
An Alignment Comparator for Entity Resolution with
Multi-valued Attributes

Pablo N. Mazzucchi-Augel and Hector G. Ceballos

Tecnoĺogico de Monterrey, Campus Monterrey, Mexico
{A00814519,ceballos}@itesm.mx

Abstract. Entity matching is a problem that concerns many data management
processes. If we consider matching between entities represented by RDF individ-
uals we might find attributes values lists with variable-length for some properties,
which will lead us to the problem of comparing multi-valued attributes, e.g. com-
paring author names lists for determining publication matching. This matching
technique would be more complex than comparing fixed-length records,but less
complex than comparing XML documents. Instead of comparing a single string,
representing the concatenation of these values, each value of one vector should
be compared against all values of the other vector. We propose a set of heuristics
to address the alignment and comparison process of multi-valued attributes and
evaluate them in the context of bibliographic databases. Our first results show
that it is possible to reduce the comparisons amount and provide an aggregated
similarity metric that outperforms the average similarity of cross product com-
parisons.

Keywords: Entity Resolution, Author Matching, Multi-Valued Attributes, Bibliographic
databases.

1 Introduction

Entity matching (also referred to as duplicate identification, record linkage, entity reso-
lution or reference reconciliation) is a crucial task for data integration and data cleaning.
It is the task of identifying entities (objects, data instances) referring to the same real
world entity [10]. Nowadays, organizations maintain records referring to the same en-
tity in distributed databases. Some attributes are redundant, but others complement the
information. Problems arise when information must be put together in order to extract
knowledge.

For instance, in the integration of bibliographic databases publications have multi-
valued attributes like authors and keywords that traditionally have been represented as
a single string with a concatenation of items, but in RDF these values can be found dis-
aggregated. Similarity between multi-valued attributes must be summarized in a single
value that could be pondered in the overall similarity score.

For Linked Data, data integration consists of adding links between equivalent en-
tities (e.g. publications) by accessing the entity description in distributed repositories.
Frameworks like Silk [17] provide facilities for this purpose, but treat similarity be-
tween multi-valued attributes as the average of the cross product comparisons. In this

paper, we propose a novel heuristic which increases the efficiency when comparing
multi-valued attributes, as long as it reduces the amount ofcomparisons and improves
the distinction between equivalent lists.

The paper is structured as follows: Section 2 present some ofthe string matching and
aggregation techniques find in literature. Section 3 gives an overview of the proposed
approach. In Section 4 we show results of the different heuristics proposed and discuss
them in Section 5, in order to identify the most effective oneto address this problematic.

2 Background

Next we describe some approaches proposed for approximate string matching (particu-
larly on author names) and for aggregating individual comparisons.

2.1 String Matching Techniques

The entity resolution problem has been known for more than five decades, not just in
the statistics area, but also in the database community as well as in the AI community.
Entity resolution or duplicate detection relies on string comparison techniques, which
deal with the typographical variation of string data. Multiple methods have been devel-
oped for this task, and each method works well for particulartypes of strings. It is not
the objective of this paper to develop an exhaustive and detailed explanation of string
matching techniques, but to mention which are the most useful and used the biblio-
graphic database domain. For a comprehensive review refer to [1], [19], [6].

So, to deal with typographical errors, the most suitable approaches are the character-
based similarity metrics. Theedit distancecalculate the minimum amount of edit op-
erations (insert, delete or replace) of single characters needed to transform a stringS1

into S2. The version of edit distance where each operation cost 1, isknown asLeven-
shteindistance. If those strings are truncated or shortened, a better metric is theSmith-
Watermandistance. Winkler modified the metric introduced by Jaro (a string compari-
son algorithm that was mainly used for the comparison of lastand first names) to give
higher weight to prefix matches since prefix matches are more important for surname
matching [13]. It does not just find common characters, but focus also in their order.

Character-based similarity metrics work well for typographical errors. However, it
is often the case that typographical conventions lead to rearrangement of words (e.g.,
John Smith versus Smith, John). In such cases, character-level metrics fail to capture the
similarity of the entities. Token-based metrics try to compensate this problem. In this
group, could be categorized theMonge-Elkandistance, thecosineor tf.idf similarities,
the Jaccardsimilarity or the hybrid approachSoft TF-IDF that combines the token
based with the string-based methods [6].

