
Instituto Tecnologico y de Estudios Superiores de Monterrey

Monterrey Campus

School of Engineering and Sciences

Anomaly Detection as a Method for Uncovering Twitter Bots

A thesis presented by

Javier Israel Mata Sánchez

Submitted to the
School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science

Monterrey, Nuevo León, November, 2019

Dedication

The process of earning a Master’s degree has been more enriching than I could have ever
imagined. I feel blessed for having this opportunity; everything has happened in the best way
and at the best time, or at least it feels that way.

This path has been one of hard work and much discipline, but also of constant happiness.
I want to thank especially my family, friends, and teachers for supporting me at all times,
good and bad.

Likewise, I want to extend my deepest gratitude to all the people who continuously con-
tribute to the existence and maintenance of free, good-quality online education. Thanks to
them, millions of humans around the globe have had the opportunity to continue their studies
and obtain valuable knowledge. I firmly believe that this type of education helps to improve
the life quality of many people around the world, including me, and, therefore, contributes to
the creation of more united and harmonious societies.

iii

Acknowledgements

First of all, I would like to thank my advisors, Raúl Monroy, and Jorge Rodrı́guez, for their
patience and guidance. Second, I express my gratitude to Miguel Angel Medina and Octavio
Loyola, as they were a vital part of this process; their feedback throughout the investigation
process helped me to increase the quality of this research.

Finally, the support of Tecnológico de Monterrey made all this work possible, as they pro-
vided me with a 100% scholarship for my master’s degree studies. Also, a special mention
to CONACyT, for supporting me with living expenses during my studies. I feel honored to
have had this opportunity; thank you all for contributing to the generation of knowledge and
enhancement of education quality in the country.

iv

Anomaly Detection as a Method for Uncovering Twitter Bots
by

Javier Israel Mata Sánchez

Abstract

During the past decades, online social networks (OSNs) have steadily grown to become
the mainstream communication channels they are today. One of the most popular OSN is
Twitter, a micro-blogging platform, which by 2019, had approximately 139 million daily ac-
tive users. Interestingly enough, a relevant portion of the accounts registered in this social
network is not human. Researchers have found that approximately 15% of all Twitter ac-
counts, which is close to 48 million users, exhibit an automated behavior. Such automatically
managed accounts are called bots. Bots have exhibited a diversity of behaviors, and there-
fore, of objectives. Some good uses of bots include automatically posting information about
relevant news and academic papers, and even to provide orientation during emergencies. Un-
fortunately, malicious bots are also abundant. These types of bots have been used to distribute
malware, send spam, and even to affect political discussions negatively. Moreover, malicious
bots have also promoted terrorist propaganda and online extremism proselytism.

Diverse bot detection methods and tools have been developed by researchers and by the
social network companies themselves. Although there exist unsupervised learning bot detec-
tion methods, most of the state-of-the-art bot detection mechanisms make use of supervised
learning machine learning algorithms. Due to their nature, these methods require examples
of different bot types to detect them effectively. Nevertheless, obtaining examples of all the
different bot types present on Twitter is not a trivial task. Moreover, bots are continuously
evolving to evade current detection mechanisms.

This thesis proposes to approach the Twitter bot detection problem by making use of
one-class classifiers. Classifiers of this type only require examples of a normal class to de-
tect anomalous behavior, thus are capable of overcoming the limitations of state-of-the-art
methods. The experiments developed in this work demonstrate to what extent multi-class and
binary classifiers are different from one-class in terms of performance. Also, the significance
of these differences is measured. Results show that one-class classifiers yield higher and more
stable performance than the other two types of classifiers when detecting bot types that were
not used in their training phase of the algorithm. Additionally, the difference in performance
is statistically significant. On the other hand, binary classifiers perform better than one-class,
when detecting bots of a type that was present in the training phase of the algorithm.

Given our results, one-class classifiers could serve as an early-warning system, detect-
ing anomalous patterns of account behavior, which could represent a new bot. The results
presented in this work can also contribute to the development of hybrid systems that combine
features of binary-classifiers with the benefit of one-class methods. Such systems would rep-
resent a step towards broadening the protection of OSNs’ users from malicious bots, therefore
benefiting a primary part of society.

v

List of Figures

1.1 Number of total social network users (in billions) from 2010 to 2018. 2

2.1 Confusion matrix layout. 8

3.1 Classification area, with three classes of normality, learned by a one-class
classifier. 18

3.2 Region of normality learned by a one-class classifier. 18
3.3 Classification regions learned by a one-class classifier. Colors represent dif-

ferent degrees of membership to the normal class, being the lightest an indi-
cator of a 0% degree of membership to the normal class. 19

3.4 Comparison of classification models learned by a one-class and a binary clas-
sifier. Figure inspired by Rodrı́guez et al. [101]. 21

4.1 Data partitions performed by a 10-fold cross-validation procedure. 36
4.2 Example of a Critical Difference diagram. 37

5.1 Performance of binary classifiers when using social1 bots in the training phase,
and different bots at testing. 40

5.2 Performance results of the experiment set A when using social2 bots in training. 41
5.3 Performance results of the experiment set A when using social3 bots in train-

ing. Note that Logistic Regression yield the second-best performance, only
outperformed by PBC4cip. 43

5.4 Performance results of the experiment set A when using traditional bots in
training. 44

5.5 Box and whisker plots of the AUC performance, per bot type, for each table
in Experiment Set A. The plots are labeled in order of appearance. 45

5.6 CD diagrams showing the significant statistical differences among the differ-
ent types of bots. Each diagram corresponds to a table in experiment set A, in
order of appearance. 46

5.7 Performance results of the experiment set B. 47
5.8 CD diagram of the performance in experiment set B. In this experiments,

classifiers are trained with three types of bots and tested with the remaining one. 48
5.9 Performance results of the experiment set C. 49
5.10 CD diagram of one-class classifiers’ AUC performance for Twitter bot detection. 50
5.11 CD diagram of the two best multi-class and one-class classifiers used in the

Twitter bot detection experiments. 52

vi

List of Tables

2.1 Previous works comparison. 13

3.1 Datasets released by Cresci [38]. 25
3.2 Features provided for each tweet in the selected Cresci’s datasets. 27
3.3 Features provided for each user account in the selected Cresci’s datasets. . . . 28
3.4 Feature vector extracted for each Twitter user. 29

5.1 Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type social1 account examples.
A bold typeface is used to convey the results of testing the same type of bots
used in the training set. 39

5.2 Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type social2 account examples.
A bold typeface is used to convey the results of testing the same type of bots
used in the training set. 41

5.3 Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type social3 account examples.
A bold typeface is used to convey the results of testing the same type of bots
used in the training set. 42

5.4 Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type traditional account exam-
ples. A bold typeface is used to convey the results of testing the same type of
bots used in the training set. 44

5.5 Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of different types. A bold typeface
is used to convey the best AUC obtained by a classifier when testing a specific
type of bot. 47

5.6 Results of testing different types of bots when classifiers have used a train-
ing dataset containing legitimate users examples. A bold typeface is used to
convey the highest performance attained by a classifier per testing dataset.
BTPM and BRM where used with two different measures: Euclidean(E) and
Mahalanobis(M) . 49

vii

5.7 Comparison of binary and one-class classifiers’ performance. In each row,
bold typeface numbers are used to convey the highest AUC performance ob-
tained for the given training/testing set combination. PBC4cip is the best-
performing classifier, nevertheless, it is marked with gray bold typeface, as it
is analyzed separately at first. 51

viii

Contents

Abstract v

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Twitter . 1
1.2 Twitter Bots . 3

1.2.1 Malicious Uses of Bots . 3
1.2.2 Impact of Social Twitter Bots . 3
1.2.3 Bot Detection . 4

1.3 Hypothesis . 5
1.4 Objectives . 5
1.5 Contributions . 6
1.6 Document Structure . 6

2 State-of-the-art Methods for Bot Detection on Twitter 7
2.1 Prevalent Performance Measures in Bot Detection Research 7
2.2 Previous Works . 9

2.2.1 Supervised Bot Detection Approaches 11
2.2.2 Unsupervised Bot Detection Approaches 12

2.3 Implications of the Evolution in Bots’ Behavior 14
2.3.1 Paradigm-shift in Bot Design . 14
2.3.2 Relationship Between Bot Behavior and Classifiers Performance . . . 14

2.4 Summary . 15

3 One-class Classification for Twitter Bot Detection 16
3.1 Fundamental Approaches for Anomaly Detection 16

3.1.1 Unsupervised Clustering . 16
3.1.2 Supervised Classification . 17
3.1.3 Semi-supervised Classification . 17

3.2 Classification in Machine Learning . 20
3.2.1 Training and Testing a Supervised Classification Model 20
3.2.2 One-class, Binary, and Multi-class Classification 20
3.2.3 Measures to Compare Classification Performance 22

ix

3.3 Advantages and Limitations of Existing Approaches for Bot Detection in Twitter 22
3.3.1 The Supervised Approach for Bot Detection 22
3.3.2 The Semi-supervised Approach for Bot Detection 23

3.4 Methodology . 23
3.4.1 Experiments . 24
3.4.2 Datasets Used in the Experiments 25
3.4.3 Features for Characterizing Twitter User’s Behavior 26
3.4.4 Selected Classifiers . 26
3.4.5 Selected Performance Measure . 32

3.5 Summary . 33

4 Experimental Setup 34
4.1 Experiments . 34

4.1.1 Experiment Set A (Binary Classifiers) Description 34
4.1.2 Experiment Set B (Multi-class Classifiers) Description 35
4.1.3 Experiment Set C (One-class Classifiers) Description 35

4.2 Performance validation . 36
4.3 Testing the significance of results . 36
4.4 Summary . 37

5 Experimental Results and Discussion 38
5.1 Results of Experiment set A (Binary Classifiers) 38

5.1.1 Classifiers Trained with Social1 Type Bots and Genuine Accounts . . 39
5.1.2 Classifiers Trained with Social2 Type Bots and Genuine Accounts . . 40
5.1.3 Classifiers Trained with Social3 Type Bots and Genuine Accounts . . 40
5.1.4 Classifiers Trained with Traditional Type Bots and Genuine Accounts 42
5.1.5 Summary of Results of Experiment Set A 43

5.2 Results of Experiment set B (Multi-class Classifiers) 45
5.3 Results of Experiment set C (One-class Classifiers) 48
5.4 Results Comparison . 50

5.4.1 Statistical Differences Among Approaches 52
5.4.2 Generalization Capabilities . 52

5.5 Summary . 53

6 Conclusions 54
6.1 Future Work . 56

6.1.1 Hybrid approach . 56
6.1.2 Proactive approaches . 56

Bibliography 68

x

Chapter 1

Introduction

The number of online social networks (OSNs) users has increased significantly in recent years.
In 2018, the total number of OSNs accounts was approximately 2.65 billion [108]. Even
though each OSN offers distinct features, most users use them with the same purpose: to
share opinions, upload photos, post videos, and even consume news and articles. This digital
interchange of information allows users to connect, form networks, and create communities.
Since OSNs can be accessed almost anywhere in the world, and due to the vast number of
accounts registered in them, most of the participants in social platforms, such as Twitter, do
not know each other personally.

Social platforms allow for accounts to be automated, enabling companies and users to
obtain extra benefits from all the features offered by the OSN. These automated accounts,
known as bots, have been regulated by the OSN providers, by providing guidelines that aim
to prevent the platform from being misused. Unfortunately, bots have been widely used for
malicious purposes, such as to distribute spam and malware [128]. Politics and public health
are domains of particular interests, as studies [21, 109, 27, 48] have shown that bots have
been used to influence people’s opinions during political campaigns and to generate more
conversations on a vaccine debate. Due to the impact that bots can cause in society [49, 18],
researchers have developed different bot detection methods. Most of the detection methods
have their basis on supervised machine learning approaches [111], and even though no method
has proven to be perfect, useful tools for detecting known types of bots have been developed.

1.1 Twitter
The number of social network users, worldwide, has shown an increase of approximately
273% from 2010 to 2018, with an estimated 2.65 billion users at the end of 2018 [108].
Figure 1.1 shows how the number of users increases every year. OSNs differ from each other
in their interface and features. Nevertheless, most of them are used for the same purposes.
Typical uses of social platforms include sharing comments, uploading photos, and following
public figures. Users of OSNs also use them to keep up to date with the topics of their interest
[33, 112, 80], and even to consume scientific articles [60]. News is also a prevalent topic
of conversation in sites such as Twitter, where studies have shown that, at specific moments,
approximately 85% of the most popular content in the networks has been related to headline

1

CHAPTER 1. INTRODUCTION 2

news [74].

Figure 1.1: Number of total social network users (in billions) from 2010 to 2018.

Twitter1 is a popular micro-blogging OSN launched in 2006 [70, 81]. The Twitter plat-
form allows users to post messages, known as tweets. Also, they can share the content gen-
erated by other members of the network, an action called retweeting; and can follow other
accounts to see their updates on the homepage. Additionally, tweets can include multimedia
elements such as images, GIFs, short videos, URLs, and hashtags [115]. One of the main
characteristics of this OSN is that the number of characters per publication is limited. When
Twitter was originally launched, only 140 characters per tweet were allowed, but in 2017 the
maximum number of characters doubled to 280 for most languages. Chinese, Japanese, and
Korean languages are the exception since accounts configured with those languages stayed
with a limit of 140 characters per tweet [6].

The popularity of this micro-blogging platform has increased over the years. By the
second quarter of 2019, Twitter reached an average of 139 million daily active users [116]. In
July 2019, SimilarWeb2, a web analytics service, ranked Twitter as inside the top six websites
with most traffic3, with more than 4.03 billion monthly visits.

Users registered in this OSN can access it through a web page, mobile applications, and
Application Programming Interfaces (APIs). Twitter’s APIs allow a set of different actions,
such as consulting public tweets and replies, create and manage ad campaigns, manage an
account’s profile and settings [117]. There exists a set of automation rules that outline the
proper and improper use of automated accounts [118], which aim to guide users of the API.

1www.twitter.com
2https://www.similarweb.com/
3https://pro.similarweb.com/#/industry/topsites/All/999/1m?webSource=Total

CHAPTER 1. INTRODUCTION 3

Over the years, several applications have been developed to enhance the user’s experience in
the online platform. These same applications allow for accounts to be managed automatically
by different programs; such accounts are known as Twitter bots [33].

1.2 Twitter Bots
Over the years, Twitter bots have been used to enhance the experience of users. Some common
proper uses of these automated accounts include retweeting exciting and relevant content for
specific communities [33, 112, 80], providing an aggregation of tweets about a specific area,
and communicating with customers to increase the impact of marketing efforts [90]. Most of
the Twitter bots used for legitimate purposes share only one type of content and are transparent
about themselves and their motivations [129].

1.2.1 Malicious Uses of Bots
Bots have also been used with malicious intent. Some of the most common malicious bots are
used to send spam, spread malware, and perform other illicit activities [128]. More sophisti-
cated bots can interact with other users of the OSN. These bots, called social bots, can avoid
detection, perform more complex tasks, and take advantage of human vulnerabilities. Such
vulnerabilities include the tendencies of paying attention to trending topics and the fact that
different social factors impede people’s willingness to verify the information [69]. Social bots
can adopt different strategies to impersonate human users. Impersonation can be achieved by
emulating temporal patterns of content posting and consumption by humans and interacting
with other users of the OSN by engaging in conversation with them [64]. A more extreme
example of human impersonation done by social bots is identity theft [36]. When several bot
accounts act as a group and coordinate efforts, a Twitter botnet is formed. Frequently, botnets
are used to generate false popularity [5]. When inspected individually, accounts on a botnet
may seem genuine, but when a large number of accounts act in a strongly coordinated manner,
their intentions become noticeable [31].

1.2.2 Impact of Social Twitter Bots
The impact of social bots is not limited to a single topic or domain. Since social media rep-
resent the perfect space for people to express their concerns and points of view, bots can take
advantage of this space to influence opinions. A particular domain of great importance for
the government and society is health [8]. There is evidence of social bots disseminating an-
tivaccine messages. These social bots, along with Russian trolls4, created false equivalency5,
eroding public consensus on vaccination. The public health implications are significant, as
directly confronting vaccine skeptics enables bots to legitimize the vaccine debate [27, 48].
Smoking is another topic where bots have been used to influence the public’s perception.

4A troll is someone who aims to upset people on social media by posting unkind or offensive content.
5A false equivalence occurs when, in an argument, two opposing ideas appear to be logically equivalent when

they are not.

CHAPTER 1. INTRODUCTION 4

Recent research suggests that bots posted between 70% and 80% of tweets mentioning e-
cigarettes [35]. Moreover, studies on e-cigarette-related attitudes and behaviors have made
evident the importance of distinguishing if Twitter posts come from bots or humans when
attempting to understand attitudes and behavior [7, 9].

Automated accounts have achieved an impact on politics more than once. Since social
media has become a widely used platform for democratic discussion on social issues related to
policy and politics, social bots have been used to influence people’s opinions actively. Studies
around the 2016 U.S. Presidential election have found that social bots have indeed the capacity
to negatively affect political discussion, which could alter public opinion and endanger the
integrity of elections and democracy in general [21, 109]. Scientists found that during that
period, humans and bots retweeted each other substantially at the same rate. Moreover, the
most positive tweets about Donald Trump were generated by bots [129]. Again, for the 2016
U.S. presidential election, bots played a crucial role in the spread of low-credibility content
[105]. Researchers have also studied the run-up to the 2017 French presidential election;
during that political process, anomalous account usage patterns were found. The fact that
hundreds of bots posting about the French elections also participated actively in the 2016 U.S
suggests the existence of a black-market for political disinformation bots [47].

Terrorist propaganda and online extremism proselytism also represent topics of public
interest that have been promoted by social bots. Ferrara et al. [49] analyzed a dataset of
millions of examples of extremist tweets and discovered that social bots produced some of
these content. A 2015 study [18] analyzed Islamic State-supporting accounts and unveiled
that social bots where being used to spread the ideology of this terrorist organization. During
the Syrian civil war in 2012, botnets were found to misdirect the online discussion [1].

A more general domain is fake news. This domain’s impact does not cover a specific
topic, but at the same time, it remains relevant. This relevance comes from the fact that
social bots target influential accounts to amplify misinformation before it becomes viral [20,
84]. Users can also spread misinformation unintentionally. For example, after the Boston
Marathon bombing, 29% of the most viral content on Twitter were rumors and fake content.
However, this information was not shared by bots, but the other way around, the fake content
spreaders were users with high social reputation and verified accounts [58].

1.2.3 Bot Detection
To prevent social bots from causing harm to society, the Twitter platform, academia, and in-
dustry have developed a wide variety of bot detection methods across the years. Nevertheless,
Twitter bots differ significantly on their behavior and account characteristics, making their
detection a non-trivial task. Some of the first documented attempts aimed to create groups of
people to detect bots via a crowd-sourcing bot-detection platform [126]. However, since bots
can replicate at a much higher rate than human experts can gather, such a method lacked from
the scalability; thus, it was unviable.

The only viable way to confront automated accounts is through the use of computational
tools and frameworks such as machine learning. Although unsupervised methods have also
been explored [88, 31], most common bot detection approaches are based on supervised ma-
chine learning algorithms [111]. Approaches based on machine learning are not flawless, even
though they are more effective than human detectors. Supervised machine learning algorithms

CHAPTER 1. INTRODUCTION 5

require many examples of labeled accounts to function correctly. Therefore, researchers have
to collect Twitter accounts and then manually label them to form a useful dataset. This human
factor makes the labeling process error-prone. This propensity is due to the subjectivity and
lack of agreement between annotators [121]. The difference between annotators’ opinions
may be influenced by the lack of ground-truth about what a social bot is, which, at the same
time, prevails due to the gray area between human and bot behavior [129]. Despite the obsta-
cles present in bot characterization, practical, commercial, and useful bot-detection tools have
been developed [40, 129].

