2P 2,596 0.0005 0.0100 0.0000 -0.1400 0.1300 0.2700 -0.3100 12.6200 

ADBE 1P 2,512 0.0003 0.0300 0.0000 -0.3500 0.2100 0.5700 -0.4500 8.7700 

ADBE 2P 2,596 0.0008 0.0200 0.0000 -0.2100 0.1600 0.3700 -0.3700 14.2900 
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NEE 1P 2,512 0.0006 0.0200 0.0000 -0.1200 0.1300 0.2600 0.2200 8.3500 

NEE 2P 2,596 0.0007 0.0100 0.0000 -0.1400 0.1300 0.2700 -0.3300 19.8300 

NKE 1P 2,512 0.0008 0.0200 0.0000 -0.2200 0.1300 0.3500 -0.4800 10.4700 

NKE 2P 2,596 0.0008 0.0200 0.0000 -0.1200 0.1400 0.2700 0.2800 11.1900 

UNP 1P 2,512 0.0007 0.0200 0.0000 -0.1500 0.0900 0.2400 -0.2600 3.7200 

UNP 2P 2,596 0.0007 0.0200 0.0000 -0.1400 0.1200 0.2600 -0.4200 8.3000 

 

4.4 METHODOLOGY 
 

For the statistical analysis, we took the results achieved in Chapter I that 

passed the GSADF test to select the periods in which bubble-type episodes 

occurred. Furthermore, we decided to separate the data into two periods (1P and 

2P). The in-sample data goes from January 3, 2000, to December 31, 2009, while 

the out-of-the-sample test corresponds to prices from January 4, 2010, to April 29, 

2020. 

 

We investigated a unitary root in the time series at levels and proved that the 

original price series are non-stationary. We calculated the logarithmic returns and 

confirmed the series became integrated of order zero—annex II. 

 

The procedure includes a normality test to provide evidence of the stylized 

facts described previously; later, two-sample goodness of fit test between empirical 

returns and simulated ones was performed to confirm the possibility to adjust the 

NIG distribution. Therefore, we can confirm, the NIG is appropriate in the return 

analysis and simulation when times series show explosive prices. Finally, we 

obtained the VaR and CVaR for the out-of-the-sample data. 

 

In particular, from the above descriptive statistics, we obtained a non-zero 

skew (except DIS 1P) and an excess of kurtosis for all data, both as properties of 

financial series. While on the other hand, for the normality test, we chose the 

following criteria: Anderson-Darling, Shapiro-Francia, Lilliefors, and Cramér-von 

Mises. 
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4.5 RESULTS 
 

In the following Table, we present the results of the normality tests. 

 
Table 10. Normality tests. 

Asset / Period Anderson-Darling Shapiro-
Francia Lilliefors Cramér-von 

Mises Jarque-Bera 

ADBE 1P 3.70E-24 1.03E-32 6.13E-49 7.37E-10 0.000 

ADBE 2P 3.70E-24 2.45E-37 4.25E-51 7.37E-10 0.000 

AMZN 1P 3.70E-24 2.09E-35 2.22E-55 7.37E-10 0.000 

AMZN 2P 3.70E-24 9.32E-32 2.33E-39 7.37E-10 0.000 

DIS 1P 3.70E-24 7.62E-31 4.22E-33 7.37E-10 0.000 

DIS 2P 3.70E-24 2.59E-37 7.73E-56 7.37E-10 0.000 

NEE 1P 3.70E-24 7.41E-34 8.00E-45 7.37E-10 0.000 

NEE 2P 3.70E-24 2.79E-39 1.02E-43 7.37E-10 0.000 

NKE 1P 3.70E-24 8.96E-34 8.51E-64 7.37E-10 0.000 

NKE 2P 3.70E-24 2.14E-36 1.58E-40 7.37E-10 0.000 

NVDA 1P 3.70E-24 1.43E-33 3.38E-38 7.37E-10 0.000 

NVDA 2P 3.70E-24 6.15E-34 1.41E-40 7.37E-10 0.000 

UNH 1P 3.70E-24 2.32E-37 5.74E-47 7.37E-10 0.000 

UNH 2P 3.70E-24 5.22E-35 9.25E-42 7.37E-10 0.000 

UNP 1P 3.70E-24 3.37E-25 9.36E-34 7.37E-10 0.000 

UNP 2P 3.70E-24 7.07E-31 1.01E-30 7.37E-10 0.000 

 

We obtained the parameters for each asset for the first period of the series, 

and exhibit the result in the following Table. 

Table 11. Adjusted parameters obtained under the maximum likelihood criteria. 

Asset / Period ! " # $ 
ADBE 1P 0.000317 0.022602 19.202956 0.010192 

AMZN 1P -0.000731 0.024650 14.497037 0.531170 

DIS 1P -0.000584 0.017757 35.073631 1.312626 

NEE 1P 0.000958 0.011400 42.714638 -1.312578 

NKE 1P 0.000143 0.014363 30.197434 1.289511 

NVDA 1P -0.000006 0.035477 16.422888 0.279613 

UNH 1P 0.001008 0.016455 32.217237 -0.773279 

UNP 1P 0.000469 0.016444 40.088995 0.523600 
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So, we can determine the distribution of the analyzed series. One of the 

parameters of the NIG distribution is fixed such that g = −0.5, using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm under maximum likelihood estimation 

(MLE) criteria, we obtained the four parameters left by this quasi-Newton method. 

By comparing the parameters, we observed the highest 6 belongs to NEE 1P, 

meaning a higher concentration of probability around the mean. Therefore, we 

employed goodness-of-fit criteria to prove that the theoretical distribution fits the 

empirical data. Hence, we simulated some series for each asset and period using 

the previous parameters and calculated the Anderson-Darling, Kolmogorov-

Smirnov, and Kruskal-Wallis statistics exposed in the next Table. 

Table 12. Goodness-of-fit test (p-values). 

Asset / Period Anderson-Darling Kolmogorov-Smirnov Kruskal Wallis 

ADBE 1P 0.92683 0.968747023 0.9754764 

AMZN 1P 0.62912 0.526565215 0.33335425 

DIS 1P 0.75847 0.467258304 0.58370715 

NEE 1P 0.90718 0.834257475 0.87399188 

NKE 1P 0.22728 0.956064393 0.36964148 

NVDA 1P 0.93866 0.993496424 0.98183286 

UNH 1P 0.42928 0.366926893 0.33335425 

UNP 1P 0.66256 0.77858399 0.60725994 

 

Determined by the p-values of these statistics, we cannot reject the null 

hypothesis; consequently, the NIG parameters could model the eight assets' 

observed returns. 

Subsequently, as we proved that the NIG could fit periods (1P), including 

explosive behaviors, we can use it to estimate the VaR and CVaR. Therefore, we 

calculate the VaR and CVaR for the period 1P at 95%, 99%, and 99.9% confidence 

level. The results are shown in the next two Tables. 
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Table 13. VaR for NIG and GH distributions. 

 NIG GH 

Asset / Period 95% 99% 99.9% 95% 99% 99.9% 

ADBE 1P -0.051898 -0.098975 -0.182057 -0.051657 -0.098672 -0.179683 

AMZN 1P -0.060792 -0.118679 -0.218855 -0.060149 -0.119056 -0.236769 

DIS 1P -0.034540 -0.061605 -0.106628 -0.033955 -0.062036 -0.115408 

NEE 1P -0.024751 -0.047078 -0.085127 -0.024052 -0.047674 -0.097833 

NKE 1P -0.031899 -0.060621 -0.110988 -0.032085 -0.060427 -0.107936 

NVDA 1P -0.071093 -0.129003 -0.223154 -0.069216 -0.129039 -0.259065 

UNH 1P -0.034502 -0.064480 -0.115365 -0.033436 -0.064233 -0.134561 

UNP 1P -0.030864 -0.055588 -0.096611 -0.031126 -0.055564 -0.094100 

 

Table 14. CVaR for NIG and GH distributions. 

 NIG GH 

Asset / Period 95% 99% 99.9% 95% 99% 99.9% 

ADBE 1P -0.081555 -0.133542 -0.219447 -0.081568 -0.133707 -0.220073 

AMZN 1P -0.097157 -0.161429 -0.269249 -0.097798 -0.167534 -0.293618 

DIS 1P -0.051718 -0.081101 -0.128134 -0.051788 -0.084405 -0.144409 

NEE 1P -0.038860 -0.063442 -0.103720 -0.039400 -0.068648 -0.126596 

NKE 1P -0.050140 -0.081924 -0.134355 -0.050104 -0.081022 -0.130773 

NVDA 1P -0.107777 -0.170867 -0.272490 -0.108083 -0.182923 -0.339811 

UNH 1P -0.053539 -0.086402 -0.139847 -0.054152 -0.094595 -0.183734 

UNP 1P -0.046402 -0.072970 -0.115340 -0.046240 -0.071848 -0.111500 

 

The results indicate that the VaR level for the NIG and GH are mixed; in other 

words, the VaR level of the NIG for this data set is not necessarily smaller than the 

GH as it generally should be. However, for the CVaR, as a better approximation for 

studying risk exposure, the GH presents more significant absolute expected losses, 

yet their differences are marginal. Refer to Annex III for graphical representation of 

the three confidence VaR levels of the NIG (blue line color) and GH (red line color) 

for the out-of-sample data analysis. Also, Table 15 exposes the computational effort 

required for both models. GH requires a higher level of computational efforts than 

NIG, even though the AIC results show no significant difference between them. 
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Table 15. Computational effort evaluation. 

 NIG GH 

Asset / Period Log-likehood AIC Iterations Log-likehood AIC Iterations 

ADBE 1P 5,219.05 -10,430.09 141 5,219.05 -10,428.10 254 

AMZN 1P 4,828.44 -9,648.89 139 4,829.33 -9,648.67 340 

DIS 1P 6,184.32 -12,360.64 231 6,185.98 -12,361.96 362 

NEE 1P 7,057.38 -14,106.76 243 7,060.29 -14,110.58 478 

NKE 1P 6,354.37 -12,700.74 147 6,354.50 -12,699.00 304 

NVDA 1P 4,382.02 -8,756.03 233 4,385.67 -8,761.34 502 

UNH 1P 6,223.06 -12,438.12 155 6,230.74 -12,451.47 502 

UNP 1P 6,429.77 -12,851.55 219 6,429.97 -12,849.93 388 

 
 

4.6 CONCLUSION 
 

This chapter analyzed eight financial assets that present a bubble-type 

behavior during two periods of analysis: from January 3, 2000, to December 31, 

2009 (1P), and from January 4, 2010, to April 29, 2020 (2P). The first period relates 

to a part of the dotcom bubble and the 2008 financial crisis, while the second period 

belongs to more than a decade of continuous growth in the major stock indices 

around the world. 

 

Hence, the candidate distribution to fit the first segment 1P was the NIG, a 

hyperbolic family member. The results present that it was able to fit all the assets’ 

first period we studied. It is noteworthy that the NIG distribution has multiple 

properties, such as being well adjusted to heavy tails and close under convolution.  

 

Using statistical tests, we could confirm the NIG manages to fit the stocks of 

Amazon.com Inc., UnitedHealth Group Incorporated, NVIDIA Corporation, Walt 

Disney Company, Adobe Inc., NextEra Energy Inc., NIKE Inc. Class B, and Union 

Pacific Corporation, where they have multiple exuberant episodes from 2000 to 

2020. 
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Furthermore, by comparing the NIG with the GH, we established that the GH 

differences are just marginal, and it is not always superior to the NIG on empirical 

data sets. Finally, the NIG displays exceptional performance in the out-of-sample 

VaR and CVaR with the parameters adjusted from the in-sample data. 
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5. CHAPTER IV: A MODEL-BASED CLUSTERING 
APPROACH 

  



   
 

 98 

5.1 INTRODUCTION 
 

The economic problem is a human issue, not a natural one, at least for those 

above the subsistence level. In other words, scarcity depends not only on nature 

capacity but also on human nature (Heilbroner & Milberg, 2008). Ex nihilo nihil fit, 

meaning that nothing comes from nothing, or from nothing, nothing comes. 