2.2 Aggregation

In this section we list the techniques found in the literature for generating an aggre-
gated score, using the numerous comparisons performed. Thelinear sum assignment
problem (LSAP) is one of the most famous problems in linear programming and in

combinatorial optimization. Informally speaking, given an NxN cost matrixC = (ci j)
the objective is to match each row to a different column in such a way that the sum of
the corresponding entries is minimized. In other words, to selectN elements ofC so
that there is exactly one element in each row and one in each column, the sum of the
corresponding costs should be the minimum [2]. Based on thatapproach, [18] intro-
duced a linear sum assignment procedure to force 1-1 matching because he observed
that greedy algorithms often made erroneous assignments. Agreedy algorithm is one
in which a record is always associated with the corresponding available record having
the highest agreement weight. Subsequent records are only compared with available
remaining records that have not been assigned. In [14] and [9] is used the Euclidean
distance metric to combine distance similarity values, generated by the comparisons of
multiples attributes of a tuple.

As the standard edit distance comparators did not work as well as the Jaro-Winkler
formula in their experiments, [20] combined string distance’s techniques (such asLev-
enshteinandLCS), averaging them, which seemed to produce better results. The objec-
tive was to use more information from the strings, and take advantage of each algorithm
strength. The combinedroot mean square (RMS)has been also used by [8] to improve
linkage accuracy over any single comparator.

In [3], a learning scheme is used to combine several of the distance functions de-
tailed above. A binary SVM (support vector machine) classifier was trained, using as
feature vector the numeric scores of those functions, and their confidence in the match
task as the result of the comparison. It slightly outperforms the individual metrics. SVM
do not generate an aggregated value like the other presentedtechniques, but combines
partial results in order to improve the classification process.

3 The Matching Process

In this section we give an overview of the process that heuristics, presented in detail
in Section 3.4, follow to increase the effectiveness in the alignment and comparison
process of multi-valued attributes. Figure 1 illustrates the complete process, consisting
of three stages: alignment, comparison and similarity aggregation.

Fig. 1.Multi-valued attributes Alignment and Comparison Process.

3.1 Alignment

The alignment phase consists on arranging elements of both lists for having a com-
parison matrix where the diagonal{(1,1), ...,(N,N)} denotes the right comparisons to
make. In some cases, multi-valued attributes are already ordered hence this step might
not be necessary, e.g. publication author lists.

According to the clustering and blocking methods used in theGoogle Refine project
[7], Fingerprint [12] resulted the most useful and promising approach to align multiple
attribute values in such a way that the comparison process performance is increased.
Basically, Fingerprint splits a string in tokens and order them alphabetically.

For some heuristics we applied Fingerprint for sorting the item lists. In these cases,
after executing FingerPrint over each element of the lists,each array was arranged in as-
cending order. The string obtained from FingerPrint was just used for ordering purpose.
For comparison, the real name of authors was used.

3.2 Comparison Strategies

The proposed comparison strategies try to minimize the number of author name com-
parisons. The combination of comparison strategies determine which elements of the
comparison matrixM are filled: the less author-name comparisons, the better. Con-
sider the lists of authorsA1[N] andA2[M], beingN ≥ M. The comparison strategies
will determine which element ofA1[i] (0 < i < N) andA2[j] (0 < j < M) will be com-
pared. The result of the comparison (the individual similarity) is stored inM [i, j]. The
comparison strategies used were:

– Full-Matrix : compare all elements inA1[i] with all elements inA2[j].
– Diagonal: compare elements inA1[i] with elements inA2[j], only when i=j.
– Row-Col-Deletion: if M [i, j] ≥ min-similarity, comparisonsM [a,b] are skipped

for i < a< N, j < b< M.
– Row-Similarity-Threshold: if M [i, j]≥ min-similarity, continue comparing in the

next row of the matrix (M [i +1, j]), i.e.M [i,b] is left empty for j < b< M.

We additionally defined a stop criterion for avoiding unnecessary comparisons:

– Partial-Average-Threshold: compare elements inA1[i] and A2[j] until reaching
80% of M . If Max-Average (described in Section 3.3) is above min-similarity,
continue with the comparison process; otherwise, stop.

Given the nature of the element comparison problem and basedon the taxonomy de-
scribed by [5] we usedContent-basedmatching approaches to determine the similarity
of two entities (author names in our case). We decided to combine two techniques that
compare atomic values: one for character-to-character comparison (Jaro Winkler), and
another for token-to-token comparison (Longest Common Substring (LCS)). For com-
bining the results of both of them, we used theroot mean square (RMS), to improve the
similarity grade over a single comparator [11, 8]. Those author names which similarity
score was above a defined threshold were considered similar.

