Finding compromises between Local and Global
Ontology Querying in Multiagent Systems

Hector Ceballos and Ramon Brena

Center for Intelligent Systems
Tecnologico de Monterrey, Mexico
{ceballos, rbrena}@itesm.mx

Abstract. As Ontologic knowledge gets more and more important in
agent-based systems, its handling becomes crucial for successful appli-
cations. In the context of agent-based applications, we propose a hybrid
approach, in which part of the ontology is handled locally, using a “client
component”, and the rest of the ontological knowledge is handled by
an “ontology agent”, which is accessed by the other agents in the sys-
tem through their client component. In this sort of “caching” scheme,
most frequent ontologic queries tend to remain stored locally. We pro-
pose specific methods for representing, storing, querying and translating
ontologies for effective use in the context of the “JITIK” system, which is
a multiagent system for knowledge and information distribution. We re-
port as well a working prototype implementing our proposal, and discuss
some performance figures.

1 Introduction

It is widely accepted that communication is an absolute requirement for most
of the multiagent system applications. This requires, of course, low level facili-
ties for physical connectivity as well as higher level internet protocols and even
inter-agent communication protocols. Even if these are not completely solved
problems, what is right now most challenging is taking into account the meaning
of agent messages. But this is one crucial aspect that we have to deal with in
order to build realistic open agent-based applications [1].

The term ontology refers to a definition of meanings for terms used in inter-
agent communications [2]. Ontologies allow to define concepts and their relations,
properties, operations and the like in a structured fashion. Open standards like
DAML- OIL[3], allow to publish ontologic knowledge in a way understandable
both by humans and machines. But even if a representation standard is set, it
remains to be decided where to put each piece of knowledge to be represented.

Some efforts like the Cyc project [4] suggest to build huge centralized reposi-
tories of encyclopedic knowledge. Others considered this impractical in terms of
performance and robustness, and prefer descentralized approaches [5]. But han-
dling distributed ontologies generates new difficult problems as well, namely: 1)
How to distribute the knowledge; 2) How to maintain some degree of coherence

among the different pieces of ontological knowledge. Further, independent par-
tial ontology repositories could evolve independently and diverge, so in order to
achieve a meaningful conversation we must put in place consensus mechanisms.

The method we will present in this paper for handling ontologic knowledge
gives a “hybrid” local - global solution to this problem in the context of the
JITIK project [6].

JITIK -which stands for Just-In-Time Information and Knowledge- is a
multiagent-based system for disseminating pieces of knowledge among the mem-
bers of a large or distributed organization, thus supporting a Knowledge Manage-
ment function. Although our ontology-handling proposal was primarily intended
for its application in the JITIK system, our proposal is applicable in principle
to a wide range of agent-based systems.

1.1 Owur Approach

We propose a method for combining centralized with distributed ontologies.
We consider a central repository encapsulated in an “ontology agent”, (OA)
providing answers to questions about the ontology to the other agents in the
system. We endow each agent in the system with a “client ontology component”
(COC) which gives it basic ontology handling capabilities. This arrangement
works in the following way:

— Standard agents start with a subset of a common ontology, which is loaded
at startup from an internet resource. They use their local ontologies, handled
by the COC, as long the local knowledge suffices for the agent’s activity.

— When further knowledge is required -for instance, an unrecognized term
arrives from other agent- the COC queries the OA, and receives a taylored
addition to the basic ontology, that allows the agent to continue working.
The COC stores locally the ontology addition so it could be used later.

This solution simplifies some of the inherent complexities of knowledge dis-
tribution, because:

1. There is no risk of incoherence -every piece of knowledge comes ultimately
from the common ontology -either from the initial ontology or as a result of
a query to the OA.

2. Putting a piece of knowledge in either the OA or the COC has no catastrophic
consequences, and it becomes just a matter of efficiency; adjustements are
made as agents’ operation proceed.