Therefore, we can argue that the economic problem has an origin, and the financial 

bubbles arise from some irrational behavior or expose human nature once again. 

 

“Civilizations form, evolve, and sometimes collapse and disappear, leaving 

behind their remnants in the form of monuments, burial sites, and crafts in the form 

of art or writings. From these archaeologists decipher details about each civilization” 

(Mobasher, 2018, p. 314). Hence, we should be financial archaeologists, 

understanding the complex dynamic and evolution of asset price bubbles. 

 

Since the origin of financial markets, they have shown us that they have the 

capacity that, in a short period, can go from invigorating to disastrous. The concept 

of “financial bubble” has become a popular term in the media to conceive an 

explosion and collapse in financial assets. Nevertheless, we must remember that 

their behavior is not as simple as it sounds due to its complex nature and evolution. 

 

We usually read the same authors that explain the definition of financial 

bubbles; however, we got an original reference from literature where Joseph De la 

Vega (1957), in his book “Confusión de Confusiones” conceptualizes this term as 

follows: “… they offer for the stocks more than the price of the day (what we call 

“inflating” the price). They influence the price in this way to sell (short) at the higher 

figure and thus gain in the end. God with one breath breathed life into Adam, 

whereas the bears take the life of many people by inflating the price (of the shares) 

…” (p. 33). A significant part of history where greedy and other human desires 

connect since many years ago. So, bubbles are not something new slightly; but we 

still misunderstood them. 
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Clustering analysis is essential for identifying patterns or specific groups with 

similarities or dissimilarities. It has a broad academic application because we are 

always trying, or we tend to develop in our mind some pattern recognition. The 

purpose of pattern recognition is to assign classes to objects regarding some 

variables or properties. Thus, the general goal is to distinguish, classify, or generate 

groups from a known or unknown object division. We are continuously searching for 

pattern recognition of natural or artificial objects (Beyerer, Richter, and Nagel, 2017). 

Nonetheless, we have to take one step forward and establish a subtle difference 

between clustering and classification; in the latter, we also have to define the classes 

(Gan, Ma, and Wu, 2007). From this short description, we can deduce there is 

extensive research in different fields of knowledge, and there could be an opportunity 

cost in financial bubbles. 

 

Consequently, we will conduct a clustering analysis in a modest attempt to fill 

the literature gap by empirically analyzing the categorization of financial bubbles 

using the Gaussian finite mixture model. Hence, asset price bubbles categorization 

is a clustering analysis based on the “bubble size” and “crash size.” The first one is 

the growth percentage from the lowest price (P1) to the highest price (P2), while the 

latter refers to the collapse percentage from the highest price (P2) to the subsequent 

lowest price (P3) in a certain period. Subsequently, model-based clustering analysis 

for asset price bubbles could work as a dynamic tool for the study of ex-ante and ex-

post bubble-type behavior. 

 

5.2 GAUSSIAN FINITE MIXTURE MODEL 
 

Model-based clustering or finite mixture model surges as an alternative from 

heuristic approaches where we consider the data as coming from a probability 

distribution (Fraley & Raftery, 2002). Finite mixture models assume that a population 

is a convex combination of a finite number of densities. A random vector j results 

from a parametric finite mixture distribution if 
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kl?	∀R ⊂ j               (1) 

 

We can write the density as follows 

 

k(R|Ψ) = ∑ `*k*(R|q*)5
*+#           (2) 

 

where `* > 0, and ∑ `* = 15
*+#  are the mixing coefficients or mixing 

proportions, k#(R|q*), …	, k5(R|q5)	are the component densities, and Ψ =

(`, q#, … , q5) is the parameters’ vector with ` = (`#, … , `5). Usually, the component 

densities are of the same type of distribution, and they tend to be multivariate 

Gaussian (Browne & McNicholas, 2015). “The idiom ‘model-based clustering’ is used 

to connote clustering using mixture models” (Browne & McNicholas, 2015, p. 177). 

 

Banfield and Raftery (1993) proposed a framework for model-based 

clustering to overcome the limitations clustering analysis has in those years. The 

limitations of the classification maximum likelihood procedure were the following: 

 

1. The covariance matrices are constant, so it only considers the restrictive 

model; however, it would be appropriate that covariance matrices could differ 

between clusters. 

2. It allows only for Gaussian distributions. 

3. In general, the procedure does not allow noise or data points that do not fit 

the clusters’ main pattern.  

 

Consequently, they developed maximum likelihood criteria for Gaussian 

clustering to allow some changes in the covariance matrices. They also extended 

the model to contain Poisson noise and showed a Bayesian approach regarding the 

selection of the number of clusters. 

 

Fraley and Raftery (1998) exposed a clustering methodology where they 

applied the Bayesian information criterion (BIC) to compare models that may differ 
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from the number of components and the underlying densities. Moreover, they 

described how the Expectation-Maximization (EM) algorithm could provide a 

measure of uncertainty about the resulting clusters. For previous introductory 

investigations over cluster analysis, we can search for Hartigan (1975), Gordon 

(1981), McLachlan and Basford (1988), and Kaufman and Rousseeuw (2009). 

 

Fraley and Raftery (1999) developed a software package named MCLUST 

for cluster analysis applying parameterized Gaussian hierarchical clustering 

algorithms and the Expectation-Maximization (EM) algorithm for optimization with 

the possible addition of a Poisson noise term. This method has shown positive 

results in practical applications such as character recognition, tissue segmentation, 

minefield, seismic fault detection, identification of textile flaws from images, and 

astronomical data classification. 

 

Furthermore, Scrucca, Fop, Murphy, and Raftery (2016) updated the famous 

R package named MCLUST for clustering, classification, and density estimation 

based on Gaussian finite mixture models. In this paper, they developed “newly 

available models, dimension reduction for visualization, bootstrap-based inference, 

implementation of different model selection criteria and initialization strategies for the 

EM [Expectation-Maximization] algorithm” (p. 290). In the model-based clustering 

approach, clusters are ellipsoidally centered at the mean vector while the covariance 

matrix determines other geometric features (volume, shape, and orientation). 

 

We obtained parsimonious parameterizations by means of an 

eigendecomposition of the covariance matrix Σ*, where the eigendecomposition is 

as follows 

 

Σ* = g*G*F*G*6           (3) 

 

where g* controls the volume of the ellipsoid and is a scalar, F* is a diagonal 

matrix specifying the shape of the density contours with sat(F*) = 1 and G* 



   
 

 102 

determines the orientation of the ellipsoid and is an orthogonal matrix (Banfield & 

Raftery, 1993; Celeux & Govaert, 1995). Therefore, we can specify fourteen models 

with the MCLUST new version according to different geometric characteristics and 

in Fig. 26, we show them (Scrucca et al., 2016). The models are EII, VII, EEI, VEI, 

EVI, VVI, EEE, EVE6, VEE7, VVE8, EEV, VEV, EVV9, and VVV. See Table 16. 

 

 

Fig. 26 Ellipses of the fourteen Gaussian models obtained by eigen-decomposition for three groups (Scrucca et al., 2016, 
p. 292). 

 

 
 
 
 

 
6 This model was not a member of the MCLUST family until new versions of the software. 
7 This model was not a member of the MCLUST family until new versions of the software. 
8 This model was not a member of the MCLUST family until new versions of the software. 
9 This model was not a member of the MCLUST family until new versions of the software. 
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Table 16. Parameterizations of the covariance matrix for multidimensional data in the MCLUST package (Scrucca et al., 
2016). 

Model Σ! Distribution Volume Shape Orientation 

EII "# Spherical Equal Equal __ 

VII "!# Spherical Variable Equal __ 

EEI "$ Diagonal Equal Equal 
Coordinate 

axes 

VEI "!$ Diagonal Variable Equal 
Coordinate 

axes 

EVI "$! Diagonal Equal Variable 
Coordinate 

axes 

VVI "!$! Diagonal Variable Variable 
Coordinate 

axes 

EEE "%$%" Ellipsoidal Equal Equal Equal 

EVE "%$!%" Ellipsoidal Equal Variable Equal 

VEE "!%$%" Ellipsoidal Variable Equal Equal 

VVE "!%$!%" Ellipsoidal Variable Variable Equal 

EEV "%!$%!" Ellipsoidal Equal Equal Variable 

VEV "!%!$%!" Ellipsoidal Variable Equal Variable 

EVV "%!$!%!" Ellipsoidal Equal Variable Variable 

VVV "!%!$!%!" Ellipsoidal Variable Variable Variable 

 

Furthermore, in many practical applications, the number of mixture 

components u is unknown, so we use the Bayesian information criterion (BIC) to 
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make our model selection. It has become a famous model selection because other 

alternatives have not yet proven superior and is a common choice in the Gaussian 

mixture modeling literature (Browne & McNicholas, 2015). 

 

5.3 MATHEMATICS BEHIND THE GAUSSIAN FINITE MIXTURE MODEL 
 

The Gaussian distribution may not apply in practice, but many analysts are 

still using it in many applications because the Gaussian distribution gives us an easy 

mathematical manipulation. The popularity of the Gaussian distribution is due to its 

mathematical tractability and flexibility for density estimation. Nevertheless, there 

may be cases where the Gaussian distribution will not fit. In other words, the nature 

of the sample is “stickily,” not Gaussian. In such situations, we can deal with multiple 

Gaussian distributions, for example. 

 

The univariate Gaussian distribution, 

 

O(R|T, () = #

√$89!
a"

(#$%)!
!'!           (4) 

 

where, v is the mean and w is the standard deviation (w: is the variance). And 

we can extend it to a multivariate Gaussian distribution 

 

x(R|T, Σ) = #

($8|=|)
(
!
aRL [− #

$
(R − T)6Σ"#(R − T)\      (5) 

 

where, v is a mean’s vector of dimension y, and  z is the covariance. 

 

Now, we can extend { in order to have multiples of multivariate Gaussian 

distribution. Hence, we need to estimate the parameters (z, v). We could think of 

applying the usual method of Maximum Likelihood Estimation (MLE); however, we 

will not arrive at a closed-form. 
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If we have a mixture of Gaussian as follows 

 

L(R) = ∑ `*5
*+# x(R|T* , Σ*)         (6) 

 

where u is the number of Gaussian distributions, |? is the mixing coefficient, 

and as we mentioned above {(y|v?, z?) is the multivariate Gaussian distribution for 

the }th Gaussian. 

 

Additionally, normalization and positivity require that, 

 

0 ≤ `* ≤ 1            (7) 

∑ `*5
*+# = 1            (8) 

 

It is noteworthy that the mixing coefficient is also known as the weights of the 

corresponding Gaussian distribution, where the log-likelihood of a mixture of 

Gaussian is as follows 

 

~�	L(j|T, Σ, `) = ∑ ln L(R@)A
@+# = ∑ ~�A

@+# {∑ `*5
*+# x(R@|T* , Σ*)}    (9) 

 

where Ç represents É numbers of y, yB refers to a particular number of the 

sample, Ñ is the total number of samples. As we specified before, the MLE does not 

work as there is no closed-form solution. 

 

Consequently, we can calculate the parameters using the Expectation-

Maximization (EM) technique, which is an iterative method for optimization. 