Existing bot detection methods differ on the algorithms used, as well as in the features
used to characterize the account’s behavior. Researchers have come up with distinct categories
of features, but there is no general agreement on a specific group of characteristics that work
best for detecting all types of bots. The lack of consensus is mainly due to the differences
in bot’s behavior; each bot type shows different posting and consuming patterns. Moreover,
bot designers continuously seek to avoid detection mechanisms. As a result, hybrid bot ap-
proaches that mix automated and human activity have been developed [57]. Bots designed
with such approaches have proven to be harder to detect [38].

1.3 Hypothesis
One-class classifiers are a type of supervised machine learning classifiers that are trained only
with examples of one class and are capable of determining if an unknown object belongs to
the class used in the training phase of the algorithm, or not. As they can model normality,
one-class classifiers are commonly used to detect anomalies. They are especially useful in
domains where examples of anomalies may be scarce or non-representative. [113, 99, 29].

We hypothesize that one-class classifiers can detect instances of new classes of bots,
even if those classes were not present in the training phase of the algorithm. Such a detector
can be elaborated by training the one-class classifiers with examples of genuine behavior
expressed on twitter by humans. The validation of our hypothesis would allow us to overcome
the main limitation of state-of-the-art methods and complement existing approaches.

The following research questions guide this work:

• Does the performance of multi-class methods decrease when it comes to identifying
bots of an unknown class?

• Do one-class classifiers perform better than multi-class methods when it comes to iden-
tifying bots of an unknown class?

• When identifying bots of an unknown class, is there a statistically significant difference
between the performances obtained by the two methods?

1.4 Objectives
The main objective of this thesis is to improve performance in the timely detection of bots.
Some of the particular objectives of this thesis include:

CHAPTER 1. INTRODUCTION 6

• Select a database of Twitter bots with a variety of bot types and adequate number of
examples so that it can be used to compare different detection methods

• Design a short-length feature vector, based on the bot detection literature that captures
the behavior of Twitter accounts in a way that allows distinguishing bot from human
accounts.

• Define a set of experiments to test our hypothesis; these experiments should allow for a
direct comparison between the performances of multi-class and one-class classifiers.

• Identify several supervised multi-class classifiers that are representative of the state-of-
the-art bot detection mechanisms, to use them in the set of experiments.

• Select different state-of-the-art one-class classifiers to be used in the set of experiments,
to test their performance on the Twitter bot detection context.

• Analyze the experimental results and perform parametric tests to evaluate if there exists
a significant difference between the performances of multi-class and one-class classi-
fiers.

1.5 Contributions
This thesis presents research that contributes to the scientific community in different ways.
Some of the most relevant contributions are:

• A carefully-selected feature vector that encompasses the behavior of Twitter accounts
in a way that allows distinguishing humans from bots, using supervised classification
methods.

• An evaluation of one-class methods’ performance in the Twitter bot detection context.
To the best of the author’s knowledge, no research has proposed one-class classification
methods for bot detection on Twitter so far.

• A direct comparison of the performances of multi-class and one-class methods in the
Twitter bot detection context, along with the significance test of their differences.

1.6 Document Structure
The rest of the thesis is organized as follows. Chapter 2 elaborates on the state-of-the-art
methods for bot detection on Twitter, as well as the implications of the evolution of bots’
behavior. Chapter 3 explains one-class classification techniques, and their application for
detecting unknown types of bots on Twitter is detailed. Chapter 4 presents the experimental
setup used to test our hypothesis. Chapter 5 shows the experimental results and discussion.
Chapter 6 concludes this research and describes possible paths for future works regarding bot
detection on Twitter.

Chapter 2

State-of-the-art Methods for Bot
Detection on Twitter

Automated accounts present on social networks, such as Twitter, have demonstrated to be in-
fluential in a wide variety of topics that range from politics to public health debates. Aware
of their influence, researchers across the world have developed their bot detection methodolo-
gies. In recent years, several bot detection proposals have emerged, being supervised classi-
fication the most common approach among them. For detecting bots, supervised approaches
need features that represent and characterize the accounts. These features allow the classifier
to distinguish between bots and legitimate accounts. However, there is not a standardized set
of features used on previous bot detection research. Even the performances are evaluated in
different manners, which does not allow for a direct comparison of the methods used. Nev-
ertheless, from an analysis of previous works, we have obtained useful information about the
features used and their merits for bot classification. These past works have served as a foun-
dation for new detection methods and account characterizations. On the other hand, bots have
also evolved. For the existing detection mechanisms to maintain their effectiveness, they need
to evolve along with paradigm shifts in bot design.

Almost the entirety of the material presented in Section 2.2, which addresses the state-
of-the-art in bot detection, is taken directly from the article A One-class Classification Ap-
proach for Bot Detection on Twitter [100]. In that article, I had the opportunity to contribute
importantly to the creation of the material presented, which is fundamental in the structure of
this chapter, and this thesis in general.

2.1 Prevalent Performance Measures in Bot Detection Re-
search

Performance measures are used to evaluate the effectiveness of a given method. Determining
a performance measure also enables a direct comparison between methods that share it. Most
of the performance measures used in the bot detection literature can be derived from a table
showing the relationship between observed and predicted values in a classification problem,
known as a confusion matrix [91]. This matrix contains four values: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN).

7

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER8

Figure 2.1: Confusion matrix layout.

In bot detection literature, there are three standard performance measures used. Since
there is no ranking regarding their importance, these performance measures are listed in al-
phabetical order. The first performance measure is accuracy, which is given by the percentage
of the correctly classified bots and legitimate accounts, from all the accounts on the testing
datasets.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

The second measure used is Area Under the Curve (AUC) [68] of a Receiver Operating
Characteristics (ROC) curve. Two measures are needed to calculate the ROC curve: Recall
and False Positive Rate (FPR). Recall, also known as Sensitivity, is the percentage of correctly
predicted bot accounts of all the bot accounts in the testing dataset. FPR refers to the percent-
age of incorrectly classified accounts, the false positives, from all the legitimate accounts in
the testing dataset.

Recall =
TP

TP + FN
(2.2)

FPR =
FP

FP + TN
(2.3)

The ROC is calculated by plotting the recall against the FPR, and the AUC summarizes
the performance in a single numerical value. The AUC defined by one run of the algorithm
is also known as Balanced Accuracy [107]. AUC can be calculated by the following formula
[106]:

AUC =
Recall + Specificity

2
(2.4)

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER9

Specificity measures the proportion of true negatives, over the total number of instances
predicted to be negative. The following formula calculates specificity [107]:

Specificity =
TN

FP + TN
(2.5)

The third measure is the F1-score [78]. This measure is given by the harmonic mean
of precision and recall, where precision is the percentage of correctly classified bot accounts
from all the accounts classified as a bot.

Precision =
TP

TP + FP
(2.6)

F1 = 2 · Precision ·Recall

Precision+Recall
(2.7)

Unlike accuracy, F1 and AUC have the advantage of being balanced performance mea-
sures and robust against imbalanced class problems [68, 78]. Class imbalance occurs when
there are more examples of one class than another, which is common in the Twitter bot detec-
tion context [65]. Additionally, some authors [37, 82] complement the previous performance
measures with the Matthews correlation coefficient (MCC) [24]. MCC is a correlation coeffi-
cient between the observed and predicted classifications. Since it takes into account true and
false positives and negatives, it is suitable for evaluating class imbalance problems [24].

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.8)

2.2 Previous Works
Regardless of the online platform, bot detection bases on the premise that automated accounts
show different behavior than accounts managed solely by humans. This premise is taken as
true, disregarding of the bot’s level of automation or sophistication. In Twitter, the behavior
of an account is characterized using different features drawn from the account and the content
it posts. Along with the different bot detection methods proposed in the literature, scientists
have used distinct feature representations for yielding accurate bot detection models [38, 82,
40, 86]. Such features can are into five categories:

Content: Tweets can contain up to 280 characters, which can be used to post text, mention
other users, post urls, and images. By parsing the text and analyzing the other elements,
telltale signs of a bot can be found. One of the earliest features used was the number of
urls posted, the numbers of unique urls, and the number of mentions to other users per
tweet [76, 56, 4], because bots were commonly used to spam links to malicious pages
using the same message but mentioning different users. The text can also analyzed to
characterize bot behavior, as the language and phrase construction may differ between
bots and legitimate users [40, 121]. The construction of the phrases and words can also

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER10

be used to separate between bots and legitimate users, as the language used could be
different [40].

Sentiment: Further analysis of the text of the tweet can be done to extract the sentiment, and
measure how the poster of the tweet feels about the topic at hand. While these char-
acteristics are related to the content, they require further analysis and do not allow for
direct extraction [82]. Dickerson et al. [43] found that bots accounts express more con-
sistent sentiments for a topic, as they are commonly used to support or oppose a topic.
Sentiment features are the less used ones, [48, 82], or complete accounts depending on
the average sentiment expressed [43].

Account Information: These features are obtained from the account used to post a tweet,
and have the advantage of not suffering big changes over time, as the information does
not change with every tweet. For this reason, these features can be measured with less
frequency. Features such as the account age, if there was a biography or description of
the account, and if the account had an image could be used to detect bots, as these ac-
counts could be empty and be relatively new [122]. However, bot accounts sometimes
stay dormant until needed, and are filled with fake information to avoid detection [38].
One of the most useful feature of this type is the friends to followers ratio as legitimate
accounts who follow other humans should have a similar number of friends and fol-
lowers, as human relationships tend to be reciprocal. While friends to follower ratio is
a widely used feature [82, 40, 76], it can be subverted as sophisticated bots un-follow
friends that do not reciprocate.

Account Usage: These features measure how the user or bot uses the account, and how it in-
teracts with the Twitter service. Bots can have distinct posting patterns than a legitimate
user, like posting at regular intervals, or posting in volumes that would be impossible
for humans [34]. Furthermore, bots generally access the Twitter platform via the API or
other ways that allow automated programs to post, while legitimate users tend to use the
web or mobile interfaces [34]. Account usage features can also obtain single metrics
from aggregating content ones, such as analyzing the difference between messages, as
bots could post the same message to different users [76].

Social Network: These features measure the interactions between different accounts, as a
single account may not express suspicious behavior, but when analyzed in group bots
could be found. Examples of this features can be a measurement of the different in
text or topic of accounts, as groups of bots tend to post about the same topic [72]; the
difference in posting times of messages, as bots tend to retweet the same message in
short time spans; or the sequence of actions as bots may perform the same actions in
the same order while legitimate users do not [38].

Characterizing bots using features of five different categories has enabled to approach
bot detection task using supervised and unsupervised classification. In the next sections, the
most prominent Twitter bot detection mechanisms are discussed. For each approach, we dis-
cuss the feature representation, the classification method used, and the reported performance.

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER11

2.2.1 Supervised Bot Detection Approaches
Lee et al. [76] proposed one of the earliest methods for Twitter bot detection. They created a
classifier called Decorate, which uses content, tweet account, and account usage features, on
a dataset collected by them. This method achieved an F1 value of 0.88. Similarly, Wang [124]
approaches the problem as Lee et al., but obtains the features only from the last 20 tweets in
the account, and uses a naı̈ve Bayes classifier, obtaining an F1 value of 0.91.

In a later study, Ahmed and Abulaish [4] used the Weka data mining tool [59] to test
the performance of three classifiers: naı̈ve Bayes, J48, and Jrip. By restricting each classifier
to different feature subsets, they found that account usage features are more discriminative
than tweet content ones. Regarding the performance of the classifiers, Jrip attained the best
performance, achieving a recall of 0.987.

Most recent research, seeking to improve the performance previously obtained, have
exploited other account usage features. Chu et al. [34] claimed to have achieved 96% of
recall, using Random Forest [26], when including usage features such as how the client logs
into the Twitter platform or the client regularity of tweet posting.

Yang et al. [128] improved the F1 score previously obtained by Decorate and Bayesian
network classifiers by using features of type tweet usage and social network. They obtained
an F1 equal to 0.9 using Random Forest, while the previously mentioned naı̈ve Bayes and
Decorate methods obtained an F1 of 0.88 and 0.83, respectively.

To optimize the amount of data that needs to be gathered, Wang et al. [125] focused on
the detection of spam tweets by relying only on content features. In their experiments, two
different datasets were used, but the best results were obtained using the Social Honeypot
Dataset created by Lee et al. [77]. This dataset consists of 22,223 spammers and 19,276
legitimate users, along with their most recent tweets. Random Forest was the best performing
algorithm; it was capable of detecting bots with an F1 score of 0.946.

Gilani et al. [56] adopted a different methodology, which added the multimedia elements
in the tweets to the account usage features. The authors separated the accounts into different
datasets, depending on the number of followers. By using a Random Forest classifier, he
achieved an F1 close or equal to 1.0 in the best case, finding bots accounts with more than 10
million followers. In these experiments, they found that, with their feature representation, it
is more difficult to detect a bot with less than one thousand followers. In such cases, Gilani et
al. method obtained an F1 of 0.84.

Cresci et al. [37] proposed a DNA-like analysis of the tweet usage account. They hy-
pothesized that not only are the actions that allow discerning if an account is a bot but the
sequence of the actions as well. Cresci et al. assign a letter to each tweet of an account, de-
pending on the types of tweets shared. Their encoding was done in the following way: A
for a simple tweet, T for a reply, and C for a retweet. Next, a DNA fingerprint of an ac-
count is obtained by creating a string with all the assigned letters of each tweet, appearing in
chronological order. To test the approach, they examined the similarities between the DNA of
the accounts. Cresci et al. considered DNA similarity as a proxy for automation; thus, large
groups of accounts with an exceptionally high level of similarity were most likely to have an
anomalous behavior. Precisely, the similarity among the accounts was quantified by looking
at the Longest Common Substring (LCS) among digital DNA sequences. With this method,
Cresci et al. obtained an F1 of 0.97.

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER12

Loyola et al. [82] emphasized the need for understandable classification models and
proposed to approach Twitter bot detection using contrast-pattern based classifiers. Because
contrast-pattern models have high explanatory power, they might help experts in different sce-
narios [44]. For example, these models can support decision making, or be used to forewarn
an account holder about suspicious activity [83, 82]. The second contribution of Loyola et
al. is the introduction of a new feature model, which includes features out of Twitter account
usage and tweet content sentiment analysis. The proposed feature representation provided
the lowest standard deviation, among all the tested classifiers. Regarding classification al-
gorithms, the top-ranked (using AUC score as criteria) (LCmine+Hell)+Filt+PBC4cip, and
(LCmine+Hell)+PBC4cip obtained an average AUC of 0.9976.

Currently, state of the art for Twitter bot detection is the Botometer tool proposed by
Yang et al. [129]. Botometer uses a Random Forest classifier [26] over 1,200 features from all
the categories. Their results are reported using bots of different types, obtaining a score of up
to 1.0 AUC, when classifying political bots. Overall, this method achieves a cross-validation
performance of 0.97 AUC.

Most of the approaches for Twitter Bot detection rely on supervised classifiers. However,
unsupervised classification methods have also been used to detect groups of related bots, and
have even been tested on supervised datasets to obtain measurements of performance.

2.2.2 Unsupervised Bot Detection Approaches
Unsupervised bot Detection approaches represent an alternative that aims to uncover different
types of bots. Regularly, unsupervised methods make use of some clustering algorithm to
detect correlated bot accounts. When these accounts act in a highly synchronized manner and
share their objective, they are referred to as botnets.

Ahmed and Abulaish [4] proposed to find groups of suspected spam campaign accounts
using the Markov clustering algorithm [119]. To find groups of spammers, first, they created
an undirected, fully connected graph where each node is a suspected spam account. This
graph contains the weight of the links, which is the similarity between accounts using tweet
usage features; then, the clustering algorithm is applied. On the downside, while they claim
that campaigns were successfully detected, they do not give any performance measure.

Miller et al. [88] used a clustering approach to find groups based on features of either
tweet account or account usage. Since account usage varies over time, Miller et al. use Den-
Stream [123] and StreamKMmeansCC [2], which are techniques adapted for data streams.
The authors claim to have obtained an F1 of 0.88 using this approach.

Chavoshi et al. [31] analyzed the behavior of Twitter users and observed that it is highly
unlikely that several users retweet a message in less than 20 seconds after it is posted, or
that they post a message with a related trending topic in the same second. To support this
claim, they use social network features together with a lag-sensitive hashing technique and
a warping-invariant correlation measure to organize the accounts in clusters of abnormally
correlated accounts. The results showed that, when the accounts are used to post for the same
trending topic in a short time frame, they find groups of bots for Twitter with a precision of
0.94.

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER13

Author Performance Method Relevant Details Approach
Lee et al.[76] F1=0.88 Decorate classi-

fier
Use content, tweet account, and
account usage features.

Supervised

Wang et
al.[124]

F1=0.91 Naive Bayes Similar approach to Lee et al., but
using only last 20 tweets of each
account.

Supervised

Ahmed et
al.[4]

Recall=0.987 Jrip Features explored are interaction-
driven, tweet-driven and URL-
driven.

Supervised

Chu et al.[34] Recall=0.96 Random Forest Includes usage features, such as
how the client logs in and regular-
ity of tweet posting

Supervised

Yang et
al.[128]

F1=0.9 Random Forest Uses features of type tweet usage
and social network

Supervised

Wang et
al.[125]

F1=0.94 Random Forest Content and sentiment of the
tweet; information and account
use.

Supervised

Giliani et
al.[56]

F1=1.0 Random Forest Separates the accounts according
to the number of followers. F1 =
1 for accounts with number of fol-
lowers ≥ 10 Millions

Supervised

Giliani et
al.[56]

F1=0.84 Random Forest For accounts with number of fol-
lowers < 1,000.

Supervised

Cresci et
al. [37]

F1=0.97 DNA-like anal-
ysis (Longest
Common Sub-
string)

Implements a DNA-like analysis
of the tweet usage account

Supervised

Loyola et
al. [82]

AUC=0.99 Contrast-patterns
based classifiers

Uses contrast-patterns based clas-
sifiers along with features out of
Twitter account usage and tweet
content sentiment analysis.

Supervised

Yang et
al.[129]

AUC=1 Botometer
(Random Forest-
based)

Uses over 1,200 features from all
the categories. Trains with dif-
ferent types of bots. Best AUC
performance was obtained when
classifying political bots.

Supervised

Miller et
al.[88]

F1=0.88 DBScan y K-
means++

Uses a clustering approach to find
groups based on features of either
tweet account or account usage.

Unsupervised

Chavoshi et
al.[31]

Precision=0.94 Lag-sensitive
hashing tech-
nique and a
warping-invariant
correlation mea-
sure

This method considers cross-
correlating user activities and re-
quires no labeled data.

Unsupervised

Table 2.1: Previous works comparison.

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER14

2.3 Implications of the Evolution in Bots’ Behavior
As the evolution of bot behavior continues, current detection models become obsolete, as they
are not efficient in uncovering new types of bots. Moreover, since bots continue to evolve and
diversify, obtaining examples of them is not a trivial task. Therefore, new detection methods
are required, methods that do not require previous knowledge of all the different types of bots
that populate the network.

2.3.1 Paradigm-shift in Bot Design
Investigators of social networks have documented the evolution of bot behavior [48, 132]. A
particular type of bot that has changed its behavior over time is the spambot. Spambots have
modified their modus operandi to evade basic detection techniques [38], such as the ones based
on posting patterns [110], textual content of posted messages [76] and relationship between
accounts [55]. Additionally, the number of OSNs users fooled by bots increases along with
bot’s behavior complexity [37].