Of course, the solution we are presenting is valid only in some environments
and not in others. In particular, the requirement for a global coherent ontology
rules out open environments where there could be different or even contradictory
definitions for similar items. But in restricted environments like, for instance, a
given entreprise, this approach is feasible and efficient.

In section 2 we detail our method. Section 3 describes a working prototype.
Experimental results are given in section 4; in section 5 we compare with other
approaches; discussion and conclusions are given in sections 6 and 7.

2 The proposed solution for Ontology Handling in JITIK

Legacy
Site App

1E- Inference Engine
LAD - Local Agent Directary
ESD ~ External Site Directory
PMD ~Page Monitor Directary

Fig. 1. JITIK agents

In figure 1 we depict JITIK’s architecture, composed of several kinds of
agents, like the Site agent, taking in charge the distribution of information to
several personal agents, which interact with an end user; there are as well bridge
agents for interacting with traditional software (legacy applications).

Site agents are the heart of a “cluster” composed by one site agent and sev-
eral personal agents served by the former. In an organization, clusters would be
associated to departments, divisions, etc., depending on the size of them. Net-
works can be made up connecting several site agents. Distributed organizations
like multinational companies would have a web of many connected site agents.

There are also ontology agents, which we will discuss in the following. Actu-
ally, in this paper we will classify the agents in two categories: ontology agents,
and “regular” agents, which are all the other agents, like personal agents, site
agents, etc. Along this paper, regular agents are called client agents too because
they are clients of the Ontology Agent.

2.1 Ontology Agent and Clients

Client agents try to fulfill their ontology knowledge needs using the knowledge
in the COC. If necessary, the COC makes a query to the OA, and interprets and
use the answer, and eventually incorporates it to the local knowledge.

Ontology Agent The OA encapsulates the functionality for playing the role
of a knowledge provider, storing the ontology conveniently encoded, translating,
interpreting and executing incoming queries, then translating back the results to
a format understandable for the client agents. Translation is sometimes necessary
because the encoding for storing knowledge and answering queries, which is

mandated by performance requirements, is not the same as the one used in the
client agents, which requires to be as light as possible. This format separation
provides a layer of independence, so that the ontology representation could be
changed in the OA without impact to the client agents.

Client Agent Client agents access ontology definitions through their COC.
At startup they load a base ontology, and try to use it as long as it suffices
for agent’s work. In the JADE system [7], ontologies are needed for message
validation purposes. Every term in agents conversations should be validated
against a definition in an ontology. Thus, normally the base ontology will contain
definitions of common terms. The size of the base ontology is a tradeoff between
space efficiency -asking for a small initial ontology- and time efficiency -asking to
maximize the coverage of the local knowledge so remote queries are minimized.

2.2 Query Mechanism

In the following we present the query mechanism from client agents to the OA.
It consists of three elements: the Query language, the Query Engine and the
Answer Format.

One of the simplest query languages we have studied was RQL [8], that
although is oriented to RDF, its syntax is similar to SQL, so query codification
is not difficult.

The Query Engine is responsible for solving the queries made to the ontology.
Its performance will be one of the most critical factor in the global performance
of the OA, as it could be constantly answering questions coming from client
agents. One such Query engine is RSSDB [9], which receives queries in RQL. We
found that RSSDB’s performance is reasonable.

Query responses are coded in a response format. Once the client agent receives
an answer from the OA, it can process its information. This processing - decoding
could be costly both for the client agent and for the OA if adequate formats are
not chosen. Once more, we stress the need for limiting the transformations and
interfaces used in these processes.

Among the response formats we found available, there are RDF over XML,
and the frames format provided by the JADE ontology support. RSSDB gives
answers in XML, so the translation to JADE frames should be done, either on
the server or on the client side. We considered preferable to make the translation
on the server side (the OA), because this way the process becomes transparent
to client agents, and thus a replacement of technology on the OA does not need
to be noticed in the client agents. As we wanted to use the RSSDB engine,
translation was necessary, from JADE frames to RQL, for the client agent’s
queries, and from XML to frames to translate the OA’s responses.