 

  We can consider mixing coefficients as prior probabilities for the components. 

For a given value y, we can calculate the corresponding posterior probabilities, which 

are also called responsibilities, where they are like some latent variables. 
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From Bayes rule, we have 

 

Ö*(R) = L(<|R) = &(*)&CRD<E
&(2)

                 (10) 

= 8)FCRDT* , Σ*E
∑ 8)*
)+( FCRDT* , Σ*E

                   (11) 

`* =
A)
A
                    (12) 

 

where } is a latent variable under Bayes definition, and |? is the mixing 

coefficient with Ñ? as the number of samples for a particular class divided by Ñ as 

the total number of samples. 

 

So, we are taking the conditional probability to be in the numerator with the 

mixing coefficients and the mixture of Gaussians, and in the unconditional probability 

in the denominator with the sum of the mixture of Gaussians. Therefore, we can 

understand Ñ? as the number of points that are assigned to a specific cluster }. 

However, the number of samples that will belong to a particular cluster } is not 

previously known, and we will obtain it from our calculations. 

 

Based on the information mentioned above, the EM algorithm will help us to 

establish the parameters through the next steps: 

 

1. Estimation step: for some given parameters, we can calculate the expected 

values of the latent variable. 

2. Maximization step: using the MLE method, we will update the parameters 

based on the calculated latent variable. 

 

Our objective is to maximize the likelihood function given a Gaussian mixture 

model regarding the parameters containing the means and covariances of the 

components and the mixing coefficients.  
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First, we have to initialize the means v?, covariances z?, and mixing 

coefficients |?. Next, we have to evaluate the initial value of the log-likelihood. 

Second, evaluate the responsibilities with the actual parameters, referring to the 

estimation step of the EM algorithm 

 

Ö*(R) =
8)FCRDT* , Σ*E

∑ 8)*
)+( FCRDT* , Σ*E

                  (13) 

 

Third, for the maximization step, we re-estimate the parameters using the 

current responsibilities as follows 

 

T* =
∑ H)(2,)2,-,+(
∑ H)(2,)-,+(

                   (14) 

∑ = ∑ H)(2,)(2,"3))(2,"3)).-,+(
∑ H)(2,)-,+(

*                  (15) 

`* =
#

A
∑ Ö*(R@)A
@+#                    (16) 

Finally, we calculate the log-likelihood 

~�	L(j|T, Σ, `) = ∑ ~�A
@+# {∑ `*5

*+# x(R@|T* , Σ*)}              (17) 

 

Besides, if there is no converge, the computation repeats the steps from the 

Expectation-Maximization algorithm until the parameters or the log-likelihood do not 

change after successive iterations, depending on the convergence criteria. 

 

5.4 ASSET PRICE BUBBLE CATEGORIZATION 
 

Asset price bubble analysis is fundamental due to investors’ irrational 

euphoria in an environment where prices keep rising and seem not to yield to a 

possible fall. Nevertheless, when they plunge, it is like a waterfall without an 

immediate end. Past financial collisions can give us an explanation of how markets 

never drive concerning their price action. 
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We took the daily closing prices in US dollars from Bloomberg of the financial 

bubbles studied in Zhang, Zhang, and Sornette (2016) to carry their categorization. 

See Table 17. 

 
Table 17. We present the list of sixteen historical bubbles analyzed in Zhang et al. (2016). 

Number Asset and year of crash Period 

1 S&P 500 1987 02/01/1984 – 13/11/1987 

2 S&P 500 200710 01/01/2004 – 31/12/2009 

3 DJIA 1929 02/01/1926 – 31/12/1930 

4 Nasdaq Composite Index 2000 01/01/1993 – 31/12/2002 

5 Chile 1991 / 1994 01/10/1987 – 01/12/2000 

6 Venezuela 1997 03/01/1994 – 30/12/1999 

7 Indonesia 1994 / 1997 03/01/1990 – 30/12/1999 

8 Malaysia 1994 01/01/1991 – 29/12/1995 

9 Thailand 1994 01/01/1990 – 30/12/1994 

10 Hong Kong 1987 / 1994 / 1997 02/01/1980 – 31/12/1999 

11 Hong Kong 2007 03/01/2000 – 10/04/2015 

12 Sugar price 01/01/2002 – 31/12/2013 

13 Brent Oil 2008 01/01/1990 – 16/04/2015 

14 SSEC 2007 / 2009 01/01/2004 – 31/12/ 2014 

15 SZSC 2007 / 2009 01/01/2004 – 31/12/ 2014 

16 SSEC 2015 23/02/2011 – 12/05/2015 

 

We do not include 5, 6, 12, and 13 because we do not obtain the required 

period’s complete time series. While for numbers 7, 10, 14, and 15, it is important to 

mention they comprise more than one bubble. We also extract the S&P 500 index 

close prices of 2020 (S&P 500 2020)11 as an extension of the above Table, which 

we will apply in an analysis of price fall scenarios. 

 
10 We consider the initial date from January 2, 2004, since January 1, 2004, is holiday. 
11 Until March 20, 2020. 
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Therefore, to categorize asset price bubbles, we calculated the “bubble size” 

and “crash size” of the exuberance in the financial assets of Table 17. Additionally, 

in Table 18 and Fig. 27, we show the mentioned analysis and graphic representation. 

Table 18. Bubble size and crash size analysis. 

Asset P1 date P1 P2 date P2 P3 date P3 Bubble 
size 

Crash 
size 

S&P 500 1987 24/07/1984 147.82 25/08/1987 336.77 19/10/1987 224.84 127.82% 33.24% 

S&P 500 2007 12/08/2004 1,063.23 09/10/2007 1,565.15 09/03/2009 676.53 47.21% 56.78% 

DJIA 1929 30/03/1926 135.2 03/09/1929 381.17 16/12/1930 157.51 181.93% 58.68% 

NASDAQ 2000 26/04/1993 645.87 10/03/2000 5,048.62 09/10/2002 1,114.11 681.68% 77.93% 

INDONESIA 1994 30/10/1991 224.706 05/01/1994 612.89 19/04/1995 414.21 172.75% 32.42% 

INDONESIA 1997 19/04/1995 414.209 08/07/1997 740.83 21/09/1998 256.83 78.85% 65.33% 

MALAYSIA 16/01/1991 470.4 05/01/1994 1,314.46 24/01/1995 840.87 179.43% 36.03% 

THAILAND 30/11/1990 544.3 04/01/1994 1,753.73 04/04/1994 1,196.18 222.20% 31.79% 

HONG KONG 
1987 02/12/1982 676.3 01/10/1987 3,949.73 07/12/1987 1,894.94 484.02% 52.02% 

HONG KONG 
1994 07/12/1987 1,894.94 04/01/1994 12,201.09 23/01/1995 6,967.93 543.88% 42.89% 

HONG KONG 
1997 23/01/1995 6,967.93 07/08/1997 16,673.27 13/08/1998 6,660.42 139.29% 60.05% 

HONG KONG 
2007 25/04/2003 8,409.01 30/10/2007 31,638.22 27/10/2008 11,015.84 276.24% 65.18% 

SSEC 2007 11/07/2005 1,011.499 16/10/2007 6,092.06 04/11/2008 1,706.70 502.28% 71.98% 

SSEC 2009 04/11/2008 1,706.703 04/08/2009 3,471.44 27/06/2013 1,950.01 103.40% 43.83% 

SSEC 2015 27/06/2013 1,950.012 27/04/2015 4,527.40 26/08/2015 2,927.29 132.17% 35.34% 

SZEC 2007 15/11/2005 2,622.03 31/10/2007 19,531.15 04/11/2008 5,668.81 644.89% 70.98% 

SZEC 2009 04/11/2008 5,668.81 07/12/2009 14,051.52 20/03/2014 6,998.19 147.87% 50.20% 

 



   
 

 110 

 

Fig. 27 Bubble size and crash size scatter plot. 

 

We use the MCLUST package to categorize the “bubble size” and “crash size” 

because it is recognized as a gold standard approach for model-based clustering. 

Thus, we propose the Gaussian mixture model to fill the literature gap in financial 

bubbles and use it as the primary model for further research. Commonly, the letter 

“G” denotes the number of clusters, so we continue with this notation while selecting 

the best model according to the Bayesian information criterion (BIC). 

 

The current financial collapse that occurred during the COVID-19 pandemic 

break out shows how sensitive financial markets are. They arrived at a stage of more 

than a decade12 of continuous growth until this disease appeared, and markets 

tumbled down. These falls motivated us to analyze three possible scenarios in the 

S&P 500 index and explore the variations in the new scenarios and their impact on 

clustering analysis.  The “bubble size” and “crash size” scenarios are as follows: 

 
12 The date of this investigation is until May 20, 2020.  
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Table 19. Possible crash scenarios in the S&P 500 index. 

Asset P1 date P1 P2 date P2 P3 date P3 Bubble 
size Crash size 

S&P 500 
2020 (S1) 02/07/2010 1,022.58 19/02/2020 3,386.15 #N/A 2,271.72 231.14% 32.91% 

S&P 500 
2020 (S2) 02/07/2010 1,022.58 19/02/2020 3,386.15 #N/A 1,565.15 231.14% 53.78% 

S&P 500 
2020 (S3) 02/07/2010 1,022.58 19/02/2020 3,386.15 #N/A 676.53 231.14% 80.02% 

 

It is noteworthy that the P3 date column is not filled because we do not 

consider the date’s forecast by which prices would reach these scenarios. S1, S2, 

and S3 denote our fall price scenarios, while P1 and P2 in all cases are the same 

numbers because we set the lowest and highest price after the 2008 crisis. 

Moreover, P3 of the first scenario (S1) relates to a price resistance between 2015 

and 2016. For the price P3 in S2 and S3, they appear as the prices for P2 and P3 of 

the S&P 500 2007 asset price bubble in Table 19. 

We implemented the MCLUST, and the BIC selected a VEV five model 

component (G=5). Fig. 28 shows the model selection regarding the BIC and the 

optimal number of components. Fig. 29 displays the model-based clustering analysis 

for the “bubble size” and “crash size.” Fig. 30 illustrates the uncertainty plot, where 

more significant observations in the graph indicate the major uncertainty of the data 

belonging to a particular cluster. Table 20 shows a summary of the results and 

parameters obtained. 



   
 

 112 

 

Fig. 28 BIC plot for models fitted to financial bubbles categorization. 

 

The summary of the selected model is as follows: 

Table 20. Gaussian finite mixture model fitted by EM algorithm. 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

Mclust VEV (ellipsoidal, equal shape) model with 5 components:  

 log-likelihood  n    df       BIC             ICL 

       9.414961    17   25      -52.00041   -52.00425 

Clustering table: 

1 2 3 4 5  

5 5 3 2 2  

Mixing probabilities: 

1                  2                   3                    4                    5  

0.2941176   0.2941330    0.1764580     0.1176471     0.1176443  

Means: 
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                            [,1]             [,2]             [,3]               [,4]             [,5] 

BUBBLE SIZE    1.6688      1.4475186   6.0958013   5.1395       1.2564947 

CRASH SIZE      0.3374      0.6122145   0.7363163   0.4745       0.4699992 

Variances: 

[,,1] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE   0.199317961       -0.0040010549 

CRASH SIZE    -0.004001055       0.0002372953 

[,,2] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    0.94438105         0.01741074 

CRASH SIZE      0.01741074         0.00106467 

[,,3] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    0.70986632         0.0154336949 

CRASH SIZE      0.01543369         0.0008947103 

[,,4] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    0.044850940.      -0.006808263 

CRASH SIZE      -0.006808263       0.001070420 

[,,5] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    0.024753528       0.0035571985 

CRASH SIZE      0.003557198       0.0005314794 
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Fig. 29 Estimated cluster plot classification. 