Machine-learning applications have not only been used for developing new detection
tools, but also for automatically generating bot content [51] and emulating human posting and
consumption behavior patterns [64]. Related groups of bots, botnets, may aim to increase the
popularity of specific accounts, topics, or opinions by posting similar content. Since these
accounts do not publish spam individually, but altogether, their behavior is generally harder to
uncover [129]. Researchers have developed unsupervised techniques to detect botnets when
they act in a strongly coordinated manner [31, 32]. Unfortunately, these methods have the
limitation of relying on checking a single feature, which may allow for different types of
botnets to pass undetected.

2.3.2 Relationship Between Bot Behavior and Classifiers Performance
Researchers have shown that emerging waves of spambots have characteristics that yield in-
effective some conventional detection methods, such as the ones evaluating single accounts
based on a set of established features tested over known datasets [38]. Moreover, the paradigm-
shift in bot design, and therefore bot behavior has caused unsatisfactory performances in sev-
eral state-of-the-art bot detection methods [38]. Additionally, experiments have shown that
testing datasets containing new types of bots tend to lead to lower performances when com-
pared against models that had the opportunity to learn from those instances [129].

A proactive approach for bot detection, which makes use of synthetically evolved ver-
sions state-of-the-art social bots, has also been proposed [39]. Such research provides evi-
dence of how so-called evolved spambots evade current detection techniques. Specifically,
Cresci et al. [39] developed experiments using three state-of-the-art bot detection techniques.
By evaluating the accounts’ behavior and content posted, their results showed that as much as
79% of evolved spambots are capable of evading detection.

Due to the unsatisfactory detection results of state-of-the-art techniques, there is a need
for novel approaches that are capable of ensuring the timely detection of new types of bots
[38]. Moreover, to provide detection mechanisms robust enough to keep up with all kinds

CHAPTER 2. STATE-OF-THE-ART METHODS FOR BOT DETECTION ON TWITTER15

of coordinated bots, new algorithms and approaches are needed, ones that exploit different
dimensions of similarity between genuine and bot accounts [129].

2.4 Summary
Twitter bot detection is a problem that has gained popularity in recent years. Scientists have
developed several supervised and unsupervised detection methods with the objective of un-
covering malicious bots and ban them from the network before they continue causing harm.
These methods have shown to be effective when detecting known bot types, but they have
some limitations. The most prominent limitation of current bot detection mechanisms is the
need to possessing bot type examples beforehand to be able to detect them. This requirement
threatens the effectiveness of current detection systems due to the evidence of a paradigm shift
in bot behavior and design.

Chapter 3

One-class Classification for Twitter Bot
Detection

The main focus of this research is to overcome one of the main limitations in the state-of-the-
art methods for bot detection, which is the need of possessing specific bot-types examples to
construct reliable classifiers. In particular, this thesis aims to show that one-class classifiers
complement existing approaches, as they only require genuine (human) users’ behavior to
learn representations that help them to discern between human and bot accounts. Therefore,
the hypothesis is that, given an appropriate feature vector, one-class classifiers may be able to
detect instances of new, previously unseen, classes of bots. Thus, overcoming the main lim-
itation of state-of-the-art methods. Another contribution of the present work is the proposed
feature vector, which was designed by studying the literature and carefully selecting the fea-
tures that have demonstrated to provide the most discriminatory power when used to discern
between bots and human users.

The following sections describe one-class classifiers, the advantages, and limitations of
these classifiers in the bot detection context, and the experimental methodology.

3.1 Fundamental Approaches for Anomaly Detection
Hodge [63] summarizes the outlier detection problem into three basic approaches that are
analogous to the basic types of machine learning. The following subsections address each one
of these three approaches.

3.1.1 Unsupervised Clustering
In an unsupervised clustering approach, outliers are determined without prior knowledge of
the data. Also, the data is assumed to be static. Once data is given as input, the most remote
objects, the ones separated from the cluster of ‘normal’ data, are considered to be outliers.
This approach can be adapted to be suitable for both classification and outlier detection by
subdividing the main cluster into smaller ones. Even though an unsupervised anomaly detec-
tion requires all the data to be static and available before processing, in a sufficiently large

16

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 17

database, one with good spatial distribution coverage, this method becomes suitable for com-
paring new items with the existing data [63].

Rousseeuw and Leroy [103] describe two sub-techniques commonly applied within this
approach: diagnosis and accommodation. In a diagnosis approach or diagnostics, as referred
by Rousseeuw and Leroy, the system removes potential outlying points before further process-
ing the data. Frequently, this is done by iteratively pruning all the outliers and then performing
clustering to the remaining data. The second alternative, accommodation, makes use of clas-
sification and results in a robust method where outliers can be incorporated into the generated
model.

An accommodation methodology can take outliers in the data and still represent normal
behavior by inducing a margin of normality around the majority of the data; this overcomes
the limitations of non-robust classifiers, which can produce skewed representations if outliers
are considered together with the rest of the data. As for the computational cost, non-robust
methods are cheaper, but they are susceptible to distortion in cases where there are a large
number of outliers.

3.1.2 Supervised Classification
The supervised classification approach (for anomaly detection) models both normality and
abnormality; therefore, it requires the data to be pre-labeled as normal or abnormal. Ideally,
a trained classifier would learn the area where the normal class is located, leaving the outlier
examples outside of it. Moreover, a supervised approach not only can be used to perform a
normal/abnormal classification, but it is also capable of providing a classifier with k-classes
of normality [63]. The different normal classes are obtained by sub-diving the classification
area into k distinct classes according to the requirements of the system. Figure 3.1 shows the
classification area for the normal class learned by a one-class classifier with three classes of
normality.

This approach is suitable for on-line classification, where the classifier first is trained
to learn a classification model and then classifies new instances accordingly. As with other
approaches, a given classifier labels as normal the instances located inside a region of nor-
mality; instances located in any other regions are labeled as outliers. Figure 3.2 illustrates
this example. To allow a good classifier generalization, the data used should cover the entire
distribution of normal instances. This generalization capacity might allow the classifier to
label objects located inside the known distribution correctly. On the contrary, the generaliza-
tion requirements represent a limitation because objects derived from an unknown, previously
unseen, region of the distribution, might not be classified correctly.

3.1.3 Semi-supervised Classification
Semi-supervised detection approaches can be found in the literature under the name of novelty
recognition or novelty detection. Though it can also be used to model abnormality, in the
majority of the cases, semi-supervised detection approaches focus on only modeling normality
[46, 66].

In a semi-supervised approach, the algorithm is only shown objects belonging to the
normal class, but through this process, it learns to recognize abnormality. As with the previous

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 18

Figure 3.1: Classification area, with three classes of normality, learned by a one-class classi-
fier.

Figure 3.2: Region of normality learned by a one-class classifier.

approach, the classifier needs labeled data. This approach has the advantage of being suitable
for both static and dynamic data since it only learns a single class, which provides the model

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 19

of normality. Additionally, the model can learn incrementally as new examples arrive, thus
updating the model with every new example [63].

Common to the other two main approaches, a semi-supervised detection system clas-
sifies a new object as normal if it is located within the boundary of normality; otherwise, it
is categorized as an outlier. Depending on the underlying detection algorithm, the normal-
ity boundary can be hard or soft. In a hard boundary, the objects lie either inside or outside
the boundary, resulting in a hard, binary classification. On the contrary, when the boundary
is soft, objects are assigned a degree of class membership or outlierness. Figure 3.3 shows
different degrees of outlierness learned by a one-class classifier.

Figure 3.3: Classification regions learned by a one-class classifier. Colors represent different
degrees of membership to the normal class, being the lightest an indicator of a 0% degree of
membership to the normal class.

This approach requires big amounts of normal data to compensate for the lack of ab-
normal instances. Feeding the model with a big, good-quality dataset, often results in a
model with good generalization capabilities [63]. This technique is the most suitable for
domains where abnormal data is expensive or difficult to obtain. Such is the case in fraud
detection [42], fault detection in an engine [14], personal-risk detection [99], and malware
detection [67].

Additionally, semi-supervised approaches solve some of the problems that are present
in supervised classification approaches. One of the problems in the second approach is that
it does not always handle well outliers from unexpected regions. Hodge [63] demonstrates
this situation in the fraud detection context, where a new fraud method never previously en-
countered may not be handled correctly by the classifier that uses the second approach unless
its generalization capacity is outstanding. In contrast, a system based on a semi-supervised

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 20

approach can succeed in detecting the fraud as long as it lies outside the boundary of nor-
mality. To keep up with changes in the normality, methods using this third approach may be
shifted by re-learning the data model. As an upgrade alternative, if the underlying modeling
technique allows it, the model itself can be shifted; such is the case of evolutionary neural
networks.

As we shall see next, one-class classification is closely related to a semi-supervised
anomaly detection approach. Therefore, most of the applications of one-class classifiers in-
volve the detection of anomalies in the behavior of the analyzed objects. In this thesis, one-
class classifiers are used to overcome the limitations in bot detection, which are due to the
lack of bot type examples.

3.2 Classification in Machine Learning
Classification is one of the most popular Machine Learning tasks. Algorithms used to perform
classification take as input a set of instances and learn a set of rules from them, using a given
mathematical model. These rules are then used to classify new instances. Moreover, the
specific properties of each instance, or object, can be represented through a collection of
numerical or categorical variables, also called features [92].

3.2.1 Training and Testing a Supervised Classification Model
In supervised classification, the target, also known as a class, of every instance is known.
Therefore, for every instance, there is a vector of features that describes it and its true class
label. It is a common practice that, to create a classification model, the researcher splits the
available data into two different sets: training and testing [73].

The instances contained in the training set are given as input to the classifier to fit the
model. These instances are used to adjust the parameters of a given algorithm by using a
supervised learning method. Thus, allowing the algorithm to learn a relationship between the
features of the objects and the labels. Some famous classification algorithm examples are
Random Forest, Support Vector Machines, and Naive Bayes.

The objective of the testing set is to provide an unbiased evaluation of the model fitted
on the training dataset. For this test to be reliable, the instances of the testing and training sets
must be independent [97]. The process to asses the generalization capabilities of the fitted
model is straight forward. First, the trained model is used to classify the instances in the testing
set, and then this prediction is compared to the actual label. The generalization capabilities
can be measured using different metrics, depending on what aspect of the classifier wants to
be evaluated. Later on this chapter, we address the most often used performance measures.

3.2.2 One-class, Binary, and Multi-class Classification
Models using binary and multi-class are designed to receive data that contains labels for each
instance and learn rules to distinguish each one of them, based on pattern present in their
feature vector. Moreover, in the case of multi-class classification, all the possible distinct
labels are present in the dataset; this means that when a new instances need to be classified, the

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 21

algorithm assigns it the label of its most similar class. This similarity is measured according
to the specific algorithm used to construct the model.

One-class classifiers are different from traditional methods just in the training phase.
One-class methods work by characterizing a training set of instances that belong to just one
class. Then, at the classification phase, one-class methods aim to detect if a new, previously
unseen object, resembles such set [113]. For one-class classifiers to work correctly, the target
class is required to be appropriately defined and sampled. As an advantage, non-target objects
are not required to constitute a meaningful class; there is no need for them to be sampled
thoroughly and extensively [92].

In the literature, authors refer to one-class classification in different ways. These terms
have their origin in the different applications of one-class classification [113]. The term “one-
class classification” was first introduced in 1993, in an article by Moya et al. [89]. Later, other
authors refer to such applications of this technique as novelty detection [22], outlier detection
[98] or concept learning [114]. Through this document, those terms are used interchangeably.

Figure 3.4: Comparison of classification models learned by a one-class and a binary classifier.
Figure inspired by Rodrı́guez et al. [101].

Comparison of Classification Methods

Figure 3.4 compares the classification area learned by a one-class classifier and a binary classi-
fier. The thick blue line represents the region of the cluster that represents the class it encloses,
while the squares outside the clusters represent an object from the testing set. In the one-class
example, the classifier calculates the distance from the object to the cluster and then uses a
threshold to classify the object as normal or abnormal. In contrast, a binary classifier calcu-
lates the distance of the object to both clusters and label the queried object with the class of

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 22

the nearest cluster.

3.2.3 Measures to Compare Classification Performance
The performance measures that can be used to evaluate a classifier vary depending on the
classification task, which can be binary, multi-class, multi-labeled, or hierarchical [107]. Ac-
cording to Sokolova Lapalme [107], the most used measures, based on the confusion matrix,
for binary classification are Accuracy, Precision, Sensitivity, F1, Specificity, and AUC. Recall
these measures are described in detail in Section 2.1.

Selecting the appropriate measure is crucial in any experiment, since comparing clas-
sifiers’ performance with an inadequate measure can lead to misleading interpretations. For
example, imagine a binary classifier always predicts a given instance is from class A. If we
have 5 instances of class B and 95 instances of class A, this classifier yields 95% accuracy.
This score might sound outstanding. Still, in reality, this classifier is useless due to its in-
ability to detect instances of class B. This example represents an imbalanced class problem, a
scenario in which the accuracy metric can be misleading. From all the mentioned measures,
F1 and AUC have the advantage of being balanced performance measures, which are robust
against imbalanced class problems [68, 78].

3.3 Advantages and Limitations of Existing Approaches for
Bot Detection in Twitter

3.3.1 The Supervised Approach for Bot Detection
Most of the works regarding Twitter bot detection approach the problem as one of supervised
classification. Since the goal of this task is to differentiate between normal and bot accounts,
it is very intuitive to tackle the problem with a binary classification approach. The main
advantages and limitations of this approach are address in the following paragraphs.

Advantages of a Supervised Approach for Bot Detection

Through the years, supervised bot detection approaches have contributed to determine which
individual features, or combinations of them, allow for a better characterization of the twitter
user behavior. Moreover, when the bot type is known, supervised approaches, such as [129,
82], have led to the highest performance scores reported so far.

Limitations of a Supervised Approach for Bot Detection

Adopting a supervised classification strategy for bot detection has some limitations. For ex-
ample, a bot might pass undetected if its class is different from those used in the training
phase of the classifier. The effectiveness of the detection system depends on how different the
bot behavior is, compared to previously seen bots. In real-life scenarios, supervised detection
systems are vulnerable because the behaviors of bots are not homogeneous. Researchers have

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 23

shown that there are types of bots aiming to emulate social behaviors to avoid detection and
that there are new types of bots entering Twitter regularly [38, 39].

This vulnerability represents a threat to detection mechanisms based solely on a super-
vised classification approach. In both, a multi-class and binary class classification methods,
new instances are categorized as one of the pre-defined classes, even if it is the case that this
new example belongs to another, unknown category. This assumption made by the classi-
fier entails a risk in cases where complete information about specific instances’ types is not
available. Even more, this lack of information could be detrimental to the performance of the
classifiers.

3.3.2 The Semi-supervised Approach for Bot Detection
This thesis work proposes to approach bot detection using a semi-supervised approach, namely
one-class classifiers. One-class classifiers only require examples of one class, which in this
case are genuine users examples to learn a classification model capable of identifying if a new
object belongs to that class or not. Since bot type examples are scarce, and there is no ground
truth for the behavior of a bot, detection mechanisms can benefit from this type of classifier.
The main advantages and limitations of this approach are address in the following paragraphs.

Advantages of a Semi-supervised Approach for Bot Detection

As a way to deal with the vulnerabilities of supervised methods, we propose to approach the
Twitter bot detection task using one-class classification. Specifically, using a one-class clas-
sifier, with a semi-supervised internal mechanism, to model the behavior of genuine (human)
Twitter users, would provide systems the capacity to detect bots regardless of the bot type.
Likewise, it would be able to detect entirely new types of bots. In other words, mechanisms
that make use of the proposed approach can detect bots based on how the behavior they ex-
pressed deviates from normal (genuine) user behavior. Thus, one-class classifiers are capable
of detecting novel bots and overcome one of the main limitations of state-of-the-art supervised
methods.

Limitations of a Semi-supervised Approach for Bot Detection

Despite the benefits it brings, a semi-supervised approach for bot detection is not flawless. The
performance of one-class detection mechanisms is closely related to the characterization of
the behavior of Twitter accounts. If the feature space does not provide enough information to
differentiate the behavior of bot and human accounts, one-class methods may perform poorly.
Also, as the experimental results in Section 5 show that, if the bot types are already known,
binary classifiers tend to perform better.

3.4 Methodology
To validate the hypothesis that one-class classifiers may be able to detect instances of new
classes of bots, we designed three experiments sets, which answer the following research
questions:

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 24

• Does the performance of multi-class methods decrease when it comes to identifying
bots of an unknown class?

• Do one-class classifiers perform better than multi-class methods when it comes to iden-
tifying bots of an unknown class?

• When identifying bots of an unknown class, is there a statistically significant difference
between the performances obtained by the two methods?

3.4.1 Experiments
Three experiment sets were designed to test the advantages and limitations of a semi-supervised
anomaly detection approach for bot detection. These experiments aim to compare fairly and
directly the performances of multi-class and one-class classifiers. The obtained results show
the generalization capacity of multi-class classifiers that have been trained with three classes
of bots and tested with bots of an unknown class.

The descriptions presented in this section are done at a high-level. The specifics of
every experiment are detailed in Chapter 4. Each experiment set deals with a different type
of classifier (binary, multi-class, or one-class). Once all the experiments are carried out, the
performances are compared to answer the research questions.

Experiment Set A: Binary Classifiers

This set of experiments involves binary classifiers. In this set of experiments, the binary
classifiers are trained with a set containing instances of genuine users and one type of bots
and then tested using a set containing different types of bots. This procedure is repeated until
all the available types of bots are used in the training phase.

The obtained results give information about the generalization capabilities of binary
classifiers. We hypothesize that, if the behavior shown by the different bot types really differ
from one another, the classifiers’ performance will be outstanding when classifying the same
type of bot. Still, it will decrease when classifying other bot types.

Experiment Set B: Multi-class Classifiers

This set of the experiment involves a multi-class version of the binary classifiers and simulates
more closely how classifiers can be used to detect bots. This simulation is done by imitating
the strategy of most publicly available bot detection tools. The strategy consists in using a
diverse set of bot examples, one that encompasses multiple behaviors, for the classifier to
learn better how to discern between legitimate and bot accounts.

In experiment set B, the multi-class classifiers are trained with a set containing instances
of genuine users and three (out of four) type of bots and then tested using a set containing the
remaining type of bots. This procedure is repeated until the four types of bots are tested.

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 25

Experiment Set C: One-class Classifiers

This set of experiments involves one-class classifiers. Since one-class classifiers have the
particularity of only requiring only legitimate user accounts in their training phase, the training
sets created for the previous experiment set can be used without further modifications.

In this set of experiments, the selected one-class classifiers are trained with legitimate
accounts and tested with a dataset that contains legitimate and bot account examples of only
one type. For each classifier, this procedure is repeated until all types of bots are used in the
testing phase. Due to the nature of one-class classifiers, we hypothesize that their performance
will be stable, this means there will be a low standard deviation among the performances
obtained when classifying different types of bots.

3.4.2 Datasets Used in the Experiments
Understanding the rationale behind the design of Twitter bots is essential, as it can help to
develop better detection mechanisms. Recent studies, such as the one performed by Cresci et
al. [38], show that there exists a paradigm shift in the design of Twitter bots. In their study,
the bots found were grouped into nine different types, according to their behavior or purpose.
These groups are present in a single database, which constitutes real-world data. Table 3.1
describes Cresci’s Twitter accounts groups.