3.3 Similarity Aggregation

Aggregation strategies try to determine the final similarity grade between the processed
lists of authors. The strategies used are:

– Average:
∑N

i=0 ∑M
j=0 M [i, j]

(N×M)

– Max-Average: Max(Avg (x), Avg(y)), wherex = ∑N
i=0Max(M [i,∗]) and y =

∑M
j=0Max(M [∗, j]).

In plain words Max-Average chooses between the maximum average of the sum of
maximum values obtained from column or rows.

3.4 Evaluated Heuristics

We considered a heuristic as a selection of an alignment choice (original or Figerprint), a
combination of comparison strategies, and an aggregation style. A summary and a brief
description of the evaluated heuristics (labeledH0,H1,H2,H4, ...,H7), can be found in
Table 1. Comparison strategies are decomposed in two criteria: one for choosing which
elements to compare next, and another for determining when to stop comparing.

Table 1.Evaluated Heuristics.

Heuristic Alignment Comparisons Aggregation

H0 / H1 Original Order
Full Matrix (NxM) H0

Average
H1
Max-Average

Who’s Next Stop Criteria
if (j < M)
then j=j+1
else j=0, i=i+1

i = N and j= M

H2 FingerPrint

1. Diagonal.
2. If sim< min-similarity thenH4.

Max-Average
Who’s Next Stop Criteria

if (i<N) and (j<M)
j=j+1, i=i+1

i = N and j= M

H4/ H5 Original Order
Row-Col-Deletion + Partial-Average-Threshold

Max-AverageWho’s Next Stop Criteria
if (A1 ∧ A2 are visible) then

Row-Col-Deletion
Row-Similarity-Threshold

else if (j< M)
then continue next column (j=j+1)
else continue next row (i=i+1)

H4
Partial-Average-Threshold
or (i=N and j=M)
H5
i=N and j=M

H6/ H7

H6
Original Order
H7
FingerPrint

Row-Col-Deletion
Max-AverageWho’s Next Stop Criteria

if (A1 ∧ A2 are visible) then
H6: Row-Col-Deletion
H7: Row-Col-Deletion, Row-Similarity-Threshold

if (j < M) then continue next column (j=j+1)
else continue next row (i=i+1)

H6
i=N and j=M
H7
Partial-Average-Threshold
or (i=N and j=M)

The heuristicH0 which averages all possible author names comparisons, is the tra-
ditional process followed to establish a similarity grade between two lists of authors,
so we select it as our baseline, in order to compare if the other heuristics generate any

improvement in the process of establishing a similarity grade when comparing multi-
valued attributes.

Algorithm 1 shows an implementation of heuristicH4, which implements compar-
ison strategies Row-Col-Deletion and Row-Similarity-Threshold, whereas it uses the
Partial-Average-Threshold criterion for quit comparing if the comparison is not good
enough.

Algorithm 1 HeuristicH4 (Row-Col-Deletion + Row-Similarity-Threshold + Partial-
Average-Threshold)

Input: alist_1 / alist_2
Result: Matrix M

1 for (i, i < alist_1.length , i++) {
2 if (alist_1[i] is available)
3 for(j, j < alist_2.length, j++) {
4 if (alist_2[j] is available)
5 M[i,j] = calculate_similarity(alist_1[i], alist_2[j])
6 if (M[i,j] >= threshold)
7 Turn off availability of alist_1[i], alist_2[j]
8 i = i+1 // Continue on next row
9 end-if
10 end-if
11 if (checkpoint)
12 if (Max-Average(M) < min-similarity)
13 Stop process
14 }
15 end-if
16 }

4 Experimental Results

In this Section we describe the datasets used in our experiments and the execution time
for each heuristic. Finally, we present the results obtained in similarity classification
and efficiency experiments.

4.1 Datasets

We use two data-sets, one extracted from an internal repository and the other one from
ISI Web of Knowledge. Both contain 548 records, the first one with information about
papers published by our University researchers and the second one with the equivalent
papers in the ISI Web database. From both datasets we used thepublication ID and the
author list (parsed for comparing individual author names).

Each author list of one file was compared against all the otherauthor lists of the
second file, performing a total of 300,304 comparisons. Of this total, 1,052 author-lists
were equivalent (all the items in one list were in the other and vice versa). This is
because the same group of authors could appear in multiple publications.