 

Fig. 30 Estimated cluster plot uncertainty. 

 

In Fig. 29 we observe the five clusters as follows: 1) NASDAQ 2000, SZEC 

2007, SSEC 2007; 2) HONG KONG 2007, INDONESIA 1997, HONG KONG 1997, 

DJIA 1929, S&P 500 2007; 3) SZEC 2009, SSEC 2009; 4) HONG KONG 1987, 

HONG KONG 1994; and 5) SSEC 2015, MALAYSIA, S&P 500 1987, INDONESIA 
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1994, THAILAND. While in Fig. 30 HONG KONG 2007 and SSEC 2007 show more 

uncertainty respect to their clusters. 

Secondly, for the S&P 500 2020 (S1) first fall scenario with a 32.91% crash, 

the BIC chose a five-component VEV model. Fig. 31 sets the optimum number of 

clusters, Fig. 32, and Fig. 33 exposes the clustering analysis and the uncertainty 

plot, respectively. Table 21 shows a summary of the results and parameters 

obtained. 

 

Fig. 31 BIC plot for models fitted to financial bubbles categorization. 

 

The summary of the selected model is as follows: 

Table 21. Gaussian finite mixture model fitted by EM algorithm. 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

Mclust VEV (ellipsoidal, equal shape) model with 5 components:  
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log-likelihood  n    df       BIC             ICL 

       10.73452   18   25      -50.79026   -50.79632 

Clustering table: 

1 2 3 4 5  

6 5 3 2 2 

Mixing probabilities: 

1                  2                   3                    4                    5  

0.3333333   0.2777934    0.1666527     0.1111111     0.1111094 

Means: 

                            [,1]             [,2]             [,3]               [,4]             [,5] 

BUBBLE SIZE    1.775833    1.4477807 6.0954219    5.1395      1.2564966 

CRASH SIZE      0.336000    0.6122226 0.7363049    0.4745       0.4699995 

Variances: 

[,,1] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE   0.211546478      -0.0037056383 

CRASH SIZE    -0.003705638       0.0002118809 

[,,2] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    1.02752239         0.018967391 

CRASH SIZE      0.01896739         0.001064034 

[,,3] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    0.76533186         0.0166514803 

CRASH SIZE      0.01665148         0.0008941728 

[,,4] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    0.044850844       -0.006808894 

CRASH SIZE      -0.006808894       0.001066265 

[,,5] 



   
 

 117 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE    0.024753481       0.0035575283 

CRASH SIZE      0.003557528       0.0005291864 

 

 

Fig. 32 Estimated cluster plot classification. 

 

Fig. 33 Estimated cluster plot uncertainty. 
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Interestingly, the price drop scenario of 32.91% of the S&P 500 2020 (S1) 

was near to collapse until March 20, 2020, of 31.93%. This new observation (S1) 

would belong to the fifth cluster mentioned above. 

Thirdly, for the S&P 500 2020 (S2) with a price decline scenario of 53.78%, 

which corresponds to the price (P2) of the S&P 500 2007. The MCLUST adjusted 

an EEI two model component (G=2) regarding the Bayesian information criterion. 

Fig. 34 shows the optimum number of clusters; Fig. 35 establishes the Gaussian 

mixture model; Fig. 36 reveals the uncertainty plot, and Table 22 resumes the results 

of the model. 

 

Fig. 34 BIC plot for models fitted to financial bubbles categorization. 
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The summary of the selected model is as follows: 

Table 22. Gaussian finite mixture model fitted by EM algorithm. 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

Mclust EEI (diagonal, equal volume and shape) model with 2 components:   

log-likelihood  n    df       BIC             ICL 

       -17.18094   18   7      -54.59449   -54.59506 

Clustering table: 

1     2  

13   5 

Mixing probabilities: 

1                  2                    

0.7222116   0.2777884     

Means: 

                            [,1]             [,2]             

BUBBLE SIZE    1.5694513  5.7134678 

CRASH SIZE      0.4789201  0.6316019 

Variances: 

[,,1] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE   0.438746             0.00000000 

CRASH SIZE     0.000000             0.01617437 

[,,2] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE   0.438746             0.00000000 

CRASH SIZE     0.000000             0.01617437 
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Fig. 35 Estimated cluster plot classification. 

 

Fig. 36 Estimated cluster plot uncertainty. 

 

The S&P 500 2020 (S2) Gaussian model-based clustering reveals completely 

different results concerning to above models. The cluster separation is as follows: 1) 

INDONESIA 1997, HONG KONG 2007, S&P 500 2007, HONG KONG 1997, DJIA 

1929, S&P 500 2020, SZEC 2009, SSEC 2009, MALAYSIA, SSEC 2015, S&P 500 
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1987, INDONESIA 1994, THAILAND; and 2) NASDAQ 2000, SZEC 2007, SSEC 

2007, HONG KONG 1987, HONG KONG 1994. On the other hand, HONG KONG 

2007 presents the highest uncertainty. 

Finally, for the worst-case scenario indicating a crash size of 80.02%, we 

obtained a VEI model with two components for the S&P 500 2020 (S3). Fig. 37 

shows BIC’s model selection; Table 23 specifies the model results; Fig. 38 exposes 

the Gaussian finite mixture model and Fig. 39 represents uncertainty. 

 

Fig. 37 BIC plot for models fitted to financial bubbles categorization. 

 

The summary of the selected model is as follows: 

Table 23. Gaussian finite mixture model fitted by EM algorithm. 

----------------------------------------------------  

Gaussian finite mixture model fitted by EM algorithm  

----------------------------------------------------  

Mclust VEI (diagonal, equal shape) model with 2 components: 

log-likelihood  n    df       BIC             ICL 
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       -17.93782   18   8      -58.99861   -59.08553 

Clustering table: 

1     2  

5    13 

Mixing probabilities: 

1                  2                    

0.2753862   0.7246138 

Means: 

                            [,1]             [,2]             

BUBBLE SIZE    1.6676928  3.1207680 

CRASH SIZE      0.3373952  0.6113255 

Variances: 

[,,1] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE   0.1093337           0.00000000 

CRASH SIZE     0.000000             0.0002941306 

 [,,2] 

                          BUBBLE SIZE    CRASH SIZE 

BUBBLE SIZE   4.903578            0.00000000 

CRASH SIZE     0.000000             0.01319165 
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Fig. 38 Estimated cluster plot classification. 

 

Fig. 39 Estimated cluster plot uncertainty. 
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We obtained different results from the models fitted by the Expectation-

Maximization algorithm, where our results summarized in the next points: 

 

1. A VEV five-component model for the financial bubbles analyzed in Zhang et 

al. (2016) and our first price drop scenario (S1). 

2. An EEI two-component model for the second price scenario (S2). 

3. A VEI model with two components for the third price scenario (S3). 

 

We should deduce the Gaussian mixture model is sensitive to the initialization 

of the EM algorithm. Nevertheless, in the data set from Zhang et al. (2016), we do 

not obtain different results between running the default parameters of the MCLUST 

package and a proposed of a better initialization analyzed in Scrucca and Raftery 

(2015). Therefore, we continued with the default model for the subsequent 

categorizations. Furthermore, we recognized there are missing crashes like the Tulip 

Mania, the South Sea Company, Bitcoin crash, to name a few; nevertheless, we 

wanted to propose categorizing some financial bubbles according to observable 

variables: “bubble size” and “crash size.” We knew that the period studied in our 

research would be relevant, so we decided to take the initial date and end date from 

Zhang et al. (2016) as an already published investigation. 

 

5.5 CONCLUSION 
 

In conclusion, we developed a categorization of asset price bubbles applying 

the Gaussian model-based clustering, where we analyzed four data sets: previous 

historical crashes and three possible collapse scenarios. We deduced from the 

previous results the analysis of financial bubbles is and will be a dynamic study 

because human desires do not stop from one day to another. Humanity and financial 

bubbles are in continuous systemic instability. It is noteworthy that a useful variable 

we can incorporate for future research could be market capitalization due to its 

importance regarding the market size. 
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6. CHAPTER V: FINAL REMARKS 
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6.1 CHAPTER II 
 

Financial bubbles represent a failure in human rationality that spreads 

through the markets and can affect the real economy. It would be fair to assume that 

time leads to greater wisdom, and such events are less likely to occur. However, the 

information era has just spread the data and power to many people ignoring past 

events. Such information flow may be why the increase in volatility and a subsequent 

irrational behavior with loss-averse agents driven by greed seek to obtain more 

significant profit regarding the risk or even fundamental analysis. For such, Chapter 

II presents a monitoring technique that can detect atypical increases in price, leading 

to the possibility of bubble episodes. 

 

In previous chapters and throughout price asset bubbles literature, the 

definition of a financial bubble does not converge to a single criterion; however, Sohn 

and Sornette (2017) proposed two divisions. On the one hand, we have a conditional 

and comparative definition, and on the other hand, we have the statistical and 

structural definition. These characterizations are the advanced definitions, not the 

standard one. We should not forget that the working horse of the bubble type 

behavior world is the rational model, which assumes that there can be rational 

deviations from an asset’s intrinsic value. 

 

The conditional definition established a relationship between the asset’s 

intrinsic value and the economic agents’ information. Therefore, we can understand 

a financial bubble as a situation where the existing information does not justify the 

actual price. In contrast, the comparative definition compares the fundamental value 

with the asset price. The main issue originates in the conceptualization of what we 

can consider as a fundamental value. 

 

In contrast, the statistical definition contemplates price trajectory, trading 

volume, and time horizon with no relation to the theoretical background. Bubble’s 

behavior is typically associated with a dramatic increase and a following hard 
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decline. The structural definition explains a specific condition of a particular asset. In 

other words, this point of view studies the transition of the behavior of the asset. So, 

we could identify the expansionary and recessionary phases. 

 

We can relate the structural point of view with the regime-switching tests. For 

example, Homm and Breitung (2012) focus on bubble detection in univariate time 

series. They took as a benchmark the proposal of Phillips, Wu, and Yu (2011) 

proposal and compared it to various structural break tests. Their results established 

that a Chow type break test exhibits the highest power and is the most reliable in 

finite samples. However, the comparison took the simple test, not the generalized 

sup Augmented Dickey-Fuller (GSADF) test. The contrast between the latter model 

and multiple structural breaks (changes) tests could be interesting for further 

investigations. 

 

It is essential to notice the potential, as well as the constraints of the model. 

For one side, the GSADF methodology provides a definition and a standardized 

methodology to detect the bubble that has been born or burst. Furthermore, the 

generalized proposition with the corrections provided by the wild bootstrap 

simulation gives a robust technique that combines the ad hoc computation of a 

window and a recursive technique of a rolling window of extended width to obtain 

the simulation of the null hypothesis distribution. This simulation procedure with the 

bootstrap technique benefits from using the data instead of a generic distribution that 

converges in the limit and improves the critical values’ estimation. 

 

The way it works is by selecting a subsample of the data from which the first 

iterations would be computed. Next, one additional observation is added to the 

subsample, and the procedure is then repeated. These iterations continue until the 

last observation (the most recent one) is reached. However, with this procedure, the 

original model is obtained. The generalized one denoted as GSADF is constructed 

from the moment the first model is finished. The second step for such a methodology 

is to move the original window one observation ahead while maintaining the same 
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length. It is equivalent to remove the first observation of the dataset and perform the 

original model. Once more, these iterations continue until the rolling window reaches 

the last observation. The sum of the GSADF model uses the type of rolling windows, 

which increases length for the first part and one of the same lengths for the 

generalized procedure. Suppose all the aspects are taken into account. In that case, 

the GSADF methodology uses both a rolling window and a recursive computation to 

compute the critical values either by Monte Carlo or Bootstrap simulations. 