For the experiments carried out in the present work, five of Cresci’s datasets are used.
These datasets are genuine accounts, traditional spambots #1, and all social spambots. Cresci
et al. collected examples of the three social spambot groups by using a Twitter crawler to
retrieve data of accounts that were suspected of belonging to one of those groups. Then, a
manual verification phase was carried out to certify the automated nature of all the collected
accounts. This process resulted in 991, 3,457, and 646 verified spambots accounts, for the
groups of social spambots #1, #2 and #3, respectively.

The genuine-accounts dataset contains 3,474 human-operated accounts. Those accounts
were randomly sampled and then contacted to verify if they were genuine users. The tra-
ditional spambots #1 dataset contains a set of 1,000 malware spammers accounts. Those
spammer accounts were used in the work of Yang et al. [128] as the training set of a classifier
that aims to detect evolving spambots on Twitter.

Dataset Description Accounts Tweets Year
Social spambots #1 Retweeters of an Italian political candidate 991 1,610,176 2012
Social spambots #2 Spammers of paid apps for mobile devices 3,457 428,542 2014
Social spambots #3 Spammers of products on sale at Amazon.com 464 1,418,626 2011
Genuine accounts Verified accounts that are human-operated 3,474 8,377,522 2011
Traditional spambots #1 Training set of malware spammers used by Yang et al. in [128] 1,000 1,418,626 2009
Traditional spambots #2 Spammers of scam URLs 100 74,957 2014
Traditional spambots #3 Group automated accounts spamming job offers #1 433 5,794,931 2013
Traditional spambots #4 Group of automated accounts spamming job offers #2 1,128 133,311 2009
Fake followers Automated accounts that inflate the number of followers of another account 3,351 196,027 2012

Table 3.1: Datasets released by Cresci [38].

The rest of the datasets used in Cresci’s research [38], namely traditional spambots #2,
traditional spambots #3, traditional spambots #4, and fake followers, were not used in the
present study. These datasets were excluded because they did not provide the information

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 26

required to obtain the feature vector proposed in Section 3.4.3. The five datasets that were
indeed used were obtained from the public Bot Repository 1, a web portal self-defined as a
centralized place to share annotated datasets of Twitter social bots.

3.4.3 Features for Characterizing Twitter User’s Behavior
Each of the datasets described in Table 3.1 comes in a folder with two comma-separated values
files: tweets and users. The tweets file contains information regarding the tweets of collected
users; it provides a vector with 25 features for each tweet. On the other hand, the users file
contains a vector of 40 features for each account. The features provided in the users files
contain three different data types: numeric, nominal, and text. Tables 3.2 and 3.3 describe all
the features contained in the selected datasets.

As mentioned before, the classification performance of any algorithm is often related
to several factors, including the quantity and quality of the features used to train it. In the
bot detection domain, it is well known that some of the state-of-the-art methods make use of
more than a thousand features [129]. However, the feature extraction process is often very
time-consuming, and not all the features contribute to the same amount to the improvement
of the detection performance.

Proposed feature vector

Taking into account the discoveries made in the previous works, a feature vector, per account,
is proposed. According to the information presented in the bot detection literature, several
features were carefully selected to make up the vector used to fed the classifiers. Moreover, the
chosen features have shown to provide good representations when used in different supervised
classification methods. During the selection process, it was taken into account that the features
of the vector used for training the algorithms must be discriminative to discern bot accounts
[4].

The proposed feature vector includes 13 features extracted for each account. The fea-
tures that conform to the input vector are described in Table 3.4; their category is also pro-
vided. The data was extracted from the original users files used in Cresci et al. [38] to obtain
the information for each feature. Furthermore, statistical information, such as the ratio be-
tween unique URL elements and total tweet count, was obtained for each user from the tweets
files. This information is useful for determining the posting behavior of the users and the
content of each post.

3.4.4 Selected Classifiers
A vital component of the hypothesis testing is the selection of binary and one-class classi-
fiers. Moreover, the performance of a classifier is dependent on the underlying assumptions,
features’ type used, and also on the statistical distribution of each feature [50]. Due to the
variability of the classifier’s operating conditions, the experiments are done using a set of di-
verse classifiers. Moreover, each classifier is representative of a supervised classifier family
[11]. This diversity prevents the results from being bias towards certain types of classifiers. In

1https://botometer.iuni.iu.edu/bot-repository/

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 27

Name Type Description

Id Numeric Unique identifier of the tweet
Text Text Text contained in the tweet
Source Text Source of the tweet
User Id Numeric Unique identifier of the user who tweeted
Truncated Nominal Indicates if tweet is truncated
In Reply To Status Id Numeric ID of the status which was answered
In Reply To User Id Numeric Id of the user who was answered
In Reply To Screen Name Text Screen name of the user who was answered
Retweeted Status Id Text Status id of the retweeted post
Geo Nominal Geolocation of the user when posting the tweet
Place Nominal Place the user was in when the tweet was posted
Contributors Text Tweet’s contributors
Retweet Count Numeric Number of retweets of the tweet
Reply Count Numeric Number of replies to the tweet
Favorite Count Numeric Number of favorites of the tweet
Favorited Nominal Indicates if the tweet has been favorited by the account used to access it
Retweeted Nominal Indicates if the tweet has been retweeeted by the account used to access it
Possibly Sensitive Nominal Flag indicating if the content of the tweet is possibly sensitive
Num Hashtags Numeric Number of hashtags contained in the tweets
Num Urls Numeric Number of URLs contained in the tweets
Num Mentions Numeric Number of mentions contained in the tweets
Created At Datetime Datetime on which the tweet was created
Timestamp Datetime Datetime on which the tweet was published
Crawled At Datetime Datetime on which the tweet was crawled
Updated Datetime Datetime on which the tweet was updated

Table 3.2: Features provided for each tweet in the selected Cresci’s datasets.

this section, we describe the five one-class classifiers used in the experiments, since they may
not be well-known. On the contrary, binary classifiers are not described, as they are widely
used in diverse contexts.

Multi-class and Binary Classifiers

Ten widely-known binary classifiers were selected for the bot detection experiments. These
classifiers are representative of the methods used in the bot detection literature. Using this
variety, we test different situations so as not to be biassed towards one or another composition
of the data. The classification algorithms used are Bayes Network [17], J48 [96, 71], Random
Forest [62], Adaboost [52, 133], Bagging [25], K-Nearest Neighbors (KNN) [10], Logis-
tic Regression [130], Multilayer Perceptron (MLP) [61, 104], Naı̈ve Bayes [131], PBC4cip
[83],and Support Vector Machines [28].

The most direct manner of comparing the performance of the proposed one-class ap-
proach to the one obtained by state-of-the-art methods would have been possible if all the
implementations were publicly available. However, not all the authors provide a public im-
plementation of their bot detection method; or the implementations are already trained, which
does not allow to compare the effect of unknown bot types for that method.

The classification methods reported in the literature, but not included in the experiment

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 28

Name Type Description

Id Numeric Unique identifier of the account
Name Text Name of the account
Screen Name Text Screen name of the account
Statuses Count Numeric Number of statuses posted
Followers Count Numeric Number of followers
Friends Count Numeric Number of friends
Favourites Count Numeric Number of favorited tweets
Listed Count Numeric Number of tweets listed
Url Text Url of the account’s profile
Lang Nominal Language of the account
Time Zone Nominal Time zone the account uses
Location Nominal Location ot the account
Default Profile Text Default profile of the account
Default Profile Image Text Default profile image of the account
Geo Enabled Nominal Indicates if geo is enabled
Profile Image Url Text URL of the account’s profile image
Profile Banner Url Text URL of the account’s profile banner
Profile Use Background Image Text URL of the account’s profile background image
Profile Background Image Url Https Text Profile background image url https
Profile Text Color Text Profile text color
Profile Image Url Https Text Profile image url https
Profile Sidebar Border Color Text Profile sidebar border color
Profile Background Tile Text Profile background tile
Profile Sidebar Fill Color Text Profile sidebar fill color
Profile Background Image Url Text Profile background image url
Profile Background Color Text Profile background color
Profile Link Color Text Profile link color
Utc Offset Numeric Universal Time Coordinated (UTC) offset
Is Translator Nominal Indicates if the account is translator
Follow Request Sent Nominal Indicates if friend request has been sent to the account
Protected Nominal Indicates if the account is protected
Verified Nominal Indicates if the account is verified
Notifications Nominal Indicates if notifications for this account are active
Description Text Description of the account
Contributors Enabled Nominal Indicates if contributors are enabled
Following Nominal Indicates if the account is being followed
Created At Datetime Datatime of the account’s creation
Timestamp Datetime Datetime on which it was published
Crawled At Datetime Datetime on which it was crawled
Updated Datetime Datetime on which it was updated

Table 3.3: Features provided for each user account in the selected Cresci’s datasets.

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 29

Feature Description Category
Retweets Ratio between retweet count and tweet count. Account Usage
Replies Ratio between reply count. Account Usage
Favoritec Ratio between favorited tweet and tweet count. Account Usage
Hashtag Ratio between hashtag count and tweet count. Account Usage
Url Ratio between url count and tweet count. Account Usage
Mentions Ratio between mention count and tweet count. Account Usage
Intertime Average seconds between postings. Account Usage
Favorites Number of tweets favorited in this account. Account Usage
UniqueHashtags Ratio between unique hashtag count and tweet count. Account Usage
UniqueMentions Ratio between unique mention count and tweet count. Account Usage
UniqueUrl Ratio between unique urls count and tweet count. Account Usage
Ffratio Friends-to-followers ratio. Account Information
Listed Number of listed tweets in the account. Account Information

Table 3.4: Feature vector extracted for each Twitter user.

section, are described in the following paragraphs, along with the reasons why they are ex-
cluded.

First, the Decorate classifier proposed by Lee et al. [76] was not included because, addi-
tionally to not being widely used, other popular methods have achieved higher performances.
Next, Cresci’s DNA-like [37] analysis method for bot detection is not publicly available;
therefore, it is not used. Moreover, further studies by the same author [39] demonstrate that
relatively simple bot design strategies can be used to fool such a detection method easily.
Because of its nature, Loyola-et al. [82] method, based in contrast patterns, is not directly
comparable with the one-class method because it performs classification per tweet, instead of
per account. Consequently, this contrast pattern method falls outside the scope of this thesis.
Lastly, the state-of-the-art commercial tool, Botometer [129], is not used in the experiments.
This method was excluded for several reasons. First, the Botometer detection mechanism re-
quires 1,200 features that are automatically extracted from the profile of a given active Twitter
user. Requiring so many features represents a limitation because not all the accounts included
in the dataset are still active, as they have been blocked or deleted due to the infraction of
Twitter’s terms and conditions. Also, the publicly available version of Botomerter is already
trained, hence comparing the performance it yields to the one obtained by the one-class clas-
sifiers does not result in a fair comparison. Nonetheless, in a paper that discusses the previous
version of Botometer, Davis et al. [40] mentioned that this tool is based on the Random Forest
algorithm, which is included among the selected algorithms.

Nonetheless, the selected classifiers are representative of the ones used in state-of-the-art
bot detection mechanisms in the literature. As a reference, Table 2.1 contains the state-of-the-
art Twitter bot detection works, along with the classifier used in each one.

One-class Classifiers

When selecting the one-class classifiers to be included, the main objective was to select
the ones belonging to the state-of-the-art in anomaly detection. This led to choose three

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 30

ensemble-based [93, 94, 102] classifiers: Bagging-RandomMiner (BTPM) [29], Bagging-
TPMiner (BRM) [87], One-Class K-means with Randomly-projected features Algorithm-
(OCKRA) [99]. The first two classifiers belong to the state-of-the-art in the masquerade detec-
tion problem domain. The third classifier, OCKRA, is one of the best performing algorithms
in the personal risk detection task, outperforming one-class SVM, and different versions of
the Parzen window classifier. Besides, One-Class Support Vector Machines(OC-SVMs) and
One-Class Naı̈ve Bayes (OC-NB) were used for comparison and completeness. Since, in
contrast to the binary and multi-class classifiers, one-class methods are less known, a short
description for each one of them is provided.

BTPM: Bagging-TPMiner [87] is a classifier ensemble designed for masquerader detection
based on typical objects. The base classifier of this ensemble, TPMiner, has the key
feature of attempting to capture examples of normal behavior that are located in regions
that are not dense. Generally, this kind of behavior yields false alarms due to being
overwhelmed by samples in denser regions. Bagging-TPMiner differs from existing
clustering techniques in the sense that it can capture the, often hidden, structure of the
ordinary user behavior. This capture is done by giving similar weight, or attention, to
dense and sparse regions. At the training phase, the classifier aims to find similarity
patterns among the instances. The inter-object distances are calculated and, for each
instance in the training set, an object closer than a threshold is chosen as a typical object
that represents it. This method performs bagging with 100 TPMiners to add diversity
and thus improve performance. At the testing phase, BTPM classifies a new object as
typical or atypical by outputting 0 or 1. The classification process is done computing
the distance to the nearest typical object, transforming that distance into a similarity
value and averaging the similarities. Depending on the averaged similarities, and the
threshold, the output of the classification can be 0 or 1. In the masquerade detection
context, 0 means that the processed object represents masquerader behavior; an output
of 1 indicates the contrary.

BRM: Bagging-RandomMiner [29] is a classifier ensemble that consists of multiple instances
of RandomMiner. The rationale behind the algorithm of this classifier is similar to the
one used in Bagging Random Miner; these two classifiers differ only at the training
phase. At BRM’s training phase, the base classifier randomly selects a percentage of
the instances in a given training dataset. By performing a random selection, the classi-
fier has the advantage of taking into account common user behavior zones and give less
importance to objects located in isolated zones. The obtained samples in this phase can
resemble the set of typical objects, similar to the ones obtained by BTPM, with the dif-
ference that no inter-object distance calculation is required. By doing this, building the
model requires significantly less time. Furthermore, the classification results yielded,
in an access-based masquerade detection context, do not have a significant statistical
difference compared to the ones of Bagging-TPMiner.

For the classification phase, the algorithm receives as input an ensemble of trained clas-
sifiers generated in the previous phase and the object to classify. Each classifier com-
putes the minimum distance between the object to be classified and an object in the
representative behavior cluster. This distance is used to calculate a similarity value.

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 31

The similarity values of all classifiers in the ensemble are averaged, and then a final
score is calculated. This score is used as the output classification.

OCKRA: One-Class The K-means with Randomly-projected features Algorithm [99], con-
sists of an ensemble of one-class classifiers based on k-means++ [13]. This method
works by creating multiple projections of the dataset using a random subset of features,
thus obtaining a high diversity among the classifiers in the ensemble. This mechanism
is analogous to other ensemble methods such as Random Forest. The training phase
begins with an initial training dataset. Random feature selection with replacement is
then applied. Afterward, duplicated features are removed; authors have found that this
process extracts approximately 63% of the original features on average. Then, a new
training dataset is created using the subset of selected features; further, the algorithm
uses k-means++ to obtain k clusters and calculates their centroids. Next, centroids are
used to construct one-class classifiers that return the similarity of a new, queried object,
to the normal class. For each of the individual classifiers, the training phase returns a set
comprising the parameters consisting of three elements: the randomly-selected features,
the computed centroids of each cluster, and the distance threshold.

At the classification phase, every classifier in the ensemble makes a projection of the
queried object using its subset of features. Next, the Euclidean distance of the projected
object to the centroids is calculated, and the nearest cluster is obtained. Next, the dis-
tance between the projected object and its nearest cluster centroid is transformed into a
similarity value in the interval [0, 1]. Once all similarity values are calculated, OCKRA
calculates their average. A threshold is then set to determine if the object represent nor-
mal or abnormal behavior. The output of OCKRA is a single number; a value of zero
indicates that the object represents abnormal behavior, and a value of one represents
normal behavior. The accuracy of this ensemble method relies to some extent on the
threshold used for determining which objects are anomalous and which are not.

OC-SVMs: The Support Vector Machines (SVMs) learning models, which are capable of
performing classification and regression analysis, were first introduced by Vapnik et.
al [120, 23]. Later, extensions to the SVM framework were developed [30]. SVMs
construct, in a multidimensional space, hyperplanes that separate the objects according
to their class. To perform an optimal construction of the hyperplane, SVM makes use
of an iterative training algorithm, whose objective is to minimize an error function. In
general, SVMs have a robust performance when dealing with sparse and noisy data,
which makes them suitable for several application domains.

One-Class Support Vector Machines (OC-SVMs) are an extension of SVMs. At the
training phase, OC-SVMs aim to find, in a projected space, a hyperplane that maximizes
the separation of the instances. Given that only one class is present in the training phase,
instead of looking for the maximum separation between classes, this method looks for
the maximum separation between the origin and the instances in the projected space.
Regarding the computational complexity, the training phase of OC-SVMs deals with a
quadratic problem [23]. Nevertheless, once the algorithm is trained, the classification
process’s complexity is minimal.

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 32

OC-NB: The Naı̈ve Bayes [113, 127] classifier is an efficient and simple supervised learning
algorithm based on Bayes’ Theorem. In general, this classifier calculates the probability
that an object belongs to a certain class based on the values of its features. This classifier
is called näive because it assumes that the value of a given feature is independent of the
value of other ones, which is not always true in real-life applications.

In a binary Näive Bayes implementation, the highest probability of membership indi-
cates the class to which the object belongs. In contrast, a one-class Naı̈ve Bayes classi-
fier works by considering only the probability of the queried object of belonging to the
normal class. According to a threshold, the probability obtained is used to determine if
the object represents normal or abnormal behavior.

Isolation Forest: Isolation Forest was originally proposed by Liu et al. [79]. This anomaly
detection algorithm has been shown to perform well in high dimensional problems, even
if they contain a large number of irrelevant attributes. Furthermore, it is still robust
when anomalies are not available in training sample. As described by Liu et al. [79],
Isolation Forest detects anomalies based on the concept of isolation and recursion. As
a consequence, it has the ability to exploit subsampling to achieve a low linear time
complexity, low memory consumption, and the capacity to deal effectively with the
effects of swamping and masking. By definition, anomalies are uncommon, new and
different. These characteristics make outliers susceptible to the isolation mechanism.

3.4.5 Selected Performance Measure
To determine if a given instance is normal or anomalous, most of the selected one-class clas-
sifiers require a threshold. This threshold may be chosen based on the needs of the user, such
as increasing the detection power of anomalies or reducing the number of false positives. In
other words, the threshold to select is application- and implementation-dependent. Because
of that, ROC curves are used to observe the classifiers’ performance on different thresholds.
Moreover, the selected AUC measure summarizes the performance of a classifier into a single
metric [15]. Therefore, the results of the experiments are reported using the AUC of the ROC
curve is used.

AUC has the advantage of being a balanced performance measure and robust against
class imbalanced problems. The AUC performance of a classifier is equivalent to the prob-
ability that the classifier ranks a randomly chosen positive instance higher than a randomly
chosen negative instance [45, 16]. Furthermore, the AUC measure is capable of describing
performance correctly, even if the dataset contains more objects of one class than another [95].
Since most of the experiments use fewer examples of each bot type than legitimate account
examples, they are categorized as class imbalance problems. Therefore, it is appropriate to
choose AUC as the performance measure.

CHAPTER 3. ONE-CLASS CLASSIFICATION FOR TWITTER BOT DETECTION 33

3.5 Summary
One-class classifiers are used mostly for anomaly detection, where the objective is to detect if
a given instance represents normal or abnormal behavior. This type of classifiers are differ-
ent from binary and multi-class, in the sense that they only require examples of one class to
learn representations of them and generalize the patterns that represent normal behavior. In
the context of bot detection, we hypothesize that one-class classifiers could help overcome the
main limitation of current state-of-the-art-classifiers, which is the requirement of possessing
bot types examples beforehand to detect them effectively. Concretely, training one-class clas-
sifiers with genuine (human) users examples might give them the capacity to detect different
bots, regardless of their type. The main limitation of this proposal is that, as with other ap-
proaches, the effectiveness of the classifier highly relies on the feature representation chosen
to represent the account’s behavior. Also, the effectiveness is dependant on the overall differ-
ence in the behavior of bots and genuine users. To prove if this hypothesis holds, we designed
three experiments. These experiments aim to answer the following research questions: 1)
Does the performance of multi-class methods decrease when it comes to identifying bots of
an unknown class? 2) Do one-class classifiers perform better than multi-class methods when
it comes to identifying bots of an unknown class? 3) When identifying bots of an unknown
class, is there a statistically significant difference between the performances obtained by the
two methods? The detailed description of the experimental setup is addressed in the following
chapter.

