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Abstract

We introduce Causal Agents, a methodology and agent architecture for modeling intelli-
gent agents based on Causality Theory. We draw upon concepts from classical philosophy
about metaphysical causes of existing entities for defining agents in terms of their formal,
material, efficient and final causes and use computational mechanisms from Bayesian causal
models for designing causal agents. Agent’s intentions, interactions and performance are
governed by their final causes. A Semantic Bayesian Causal Model, which integrates a prob-
abilistic causal model with a semantic layer, is used by agents for knowledge representation
and inference. Agents are able to use semantic information from external stimuli (utter-
ances, for example) which are mapped into the agent’s causal model for reasoning about
causal relationships with probabilistic methods. Our theory is being tested by an operational
multiagents system implementation for managing research products.

1 Introduction

The design of intelligent agents includes the problem of finding schemes flexible enough
for representing knowledge and inference mechanism so that agents are capable of perceiving
their environment and acting upon it. Agents are either software programs or moving
robots which are characterized by being autonomous, proactive and rational entities. Agent
behavior is driven by predefined rules or models and even represents preferences among goal
states. Additionally, intelligent agents can be capable of learning from experience, improve
its performance according to a utility function and respond under uncertainty conditions.

Several approaches have been proposed to model such intelligent agents. Some method-
ologies have focused in agent and task modeling and have proposed standard inference
structures[1]. Others have proposed to use non-monotonic logics and probabilistic reason-
ing to tackle the frame problem[2] that limits agent capacity to learn and evolve.

In the case of probabilistic reasoning, development of Bayesian Causal Models [3] has
allowed designers to formalize some aspects of causality theory. And even when its semantics
is flexible enough to model complex problems and support uncertainty, it has to deal with
the problem of interoperability between models. It has been pointed out in the research
community the necessity of having contextual information to associate meaning to elements
of the models[4].

On this sense, the Description Logics community has proposed the use of ontologies to
represent shared meaning. The Tarskian semantic used to interpret symbols and relations
makes it possible to ground them to real world objects.



This paper is organized as follows: Section 2 presents the theory that supports the agent
architecture. Section 3 describes Causal Agents and their architecture. Section 4 presents
an overview of system implementation. Section 5 summarizes related work and section 6
presents conclusions and future work.

2 Background

Our proposal is inspired in the theory of metaphysics and causality proposed by Aristotle
and revised by Thomas Aquinas. Some aspects of this theory has been recently formalized
in the form of Bayesian causal models.

2.1 Metaphysics, Causality and Intentionality

Metaphysics [5] developed by Aristotle, and revised by Aquinas, provides a general con-
ceptualization of reality. It conceives reality constituted by entities or beings that have an
essence people can recognize. Entity essence is defined by its characteristics or accidents
and is captured by human mind through abstraction.

Aristotle classifies accidents in intrinsic, extrinsic and mixed. Intrinsic accidents includes
quantitative (age, size, etc.), qualitative (color, shape, etc.) and relational (fatherhood,
nationality, etc.) accidents, that is, what internally identify an entity. Extrinsic accidents
are relative to time (birth date, duration, etc.), place (position), possession (property) and
disposition (sit, stand, etc.). Mixed accidents explain interaction among entities: action is
present in an entity when originates movement or change in another, meanwhile passion is
present in entities that receive passively the action of another.

Aristotle considers change as a transition of an individual from one state to another,
whenever the individual be able to reach the final state. He defined potence as the entity
capacity to show certain accident. Act, opposite to potence, is the actual presence of the
accident on the entity. Having certain accident in potence doesn’t imply that the entity
presents it actually, but just denotes possibility.

Causality refers to the set of all particular “causal” or “cause-effect” relations. Most
generally, causation is a relationship that holds between events, properties, variables, or
states of affairs. Causality implies at least some relationship of dependency between the
cause and the effect. Cause chronologically precedes the effect.

According to Aristotle’s theory, all possible causes fall into several wide groups, the total
number of which amounts to the ways the question “why” may be answered; namely, by
reference to the matter or the substratum (material cause or part-whole causation); to the
essence, the pattern, the form, or the structure (formal cause or whole-part causation); to
the primary moving change or the agent and its action (efficient cause or agent causation);
and to the goal, the plan, the end, or the good (final cause or agent intention).