 

However, some of these benefits also play against the model. In the first 

place, it is crucial to notice that as with any rolling window procedure, the results 

would be highly sensitive to changes in the width of such. This document uses the 

recommendations made by the author to compute the value. However, in a greater 

perspective, there may be the case that such value over- or under-estimate the unit 

root test and miss the episodes. The second issue with the model is the 

computational complexity, as the number of observations increases, the time to 

perform the simulations. This time increases exponentially with the GSADF 

methodology and the number of simulations for each period, making the practical 

and real-time usage dependent on the CPU speed. An extension of these is the 

frequency of the data. Most of the papers published under the methodology used 

weekly data, so the historical period analyzed by the broadest possible and remain 

computationally feasible. The most practical usage would be to use the model with 

intraday data, but such a quantity of information would make the model unworkable. 

This topic also could extend to a definition issue, as the bubbles may be considered 

as a temporary price deviation from fundamental value, then the length of the bubble 

lifespan is unattended; for daily data, the minimal length is one day, but such atypical 

value could be the response of technical failures in data recollection. This problem 

is particularly plausible for intraday data, where jumps are witness with relative 

frequency. 

 

One final disadvantage of the SADF and GSADF test is that both models do 

not identify negative bubbles. The concept of negative bubble refers to “as the mirror 
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(but not necessarily exactly symmetric) image of standard financial bubbles, in which 

positive feedback mechanisms may lead to transient accelerating price falls… The 

price fall occurring during a transient negative bubble can be interpreted as an 

effective random down payment that rational agents accept to pay in the hope of 

profiting from the expected occurrence of a possible rally” (Yan, Woodard, and 

Sornette, p. 1361, 2012). The negative conceptualization of the financial bubble is 

related to the log-periodic power law (LPPL) model (Johansen and Sornette, 1999; 

Jiang, Zhou, Sornette, Woodard, Bastiaensen and Cauwels, 2010), which has in 

common with the SADF and GSADF tests a view of the financial bubbles that differ 

from the construction of the fundamental value. Phillips’ models consider a transition 

from a stationary process to a mildly explosive process, while Sornette’s model 

identifies market bubbles as a super-exponential price process. Therefore, the 

formation of financial bubbles concentrates primarily on the expectation of future 

earnings rather than present economic value, looking at the explosive behavior as a 

deviation of a non-sustainable regime. Furthermore, the lecturer could find 

interesting another kind of models such as the phenomenological Langevin equation 

model, behavioral models, agent-based models, experimental tests on bubbles, 

variance bounds tests, West’s two-step tests, integration/cointegration based tests, 

intrinsic bubbles, bubble as an unobserved variable, and algorithm and data-driven 

prediction model of financial times series (Zhang and Wu, 2018). 

 

Finally, Phillips et al. (2011, 2015) methodologies provide a consistent 

procedure to define and identify bubble episodes. Nevertheless, the general 

procedure corresponds with a monitoring rather than a practical technique for trading 

advantage. This chapter has proven that the episodes have increased in the last 

years for most markets. However, this result provides evidence for further research 

regarding the motivation of such behavior. This model corresponds with a data-

driven and atheoretical perspective that gives insights for other types of analysis. 
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6.2 CHAPTER III 
 

This chapter deals with some of the stylized facts described by Cont (2001). 

This analysis provides evidence that financial prices do not follow a typical 

Exponential Brownian Motion, so using a normal distribution would lead to a 

misleading result of the risk of explosive weather behavior or a bubble burst. Such 

behaviors are associated with high and low return values with an almost cero 

probability if considered under the normal distribution. As exposed in the previous 

chapter, these episodes are becoming more usual with time, so this assumption 

does not hold empirical data. The relevance of this proposal relies mainly on 

derivative valuation and risk management areas. The reason is that both financial 

branches use the normality assumption (with the Brownian Motion model) to deploy 

theoretical or simulation scenarios to value derivatives or to determine the VaR of a 

specific position. As it occurs in any scientific procedure, if the assumptions are 

wrong, then the results will undoubtedly have an error that could be catastrophic for 

financial institutions or any agents using them. 

 

This chapter then proposes a solution for this erroneous assumption. As an 

alternative, the NIG distribution is proposed as a better fit for empirical data. The 

methodology to test this new assumption relies on the statistical test performed in 

two main steps: the normality test and the goodness of fit. As Thode (2002, p. 99) 

expressed, the first one corresponds to, “… tests described here rely on the relation 

of the empirical distribution function of the observations to the hypothesized 

distribution function in some manner”. In this case, the distribution function is the 

theoretically adjusted one, id est the normal distribution with parameters equal to the 

mean and standard deviation of the logarithmic returns for prices. The null 

distribution is then constructed under the proposition that empirical data resembles 

the normal distribution. 

 

Meanwhile, the second goodness of fit test uses the same approach, but with 

another perspective. These tests are constructed to compare to datasets. It could be 
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understood as a generalization of the normality tests where the null hypothesis 

corresponds to “the samples come from the same theoretical distribution”. The tests 

are constructed to compare different qualities of the distributions and may lack 

statistical robustness. Hence, the general approach is then to perform a double 

check, the first one being the rejection of the normality assumption. The second is 

the confirmation of the goodness of fit for other (more appropriate) distribution. 

 

This procedure’s quality means that the proposal is an excellent candidate to 

develop further models. The ability to capture a bubble expansion and burst can be 

translated to extreme quantile occurrences with higher probability than the one 

estimated with a normal distribution. With these results, it is possible to rethink some 

models relying on simulation procedures like all the Monte Carlo approaches to value 

derivative instruments or measure with greater precision the exposure and risk of 

financial institutions. 

 

Once more, the problem of such models is the computational and parameter 

stability for complex distributions. The Expectation-Maximization algorithms are 

numerical methods that seek maxima in likelihood functions; the problem for such is 

that the increase in parameters takes a tradeoff: increases flexibility, but also 

increases the complexity of the function leading to cases where finding the optimal 

parameters becomes problematic, as no critical value may be found or by finding 

local instead of the global maximum. It is then necessary to test multiple starting 

points and test the convergence parameters to be stable. Furthermore, as these 

methods depend on the simulation algorithm, computational considerations must 

also be considered, mainly the pseudo-random number generation process. Any 

simulated vector would depend on it. 

 

Another aspect to consider is the parameter stability through the series. As 

mentioned earlier in Chapter II’s remarks, where the methodology highly depends 

on the window length to perform the tests, a similar issue may occur in this case. At 

first glance, it is needed a large sample to converge to the population parameters, 
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but this number is ambiguous and could be subject to various criteria. Furthermore, 

for financial series where stylized facts, such as volatility clusters, are typical, then 

the samples used to perform the parameter estimation algorithm can witness certain 

instability. However, this issue is part of almost any statistical study and maybe 

palliated with a robust test as the ones presented by Braun (1980). In practice, this 

procedure may extend to the actualization of datasets that maintain a certain 

constant length on the number of observations used. The result would be a rolling 

window with higher chances to be significant in the population parameter estimation. 

  

6.3 CHAPTER IV 
 

The chapter develops on using one of the statistical learning techniques to 

classify the bubbles into types or families. One of the most recent computational 

science aspects is the wide usage of numerical algorithms that can compute optimal 

parameters of problems with no close solution. It means that there is not a formula 

one can use for any problem. In practice, this means the usage of algorithms that 

deploy iterations into a convergence problem. Besides this modern capability to use 

such techniques with relative ease, implement some models born in the mid-XX 

century but practically available in XXI by the computational and software 

development (James, Witten, Hastie, Tibshirani, 2013, cap 2). One of the essential 

branches of these techniques is the classification models. Such problems were 

initially presented as a particularity of the traditional regression models, but with the 

difference that the response variable is a qualitative rather than quantitative 

measure. The model seeks to explain the chance of belonging to certain categories 

based on specific properties, mostly quantitative. 

 

Many models deploy the classification algorithms from different perspectives, 

but a general categorization would identify the supervised and unsupervised models. 

The first ones refer to models that need thorough training based on previous 

classifications. Consequently, there is needed a dataset large enough to learn or 

detect patterns that explain the response. The closer type of these models with 
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traditional regression is the logistic ones (James et al., 2013, cap 4). The traditional 

models refer to two classifications in the response variable, but it is possible to 

extend them to multiple regression models. However, some problems that may arise 

are related to the quality of the data. Because large data sets are needed, then a 

large portion of the population is required so that it is possible to make an inference; 

furthermore, as the model is a generalized case of the linear model, so if the 

relationship is no-linear, then the model will have a poor performance even when the 

variables do have a relationship. 

 

Moreover, if the data is not balanced (the proportions are not equal), the 

algorithm tends to misfit certain variables’ relevance. Finally, the general idea of the 

classification algorithms is to extrapolate the results and predict further observations. 

However, as there is no constraint in this property, it is usual to overfit the model to 

the data, losing any possibility of implementing the model in out-sample datasets. 

This property is also related to the instability of the parameters. When the 

classification variable is widely separated, the parameters once more loose 

statistical significance and are sensitive to small changes in the dataset.  

 

Further developments use segmentation of the hyperspace so that 

classifications reside inside the boxes. The models that use such procedures are 

tree-based (James et al., 2013, cap 8). The mechanism of such depends on the 

segmentation of data into decision trees where conditional statements create planes 

that segment the hyperplane. These lines are translated into boxes that seek to 

create clusters that predict the observation’s belonging to specific groups. These 

models are better at capturing no-linear structure in data. It does not depend on the 

specification provided, but instead uses an algorithm that chooses the space’s best 

segmentation. Further advantages of the models include the ease to be explained 

as the interpretation of the decisions is direct; also, as they resemble human 

decision-making, it could be a natural way to make classification problems. The main 

issue in this type of model is that compared to other models, they usually 

underperform, so more complex models are needed. 
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A more flexible way to stratify spaces is proposed under the Support Vector 

Machines (SVM) (James et al., 2013, cap 9). These models are characterized to 

have one of the better performances in classification problems. The idea behind 

these is that observations can be divided by hyperplanes in the space. It implies the 

reduction of the dimension of the hyperspace in comparison to the available data. 

This line is intended to mark a frontier in which observations are efficiently divided. 

In most supervised learning problems, these models tend to be the better option 

because of the flexibility; nevertheless, there are some critical considerations to 

examine. The first and most important is the computational cost for these algorithms. 

Because the number of parameters depends on the dataset’s dimension, and the 

convergence method is robust, the time elapsed for the numerical method to 

converge is, most of the time, considerable. Furthermore, the interpretability of the 

model is lost. 

 

The final consideration of classification problems treated in this document is 

the unsupervised ones. The idea is that the datasets do not have a response 

variable, but only properties translated in numerical or categorical variables (James 

et al., 2013, cap 10). The idea is then to find the similarities and groups the 

information is center around, like the type of problem presented in Chapter IV. Such 

a study uses statistical criteria to determine the number of clusters that better 

describe the explanatory and response variable’s distribution. For such, the 

algorithm then determines the groups and classifies the bubbles according to their 

similarity. 
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Table 24. S&

P 500 index daily adjusted prices sam
ple correlations. 