2.3 The COC

In our hybrid global-local approach, the client agents can access part of the
ontology locally, or remotely, asking directly the OA. Local access is going to

be encapsulated in the COC which is attached to the client agents. At agent’s
startup, the COC is responsible for fetching -normally from an internet location-
a base ontology.

In order to overcome the limitations of the base ontology, the COC is re-
sponsible for accessing the OA for extending its ontology knowledge, through
the query mechanism we have been describing. The results of a query are in-
corporated by the COC to the local ontology, thus extending automatically the
ontology as needed. In this model, the very existence of the OA is transparent to
the client agent, as it directs every query to the COC, this one takes in charge
the whole process until an answer arrives to the agent -either from a local COC
consultation or from a query from the COC to the OA.

As we can see in the diagram of figure 2, the COC has the following elements:

— Local Ontology representation. It allows to store a subset of the ontology,
and supports local querying.

— Local query solver. Interface between the agent itself and the ontology view.
Exposes methods usable by the agent to query about the ontology schema
or instances.

— Message validation. As the COC contains definition of terms from the base
ontology and from queries to the OA, it allows to validate messages in terms
of an ontology, as it is required by the JADE platform.

— Schema container and Instance container. We wanted schema information
to be kept separate from instance information for performance reasons, par-
ticularly when a large number of instances is involved. Instance information
can be accessed either directly from the client agent or exporting a Java class
through the use of the Introspector.

— Appending mechanism. New knowledge coming from OA as a response to
a query is incorporated to the local view. Of course, imprudent use of this
facility could bloat the COC.

3 Prototype

We have developed so far a somewhat simplified implementation of the ideas
presented above. The simplifications we introduced are the following;:

— Although we have worked with the RDFSuite package, and we actually
built a very basic prototype with this technology, it did not supported full
DAML+OIL ontologies. So we would need to develop the translations men-
tioned before from JADE schemas to RQL. We decided -at least provisionally-
to use just the Jena package [10] instead, which at some point of our project
incorporated persistent storage, thus becoming a very attractive solution. So
RDFSuite was dumped altogether.

— Access to ontologies on the client agents and on the OA are identical, both
based on a ClientOntology class we developed, which calls Jena package
facilities. So ClientOntology implements both the COC and the OA.

Fig. 2. Ontology handling architecture

ONTOLOGY AGENT CLIENT AGENT
Anather
Query Solver Client
Agent | S
P Message Validation
Schema Module |
Conversion to < Sehiema Cli
ient Ontology Component
DB Query Language ‘ [nformation —
Schema | _|_
e : "
Frames i
Schema and Formating = bl
Instances Appending.
Database
Represemation
e Agent
Instance Module Omiclogy Engine
Logal
. I Representation
| I Conversion 1o ‘ el
DB Query Language Gk
L
Frames Schema Update: Local
Formating | oy Model Q::: +——
1 Sie [
3 |
1 Instance
Agem [mermnal
Q“m B E Aok
Operators ok
+ ™
DB Query Lang. Middle Lang, Frames
- - -

— The COC does not automatically redirect queries to the OA. The client
agent instead has to know which component to query, either the COC or the
OA.

— No distinction is made between instances and schema for storing purposes.

3.1 Query Solving

In the prototype, queries consist of the following:

— A quantifier, which indicates if all the results are needed, or we want to check
if there are items with a given description.

— A variable, where the result data type is specified.

— A query operator.

Query operators are defined so that their evaluation is made in two steps:
first, the characteristics of the objects are specified, and second, the element
of the found objects is indicated. During the first step, Jena extracts a list of
DAML+OIL schemas satisfying the given specification, and in the second step
results are constructed.

For instance, assume that we want to know which properties are defined in
the class “Worker”. We will use the ALL quantifier, so the properties themselves,
and not just their number, are returned. Now we define a variable “x” of type
CLASS_PROPS, which can store a list of properties defined in a class.