Chapter 4

Experimental Setup

To test the advantages and limitations of a semi-supervised anomaly detection approach for
bot detection, we designed three experiment sets. These experiments aim to compare fairly
and directly the performance of multi-class and one-class classifiers. In this chapter, the ex-
perimentation procedure is described in detail. The following sections describe the procedures
for constructing training and testing sets, the performance measure calculation, and the pro-
cedure for assessing the significance of the results.

4.1 Experiments
Three experiment sets were designed to answer the research questions, which aim to test the
hypothesis that one-class classifiers may be able to detect instances of new, previously unseen,
classes of bots. Thus, overcoming the main limitation of state-of-the-art bot detectors.

The experiment sets are labeled with letters. Experiment Set A deals with Binary Classi-
fiers, experiment set B involves multi-class versions of the binary classifiers, and Experiment
Set C is related to one-class classifiers.

4.1.1 Experiment Set A (Binary Classifiers) Description
In experiment set A, four training sets were constructed, one for each bot type. Each one
of these training datasets contains 90% of the legitimate account instances and 90% of the
instances of a particular bot type. Note that, to avoid a performance variance due to different
legitimate account examples, all of the training sets contain the same 90% legitimate account
instances, regardless of the bot type used. Only the bot examples change among training
sets; one type of bots is used at a time. For example, the social1 training set contains 90%
of legitimate account instances and 90% of the instances of social 1 type bots; the social2
training set contains 90% of legitimate account instances and 90% of the instances of social 2
type bots, and so on. For the testing phase, the constructed dataset contains the remaining 10%
of the legitimate account examples and the remaining 10% examples of the corresponding bot
type. The classification process was carried out ten times to ensure statistical validity. Each
time with a different 10% of bots and legitimate account examples, thus resulting in a 10-fold
cross-validation procedure. See Section 4.2 for a detailed explanation of this procedure.

34

CHAPTER 4. EXPERIMENTAL SETUP 35

The experiment set A is intended to test the hypothesis presented by Cresci et al. [38].
Cresci et al. hypothesized that the bot’s behavior varies according to their type. This hypoth-
esis is tested by measuring the performance of different binary classifiers when classifying
various groups of bots and legitimate accounts. To obtain the performance of the binary clas-
sifiers, they were trained using the training sets described above, and then each trained model
was tested with all the different testing datasets, one at the time. For example, a binary clas-
sifier C1 was trained using the training set social1, which contains 90% of genuine account
examples and 10% of social 1 type bots. Then, this trained model was tested four different
times. First, the model was tested using the social1 testing set, which contains 10% of the re-
maining social 1 type bots and 10% of genuine examples. Then, the model is tested using the
social2 testing set, which contains 10% of social 2 type bots, and the same 10% genuine ex-
amples as social1. This process continues until the four testing sets (social1, social2, social1,
and traditional1) are given to the trained model. Afterward, the classifier C1 is trained with
the next training set in the list, and the testing procedure repeated. This experiment gives an
insight into how the performance of a given classifier changes when performing classification
on a type of bot that is different from the one used in its training phase.

4.1.2 Experiment Set B (Multi-class Classifiers) Description
The objective of the experiment set B is to simulate more closely how classifiers can be used to
detect bots. This simulation is based on the strategy implemented by most publicly available
bot detection tools. The strategy consists of using a training set that contains instances of
different bot types. In most cases, this diversity in bot behavior examples allows the classifier
to learn better how to discern between legitimate and bot accounts [129].

In experiment set B, the percentage of bots and genuine users are the same used in
experiment set A. What differentiates this experiment set from the previous one is that the
classifiers are trained with examples of more than one bot type. At the training phase, a set
containing instances of genuine users and three (out of four) types of bots is used. Then,
at the testing phase, a set containing the remaining type of bots, together with genuine user
examples, is used. This procedure is repeated until the four types of bots are tested. As in
experiment set A, a 10-fold cross-validation procedure is carried out to obtain the AUCs of
the different tests.

4.1.3 Experiment Set C (One-class Classifiers) Description
The objective of the experiment set C is to show how one-class classifiers perform when they
are trained (only) with genuine (human) account examples, and tested with the different types
of bots. For the training and testing steps, this experiment set follows the same steps as the
ones used in experiment set A. Here, the main difference relies on the classifiers mechanisms;
at training phase, one-class classifiers ignore the bot examples, and focuses only on the 90%
of the human user account instances for constructing the model. After the models are trained,
each classifier is evaluated using the same testing sets and cross-validation procedure used in
experiment set A. For each experiment, when each cross-validation is done, the performance
score is recorded.

CHAPTER 4. EXPERIMENTAL SETUP 36

4.2 Performance validation
When an algorithm is trained and evaluated using the same data, its performance tends to
be deceptively large [75]. To avoid over-estimations of a given algorithm’s performance,
data is divided into two sets: training and testing. The training set is used for the algorithm
to learn representations of the data; the testing set is used to assess the performance of the
algorithm [12]. This procedure is known as a single hold-out method [19]. To better estimate
the performance an algorithm has in a real scenario, a k-fold cross-validation procedure can
be carried out. Cross-validation allows us to assess the generalization capacity of a predictive
model, also helps to prevent overfitting [19]. Moreover, the variance of the resulting estimate
reduces as k is increased [54].

Precisely, k-fold cross-validation consists of dividing the data into k subsets and using
k–1 of them to train the algorithm. Then, the model is tested using the remaining subset,
sometimes called the validation set. This process is repeated until each of the k subsets has
been tested. For each iteration, the performance is measured. Once all subsets have been run,
the average of the k performance measurements is calculated and reported [19].

Figure 4.1: Data partitions performed by a 10-fold cross-validation procedure.

Due to its advantages, a k-fold cross-validation procedure was chosen to measure the
performance of the algorithms. For each experiment, ten-fold cross-validation was done, so
in the result tables, the number presented is the average of the AUC per classifier, and bot
type in the testing dataset; standards deviations are also included. Figure 4.1 illustrates how a
10-fold cross-validation procedure divides the data.

4.3 Testing the significance of results
To determine if there exists statistical differences between the performance of the classifiers,
the Friedman test with a Bergmann-Hommel and Schaffer post-hocs were used [53]. To pro-
vide a visual representation of the results obtained from the statistical tests Critical Difference

CHAPTER 4. EXPERIMENTAL SETUP 37

(CD) diagrams [41] are used. CD diagrams present the rank of an algorithm concerning a
performance indicator, in this case, the AUC value. Chapter 5 presents the results of the ex-
periments. In a CD diagram, the top-ranked algorithm appears rightmost, and a thick line
joins statistically similar algorithms. These features of CD diagrams give information regard-
ing both the quantity and significance of any difference between algorithms. Figure 4.2 shows
an example of a CD diagram where, despite being the top-ranked, Algorithm A does not show
a statistically significant difference from Algorithm B in terms of performance. Moreover,
algorithms C and D do not show statistical differences between them; the same is true for
algorithms D and E.

Figure 4.2: Example of a Critical Difference diagram.

4.4 Summary
This chapter explains the experimental setup used to test the advantages and limitations of
a semi-supervised anomaly detection approach for bot detection. The datasets used in our
experiments were created by Cresci et al. [38] and downloaded from a public repository. The
original features from the files in the dataset were used to extract a novel feature vector, which
has their basis on the previous works reported in the literature. Several authors have demon-
strated that the features that make up the proposed feature vector provide information that
is useful for characterizing the real behavior of the accounts. Moreover, the datasets were
used to train ten widely-used binary classifiers and five one-class classifiers. Some of these
one-class classifiers belong to the state-of-the-art on intrusion detection. The three experi-
ments designed have the objective of providing a fair and direct comparison of the classifiers’
performance. The first two experiments involve binary and multi-class versions of the same
supervised classifiers. The third experiment involves the selected one-class classifiers. A
ten-fold cross-validation procedure was carried out to validate the performance of the tested
classifiers.

Chapter 5

Experimental Results and Discussion

This chapter presents the outcome of the three different experiments sets described in Chapter
4, along with the results of statistical comparisons between the performance of the classifiers
used in each set. To determine if a given instance is normal or anomalous, most of the selected
one-class classifiers require a threshold. This threshold may be chosen based on the needs
of the user, such as increasing the detection power of anomalies or reducing the number of
false positives. In other words, the threshold to select is application- and implementation-
dependent. Because of those reasons, receiver operating characteristic (ROC) curves were
used to observe the performance of the classifiers on different thresholds.

To report the performances of the classifiers, the area under the curve (AUC) of the
ROC curve is used, as it summarizes the performance of a classifier into a single metric [15].
Furthermore, the AUC performance measure is capable of describing performance correctly,
even if the dataset contains more objects of one class than another [95]. Since most of the
experiments use fewer examples of each bot type than legitimate account examples, they are
categorized as class imbalance problems. Therefore, it is appropriate to choose AUC as the
performance measure. For each experiment, ten-fold cross-validation was done. In the result
tables, the number presented is the average of the AUC per classifier, and per bot type in the
testing dataset. Such tables also include standards deviations. A box and whisker diagrams
accompany every set of experiments to simplify the understanding of all the information pre-
sented in the tables, box and whisker diagrams accompany every set of experiments.

The organization of this chapter is as follows. First, the results of experiments A, B, and
C are presented. Next, a comparison of the results of each experiment set is made. Then, a
discussion section follows. To conclude, a summary of the chapter is provided.

5.1 Results of Experiment set A (Binary Classifiers)
In this first experiment set, the hypothesis of Cresci et al. [38], that different types of bots
have different behaviors, is tested. These experiments consist of different supervised binary
classifiers trained with a set containing instances of genuine users and one type of bots and
then tested using a set containing different types of bots. If the hypothesis is correct, then the
behavior shown by the different bot types differ from one another. The hypothesis is accepted
if the classifiers’ performance, when classifying the same type of bot, is outstanding, but the

38

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 39

performance decreases when classifying other bot types.

5.1.1 Classifiers Trained with Social1 Type Bots and Genuine Accounts
The experiment begins by training the classifiers with examples of legitimate and social1 bot
accounts. In Table 5.1, each column shows the type of bot used in the testing set, and the
average performance obtained by all the classifiers. The results of this experiment show that
the best AUC is obtained when performing the classification of bots of the same type. Bot
accounts of type social1 are the best classified, with a mean AUC of 0.974 and a standard
deviation of 0.01. The second-highest mean AUC, 0.901, is obtained for bots of type social3.
When training against this type of bots, the performance is still acceptable, but the standard
deviation increases considerably with respect to social1. These results could signal that bots
of type social1 and social3 share characteristics, which allows the classifier to identify them
even if they belong to different bot categories. The type of bots that disseminate spam and
malware, traditional bots, cannot be easily identified when classifiers are trained with exam-
ples of social1 bots since the average AUC obtained is 0.692. The same happens for bots of
type social2, where the average AUC is 0.56. As for the performance classifier-wise, Figure
5.1 depicts the overall superiority of PBC4cip, whose performance remains stable across the
different testing sets. The rest of the binary classifiers show standard deviations close to 2,
and a mean performance that does not exceed 0.82 AUC.

Classifier social1 social2 social3 traditional Mean Standard Deviation
Bayes Network 0.972 0.5 0.959 0.76 0.798 0.221

J48 0.977 0.517 0.957 0.733 0.796 0.216
Random Forest 0.98 0.496 0.96 0.719 0.789 0.228

Adaboost 0.979 0.497 0.948 0.772 0.799 0.221
Bagging 0.975 0.497 0.954 0.78 0.802 0.221

KNN 0.974 0.491 0.584 0.566 0.654 0.217
Logistic Regression 0.969 0.74 0.957 0.588 0.814 0.184

MLP 0.97 0.488 0.714 0.526 0.675 0.22
Naı̈ve Bayes 0.958 0.477 0.937 0.523 0.724 0.259

SVM 0.96 0.482 0.951 0.658 0.763 0.234
PBC4cip 0.996 0.974 0.995 0.989 0.989 0.010

Mean 0.974 0.56 0.901 0.692
Standard Deviation 0.01 0.156 0.129 0.139

Table 5.1: Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type social1 account examples. A bold typeface
is used to convey the results of testing the same type of bots used in the training set.

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 40

Figure 5.1: Performance of binary classifiers when using social1 bots in the training phase,
and different bots at testing.

5.1.2 Classifiers Trained with Social2 Type Bots and Genuine Accounts
Table 5.2 shows the AUC performance the classifiers yielded when trained with instances of
legitimate accounts and bots of type social2. Binary classifiers show excellent performance
when differentiating legitimate accounts and bots of the same type as the ones used in training.
Classification of social2 bot types results in a mean AUC of 0.991 and a standard deviation of
0.004. However, most classifiers perform poorly if an instance of a different bot type is shown
to them, as the mean AUCs for the other types of bots are 0.577, 0.599, and 0.613. This
low performance may indicate that social2 bots examples do not provide relevant information
to distinguish between genuine accounts and other types of bots. Similar to the previous
experiment, the mean AUC for all classifiers is always lower than 0.78. Similar to the previous
experiment, PBC4cip shows a robust classification performance, even when new bot types are
present in the test set. A 0.998 mean AUC is yielded by this classifier, with an approximate
standard deviation of 0. Figure 5.2 illustrates that one more time, PBC4cip the best performing
algorithm in the experiment.

5.1.3 Classifiers Trained with Social3 Type Bots and Genuine Accounts
Table 5.3 displays the results obtained when using classifiers trained with examples of social3
type bots and legitimate accounts. The results for this classifiers are consistent with the ones
obtained in Tables 5.1 and 5.2, where the higher performance results occur when the classifiers
are used to discern between legitimate accounts and bot accounts of the same type. When
classifiers are trained with social3 type bots, the classifications of the same types of bots led
to an average AUC of 0.966. The standard deviation obtained for this case was 0.013. These

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 41

Classifier social1 social2 social3 traditional Mean Standard Deviation
Bayes Network 0.5 0.989 0.514 0.502 0.626 0.242

J48 0.68 0.992 0.596 0.835 0.776 0.175
Random Forest 0.502 0.996 0.508 0.511 0.629 0.245

Adaboost 0.502 0.993 0.518 0.589 0.651 0.231
Bagging 0.633 0.993 0.535 0.673 0.709 0.198

KNN 0.493 0.99 0.494 0.499 0.619 0.247
Logistic Regression 0.511 0.987 0.907 0.604 0.752 0.23

MLP 0.519 0.989 0.513 0.529 0.638 0.234
Naive Bayes 0.498 0.99 0.498 0.5 0.622 0.246

SVM 0.511 0.986 0.509 0.505 0.628 0.239
PBC4cip 0.998 0.998 0.998 0.998 0.998 0.00

Mean 0.577 0.991 0.599 0.613
Standard Deviation 0.153 0.004 0.178 0.164

Table 5.2: Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type social2 account examples. A bold typeface
is used to convey the results of testing the same type of bots used in the training set.

Figure 5.2: Performance results of the experiment set A when using social2 bots in training.

results indicate that a stable behavior from all classifiers is obtained when classifying bots of
the same type as the ones used in training. The results presented in Table 5.1 suggest that the
behavior of accounts of type social1 could be used to identify bots of type social3 for some
classifiers correctly. Such is the case for KNN and Logistic Regression.

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 42

Nevertheless, while classifiers trained with bots of type social3 can also help discern
bots of type social1, the AUC obtained is generally lower, shown with mean AUCs of 0.789.
For classifiers such as SVM and Bayes Network, generalization capabilities are low, as they
perform lower than other classifiers, leading to AUC values of 0.494 and 0.590, respectively.
Moreover, the trained classifiers continue to show a low performance when discerning be-
tween legitimate users and bots of the traditional type, as the mean AUC is 0.769. Even a
worse performance is shown when the classifiers attempt to distinguish between bots of type
social2 and genuine users, where all the obtained AUC values are lower than 0.6, and the
mean value is 0.559, with a standard deviation of 0.196.

Classifier social1 social2 social3 traditional Mean Standard Deviation
Bayes Network 0.59 0.599 0.963 0.774 0.732 0.176

J48 0.712 0.553 0.97 0.774 0.752 0.172
Random Forest 0.909 0.497 0.966 0.78 0.788 0.209

Adaboost 0.88 0.496 0.968 0.787 0.783 0.205
Bagging 0.722 0.497 0.968 0.756 0.736 0.193

KNN 0.91 0.491 0.959 0.621 0.745 0.226
Logistic Regression 0.971 0.984 0.97 0.741 0.917 0.117

MLP 0.887 0.496 0.966 0.695 0.761 0.21
Naive Bayes 0.812 0.497 0.956 0.643 0.727 0.2

SVM 0.494 0.484 0.942 0.891 0.703 0.248
PBC4cip 0.994 0.997 0.996 0.995 0.996 0.001

Mean 0.807 0.599 0.966 0.769
Standard Deviation 0.16 0.196 0.013 0.105

Table 5.3: Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type social3 account examples. A bold typeface
is used to convey the results of testing the same type of bots used in the training set.

5.1.4 Classifiers Trained with Traditional Type Bots and Genuine Ac-
counts

The last round of binary classifiers experiments was done by training the algorithms with ex-
amples of legitimate and traditional bot accounts; 5.4 presents the results obtained. If the re-
sults obtained when using the same bot type in training and testing are compared, the second-
best performance is obtained for the traditional bot type, with a mean AUC for all classifiers
of 0.983, and a standard deviation of 0.026. The mean AUC, compared per bot type, obtained
for traditional bots is higher by at least 0.42 points than the mean of other types of bots. It
is true as well that, except for some cases, the classifiers trained with traditional type bots
achieve lower values of AUC when detecting the other types of bots. The notable exception
is PBC4cip, which always performs above .978 AUC. The mean AUC values obtained per
bot type are 0.504 for social1 bots, 0.526 for social2 bots, and 0.719 for social3 bots. The

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 43

Figure 5.3: Performance results of the experiment set A when using social3 bots in train-
ing. Note that Logistic Regression yield the second-best performance, only outperformed by
PBC4cip.

mean value for social3 equals the one of social2, nevertheless it also has the most prominent
variation, as indicated by the standard deviation of 0.231. These results could signify that tra-
ditional bot accounts have a pattern of behavior that does not allow classifiers to easily discern
other types of automated accounts more engaged in the social aspect of Twitter. This situation
clearly reflects in figure 5.4, specially for Logistic Regression, Bagging, Adaboost, Random
Forest, and J48.

