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Data-Driven Control of DC-DC Power

Converters

by

Benjamı́n Alejandro Fŕıas Araya

Abstract

In this thesis we develop a data-driven approach to the control design of power convert-

ers. We show that, given a set of measured data containing information about variables

of interest (duty cycle as the input and inductor current/capacitor voltage as outputs)

in the system, we can achieve asymptotic stability by solving a set of Lyapunov linear

matrix inequalities (LMIs). This approach e↵ectively addresses the issue of performance

degradation in controllers operating over networks, i.e. feeding constant power loads

(CPL) as opposed to their standalone design, i.e. with nominal resistive loads.

In order to do so, we study elements of behavioral system theory such as linear di↵erence

systems and quadratic di↵erence forms; this allows for the creation of a framework

compatible with higher-order discrete systems, which guarantees asymptotic stability in

power converters both in standalone operation and with increased modeling complexity

when interconnected to a network.

Moreover, given the fact that the aforementioned LMIs provide us with multiple sta-

bilizing gain solutions, we develop an algorithm for the synthesis of a switching multi-

controller framework which, given a family of controllers, endeavors to select the single

best-performing set in order to improve the dynamic profile of a to-be-controlled system,

e.g. a power converter.

Simulations and experimental results are provided as proof of concept, thus validating

the theoretical material and illustrating the advantages of the proposed approaches.
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Notation

I
q

Identity matrix of dimension q ⇥ q.

AT Transpose of matrix A.

col(A,B) If A and B are matrices with the same number of columns,

it denotes the matrix obtained by stacking A over B.

R Set of real numbers.

Z Set of integers.

Z+ Set of positive integers.

Rq Space of real vectors of dimension q.

Rp⇥q Space of p⇥ q dimensional real matrices.

R•⇥• Space of real matrices with an unspecified number of rows

and columns.

rank(A) Rank of a given matrix A 2 R•⇥•.

colspan(A) Column span of A, i.e. the set of all possible linear

combinations of its column vectors.

(�f)(t) Shift operator applied to a function f : Z+ ! Rq.

Defined as (�f)(t) := f(t+ 1), and can be of order N

in general, i.e. (�Nf)(t) := f(t+N).
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Chapter 1

Introduction

In recent years, renewable energy research has been deemed as one of the key points to

leading the planet into a more sustainable framework. The main motivation behind the

growing use of renewables is to reduce dependence on fossil fuels and greenhouse gas

emissions.

Power converters have thus been a core element of such research, since their usefulness

lies in their ability to overcome some of the inherent limitations imposed by the use of

renewable energy sources (e.g. low voltage outputs, intermittency caused by environ-

mental conditions, di�culty of interconnection with other sources). As such, multiple

strategies for robust control of power converters have been successfully implemented (see

e.g. [2–4]).

However, a great number of these control schemes are tested on converters designed

for stand-alone operation, i.e. considering a nominal resistive load connected at the

output. Therefore, when these converters are connected to an integrated system, e.g. an

energy distribution network, the interaction between subsystems may cause significant

performance degradation, or – in the worst-case scenario – instability due to the negative

impedance inherent to regulated power devices such as constant power loads (CPLs).

In order to mitigate such issues, we usually employ model-based paradigms; we assume

that a model representing the full DC network is readily available for us to design

stabilizing control strategies. Examples of such model-based approaches include: [2–4],

where control structures are implemented in order to regulate boost converters feeding

CPLs; [5–9], where the asymptotic stability of cascaded DC-DC converters is studied;

[10–13], where e↵orts are made to mitigate the e↵ect caused by negative impedance in

a load converter, therefore inducing stability; [14–16], where new stabilization methods,

such as damping enhancement and sliding mode control for CPL-loaded controllers, are

introduced.

1



2 Chapter 1 Introduction

Evidently, these contributions center their theoretical development on the availability

of a full network model, particularly in state space form, i.e. using sets of first order

di↵erential equations. It is well-known that there exists a high amount of available math-

ematical tools and environments compatible with state space representations. Moreover,

the study of stability properties for such systems can be easily carried out by means of

linear matrix inequalities (LMIs).

Following these ideas, the fact that such is the mainly used modeling approach is a

natural consequence. Higher-order representations, on the other hand, are traditionally

dropped in favor of first-order systems due to a shortage of mathematical and compu-

tational tools available for studying their dynamics and stability. [17]

However, state space models of networks are not a given [17], and in some cases their

derivation is in a higher level of complexity, especially when introducing a higher number

of state variables to the model or when considering the practical scenario of parasitic

elements with energy storage or time delay properties; their presence in a circuit causes

the addition of at least one more state variable or di↵erential equation to the model.

This challenge is recognized by researchers in the field of smart grids [18], who argue

that traditional modeling techniques may not be entirely useful in studying scenarios

where the complexity of networks becomes increasingly higher.

Prompted by these challenges, new model-less control techniques have surfaced in order

to overcome the aforementioned modeling shortcomings. These techniques involve data-

driven approaches that guarantee stability in a deterministic way, without the need

for mathematical models. For example, [19] proposes data-driven control structures

for interconnected microgrids by using measurement data and state observers. In [20],

a generic model recreation for a microgrid is proposed by considering input/output

measurement data.

The aforementioned solutions succeed in providing novel model-less approaches to stabil-

ity; however, in most cases the technique requires either an identification of pre-defined

mathematical models, or a high number of sensors due to the increasing number of state

variables. Therefore, they do not consider the possibility of representing the full network

dynamics and –a common occurrence in practice– with a limited number of sensors.