Brentano defined intentionality as a characteristic of “mental phenomena”, by which
they could be distinguished from “physical phenomena”. Every psychical, or mental, phe-
nomenon has a content, and is directed at an object (the intentional object). Every belief,
desire, etc. has an object that it is about: the believed, the wanted. The property of
being intentional, of having an intentional object, is the key feature to distinguish men-
tal phenomena and physical phenomena, because physical phenomena lack intentionality
altogether.



2.2 Bayesian Causal Models

Pearl[3] proposes a semi-markovian model to represent a probabilistic causal model, i.e.
a model where some variables are observed and others don’t. Probabilistc causal model
can be expresed by:

M = 〈V,U,GV U , P (vi|pai, ui)〉 (1)

where V is the set of observed variables, U is the set of unobserved variables, GV U is a
causal graph consisting of variables in V ×U and P (vi|pai, ui) is the probabilistic function
of Vi which value depends on the value of its parents (PAi) in the graph and the value
of unobserved variables (Ui) affecting it. A markovian causal model is a special case of
probabilistic causal models where it doesn’t exist unobserved variables, i.e. U = ∅

The simplest operation on causal models is prediction, which consists on calculate the
a priori probability of a set of variables Y , i.e. P (y). Intervention operation consists
on setting a variable or set of variables to a given value and to calculate the probability
of the rest of the variables in the new model. Atomic interventions are performed over
a single variable and is equivalent to lifting Xi from the influence of the old mechanism
xi = f(pai, ui) and placing it under the influence of a new mechanism that sets the value
xi while keeping all other mechanisms unperturbed. Pearl represents atomic intervention
like do(Xi = xi), do(xi) or x̂i.

A model modified by an intervention do(xi) can be solved for the distribution of other
variable Xj , yielding to the notion of causal effect of Xi on Xj , which is denoted P (xj |x̂i).
The question of causal effect identifiability is whether a given causal effect of a given set
of variables X on a disjoint set of variables Y ,P (y|x̂), can be determined uniquely from
the distribution P (v) of the observed variables, and is thus independent of the unknown
quantities, P (u) and P (vi|pai, ui), that involve elements of U .

Pearl characterizes plan identification as the probability of a variable Y given a set of
control variables X, a set of observed variables Z (often called covariates), and a set of
unobserved variables U . Control variables are ordered (X = X1, X2, ..., Xn) so that every
Xk is a nondescendant of Xk+j(j > 0) in G and Y is descendant of Xn. Nk is the set of
observed nodes that are nondescendants of any element in the set of control variables, i.e.
previous evidence. A plan is an ordered sequence (x̂1, x̂2, ..., x̂n) of value assignments to
control variables, where x̂k means “Xk is set to xk”.

Pearl and Robins provide a general criterion for plan identification: the probability
P (y|x̂1, x̂2, ..., x̂n) is identifiable if, for every 1 ≤ k ≤ n, there exists a set Zk of covariates
satisfying

Zk ⊆ Nk (2)

and
(Y ⊥⊥ Xk|X1, ..., Xk−1, Z1, Z2, ...Zk)G

Xk,Xk+1,...,Xn
, (3)

that is, Y is conditionally independent of Xk given previous actions and their respective
covariates. GX denotes the graph obtained by deleting from G all arrows emerging from
nodes in X, GX denotes the graph obtained by deleting from G all arrows pointing to nodes
in X.

When these conditions are satisfied, the plan causal effect is given by

P (y|x̂1, x̂2, ..., x̂n) =
∑

z1,...,zn

P (y|z1, ..., zn, x1, ..., xn)×
n∏

k=1

P (zk|z1, ..., zk−1, x1, ..., xk−1) (4)



2.3 Knowledge Representation

Ontology Web Language (OWL) is a W3C recommendation [6] for ontologies definition
built over the widespread de facto standards XML and RDF. Inspired on the Object Ori-
ented paradigm, OWL has as primitive elements: classes, properties, Instances of classes
and relationships between instances.