It is important to mention the difference between the authornames comparison and
the author lists comparison. The first one refers to the comparison performed between
two authors, for exampleGutierrez-Vega, JCagainstMunoz-Rodriguez, D, while the
second one implies the aggregated similarity between two lists of authors, for exam-
ple{Gutierrez-Vega, JC; Chavez-Cerda, S; Rodriguez-Dagnino,RM} versus{Aleman-
Llanes, E; Munoz-Rodriguez, D; Molina, C}.

4.2 Running Time

To evaluate the computational cost of the algorithms, we measured the time each of
them required to process the 300,304 author list comparisons. We used the average time
of five trials for each heuristic. Previous to each trial, thewarm-up stage last 1200 ms. A
subset of the records were used multiple times during that period. The experiments had
been run on anIntel(R) Core(TM) i7 CPU Q 720 @ 1.60 GHzmachine, running a64-bit
Operating System (Windows 8 Pro)with 4GB RAM. The algorithms were implemented
in Java. The average run time of each heuristic is shown in Table 2. It can be seen that
heuristicH4 run faster thanH0 and the rest of the evaluated heuristics.

Table 2.Total average processing time for 300,304 records.

Heuristic ID Run Time (in sec)Heuristic ID Run Time (in sec)
H0 241 H5 258
H1 261 H6 260
H2 293 H7 237
H4 204

4.3 Author Names Alignment

In the first place we evaluated if the proposed heuristics were capable of identifying
one to one matches, and based on that determining how similartwo author lists were.
We used 0.82 as the minimum similarity threshold for our experiments. Author name
comparisons with similarity above this threshold were considered as similar. Higher
thresholds were tested, but resulted in a higher quantity offalse-negatives. We also
used the same threshold (0.82) to decide if two author lists were similar or not. Consid-
ering the author-name comparisons made, each pair of authorlists was classified in the
following groups:

– No match: None of the authors matched.
– Some matches: At least one author matched (this means that at least one author

had a similarity value above or equal to the threshold), but not all of them.

– All match: All authors matched (both author lists have the same length(N = M)
andN author name comparisons are above the min-similarity threshold).

In Figure 2 is shown the result of the classification. Note that in this experiment
the baseline is notH0. The baseline indicates how many authors actually shared the
compared author-lists. It is convenient to mention the reason those heuristics which
perform all possible comparisons, exceed the classified amount of authors-lists in the
Some matchesgroup. Cases likeAcevedo-Mascarúa, J.andAceves, Jproduce similarity
values (0.84) above threshold (0.82), when in fact, those authors were not the same
person. Then, when compared the following lists:{Acevedo-Mascarúa, J.; Salguerio,
M.} and{Arcos, D; Sierra, A; Nunez, A; Flores, G; Aceves, J; Arias-Montano, JA},
the heuristics determined that one similarity existed, when actually was not the case as
none of the authors were similar.

The small number of author list pairs classified in theAll matchgroup (in this case
all the heuristics had a similar behavior) was due to a similar problem. We found for
example the author lists{Elı́as-Źuñiga, A.; Millard, B.} and{Zuniga, AE; Beatty, MF}
which are equivalent lists, but author name variants avoided to determine individual
matches above the similarity threshold. Those are situations where it becomes difficult
to identify that they refer to the same authors, even for a human expert. The heuristics
classified this comparison into theNo matchgroup, when in fact it should be classi-
fied into theAll matchone. In spite of these particular situations,H4 andH7 were the
heuristics which best classified the authors-lists into thegroupsNo matchesandSome
matches.

Fig. 2.Author Lists comparisons and average similarity percentage of each block.

4.4 Author Lists Similarity

Next we evaluated if the similarity between author lists is better approximated by ag-
gregating the individual author similarities chosen by each heuristic. Figure 3 shows
the amount of author lists having an aggregated similarity above 0.82. As expectedH1

found out the biggest quantity of similar record pairs, but at cost of performing all ver-
sus all author name comparisons. The low amount of similarity found byH0 is due to the

aggregation strategy used, since it negatively impacts on the general average, allowing
just a few authors-lists having an average similarity abovethe threshold.

Fig. 3.Author Lists with aggregated similarity above threshold.

