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Leonardo Clemente López and that it is fully adequate in scope and quality as a partial
requirement for the degree of Master of Science in Computer Sciences.

Jose Carlos Ortiz Bayliss
Tecnológico de Monterrey

Principal Advisor

Mauricio Santillana
Harvard Medical School

Co-Advisor

Santiago Enrique Conant Pablos
Tecnológico de Monterrey

Committee Member

Iván Mauricio Amaya Contreras
Tecnológico de Monterrey

Committee Member

Rubén Morales Menéndez
Associate Dean of Graduate Studies
School of Engineering and Sciences

Monterrey, Nuevo León, June, 2019

i

Leonardo


Leonardo
December, 2019





Dedication

(Only 1 page) Thanks for all your unconditional confidence, support, patience, and en-
couragement. You were my main motivation for pushing through this work.

v



Acknowledgements

During the course of my Master’s degree, many things have happened, and I would not
have been able to make it without the help of my family, friends, colleagues. I am grateful
to Dr. Ortiz-Bayliss for taking me as his graduate student and his flexibility and support
throughout this 2-year period. I am also really grateful with Dr. Mauricio Santillana for
giving me the opportunity to work with him and have a first-time experience of what it is
to work in a multi-cultural and high-skilled environment, always thriving for excellence in
everything we do. I would also like to thank my parents, Elvia and Victor, for being there
when I needed them, unconditionally, and supporting me the only way a parent knows
how. I would like to thank Andrea, my girlfriend, for understanding when I had to leave
out of the country due to my research projects and the times where I had to prioritize
finishing some work and not spending some time together. Finally, I would also like to
express gratitude to all the great people in the Intelligent systems department, for their
strict feedback to polish this work into what it is now, for Tec de Monterrey’s and its
tuition support, and CONACyT’s scholarship grant, which helped me pay for my living
during this period. For everyone else those who have been with me, I am grateful.

vii



Predicting Influenza in Latin America: Using Voting
Ensembles to Combine Google Search Activity and

Geo-spatial Synchronicities from Historical Flu Activity
by

César Leonardo Clemente López

Abstract

Novel influenza surveillance systems in the U.S. that combine historical influenza
reports from hospitals, along with external influenza-related sources (such as web-based
databases and reports from neighboring locations, among others) have shown to generate
flu estimates in advance to the official health reports published by healthcare-based sys-
tems. However, in Latin America, several systems that harnessed web-based data sources
in the past, such as Google Flu Trends, have shown that novel influenza surveillance are
yet to deliver acceptable flu estimates. In this work, we aim to show that improved in-
fluenza estimates can be achieved for various countries in Latin America, and even in
more refined geographic-scales in Mexico, by implementing methodological changes on
the way that information sources such as Google Search activity and historical influenza
activity reports are combined. A methodological framework which dynamically combines
different influenza tracking techniques via a voting ensemble system is presented and used
to generate improved influenza activity estimates in 15 countries in Latin America, 5 re-
gions and 27 states in Mexico. Our results show that the voting ensemble outperforms the
3 different techniques implemented to harness the predictive power of local and external
data sources, reaching lower error and higher correlation scores. This methodology may
prove helpful to local public health officials who organize health interventions aimed at
mitigating influenza outbreaks, and its adaptive power may also prove useful to extend its
scope by also tracking other diseases such as Dengue and Zika.
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Chapter 1

Introduction

Influenza poses significant health challenges to developing countries in Latin America,
having the highest mortality of any respiratory infectious disease in the young and el-
derly [23]. In Mexico, more than 100 thousand patients that visited their physician ex-
hibited influenza like illness (ILI) or severe acute respiratory infections (SARI) between
January 2010 and December 2013 [4]. Out of these patients, around twenty thousand were
confirmed with the influenza virus. In order to address this issue, Official Health Institutes
create disease activity indicators that allow the localization of outbreaks and morbidity
control of the infected with preventive measure purposes. World wide, the World Health
Organization (WHO) aggregates activity reports from various national influenza centers
and publishes country-level information regarding the number of reported, tested, and
confirmed influenza weekly cases. Mexico’s official epidemiological surveillance organi-
zation, Sistema Nacional de Vigilancia Epidemiológica (SINAVE), keeps track of several
diseases such as Dengue, Zika, Tuberculosis and influenza at local, state and national level.
However, while these systems provide historical ILI or influenza-confirmed case activity,
reports are usually delayed by a week or more, limiting the information available to health
officials.

To alleviate this timegap, multiple research teams have proposed complementary
methods to estimate and forecast flu activity in real time (referred to as “nowcasting”) and
have overcome these delays by using various techniques [1, 24, 31]. These techniques
include incorporating a variety of digital data sources such as search engine trends [6,
21, 29], Wikipedia [7, 8], social networks and crowdsourcing [14, 15, 25] and neighbor-
ing historical spatial and temporal synchronicities of influenza activity [2, 10, 27]. Al-
though these models have been successfully implemented on data-rich countries such as
the United States, there is no successful implementation on countries where the data is
rather scarce. Moreover, a reliable system that successfully leverages digital data streams
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to monitor influenza at finer scales is not yet available for developing nations in Latin
America.

An early attempt at large-scale nowcasting started in 2008 with Google Flu Trends (GFT),
an online tool using Google search activity as predictors to produce state and national level
influenza activity estimates. While this approach was technologically innovative at its first
deployment, its methods drew criticism from researchers when the model incorrectly pre-
dicted the 2009 A-H1N1 flu pandemic and the 2013 flu season in the United States [12, 22].
GFT also produced flu estimates in a broad range of countries, and was finally discontin-
ued in 2015. A more recent study by Pollet et al. showed that estimates in Latin American
countries have yielded poor results [19].

1.1 Problem Definition and Motivation

Influenza surveillance is the event of determining the timing, location and magnitude of
outbreaks by monitoring the frequency and progression of clinical case incidence [12]. The
main objective of influenza surveillance is to identify changes in incidence, either in the
form of an acute outbreak or a change in long-term trends, their verification, assessment
and investigation to enable public health control.

Statistical models that estimate influenza activity (such as the proportion of total
visits to a clinician that relate to influenza or the weekly number of processed specimen
cases tested for influenza) support health-care institutions in the development of preventive
strategies with the aim to mitigate disease transmission and efficiently allocate resources
to attend patients in a prompt manner. As an example in Mexico, more than 130 thousand
patients that visited their physician exhibited ILI or SARI in a four-year time span, and
efforts from national health officials to reduce the infection rates based on the surveillance
data they collected from SINAVE [4]. However, this information is usually delayed by
one or two weeks, reducing the ability of decision makers in selecting the most adequate
disease prevention strategies.

Effective influenza surveillance methods that estimate disease activity in advance to
the official health reports aim to overcome this time delay, and aid in development of pre-
ventive campaigns to mitigate disease transmission, reducing the incidence and avoiding
expenses from basic protocol tests to emergency room stays [23].

An effective predictive methodology for influenza forecasting would reduce the eco-
nomic burden that the disease generates on a yearly basis and work as a first step to extend
such methodology into tracking other diseases.

Current public health surveillance data from Mexico has the potential to generate
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real-time surveillance systems that incorporate external sources of information. The estab-
lishment of SINAVE in 1995, an online web-tool where official health institutes throughout
the country submit information regarding different diseases with the objective of producing
surveillance, and the increasing online activity of users in the Internet generates an ideal
environment for digital influenza surveillance. However, previous analyses of influenza
surveillance in the U.S. have shown that influenza activity may be highly heterogeneous
across locations within a country and that external sources of information such as Google
search activity trends that spur from, perhaps, a community’s overreaction can often be
misinterpreted by influenza activity trends.

1.2 Objectives
As explained by the Centers of Disease Control and Prevention (CDC), epidemic surveil-
lance can be described by two main components: the indicator-based component, which
refers to data collected through official health surveillance systems, and the event-based
component, which refers to data gathered from sources of different external sources, such
as social media, crowdsourced campaigns, news, among others. By considering Internet as
a source of health-related information, along with the increasing advances in information
technologies that allow official health-institutes to gather large amounts of data related to
disease diagnosis, has led to the creation of Digital Infectious Disease Surveillance, a new
form of surveillance that utilizes disease related information from various data sources. In
this type of surveillance, the novelty comes from successfully combining the two previ-
ously defined components of epidemic surveillance [13]. In this work, the main objective
is to combine both indicator-based and event-based components of surveillance to develop
a data-driven and self-correcting method that delivers timely flu activity estimates one
week ahead of time of the official health reports. To achieve this general objective, the
following particular objectives are considered:

1. Identify whether there is a standard, automated way of extracting information that
serves as data to perform digital ILI surveillance in Latin American countries.

2. Investigate the feasibility of combining historical flu activity and flu-related Internet
activity in Latin American countries.

3. Explore the advantages of incorporating influenza activity from neighboring loca-
tions to improve nowcasting.

4. Investigate novel influenza surveillance methods shown to successfully leverage
these data sources in the United States, and explore their possibility of extension
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and improvement in Latin American countries, where data is more sparse.

5. Design and implement a voting ensemble method that leverages the predictive power
of baseline models, with the purpose of increasing accuracy and robustness.

6. Propose a novel real-time methodology that successfully combines official health
reports and Internet-based data sources, which are the only available sources of in-
formation, for monitoring ILI activity.

1.3 Hypothesis
A data-driven voting ensemble method that combines the predictive power of different
models based on their historical performance can generate influenza activity estimates that
are more robust to the variation in the performance of individual models in Latin American
countries.

The following research questions were used to guide this work:

• Is Internet-based data a feasible source of information to conduct influenza activity
surveillance in Latin American countries?

• How should web-mined data be combined to produce influenza activity surveillance
estimates? How should we mine such data?

• How can influenza activity events that originate in the geographical vicinity of
surveillance locations aid in nowcasting?

• What is the proper way to design a voting ensemble that extracts and combines
relevant features from independent sources of information?

1.4 Goals
Influenza surveillance aids national health institutions measuring morbidity and mortality
rates, and to detect changes in public health in the most possible timely manner. More-
over, advances in information technology have led to people being able to search for news,
symptoms and other health-related activities through the Internet, making the web a valu-
able resource of information in disease surveillance. With the purpose of evaluating the
possibility of influenza nowcasting in Latin America, the goals this work expects to ac-
complish are:
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• Revising the current methods to extract Google search volumes and verify their ap-
plicability to Latin American countries. Then, generate a useful feature database for
each location in which a surveillance system will be implemented.

• Mine historical influenza activity from SINAVE and WHO to produce some stan-
dardized datasets for different countries in Latin America and the states in Mexico.