Classes identify types of individuals (essence) and have certain properties (accidents)
associated to them. Inherence mechanism applies to classes and properties. Individuals are
represented as instances of a class and inherence properties associated to the class (accidents
in potence). Any element in the ontology is identified by an URL, which permits reference
other ontologies definitions.

Properties are divided in two kinds: datatyped and objects. First uses the XMLSchema
data types and second points to instances of certain class. Properties have a range (possible
values) and domain (possible classes to be attained to). Properties characteristics that can
be expressed are: transitivity, symmetry, functionality and inverse. Some local restrictions
can be defined in the class specification such as: cardinality and restriction of values to
certain class. The hasValue restriction allows to specify classes based on the existence of
particular property values.

SPARQL[7] is a query language for getting information from RDF graphs. It provides
facilities to: extract information in the form of URIs (blank nodes and literals), extract RDF
subgraphs, and construct new RDF graphs based on information in the queried graphs.

Formally, a SPARQL query contains four components: the graph pattern (GP), the
dataset being queried (DS), a set of solution modifiers (SM), and the result form (R). The
graph pattern of a query is called the query pattern.

The Graph pattern is a set of triplets and constraints that generates a RDF subgraph
(WHERE clause). The queried RDF dataset is indicated through namespaces; SPARQL
permits the use of prefixes. Results produced by the query can be modified in several ways:
be ordered, select some parts of the solution (projection), remove duplicates (distinct) and
limit the number of results.

SPARQL has four query result forms. These result forms use the solutions from pattern
matching to form result sets or RDF graphs. The query result forms are: SELECT (that
returns the variables bound in a query pattern match), CONSTRUCT (that returns a RDF
graph constructed by substituting variables in a set of triple templates), DESCRIBE (that
returns an RDF graph that describes the resources found), and ASK (that returns a boolean
value indicating whether a query pattern matches or not). Variables have a global scope.
Use of a given variable name anywhere in a query identifies the same variable.

3 Causal Agent

We propose a methodology for modeling intelligent agents and an agent architecture
based on causality theory. First we present main causes that originate an intelligent agent
and describe the ontological framework used to represent it. Next we present the agent
architecture and explain how causality and intentionality elements are represented on it.
We introduce an extended causal model that controls agent behavior through probabilistic
reasoning. Finally we comment our application test-bed and current development.



3.1 Agent Causality and Intentionality

Lets define a Causal Agent as an artificial, intentional entity which: (i) has a formal cause
represented by an agent class (essence) that groups properties and methods (accidents in
potence), (ii) has a material cause constituted by its properties values and implemented
sensors and actuators (accidents in act), (iii) has an effective cause that identifies the
software or human agent that create or instantiate it, (iv) has a final cause that represents
the goal or state (intentional object) that the agent must reach or maintain, and (v) has
a causal model that controls its behavior and accumulates experience in terms of causal
relations.

On agent’s instantiation it is necessary to specify the four main causes that originates
it: (i) the agent class, (ii) initial parameters, (iii) the creator id, and (iv) DL statements
that identifies agent creator’s intention. Causal model is initialized considering optimal
conditions, i.e. deterministic causal relations and null external or unknown causes.

For example, agent’s instantiation can be made trough an OWL instance of the OWL
class representing the formal cause on which the material cause is expressed as properties
values and the efficient cause is expressed through the createdBy property. The final cause
can be expressed by the DL statement < I, P, V > where I represents the agent instance
and V is the value that the P property must reach in order to finish its execution. An
statement presenting not grounded values like < I, P, ?v > would identify an infinite task.

Agent’s class is used to instantiate a software agent and for modeling other agents.
Creator ID is used in agent’s causal model to recognize authority over it permitting to
modify agent’s behavior.

Parameters that model agent intention are given in terms of agent ontology instances
with grounded relations and values. Agent’s causal model will drive agent behavior until
reach a state on which all constraints are satisfied.