Finally, the DescWhere operator is introduced, using as parameters a fil-
ter and the results structured. In the example below the filter is a class name
(Worker), and the result structure uses the result variable “x” to store answers.

The query in our example would be as follows:

(ALL
:VARIABLE (Variable :VALUETYPE CLASS_PROPS :NAME x)
:PROPOSITION (DESCWHERE
:DESC (CLASSDESCRIPTOR :CLASS_PROPS
(Variable :VALUETYPE CLASS_PROPS :NAME x))
:WHERE (CLASSDESCRIPTOR :CLASS_NAME Worker)))

Using our example ontology, the obtained query result is as follows:

(RESULTS :RESULTS_SET (DESCLIST
#0 (CLASSDESCRIPTOR

:CLASS_NAME Worker

:CLASS_PROPS (PROPLIST
#0 (PROPERTYDESCRIPTOR :PROP_NAME id)
#1 (PROPERTYDESCRIPTOR :PROP_NAME responsability)
#2 (PROPERTYDESCRIPTOR :PROP_NAME email)
#3 (PROPERTYDESCRIPTOR :PROP_NAME name)))))

We can see that the class Worker groups in the result the list of the properties
we asked about. We included the class name so that this answer is self-contained,

and could be incorporated to the local ontology at the client agents in a mean-
ingfull way. It shoud be noted that the returned property list in this example
includes not only the direct properties of Worker, but those defined in its super-
classes as well.

It is left to the programmer to interpret and use the results given by the
ontology facilities in our prototype. The system only carries out automatically
the merging of the arriving responses with the local ontology, as is discussed in
the next subsection.

3.2 Adapting JADE Ontology Support

From version 2.5, JADE incorporates some support for ontology handling [11].
Using these facilities we built the COC that gives to the client agents immediate
access to the local part of the ontology.

To do this, it was necessary to redefine the “Ontology” class, which en-
capsulates the ontology definition, as well as to implement access methods for
consulting it.

In JADE, query operators can be defined using predicates (PredicateSchema)
and quantifiers (AbsIRE). The metaontology is defined in terms of concepts
(AbsConcept class) and aggregates (AbsAggregate).

Another JADE facility is to use the Introspector class, which allows to trans-
late between Java objects and text-encoded objects ready for being sent in agent
messages, which are called frames.

3.3 Local Ontology Extensibility

In the prototype we achieve basic COC-OA integration, as the query results are
sent to the COC, which forwards them to the agent, and in addition incoporates
those results to the local ontology. We are taking advantage of Jena’s mechanism
for merging ontologies. When a query response arrives from the OA, instead of
arriving directly to the client agent it passes though the COC, allowing it to
incorporate those results as an extension to the base ontology.

As we shall discuss later, the COC extensibility would have to be bounded
in some way, as an arbitrary growth would either overflow the COC or at least
make it similar in size to the OA.

4 Experiments and Results

We designed and carried out experiments aiming to ensure that every possible
query could be solved by our system, and that translations work properly. We
assumed that the software we are building upon (JADE, Jena) works correctly.

We carried out a formal testing methodology, sorting first all the possible
queries in a linear sequence, and then taking randomly some of the queries, until
a sample size is met. Details of our testing method are reported in [12].

We used a test ontology about our university (Monterrey Tech), representing
the organizational structure, as well as properties of people studying and working
there. The DAML files are accessible by internet. We used the tool OilEd [13]
to edit our test ontology.

The main result from this experiments was that 100% of a sample of 15
queries were correctly answered. A greater number of tests was considered un-
needed, because of the 100% success, and because a high level of redundancy was
evident as more complex queries were formulated. These experiments basically
ensured that the prototype is correctly built.