Motivated by these issues, in this thesis we present a data-driven deterministic approach

to stability of power converters.

1.1 Overview of problem and contributions

It is known that a power converter tested in standalone design can be robustly regulated

at a desired equilibrium point. However, as previously discussed, when the converter

operates over a network, interconnections between subsystems cause a capacitor current
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imbalance which destabilizes the previously stable capacitor voltage, thus steering the

output into an undesirable behavior.

In order to mitigate this issue, our main contribution is to propose a framework where we

adopt a general view of a network as a group of interconnected subsystems interacting

with each other via electrical and control variables (currents, voltages and duty cycles

respectively). Therefore, in order to design stabilizing controllers, we zoom into the

network and focus on the to-be-controlled converter. This process is shown in Fig. 1.1.

Figure 1.1: Zooming on DC-DC converter operating over a network for control pur-
poses.

After zooming into a specific converter, we determine the variables of interest through

which the subsystem interacts with the network. We then apply a system identification

algorithm based on measured data from such converter variables, and use discrete-time

Lyapunov theory in order to determine stabilizing controllers via solutions of a discrete-

time LMI. Such a procedure allows for a mathematically rigorous re-designing of con-

trollers whenever their behavior becomes unstable by network interconnections, i.e. in

the CPL problem shown in [6, 21–24]. This strategy is depicted in Fig. 1.2.

As a secondary contribution, we benefit from the fact that solving the Lyapunov LMI

in multiple instances during control design allows for the existence of multiple controller

gain sets. These gain sets can be stored in a controller bank and used in the development

of a switching controller framework.

As discussed in [1], the use switching control systems is motivated by a problem arising

when, given a process typically described by a continuous-time control system, we need

to find a controller such that the closed-loop system displays a desired behavior. In some

cases, this feedback controller may not exist. In such situations, a possible alternative is

to incorporate logic-based decisions into the control law and implement switching among
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Figure 1.2: Controller re-design process via data-driven approach.

a family of controllers. Thus, a hybrid closed-loop system is generated, which is able to

induce di↵erent sets of continuous-time dynamics based on discrete switching actions.

Consider, for example, the case of nonholonomic systems described in [1]; such systems

are subject to constraints involving both the state and its derivative. Therefore, they

cannot be asymptotically stabilized by a continuous feedback controller.

We can single out the following motivating points in control problems for which we

would need to consider switching control:

• In many realistic scenarios, continuous control is not suitable; i.e., there exist a

set of desired dynamics which are not achievable by means of continuous control.

• The system model is highly uncertain, and a single continuous control law cannot

be found.

• If a given process is prone to unpredictable external influences or component fail-

ures, then it may be necessary to consider discontinuous control as a way to ensure

adaptability and robustness in the control scheme.

Based on these ideas, in this thesis we also present a switching, adaptable multi-controller

strategy and test it on boost converters. Particularly, the family of controllers is gener-

ated by solving the Lyapunov stability problem in multiple instances, and the logic by

which the controller switches into each possible scenario is given by an arbitrarily im-

posed switching condition, i.e. a logical decision-making step; this ensures adaptability

in the control process. This is depicted schematically in Fig. 1.3.
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Figure 1.3: General diagram of switching control [1].

1.2 Objective of the thesis

Following the aforementioned ideas, the specific research objectives to which we con-

tribute with this thesis are listed below:

• To develop a data-driven control strategy for DC-DC power converters (both in

standalone and interconnected operations) which bypasses the need for mathemat-

ical models and guarantees asymptotic stability.

• To introduce a switching multi-controller framework which steers the plant output

dynamics as close as possible to an unknown, desired trajectory.

1.3 Outline of the thesis

We now describe the contents of this thesis.

• Chapter 2. We review fundamental concepts related to average modeling, lin-

earization and control of DC-DC power converters. We also introduce the notion

of Lyapunov stability conditions as a mathematical tool for stabilizing gain com-

putation. Finally, we propose new results regarding a switching multi-controller

structure. In this chapter, theoretical material is verified with MATLAB simulations.

• Chapter 3. We begin the study of discrete time systems, introducing higher-

order representations in linear di↵erence systems (LDS). Moreover, we establish

quadratic di↵erence forms (QdFs) as a means of studying stability properties of a

LDS. Moreover, further analysis regarding Lyapunov stability theory is given and

a discrete-time version of the conditions in Chapter 2 is developed.

• Chapter 4. We propose an approach to data-driven control of DC-DC converters.

We introduce the notion of data-based matrices, and establish necessary conditions

for a set of measured data to be su�ciently informative about the system dynamics
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in order to recreate its model. With this recreated model, we develop an algorithm

to stabilize converters both in standalone operation and when connected over net-

works. We also present results regarding a proposed switching multi-controller

structure which uses data-driven controllers. In this chapter, theoretical material

is verified by means of PSIM simulations and experimental validation.

• Chapter 5. We provide general conclusions and establish future research directions

for the hereby presented work.

Appendix A contains all the MATLAB codes written for testing the theoretical material

hereby developed.