 

AAPL 

AABV 

ABT 

CAN 

ADBE 

AMGN 

AMZN 

AVGO 

BAC 

BMY 

BRK.B 

CMCSA 

COST 

CRM 

CSCO 

CVX 

DIS 

FB 

GOOG 

GOOGL 

HD 

IBM 

INTC 

JNJ 

JPM 

KO 

LLY 

MA 

MCD 

MDT 

MRK 

MSFT 

NEE 

NFLX 

NKE 

NVDA 

ORCL 

PEP 

PFE 

PG 

PM 

PYPL 

T 

TMO 

UNH 

UNP 

V 

VZ 

WMT 

XOM 

AAPL 

1.000 

0.732 

0.910 

0.923 

0.943 

0.934 

0.892 

0.852 

0.832 

0.014 

0.858 

0.788 

0.935 

0.905 

0.794 

0.610 

0.739 

0.834 

0.937 

0.936 

0.926 

0.160 

0.916 

0.831 

0.898 

0.864 

0.868 

0.939 

0.859 

0.878 

0.839 

0.958 

0.944 

0.839 

0.879 

0.838 

0.850 

0.885 

0.706 

0.826 

0.042 

0.898 

0.389 

0.939 

0.896 

0.890 

0.940 

0.810 

0.916 

- 0.337 

AABV 

0.732 

1.000 

0.680 

0.749 

0.761 

0.739 

0.780 

0.735 

0.859 

0.100 

0.860 

0.549 

0.603 

0.740 

0.707 

0.717 

0.387 

0.806 

0.820 

0.821 

0.770 

0.230 

0.805 

0.778 

0.841 

0.568 

0.534 

0.687 

0.699 

0.552 

0.486 

0.684 

0.663 

0.799 

0.593 

0.910 

0.726 

0.567 

0.691 

0.411 

0.166 

0.756 

0.168 

0.696 

0.854 

0.741 

0.701 

0.559 

0.718 

- 0.018 

ABT 

0.910 

0.680 

1.000 

0.952 

0.966 

0.905 

0.934 

0.867 

0.804 

- 0.162 

0.866 

0.797 

0.958 

0.959 

0.920 

0.669 

0.805 

0.789 

0.907 

0.902 

0.935 

0.061 

0.909 

0.818 

0.869 

0.897 

0.924 

0.980 

0.931 

0.884 

0.920 

0.968 

0.951 

0.890 

0.937 

0.729 

0.905 

0.897 

0.842 

0.864 

- 0.114 

0.972 

0.241 

0.980 

0.901 

0.954 

0.979 

0.899 

0.955 

- 0.275 

CAN 

0.923 

0.749 

0.952 

1.000 

0.969 

0.896 

0.942 

0.917 

0.883 

- 0.117 

0.928 

0.853 

0.940 

0.952 

0.928 

0.795 

0.809 

0.896 

0.959 

0.955 

0.978 

0.226 

0.934 

0.873 

0.943 

0.921 

0.830 

0.979 

0.957 

0.905 

0.885 

0.961 

0.953 

0.883 

0.907 

0.813 

0.926 

0.919 

0.817 

0.848 

0.032 

0.971 

0.398 

0.970 

0.929 

0.967 

0.984 

0.892 

0.949 

- 0.108 

ADBE 

0.943 

0.761 

0.966 

0.969 

1.000 

0.906 

0.979 

0.887 

0.857 

- 0.149 

0.907 

0.777 

0.949 

0.980 

0.923 

0.717 

0.738 

0.860 

0.958 

0.955 

0.959 

0.114 

0.955 

0.863 

0.915 

0.876 

0.891 

0.980 

0.932 

0.868 

0.877 

0.980 

0.958 

0.945 

0.918 

0.841 

0.898 

0.881 

0.831 

0.811 

- 0.048 

0.979 

0.268 

0.977 

0.953 

0.962 

0.983 

0.872 

0.943 

- 0.246 

AMGN 

0.934 

0.739 

0.905 

0.896 

0.906 

1.000 

0.868 

0.831 

0.796 

0.056 

0.848 

0.759 

0.901 

0.887 

0.777 

0.620 

0.701 

0.790 

0.908 

0.907 

0.893 

0.119 

0.888 

0.837 

0.864 

0.853 

0.873 

0.902 

0.839 

0.894 

0.863 

0.920 

0.915 

0.807 

0.865 

0.786 

0.837 

0.857 

0.759 

0.818 

0.033 

0.868 

0.395 

0.925 

0.892 

0.870 

0.908 

0.846 

0.900 

- 0.278 

AMZN 

0.892 

0.780 

0.934 

0.942 

0.979 

0.868 

1.000 

0.858 

0.853 

- 0.198 

0.908 

0.736 

0.909 

0.967 

0.939 

0.747 

0.674 

0.846 

0.942 

0.939 

0.940 

0.127 

0.933 

0.859 

0.896 

0.809 

0.848 

0.940 

0.903 

0.820 

0.835 

0.940 

0.905 

0.968 

0.880 

0.862 

0.881 

0.828 

0.863 

0.733 

- 0.061 

0.962 

0.203 

0.940 

0.953 

0.949 

0.948 

0.849 

0.911 

- 0.168 
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AVGO 

0.852 

0.735 

0.867 

0.917 

0.887 

0.831 

0.858 

1.000 

0.896 

- 0.220 

0.919 

0.906 

0.827 

0.865 

0.872 

0.823 

0.726 

0.920 

0.924 

0.922 

0.912 

0.328 

0.880 

0.914 

0.923 

0.849 

0.752 

0.883 

0.940 

0.813 

0.844 

0.876 

0.891 

0.809 

0.768 

0.810 

0.949 

0.896 

0.758 

0.821 

0.288 

0.910 

0.450 

0.897 

0.897 

0.914 

0.897 

0.798 

0.886 

- 0.043 

BAC 

0.832 

0.859 

0.804 

0.883 

0.857 

0.796 

0.853 

0.896 

1.000 

- 0.149 

0.963 

0.796 

0.750 

0.845 

0.854 

0.867 

0.694 

0.896 

0.915 

0.915 

0.890 

0.396 

0.869 

0.834 

0.981 

0.729 

0.641 

0.833 

0.847 

0.713 

0.708 

0.804 

0.786 

0.844 

0.738 

0.885 

0.869 

0.751 

0.768 

0.625 

0.191 

0.861 

0.329 

0.815 

0.913 

0.899 

0.842 

0.685 

0.805 

0.046 

BMY 

0.014 

0.100 

- 0.162 

- 0.117 

- 0.149 

0.056 

- 0.198 

- 0.220 

- 0.149 

1.000 

- 0.146 

- 0.208 

- 0.112 

- 0.139 

- 0.326 

- 0.259 

- 0.151 

- 0.105 

- 0.079 

- 0.081 

- 0.100 

- 0.020 

- 0.087 

- 0.084 

- 0.117 

- 0.039 

- 0.109 

- 0.145 

- 0.213 

- 0.026 

- 0.267 

- 0.107 

- 0.093 

- 0.215 

- 0.064 

- 0.016 

- 0.182 

- 0.114 

- 0.214 

- 0.134 

0.118 

- 0.196 

0.175 

- 0.114 

- 0.137 

- 0.232 

- 0.151 

- 0.136 

- 0.105 

- 0.086 

BRK-B 

0.858 

0.860 

0.866 

0.928 

0.907 

0.848 

0.908 

0.919 

0.963 

- 0.146 

1.000 

0.827 

0.813 

0.899 

0.909 

0.879 

0.699 

0.888 

0.937 

0.936 

0.925 

0.321 

0.893 

0.913 

0.977 

0.811 

0.729 

0.880 

0.910 

0.785 

0.791 

0.860 

0.853 

0.875 

0.787 

0.883 

0.913 

0.815 

0.861 

0.701 

0.169 

0.915 

0.346 

0.881 

0.960 

0.941 

0.895 

0.806 

0.878 

0.041 

CMCSA 

0.788 

0.549 

0.797 

0.853 

0.777 

0.759 

0.736 

0.906 

0.796 

- 0.208 

0.827 

1.000 

0.806 

0.752 

0.777 

0.735 

0.807 

0.820 

0.823 

0.822 

0.845 

0.400 

0.730 

0.841 

0.844 

0.863 

0.698 

0.820 

0.883 

0.823 

0.855 

0.813 

0.845 

0.632 

0.703 

0.649 

0.900 

0.931 

0.660 

0.880 

0.348 

0.815 

0.606 

0.835 

0.766 

0.834 

0.835 

0.787 

0.845 

- 0.031 

COST 

0.935 

0.603 

0.958 

0.940 

0.949 

0.901 

0.909 

0.827 

0.750 

- 0.112 

0.813 

0.806 

1.000 

0.925 

0.854 

0.603 

0.805 

0.766 

0.898 

0.893 

0.936 

0.076 

0.896 

0.786 

0.841 

0.915 

0.912 

0.972 

0.899 

0.916 

0.918 

0.982 

0.970 

0.831 

0.935 

0.709 

0.850 

0.926 

0.744 

0.905 

- 0.110 

0.926 

0.379 

0.972 

0.857 

0.913 

0.971 

0.914 

0.951 

- 0.341 

CRM 

0.905 