• Explore the historical influenza interactions between a local surveillance point and
its neighbors to analyze the possibility of combining them into a surveillance tool

• Explore and design a voting ensemble technique that successfully combines differ-
ent sources of data that include official health reports and Internet-based data sources
for monitoring ILI activity.

• Generate the proper set of coding tool to facilitate the research and reproducibility
of the experiments conducted in this investigation.

1.5 Solution overview
In this thesis, we present the first nowcasting system that combines historical influenza
activity, Internet search volumes, and geo-spatial synchronicities in Mexico and other
countries in Latin America, by extending on the work of Lu et al. [10]. As a first step,
a methodology named AutoRegression with General Online information (ARGO) [30],
which combines historical influenza activity reports and Google search activity, is imple-
mented. Next, a learning ensemble approach, called Net, that leverages local and neighbor
influenza activity estimates along with historical official health reports (structural spatio-
temporal synchronicities) is introduced. Finally, we implement a voting ensemble and
show that, by combining the individual predictive power of each model, it is possible to
consistently reach higher accuracy and lower error in more cases than using the models
separately. We demonstrate this novel methodology’s capabilities by generating retro-
spective estimates at state and regional geographic level for Mexico, and national level for
several countries in Latin America.

1.5.1 Contributions
This work focuses on developing nowcasting methodologies that accurately predict in-
fluenza activity in Latin American countries. The main contributions from this work are:
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1. Expanding Internet-based disease surveillance for various countries in Latin Amer-
ica through two different official health-care institution databases: Flunet and SINAVE,
and two non-official sources of information: Google Correlate and Google Trends.

2. Conducting a study of the novel influenza methodology in Latin American countries
and a multi-scale surveillance case for Mexico.

3. Generating a programming tool in python that helps mining the web sources that we
use for disease surveillance (Google Correlate, Google Trends) automatically.

4. Providing a novel, adaptive approach that improves feature selection of data coming
from Google search queries.

1.5.2 Justification
The availability for a reliable estimate of future incidences of influenza disease is a cru-
cial factor in the improvement of decision making during potential pandemics. Important
decisions such as vaccination prioritizing, resource allocation and timing of resource de-
ployment must be justified on strong statistical evidence and robust prediction models [9].
While web-based tools such as Flunet and SINAVE routinely collect and aggregate infor-
mation on weekly flu activity, these reports involve a delay of at least 1-2 weeks in Latin
America, limiting the ability for a timely response to unexpected epidemic outbreaks. Mul-
tiple research teams have proposed complementary methods to estimate influenza activity
in real-time for data-rich countries such as the United States. However, an accurate system
using Internet search activity to monitor influenza activity in developing nations is not yet
available. More recently, a self-correcting, adaptive methodology named ARGO [30], be-
came state-of-the art in the task of real-time disease forecasting by combining several dis-
parate sources such as historical official reports, digital-health records, and Google search
activity [10, 29].

1.6 Thesis Overview
The remainder of this document is organized as follows. Chapter 2 introduces the theoret-
ical framework and the nature of the information sources that will be used for the thesis.
Chapter 3 describes argotools, a programming library that was developed to execute the
experiments in this research to ensure reproducibility of results. Chapter 4 presents the set
of preliminary experiments that assess the feasibility of applying Internet search activity
trends as a proxy of influenza activity at National scale for eight countries. Chapter 5 de-
scribes a voting ensemble that, based on the historical performance of the different models
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that participate in the ensemble, combines their predictive power to generate more robust
results and achieving lower out-of-sample error. Chapter 6 presents the conclusions and
future work based on the research conducted.





Chapter 2

Background and Related Work

In this section, we present the origin and format of the data sources, along with the math-
ematical formulation for ARGO, Net and AR. This chapter starts by mentioning historical
influenza surveillance data and how it was collected from the web-based databases from
FluNet and SINAVE. Then, the mathematical model formulation for various multivariate
linear methods (AR, ARGO and Net) and the voting ensemble are presented. Finally, we
formulate the definitions of several error types used in the benchmarking of point-wise
estimates that are used when comparing the performance of the models.

2.1 Data Sources
In this work, two indicator-based surveillance data sources (SINAVE and FluNet) and two
event-based sources (Google Correlate and Google Trends) are presented. The indicator-
based data sources are used in this study as both ground-truth and features for our pre-
dictive models. Google Correlate and Google Trends provide us with features that we
hypothesize as adequate proxies for ILI activity.

2.1.1 FluNet
FluNet is a web-based tool created by the World Health Organization in 1997 used to
perform international influenza surveillance and to allow public access for data regarding
confirmed and suspected influenza activity within National Influenza centers (NICs). The
WHO routinely collects and aggregates data from several NICs and makes it publicly
available for everyone via visualizations, including tables, maps and graphs. FluNet has
the purpose of helping track influenza viruses and interpreting epidemiological observed
events.

9
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FluNet’s official health reports are of interest for digital disease surveillance, since
they provide information about the Number of Received Specimens (NRS) for inspec-
tion, Number of Processed Specimen (NPS) and influenza-confirmed cases, among others,
which can be used directly (or as the ratio of the two) as gold standard in influenza fore-
casting. For example, Table 2.1 presents an example of the data that can be extracted from
FluNet.

Table 2.1: Sub-sample of the data that FluNet provides when downloading weekly in-
fluenza health-reports from their website.

Year Week StartDate EndDate NRS NPS Influenza confirmed

2010 1 1/4/10 1/10/10 25 445 4
2010 2 1/11/10 1/17/10 55 434 21
2010 3 1/18/10 1/24/10 21 427 6
2010 4 1/25/10 1/31/10 24 298 1
2010 5 2/1/10 2/7/10 28 415 4
2010 6 2/8/10 2/14/10 11 410 0
2010 7 2/15/10 2/21/10 17 420 3
2010 8 2/22/10 2/28/10 8 430 1
2010 9 3/1/10 3/7/10 16 485 0
2010 10 3/8/10 3/14/10 9 553 3

2.1.2 SINAVE

The Sistema Nacional de Vigilancia Epidemiologica (SINAVE) is the official national epi-
demiological surveillance platform from Mexico, where all official reports from national
health institutions such as Instituto Mexicano del Seguro Social (IMSS) and Instituto de
Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE) are collected.
SINAVE keeps records of emerging activity for different diseases. SINAVE records in-
formation of the number of patients either infected, non-infected, in danger and deceased,
along with virus sub-type information, which can be used for disease surveillance method-
ologies if combined correctly.

SINAVE collects information from approximately 20, 000 health units in Mexico,
and has proved to be a successful epidemiological surveillance tool, particularly for gen-
erating preventive health campaigns in the advent of a disease outbreak such as the 2009
influenza pandemic.
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2.1.3 Collecting historical influenza reports from FluNet and SINAVE
FluNet collects and aggregates multiple indicators of flu activity at country level. For this
study, we selected the number of processed specimens (NPSs) as the ground truth. As these
specimens were taken from patients with flu-like symptoms and then sent to a laboratory
for testing, we interpreted them as an indicator of suspected flu activity in the population.
Weekly aggregated NPS reports were collected from January 5, 2009 to December 25,
2017 for Argentina, Brazil, Chile, Colombia, Costa Rica, Ecuador, Guatemala, Honduras,
Mexico, Nicaragua, Panama, Peru, Paraguay, Salvador and Uruguay.

Similarly, SINAVE provides health clinicians with historical influenza activity re-
ports that are collected from the majority of official government managed health institu-
tions. As with FluNet, we interpreted SINAVE’s influenza activity reports (an aggregated
time-series from all flu-related activity time-series available from SINAVE) as an indicator
of suspected flu activity, and collected weekly aggregated influenza activity reports from
January 05, 2010 through December 25, 2017 for all the available states in Mexico. To
corroborate that the data collected from SINAVE was similar to the flu activity reported
for Mexico in FluNet, data from all states in Mexico obtained through SINAVE was ag-
gregated to generate a national-level influenza trend. Our preliminary test confirmed that
both influenza activity time-series followed an almost identical trend every week during
our study period.

To generate regional-level information, historical flu reports from different states
were aggregated a follows:

1. North-West (NW): Baja California Norte, Baja California Sur, Chihuahua, Sinaloa
and Sonora.

2. North-East (NE): Coahuila, Durango, Nuevo Leon, San Luis Potosi and Tamaulipas.

3. South-Central (SC): Ciudad de Mexico, Estado de Mexico, Guerrero, Hidalgo, More-
los, Puebla and Tlaxcala.

4. South-West (SW): Aguascalientes, Colima, Guanajuato, Jalisco, Michoacan, Na-
yarit, Queretaro and Zacatecas.

5. South-East (SE) : Campeche, Chiapas, Oaxaca, Quintana Roo, Tabasco, Veracruz,
Yucatan.

2.1.4 Google Correlate and Google Trends
Online web search query data has proved useful in providing models of real world prob-
lems. However, many of these results relied solely on prior knowledge about the queries
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that were related to the phenomenon. Google presented an online, automated method
for query selection called “Google Correlate” that requires no such prior knowledge and
instead, it uses a temporal or spatial pattern to determine which queries are the most sim-
ilar. These search queries can then serve to build an estimate of the true value of the
phenomenon. Google Correlate implements an approximate nearest neighbor algorithm
over millions of candidates to produce results and picks the most similar queries based on
the R

2 correlation. A table of influenza-related queries generated by Google Correlate is
presented in Table 2.2.

After its success in the United States, Google Correlate has been implemented in
many countries around the globe, including Argentina, Brazil, Chile and Mexico. Even
though Google Correlate does not explain why only these countries are available, it is
suspected that only countries that have “enough” data can be searched through with this
web-tool, therefore giving us a hint of which countries in Latin America may benefit from
using online search queries as an explanatory variable of influenza activity.

Google Trends works in the opposite way. Instead of looking up correlated terms
based on a search term or a search term activity, Google Trends returns the activity from the
search term of interest. Google Trends adjusts search data to make comparisons between
terms easier. Each data point is divided by the total searches of the geography and time
range it represents, to compare relative popularity.

Table 2.2: This table shows a sub-sample of how the data generated by Google Correlate
looks after being normalized and zero-patched by Google.