Chapter 2

Continuous-time control of

DC-DC converters

In this chapter we introduce general concepts of continuous-time power converter model-

ing and control. We focus our study on the boost converter and develop a control strat-

egy using Lyapunov criteria; such an analysis is instrumental for building a framework

around the key content of this thesis. Finally, we present a switching multi-controller

algorithm which uses the same Lyapunov-based approach to guarantee plant stability

under specific performance conditions.

2.1 Preliminary background material

For ease of reference and in order to make this work self-contained, we first introduce

some fundamental theoretical material which will be continuously referred to for the

remainder of this chapter.

2.1.1 State space representations

As discussed in [25], a state space representation for any linear, time-invariant system

has the general form

d

dt
x = Ax+Bu ;

y = Cx+Du ;
(2.1)

where x : R ! Rn is the state vector comprised of n state variables, u : R ! Rm is the

input vector comprised of m input variables, while A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rp⇥n

and D 2 Rp⇥m are coe�cient matrices. Finally, y : R ! Rp is referred to as the output

vector.

7



8 Chapter 2 Continuous-time control of DC-DC converters

Now consider the case where the input u is state-dependent, e.g. u = �kx with k 2 Rn.

By letting C = 0 and D = 0, then substituting u in (2.1), we obtain:

d

dt
x = Âx ; (2.2)

where Â = (A � Bk) 2 Rn⇥n is a new coe�cient matrix. Due to the lack of an input

in its model, (2.2) is commonly referred to as an autonomous system. In the following,

we show how in state-space modeling, studying system stability requires a system to be

autonomous.

2.1.2 Lyapunov stability theory

When controlling a given dynamical system, we are interested in studying its behavior

in terms of stability. Thus, we first introduce a classic definition [26], i.e. a linear system

represented by (2.2) is asymptotically stable if lim
t!1 x(t) = 0 for all x that satisfies

(2.2).

This definition allows for a general understanding of the implications behind stable

system behavior. However, for control design purposes, it becomes necessary to study

such a concept in terms of mathematical specifications. Therefore, we now introduce

the notion of Lyapunov criteria:

Theorem 2.1. [26] A system represented by (2.2) is asymptotically stable if there exists

a state function V (x) such that, for all x that satisfies (2.2), it holds that: 1) V (x) � 0,

and 2) d

dt

V (x) < 0. Thus, V (x) is called a Lyapunov function for (2.2).

Consider the autonomous system described by (2.2), and let the candidate function for

Theorem 2.1 be the quadratic state function V (x) = xTPx, where P = PT > 0 is an

unknown matrix. Taking the time derivative of the state function by means of the chain

rule yields:

d

dt
V (x) =

d

dt
xTPx+ xTP

d

dt
x

= xTÂTPx+ xTPÂx

= xT(ÂTP + PÂ)x .

(2.3)

Thus, in order for Theorem 2.1 to hold, it must follow that

ÂTP + PÂ < 0 . (2.4)

Notice that (2.4) is known as a linear matrix inequality (LMI). Therefore, given any

linear system, its stability can be verified by numerically computing a matrix P which

satisfies (2.4). This can be done by means of standard LMI solvers, such as Yalmip

[27]. Such a toolbox consists of an add-on to the numerical environment MATLAB, and
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is used to solve feasibility problems related to linear inequalities with a specified set of

constraints.

We have given a brief introduction to state-space representations and stability for dy-

namical models; in the following, we show how to obtain such models from DC-DC

power converters.

2.2 Modeling of DC-DC power converters

We now discuss a procedure for determining mathematical models describing power

converter dynamics in a rigorous manner. We first focus on large-signal modeling in order

to describe such converters in terms of the underlying nonlinear equations. Then we

study small-signal modeling, which approximates the large-signal behavior with linear

equations. Note that the latter is particularly useful when attempting control design on

power converters.

2.2.1 Large-signal modeling

Let us consider the traditional boost converter with a nominal resistive load, as depicted

in Fig. 2.1.

Figure 2.1: Traditional boost converter topology.

The values of the discrete switching variable u 2 {0, 1} induces two possible circuit

topologies, as illustrated in Fig. 2.2. Thus, we can obtain their dynamics by applying

Kirchho↵s laws in each case.

Figure 2.2: Topologies induced by switching.

Consider the circuit in Fig. 2.2 a. When the switching variable is set to u = 1 ,

Kirchho↵’s voltage and current laws yield the following dynamics:
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8
>><

>>:

L
d

dt
i = v

in

C
d

dt
v = � v

R

(2.5)

Conversely, let us now consider the circuit in Fig. 2.2 b. When the switching variable is

set to u = 0 , Kirchho↵’s voltage and current laws yield the following dynamics:

8
>><

>>:

L
d

dt
i = �v + v

in

,

C
d

dt
v = i� v

R
.

(2.6)

By comparing both sets of equations and introducing the switching variable u as a

parameter, we obtain a unified dynamic model for the circuit, described by:

8
>><

>>:

L
d

dt
i = �(1� u)v + v

in

,

C
d

dt
v = (1� u)i� v

R
.

(2.7)

Equation set (2.7) represents the switched model of the boost converter. This represen-

tation emphasizes the discrete nature of the input variable u. However, when working

with periodic switching signals, it becomes necessary to consider the average value of

the input variable over a switching time period [28]. Therefore, the previously discrete

switching variable u now becomes a continuous average switching variable, i.e. d 2 [0, 1] .

We refer to d as the duty cycle.