Figure 4 shows both the amount of author name comparisons performed and the
average aggregated similarity in each group for each heuristic. The order in which each
heuristic is showed, intents to point out the reduction of the comparisons achieved by
H4 andH7. As expected,H0 andH1 performed the biggest quantity of comparisons due
to theirFull-Matrix strategy. DespiteH1executes all the comparisons, likeH0, it is im-
portant to highlight the different aggregation process they are following. The difference
could be noticed, particularly, in the increment of the average for theSome matches
group betweenH0 andH1. As Max-Averageis just considering from all the compar-
isons performed, the ones that maximizes the average (it means it is considering and
giving importance to author-names linkage), the average similarity grows up. The same
occurs for the groupAll match. On the contrary this rise is not so evident in the aver-
age similarity of the groupNo matchbecause there is not any author-name comparison
value above the threshold (0.82) which impacts positively in the final result.

This reduction in the amount of comparisons achieved byH4 andH7 could be no-
ticed also in the reduction of the average similarity in the groupssome matchesand
no matches. Since these heuristics, with the objective of increasing the performance,
do not perform all the comparisons, it makes possible that even when a common author
exists, it is not noticed as the comparison never takes placebecause of their logic. In this
way, that similarity value (which is above the established threshold, 0.82) is prevented
of impacting positively in the final average. This is more evident if heuristicsH4 and
H7 are compared withH5 andH6 respectively, as their only difference is thatH4 and
H7 make use of thePartial-Average-Thresholdstrategy, performing fewer comparisons
as it evaluates if the Max-Average is above the threshold, once the 80% of the author-
names have been compared. If it is not above the threshold, the comparison process
finishes, as it is not expected that the remaining 20% of the authors impact on the final
result, which is to determine if the authors-lists are similar or not.

Fig. 4. Author Name comparisons with similarity average per group.

5 Discussion

With the aim of comparing the results obtained by the heuristics, different statistical
tests, available in the SPSS tool, were performed (ANOVA, Turkey HSD). The clas-
sification groups (No match, Some matches, All matches) as well as their respective
similarity averages were used. We choose to evaluate the heuristics H0, H1, H4 and
H7, because the first one makes use of the traditional approach,H1 is an improvement
of H0, andH4, H7 obtained promising results during the experiments. Through those
analyses could be observed, in the first place, that the highest difference between the
medians was obtained byH4 andH7 in theNo matchandAll matchesgroups (see Fig.
5). This difference is significantly higher if we compare theheuristicsH4 andH7 with
H0. This implies that the proposed aggregation approach throws better results than a
simple average. TheMax-Averageaggregation is causing that theH1 mean similarity
be higher than theH0 one, in all the groups (because it choose the higher similarity
every time). Nevertheless the heuristicsH4 andH7 correct this bias, separating theNo
matchandSome matchgroups from theAll matchone. In Figure 5 can be appreciated
this separations with more detail.

The reason of whyH4 and H7 find a small amount of similar authors-lists pairs
(Figure 3) is because of the previously mentioned difficult-to-resolve cases, just using
the author name and surname attributes. Another justification could be that they perform
less comparisons than the rest of the heuristics. It is important to mention that, Anyhow,
the amount of similarity found by each heuristic does not differ much, except forH0 and
H1, which perform much more comparisons.

Continuing with the authors-list comparisons analysis, inthose cases where author
lists are equivalent (all match), heuristicsH4 andH7 reduce the number of comparisons
due to the alignment and comparison process, managing to find, mostly, those similar
authors. This is shown in Figure 4, in the (almost) constant line of theAll matchgroup.
The fact of performing less comparisons also affect if thoselists are quite similar (Some
matchgroup) or non similar at all (No matchgroup). As the process could be stopped
if at least 80% of the authors do not match, then the heuristics which perform more

Fig. 5.Comparison of the rice of the similarity average between different groups.

comparisons could increase the average similarity with theremaining 20%. But the
final objective is not to link authors but to determine if two authors-lists are similar or
not. Then, the heuristicsH4 andH7, besides improving the difference between medians,
reduce the number of comparisons.

Other problem which affects the heuristicsH0 andH1 is when they process authors-
lists which are very similar, but are not the same. In those situations, these heuristics
would find higher amount of similarities than the ones that really exist. For example,
consider the following lists:Khan, M.A.;Maroof, S.A.; Khan, M.Y.andUzair, M.;Khan,
M.A.; Khan, M.Y.. In this contextH0 andH1 would found 4 similarities, when the max-
imum number of authors is 3. It is not the case for the heuristics which force the 1-1
matching, asH4 andH7. The difference with the approaches presented by [2] and [18],
is thatH4 andH7 do not need to perform all the comparisons to find the best alignment.