Date “virus
influenza”

“prevencion de
la gripa” “influenza” “influenza

virus” “gripe”

1/4/04 0 0 0 0 0
1/11/04 0 0 573.0499 0 0
1/18/04 0 0 0 0 0
1/25/04 0 0 0 0 1117.8653
2/1/04 0 0 0 0 0
2/8/04 0 0 0 0 508.5831

2/15/04 0 0 0 0 0
2/22/04 484.2659 0 0 484.2659 483.0183
2/29/04 0 0 0 0 776.0539
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2.1.5 Collecting web-based activity from Google Correlate and Google
Trends

Given their near real-time availability via the online tool, Google Trends, we selected
influenza-related Internet search activity to be used in our models as proxies or predictors
for flu activity. Where available and based on country-specific historical flu indicators
(during the training time period of our models), we used the online tool, Google Correlate,
to identify flu-related search term trends, leading to a total of 285 Spanish terms and 96
Portuguese terms for the National level and 287 terms for the state and regional levels
of Mexico. A detailed list of the terms used in this work can be accessed on http:
//bit.ly/2F5qpYA). We opted to use the state level spanish search terms as features
for the regional study.

After generating a search term list through Google Correlate, Google search term
time-series were downloaded using the Google Trends’ (GT) API.

The following strategies were used to produce a list of terms using Google Correlate:

1. We submitted state-level and national-level influenza activity reports to Google Cor-
relate and extracted, for each state and country, a table with the most correlated
terms.

2. submitted a query to collect the most correlated search terms with the word ”in-
fluenza” for every location at National level (this process can also be done in Google
Trends for state-level although to a more limited extent).

3. A final list of terms was created from all the tables collected for each separate
Google Correlate consult. Data was filtered by hand to omit terms that, even though
they exhibited a correlation with the influenza activity reports, were not semantically
related to ILI symptoms.

It is relevant to add that the dates of the influenza activity reports submitted to Google
Correlate ranged from January 5, 2009 through December 25, 2011 for the preliminary
work and January 1, 2010 through the December 29, 2013 for our main work, with the
objective ensuring that our predictions for the period of 2014-2017 were strictly out-of-
sample.

2.2 Methods
This section introduces three different multivariate linear models and a voting ensemble
which will be the focus of the main work developed.
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The endogenous and exogenous variable coefficients in all these models are fitted
by using the Least Absolute Shrinkage and Selection Operator (LASSO) [26], which is a
multivariate linear regression with L1 regularization. L1 regularization is used as a way to
impose coefficient sparsity.

For each model, re-training occurs on a weekly basis, updating the input features
with the newest available historical flu reports and Internet activity from the most recent
two years, or 104 most recent data samples in our dataset. This approach allows for re-
calibration of regression coefficients in a way that adjusts the variables based on its pre-
diction ability over the training set. The decision of using only the two most recent years
of data comes from empirical observation on how these novel methodologies fit the data
better to make predictions [30].

2.2.1 Autoregressive Model
An autoregressive model (AR) is used to describe a random process that changes over time.
AR models are constructed on the assumption that the target value depends linearly on its
own previous values. In this work, we represent influenza activity target as dependent to
the last 52 weeks (referred as autoregressive lags) of its own activity.

The AR nowcast for influenza activity at week t is:

yt = uy +
.X

j2J

↵jyt�j + ✏t, ✏t ⇠ N(0, �2) (2.1)

where:

• yt stands for the number of processed cases at time t.

• J corresponds to the set of autoregressive lags.

• ✏ is an error term or white noise.

• uy is an intercept term

• ↵j is the j-th linear coefficient for the historical flu activity ocurring at a time yt�j

• N(0, �2) represents a Normal distribution of mean 0 and variance �
2

2.2.2 Autoregressive model with General Online Information
The Autoregressive Model with General Online information (ARGO) is a dynamic multi-
variate linear regression model introduced by Yang et al. in 2015 [29], used to predict flu
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incidence in the United States. The motivation behind ARGO comes from the assumption
that unobserved flu activity at time t depends on previously observed activity, and that
flu-related Google search terms at time t depend on unobserved flu activity at time t [29],
as formalized by the hidden Markov model from Eq. 2.2.

yi,1:N ! yi,2:N+1 ! · · · ! yi,(T�N+1):T

# # #
Xi,N ! Xi,N+1 ! · · · ! Xi,T

(2.2)

In the ARGO model, higher search frequencies for disease-related Google queries
will be observed when the disease also presents increments in the activity, such as when
people are infected or experience symptoms.

The ARGO nowcast for disease activity at week t is:

yt = uy +
.X

j2J

↵jyt�j +
X

k2K

�kXk,t + ✏t, ✏t ⇠ N(0, �2) (2.3)

where:

• yt is the number of processed cases at time t.

• J corresponds to the set of auto regressive lags.

• K is the set of Google query terms.

• Xk,t is the Google search frequency of term k at time t.

• ✏t is assumed to be a Gaussian white noise process with zero mean and constant
variance.

• uy is an intercept term.

• ↵j is the j-th linear coefficient for the historical flu activity ocurring at a time yt�j .

• �k is the k-th linear coefficient for the k-th Google search frequency.

2.2.3 Net
Net is a multivariate linear model that works by hypothesizing that a disease’s activity at
location i (the location of interest where influenza activity is estimated) can be improved
by looking at the neighboring locations s that exhibit similar disease behavior. These
similarities between the influenza activity within location i and the neighboring locations
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are referred to as spatio-temporal synchronicities, and the locations that constantly exhibit
similar influenza activity to the one of location i within a specified time interval (in the
practice, a two year time window is used) are used as explanatory variables along with the
historical autoregressive terms of the local influenza activity. Net incorporates multiple
weeks of historical influenza activity from all the available neighboring locations in a
multivariable regression, giving the model flexibility to assess [10].

The Net nowcast for disease activity in week t is:

yi,t = ui +
P.

j2J ↵jyi,t�j +
P

s 6=i:s2S
P3

k=0 �s,kys,t�k + ✏t, ✏t ⇠ N(0, �2) (2.4)

where:

• yi,t is the number of processed cases at time t at location i.

• ↵j are the fitting coefficients of the historical influenza activity at location i.

• �s,k are the fitting coefficients of historical influenza activity of city s at time t� k.

• J corresponds to the set of autoregressive lags.

• S is the set of neighboring locations.

• ui is the target’s intercept term.

• ✏t is assumed to be a Gaussian white noise process with zero mean and constant
variance.

Net detects geo-spatial synchronicities from neighbor influenza activity at time t

(k = 0) when predicting for yi,t. Since information from the neighboring locations at time
t is not yet available to predict for yi,t, the ys,t are substituted by the most recent influenza
activity estimation for each of the locations s.

2.2.4 Google Flu Trends
Google Flu Trends (GFT) was a web-tool for influenza surveillance launched in November
of 2008. GTF was the first approach that attempted to harness the power of online web
activity as a predictor for disease activity in the United States. Google generated an uni-
variate linear model that sought to estimate the probability that a random physician visit in
a particular region is related to ILI (in other words, trying to predict ILI-related physician
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visits). GFT was fit to estimate the log-odds of an ILI physician visits by using the log-
odds of an ILI-related search query. The model equation is as follows:

logit(P ) = �0 + �1 ⇥ logit(Q) + ✏ (2.5)

where:

• P is the percentage of ILI related visits.

• Q is the ILI-related query fraction.

• ✏ is an error term.

• � are the fitted coefficients of the linear regression.

Q is calculated based on the sum of the top 45 search terms that are most related with
the CDC (Center of Disease Control and Prevention in Atlanta, Georgia) ILI data [22].

2.2.5 Voting Ensemble
If the explanatory variables used to generate Influenza activity estimation models are not
perfect predictors of influenza, their performance tends to fluctuate within time. If several
models are fit using different explanatory variables to predict the same target, then each
of these models have abstracted different knowledge and, performance will vary from
one weekly prediction to another. For example, ARGO and Net, where one bases its
predictions on Google search activity and the other on Geo-spatial synchronicites, lead
to different estimations for the same week based on the different patterns learnt from flu-
related Internet search activity and neighboring influenza activity.

The process of consulting several “experts” in the matter of interest before making a
final decision is a natural thought in the human mind, and it has been recently shown that
such a way of thinking can be also used to improve machine-learning algorithms. In com-
puter science, this process of consultation is referred to as “ensemble”, where a mixture
of expert models provide their answer and a higher level abstraction layer (the ensemble)
learns to manipulate the input data, producing a more robust prediction. An ensemble
consists of a set of independently trained prediction models that are combined with the
objective of increasing robustness. The combination method relies on a rule or algorithm,
which can be a step or series of steps applied onto a set of previously selected models
and can range from simple heuristics to more complex algorithms that involve random or
learning processes. Ensemble development is considered a meta-heuristic area that has
been successfully applied to pattern recognition, machine-learning, and statistics [17].
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In this work, a majority voting ensemble is implemented to combine the predictive
power of AR, ARGO and Net. As shown in Figure 2.1, the ensemble approach adopts
a “Winner takes all” philosophy and works by comparing each of the models’ weekly
performance in the short-time historical record of the k most recent weeks. The historical
performance is measured based on the error (distance between the prediction and its target)
and draw conflicts are resolved through coin flipping.

Figure 2.1: Graphical diagram that shows how a voting ensemble makes a prediction at
time t from several baseline models, based on the historical predictions they have produced
over time.

2.3 Benchmarking Metrics
Objective comparison of prediction models is based on standard metrics that produce cor-
relation and error estimates. The following metrics are used in this work.

Root mean squared error. (RMSE) It is described as the square root of the mean of the
squared difference between the mean and the actual observations. RMSE (Eq. 2.6)
uses squaring of errors, which tend to implicitly highlight large errors from single
predictions compared MAE. RMSE is expected to increase as the variance of the
frequency distribution of error magnitudes increases.
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RMSE = [ 1n
Pn

i=1(y � ŷ)2]
1
2 (2.6)

Mean absolute error. (MAE) The mean absolute error (Eq. 2.7) measures the average
magnitude of absolute errors between a set of predictions and its corresponding
observations. It is similar to RMSE in the sense they both calculate mean model
prediction error, they are both non-negative and ignore vector orientation.

MAE = 1
n

Pn
i=1 |y � ŷ| (2.7)

Mean absolute percent error. (MAPE) This metric is similar to MAE with the excep-
tion that each of the differences are divided by the target value. MAPE (Eq. 2.8) is
useful when comparing models that harness different magnitude orders.

MAPE = 1
n

Pn
i=1

|y�ŷ|
yt

(2.8)

As an additional step, confidence intervals for error estimates can be generated by
performing an statistical bootstrapping [18].

2.4 Summary
In this chapter we presented the data and methods that are used to produce influenza activ-
ity forecasts. Historical influenza reports from SINAVE and FluNet, along with the Google
search time series from Google Correlate and Google Trends were introduced. Moreover,
the ARGO, Net, and voting ensemble methodologies were described. These strategies
leverage the predictive power of the historical flu reports, influenza-related internet activ-
ity, and geo-spatial synchronicities between every location in the short-time period. The
following chapters show the results and how these methodologies are used to successfully
predict influenza for different locations in Latin America.