Finally, we obtain the average model of the boost converter by replacing the discrete

switching variable in the switched model (2.7) with its continuous equivalent: the duty

cycle. Thus, the average model is given by

8
>><

>>:

d

dt
i =

�(1� d)

L
v +

v
in

L
,

d

dt
v =

(1� d)

C
i� 1

RC
v .

(2.8)

Notice that multiplication between variables makes such a model nonlinear.

Remark 2.2. In equation sets (2.5 - 2.7), state variables [i v] are defined as instanta-

neous. However, when used in (2.8) –and for the rest of this thesis–, such variables are

reformulated in average terms.

2.2.2 Small-signal modeling: Approximate linearization

Through a linearization process, nonlinear models can be approximated –around a spe-

cific point– by a linear equivalent. However, this new model is only valid in a region near
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the selected point. As discussed in [28], in nonlinear DC-DC power converters, approx-

imate linearization-based feedback controllers usually perform stabilization to a desired

equilibrium value even when the dynamics of the controlled converter start at the origin,

i.e. when the initial conditions of such a system are far away from such an equilibrium.

This optimal performance can be attributed to the fact that DC-DC power converters

have one single equilibrium point for each input/output variable, unlike highly nonlinear

systems which could possibly have a larger number of equilibria (e.g. Furuta pendulum).

Based on these ideas, we derive a linearized model in order to design a controller for a

nonlinear boost converter.

Let u : R ! Rm and y : R ! Rn be the input/output variables available in a system.

In a boost converter, the input u := d is the duty cycle, and the output y := col(i, v)

contains the input current and output voltage. Thus, let w := col(u, y) be the global set

of variables of interest in a boost converter.

Consider the boost converter model described by (2.8). We can begin to linearize this

model about an arbitrary equilibrium point by defining error variables for each in-

put/output in the nonlinear system, i.e.

ŵ := w � w̄ ;

where w̄ contains the values of the variable set at the fixed equilibrium. The following

analogous notation for the input-output partition is used:

ŵ = col(û, ŷ) .

Finally, we can complete the linearization process by performing a Taylor series ex-

pansion of (2.8). For ease of reference, we recall the theoretical details behind such a

concept.

Consider a dynamical system described in general by

d

dt
y
k

= f
k

(y1, y2, . . . yn, u1, u2, . . . um), k = 1, 2, . . . n ,

with error variables ŷ and û. A Taylor series expansion of f
k

about the equilibrium

points such that f
k

(ȳ1, ȳ2, . . . ȳn, ū1, ū2, . . . ūm) = 0, is given by

d

dt
ŷ
k

=

0

@
nX

j=1

@f
k

@y
j

ŷ
j

+
mX

j=1

@f
k

@u
j

û
j

1

A

������
y=y

u=u

(2.9)

Now consider the nonlinear boost converter model in (2.8). As per (2.9), we can linearize

this model about equilibria ī, v̄, d̄. Taking partial derivatives and evaluating at the

corresponding equilibria yields the linearized model of the boost converter, given by:
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8
>><

>>:

d

dt
î = �(1� d̄)

L
v̂ +

v̄

L
d̂ ,

d

dt
v̂ =

(1� d̄)

C
î� 1

RC
v̂ � ī

C
d̂ .

(2.10)

2.3 Control of DC-DC power converters

We now use the aforementioned linearized converter model in order to generate lin-

ear feedback controllers which, when interconnected with a nonlinear converter model,

guarantee asymptotic stability by means of Lyapunov criteria.

2.3.1 Linear control design

In this analysis we do not impose a particular controller structure (proportional (P),

proportional-integral (PI), proportional-integral-derivative (PID)), but instead we adopt

a general point of view for control design and let the specific application dictate the type

of controller to be used. Therefore, a feedback controller can adopt a general form

8
<

:

d

dt
z = Ez + Fu0 ,

y0 = Gz +Hu0 ;
(2.11)

where z : R ! Rp, E 2 Rp⇥p, F 2 Rp⇥n, G 2 Rm⇥p, H 2 Rm⇥n. In order to perform

an interconnection between such a controller and a linear plant e.g. (2.1), let us define

the controller input/output variables as u0 := y and y0 := u, respectively. This process

is depicted in Fig. 2.3.

Figure 2.3: General feedback controller for a linearized converter.

Note that this general family of controllers admits any P, PI, PID, state- and output-

feedback configurations, among many other suitable possibilities.
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Let us now consider the linear plant in (2.1), as well as the controller in (2.11). By

redefining the controller variables as shown in Fig. 2.3, we obtain the complete set of

equations describing the plant-controller combination:

8
>>>><

>>>>:

d

dt
x = Ax+Bu ;

d

dt
z = Ez + Fx ;

u = Gz +Hx .

(2.12)

By straightforward algebraic manipulation of (2.12), the general plant-controller combi-

nation can thus be represented as:

d

dt

"
x

z

#
=

"
A+BH BG

E F

#"
x

z

#
. (2.13)

2.3.2 Commercial boost converter control: Gain tuning

The general plant-controller structure in (2.12) allows us to proceed without imposing a

particular control scheme, but instead letting the specific application be the determining

factor for such a decision. Let us consider the particular case of a commercial boost

converter whose manufacturer’s pre-defined controller only allows for gain modification

and consists of a double loop current-voltage nested controller, as depicted in Fig. 2.4.

Figure 2.4: Predefined feedback controller example.