5.1.5 Summary of Results of Experiment Set A
In this experiment set, the null hypothesis is that binary bot detection methods perform sim-
ilarly, regardless of the type of bot used in the training phase. For all the cases presented,
when the same type of bots was used in both datasets (training and testing), outstanding re-
sults were achieved; most AUC values are above 0.95, and standard deviations are low. This
similarity in AUC and standard deviations means that almost all classifiers have similar clas-
sification performance. Regardless of these excellent results, the same classifiers would have
low performance when used to discern between instances of legitimate user accounts and
those belonging to a different type of bot than the one used in the training set. Figure 5.5
summarizes the difference in performance, per bot type, for all of the experiments carried in
this section. For each box and whisker plot, it can be observed that the boy type with highest
performance was the one used in the training phase. Moreover, Figure 5.6 shows the CD di-
agrams for each of the four experiments carried out in this section. Recall that groups whose
difference is not statistically significance are joined with a thick line. In each CD diagram

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 44

Classifier social1 social2 social3 traditional Mean Standard Deviation
Bayes Network 0.503 0.501 0.942 0.995 0.735 0.27

J48 0.5 0.502 0.503 1 0.626 0.249
Random Forest 0.501 0.502 0.504 0.999 0.627 0.248

Adaboost 0.5 0.5 0.5 0.999 0.625 0.25
Bagging 0.5 0.502 0.503 0.999 0.626 0.249

KNN 0.489 0.48 0.928 0.952 0.712 0.263
Logistic Regression 0.501 0.502 0.511 0.999 0.628 0.247

MLP 0.536 0.561 0.933 0.963 0.748 0.231
Naive Bayes 0.523 0.729 0.929 0.985 0.792 0.21

SVM 0.489 0.481 0.939 0.922 0.708 0.257
PBC4cip 0.979 0.987 0.995 1 0.990 0.009

Mean 0.547 0.568 0.568 0.983
Standard Deviation 0.144 0.156 0.231 0.026

Table 5.4: Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of type traditional account examples. A bold
typeface is used to convey the results of testing the same type of bots used in the training set.

Figure 5.4: Performance results of the experiment set A when using traditional bots in train-
ing.

presented it can be seen that there is at least one bot type whose classification performance is
statistically different from the other bot types. This evidence implies we can reject the null hy-
pothesis. Thus, the initial hypothesis that different bot types express different behavior when

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 45

the set of features presented in Section 3.4.3 is used to characterize its behavior, is confirmed.
Moreover, results indicate that most binary classification methods are not the best suited for
automatic bot detection.

Figure 5.5: Box and whisker plots of the AUC performance, per bot type, for each table in
Experiment Set A. The plots are labeled in order of appearance.

As presented in Section 3.3.1, bot’s design is continuously evolving to avoid detection
mechanisms, and different strategies for interaction with users are being developed. Given
those facts, automatic bot detection mechanisms based on binary classifiers require to always
keep up-to-date with different bot type account examples to continue being reliable. This
experiment has shown that simple classifiers trained for a specific bot type do not allow to
classify the other types correctly. On the other hand, methods based on contrast patterns, such
as PBC4cip, have the potential to overcome the lack of examples of novel bots. In the next
section, we show the results obtained when using classifiers that are trained with multiple bot
types and tested with an unseen bot type.

5.2 Results of Experiment set B (Multi-class Classifiers)
Experiment set B deals with different models constructed from the same base classifiers pre-
sented in the previous section. The name multi-class was chosen to depict that bots of multiple

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 46

4 3 2 1

social1

social3traditional

social2

4 3 2 1

social2

traditionalsocial3

social1

4 3 2 1

social3

social1traditional

social2

4 3 2 1

traditional

social3social2

social1

(a) (b)

(c) (d)

Figure 5.6: CD diagrams showing the significant statistical differences among the different
types of bots. Each diagram corresponds to a table in experiment set A, in order of appearance.

types are used in the training phase. Nevertheless, all of these automated accounts are labeled
under the same class: bot. In this experiment set, as well as the others, the classifiers are
required to perform binary classification. In the following paragraphs, the results obtained
when training the classifiers with 3 out of 4 types of bots and performing classification to the
examples of the remaining bot type are analyzed. The experiments presented in this section
simulate more closely how classifiers are used to detect bots. This simulation is done by imi-
tating the strategy of most publicly available bot detection tools, which use a more diverse set
of examples that encompasses multiple behaviors that could be used to discern between legit-
imate and bot accounts correctly. The null hypothesis for this experiment is that multi-class
methods which are trained with three different bot types, and tested against a different one,
yield a similar performance for each testing case.

The average AUC obtained by each classifier, when classifying a set containing a dif-
ferent type of bot than the ones used in training, is shown in Table 5.5. Analyzing the overall
performance by bot type, it can be found that classifying bots of type social3 is more manage-
able for the different classifiers, as the average AUC obtained is 0.946. However, the mean
value is 0.02 lower than the one obtained when using classifiers that are trained only with bots
of type social 3, as shown in Table 5.3. On the other hand, the worst mean performance, an
average AUC of 0.662, is obtained when the previously unseen bot is of type social2. These
results corroborate the ones in Table 5.2, where the classifiers trained with bot examples of
type social2 did not learn to discern the bot behavior of other types.

Table 5.5 shows that the second-highest performance for this set of experiments, an
average AUC of 0.903, is obtained when using Logistic Regression. However, the Logistic
Regression classifier has the disadvantage of performing poorly when the unseen bot exam-
ples are of type traditional; it obtains a 0.726 AUC in those cases. The third-best performance
is an average AUC of 0.886, which is obtained when using the J48 classifier. Although it

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 47

Classifier social1 social2 social3 traditional Mean Standard Deviation
Bayes Network 0.578 0.539 0.957 0.774 0.712 0.193

J48 0.874 0.88 0.887 0.902 0.886 0.012
Random Forest 0.935 0.496 0.957 0.826 0.804 0.213

Adaboost 0.922 0.515 0.942 0.869 0.812 0.2
Bagging 0.928 0.499 0.954 0.933 0.829 0.22

KNN 0.893 0.537 0.941 0.609 0.745 0.202
Logistic Regression 0.956 0.973 0.957 0.726 0.903 0.118

MLP 0.858 0.717 0.953 0.729 0.814 0.112
Naı̈ve Bayes 0.81 0.609 0.943 0.625 0.747 0.16

SVM 0.533 0.528 0.937 0.873 0.718 0.218
PBC4cip 0.995 0.987 0.979 0.994 0.989 0.007

Mean 0.844 0.662 0.946 0.805
Standard Deviation 0.151 0.195 0.023 0.124

Table 5.5: Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users and bots of different types. A bold typeface is used to
convey the best AUC obtained by a classifier when testing a specific type of bot.

Figure 5.7: Performance results of the experiment set B.

does not have the best mean performance, J48 has a standard deviation of 0.012, which is
one order of magnitude lower than the other classifiers. This standard deviation suggests that
J48 and PBC4cip are the most stable classifiers. Additionally, both classifiers perform well
regardless of the unseen type of bot in the testing dataset. It can also be seen in Table 5.5 that

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 48

all classifiers, except for PBC4cip and J48, have experiments where the performance is dras-
tically lower. The box and whiskers plot shown in Figure 5.7 reflects the stability of PBC4cip
and J48, as the boxes and tails are the smallest of all the classifiers. CD diagrams presented in
Figure 5.8 are in accordance with the information presented by the box and whiskers plot. Fur-
ther, the statistical tests show there are groups of bot types whose performance is statistically
similar. Therefore, there is no evidence to reject the null hypothesis. In the next section, we
show the results of using one-class classifiers, which do not rely on examples of the different
bot types but use only genuine user examples instead.

Figure 5.8: CD diagram of the performance in experiment set B. In this experiments, classi-
fiers are trained with three types of bots and tested with the remaining one.

5.3 Results of Experiment set C (One-class Classifiers)
One class classifiers have the particularity of only requiring only legitimate user accounts in
their training phase. Therefore, the training dataset created for the previous experiments can
be used without further modifications. The current section presents the performance of the
selected one-class classifiers when trained with legitimate accounts, and tested with datasets
that contain legitimate and bot account examples of only one type. The null hypothesis for
experiment set C is that the performance of one-class classifiers remains stable when tested
against a dataset containing genuine and bot activity, regardless of the bot type used.

The average AUC performance obtained when using one-class methods to classify the
testing datasets containing different bot examples is shown in Table 5.6. The highest AUC
obtained by a classifier for each type of bot is depicted in bold numbers. Regarding the
classifiers used, the original implementations of BTPM and BRM use Mahalanobbis distance,
nevertheless it was found that using Euclidean distance increase their performance in the bot
detection context. Thus, in this experiment set we include both version of the classifiers. In
this experiment set it was observed that Näive Bayes has better performance when detecting
bots of type social1 and Bagging-TPminer (Euclidean) when detecting bots of type social2
and social3. OCKRA shows a higher performance when detecting traditional bots. Moreover,
Bagging-TPminer (Euclidean) has a performance above 0.89 AUC for all bot types. If the
performance is examined per classifier instead of per type of bot type, it can be observed that
Bagging-TPMiner (Euclidean) has the highest performance from all the one-class classifiers,

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 49

Classifier social1 social2 social3 traditional Mean Standard Deviation
OCKRA 0.843 0.906 0.924 0.916 0.897 0.037

BTPM (E) 0.904 0.952 0.934 0.893 0.921 0.027
BTPM (M) 0.793 0.905 0.840 0.899 0.859 0.053
BRM (E) 0.724 0.807 0.791 0.892 0.803 0.069
BRM (M) 0.656 0.828 0.776 0.892 0.788 0.100
ocSVM 0.871 0.893 0.851 0.898 0.878 0.021

Naive Bayes 0.995 0.791 0.849 0.883 0.88 0.086
Isolation Forest 0.811 0.777 0.829 0.898 0.829 0.051

Mean 0.825 0.857 0.849 0.896
Standard Deviation 0.105 0.065 0.056 0.009

Table 5.6: Results of testing different types of bots when classifiers have used a training
dataset containing legitimate users examples. A bold typeface is used to convey the highest
performance attained by a classifier per testing dataset. BTPM and BRM where used with
two different measures: Euclidean(E) and Mahalanobis(M)

with an average AUC of 0.921. Additionally, the standards deviations of Bagging-TPMiner
(Euclidean) are lower than 0.1, which indicates this classifier is stable regardless of the type
of bot to be detected.

Figure 5.9: Performance results of the experiment set C.

As with the previous experiment sets, statistical tests were performed to observe if the
bot type used in the testing set directly influence the performance of the classifiers. Figure

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 50

5.10 shows a CD diagram that compares the performances obtained for each bot type. The
CD diagrams calculated for experiment set C show that there is no statistically significant
difference among the bot types. Thus, the null hypothesis fails to be rejected.

Figure 5.10: CD diagram of one-class classifiers’ AUC performance for Twitter bot detection.

5.4 Results Comparison
The experimental setup chosen for this work has the advantage of providing directly compa-
rable results. This advantage is possible because the training and testing datasets are the same
in all the experiments, the only difference is that, at the training phase, one-class classifiers
ignore the examples of bot accounts. The following analysis was divided in two part to have
a better understanding of the difference between one-class and binary classifier. The first part
deals with such comparison, and will no include the performance of PBC4cip. On the sec-
ond part analysis, PBC4cip is compared with the other four classifiers, and conclusions are
made. In the first part, the best overall classifiers were chosen by comparing the two best-
ranked classifiers of the multi-class and one-class approaches. Recall the criteria used for the
classifier’s comparison is the performance in terms of AUC.

Table 5.7 contrasts the AUC performance of the two-best binary and one-class classi-
fiers. In the first column of the table, the elements with bold typeface letters indicate that
for the corresponding row, the training and testing datasets contain bots from the same type.
Additionally, in the columns indicating the name of the classifier, for each row, the best AUC
performance obtained by a given classifier has a bold typeface format. Table 5.7 gives several
insights. First, we observe that, when the training set contains the same type of bot account
examples as the testing set, the binary classifiers perform better than the others. Among the
four compared classifiers, J48 obtained the best performance in 4 out of 16 cases, specifically
in the experiments where the training and testing bots are of the same type. Nevertheless, in
most of the cases where the training and testing datasets contain examples of different types
of bots, one-class classifiers perform better. This happening is true for OCKRA and BTPM,
which obtained better performance than the others in 3 out of 16 cases, and in 6 out of 16 cases,
respectively. In the three remaining cases, a binary classifier, Logistic Regression, performed
better than one-class classifiers when classifying different types of bots. The performance of
this binary classifier is superior to the others when trained with bots of type social3 and used

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 51

Bots in Train/Test J48 LogReg OCKRA BTPM PBC4cip

s1/s1 0.977 0.969 0.843 0.904 0.996
s1/s2 0.517 0.74 0.906 0.952 0.974
s1/s3 0.957 0.957 0.924 0.934 0.995
s1/t 0.733 0.588 0.916 0.893 0.989
s2/s1 0.68 0.511 0.843 0.904 0.998
s2/s2 0.992 0.987 0.906 0.952 0.007
s2/s3 0.596 0.907 0.924 0.934 0.998
s2/t 0.835 0.604 0.916 0.893 0.998
s3/s1 0.712 0.971 0.843 0.904 0.994
s3/s2 0.553 0.984 0.906 0.952 0.997
s3/s3 0.97 0.97 0.924 0.934 0.996
s3/t 0.774 0.741 0.916 0.893 0.995
t/s1 0.5 0.501 0.843 0.904 0.979
t/s2 0.502 0.502 0.906 0.952 0.987
t/s3 0.503 0.511 0.924 0.934 0.995
t/t 1 0.999 0.916 0.893 1

Mean 0.738 0.778 0.897 0.921 0.993
Standard Deviation 0.196 0.210 0.033 0.024 0.007
Table 5.7: Comparison of binary and one-class classifiers’ performance. In each row, bold
typeface numbers are used to convey the highest AUC performance obtained for the given
training/testing set combination. PBC4cip is the best-performing classifier, nevertheless, it is
marked with gray bold typeface, as it is analyzed separately at first.

to discern between legitimate users and bots of types social1 and social2. Also, it is the best
when using social1 type bots for the training phase, and used to discern between legitimate
user accounts and bot accounts of type social3. As mentioned before, binary classifiers per-
form better in the scenario where the training set contains social1 bots, and the testing set
contains social3 bots. This higher performance maybe because social1 and social3 have some
related characteristics, which some classifiers can capture. Thus, examples of either type of
bot could be used to detect the other one.

Regarding the average performance per classifier, for all cases, it can be observed in
Table 5.7 that Bagging-TPMiner achieves the highest mean performance of all the classifiers,
with an average AUC value of 0.921. The second-best performing method is OCKRA, with
an average AUC value of 0.897. In general, the one-class classifiers perform at least 0.1
higher than the better performing binary classifiers. Furthermore, the standard deviations for

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 52

the one-class approach results are lower than 0.034, while for binary classifiers, the standard
deviations are higher than 0.19. Therefore, the performance of one-class classifiers is more
stable than the one exhibited by most binary classifiers.

The analysis so far has excluded PBC4cip’s performance in order to gain a better under-
standing of the difference between most binary classifiers and one-class methods. As shown
by table 5.7, the performance of PBC4cip exceeds the ones yielded by other classifiers, both
in terms of mean AUC and standard deviation. These results show that the contrast pattern-
based algorithm is more stable than one class classifiers, and also does not suffer from lack of
generalization most binary classifiers have.

5.4.1 Statistical Differences Among Approaches
Figure 5.11 shows a CD diagram that compares the performance that the two best-performing
binary and two best-performing one class classifiers. This CD diagram confirms that PBC4cip
is the best performing algorithm, as it is ranked very close to one. Moreover, the performance
of PBC4cip has a statistically significant difference compared with the other classifiers. This
contrast patter-based algorithm is more stable than one class classifiers, and also does not
suffer from lack of generalization most binary classifiers have.

As for the other 3 classifiers, BTPM is the highest ranked, followed by OCKRA and
Logistic Regression. Regardless of the different positions in the diagram, the statistical tests
show that are no statistically significant difference between the performance they obtained.
This does not should obscure the fact that each classifier has different properties that make
their more suitable for particular situations.

Figure 5.11: CD diagram of the two best multi-class and one-class classifiers used in the
Twitter bot detection experiments.

5.4.2 Generalization Capabilities
When comparing the performance results of multi-class classifiers shown in Table 5.5 with the
results of the one-class classifiers presented in Table 5.6, it can be observed that, unlike most
multi-class classifiers, the performance of one-class classifiers is more stable. The values of
the standard deviations show this stability, which means that one-class classifiers have similar
performance when classifying all types of bots. In contrast, with a multi-class approach, there

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSION 53

is at least one type of bot where each classifier has considerably lower performance than the
others. Moreover, the standard deviations of most one-class classifiers are lower in one order
of magnitude than those of most multi-class classifiers. The notable exception is J48, from
the multi-class classifiers, which has a 0.012 standard deviation. However, its performance
of 0.886 average AUC, is lower than that of Bagging-TPMiner, which is 0.921 average AUC,
with a standard deviation of 0.027. The results obtained in the second set of experiments
show that multi-class classifiers have an acceptable performance when the types of bots used
in the training set express similar behavior to the bots used in the testing phase. This adequate
performance is due to some limited generalization capabilities. However, binary and multi-
class methods also have common disadvantages; for bots that exhibit different behavior than
the ones used to train, the performance depends on the classifier, and generally, the rate of
false negatives increases. On the other side, one-class classifiers have lower performance
than specialized multi-class classifiers. Nevertheless, one-class methods can correctly discern
between legitimate and bot accounts without requiring any example of what constitutes a bot.
Also, these algorithms have more stable behavior, as shown by the lower standard deviations.
PBC4cip, which makes use of contrast patterns, is resilient to the difference of bot types used
in the test set; its performance is excellent in every one of the experiments, and it shows a
statistically significant difference with respect to the other binary and one-class classifiers.
Further, PBC4cip has proven to behave similarly regardless of the type of bot and number
of types of bots used in the training set, and robust when tested against bot type it has not
previously encountered.

5.5 Summary
Three experiments were carried out to analyze the difference and similarities in the perfor-
mances of binary, multi-class, and one-class classifiers. As explained in Section 4.1, the
experimental setup allows for a direct comparison of the results. From figure 5.6, it can be
observed that binary classifiers do not have a statistical difference among their AUC perfor-
mance. A recurrent pattern found when comparing the performance of both methods is that
binary classifiers achieved the highest performance when detecting the type of bot that was
used in the training phase. This pattern also holds when multiple types of bots are used in the
training set. However, binary and multi-class methods also have common disadvantages; for
bots that exhibit different behavior than the one used to train, the performance depends on the
classifier, leading to an increase in the false-negative rate for most cases. As for the one-class
classifiers, they perform a little lower than specialized multi-class classifiers. Nevertheless,
one-class methods can correctly discern between legitimate and bot accounts without requir-
ing any example of what constitutes a bot. Moreover, the one-class methods tend to have
more stable behavior, as shown by their lower standard deviations. PBC4cip has performed
almost excellent in every different experiment set, which was reflected in the CD diagrams
and standard deviations in the tables. Thus, suggesting that contrast pattern-based classifiers
might outperform other methods in the bot detection context.

Chapter 6

Conclusions

In the last decade, online social networks have increased in popularity. By the end of 2018, the
total number of accounts registered in these networks was approximately 2.65 billion [108].
This vast amount of users imply that an essential part of the world’s population is continuously
exposed to the content posted in such networks. There exists a relevant information flow in
social networks, although most of the participants in social platforms do not know each other
personally. Moreover, researches have shown that there exist central nodes (accounts) from
which the information disseminates [85, 3]. Unfortunately, in online social networks such
as Twitter, there are automated accounts, known as bots, that have been used for malicious
purposes. The misuses of bots go from distributing spam and malware, to attempting to
influence people’s opinion during political campaigns.