Chapter 3

Argotools: a Python-based Library for
Digital Disease Surveillance

Internet-based digital disease surveillance has raised the interest of researchers around the
globe given its utility as a tool to produce accurate and timely predictive models for disease
activity. Internet-based databases have matured over the years from sporadic streams of
information to near real-time updates about events in almost every health-related topic,
and has reached a point where tracking diseases with useful accuracy is a possibility now.
However, given the area of research is so recent, there is still an information gap between
public health officials and data scientists in terms of how the data should be prepared
for analysis and, therefore, several challenges that a researcher working in digital disease
surveillance has to deal with. The most relevant challenges are:

1. Mining databases becomes a repetitive and, specially, a time consuming task.

2. Organizing and managing the data to map it from its original source structure to the
feature-sample data-science structure.

3. The design of adequate metrics and benchmarking of models to provide an objective
analysis of the different methodologies used.

In order to address this problem, we introduce Argotools, a python-based library
that serves as a fully integrated framework for digital disease surveillance. Argotools was
developed with the purpose of providing a set of programming tools for people aiming
at reproducing the results presented in this thesis or start working in the area of digital
disease surveillance.

21
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The software libraries (shown in Figure 3.1) contained within Argotools are:

DBscrape. A library developed to mine data from various online data sources (such as
Google Correlate, Google Trends, Flunet, and SINAVE) that are used for producing
influenza surveillance tools in Latin America.

DataFormatter. A library designed to read data from multiple sources and merge them
into an object that contains some preprocessing functions and filters that prepares
the data for experimentation.

Modelling. The library used to perform data modelling and prediction that can be scaled
to multiple areas.

Visualizer. A library with the purpose of benchmarking and generating visualizations of
the input data (as a means for exploratory data analysis) and the results generated
from the models in Modelling.

Figure 3.1: Diagram that represents the different stages within Argotools. Data is mined
from the web using DBscrape. Independent data sources are read and given a standard-
ized format through the DataFormatter library. After formatting and preprocessing
the data, the modelling library is used to fit and deploy several machine learning models
which can be benchmarked and analyzed via the Visualizer library.
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All the code in Argotools was developed using Python version 3.4, and can be ob-
tained upon request.

3.1 DBscrape

Performing digital disease surveillance using search-engine term activity involves web-
based specific tasks such as accessing Google Correlate and querying for disease-related
terms such as “influenza” or directly inputting time-series data from official hospital re-
ports. In either case, the researcher has to do it manually as Google does not offer an
automated tool to perform these tasks in a repetitive manner. This prior-to-research proce-
dure may be time-consuming specially in the cases when research is conducted for many
different locations (for example, looking for “influenza” time-series correlations for more
than 10 countries in Google Correlate). In order to address this potential bottleneck prob-
lem, DBscrape was developed.

The idea behind DBscrape is to automate web-scraping of different publicly avail-
able data sources, such as Google Correlate, Google Trends, among others, for disease
surveillance purposes (see Figure 3.2).

For this work, the following classes are currently available within DBscrape:

1. GC: A class created to mine Google Correlate data. It provides the user with the
capacity of performing basic actions with Google Correlate, such as searching for a
word and terms that are correlated and the ability to upload a personal time-series
values and extract the top search terms correlated to the time-series.

2. GT: A class developed to mine Google Trends. Search terms can be downloaded
and turned into a database.

3. SINAVE: A class used to automatically extract influenza-activity from SINAVE
(IMSS’ private health database).

DBscrape is built using Pandas and Selenium, and this library is open source with
the purpose of encouraging other researches in expanding the number of available re-
sources in the future.
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Figure 3.2: DBscrape is used as a tool to extract web-based data when the source lacks
an option for doing this task (for example, extracting the activity of the word “influenza”
for all the states within Mexico). DBscrape manages the online interactions and places
the new files into a specified path, along with the data from other online databases.

3.2 DataFormatter

Mining web-based tools from different websites may result in a set of files that differ in
their standards for presenting the data, and thus it is necessary to reorganize them into a
structure that is more useful for our data science purposes, such as performing exploratory
data analysis or fitting a machine learning model. The DataFormatter library is built
to read in data inputs from web-sites such as Google Correlate, Google Trends and Flunet.
The objective of this library is to be a complement from DB-Scrape in which, one mines
the data, and the other reads and formats the data into a dataset ready to be used for
predictive modelling,

The data library works using pandas, and stores the information specified by the
user, making a distinction between target or external variables. This distinction is done to
facilitate pre-processing of data and computation of autoreggressive lags (if used) in the
Modelling library.

In this work, the data library is used to read documents from Google Correlate,
Google Trends, and Flunet (see Figure 3.3).
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Figure 3.3: The DataFormatter library reads, extracts, and organizes the relevant in-
formation contained in different data files in a more effective structure contained within a
Python object, ready to be used in different data science tasks.

3.3 Modelling
The Modelling module is a framework that facilitates predictive model generation us-
ing the ARGO methodology [29]. Modelling utilizes the DataFormatter library
objects, which contains the information from various data sources, as input, and the user is
able to select between different methodologies such as, ARGO, Net or a voting ensemble,
among others (see Figure 3.4).

The Modelling library contains the following key features:
1. It follows a standard procedure which allows for multiple models to be fitted at once,

for many locations, by just specifying them within a few lines of code.

2. It automatically manages autoreggressive lags within a model formulation.

3. It allows for customization of a model prior to fitting with the purpose of model
comparing

4. It generates a data structure that contains all data regarding the model’s estimates
and model information.
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5. It writes out and keeps records of the model’s parameters and results.

6. It fits models that follow the same object structure than sklearn, a machine learn-
ing library for Python.

Throughout this project, the Modelling module was used to perform the fitting of
AR, ARGO, Net and ensemble voting models for all the different locations of study, at
different geographic resolutions.

Figure 3.4: The Modelling library contains a set of classes that automatically deploy
multivariate linear models such as ARGO for all the different locations provided within
the DataFormatter class object. It also generates a data structure where all the results
can be used for further visualization.

3.4 Visualizer
The Visualizer is a library that uses the data generated by both the DataFormatter
and Modelling libraries to generate visualizations and benchmarking, among others.
This library has the following objectives:

1. Easily perform a quick analysis of the models and their evolution in time with the
ARGO methodology.

2. Allow for the straightforward comparison of models within a location and in be-
tween locations where disease surveillance models are being deployed.

3. Provide several templates of visualizations that are specifically designed for digital
disease surveillance analysis.
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The Visualizer library is divided into two main classes: The inputVis class,
which is designed to read all information generated within an object from a class within
the DataFormatter module, and the outputVis class, which reads the information
written in the folder structure generated by the Modelling library (see Figure 3.5).

Figure 3.5: The Visualizer library generates metrics, graphics and visual comparison
between the results of models within a location (performance) or in between (robustness
and adaptability) locations. It works by calling a class and handing in the previously
organized information from either the DataFormatter module or the Modelling
module.

3.5 Summary
In this chapter Argotools was introduced as a python-based library for Disease forecasting
models. From the initial phase of downloading external variable data using DBscrape,
transforming it into a dataset compatible for generating predictive models using python
using DataFormatter, to prototyping and developing with the Modelling library
and benchmarking and quickly creating specialized graphics using the Visualizer
class. A series of code examples for Argotools, created using Python Notebook are avail-
able at https://github.com/LeonardoClemente/argotools-pkg/tree/
master/examples.





Chapter 4

Improved Real-time Influenza
Surveillance using Internet Search Data
in Latin America

A real-time methodology for monitoring flu activity in middle income countries that is si-
multaneously accurate and generalizable has not yet been presented. We demonstrate here
that a machine learning method leveraging Internet-based search activity and past histor-
ical flu activity produces reliable flu estimates in multiple Latin American countries. The
proposed model shows improvement against autoregressive models in countries where
Google Correlate is available and may prove useful as a near-real-time surveillance tool.

4.1 Methods and Benchmarks
We extended the AutoRegressive model with General Online information (ARGO), a
methodology originally conceived and tested to track flu activity in the United States in
multiple spatial scales as a way to produce retrospective and strictly out-of-sample flu esti-
mates individually for each country[11, 29]. This methodology is based on a multivariable
regularized linear model that is dynamically recalibrated every week as new flu activity
information becomes available. Besides online search information, ARGO incorporates
short-term and seasonal historical flu information to improve the accuracy of predictions
and mitigate the undesired effect of spikes in search activity (induced perhaps by overre-
action in the population during potential health threats reported by the news). More details
on this approach can be found in a study by Yang et al. [11]. Given a weekly as-yet-unseen
NPS report to estimate, we used historical NPS and Google Trends information from the
previous most recent two years (104 weeks) of data to calibrate ARGO and predict the

29
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given week’s NPS report.

To assess ARGO’s predictive power, we built autoregressive models separately for
each country that use historical flu activity from the most recent 52 weeks of activity
(named AR52 throughout this paper) before predictions and generated retrospective out-
of-sample estimates over the same time period. All models were built using the glmnet
package on MATLAB version 2014a. [20, 26].

To compare the predictive ability of ARGO and AR52, we calculated Pearson cor-
relations and the root mean square error between model predictions and the subsequently
observed suspected flu cases. The added value of using Google search activity as a pre-
dictor was tested via the ratio between the mean square errors of AR52 and ARGO. For
the efficiency metric, 90% confidence intervals were generated using the stationary block
bootstrap method [18].

4.2 Results

Retrospective out-of-sample estimates of flu activity were produced, for each of the eight
countries, from January 1, 2012 to December 25, 2016; and compared with the FluNet
reported suspected cases (NPSs). Brazil’s NPS data was only available until October 9,
2016. Note that because of FluNet’s reporting delays, the models, which rely on past
available values of FluNet and current Internet search activity, estimate current flu activity
at least one week ahead of official reports.
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Figure 4.1: Graphical representation of the number of processed specimens (NPSs) as re-
ported by WHO’s FluNet (black), along with the NPS estimates generated by ARGO (red),
AR52 (light blue), and Google Flu Trends (blue), over the whole study period of January
1, 2012 to December 25, 2016.

Figure 4.1 shows the real-time flu estimates and the subsequently observed suspected
flu cases for each country. Contextually, historical GFT values (scaled to be displayed
alongside with NPS values) and autoregressive estimates are also shown. The models
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(ARGO and AR52) accurately predict NPS values in each country. GFT shows consis-
tently large discrepancies when compared with the observed values, consistent with the
findings reported by Pollett et al [19].

As shown in Table 4.1, ARGO shows an improvement in six countries in terms of
the efficiency metric, reaching significant error reductions compared with AR52 in Brazil
(155 to 104 or 33%), Mexico (243 to 184 or 24%), Peru (48 to 40 or 16%), and Chile (131
to 119 or 9%). Figure 4.3 shows a visualization of the performance of the models in the
eight different models.