We observe that such a controller consists of the following equations:

Voltage loop:

8
<

:

d

dt
w = v̂ � v̂

ref

,

î
ref

= �g1w � g2v̂ ;
(2.14)
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Current loop:

8
<

:

d

dt
z = î� î

ref

,

d̂ = �k1z � k2î ;
(2.15)

where w, z : Z+ ! R and k
i

, g
i

, i = 1, 2, are scalar quantities known as gains. Given this

set of equations and considering the general state space model for linearized converters

d

dt
x = Ax+Bu ,

by recalling that x := col(̂i, v̂) and letting u := d̂, we can construct the converter-

controller combined model:

d

dt

2

64
x

z

w

3

75

| {z }
d
dtx

0

=

2

64
A� k2B[1 0] �k1 02⇥1

[1 0] + g2[0 1] 0 g1

[0 1] 0 0

3

75

| {z }
Â

2

64
x

z

w

3

75

|{z}
x

0

. (2.16)

Controller gains k
i

, g
i

, i = 1, 2, which guarantee converter stability, can thus be computed

using (2.4). Since in this case parameters from both Â and P are unknown, condition

(2.4) is a bilinear matrix inequality whose solutions can be computed using standard

LMI solvers such as Yalmip.

2.4 Multi-controller system

As discussed in Chapter 1, a special category of hybrid systems known as switched sys-

tems, considers continuous-time systems coupled with discrete switching events. Thus,

we will now focus on the development of a switched multi-controller operation for a

controlled converter such as the one described by (2.16).

In order to further understand the proposed multi-controller framework, we briefly re-

call the motivation behind its development. In Chapter 1, we argue that discontinuous

control schemes allow for achievements in dynamics which are not possible using purely

continuous feedback. Moreover, due to the logic-based part of its operation, switching

control brings a sense of adaptability to the overall scenario. In terms of power convert-

ers, discontinuous feedback allows for a more robust variable (e.g. voltage) regulation

despite abrupt changes in the load, in comparison to continuous control methods which

may not respond as adequately.

Moreover, a multi-controller framework is also useful in cases where we become interested

in trajectory tracking for any purpose; notable examples of such a situation are techniques

such as maximum power point tracking [29] and enveloped tracking [30]. Constant voltage

regulation –a common objective in power converter control– is not the main purpose in



Chapter 2 Continuous-time control of DC-DC converters 15

these cases; they instead focus on following specific trajectory. For such purpose, an

adaptable discontinuous controller is a plausible solution.

Following the above ideas, the concept of switching control can applied to a controlled

boost converter as in (2.16) by noticing that the stability condition in (2.4) is an in-

equality, i.e. it allows for multiple solutions. Therefore, by solving such an inequality

and thus performing gain computation in multiple instances, we generate a “bank” or

“family” of admissible (i.e. stabilizing) controller gains which will guarantee asymptotic

stability when applied to the boost converter.

Having multiple gain sets implies the existence of various possible control scenarios (one

for each gain set); these scenarios can be switched into depending on a state-related

condition. Evidently, each of these control scenarios will steer the plant into a new set

of asymptotically stable dynamics. We now introduce the preliminaries for the switching

condition.

Let the instantaneous error E(t) be defined as:

E(t) =| y(t)� y⇤(t) | , (2.17)

where:

• y(t) is the instantaneous converter output (e.g. output voltage);

• y⇤(t) is a desired trajectory.

We therefore establish the switching condition for the multi-controller system as:

| E(5nT )� E(5(n� 1)T ) | ✏ , (2.18)

where:

• n = 1, 2, . . . is a scalar quantity measuring time steps;

• T denotes the integration step for the numerical method used to solve the dynam-

ical model;

• ✏ is a scalar quantity known as performance condition for the multi-controller

system, and is associated to the maximum allowed error rate between the real and

desired dynamics.

As depicted in Fig. 2.5, condition (2.18) is used to induce switching between di↵erent

controller gain sets based on the di↵erence between the real output and an arbitrary

desired trajectory. This instantaneous error is compared every 5 time steps and is
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equivalent to measuring the derivative of the error variable. If such a derivative exceeds

an admissible value ✏, the system will switch into a di↵erent set of controller gains in

an attempt to reduce future propagation of the error. In other words, the goal of this

switched system is to steer the output “as close as possible” to an arbitrary desired

behavior, by switching between controller gain sets when the rate of change of the error

becomes unacceptable for the expected performance conditions.

Figure 2.5: Multi-controller operation.

Remark 2.3. In this work we ponder the following classic considerations for switching

multi-controller systems:

• To ensure stability, multiple plant-controller combined systems could share a com-

mon Lyapunov function.

• To ensure stability, multiple plant-controller combined systems could have a mul-

tiple Lyapunov function.

• Between switching instants, a certain dwell time must be considered in order for

the system to approximate the equilibrium as much as possible; this prevents

instability. In this work, we consider the dwell time to be 5nT .

However, since these points are not part of the main scope of this thesis, we refer the

reader to [31] for more details.

2.5 Simulation Results

Simulations were carried out in order to verify the theoretical material discussed above.

In the case of continuous-time systems, we use the standard numerical environment

MATLAB to test the validity of every concept described in this chapter.
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2.5.1 Open loop traditional boost converter

As previously discussed and given the focus of this chapter, we first simulate a traditional

boost converter in open-loop configuration as depicted in Fig. 2.1, with the nominal

parameters shown in Table 2.1.

Table 2.1: Nominal parameters for simulation.