0.740 

0.959 

0.952 

0.980 

0.887 

0.967 

0.865 

0.845 

- 0.139 

0.899 

0.752 

0.925 

1.000 

0.939 

0.730 

0.755 

0.821 

0.941 

0.938 

0.943 

0.097 

0.936 

0.830 

0.896 

0.864 

0.893 

0.969 

0.914 

0.862 

0.874 

0.948 

0.927 

0.945 

0.941 

0.791 

0.884 

0.847 

0.880 

0.777 

- 0.103 

0.968 

0.210 

0.958 

0.936 

0.968 

0.970 

0.877 

0.908 

- 0.163 

CSCO 

0.794 

0.707 

0.920 

0.928 

0.923 

0.777 

0.939 

0.872 

0.854 

- 0.326 

0.909 

0.777 

0.854 

0.939 

1.000 

0.828 

0.754 

0.811 

0.881 

0.877 

0.903 

0.207 

0.879 

0.824 

0.882 

0.800 

0.793 

0.915 

0.913 

0.789 

0.849 

0.876 

0.852 

0.915 

0.860 

0.739 

0.897 

0.810 

0.911 

0.730 

- 0.045 

0.950 

0.199 

0.904 

0.899 

0.965 

0.922 

0.855 

0.871 

0.017 

CVX 

0.610 

0.717 

0.669 

0.795 

0.717 

0.620 

0.747 

0.823 

0.867 

- 0.259 

0.879 

0.735 

0.603 

0.730 

0.828 

1.000 

0.601 

0.829 

0.781 

0.781 

0.785 

0.481 

0.736 

0.785 

0.852 

0.657 

0.469 

0.700 

0.791 

0.641 

0.649 

0.647 

0.652 

0.722 

0.597 

0.737 

0.789 

0.654 

0.768 

0.535 

0.237 

0.757 

0.374 

0.687 

0.806 

0.814 

0.720 

0.675 

0.675 

0.426 

DIS 

0.739 

0.387 

0.805 

0.809 

0.738 

0.701 

0.674 

0.726 

0.694 

- 0.151 

0.699 

0.807 

0.805 

0.755 

0.754 

0.601 

1.000 

0.636 

0.708 

0.706 

0.771 

0.216 

0.665 

0.590 

0.755 

0.829 

0.707 

0.825 

0.777 

0.811 

0.820 

0.775 

0.765 

0.605 

0.820 

0.430 

0.760 

0.812 

0.662 

0.803 

- 0.065 

0.763 

0.384 

0.787 

0.652 

0.806 

0.817 

0.746 

0.745 

- 0.063 
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FB 

0.834 

0.806 

0.789 

0.896 

0.860 

0.790 

0.846 

0.920 

0.896 

- 0.105 

0.888 

0.820 

0.766 

0.821 

0.811 

0.829 

0.636 

1.000 

0.925 

0.925 

0.902 

0.370 

0.859 

0.872 

0.913 

0.780 

0.625 

0.836 

0.876 

0.757 

0.707 

0.826 

0.831 

0.814 

0.709 

0.885 

0.900 

0.825 

0.674 

0.701 

0.316 

0.872 

0.441 

0.834 

0.876 

0.848 

0.852 

0.693 

0.827 

0.011 

GOOG 

0.937 

0.820 

0.907 

0.959 

0.958 

0.908 

0.942 

0.924 

0.915 

- 0.079 

0.937 

0.823 

0.898 

0.941 

0.881 

0.781 

0.708 

0.925 

1.000 

1.000 

0.967 

0.229 

0.952 

0.899 

0.953 

0.868 

0.812 

0.937 

0.924 

0.860 

0.825 

0.939 

0.927 

0.899 

0.868 

0.895 

0.908 

0.881 

0.783 

0.782 

0.126 

0.943 

0.375 

0.938 

0.951 

0.937 

0.948 

0.829 

0.913 

- 0.128 

GOOGL 

0.936 

0.821 

0.902 

0.955 

0.955 

0.907 

0.939 

0.922 

0.915 

- 0.081 

0.936 

0.822 

0.893 

0.938 

0.877 

0.781 

0.706 

0.925 

1.000 

1.000 

0.964 

0.234 

0.949 

0.897 

0.953 

0.864 

0.808 

0.933 

0.920 

0.858 

0.822 

0.934 

0.923 

0.896 

0.864 

0.895 

0.905 

0.878 

0.782 

0.777 

0.130 

0.939 

0.372 

0.933 

0.949 

0.934 

0.944 

0.823 

0.907 

- 0.121 

HD 

0.926 

0.770 

0.935 

0.978 

0.959 

0.893 

0.940 

0.912 

0.890 

- 0.100 

0.925 

0.845 

0.936 

0.943 

0.903 

0.785 

0.771 

0.902 

0.967 

0.964 

1.000 

0.235 

0.931 

0.861 

0.942 

0.904 

0.809 

0.962 

0.948 

0.889 

0.851 

0.950 

0.944 

0.883 

0.898 

0.843 

0.918 

0.907 

0.788 

0.821 

0.044 

0.958 

0.401 

0.952 

0.926 

0.951 

0.970 

0.865 

0.944 

- 0.131 

IBM 

0.160 

0.230 

0.061 

0.226 

0.114 

0.119 

0.127 

0.328 

0.396 

- 0.020 

0.321 

0.400 

0.076 

0.097 

0.207 

0.481 

0.216 

0.370 

0.229 

0.234 

0.235 

1.000 

0.184 

0.288 

0.341 

0.123 

- 0.060 

0.121 

0.152 

0.180 

0.135 

0.104 

0.127 

0.087 

0.010 

0.290 

0.269 

0.230 

0.099 

0.153 

0.490 

0.120 

0.601 

0.113 

0.178 

0.227 

0.128 

0.094 

0.129 

0.428 

INTC 

0.916 

0.805 

0.909 

0.934 

0.955 

0.888 

0.933 

0.880 

0.869 

- 0.087 

0.893 

0.730 

0.896 

0.936 

0.879 

0.736 

0.665 

0.859 

0.952 

0.949 

0.931 

0.184 

1.000 

0.838 

0.913 

0.819 

0.827 

0.930 

0.877 

0.822 

0.806 

0.936 

0.916 

0.908 

0.878 

0.854 

0.849 

0.827 

0.771 

0.756 

- 0.018 

0.926 

0.314 

0.930 

0.927 

0.926 

0.933 

0.835 

0.897 

- 0.190 

JNJ 

0.831 

0.778 

0.818 

0.873 

0.863 

0.837 

0.859 

0.914 

0.834 

- 0.084 

0.913 

0.841 

0.786 

0.830 

0.824 

0.785 

0.590 

0.872 

0.899 

0.897 

0.861 

0.288 

0.838 

1.000 

0.873 

0.813 

0.760 

0.819 

0.894 

0.792 

0.798 

0.845 

0.859 

0.790 

0.700 

0.845 

0.902 

0.863 

0.804 

0.758 

0.353 

0.868 

0.426 

0.867 

0.915 

0.857 

0.845 

0.806 

0.870 

- 0.016 

JPM 

0.898 

0.841 

0.869 

0.943 

0.915 

0.864 

0.896 

0.923 

0.981 

- 0.117 

0.977 

0.844 

0.841 

0.896 

0.882 

0.852 

0.755 

0.913 

0.953 

0.953 

0.942 

0.341 

0.913 

0.873 

1.000 

0.829 

0.724 

0.904 

0.903 

0.815 

0.795 

0.884 

0.875 

0.860 

0.814 

0.882 

0.904 

0.838 

0.794 

0.732 

0.153 

0.910 

0.403 

0.891 

0.942 

0.939 

0.913 

0.785 

0.878 

- 0.022 

KO 

0.864 

0.568 

0.897 

0.921 

0.876 

0.853 

0.809 

0.849 

0.729 

- 0.039 

0.811 

0.863 

0.915 

0.864 

0.800 

0.657 

0.829 

0.780 

0.868 

0.864 

0.904 

0.123 

0.819 

0.813 

0.829 

1.000 

0.824 

0.924 

0.931 

0.937 

0.898 

0.915 

0.945 

0.710 

0.872 

0.632 

0.862 

0.949 

0.720 

0.922 

0.073 

0.884 

0.497 

0.925 

0.815 

0.865 

0.930 

0.896 

0.902 

- 0.173 

LLY 

0.868 

0.534 

0.924 

0.830 

0.891 

0.873 

0.848 

0.752 

0.641 

- 0.109 

0.729 

0.698 

0.912 

0.893 

0.793 

0.469 

0.707 

0.625 

0.812 

0.808 

0.809 

- 0.060 

0.827 

0.760 

0.724 

0.824 

1.000 

0.896 

0.814 

0.829 

0.906 

0.920 

0.903 

0.800 

0.891 

0.608 

0.773 

0.840 

0.780 

0.850 

- 0.162 

0.867 

0.189 

0.919 

0.813 

0.854 

0.894 

0.871 

0.872 

- 0.416 



 
 

 
  