Table 4.1: Efficiency metric ( RMSEAR

RMSEARGO

) for each country with 90% confidence inter-
vals generated with the stationary block bootstrap. Scores above one indicate that ARGO
incurred in less errors than AR52.

Country Efficiency 5th percentile 95th percentile

Brazil 1.497 1.050 1.858

Mexico 1.320 1.023 1.778

Peru 1.197 0.976 1.322

Chile 1.104 1.031 1.205

Argentina 1.065 0.916 1.237

Paraguay 1.058 1.003 1.101

Uruguay 0.999 0.923 1.185

Bolivia 0.926 0.914 0.945

ARGO consistently outperforms GFT on Pearson correlations during the time pe-
riod when GFT was active in every country and improves upon AR52 in all countries
except Bolivia and Uruguay, over the whole study period, reaching significant correlation
increases in Brazil (from 0.891 to 0.957), Mexico (from 0.86 to 0.92), and Peru (from 0.84
to 0.89). Refer to Tables 4.2 and 4.3 for a more in-detail explanation of the performance
of the models.
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4.3 Discussion
The overall improvement of ARGO over AR52 indicates that Internet search engine data,
even in middle-income countries, provide increased responsiveness to changing disease
trends. This improvement is clear in Brazil, Chile, Mexico, Peru, Paraguay, and Argentina,
whereas in Uruguay and Bolivia, the inclusion of Google search data does not seem to
improve AR52.

The availability of an online tool to select relevant flu-related terms (Google Corre-
late) that track historical flu activity was found to be a critical element for ARGO to im-
prove performance over the autoregressive benchmark (Argentina, Chile, Mexico, Peru,
and Brazil), suggesting that the most meaningful flu-related search queries are country-
specific. In countries, such as Uruguay, where many weekly data points were missing on
FluNet, ARGO’s predictive ability was reduced. The best performance was seen in Brazil,
Mexico, and Peru, where flu data was collected consistently every week during this study’s
time period (See Figure 4.2).

Figure 4.2: Heatmap displaying the report availability per country. For each row, red and
gray vertical lines represent weeks where FluNet’s NPS report was either missing or had
no activity.

Based on previous research findings monitoring Dengue and Zika activity in Latin
America [11, 28], we chose the number of suspected influenza cases (as captured by the
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FluNet’s NPSs) as the gold standard for the prediction tasks over the more standard Tested-
positive proportion of confirmed influenza (computed by the ratio of the Confirmed for in-
fluenza cases and NPS). The choice was based on the intuitive fact that flu-related Google
search activity is higher when more people “suspect” they may be affected by flu-like
symptoms, regardless of the outcome of any lab test. As such, these models may prove
useful to improve the timely allocation of resources in health care facilities in situations
when increased numbers of people, with flu-like symptoms and respiratory needs, may
need to be seen. It is relevant to point out that using NPS case counts as a gold standard
implies that the models are not directly estimating confirmed influenza case counts but
suspected Influenza-like Illness activity trends. The choice of gold standard is meaningful
as it may help health care providers prepare for traffic fluctuations of patients presenting
with symptoms of influenza. However, from an epidemiological perspective, more stan-
dard test-positive influenza proportions reported on previous Latin America studies [5, 19]
should also be considered in future studies.
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Figure 4.3: Set of bar graphs that shows the performance metrics to assess the predictive
power of ARGO. (a) Efficiency metric values (salmon color) for each individual country
with their respective 90 % CI (solid black line). (b) Root mean square error (RMSE) values
for ARGO (red) and AR52 (light blue) during the whole study period. Each country’s
RMSE value is normalized by their respective average number of processed specimen
(NPS) over the whole study period to avoid scale differences in visualization. c) Pearson
correlation scores of ARGO and AR52 during the full period. d) Pearson correlation values
for ARGO (red), AR52 (gray), and GFT (blue) during the period in the study where GFT
was active.
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Table 4.2: Pearson correlation for each model and country. The top performer in each time
period is shown in bold. To allow comparison with GFT, correlation throughout 2015 only
included the period before it was discontinued (August 9, 2015).

Whole period GFT period 2012 2013 2014 2015* 2016

Brazil

ARGO 0.958 0.938 0.910 0.953 0.705 0.441 0.984

AR52 0.891 0.933 0.825 0.957 0.666 0.202 0.827

GFT – 0.441 0.625 0.766 0.849 0.580 –

Mexico

ARGO 0.922 0.899 0.948 0.790 0.874 0.890 0.972

AR52 0.860 0.872 0.919 0.585 0.862 0.879 0.842

GFT – 0.565 0.531 0.835 0.617 0.928 –

Peru

ARGO 0.894 0.897 0.580 0.904 0.694 0.837 0.814

AR52 0.842 0.843 0.657 0.843 0.618 0.849 0.804

GFT – 0.301 0.431 0.406 0.625 0.770 –

Chile

ARGO 0.973 0.967 0.976 0.963 0.967 0.976 0.991

AR52 0.966 0.962 0.966 0.965 0.961 0.967 0.981

GFT – 0.805 0.888 0.850 0.809 0.940 –

Argentina

ARGO 0.972 0.963 0.963 0.968 0.965 0.968 0.990

AR52 0.968 0.966 0.969 0.975 0.966 0.979 0.969

GFT – 0.878 0.919 0.938 0.937 0.971 –

Paraguay

ARGO 0.925 0.911 0.928 0.927 0.866 0.914 0.956

AR52 0.914 0.905 0.918 0.920 0.822 0.874 0.931

GFT – 0.735 0.885 0.915 0.879 0.912 –

Uruguay

ARGO 0.772 0.811 0.628 0.892 0.857 0.050 0.681

AR52 0.762 0.769 0.404 0.889 0.894 -0.072 0.756

GFT – 0.486 0.811 0.869 0.709 0.183 –

Bolivia

ARGO 0.788 0.661 0.584 0.675 0.914 0.605 0.939

AR52 0.815 0.722 0.688 0.789 0.923 0.630 0.931

GFT – 0.333 0.641 0.607 0.001 0.610 –
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Table 4.3: Root mean square error for each model and country.

Whole period GFT period 2012 2013 2014 2015* 2016

Brazil
ARGO 104.38 94.78 53.78 133.54 92.90 72.52 155.91

AR52 155.87 101.03 72.23 133.27 101.94 76.81 316.27

Mexico
ARGO 184.66 200.96 164.15 131.48 312.47 84.52 146.93

AR52 243.79 213.51 210.9 176.95 290.15 88.97 361.52

Peru
ARGO 40.31 45.59 24.83 76.16 28.82 21.89 23.46

AR52 48.27 55.18 23.62 94.83 35.39 20.36 24.16

Chile
ARGO 119.28 127.28 112.60 141.74 138.39 104.47 84.59

AR52 131.74 133.66 130.51 138.86 147.10 103.96 116.43

Argentina
ARGO 274.12 292.42 229.56 387.18 265.30 244.52 217.92

AR52 292.01 277.59 210.57 355.30 289.78 200.17 376.24

Paraguay
ARGO 30.81 31.37 29.19 36.50 28.83 29.68 31.75

AR52 32.679 32.30 29.55 36.73 31.65 29.88 38.10

Uruguay
ARGO 10.01 9.27 11.07 8.91 8.36 8.41 13.14

AR52 10.17 10.32 14.10 8.92 7.24 8.57 11.14

Bolivia
ARGO 58.62 60.27 103.54 36.34 27.58 17.88 62.24

AR52 54.30 56.01 96.20 32.53 25.79 19.91 57.08





Chapter 5

Implementing a Voting Ensemble for
Influenza Forecasting in Latin America

Recent literature has shown the tremendous potential of digital data streams coming from
the Internet as a tool for digital disease surveillance. When these streams are combined
with historical influenza activity from health officials they become a powerful tool to gen-
erate accurate surveillance methodologies in data-rich countries such as the United States.
In this chapter, we explore the potential that these state-of-the-art methodologies offer in
more data-sparse scenarios in Latin America. We implement three state-of-the art methods
based on three distinct sources of information: historical flu activity reports, Google search
queries, and geo-spatial synchronicities of relevant neighboring locations, and finally com-
bine their predictive power via a voting ensemble technique that analyzes the individual
short-term historical performance with the objective of selecting the most adequate model
to produce next week’s prediction.

5.1 Contributions
We have generated an extensive study regarding the feasibility and predictive power of
novel methodologies that incorporate external sources of information over three relevant
spatial resolutions: state (27 states in Mexico), regional (five regions in Mexico), and na-
tional (15 countries in Latin America). We have also shown that the predictive accuracy of
these methodologies can be further improved by the incorporation of a simple yet elegant
voting ensemble technique that selects and combines the predictions of these methodolo-
gies through a short-term historical performance analysis.

Given the number of surveillance locations for this new study is almost six times in
comparison to the work in section 6, different pre-processing strategies that improve the

39
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performance of the proposed methodologies were developed. These strategies focus in
increasing a model’s robustness by allowing an automated local fine-tuning over time by
either a) automatically adjusting the autoreggressive model features for AR, ARGO and
Net to avoid predictive errors due to inconsistencies (such as lack of reports at certain point
in time) in the official influenza activity reports from hospitals, b) Imposing a heuristic pre-
processing method that adjusts the influence of external variables such as Google search
queries and geo-spatial synchronicities prior to fitting or recalibrating a model’s linear
coefficients, and c) Introducing a data-driven approach that changes the strictness of such
heuristic method over-time, increasing the adaptivity of our model to the predictive power
of external sources of information.

5.2 Data and Methods
Three different data sources were used to work on this study: influenza activity reports
from IMSS, influenza processed specimens from Flunet and Internet search frequencies
from Google Trends and Google Correlate.

With the objective of separately leveraging the predictive power of internet-based
activity and geo-spatial synchronicities, the following methodologies were implemented:

1. AR: An autoreggressive model consisting of only historical influenza activity. The
autoreggressive model features consist in the past 52 weeks of most recent flu activ-
ity from hospital reports in the surveillance location.

2. ARGO: An ARGO model (Autoregression with General Online information) that
combines flu-related internet search activity from the local population along with
local official influenza activity reports.

3. Net: A model that incorporates the influence of flu activity from neighboring loca-
tions by the detection of geo-spatial synchronicities between the local flu activity
and other locations at the same geographical resolution.