Different Twitter bot detection methods [82, 129, 37, 56, 31] have been developed to
uncover malicious bots and stop them from causing harm in society. Bot detection methods
are based on the premise that humans and bot accounts behave differently. The behavior
of a given account can be modeled using a series of selected features that give information
about account use. These features go from the number of followers and friends to the ratio
between unique hashtag count and tweet count, for example. In the Twitter bot detection
literature, the features used to characterize accounts vary greatly across authors. As for the
measures selected used to evaluate the performance of each method, most authors report the
performance achieved by their proposals using Accuracy, F1, or AUC. Although they make
use of the same measures, those methods are still not directly comparable due to differences in
their methodology. Nevertheless, there exists common ground among bot detection methods;
most of them are based on supervised machine learning approaches [111] and have proven
to be highly effective when detecting bot types that are similar to those used to train their
algorithms.

Worryingly, malicious bots have changed their behavior over time to bypass existing
detection mechanisms. Bot content generation [51] and behavior emulation [64] have gotten
more sophisticated with the use of artificial intelligence tools. Also, coordinated accounts of
bots have been devised to make less visible the intentions of the individual accounts. Exper-
iments have shown that when the types of bots trying to be detected are different from those
used in the training phase of the algorithms, state-of-the-art classifiers’ performance decreases
[129].

The results of the experiments designed in this thesis are consistent with those in the

54

CHAPTER 6. CONCLUSIONS 55

bot detection literature. These results show that Twitter bots can be correctly detected using
a supervised classification approach. The highest performance obtained, when discerning
between bots and legitimate users, exceeds 0.95 AUC. Nevertheless, we have shown that
binary classifiers yield a low performance when predicting the class of a bot account whose
type is different from the ones that were used to train the classifier. The highest losses in
performance are close to 0.4 average AUC.

On the other hand, multi-class methods have shown a more stable performance than
binary classifiers. Also, they have a higher mean AUC performance. Even though multi-
classifiers are trained with examples of more than one type of bots, they cannot discern be-
tween bot and legitimate accounts in all experiments. To overcome this limitation, we propose
to approach Twitter bot detection as an anomaly detection problem. This approach involves
the use of one-class classifiers, which are methods that only require examples of one class to
learn a classification model.

Our experiment results show that using only genuine users examples, the best perform-
ing classifiers, for each type of bot, achieved a score above 0.91 average AUC. Moreover, the
difference in performance among the three types of algorithms was statistically significant.
Therefore the hypothesis that one-class classifiers can overcome the limitations of currently
existing methods can be accepted. Nevertheless, it is not the only way to do it. A contrast
pattern-based classifier, PBC4cip, excelled in every experiment set, yielding outputs close to
1 AUC. These findings support previous research of pattern-based classifiers made in the bot
detection context [82]. The results of the experiments designed for this thesis further provide
evidence that these methods are reliable and robust in the Twitter bot detection context, at an
account level. An additional advantage of one-class methods relies on the proposed feature
vector being approximately 92 times smaller than the one used in the so-far best-performing
methods. This difference in size translates to a simpler and faster retrieval of the proposed
vector.

Given the results obtained in the first and second experiment sets and the continuous
change in bot behavior, it is reasonable to think that nowadays, there are new types of bots
navigating Twitter. These bots exhibit behaviors different from those seen previously and,
therefore, currently avoid automated detection methods. The existence of such undercover
bots represents a threat for social network users, as it can result in successful amplification of
harming messages, malware dissemination campaigns that extend for relatively long periods,
or in any other malicious activity.

On the other hand, the performance shown by one-class classifiers and PBC4cip, suggest
that its underlying mechanism could be used to detect anomalous patterns in the behavior of
Twitter. After a careful analysis, we can conclude that one-class classifiers can complement
existing approaches, helping with the detection of new bots, while state-of-the-art classifiers
are better when focused on previously known bot types. Thus, a more robust automatic bot de-
tection system could be constructed by using binary classifiers together with one-class meth-
ods. Such a system could discern correctly known bots from legitimate accounts, and also be
able to find possible automated accounts with more certainty. An important consideration is
that a successful implementation of an automated bot detection system by using one-class and
binary classifiers would need to include updating mechanisms that take into account changes
in the legitimate behaviors, such as those that result by changes in the social platform. On
the other hand, contrast pattern-based classifiers are powerful detection methods with great

CHAPTER 6. CONCLUSIONS 56

explanatory capacity. Having the possibility to extract the bot behavior patterns can bring
useful insight for OSN’s administrators, which can modify the rule to reduce the misuse of
these popular platforms.

6.1 Future Work
The work in the bot detection domain is far from being over. This present work has proven
the effectiveness of a novel approach for detecting bots; nevertheless, there are elements of
this approach that could be optimized. One example of these elements is the feature vector
used to characterize the accounts’ behavior. Even though the proposed vector was carefully
designed by studying the findings in previous studies, it could be refined to provide a better
characterization by extensively testing different feature combinations. Additionally, more
contrast pattern-based methods can be compared and combined to further push the upper
bound in bot detection performance.

6.1.1 Hybrid approach
The approach proposed in this thesis does not intend to replace existing bot detection methods.
Instead, they are intended to complement existing methods. We encourage the development
of systems that combine both multi-class and one-class methods into a single detection mech-
anism. Such a hybrid approach could be robust when detecting known bot types, as existing
methods are. Additionally, these systems would benefit from the one-class approach by hav-
ing the capacity of detecting novel bot types more effectively than traditional methods can.
The development of hybrid approaches is an open area of research. To the best of the author’s
knowledge, there are still no efforts done in the direction of mixed detection systems. Botnet
detection is an open area of research, as current methods for botnet detection have the limita-
tion of relying on checking only a single feature. This limitation may allow for different types
of botnets to pass undetected. Nonetheless, a first step to solve this problem may be taken by
designing hybrid detection methods, or ensembles of distinct types of classifiers, that evaluate
different aspects of the accounts’ behavior at the same time.

6.1.2 Proactive approaches
Most bot detection mechanisms have arisen from the need to stop active malicious accounts,
but a recent study has proposed a proactive approach for bot detection [39]. Adopting a proac-
tive approach means to devise manners in which bots could evade actual detection systems,
to then come up with methods that could detect these more advanced bots. Moreover, the
experiments presented in [39] focus on evolving only the posting patterns of the bots. A more
general proactive approach could deal not only with posting patterns but also with the type
of content posted and even to the manners in which coordinated groups of malicious bots be-
have. This anticipation strategy has the potential of uncovering advanced bots that currently
infiltrate social networks. A proactive mindset by no way implies this persecution is soon to
be over, but instead, it is just another step towards developing more robust systems that even-
tually will be outsmarted by more sophisticated bots. As an educated guess, it is very likely

CHAPTER 6. CONCLUSIONS 57

that this arms race continue as long as online social networks exist, and that the advancement
of the malicious bot side still be strongly influenced by the extent to which the administrators
of these networks allow automation.

Bibliography

[1] ABOKHODAIR, N., YOO, D., AND MCDONALD, D. W. Dissecting a social botnet.
Proceedings of the 18th Association for Computing Machinery Conference on Com-
puter Supported Cooperative Work Social Computing - CSCW ’15 (2015).

[2] ACKERMANN, M. R., MÄRTENS, M., RAUPACH, C., SWIERKOT, K., LAMMERSEN,
C., AND SOHLER, C. Streamkm++: A clustering algorithm for data streams. Journal
of Experimental Algorithmics 17 (2012), 2.4:2.1–2.4:2.30.

[3] ADALI, S., ESCRIVA, R., GOLDBERG, M. K., HAYVANOVYCH, M., MAGDON-
ISMAIL, M., SZYMANSKI, B. K., WALLACE, W. A., AND WILLIAMS, G. Mea-
suring behavioral trust in social networks. In 2010 IEEE International Conference on
Intelligence and Security Informatics (2010), pp. 150–152.

[4] AHMED, F., AND ABULAISH, M. A generic statistical approach for spam detection in
online social networks. Computer Communications 36, 10 (2013), 1120 – 1129.

[5] AIELLO, L. M., DEPLANO, M., SCHIFANELLA, R., AND RUFFO, G. People are
strange when you’re a stranger: Impact and influence of bots on social networks.
vol. abs/1407.8134.

[6] ALIZA ROSEN. Tweeting made easier, 2017. Blog. https://
blog.twitter.com/official/en_us/topics/product/2017/
tweetingmadeeasier.html, Last accessed on 2019-08-15.

[7] ALLEM, J.-P., AND FERRARA, E. The importance of debiasing social media data
to better understand e-cigarette-related attitudes and behaviors. Journal of Medical
Internet Research 18, 8 (2016), e219.

[8] ALLEM, J.-P., AND FERRARA, E. Could social bots pose a threat to public health?
American Journal of Public Health 108, 8 (2018), 1005–1006. PMID: 29995482.

[9] ALLEM, J.-P., FERRARA, E., UPPU, S. P., CRUZ, T. B., AND UNGER, J. B. E-
cigarette surveillance with social media data: Social bots, emerging topics, and trends.
Journal of Medical Internet Research Public Health Surveill 3, 4 (2017), e98.

[10] ALTMAN, N. S. An introduction to kernel and nearest-neighbor nonparametric regres-
sion. The American Statistician 46, 3 (1992), 175–185.

58

https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html

BIBLIOGRAPHY 59

[11] AMANCIO, D. R., COMIN, C. H., CASANOVA, D., TRAVIESO, G., BRUNO, O. M.,
RODRIGUES, F. A., AND DA FONTOURA COSTA, L. A systematic comparison of
supervised classifiers. Public Library of Science ONE 9, 4 (2014), 1–14.

[12] ARLOT, S., AND CELISSE, A. A survey of cross-validation procedures for model
selection. Statistics Surveys 4 (2010), 40–79.

[13] ARTHUR, D., AND VASSILVITSKII, S. K-means++: The advantages of careful seed-
ing. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (Philadelphia, PA, USA, 2007), SODA ’07, Society for Industrial and Applied
Mathematics, pp. 1027–1035.

[14] BARTKOWIAK, A. Anomaly, novelty, one-class classification: A short introduction.
2010 International Conference on Computer Information Systems and Industrial Man-
agement Applications (CISIM) (2010), 1–6.

[15] BATISTA, G. E. A. P. A., PRATI, R. C., AND MONARD, M. C. A study of the
behavior of several methods for balancing machine learning training data. Association
for Computing Machinery. Special Interest Group on Knowledge Discovery and Data
Mining. Explorations Newsletter 6, 1 (2004), 20–29.

[16] BEKKAR, M., DJEMA, H., AND ALITOUCHE, T. Evaluation measures for models
assessment over imbalanced data sets. Journal of Information Engineering and Appli-
cations 3 (2013), 27–38.

[17] BEN-GAL, I. Bayesian Networks. American Cancer Society, 2008.

[18] BERGER, J. M., AND MORGAN, J. The isis twitter census: defining and describing
the population of isis supporters on twitter.

[19] BERRAR, D. Cross-validation. In Encyclopedia of Bioinformatics and Computational
Biology, S. Ranganathan, M. Gribskov, K. Nakai, and C. Schönbach, Eds. Academic
Press, Oxford, 2019, pp. 542 – 545.

[20] BESSI, A., COLETTO, M., DAVIDESCU, G. A., SCALA, A., CALDARELLI, G., AND

QUATTROCIOCCHI, W. Science vs conspiracy: Collective narratives in the age of
misinformation. Public Library of Science ONE 10, 2 (2015), 1–17.

[21] BESSI, A., AND FERRARA, E. Social bots distort the 2016 u.s. presidential election
online discussion. First Monday 21 (2016), 1–14.

[22] BISHOP, C. M. Novelty detection and neural network validation. Institution of Elec-
trical Engineers - Vision, Image and Signal Processing 141, 4 (1994), 217–222.

[23] BOSER, B. E., GUYON, I. M., AND VAPNIK, V. N. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory (New York, NY, USA, 1992), Computational Learning Theory ’92,
Association for Computing Machinery, pp. 144–152.

BIBLIOGRAPHY 60

[24] BOUGHORBEL, S., JARRAY, F., AND EL-ANBARI, M. Optimal classifier for imbal-
anced data using matthews correlation coefficient metric. Public Library of Science
ONE 12, 6 (2017), 1–17.

[25] BREIMAN, L. Bagging predictors. Machine Learning 24, 2 (1996), 123–140.

[26] BREIMAN, L. Random forests. Machine Learning 45, 1 (2001), 5–32.

[27] BRONIATOWSKI, D., M JAMISON, A., QI, S., ALKULAIB, L., CHEN, T., BENTON,
A., QUINN, S., AND DREDZE, M. Weaponized health communication: Twitter bots
and russian trolls amplify the vaccine debate. American journal of public health 108
(2018), e1–e7.

[28] BURGES, C. J. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery 2, 2 (1998), 121–167.

[29] CAMIÑA, J. B., MEDINA-PÉREZ, M. A., MONROY, R., LOYOLA-GONZÁLEZ, O.,
VILLANUEVA, L. A., AND GURROLA, L. C. Bagging-randomminer: A one-class
classifier for file access-based masquerade detection. Machine Vision Applications 30,
5 (2019), 959–974.

[30] CAMPBELL, C., AND YING, Y. Learning with Support Vector Machines. Morgan &
Claypool Publishers, 2011.

[31] CHAVOSHI, N., HAMOONI, H., AND MUEEN, A. Identifying correlated bots in twit-
ter. In Social Informatics (Cham, 2016), E. Spiro and Y.-Y. Ahn, Eds., Springer Inter-
national Publishing, pp. 14–21.

[32] CHEN, Z., AND SUBRAMANIAN, D. An unsupervised approach to detect spam cam-
paigns that use botnets on twitter. Computing Research Repository abs/1804.05232
(2018).

[33] CHU, Z., GIANVECCHIO, S., WANG, H., AND JAJODIA, S. Who is tweeting on
twitter: Human, bot, or cyborg? In Proceedings of the 26th Annual Computer Security
Applications Conference (New York, NY, USA, 2010), ACSAC ’10, Association for
Computing Machinery, pp. 21–30.

[34] CHU, Z., GIANVECCHIO, S., WANG, H., AND JAJODIA, S. Detecting automation
of twitter accounts: Are you a human, bot, or cyborg? Institute of Electrical and
Electronics Engineers Transactions on Dependable and Secure Computing 9, 6 (2012),
811–824.

[35] CLARK, E. M., JONES, C. A., WILLIAMS, J. R., KURTI, A. N., NOROTSKY, M. C.,
DANFORTH, C. M., AND DODDS, P. S. Vaporous marketing: Uncovering pervasive
electronic cigarette advertisements on twitter. Public Library of Science ONE 11, 7
(2016), 1–14.

[36] CRESCI, S., DI PIETRO, R., PETROCCHI, M., SPOGNARDI, A., AND TESCONI, M.
Fame for sale: Efficient detection of fake twitter followers. Decision Support Systems
80 (2015), 56–71.

BIBLIOGRAPHY 61

[37] CRESCI, S., DI PIETRO, R., PETROCCHI, M., SPOGNARDI, A., AND TESCONI, M.
Dna-inspired online behavioral modeling and its application to spambot detection. In-
stitute of Electrical and Electronics Engineers Intelligent Systems 31, 5 (2016), 58–64.

[38] CRESCI, S., DI PIETRO, R., PETROCCHI, M., SPOGNARDI, A., AND TESCONI, M.
The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race.
In Proceedings of the 26th International Conference on World Wide Web Companion
(Republic and Canton of Geneva, Switzerland, 2017), WWW ’17 Companion, Interna-
tional World Wide Web Conferences Steering Committee, pp. 963–972.

[39] CRESCI, S., PETROCCHI, M., SPOGNARDI, A., AND TOGNAZZI, S. Better safe than
sorry: An adversarial approach to improve social bot detection. 47–56.

[40] DAVIS, C. A., VAROL, O., FERRARA, E., FLAMMINI, A., AND MENCZER, F.
Botornot: A system to evaluate social bots. In Proceedings of the 25th International
Conference Companion on World Wide Web (2016), pp. 273–274.

[41] DEMŠAR, J. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research 7 (2006), 1–30.

[42] DI MARTINO, M., DECIA, F., MOLINELLI, J., AND FERNÁNDEZ, A. Improv-
ing electric fraud detection using class imbalance strategies. In ICPRAM (2) (2012),
pp. 135–141.

[43] DICKERSON, J. P., KAGAN, V., AND SUBRAHMANIAN, V. S. Using sentiment to
detect bots on twitter: Are humans more opinionated than bots? In Proceedings of the
2014 Institute of Electrical and Electronics Engineers/Association for Computing Ma-
chinery International Conference on Advances in Social Networks Analysis and Mining
(Piscataway, NJ, USA, 2014), ASONAM ’14, Institute of Electrical and Electronics
Engineers Press, pp. 620–627.

[44] DONG, G., AND BAILEY, J. Contrast Data Mining: Concepts, Algorithms, and Appli-
cations, 1st ed. Chapman & Hall/CRC, 2012.

[45] FAWCETT, T. An introduction to roc analysis. Pattern Recognition Letters 27, 8 (2006),
861–874.

[46] FAWCETT, T., AND PROVOST, F. Activity monitoring: Noticing interesting changes
in behavior. 53–62.

[47] FERRARA, E. Disinformation and social bot operations in the run up to the 2017 french
presidential election. Computing Research Repository abs/1707.00086 (2017).

[48] FERRARA, E., VAROL, O., DAVIS, C., MENCZER, F., AND FLAMMINI, A. The rise
of social bots. Communications of the Association for Computing Machinery 59, 7
(2016), 96–104.

[49] FERRARA, E., WANG, W.-Q., VAROL, O., FLAMMINI, A., AND GALSTYAN, A.
Predicting online extremism, content adopters, and interaction reciprocity. Social In-
formatics (2016), 22–39.

BIBLIOGRAPHY 62

[50] FOODY, G. M., AND ARORA, M. K. An evaluation of some factors affecting the accu-
racy of classification by an artificial neural network. International Journal of Remote
Sensing 18, 4 (1997), 799–810.

[51] FREITAS, C., BENEVENUTO, F., GHOSH, S., AND VELOSO, A. Reverse engineering
socialbot infiltration strategies in twitter. 25–32.

[52] FREUND, Y., AND SCHAPIRE, R. E. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences 55,
1 (1997), 119 – 139.

[53] GARCIA, S., AND HERRERA, F. An extension on ”statistical comparisons of classifiers
over multiple data sets” for all pairwise comparisons. Journal of Machine Learning
Research 9 (2008), 2677–2694.

[54] GEISSER, S. The predictive sample reuse method with applications. Journal of the
American Statistical Association 70, 350 (1975), 320–328.

[55] GHOSH, S., VISWANATH, B., KOOTI, F., SHARMA, N. K., KORLAM, G., BEN-
EVENUTO, F., GANGULY, N., AND GUMMADI, K. P. Understanding and combating
link farming in the twitter social network. In Proceedings of the 21st International Con-
ference on World Wide Web (New York, NY, USA, 2012), WWW ’12, ACM, pp. 61–70.

[56] GILANI, Z., KOCHMAR, E., AND CROWCROFT, J. Classification of twitter accounts
into automated agents and human users. In Proceedings of the 2017 IEEE/ACM Inter-
national Conference on Advances in Social Networks Analysis and Mining 2017 (New
York, NY, USA, 2017), ASONAM ’17, ACM, pp. 489–496.

[57] GRIMME, C., ASSENMACHER, D., AND ADAM, L. Changing perspectives: Is it suf-
ficient to detect social bots? In Social Computing and Social Media. User Experience
and Behavior (Cham, 2018), G. Meiselwitz, Ed., Springer International Publishing,
pp. 445–461.

[58] GUPTA, A., LAMBA, H., AND KUMARAGURU, P. $1.00 per rt bostonmarathon pray-
forboston: Analyzing fake content on twitter. pp. 1–12.

[59] HALL, M., FRANK, E., HOLMES, G., PFAHRINGER, B., REUTEMANN, P., AND

WITTEN, I. H. The weka data mining software: An update. Special Interest Group on
Knowledge Discovery and Data Mining Explorations Newsletter 11, 1 (2009), 10–18.