The FingerPrint approach has not made big contributions in these experiments be-
cause the lists were already ordered (in most cases). It would be of great help if we
would have been comparing keywords or if those authors-lists were not ordered at all,
as it happens with the Dublin Core [4] or SWRC [15] ontologies,where the authorship
relation is not following any order.

6 Conclusions

In this paper we presented the first results of an approach to align, compare and aggre-
gate the similarity of multi-valued attributes. It was compared against the traditional ap-
proaches, using different heuristics, and the results obtained were promising. It reduced
in 22% the amount of comparisons performed, making the process more efficient. It
also increased the classification quality, showing a considerable difference between the
No match and All matches medians.

Despite these results seems promising we still need to improve the validation of its
efficacy. We will divide theSome matchesgroup in two smaller blocks: those that have
a similarity value above 50% (for example) and those that arebelow that threshold. This
would help to improve the quality assessment of the proposedheuristics.

Regarding those hard-to-determine similarities, we wouldadd new different at-
tributes (affiliation or common coauthors) to help the algorithms to determine if two
authors represent the same entity or not. This would help theheuristics to increase the
amount of similarities of the All matches group. Adding thisapproach to entity resolu-
tion frameworks like Silk [17] or OYSTER [16] would help us toverify if it is useful in
the entity resolution process and if it improves the linkagebetween similar entities.

References

1. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name matching
in information integration. IEEE Intelligent Systems 18(5), 16–23 (2003)

2. Burkard, R., Dell’Amico, M., Martello, S.: Assignment Problems. Siam, Philadelphia (2009)
3. Cohen, W.W., Fienberg, S.E.: A Comparison of String Distance Metrics for Name-Matching

Tasks. In: Proceedings of the ACM Workshop on Data Cleaning, Record Linkage and Object
Identification (2003)

4. DCMI: Dublin Core Ontology (2012),http://dublincore.org/documents/dces/
5. Dorneles, C.F., Gonçalves, R., Santos Mello, R.: Approximate data instance matching: a

survey. Knowledge and Information Systems 27(1), 1–21 (2010)
6. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey.

Knowledge and Data Engineering, IEEE Transactions on 19(1), 1–16 (2007)
7. Google: Google Refine Project (2012),http://code.google.com/p/google-refine/
8. Grannis, S.J., Overhage, J.M., McDonald, C.: Real world performance of approximate string

comparators for use in patient matching. Studies in health technology and informatics 107(Pt
1), 43–7 (2004)

9. Guha, S., Koudas, N., Marathe, A., Srivastava, D.: Merging theResults of Approximate
Match Operations. In: Proceedings of The Thirtieth international conference on Very large
data bases. pp. 636–647 (2004)

10. Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison.Data & Knowledge
Engineering 69(2), 197–210 (2010)

11. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution approaches with
FEVER. In: Proceedings of 35th Intl. Conference on Very Large Databases (VLDB) (2009)

12. Morris, T., Huynh, D.: FingerPrint Method (2010),https://github.com/OpenRefine/
OpenRefine/wiki/Clustering-In-Depth

13. Porter, E.H., Winkler, W.E.: Approximate String Comparison and itsEffect on an Advanced
Record Linkage System. Tech. rep. (1997)

14. Ravikumar, P., Cohen, W.W., Fienberg, S.E.: A secure protocol for computing string distance
metrics. In: Proceedings of the Workshop on Privacy and Security Aspects of Data Mining
at the Int. Conf. on Data Mining. pp. 40–46 (2004)

15. Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The swrc ontology - seman-
tic web for research communities. In: Proceedings of the 12th Portuguese Conference on
Artificial Intelligence - Progress in Artificial Intelligence (EPIA 2005). Springer (2005)

16. Talburt, J.R.: Entity resolution and information quality. Elsevier (2011)
17. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk a link discovery framework for the web

of data. In: Proceedings of the 2nd Workshop on Linked Data on the Web(2009)
18. Winkler, W.E.: Advanced Methods For Record Linkage. Section onSurvey Research Meth-

ods (American Statistical Association) (1994)
19. Winkler, W.E.: Overview of record linkage and current research directions. In: Proceedings

of Bureau of the Census. Citeseer (2006)
20. Yancey, W.E.: Evaluating string comparator performance for record linkage. Statistical Re-

search Division Research Report (2005)