All models in this study were fit using the Least Absolute Shrinkage and Selection
Operator (LASSO) (with a 10-fold cross validation), a multivariable linear approach that
sets an L1 regularization constraint to the model’s quadratic cost function. Our selection
of LASSO as our fitting strategy is to use the L1 regularization as a means to mitigate
the influence of weak features within our training dataset, setting their linear coefficient to
0. Moreover, each model was re-trained on a weekly basis using a constant size training
dataset that contained the two most recent years of data prior to the date of prediction.
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This shifting training window allows our models to re-calibrate their linear coefficients to
the most recently available health reports and external data activity.

All influenza activity estimates were generated using scikit-learn in Python 3.4 [16].
An in-detail description of the methodology can be found in Section 4.1.

5.2.1 In-practice methodology improvements
Insight about the challenges that influenza surveillance in Latin America pose and how
they originate were provided in our preliminary work in Chapter 4. These challenges
frequently originate from characteristics such as:

1. The average volume of case counts within the location’s official surveillance reports.

2. The degree of seasonality of the influenza activity.

3. The reporting consistency of health officials.

4. The reduction of predictive power in flu-related internet search activity when search
volumes are influenced by events not entirely related to our task of predicting the
number of people attending a physician exhibiting ILI symptoms (For example, an
unexpected panic generated by the media).

Similarly, geo-spatial synchronicities from neighboring locations used as features for
a local Net model may cause the model to behave erratically in times where the neighbor-
ing influenza activity does not keep the same synchronicity values from within the training
data-set for future predictions.

The fitting and recalibration of AR, ARGO or Net consist in reorganizing the model’s
training dataset with the most recent 102 weeks of data. In a controlled research-scenario,
data can be tidied to the point where analysis and experimentation can be optimized. In
a more practical scenario, where a surveillance system is including new information from
several data sources every week, the data cleaning and pre-processing has to be automated
to ensure the data used to recalibrate a model is pre-processed optimally. Moreover, given
the heterogeinity in the influenza activity of each surveillance location, pre-processing of
data can differ for each surveillance location, leaving the data scientist with the task to find
the best strategy to improve the performance of the novel methodologies for each of the
locations (referred to local fine-tuning).

The following pre-processing procedures were developed and implemented in this
work to implement a near real-time data cleaning and local-fine tuning of AR, ARGO and
Net.
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5.2.2 Managing missing Reports from Historical Flu Activity in the
Autoreggressive model

The autoreggressive model used in this study consists in a 52 feature model, where each
feature represents a historical flu activity report that happened in an specific week in the
past. Conventionally, we name the activity reports that happened one week before ‘AR1’,
two weeks before ‘AR2’, and so on. An autoreggressive model then consists in a set of
autoreggressive lags AR1 through AR52 which, in other words, means that every week we
look at the past 52 historical reports of influenza to make a prediction.

If the most recent historical flu report is not available in a timely manner, our most
recent AR1 feature value is missing. In the dataset, the AR1 feature column contain a
nan in the most recent sample (row). In this case, we fit our model for that week by
removing the row in the dataset containing the NaN and using the rest of the dataset as
we normally would. However, as time goes on, if the report is still missing, this NaN
value will propagate towards the other autoreggressive lags, turning this strategy into a
bad pre-processing choice.

In some cases, health officials may have missing reports for a continuous amount
of weeks, making the Number of NaNs within the dataset bigger and continuous. If the
gap NaNs is small (at most two missing reports) we perform linear interpolation to avoid
removing the samples from the dataset. If the gap is too big, then we remove the samples
containing the NaN values. Given the nature of the autoreggressive lags, big gaps of NaNs
will reach a point where they have propagated through all the 52 features. To avoid having
to remove most of the samples within our training dataset, we instead remove the features
that containing the NaN gap. If the NaN gap appears in every feature, then we remove all
features in exception to AR1.



5.2. DATA AND METHODS 43

Algorithm 1 Pre-processing for NaNs on 2-year window dataset
Require: yt = {yt, yt�1, yt�2, ..., yt�102} (Target)

X
AR
t,102 = {yt�j : j 2 1, 2...52} (Autoreggressive lag features)

X
external
t,102 = {xe,t : e 2 E} (External information features)

V : a set of non-removable columns inXAR
t,102

xpredict : the row vector used to predict yt+1

for every column in X
AR
t,102 do

if NaN detected within the column and column is not in V then
Remove column

end if
end for
for every row in X

AR
t,102 do

if Row contains NaN then
Remove row in both X

AR
t,102 and X

external
t,102

end if
end for
for every value in xpredict do

if value is Nan then
Remove feature from xpredict, XAR

t,102, and X
external
t,102

end if
end for

5.2.3 Adjusting the Influence of External Variables in ARGO and Net

As an empirical way to manage noisy external predictors during the recalibration process,
we use the Pearson correlation coefficient between the historical flu activity and the ex-
ternal features as a pre-processing step to reduce the number of total variables for ARGO
and Net. This approach has the advantage that it can let a variable number of terms as
long as they satisfy the threshold condition. However, if the condition becomes too strict,
there is a high chance that no external variables are included, reducing ARGO or Net into
an AR model (which is, sometimes, a better practical choice based on the conditions and
predictive power of the variables during that week). The Pearson correlation coefficient is
a measure of the linear relationship between two variables and gives us insight about the
potential of an external variable to be picked as a predictor for a multivariate linear model
in an specific week. This pre-pocessing step is applied to flu-related Google search activity
and to geo-spatial synhronicities every-time the two-year training dataset is updated.

We combined this pre-processing step with the voting ensemble scheme introduced
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in Section 2.2.5 to allow both ARGO and Net to adjust the influence of the external vari-
ables every week. For a given methodology (ARGO or Net), a set of models using different
thresholds is fit in real-time. The voting system then selects the model that has incurred in
the least error in the past three weeks to make the prediction for the next week.

Algorithm 2 Adjusting influence of external variables
Require: yt = {yt, yt�1, yt�2, ..., yt�102} (Target)
X

AR
t,102 = {yt�j : j 2 1, 2...52} (Autoreggressive lag features)

X
external
t,102 = {xe,t : e 2 E} (External information features)

M = mi : i 2 R The set of models with different level of adjustment
↵ = {↵mi

2 [0, 1]} Pearson coefficient threshold for each adjusted model
Ŷ = {ymi

} Historical predictions for each adjusted model
Get p = {pk : k 2 K}, by computing the Pearson correlation coefficient of each feature
in X

external
t,102 and yt

for each mi do
Generate a new dataset Xadjusted

t,102 which contains only the external features such that
pk >= ↵mi

Do a pre-processing on X
adjusted
t,102 and X

AR
t,102 (see Algorithm 1)

Merge X
AR
t,102 and X

external
t,102 into a single dataset Xt,102

Perform LASSO(XAR
t,102,yt) and predict for yt+1 storing the prediction in ymi

end for
Perform a voting ensemble (see Section 2.2.5) to select which mi prediction select for
yt+1

5.2.4 Voting Ensemble Approach
In order to optimally combine the predictive power of our surveillance methodologies, we
implemented a voting ensemble approach based on a winner-takes-all system, as intro-
duced in Section 2.2.5. The voting ensemble’s prediction for a given week is assigned to
be the prediction of the model that has incurred in the least error in the past K weeks. This
parameter K has been fixed to three based on the emphasis to the most-recent short-term
performance, and has also shown to be empirically successful in other works [10].

5.3 Results
We implemented ARGO, Net and the voting ensemble, as a way to produce retrospective
and strictly out-of-sample flu estimates individually for each surveillance location. The



5.3. RESULTS 45

predictive performance of the models was compared against the autoreggressive model
AR. Any improvement over the AR model can be attributed to the inclusion of these exter-
nal sources of information in the case of ARGO and Net, and to the capacity to identify the
best performing model in time in the case of the voting ensemble. The root mean squared
error (RMSE) and Pearson Correlation Coefficient were used as our benchmarking met-
rics. These were computed over the following time periods:

1. From the study period of January 1, 2014 through December 25, 2017; to compare
AR, ARGO, Net and the ensemble model.

2. Yearly, from 2014 to 2017, with the objective of conducting a seasonal analysis to
all the models.

In-detail performance scores in terms of RMSE and Pearson Correlation coefficient
can be found in Tables 5.1 through 5.5. Additionally, three main Figures were produced
in the results as a way to visualize the individual and overall performance of AR, ARGO,
Net and the voting ensemble.
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Figure 5.1: Lollipop chart that visualizes the model’s performance ( RMSEAR

RMSEmodel

) for each
country, region and state. The gray dotted line is a reference of the performance of AR in
terms of RMSE. Scores above the gray dotted line represent an improvement against AR.

Figure 5.1 shows the performance of ARGO, Net and the voting ensemble over the
whole time period in each of the 48 study locations, compared to the performance of AR
(gray dotted line) This figure helps us to visualize the increase (or decrease) of perfor-
mance of the predictive models by the incorporation of either the Internet activity or the
geo-spatial synchronicities, and also the improvement that can be achieved by combining
them via the voting ensemble.
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Figure 5.2: Violin plots that shows the robustness of performance of a model at different
greographical scales. The inner part of the violin shows a box plot, with the median of the
model’s RMSE indicated by a white dot and the shape of the violin graphically shows the
spread of the RMSE scores.

Figure 5.2 consists of two different visualizations that summarize the robustness of
the models. The top visualization consists in violin distributions whose limits show the
best and worst performance scores of the models. The violin distribution also shows the
concentration of the scores of a model signaled by a bigger width and a boxplot that points
the median of the RMSE scores by a white dot. The lower visualization shows the rank
proportions. The first row shows, as color schemes, how many times did a model attain
the first place in terms of RMSE, the second row shows how many times each model got
second place, and so on.
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Table 5.1: Methodology performance comparison for RMSE at state level. Lowest RMSE
performance per location is signaled using bold.

Location AR ARGO Net Ensemble

SLP 11.369 11.024 12.612 11.839

SIN 7.385 7.435 10.129 7.144

ZAC 10.672 10.726 9.311 9.07

TAB 7.039 7.207 6.929 7.072

COA 8.364 8.175 8.75 8.796

MOR 18.132 18.216 17.794 17.859

AGU 9.881 10.896 9.024 8.28

OAX 9.207 9.107 7.921 7.898

QUE 10.284 10.059 9.757 9.306

VER 13.588 10.085 9.781 9.746

CHH 8.477 8.941 6.919 7.911

ROO 5.071 4.976 5.187 4.95

BCS 4.816 4.255 4.12 4.587

BCN 5.273 5.27 4.99 5.131

JAL 15.673 22.96 15.934 15.778

PUE 21.918 20.122 16.408 15.979

SON 7.214 6.998 5.285 5.981

GRO 6.982 6.193 6.217 5.434

MEX 9.491 9.894 6.713 7.364

YUC 2.983 2.873 3.153 3.034

CAM 5.45 5.296 5.516 5.558

CHP 3.357 3.039 3.532 3.22

TLA 10.398 10.352 9.935 10.107

HID 7.939 7.966 7.739 7.508

GUA 5.066 4.854 4.917 4.501

NLE 10.487 11.137 11.432 11.608

DIF 22.189 27.173 20.705 25.386
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Table 5.2: Methodology performance comparison for Pearson correlation at state level.
Highest coefficient performance per location is signaled using bold font.