Additionally, we carry out a simulation to evaluate our approach perfor-
mance. We used a set of 200 fixed queries over an ontology of 4000 elements and
supposed having a queries solving algorithm with log n complexity. We simulate
a scenario where a client agent randomly generates queries and the probability
that the query can be locally solved depends on the local ontology size.

Over this scenario we observed a strong dependency on the ratio between the
local solving time and the remote solving time. The slower the remote response,
bigger the gaining in performance, and this is accentuated once 50% or more
of the ontology is transferred to the COC. Figure 3 shows normalized times on
three experiments rounds where the rate between the average remote time and
the average local time is denoted by r (smaller r means slower remote response).

100% s -
80% £ SR
60% =

40% s
(o] -
20% ™
0% ‘ : : :
0% 20% 40% 60% 30% 100%

Normalized Time

Local Ontology Size (%)

S [e PR e r=06

Fig. 3. Time Performance.

We measure efficiency with the product of the total time required to evaluate
a queries serie and the space used to store the local ontology; smaller values
means better performance. Both variables were normalized giving them the same
importance. This measure only considers agent individual performance.

Meanwhile local and remote response times keeps similar (r > 0.5), efficiency
factor grows constantly until reach the complete transference of the ontology to
the client agent, wich means we obtained no gaining on this transference. Never-
theless, when the remote response time becomes slower than local we observed a

curve in the efficiency with high values in the middle of spectrum. This denotes
that individual performance is good meanwhile just a small portion of the on-
tology is locally allocated, after this point efficiency decrease. At the end, when
ontology is fully locally stored, efficiency factor improves until a fixed value, gave
by the local time response.

In Figure 4 this behavior can be observed. We would use the efficiency with
full local ontoloy to limit the growth of the local ontology before efficiency de-
grades. This way, at figure 4 we could observe that limit for 7=0.2 would be 23%
of ontology locally allocated.

45%
£ 40% P e ——
5 35% d ™~
Z 0% ~ __ _
x 9 opop / e T \
o § P = =N
£ o 20% a—— — =
E 2 5% // - R—
£ 10% //’
° 5% .
z 0% £~ : : : :

0% 20% 40% 60% 80% 100%

Local Ontology Size (%)
‘ £ R i s 0,0 s r=0.6‘

Fig. 4. Efficiency (time x space).

We also simulated the use of a queries cache. In experiments we worked with
a 10 queries cache and vary the number of available queries. Query selection is
given by a normal distribution. The average cache utilization was 16%, 8% and
3% for a cache equals to 10%, 5% and 2% of the number of available queries,
respectively. The behavior of the improvement gained with the use of this cache
as the ontology is transferred to the COC can be observed in Figure 5, where
the cache size is 5%.Even when the response time becomes zero for queries
stored in cache, space required for storing this queries impacts negatively into
the efficiency factor, so we must find a threshold in this aspect too.

5 Related Work

In the KAON project [14] they stress reusing existing RDF ontologies and prop-
agate the changes to distributed ontologies. The ontologies URIs are tracked in
an ontology registry kept by the ontology servers, which take care of the ontology
evolution (inclusion, updating, changes propagation, etc.). Each Ontology Server
provides query resolution service to its agent community and the ontology evo-
lution is driven by inter-ontology servers communication. The original ontology

100%

80%

60%

40%

20% -

Queries locally solved

0% -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Local Ontology Size (%)

O Solved using Cache @ Solved using Local Ontology

Fig. 5. Improvement using a Queries Cache.

URI is kept unchanged, and a local copy of the ontology is used in the Ontology
Server for query resolution.

Our ontology agent, in contrast, stores full DAML+OIL ontologies. still has
to improve in the ontology evolution aspect. On the minus side, we have not
taken into account yet ontology evolution, mainly because this would introduce
very hard consistency-checking problems. In our approach, updating is made at
the client agents, through the COC.