3.2 Agent Ontology

Three layers of OWL ontologies are used for modeling the agent and the application
domain, as well as to annotate the agent causal model. The Causal Ontology is used to
model real and reason entities in terms of accidents and causes. The Agent Ontology, which
describes agent classes through characteristics and capabilities, is used to define a taxonomy
of agents and publish agents’ descriptions in the white pages. The Domain Ontology is used
to model the application domain and permits to specialize agents in the system. The use
of these three layers permits to reuse agents and processes in different application domains.

3.3 Agent Architecture

The causal agent’s architecture is shown in Figure 1. Its core is a Bayesian Causal
Model embedded in a semantic layer. In the causal model are represented agent beliefs
and through probabilistic procedures is possible identify plans that lead to the agent’s final
cause achievement, learn new causal relations and update probabilistic distributions based
on experience. Causal model structure and its operations are described in 3.4.

Sensors inputs are translated into perceptions understandable by the agent through a
parser that uses semantic descriptors. These descriptors are used in white pages to describe
agent characteristics and capabilities. They permit to receive and pass parameters to
sensors and actuators implementation.



Figure 1. Causal Agent Architecture

Perceptions are transformed to discrete ranges to avoid the use of literals. The casual
model performs a belief revision and chooses the best action from a set of possible plans
generated through probabilistic methods.

The selected action is encoded using semantic annotations over the intervened control
variable which is executed through internal or external actuators. Action execution is regis-
tered in agent beliefs in order update its beliefs, supporting this way reasoning in stochastic
environments. The comparison between expected behavior and actual observations is used
to update the model, i.e. learn from experience.

3.4 Semantic Bayesian Causal Model

The Semantic Bayesian Causal Model (SBCM) is an extension of a Bayesian causal
model with a semantic layer that permits to represent causal relationships among events
and to plan in order to achieve agent’s intention [8].

A SBCM is represented by:

M = 〈V,U, GV U , P (vi|pai, ui), P (u), C, Z, F, A,O,B〉 (5)

V is the set of endogenous variables that represents events and information that agent
can be aware of. U is the set of exogenous variables and is used to represent unknown
causes. GV U is a causal graph consisting of variables in V × U that identifies cause-effect
dependencies among events. P (v) is the Bayesian probabilistic distribution that codifies



the likelihood of an event given certain conditions. P (u) is a probabilistic distribution
used to explain bias in the system or interference produced by external factors. C ⊂ V
represents endogenous variables that can be manipulated by the agent (control variables).
Z ⊂ V represents those events the agent observe but cannot alter (covariates). F is a set
of interventions on V that identifies those conditions the agent must reach or maintain. A
is a set of semantic annotations over V expressed in terms of the OWL ontology O. B is
the set of interventions (Vi = vi)1 representing current agent’s beliefs.

The agent inference process, shown in Figure 2, is performed at two levels: semantic
and causal. Former enables common understanding between agents meanwhile the latter
summarizes agent experience and guides its behavior through probabilistic methods. In
the first phase, agent perceives the environment through its sensors and transforms its
perceptions into DL assertions (A-Box) expressed in a given ontology O (T-Box).

Annotations associated to every variable, denoted Ai, are expressed as queries on SPARQL.
Every query associated to a covariate Zi is evaluated against the current perceptions A-Box
(node instantiation phase). Covariates evaluated positively produce an intervention that
later is revised with agent beliefs. A special variable in the query is bound to the variable
value in the intervention. If Ai doesn’t contain this special variable, Zi is made true when
perceptions match annotations, and false otherwise.

On the second phase, beliefs are revised with interventions generated from discrete per-
ceptions. This revision is made by replacing old perceptions by new ones. In those cases
where no information is given about certain sensors, current perception is estimated ac-
cording to a dynamic causal model or remains unknown if there is not enough information.
Actions recently performed by the agent are included in the set of beliefs. Performed actions
and perceptions are used to train the model probabilistic distribution.

Once beliefs are revised, an instance of the causal model is generated replacing belief
interventions and pruning those relations that no longer holds. Over the instantiated model,
a set of possible plans to reach F is elaborated, and through a heuristic the most feasible
plan is selected. The first action of this plan is selected for execution. This action is
represented by an intervention over a control variable (Cw = cw). cw is replaced in the
Cw variable annotations to produce a set of triplets that encodes the command sent to the
actuator.