Location AR ARGO Net Ensemble

SLP 0.88 0.88 0.87 0.87

SIN 0.85 0.84 0.75 0.86

ZAC 0.82 0.81 0.85 0.87

TAB 0.72 0.7 0.73 0.73

COA 0.86 0.87 0.84 0.84

MOR 0.85 0.84 0.88 0.88

AGU 0.83 0.79 0.86 0.89

OAX 0.83 0.84 0.88 0.88

QUE 0.85 0.85 0.87 0.87

VER 0.79 0.88 0.88 0.88

CHH 0.83 0.83 0.89 0.87

ROO 0.63 0.63 0.63 0.65

BCS 0.73 0.76 0.79 0.73

BCN 0.88 0.87 0.86 0.88

JAL 0.93 0.9 0.93 0.93

PUE 0.84 0.84 0.87 0.87

SON 0.83 0.84 0.91 0.88

GRO 0.71 0.76 0.78 0.83

MEX 0.82 0.81 0.92 0.9

YUC 0.57 0.58 0.5 0.54

CAM 0.34 0.37 0.35 0.31

CHP 0.66 0.7 0.61 0.66

TLA 0.84 0.83 0.87 0.86

HID 0.9 0.9 0.9 0.91

GUA 0.86 0.87 0.86 0.88

NLE 0.91 0.89 0.89 0.89

DIF 0.91 0.87 0.92 0.9
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Table 5.3: Methodology performance comparison for RMSE at regional level. Lowest
RMSE performance per location is signaled using bold.

Location AR ARGO Net Ensemble

SE 25.498 23.882 22.728 21.6

SW 44.577 48.29 37.688 36.42

SC 66.834 60.812 60.714 59.177

NE 25.839 27.313 29.449 26.937

NW 20.567 21.219 19.308 17.758

Table 5.4: Methodology performance comparison for Pearson correlation at regional level.
Highest coefficient performance per location is signaled using bold font.

Location AR ARGO Net Ensemble

SE 0.88 0.89 0.9 0.91

SW 0.93 0.94 0.94 0.94

SC 0.91 0.93 0.93 0.93

NE 0.93 0.93 0.91 0.93

NW 0.9 0.9 0.92 0.93
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Table 5.5: Methodology performance comparison for RMSE at national level. Lowest
RMSE performance per location is signaled using bold.

Location AR ARGO Net Ensemble

PE 19.906 19.604 29.289 19.34

SV 15.332 15.212 15.681 15.184

PY 29.121 28.871 32.687 28.959

NI 24.746 24.746 28.326 24.746

GT 12.155 12.188 14.961 12.133

CR 20.028 20.127 22.079 20.02

CO 21.298 21.672 37.425 21.179

EC 19.433 20.427 29.708 20.426

UY 9.512 9.617 10.965 9.652

PA 29.204 29.948 26.678 30.025

AR 315.746 267.78 340.908 264.177

MX 239.861 169.32 238.266 180.457

HN 13.281 13.281 16.155 13.281

BR 184.109 89.075 193.656 87.988

CL 116.33 95.985 120.989 101.981
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Table 5.6: Methodology performance comparison for Pearson correlation at national level.
Highest coefficient performance per location is signaled using bold font.

Location AR ARGO Net Ensemble

PE 0.82 0.83 0.66 0.83

SV 0.72 0.72 0.71 0.72

PY 0.92 0.92 0.9 0.92

NI 0.87 0.87 0.82 0.87

GT 0.64 0.64 0.51 0.64

CR 0.6 0.6 0.52 0.6

CO 0.94 0.94 0.82 0.94

EC 0.92 0.91 0.82 0.91

UY 0.82 0.82 0.76 0.82

PA 0.88 0.89 0.89 0.89

AR 0.97 0.98 0.96 0.98

MX 0.86 0.93 0.87 0.92

HN 0.68 0.68 0.53 0.68

BR 0.77 0.96 0.75 0.96

CL 0.98 0.98 0.97 0.98
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5.3.1 ARGO
Figure 5.2 shows ARGO being on the third position (next to the ensemble model and Net)
of number of states having the least RMSE. ARGO improves over AR in 15 out of 27
states, and has significant improvements over AR on Veracruz and Baja California Sur.
On a year to year basis, ARGO is the third model with the most second places (next to the
ensemble model and NET). ARGO performs similarly to AR with 53 out of 108 yearly
periods beating AR in terms of RMSE but falling in the last place of all models with most
yearly periods on the first and second rank. ARGO’s underperformance on Jalisco and
Distrito Federal arise from overshooting away from the real target values on the outbreaks
of December, 2016 and January, 2014; respectively. An analysis of the regional level study
shows that ARGO underperformed for every region, reaching at most the third lowest
RMSE every time. Yearly analysis also shows underperformance of ARGO by only being
the model with the least RMSE in only two yearly periods out of 20.

At national level (see Figure 5.1), ARGO consistently improves in Argentina, Brazil,
Mexico and Chile, and then follows to perform almost similarly than AR. The whole pe-
riod analysis shows ARGO as being the third model with least RMSE and second at hav-
ing the most periods with least and second to least RMSE.Year to year analysis displays
ARGO (next to AR) as the second model with least RMSE in most yearly periods but
the model with most yearly periods with least and second to least RMSE. Overall, ARGO
greatly improved in countries where Google Correlate service was available, in exception
to Colombia, whose data collecting process did not yield any relevant search terms cor-
related with its national influenza reports. For all the other countries, ARGO performed
similarly to AR.

5.3.2 Net
Net improves over AR in 18 out of 27 countries in terms of RMSE (Figure 5.2), having
great improvements over AR and ARGO in Puebla, Mexico city, Sonora and Veracruz, but
also underperforming in states like Sinaloa, Coahuila, San Luis Potosi and Nuevo Leon.
On a year to year analysis, Net’s performance shows improvement over all models in 41
yearly periods in terms of correlation and 33 in terms of RMSE. Net is also the second
model (next to the voting ensemble) to have the most scores in first and second place. For
the yearly periods where Net performed poorly, Net was also the model with most scores
in fourth place. Nonetheless, Net was the second model with least yearly RMSE scores,
just next to the voting ensemble. However, Net did not improve in states that had either
really noisy curves and uncharacteristic activity such as Sinaloa’s flat outbreak spike in
2015, San Luis Potosı́ first weeks after 2014’s outbreak.

Looking at the performance at regional level of Net over the whole period (Figure
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5.1), it became the second model (just next to the voting ensemble) to perform and get
the second to least RMSE scores in four out of five regions. Net successfully combines
information from neighboring countries, showing that short-term synchronicities and geo-
spatial structures still work within a regional scheme.

Net underperformed and scored as the model with highest error both in the whole pe-
riod and year to year analysis. Net does not succesfully abstract any meaningful informa-
tion based on the neighbor’s synchronicities and past influenza activities, often overfitting
and overpredicting just like in Peru and Honduras in 2017.

5.3.3 Voting Ensemble
As shown in Figure 5.2, the voting ensemble performed better than AR in 19 out of 27
states, and also turned out to be the model with least RMSE compared to the other models
(11 states) and the model with most performances in first and second place. On a year to
year comparison, the voting ensemble yielded as the second model with the most yearly
periods having least RMSE and the top model with most yearly periods with least or sec-
ond to least RMSE. The voting ensemble shows to be consistent when combining both
ARGO and Net. In particular, The voting ensemble failed to reduce overshooting for Yu-
catan in 2014 and Mexico City in 2016, but successfully reduced overshooting in various
yearly outbreaks such as Puebla, Guerrero, Estado de Mexico and Tlaxcala in 2016.

The voting ensemble becomes the model with lowest RMSE in four out of five re-
gions by analyzing the whole period (Figure 5.1), only falling second in terms to RMSE
to AR in the North-east region. The special case of NE at regional levels shows a situa-
tion where the ensemble model did not improve over the baseline AR. Nonetheless, the
model is still able to reach the second lowest RMSE of all. The main factor that caused
the ensemble model to have a bigger RMSE than AR is attributed to the fact that, during
the epidemic season at the start of 2014, the voting ensemble selects Net over the AR
model, which for the following three weeks incurred in less accurate predictions. Given
the fact that 2014 is the highest epidemic year of them all, three weeks with less accurate
predictions accounted for a noticeable increase in terms of RMSE (see Figure 5.3).

The decisions taken by the voting ensemble on which model will predict next week,
as presented in Figure 5.4, demonstrate that the selection rule based on short-term histori-
cal performance is a simple, yet effective way to reduce prediction error. We can see that
for several cases at state level, the ensemble is able to detect a reduction in performance for
the previous three weeks and successfully avoids increasing error by switching to another
model (for example, both ensembles at MX-BCH and MX-SIN show this behavior for the
epidemic outbreak of 2016-2017).
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Figure 5.3: Retrospective regional-level predictions for the north-eastern region. The se-
quence of colored bars below the estimates show the evolution of the ensemble’s decision
over time.
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Figure 5.4: Retrospective state-level predictions for three different states in Mexico. The
colorbar below the estimates show the evolution of the ensemble’s decision over time.
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Figure 5.5: Geographical heat-maps that show the locations where each model improved
upon AR for each geographical level. From top to bottom, the state, regional and country
levels are shown, and from left to right, the model order is ARGO, Net and the voting
ensemble.
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5.4 Discussion

The results in this study show the potential that incorporating external variables such as
flu-related Internet information and geo-spatial synchronicities of flu reports offer to dig-
ital influenza surveillance in Latin America. Moreover, we show that the combination of
these sources of information through a voting ensemble offer a robust way to leverage the
strengths and weaknesses that each method (AR, ARGO and Net) may experience based
on the local characteristics of each study location over-time. We believe that this study
may be useful for health officials as positive evidence for the establishment of a real-time
tool for influenza surveillance that incorporates different sources of information.

5.4.1 Predictive Power of Search Term Frequencies

The success in the combination of Internet search trends and historical flu activity at na-
tional scale may be predicted in advance by measuring how well our selected ground truth
correlates with Google Correlate, a fact that agrees with previous findings [3]. In this
study, the data preparation process involved querying Google search terms that correlated
well with our historical flu activity using only data prior to the study period. In practice,
we could replace step as an iterative process that happens every new week, with the pur-
pose of guiding our automated process as to which new Google search terms, not taken in
account yet within our current pool, are becoming relevant (i.e. the change of name of a
medication that is widely used to treat influenza), and temporally discarding the terms that
do not show strong correlation.