Notation Parameter description Value

V
in

Input voltage 30V

V̄ Output voltage at equilibrium 200V

L Inductor 250µH

C Capacitor 10µF

R Load resistance 100⌦

h Time step for numerical method 1µs

We carry out this simulation using the average model described by equation set (2.8).

Using such equations, we can easily verify that the equilibrium values for duty cycle and

current must equal

d̄ =
v̄ � v

in

v̄
= 0.85 ; ī =

v̄

R

✓
1

1� d̄

◆
= 13.333 A . (2.19)

We use the Forward-Euler numerical method to perform the simulation, solving the

boost converter model described by (2.8). Simulation results are shown in Fig. 2.6.

Figure 2.6: Boost converter simulation results.

Notice that the equilibrium values of both the voltage and the current in the simulation

are as expected.
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For a detailed description of the MATLAB codes written for simulation purposes, please

refer to Appendix A.

2.5.2 Linear control of boost converter

We carry out a second simulation, now centered on solving the combined converter-

controller model described by equation (2.16). The motivation behind this simulation is

to test the validity of the ideas discussed in section 2.2.2, in which we argue that linear

feedback controllers perform adequately when applied to nonlinear plants with a single

equilibrium point, e.g. power converters.

To this purpose, consider the same boost converter as in Subsection 2.5.1, with nominal

parameters described in Table 2.1 and equilibrium values defined in (2.19). From its

linearized version described by (2.10), let the state space representation matrices

A :=

"
0 � (1�d̄)

L

(1�d̄)
C

� 1
RC

#
; B :=

"
v̄

L

� ī

C

#
.

Such matrices can thus be used in the combined model described by (2.16). Moreover,

using such a model’s coe�cient matrix, we solve the Lyapunov inequality (2.4) in order

to compute stabilizing controller gains. Such a process yields the gain set

k1 := 0.0047 ; k2 := 0.0141 ; g1 := 16.8823 ; g2 := 10.9711 .

By recalling that these gains come from a linear model, we now use them in order to

control the nonlinear system described by (2.8). To this purpose, we let the input

d := d̂+ d̄ and once again solve the nonlinear converter model by means of the Forward-

Euler numerical method. Evidently, the value of d will vary with each iteration in order

to satisfy the conditions of the control structure in (2.15). The results of this simulation

are shown in Fig. 2.7.

Notice that aside from maintaining the voltage and current at the desired equilibrium

points, the established control structure causes a relevant improvement in signal quality

(particularly noticeable in the output voltage waveform) where the transient’s overshoot,

oscillation and response time are significantly reduced.

2.5.3 Multi-controller switching system

In Subsection 2.5.2 we focused on controlling a boost converter using Lyapunov stability

criteria. We now extend this idea to a proof of concept regarding the multi-controller

system discussed in section 2.4, where the inequality (2.4) is solved in multiple instances
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Figure 2.7: Controlled boost converter simulation results.

Figure 2.8: Algorithm for controller bank generation.

in order to generate a “bank” of admissible, stabilizing controllers for the converter. The

general algorithm for this process is shown in Fig. 2.8.

The algorithm consists of a linearization of the bilinear matrix inequality (2.4); we

achieve this by starting the algorithm with gain values (embedded in matrix Â) which

are very close to 0, thus reducing the number of unknown parameters to one, i.e. matrix

P , and e↵ectively transforming the Lyapunov condition into a linear matrix inequality

(LMI). After computing P , we use it as a known parameter to compute a new, unknown

gain set. We then use such a gain set as a known parameter to compute a new P matrix.

We refer to this process as a linearizing loop, which is repeated to generate n controller

gain sets. Note that all n gain sets guarantee asymptotic stability, given that they are

generated under Lyapunov criteria.
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The process of computing multiple stabilizing gain sets leads to the generation of a gain

matrix defined as

C
n

:=

2

66664

k11 k21 g11 g21

k12 k22 g12 g22
...

...
...

...

k1n k2n g1n g2n

3

77775
;

whose n number of rows are comprised of the gain sets computed using the algorithm

in Fig. 2.8.

Such an algorithm was used to compute multiple stabilizing gains for the same boost

converter used in previous subsections (refer to Table 2.1 and (2.19) for parameters).

Starting the algorithm with initial conditions

k1 := 0.001 ; k2 := 0.0001 ; g1 := 0.0001 ; g2 := 0.0001 ,

we apply the algorithm in Fig. 2.8 by means of the Yalmip solver. For n = 40, Fig. 2.9

shows the gain matrix C40 in table form.

Figure 2.9: Stabilizing controller bank for n = 40.

Notice that even though the algorithm starts at values which are practically zero, the

values of k
i

, g
i

, i = 1, 2 exhibit linear convergence to an unknown value as we repeat-

edly solve the gain computation algorithm. Even though the final value of convergence

is uncertain, we do not focus on unraveling it; rather, we take advantage of the fact

that this convergence process provides us with various controller gains which guarantee

asymptotic stability for the boost converter.
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As discussed in section 2.4, having multiple controller gains implies the possibility of

creating a control system which switches into each gain set according to a certain per-

formance condition; we simulate such an idea as a proof of concept using the same boost

converter as in previous subsections.