In COMMA [15], as in JITIK, a global ontology is propagated over the entire
agent society. Each agent has a complete copy of the ontology/model and can
solve queries by itself. COMMA uses RDF for representing ontologies. They
designed an API with downloads, updates and querying mechanisms for other
agents. This approach is good for small ontologies that do not change quit often.
In the society, the Ontology Archivist is responsible for maintaining and accessing
the ontology. Obviously this approach lies at the centralized side of the spectrum.

FRODO [16] considers ontology provider and ontology consumer roles. Providers
concentrate provision of ontology services as well as the acquisition and mainte-
nance of the domain ontology. Consumers use domain ontologies in order to exe-
cute a specific application. Providers operate in FRODO at two levels: internally
to a subsystem (with Domain Ontology Agents), and externally or inter-systems
(with Distributed Domain Ontology Agents). In JITIK we have only developed
the internal level with the OA and the COC, though conceptually we consider
interagent communication through the “site agents” connection. FRODO de-
fines three categories of competencies: Ontology Use, Ontology Ewvolution and
Ontology Socialization. In JITIK we considered just the first and the third.

6 Discussion

Although they share the same basic ideas, the proposed architecture and the
prototype explore slightly different technological options, giving this way a range
of possible solutions for specific systems.

The conceptual architecture illustrated in figure 2 uses expliclit persistent
storage, as well as separation between schema and instances. This could be
preferable over more homogeneous schemes like Jena in the case of extremely
big instance numbers, because we can take advanage of efficient database queries,
instead of specialized ontology inference mechanisms.

Our prototype does not use any form of persistent storage, though the Jena
toolkit has recently offered persistance support. So, incorporating persistence is
mainly a matter of updating our Jena version. But we think persistence is not
essential for the COC at client agent side; the client could load the base ontology
as it is done in the prototype, and get additional definitions from the persistent
storage on the OA side as we explained above. But of course, if the ontology is
going the be enriched by the client agents, new concepts definitions should be
stored permanently either in a local permanent storage at the COC, or sent to
the OA in order to enrich the common ontology.

7 Conclusions

We have presented an architecture which solve the ontology handling problem
for the JITIK system, and which could be applied to other systems as well.

The main requirement to apply our architecture is that there should be a
common ontology, which is in principle agreed over the entire system, but which
is not completely known by each agent in the system. So, we proposed a way of
sharing the knowledge of the common ontology residing at an Ontology Agent,
but avoiding the bottlenecks that would results from a centralized ontology han-
dling. For this, we have incorporated to all the agents in the system a Client
Ontology Component, which is capable of solving locally part of the ontology
queries.

We have used standard open standards for representing ontologies, like DAML-
OIL. Further, we combined these standard formats with a multiagent-specific
format offered by the JADE agent building toolkit.

A prototype is reported, which implements the basic elements of our architec-
ture, making extensive use of the Jena toolkit. A package (xont) was developed
encapsulating all the additional functionality required to query the DAML4OIL
ontologies from JADE.

We think our hybrid approach introduces the possibility of fine-tuning the
compromise between central an distributed ontology access, basically varying
the size of the local ontologies. In one extreme, a zero size COC ontology is
equivalent to a central solution, whereas a COC identical to the OA gives a
completely decentralized solution. Any intermediate solution is possible.

The experiments carried out with our prototype demonstrate the basic query-
ing and inferencing capabilities. Simulation presented is still preliminar and will
be focused on measuring performance of the centralized-distributed approaches.

7.1 Future Work

One validation that we still have to carry out is to show that, in terms of global
efficiency, our approach outperforms both only-global as well as only-local on-
tologies, assumming a global coherent ontology, as we mentioned previously.

It is also important to test our method in a wide range of real knowledge-
intensive multiagent scenarios, in such a way that the global-local fine tunning
we mentioned before could be put in practice.

Another aspect is that continuous incorporation of knowledge pieces to the
COC coming from the OA would eventually overflow the COC. One solution
we foresee is to maintain a “cache” of the most frequently used definitions,
eventually replacing the least used.