The inability to access Google search term frequencies at regional level limits ARGO’s
predictive power, in comparison to the ARGO models generated at state and national lev-
els. Google Correlate delivers only national level data, whereas Google Trends can deliver
both national and state level information. Using national level trends is not a feasible op-
tion based on the fact that trends that do not belong to the location to predict are included
within the time-series and often misguide ARGO. Using state-level trends becomes a more
feasible option, but given Google does not provide information regarding their normaliza-
tion and zero-patching process, an additional strategy may be necessary prior to combining
the Google search trends into a regional time-series.

Figure 5.5 shows a geographical map containing information of each model perfor-
mance in comparison to AR for the three different geographical-resolutions. The majority
of the states that did not improve by incorporating Internet search trends were either in the
south east or north-east regions and had neighboring states that were excluded from the
study because of the bad quality in their historical flu activity reports.
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Regional predictions can be an useful proxy for states with poor influenza surveil-
lance. In Figure 5.5, we can see that both Net and the ensemble models are capable of
producing estimates that improve over AR at the south-east and north-east regions, which
account for most of the states that excluded from the state-level study.

5.4.2 Analysis of the Inclusion of Geo-spatial Synchronicites on State-
level and Regional-level Estimations

Results for Net showed that spatio-temporal synchonicities did not provide predictive
power to the models at national level, whereas at regional level and state level, they in-
creased the performance. States that showed unusual influenza activity curves during the
study period had the least improvement or underperformed by incorporating neighbor in-
formation. Some examples are the curves from Campeche, Yucatan and Quintana Roo.
As geographic resolution increases from state-level to regional-level, the predictive power
of incorporating neighboring activity becomes more evident. Net results show a big im-
provement in the south east, south and north east regions (see Figure 5.5). Given it is more
common for people to travel within their own country than internationally and, as public
transport such as airplanes or electric trains become more accessible to people, extending
their potential of transmission to longer distances, we believe the inclusion of geo-spatial
synchronicities that are not geographically close to the locations of prediction is a good
strategy that resulted in the improvement of Net in Mexico. We let the L1 regularization
and pre-proccessing prior to fitting a model decide which locations were the most useful
at a particular point in time instead of setting a geographical limitation on what state’s
influenza activity can influence another,

5.4.3 The Voting Ensemble as a Method for Increasing Robustness
and Performance

Our ensemble methodology succeeded at combining the methodologies that separately
harnessed local historical flu activity, Internet search activity and geo-spatial synchronici-
ties, as shown in the improvement at all geographical resolutions (see Figure 5.2).

Internet search behavior, the epidemic seasonality and geographical heterogeneity
are different for every location, creating a robustness challenge for digital disease surveil-
lance. Our ensemble model shows great adaptability to almost every scenario given its
capacity to switch from one model to another in a relatively short-time window, and even
though it is not always the model with the least RMSE, it is always in the first or second
place (see Figure 5.2). At national level, the combination of Google search activity and lo-
cal health influenza had better results. At regional level, given the limitations that Google
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imposes upon the way data is extracted, the implementation of Google search queries as a
predictor becomes a bigger challenge, leaving us with neighbor influenza activity and local
influenza activity as the data sources to build our ensemble on. At state level, both Google
search queries and neighbor’s influenza activity are available, and therefore, combining
both ARGO and Net becomes a viable approach.

5.5 Summary
In this chapter we presented the implementation of Net, ARGO and AR as methodologies
that individually harness the predictive power of external variables (flu-related Internet
activity from Google Trends, geo-spatial synchronicities and official health reports from
local public health organizations) in the task of influenza activity surveillance. Moreover,
we presented a voting ensemble implementation that successfully combines the predictive
power of these methodologies and serves as a means to overcome the heterogeneous be-
havior of influenza dynamics as the study locations changes geographically and over-time.
We showed that each individual methodology may be adequate in specific scenarios over-
time, but that cases such as the spatial-resolution highly affect their performance (ARGO
in a regional scale, for example). We also demonstrated that, independently of the spatial
resolution at which the voting ensemble is implemented, it has the ability to consistently
reduce the prediction error.



Chapter 6

Conclusions and Future Work

This thesis describes a novel machine-learning method that accurately tracks and predicts
influenza activity, as reported by SINAVE and Flu-Net, one week ahead of time. This task
was done for three different geographic scales (state level and regional level for the coun-
try of Mexico, and national level for various countries in Latin America). We showed that
ARGO, a model that leverages historical flu activity along with Google Internet search
trends, and Net, a model that combines influenza activity and spatio-temporal trends, suc-
cessfully improves over AR, a state-of-the-art autoreggressive method which relies on
local historical flu activity. More importantly, we showed that, through the use of a voting
ensemble that successfully selects between these three models, we can improve influenza
forecasts that reach higher correlations and lower error estimates than the three of them
separately, while also increasing the adaptivity.

The models described in Chapter 5 are built with various sources of information:
ARGO supports its prediction based on the activity of relevant Google search terms that
may represent people’s concern of being infected with the disease; Net takes in account,
aside of the local influenza activity, the short-term historical influenza activity of neigh-
boring locations; and AR by itself only takes into account the local historical influenza
activity, having less access to information but a better shot at predicting influenza when
these external sources of information do not represent the ground’s truth activity. The
voting system proposed in this work is capable of improving over the three models by
objectively detecting in near real-time which model has less chance of error based on
their historical performance in the short-term past, generating a balance of robustness and
responsiveness.

The use of Google search activity as flu activity proxies has shown to be a suc-
cessful proxy of influenza activity in Latin America. However, the inability of detecting
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when these predictors have a trend that originates from people’s overreaction to an in-
fluenza event, and thus leading ARGO to overshooting the influenza prediction estimates.
Our voting ensemble implementation is able to detect this type of problem with accept-
able responsiveness and therefore avoids severe overshooting from ARGO by alternating
it with a more adequate model at that specific time. Similarly, we have also shown that
spatio-temporal synchronicities improved model accuracy at both state and regional scales.
However, our results have also shown that the correlation between two different neighbor-
ing locations might be similar only over a certain number of seasons, thus leading to the
possibility of Net incorrectly weighting neighbor activity and leading to error. In this case,
the re-calibration of the weights, along with updating the training dataset with the most
up-to-date available data help mitigating this problem.

In contrast to the number of confirmed influenza cases and confirmed cases pro-
portions, as presented more commonly in epidemiological studies [23, 5], our choice of
ground truth is the number of suspected cases (NPS) of influenza. The number of sus-
pected cases is a source of information that does not only describe ILI activity, but also
might be related to other diseases such as Severe Acute Respiratory Illnesses (SARI).
Although this may seem like a weakness in our approach, we believe that our choice is
meaningful, given that our main objective in this study is to estimate the number of people
that will attend a physician presenting symptoms of influenza, a trend that is better mod-
elled by, for example, the flu-related Internet activity collected from Google Trends and
Google Correlate, based on the intuition that activity is higher when more people “suspect”
they may be affected by flu-like symptoms, regardless of the outcome of any lab test.

It is relevant to add that AR, ARGO and Net rely heavily on the availability of histor-
ical flu activity reports from health officials. The inability from public health institutions
in providing reports consistently poses a limitation in the predictive power of our models,
and in very special cases, may turn our methodologies infeasible for specific surveillance
locations. In the case when a new disease surveillance system is being introduced in offi-
cial health institutions and no historical disease data is available, alternative methodologies
that rely solely in external information (internet-based activity, historical data from related
diseases, or geo-spatial synchronicities from surveillance locations that have information
about the disease) might be an alternative. As time passes and the hospital generates data,
an implementation AR, ARGO or Net could be implemented using a smaller (and increas-
ing) training window.

In this work, we have demonstrated that a voting ensemble can increase the robust-
ness in the task of influenza nowcasting in Latin America. However, there are still some
situations that stem from the mechanics of the voting ensemble for which this methodol-
ogy may not be the most adequate. This situation arises whenever a model that has dom-
inated in accuracy during a high epidemic season for the past few weeks starts predicting
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influenza activity with less accuracy than the other methodologies. Given the voting en-
semble only takes in account the historical performance in the most recent short-term, the
voting ensemble will keep choosing this model until the historical performance has enough
data to make the switch. This is the case for the first 3 weeks in 2014 for the north-east re-
gion at regional level (see Section 5.3.3), where the voting ensemble selects Net over AR,
causing the voting ensemble to incur in the same high error that Net incurred for those
weeks.

6.1 Contributions
Digital disease surveillance is a recent research area, and in-practice knowledge that allows
for better a understanding and fine-tuning of influenza predictive models are yet to be
explored. In this work, our main contributions to the research community are:

• Generated strategies to address the challenges involved in implementing external
data sources (Section 2.1.5, and Section ??).

• Implemented novel ideas of pre-processing and hyper-parameters fine tuning that
allow our models to reach higher out-of-sample results (Section 4.1, and Section
5.2.2).

• Devised a heuristic feature-selection approach which actively filters and adjusts the
influence of external data-sources used in novel flu techniques (Section 5.2.3).

• Presented first multi-scale prediction study that incorporates internet-based search
activity and spatio-temporal synchronicities in Mexico and the first study in Latin
American countries (Chapter 5).

• Developed a python-based library that facilitates the implementation of these meth-
ods in all the steps of model research (data collection, pre-processing, EDA, model
fitting and post-analysis) with both the purpose of reproducing the results presented
and also aiding new researchers in the generation of results (Chapter 3).

6.2 Future Work
One of the main goals of this research was to propose and implement a methodology for
ILI forecasting that could be applied to real-life scenarios. The results obtained confirm
this idea on a limited set of cases. The future work of this investigation should focus on
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extending this methodology to other case studies (national, state or even local) in different
countries within Latin America, to confirm the robustness of the voting ensemble model.

This study presented a near-real time methodology for predicting influenza with a
week in advance. However, the lack of consistency in the reporting of influenza activity
within Flunet or SINAVE may result in a caveat for the implementation of a real-time
disease surveillance system. As future work, we would like to extend this methodology
(or propose a novel one) that is able to produce influenza estimates with two or three weeks
in advance.

Our results have shown that the voting ensemble system outperformed every other
model considered for this investigation in terms of RMSE and Pearson correlation. How-
ever, we think that further improvements can be achieved by finding a data-driven ap-
proach that facilitates model selection and an adaptive time window selection over which
the voting ensemble can cast the votes instead of an static time-window for all the models.
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