[60] HAUSTEIN, S., BOWMAN, T. D., HOLMBERG, K., TSOU, A., SUGIMOTO, C. R.,
AND LARIVIÈRE, V. Tweets as impact indicators: Examining the implications of
automated ”bot” accounts on twitter. Journal of the Association for Information Science
and Technology 67, 1 (2016), 232–238.

[61] HINTON, G. E. Connectionist learning procedures. Artificial Intelligence 40, 1 (1989),
185 – 234.

BIBLIOGRAPHY 63

[62] HO, T. K. Random decision forests. In Proceedings of the Third International Confer-
ence on Document Analysis and Recognition (Volume 1) - Volume 1 (Washington, DC,
USA, 1995), ICDAR ’95, IEEE Computer Society, pp. 278–282.

[63] HODGE, V. J., AND AUSTIN, J. A survey of outlier detection methodologies. Artificial
Intelligence Review 22, 2 (2004), 85–126.

[64] HWANG, T., PEARCE, I., AND NANIS, M. Socialbots: Voices from the fronts. Inter-
actions 19, 2 (2012), 38–45.

[65] INUWA-DUTSE, I., LIPTROTT, M., AND KORKONTZELOS, I. Detection of spam-
posting accounts on twitter. Neurocomputing 315 (2018), 496 – 511.

[66] JAPKOWICZ, N., MYERS, C., AND GLUCK, M. A novelty detection approach to
classification. 518–523.

[67] JHA, S., TAN, K., AND MAXION, R. A. Markov chains, classifiers, and intrusion
detection. In Proceedings of the 14th IEEE Workshop on Computer Security Founda-
tions (Washington, DC, USA, 2001), Computer Security Foundations Workshop ’01,
Institute of Electrical and Electronics Engineers Computer Society, pp. 206–.

[68] JIN HUANG, AND LING, C. X. Using auc and accuracy in evaluating learning algo-
rithms. Institute of Electrical and Electronics Engineers Transactions on Knowledge
and Data Engineering 17, 3 (2005), 299–310.

[69] JUN, Y., MENG, R., AND JOHAR, G. V. Perceived social presence reduces fact-
checking. Proceedings of the National Academy of Sciences 114, 23 (2017), 5976–
5981.

[70] KAPLAN, A. M., AND HAENLEIN, M. The early bird catches the news: Nine things
you should know about micro-blogging. Business Horizons 54, 2 (2011), 105 – 113.

[71] KAUR, G., AND CHHABRA, A. Improved j48 classification algorithm for the predic-
tion of diabetes. International Journal of Computer Applications 98, 22 (2014), 13–17.

[72] KELLER, F., SCHOCH, D., STIER, S., AND YANG, J. How to manipulate social
media: Analyzing political astroturfing using ground truth data from south korea, 2017.

[73] KOTSIANTIS, S. B. Supervised machine learning: A review of classification tech-
niques. 3–24.

[74] KWAK, H., LEE, C., PARK, H., AND MOON, S. What is twitter, a social network or
a news media? In Proceedings of the 19th International Conference on World Wide
Web (New York, NY, USA, 2010), WWW ’10, Association for Computing Machinery,
pp. 591–600.

[75] LARSON, S. C. The shrinkage of the coefficient of multiple correlation. Journal of
Educational Psychology 22, 1 (1931), 45–55.

BIBLIOGRAPHY 64

[76] LEE, K., CAVERLEE, J., AND WEBB, S. Uncovering social spammers: Social hon-
eypots + machine learning. In Proceedings of the 33rd International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (New York, NY, USA,
2010), SIGIR ’10, ACM, pp. 435–442.

[77] LEE, K., EOFF, B. D., AND CAVERLEE, J. Seven months with the devils: a long-term
study of content polluters on twitter. In In Association for the Advancement of Artificial
Intelligence Int’l Conference on Weblogs and Social Media (ICWSM (2011).

[78] LIPTON, Z. C., ELKAN, C., AND NARYANASWAMY, B. Optimal thresholding of
classifiers to maximize f1 measure. In Machine Learning and Knowledge Discovery
in Databases (Berlin, Heidelberg, 2014), T. Calders, F. Esposito, E. Hüllermeier, and
R. Meo, Eds., Springer Berlin Heidelberg, pp. 225–239.

[79] LIU, F. T., TING, K. M., AND ZHOU, Z.-H. Isolation forest. In Proceedings of
the 2008 Eighth Institute of Electrical and Electronics Engineers International Con-
ference on Data Mining (Washington, DC, USA, 2008), International Conference on
Data Mining ’08, Institute of Electrical and Electronics Engineers Computer Society,
pp. 413–422.

[80] LOKOT, T., AND DIAKOPOULOS, N. News bots. Digital Journalism 4, 6 (2016),
682–699.

[81] LONGLEY, P., CHESHIRE, J., AND SINGLETON, A. Consumer data research. UCL
Press, 2018.

[82] LOYOLA-GONZÁLEZ, O., MONROY, R., RODRÍGUEZ, J., LÓPEZ-CUEVAS, A., AND

MATA-SÁNCHEZ, J. I. Contrast pattern-based classification for bot detection on twit-
ter. Institute of Electrical and Electronics Engineers Access 7 (2019), 45800–45817.

[83] LOYOLA-GONZÁLEZ, O., MEDINA-PÉREZ, M., MARTÍNEZ-TRINIDAD, J. F.,
CARRASCO-OCHOA, J., MONROY, R., AND GARCÍA-BORROTO, M. Pbc4cip: A
new contrast pattern-based classifier for class imbalance problems. Knowledge-Based
Systems 115 (2017), 100–109.

[84] M. J. LAZER, D., BAUM, M., BENKLER, Y., J. BERINSKY, A., M. GREENHILL,
K., MENCZER, F., J. METZGER, M., NYHAN, B., PENNYCOOK, G., ROTHSCHILD,
D., SCHUDSON, M., SLOMAN, S., SUNSTEIN, C., A. THORSON, E., J. WATTS, D.,
AND L. ZITTRAIN, J. The science of fake news. Science 359 (2018), 1094–1096.

[85] MAHYAR, H., HASHEMINEZHAD, R., GHALEBI, E., NAZEMIAN, A., GROSU, R.,
MOVAGHAR, A., AND RABIEE, H. R. Identifying central nodes for information flow
in social networks using compressive sensing. Social Network Analysis and Mining 8,
1 (2018), 33.

[86] MARTINEZ-ROMO, J., AND ARAUJO, L. Detecting malicious tweets in trending top-
ics using a statistical analysis of language. Expert Systems with Applications 40, 8
(2013), 2992–3000.

BIBLIOGRAPHY 65

[87] MEDINA-PÉREZ, M. A., MONROY, R., CAMIÑA, J. B., AND GARCÍA-BORROTO,
M. Bagging-tpminer: a classifier ensemble for masquerader detection based on typical
objects. Soft Computing 21, 3 (2017), 557–569.

[88] MILLER, Z., DICKINSON, B., DEITRICK, W., HU, W., AND WANG, A. H. Twitter
spammer detection using data stream clustering. Information Sciences 260 (2014), 64
– 73.

[89] MOYA, M. M., KOCH, M. W., AND HOSTETLER, L. D. One-class classifier networks
for target recognition applications. 24–43.

[90] NAMIOT, D. Twitter as a transport layer platform. In 2015 Artificial Intelligence and
Natural Language and Information Extraction, Social Media and Web Search FRUCT
Conference (AINL-ISMW FRUCT) (2015), Institute of Electrical and Electronics Engi-
neers, pp. 46–51.

[91] NISBET, R., MINER, G., AND YALE, K. Chapter 11 - model evaluation and en-
hancement. In Handbook of Statistical Analysis and Data Mining Applications (Second
Edition), R. Nisbet, G. Miner, and K. Yale, Eds., second edition ed. Academic Press,
Boston, 2018, pp. 215 – 233.

[92] OLIVERI, P. Class-modelling in food analytical chemistry: Development, sampling,
optimisation and validation issues – a tutorial. Analytica Chimica Acta 982 (2017), 9 –
19.

[93] OPITZ, D., AND MACLIN, R. Popular ensemble methods: An empirical study. Journal
Artificial Intelligence Research 11, 1 (1999), 169–198.

[94] POLIKAR, R. Ensemble based systems in decision making. Institute of Electrical and
Electronics Engineers Circuits and Systems Magazine 6, 3 (2006), 21–45.

[95] PROVOST, F., AND FAWCETT, T. Analysis and visualization of classifier performance:
Comparison under imprecise class and cost distributions. In Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining (1997), Knowl-
edge Discovery and Data Mining ’97, Association for the Advancement of Artificial
Intelligence Press, pp. 43–48.

[96] QUINLAN, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[97] RIPLEY, B. D., AND HJORT, N. L. Pattern Recognition and Neural Networks, 1st ed.
Cambridge University Press, New York, NY, USA, 1995.

[98] RITTER, G., AND GALLEGOS, M. T. Outliers in statistical pattern recognition and an
application to automatic chromosome classification. Pattern Recognition Letters 18, 6
(1997), 525–539.

[99] RODRÍGUEZ, J., BARRERA-ANIMAS, A., TREJO, L., MEDINA-PÉREZ, M., AND

MONROY, R. Ensemble of one-class classifiers for personal risk detection based on
wearable sensor data. Sensors 16, 10 (2016), 1619.

BIBLIOGRAPHY 66

[100] RODRÍGUEZ-RUIZ, J., MATA-SÁNCHEZ, J. I., MONROY, R., LOYOLA-GONZÁLEZ,
O., AND LÓPEZ-CUEVAS, A. A one-class classification approach for bot detection on
twitter. Submitted to Computers & Security. Under review.

[101] RODRÍGUEZ-RUIZ, J., MONROY, R., MEDINA-PÉREZ, M. A., LOYOLA-
GONZÁLEZ, O., AND CERVANTES, B. Cluster validation in clustering-based one-class
classification. Expert Systems, e12475. e12475 10.1111/exsy.12475.

[102] ROKACH, L. Ensemble-based classifiers. Artificial Intelligence Review 33, 1-2 (2010),
1–39.

[103] ROUSSEEUW, P. J., AND LEROY, A. M. Robust Regression and Outlier Detection.
John Wiley & Sons, Inc., New York, NY, USA, 1987.

[104] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Neurocomputing: Foun-
dations of research. Massachusetts Institute of Technology Press, Cambridge, MA,
USA, 1988, ch. Learning Representations by Back-propagating Errors, pp. 696–699.

[105] SHAO, C., HUI, P.-M., WANG, L., JIANG, X., FLAMMINI, A., MENCZER, F., AND

CIAMPAGLIA, G. L. Anatomy of an online misinformation network. Public Library
of Science ONE 13, 4 (2018), e0196087.

[106] SOKOLOVA, M., JAPKOWICZ, N., AND SZPAKOWICZ, S. Beyond accuracy, f-score
and roc: A family of discriminant measures for performance evaluation. In Proceedings
of the 19th Australian Joint Conference on Artificial Intelligence: Advances in Artificial
Intelligence (Berlin, Heidelberg, 2006), AI’06, Springer-Verlag, pp. 1015–1021.

[107] SOKOLOVA, M., AND LAPALME, G. A systematic analysis of performance measures
for classification tasks. Information Processing and Management 45, 4 (2009), 427–
437.

[108] STATISTA. Number of social network users worldwide from 2010 to 2021
(in billions). (2019) https://www.statista.com/statistics/278414/
number-of-worldwide-social-network-users/, Last accessed on 2019
08 15.

[109] STELLA, M., FERRARA, E., AND DE DOMENICO, M. Bots increase exposure to neg-
ative and inflammatory content in online social systems. Proceedings of the National
Academy of Sciences 115, 49 (2018), 12435–12440.

[110] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G. Detecting spammers on social net-
works. In Proceedings of the 26th Annual Computer Security Applications Conference
(New York, NY, USA, 2010), ACSAC ’10, Association for Computing Machinery,
pp. 1–9.

[111] SUBRAHMANIAN, V. S., AZARIA, A., DURST, S., KAGAN, V., GALSTYAN, A.,
LERMAN, K., ZHU, L., FERRARA, E., FLAMMINI, A., AND MENCZER, F. The
darpa twitter bot challenge. Computer 49, 6 (2016), 38–46.

https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/
https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/

BIBLIOGRAPHY 67

[112] SUGIMOTO, C. R., WORK, S., LARIVIÈRE, V., AND HAUSTEIN, S. Scholarly use of
social media and altmetrics: A review of the literature. Journal of the Association for
Information Science and Technology 68, 9 (2017), 2037–2062.

[113] TAX, D. One-class classification: concept-learning in the absence of counter-
examples. PhD thesis, The Netherlands: University of Delft, 2001.

[114] TAX, D. M. J. One-class classification: Concept learning in the absence of counter-
examples. PhD thesis, Technische Universiteit Delft, 2001.

[115] TWITTER, INC. Getting Started. Help Center. (2017) https://help.twitter.
com/en/twitter-guide, Last accessed on 2019 08 15.

[116] TWITTER, INC. Financial Releases. Q2 2019 Letter to Shareholders. Investor Rela-
tions. (2019).

[117] TWITTER, INC. About Twitter’s APIs. Help Center. (2019) https://help.
twitter.com/en/rules-and-policies/twitter-api, Last accessed on
2019 08 15.

[118] TWITTER, INC. Automation rules. Help Center. (2017) https://help.
twitter.com/en/rules-and-policies/twitter-automation, Last
accessed on 2019 08 15.

[119] VAN DONGEN, S. Graph clustering via a discrete uncoupling process. Society for
Industrial and Applied Mathematics Journal on Matrix Analysis and Applications 30,
1 (2008), 121–141.

[120] VAPNIK, V. N. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin,
Heidelberg, 1995.

[121] VAROL, O., FERRARA, E., DAVIS, C. A., MENCZER, F., AND FLAMMINI, A. Online
human-bot interactions: Detection, estimation, and characterization. In International
AAAI Conference on Web and Social Media (2017), Association for the Advancement
of Artificial Intelligence, Association for the Advancement of Artificial Intelligence,
p. 280–289.

[122] WALD, R., KHOSHGOFTAAR, T. M., NAPOLITANO, A., AND SUMNER, C. Predict-
ing susceptibility to social bots on twitter. In 2013 IEEE 14th International Conference
on Information Reuse Integration (IRI) (2013), pp. 6–13.

[123] WAN, L., NG, W. K., DANG, X. H., YU, P. S., AND ZHANG, K. Density-based clus-
tering of data streams at multiple resolutions. Association for Computing Machinery
Transactions on Knowledge Discovery from Data 3, 3 (2009), 14:1–14:28.

[124] WANG, A. H. Detecting spam bots in online social networking sites: A machine learn-
ing approach. In Proceedings of the 24th Annual IFIP WG 11.3 Working Conference
on Data and Applications Security and Privacy (Berlin, Heidelberg, 2010), DBSec’10,
Springer-Verlag, pp. 335–342.

https://help.twitter.com/en/twitter-guide
https://help.twitter.com/en/twitter-guide
https://help.twitter.com/en/rules-and-policies/twitter-api
https://help.twitter.com/en/rules-and-policies/twitter-api
https://help.twitter.com/en/rules-and-policies/twitter-automation
https://help.twitter.com/en/rules-and-policies/twitter-automation

BIBLIOGRAPHY 68

[125] WANG, B., ZUBIAGA, A., LIAKATA, M., AND PROCTER, R. Making the most
of tweet-inherent features for social spam detection on twitter. Computing Research
Repository abs/1503.07405 (2015).

[126] WANG, G., MOHANLAL, M., WILSON, C., WANG, X., METZGER, M. J., ZHENG,
H., AND ZHAO, B. Y. Social turing tests: Crowdsourcing sybil detection. Computing
Research Repository abs/1205.3856 (2012).

[127] WANG, K., AND STOLFO, S. J. One-class training for masquerade detection. In
3rd IEEE Conference Data Mining Workshop on Data Mining for Computer Security
(2003).

[128] YANG, C., HARKREADER, R., AND GU, G. Empirical evaluation and new design for
fighting evolving twitter spammers. Institute of Electrical and Electronics Engineers
Transactions on Information Forensics and Security 8, 8 (2013), 1280–1293.

[129] YANG, K.-C., VAROL, O., DAVIS, C. A., FERRARA, E., FLAMMINI, A., AND

MENCZER, F. Arming the public with artificial intelligence to counter social bots.
Human Behavior and Emerging Technologies 1, 1 (2019), 48–61.

[130] YU, H.-F., HUANG, F.-L., AND LIN, C.-J. Dual coordinate descent methods for
logistic regression and maximum entropy models. Machine Learning 85, 1 (2011),
41–75.

[131] ZHANG, H. The optimality of naive bayes. In Proceedings of the Seventeenth Inter-
national Florida Artificial Intelligence Research Society Conference (FLAIRS 2004)
(2004), V. Barr and Z. Markov, Eds., Association for the Advancement of Artificial
Intelligence Press.

[132] ZHANG, J., ZHANG, R., ZHANG, Y., AND YAN, G. The rise of social botnets: Attacks
and countermeasures. Institute of Electrical and Electronics Engineers Transactions on
Dependable and Secure Computing 15, 6 (2018), 1068–1082.

[133] ZHU, J., ROSSET, S., ZOU, H., AND HASTIE, T. Multi-class adaboost. Statistics and
its interface 2 (2006).

	Abstract
	List of Figures
	List of Tables
	Introduction
	Twitter
	Twitter Bots
	Malicious Uses of Bots
	Impact of Social Twitter Bots
	Bot Detection

	Hypothesis
	Objectives
	Contributions
	Document Structure

	State-of-the-art Methods for Bot Detection on Twitter
	Prevalent Performance Measures in Bot Detection Research
	Previous Works
	Supervised Bot Detection Approaches
	Unsupervised Bot Detection Approaches

	Implications of the Evolution in Bots' Behavior
	Paradigm-shift in Bot Design
	Relationship Between Bot Behavior and Classifiers Performance

	Summary

	One-class Classification for Twitter Bot Detection
	Fundamental Approaches for Anomaly Detection
	Unsupervised Clustering
	Supervised Classification
	Semi-supervised Classification

	Classification in Machine Learning
	Training and Testing a Supervised Classification Model
	One-class, Binary, and Multi-class Classification
	Measures to Compare Classification Performance

	Advantages and Limitations of Existing Approaches for Bot Detection in Twitter
	The Supervised Approach for Bot Detection
	The Semi-supervised Approach for Bot Detection

	Methodology
	Experiments
	Datasets Used in the Experiments
	Features for Characterizing Twitter User's Behavior
	Selected Classifiers
	Selected Performance Measure

	Summary

	Experimental Setup
	Experiments
	Experiment Set A (Binary Classifiers) Description
	Experiment Set B (Multi-class Classifiers) Description
	Experiment Set C (One-class Classifiers) Description

	Performance validation
	Testing the significance of results
	Summary

	Experimental Results and Discussion
	Results of Experiment set A (Binary Classifiers)
	Classifiers Trained with Social1 Type Bots and Genuine Accounts
	Classifiers Trained with Social2 Type Bots and Genuine Accounts
	Classifiers Trained with Social3 Type Bots and Genuine Accounts
	Classifiers Trained with Traditional Type Bots and Genuine Accounts
	Summary of Results of Experiment Set A

	Results of Experiment set B (Multi-class Classifiers)
	Results of Experiment set C (One-class Classifiers)
	Results Comparison
	Statistical Differences Among Approaches
	Generalization Capabilities

	Summary

	Conclusions
	Future Work
	Hybrid approach
	Proactive approaches

	Bibliography