139 

MA 

0.939 

0.687 

0.980 

0.979 

0.980 

0.902 

0.940 

0.883 

0.833 

- 0.145 

0.880 

0.820 

0.972 

0.969 

0.915 

0.700 

0.825 

0.836 

0.937 

0.933 

0.962 

0.121 

0.930 

0.819 

0.904 

0.924 

0.896 

1.000 

0.941 

0.910 

0.916 

0.984 

0.973 

0.891 

0.948 

0.761 

0.900 

0.918 

0.805 

0.875 

- 0.082 

0.974 

0.329 

0.985 

0.907 

0.963 

0.998 

0.898 

0.950 

- 0.245 

MCD 

0.859 

0.699 

0.931 

0.957 

0.932 

0.839 

0.903 

0.940 

0.847 

- 0.213 

0.910 

0.883 

0.899 

0.914 

0.913 

0.791 

0.777 

0.876 

0.924 

0.920 

0.948 

0.152 

0.877 

0.894 

0.903 

0.931 

0.814 

0.941 

1.000 

0.863 

0.882 

0.925 

0.937 

0.840 

0.849 

0.764 

0.946 

0.924 

0.812 

0.856 

0.118 

0.962 

0.359 

0.942 

0.907 

0.936 

0.954 

0.875 

0.934 

- 0.105 

MDT 

0.878 

0.552 

0.884 

0.905 

0.868 

0.894 

0.820 

0.813 

0.713 

- 0.026 

0.785 

0.823 

0.916 

0.862 

0.789 

0.641 

0.811 

0.757 

0.860 

0.858 

0.889 

0.180 

0.822 

0.792 

0.815 

0.937 

0.829 

0.910 

0.863 

1.000 

0.914 

0.904 

0.924 

0.709 

0.882 

0.639 

0.825 

0.915 

0.730 

0.890 

0.028 

0.844 

0.517 

0.915 

0.808 

0.862 

0.915 

0.884 

0.879 

- 0.140 

MRK 

0.839 

0.486 

0.920 

0.885 

0.877 

0.863 

0.835 

0.844 

0.708 

- 0.267 

0.791 

0.855 

0.918 

0.874 

0.849 

0.649 

0.820 

0.707 

0.825 

0.822 

0.851 

0.135 

0.806 

0.798 

0.795 

0.898 

0.906 

0.916 

0.882 

0.914 

1.000 

0.912 

0.923 

0.752 

0.864 

0.587 

0.853 

0.918 

0.794 

0.931 

- 0.021 

0.876 

0.412 

0.931 

0.817 

0.898 

0.919 

0.923 

0.887 

- 0.193 

MSFT 

0.958 

0.684 

0.968 

0.961 

0.980 

0.920 

0.940 

0.876 

0.804 

- 0.107 

0.860 

0.813 

0.982 

0.948 

0.876 

0.647 

0.775 

0.826 

0.939 

0.934 

0.950 

0.104 

0.936 

0.845 

0.884 

0.915 

0.920 

0.984 

0.925 

0.904 

0.912 

1.000 

0.985 

0.879 

0.926 

0.782 

0.886 

0.931 

0.768 

0.893 

- 0.046 

0.957 

0.361 

0.988 

0.907 

0.936 

0.985 

0.901 

0.961 

- 0.333 

NEE 

0.944 

0.663 

0.951 

0.953 

0.958 

0.915 

0.905 

0.891 

0.786 

- 0.093 

0.853 

0.845 

0.970 

0.927 

0.852 

0.652 

0.765 

0.831 

0.927 

0.923 

0.944 

0.127 

0.916 

0.859 

0.875 

0.945 

0.903 

0.973 

0.937 

0.924 

0.923 

0.985 

1.000 

0.832 

0.902 

0.757 

0.891 

0.955 

0.746 

0.924 

0.029 

0.942 

0.439 

0.981 

0.892 

0.920 

0.975 

0.912 

0.961 

- 0.311 

NFLX 

0.839 

0.799 

0.890 

0.883 

0.945 

0.807 

0.968 

0.809 

0.844 

- 0.215 

0.875 

0.632 

0.831 

0.945 

0.915 

0.722 

0.605 

0.814 

0.899 

0.896 

0.883 

0.087 

0.908 

0.790 

0.860 

0.710 

0.800 

0.891 

0.840 

0.709 

0.752 

0.879 

0.832 

1.000 

0.842 

0.856 

0.827 

0.723 

0.843 

0.617 

- 0.111 

0.929 

0.058 

0.879 

0.930 

0.915 

0.894 

0.758 

0.836 

- 0.164 

NKE 

0.879 

0.593 

0.937 

0.907 

0.918 

0.865 

0.880 

0.768 

0.738 

- 0.064 

0.787 

0.703 

0.935 

0.941 

0.860 

0.597 

0.820 

0.709 

0.868 

0.864 

0.898 

0.010 

0.878 

0.700 

0.814 

0.872 

0.891 

0.948 

0.849 

0.882 

0.864 

0.926 

0.902 

0.842 

1.000 

0.641 

0.801 

0.835 

0.783 

0.808 

- 0.231 

0.902 

0.237 

0.926 

0.826 

0.906 

0.940 

0.880 

0.872 

- 0.239 

NVDA 

0.838 

0.910 

0.729 

0.813 

0.841 

0.786 

0.862 

0.810 

0.885 

- 0.016 

0.883 

0.649 

0.709 

0.791 

0.739 

0.737 

0.430 

0.885 

0.895 

0.895 

0.843 

0.290 

0.854 

0.845 

0.882 

0.632 

0.608 

0.761 

0.764 

0.639 

0.587 

0.782 

0.757 

0.856 

0.641 

1.000 

0.788 

0.677 

0.666 

0.525 

0.227 

0.806 

0.275 

0.769 

0.902 

0.790 

0.777 

0.607 

0.776 

- 0.094 

ORCL 

0.850 

0.726 

0.905 

0.926 

0.898 

0.837 

0.881 

0.949 

0.869 

- 0.182 

0.913 

0.900 

0.850 

0.884 

0.897 

0.789 

0.760 

0.900 

0.908 

0.905 

0.918 

0.269 

0.849 

0.902 

0.904 

0.862 

0.773 

0.900 

0.946 

0.825 

0.853 

0.886 

0.891 

0.827 

0.801 

0.788 

1.000 

0.904 

0.805 

0.822 

0.230 

0.934 

0.371 

0.915 

0.890 

0.917 

0.914 

0.814 

0.912 

- 0.064 
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PEP 

0.885 

0.567 

0.897 

0.919 

0.881 

0.857 

0.828 

0.896 

0.751 

- 0.114 

0.815 

0.931 

0.926 

0.847 

0.810 

0.654 

0.812 

0.825 

0.881 

0.878 

0.907 

0.230 

0.827 

0.863 

0.838 

0.949 

0.840 

0.918 

0.924 

0.915 

0.918 

0.931 

0.955 

0.723 

0.835 

0.677 

0.904 

1.000 

0.696 

0.959 

0.183 

0.893 

0.547 

0.936 

0.816 

0.873 

0.926 

0.882 

0.929 

- 0.223 

PFE 

0.706 

0.691 

0.842 

0.817 

0.831 

0.759 

0.863 

0.758 

0.768 

- 0.214 

0.861 

0.660 

0.744 

0.880 

0.911 

0.768 

0.662 

0.674 

0.783 

0.782 

0.788 

0.099 

0.771 

0.804 

0.794 

0.720 

0.780 

0.805 

0.812 

0.730 

0.794 

0.768 

0.746 

0.843 

0.783 

0.666 

0.805 

0.696 

1.000 

0.610 

- 0.072 

0.854 

0.074 

0.816 

0.872 

0.886 

0.819 

0.813 

0.777 

0.104 

PG 

0.826 

0.411 

0.864 

0.848 

0.811 

0.818 

0.733 

0.821 

0.625 

- 0.134 

0.701 

0.880 

0.905 

0.777 

0.730 

0.535 

0.803 

0.701 

0.782 

0.777 

0.821 

0.153 

0.756 

0.758 

0.732 

0.922 

0.850 

0.875 

0.856 

0.890 

0.931 

0.893 

0.924 

0.617 

0.808 

0.525 

0.822 

0.959 

0.610 

1.000 

0.085 

0.821 

0.563 

0.897 

0.714 

0.805 

0.876 

0.883 

0.887 

- 0.310 

PM 

0.042 

0.166 

- 0.114 

0.032 

- 0.048 

0.033 

- 0.061 

0.288 

0.191 

0.118 

0.169 

0.348 

- 0.110 

- 0.103 

- 0.045 

0.237 

- 0.065 

0.316 

0.126 

0.130 

0.044 

0.490 

- 0.018 

0.353 

0.153 

0.073 

- 0.162 

- 0.082 

0.118 

0.028 

- 0.021 

- 0.046 

0.029 

- 0.111 

- 0.231 

0.227 

0.230 

0.183 

- 0.072 

0.085 

1.000 

- 0.025 

0.511 

- 0.016 

0.077 

- 0.026 

- 0.046 

- 0.082 

0.014 

0.278 

PYPL 

0.898 

0.756 

0.972 

0.971 

0.979 

0.868 

0.962 

0.910 

0.861 

- 0.196 

0.915 

0.815 

0.926 

0.968 

0.950 

0.757 

0.763 

0.872 

0.943 

0.939 

0.958 

0.120 

0.926 

0.868 

0.910 

0.884 

0.867 

0.974 

0.962 

0.844 

0.876 

0.957 

0.942 

0.929 

0.902 

0.806 

0.934 

0.893 

0.854 

0.821 

- 0.025 

1.000 

0.243 

0.970 

0.937 

0.969 

0.979 

0.877 

0.951 

- 0.177 

T 

0.389 

0.168 

0.241 

0.398 

0.268 

0.395 

0.203 

0.450 

0.329 

0.175 

0.346 

0.606 

0.379 

0.210 

0.199 

0.374 

0.384 

0.441 

0.375 

0.372 

0.401 

0.601 

0.314 

0.426 

0.403 

0.497 

0.189 

0.329 

0.359 

0.517 

0.412 

0.361 

0.439 

0.058 

0.237 

0.275 

0.371 

0.547 

0.074 

0.563 

0.511 

0.243 

1.000 

0.360 

0.261 

0.296 

0.339 

0.430 

0.379 

0.094 

TMO 

0.939 

0.696 

0.980 

0.970 

0.977 

0.925 

0.940 

0.897 

0.815 

- 0.114 

0.881 

0.835 

0.972 

0.958 

0.904 

0.687 

0.787 

0.834 

0.938 

0.933 

0.952 

0.113 

0.930 

0.867 

0.891 

0.925 

0.919 

0.985 

0.942 

0.915 

0.931 

0.988 

0.981 

0.879 

0.926 

0.769 

0.915 

0.936 

0.816 

0.897 

- 0.016 

0.970 

0.360 

1.000 

0.915 

0.952 

0.988 

0.918 

0.969 

- 0.263 

UNH 

0.896 

0.854 

0.901 

0.929 

0.953 

0.892 

0.953 

0.897 

0.913 

- 0.137 

0.960 

0.766 

0.857 

0.936 

0.899 

0.806 

0.652 

0.876 

0.951 

0.949 

0.926 

0.178 

0.927 

0.915 

0.942 

0.815 

0.813 

0.907 

0.907 

0.808 

0.817 

0.907 

0.892 

0.930 

0.826 

0.902 

0.890 

0.816 

0.872 

0.714 

0.077 

0.937 

0.261 

0.915 

1.000 

0.943 

0.919 

0.828 

0.901 

- 0.098 

UNP 

0.890 

0.741 

0.954 

0.967 

0.962 

0.870 

0.949 

0.914 

0.899 

- 0.232 

0.941 

0.834 

0.913 

0.968 

0.965 

0.814 

0.806 

0.848 

0.937 

0.934 

0.951 

0.227 

0.926 

0.857 

0.939 

0.865 

0.854 

0.963 

0.936 

0.862 

0.898 

0.936 

0.920 

0.915 

0.906 

0.790 

0.917 

0.873 

0.886 

0.805 

- 0.026 

0.969 

0.296 

0.952 

0.943 

1.000 

0.966 

0.887 

0.923 

- 0.070 

V 

0.940 

0.701 

0.979 

0.984 

0.983 

0.908 

0.948 

0.897 

0.842 

- 0.151 

0.895 

0.835 

0.971 

0.970 

0.922 

0.720 

0.817 

0.852 

0.948 

0.944 

0.970 

0.128 

0.933 

0.845 

0.913 

0.930 

0.894 

0.998 

0.954 

0.915 

0.919 

0.985 

0.975 

0.894 

0.940 

0.777 

0.914 

0.926 

0.819 

0.876 

- 0.046 

0.979 

0.339 

0.988 

0.919 

0.966 

1.000 

0.904 

0.956 

- 0.224 
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VZ 

0.810 

0.559 

0.899 

0.892 

0.872 

0.846 

0.849 

0.798 

0.685 

- 0.136 

0.806 

0.787 

0.914 

0.877 

0.855 

0.675 

0.746 

0.693 

0.829 

0.823 

0.865 

0.094 

0.835 

0.806 

0.785 

0.896 

0.871 

0.898 

0.875 

0.884 

0.923 

0.901 

0.912 

0.758 

0.880 

0.607 

0.814 

0.882 

0.813 

0.883 

- 0.082 

0.877 

0.430 

0.918 

0.828 

0.887 

0.904 

1.000 

0.906 

- 0.119 

WMT 

0.916 

0.718 

0.955 

0.949 

0.943 

0.900 

0.911 

0.886 

0.805 

- 0.105 

0.878 

0.845 

0.951 

0.908 

0.871 

0.675 

0.745 

0.827 

0.913 

0.907 

0.944 

0.129 

0.897 

0.870 

0.878 

0.902 

0.872 

0.950 

0.934 

0.879 

0.887 

0.961 

0.961 

0.836 

0.872 

0.776 

0.912 

0.929 

0.777 

0.887 

0.014 

0.951 

0.379 

0.969 

0.901 

0.923 

0.956 

0.906 

1.000 

- 0.274 

XOM 

- 0.337 

- 0.018 

- 0.275 

- 0.108 

- 0.246 

- 0.278 

- 0.168 

- 0.043 

0.046 

- 0.086 

0.041 

- 0.031 

- 0.341 

- 0.163 

0.017 

0.426 

- 0.063 

0.011 

- 0.128 

- 0.121 

- 0.131 

0.428 

- 0.190 

- 0.016 

- 0.022 

- 0.173 

- 0.416 

- 0.245 

- 0.105 

- 0.140 

- 0.193 

- 0.333 

- 0.311 

- 0.164 

- 0.239 

- 0.094 

- 0.064 

- 0.223 

0.104 

- 0.310 

0.278 

- 0.177 

0.094 

- 0.263 

- 0.098 

- 0.070 

- 0.224 

- 0.119 

- 0.274 

1.000 
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ANNEX II 
 

Table 25. Augmented Dickey-Fuller test for prices (p-values). 

Period AMZN UNH NVDA DIS ADBE NEE NKE UNP 
1P 0.724 0.9207 0.5338 0.5873 0.4148 0.5336 0.1856 0.42 
2P 0.9258 0.495 0.8744 0.1071 0.8956 0.8485 0.06766 0.2065 
 

Table 26. Augmented Dickey-Fuller test for returns (p-values). 

Period AMZN UNH NVDA DIS ADBE NEE NKE UNP 
1P 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
2P 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
 

Table 27. Phillips-Perron test for prices (p-values). 

Period AMZN UNH NVDA DIS ADBE NEE NKE UNP 
1P 0.3714 0.9229 0.5629 0.5146 0.3714 0.3667 0.1757 0.2789 
2P 0.8631 0.2494 0.7976 0.3776 0.8007 0.5477 0.03263 0.1669 
 

 
Table 28. Phillips-Perron test for returns (p-values). 

Period AMZN UNH NVDA DIS ADBE NEE NKE UNP 
1P 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
2P 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
 

 
Table 29. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for prices (p-value). 

Period AMZN UNH NVDA DIS ADBE NEE NKE UNP 
1P 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
2P 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
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Table 30. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for returns (p-value). 

Period AMZN UNH NVDA DIS ADBE NEE NKE UNP 
1P 0.09458 0.05068 0.1 0.01 0.01 0.1 0.1 0.1 
2P 0.1 0.1 0.07832 0.01 0.01 0.1 0.1 0.1 
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ANNEX III 
 

 

Fig. 40 NIG and GH VaR levels – ADBE. 

 

Fig. 41 NIG and GH VaR levels – AMZN. 
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Fig. 42 NIG and GH VaR levels – DIS. 

 

 
Fig. 43 NIG and GH VaR levels – NEE. 
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Fig. 44 NIG and GH VaR levels – NKE. 

 
Fig. 45 NIG and GH VaR levels – NVDA. 
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Fig. 46 NIG and GH VaR levels – UNH. 

 
Fig. 47 NIG and GH VaR levels – UNP. 
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