Consider the controlled boost converter in section 2.5.2. Using MATLAB, we extend such

a simulation to include the multi-controller system; namely, we consider the gain matrix

C40 shown in Fig. 2.9 as well as condition (2.18) for automatic switching into each gain

set. We establish the desired trajectory to be

y⇤(t) = 200[1� e�290t cos (700t)] ,

as well as a maximum allowed error rate of ✏ = 0.1. Results of this simulation are shown

in Fig. 2.10. Notice that, as expected by design, the multi-controller system steers the

output as close to the desired trajectory as possible within the allowed error rate.

Figure 2.10: Multi-controller structure performance for ✏ = 0.1.

As a further proof of concept and in order to show a fundamental e↵ect of changing

the desired trajectory’s oscillating frequency, we repeat the previous simulation with

di↵erent parameters. Consider the desired trajectory

y⇤(t) = 200[1� e�40t cos (700t)] ,

and a new performance condition ✏ = 0.01. Results of this simulation are shown in

Fig. 2.11. Notice that when dealing with waveforms that exhibit higher oscillation

frequencies, it becomes increasingly di�cult for the output to precisely follow the desired

trajectory despite it being subjected to a stricter maximum allowed error rate.

We now consider the case of a multi-controller system with a varying performance con-

dition. Let a desired trajectory

y⇤(t) = 200[1� e�40t cos (400t)] ,
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Figure 2.11: Multi-controller structure performance for ✏ = 0.01 and di↵erent trajec-
tory.

and a varying performance condition ✏ 2 {0.3, 0.2, 0.01}. We endeavor to compare the

multi-controller system’s performance when subjected to a decreasing (i.e. gradually

stricter) maximum allowed error rate. The first condition, ✏ = 0.3, yields the results

shown in Fig. 2.12. Notice that, as expected, the multi-controller system switches

between gain sets within the allowed error rate.

Figure 2.12: Multi-controller structure performance for varying ✏ (0.3).

We now reduce the allowed error, ✏ = 0.2, showing the results in Fig. 2.13. Notice that

decreasing ✏ evidently causes the system to switch controllers at a higher frequency, thus

changing the plant dynamics to closely resemble the desired ones.

We finally analyze the case where the performance condition is reduced to ✏ = 0.01,

i.e. the strictest in this study. Fig. 2.14 shows that, once again, switching between

controllers a higher number of times than the previous cases steers the plant dynamics

as close as possible to the imposed trajectory.
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Figure 2.13: Multi-controller structure performance for varying ✏ (0.2).

Figure 2.14: Multi-controller structure performance for varying ✏ (0.01).

We now endeavor to test the multi-controller system’s performance under disturbances.

The first case is shown in Fig. 2.15, where we divide the output resistance by a factor

of 10 starting at t = 0.4s. Moreover, the results show that the multi-controller system

is able to regulate the output voltage despite abrupt changes in the load.

We now test disturbance rejection to changes in the input voltage, which was increased

by 10 V at time instant t = 0.6s and decreased by 20 V at time instant t = 1s. Fig.

shows that the multi-controller system is also able to regulate abrupt changes at the

input and maintain the output voltage at a constant value. Note that in both cases,

the control scheme e↵ectively switches between gain sets under the presence of external

disturbances, thus showing robustness and adaptability.

We finally endeavor to test trajectory following for the multi-controller system, i.e., the

case where the plant mimics an imposed behavior. For such a purpose, we define the

to-be-tracked trajectory as
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Figure 2.15: Multi-controller performance under abrupt changes in output resistance.

Figure 2.16: Multi-controller performance under abrupt changes in input voltage.

y⇤(t) = 200[1� e�20t cos (100t)] .

In this case, during each iteration of the numerical method we change the equilibrium

value to be that of y⇤(t
c

), where t
c

is the current time instant. Fig. 2.17 shows the results

of such a simulation, where the varying equilibrium value induces trajectory following.

For this particular simulation, a larger controller bank C500 was generated. Notice that

the resistance-changing disturbance was also included in order to likewise test robustness

and adaptability.

Fig. 2.18 depicts the multi-controller index i changing over time in accordance with

the established switching condition. Note that the value remains constant in specific

regions, while increasing linearly in others. There is a sudden change in value after

i = 500; this is due to the re-initialization of the controller bank when reaching its

maximnum possible value.
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Figure 2.17: Multi-controller performance for trajectory following.

Figure 2.18: Changes in controller set index i for multi-controller system.

2.6 Conclusion

In this chapter, we examined preliminary concepts related to modeling and control of

power converters. Namely, we discussed dynamical system theory, average modeling,

linear control design and stability criteria. We showed that, for a general case, stability

of a converter model can be determined by using control design via Lyapunov LMIs.

Moreover, we developed a switching multi-controller approach to power converter con-

trol in order to ensure adaptability and perform trajectory following when necessary.

Note that in this chapter, even though we work in a continuous-time framework, switch-

ing conditions for the multi-controller system –namely (2.18)– are defined in terms of

discrete-time variables. This approach is satisfactory in part since all models are solved

by means of a numerical method, which is discrete by nature.
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Despite the inconsistency brought by the combination of di↵erent time domains, we

recognize that a modeling scenario as simple as a two-equation converter in state space

is well-functioning. However, in more highly complex (model-wise) scenarios, a discrete-

time framework appears to be the optimal way to formulate future work in order to

maintain consistency.

Thus, in the following we examine the preliminaries of the main contribution in this

thesis, where we use some of the previously discussed theory and apply it to data-

based, model-less frameworks. To such purpose, we will study discrete-time, higher-order

systems, i.e. the most natural way to work when processing data.