Even when common ontology is selected arbitrarily at beginning, another
ontology can be selected through the system evolution based on use statistics.
Analysis on requests to the Ontology Agent could help to identify the most fre-
quently requested elements, meanwhile statistics on the local ontology can help
to mark the less important elements. Going beyond, common ontology can be
modeled by the Ontology Agent based on these statistics and constructs variants
of the common ontology for agents groups identified by clustering techniques.

References

1. H. S. Nwana and D. T. Ndumu, “A perspective on software agents research,” The
Knowledge Engineering Review, vol. 14, no. 2, pp. 1-18, 1999.

2. M. J. Wooldridge, Multi-agent systems : an introduction, Wiley, Chichester, 2001.

3. I. Horrocks, “DAML+OIL: a description logic for the semantic web,” Bull. of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 25, no. 1,
pp- 4-9, Mar. 2002.

4. D. B. Lenat, “Computers versus common sense,” in Proceedings of the 1991 ACM
SIGMOD International Conference on Management of Data, Denver, Colorado,
May 29-31, 1991, James Clifford and Roger King, Eds. 1991, p. 1, ACM Press.

5. C. Fillies, G. Wood-Albrecht, and F. Weichhardt, “Pragmatic applications of the
Semantic Web using SemTalk,” Computer Networks (Amsterdam, Netherlands:
1999), vol. 42, no. 5, pp. 599-615, Aug. 2003.

6. R. Brena, J. L. Aguirre, and A. C. Trevino, “Just-in-time knowledge flow for
distributed organizations using agents technology,” in Proceedings of the 2001
Knowledge Technologies 2001 Conference, Austin, Texas, 4-7 March 2001, 2001.

7. M. C. Rinard and M. S. Lam, “The design, implementation, and evaluation of
Jade,” ACM Transactions on Programming Languages and Systems, vol. 20, no.
3, pp. 483-545, 1 May 1998.

8. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl,
“Rql: A declarative query language for rdf,” In The 11th Intl. World Wide Web
Conference (WWW2002), http://citeseer.nj.nec.com/556066.html, 2002.

9. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle,
“The rdfsuite: Managing voluminous rdf description bases,” Techni-
cal report, Institute of Computer Science, FORTH, Heraklion, Greece,
http://www.ics.forth.gr /proj/isst/RDF/RSSDB /rdfsuite.pdf.”, 2000.

10.

11.

12.

13.

14.

15.

16.

HP Labs, “Jena semantic web toolkit - data sheet,”
http://www.hpl.hp.com/semweb/jena-datasheet.htm, 2000.

G. Caire, “Jade tutorial: Application-defined content languages and ontologies,”
http://sharon.cselt.it /projects/jade/doc/CLOntoSupport.pdf, 2002.

H. Ceballos, “Disign and implementation of an ontoloty agent in the jitik project,”
M.S. thesis, Tecnologico de Monterrey, Monterrey, Mexico, June 2003.

I. Horrocks, “DAML+OIL: a reason-able web ontology language,” in Proc. of
EDBT 2002. Mar. 2002, number 2287 in Lecture Notes in Computer Science, pp.
2-13, Springer, 2002.

D. Oberle, R. Volz, B. Motik, and S. Staab, “An extensible ontology software en-
vironment,” in Handbook on Ontologies, International Handbooks on Information
Systems, chapter III, pp. 311-333. Steffen Staab and Rudi Studer, Eds., Springer,
2004.

C. Consortium, P. Perez, H. Karp, R. Dieng, O. Corby, A. Giboin, F. Gandon,
J. Quinqueton, A. Poggi, and G. Rimassi, “Corporate memory management
through agents,” http://citeseer.ist.psu.edu/consortium0Ocorporate.html”, 2000.
L. Van Elst and A. Abecker, “Domain ontology agents in distributed organizational
memories,” http://citeseer.ist.psu.edu/vanelst0ldomain.html, 2001.