3.5 A Causal Agent Example

Lets define instantiate
Agent’s formal cause is expressed trough an OWL class that specifies those properties the

agent can show, including the list of sensors and actuators it posses. Last represent agent’s
material cause. In order to instantiate the agent we must define an OWL instance of this
class on which some properties are set and instances of sensors and actuators are associated
to it. Instance properties setting constitute the way the agent’s creator expresses the final
cause. One of these properties identifies the efficient cause (the createdBy property) which
is set to the system administrator ID or another agent ID.

Agent’s causal model is ...
1Capital letters represent variables (Vi) meanwhile small letters represent variable values(vi)



Figure 2. Causal Agent Inference Process

4 Current Development

We are testing our approach by incorporating intelligent agents to an information system
that manages research products at a university [9]. This system has been operational for
three years and offer services to researchers, students and research chairs in several modules
that include publications, projects, research groups, thesis and graduate programs among
others. Information stored in data repositories contains thousands of records organized
according to a research ontology.

Currently, tasks are performed by humans through web interfaces provided by the system
in roles clearly defined. For instance, there are auditors on charge of classify and validate
information fed in the system. Users receive alerts whenever a close related knowledge asset
is registered or updated. This relation is given by user roles and asset nature. Another
part of the system operation is performed off-line; for example, information integration and
loading.

Our agent architecture and methodology will be used on information integration and
auditing, as well as users modeling. Uncertainty handling in information integration will
permit to retrieve new data from web sources meanwhile auditor agents will validate its
usefulness and correctness. In both cases, humans will validate agent’s results training on
this way agents’ causal models.

Users modeling will permit to offer services to researchers and to generate a profile that
improve their experience on the system by offering them shortcuts and performing repetitive
tasks automatically.



5 Related Work

We recognize validity of beliefs, desires and intentions on an intelligent and autonomous
agent, proposed in the DBI architecture[10]. Our approach maintains these elements and
incorporates causality notions and formalisms as a mean to unify knowledge representation
and reasoning mechanisms.

In our approach, the agent state is given by a set of intervened causal variables, which
together with probabilistic distribution and causal relationships constitute agent beliefs.
Semantic annotations permit to communicate these beliefs to other agents.

Belief revision, in our case, pursues two objectives: to update current beliefs and to refine
the model. A naive approach for static models forgets all events occurred in previous time
frames and only considers current perceptions. These models can use negations as failure.

With a dynamic causal model, variables states at previous time frames are represented
by variables in the causal model. A learned relationship between previous states would
even make possible to predict the variable value at time t − i in terms of values at time
t− j where i < j.

Final cause represents agent intention. Agent options or desires are obtained from
plans generated from current beliefs and oriented to reach the final cause. Filter function
is represented by the heuristic used to choose a plan. Action selection is made selecting the
first action in the chosen plan.

6 Conclusions

In this paper we explore Aristotelian-Thomist Causality theory applications in agents
design. We believe that an intentional agent can be modeled through the formal, material,
efficient and final causes proposed by Aristotle and revised by Aquinas. This design permits
an agent to develop in a stochastic environment supporting external or unknown causes
existence and planning under uncertainty.

The agent causal model can be updated through experience and can manage change in
the environment conditions. All the time, agent will be driven by its final cause and will
be looking forward to optimize the way to accomplish it and collaborate with its creator
intention.

Annotations over causal model variables enable matching variables among different causal
models and calculating distributed causal effects [11]. This is possible due to semantic
meaning associated to variables. Agents will be in position of exchange information about
causal relationships influencing other agent’s behavior enforcing cooperation.

Besides, semantic information associated to variables presenting an irregular behavior
(noise) would lead to causal relationships discovery. Semantic information dismissed in the
node instantiation phase can be used for this purpose. This way, we are in position of not
just learn probabilistic distributions but the causal structure too [12].

As future work, we intend to learn causal relationships (structure learning) rather than
just probabilistic distributions (parameter learning), to model other agents by observing
their behavior and to communicate knowledge in the form of causal relations to other agents
useful for their purposes.
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