Chapter 3

Behavioral system theory

In the past chapter we introduced some concepts which are fundamental for the proper

understanding of power converter control in general. We have focused solely on contin-

uous time systems with state-space representations; however, the main results in this

thesis are developed using a discrete-time framework and then applied in practice to

continuous-time systems, e.g. power converters.

Therefore, in this chapter we will begin the study of discrete-time systems. We introduce

general concepts of behavioral system theory which are fundamental for the development

of our main contribution: data-driven controllers.

3.1 Linear di↵erence systems

As previously established, a data-driven control approach requires the processing of

measured/sampled data. Since we are dealing with sampled data over a time period,

the most natural manner in which to model their dynamics is in terms of discrete-time

higher-order systems. Moreover, we are dealing with cases in which a to-be-controlled

model is not readily available (e.g. to represent in state space form); thus, in this study

we drop state space techniques in favor of modeling based on linear di↵erence systems.

Formally, a linear di↵erence system can be expressed as

R0w +R1(�w) + · · ·+R
N

(�Nw) = 0 , (3.1)

where:

• w : Z+ ! Rq is the function mapping discrete time points to the q measured

variables (e.g. voltages/currents), which can then be expressed as a finite time

series w(1), w(2), . . . , w(T ) with sampling period T .

27
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• � is called the shift operator, analogous to the continuous-time derivative operator.

It is defined as (�f)(t) := f(t+1), which can generally be of order N (also known

as lag), i.e., (�Nf)(t) := f(t+N).

• R
i

2 Rp⇥q, with i = 0, 1, . . . , N are called coe�cient matrices.

Equation (3.1) also admits a kernel representation; thus, it can be written in a compact

way as

R(�)w = 0 , (3.2)

where R(�) is a polynomial matrix of degree N and represents a dynamical relationship

among the discrete-time set of measured data w.

Note that state space modeling is a special case of (3.2). For example, given a model

�x = Ax+Bu ,

if w := col(x, u), then R(�) :=
h
�I �A �B

i
.

As its name implies, behavioral system theory studies a dynamical system in terms of

its behavior, i.e. the set of admissible trajectories which an input-output system can

generate based on a set of laws that govern it.

Thus, in this case the behavior of a system, denoted by B, can be formally defined in

terms of trajectories as

B := {w : Z+ ! Rq | R(�)w = 0} ; (3.3)

where w is a column vector of the measured variables.

3.2 Quadratic di↵erence forms

Given a linear di↵erence system as in (3.2), in some cases it becomes necessary to deal

with functionals of w and its time-shifts. For example and particularly important to

this section, Lyapunov functions for higher order di↵erence equations often require the

analysis of quadratic functionals for stability purposes. Given that in this chapter we

focus our e↵orts on employing higher-order representations as opposed to state-space,

we are inclined to consider quadratic state functionals.

We thus introduce the notion of quadratic di↵erence forms [32], by means of which we

can study the stability properties of linear di↵erence systems.

A quadratic di↵erence form (QdF) is a functional of the discrete-time variable w and

its time-shifts:
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Q
K

(w) :=
h
wT �wT · · · �N�1wT

i
K

2

66664

w

�w
...

�N�1w

3

77775
, (3.4)

where K = KT is known as a coe�cient matrix with dimension Nq ⇥Nq.

Analogous to the continuous-time derivative, the discrete-time rate of change rQ
K

of

a QdF Q
K

is defined as

rQ
K

(w)(t) := �Q
K

(w)(t)�Q
K

(w)(t) ;

where the QdF �Q
K

is called a time-shift of �Q
K

and has a coe�cient matrix K 0 [32],

which is defined as:

K 0 :=

"
0
q⇥q

0
q⇥Nq

0
Nq⇥q

K

#
. (3.5)

We finally use such a coe�cient matrix in order to define the QdF �Q
K

as

�Q
K

(w) :=
h
wT �wT · · · �NwT

i
K 0

2

66664

w

�w
...

�Nw

3

77775
. (3.6)

3.3 Lyapunov stability criteria

As in the previous chapter, we use a common definition for system stability. A system

represented by (3.2) is asymptotically stable if lim
t!1w(t) = 0 for all w that satisfies

(3.2).

We now use Lyapunov conditions to develop mathematical specifications for stability.

Given Theorem 2.1, we can adapt it to systems whose stability is studied by means of

QdFs:

Theorem 3.1. [32] A system represented by (3.2) is asymptotically stable if there exists

a QdF Q
K

such that, for all w that satisfies (3.2), it holds that: 1) Q
K

� 0; and 2)

rQ
K

< 0.

If Theorem 3.1 holds, then Q
K

is called Lyapunov function for 3.2.

Notice that, as shown in [32], condition 2) in Theorem 3.1 holds if and only if there exists

a QdF Q
K

> 0, as well as polynomial matrices Y (�) and D(�) = D(�)T of suitable sizes

such that
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�Q
K

(w)�Q
K

(w) + wTR(�)TY (�)w + wTY (�)TR(�)w = �wTD(�)TD(�)w . (3.7)

Note that, for every w that satisfies (3.2), it follows that

�Q
K

(w)�Q
K

(w)| {z }
rQK

= �wTD(�)TD(�)w ;

which guarantees a negative rate of change due to the quadratic nature of the right-hand

member of such an equation.

In a similar manner as we derive a stability condition for the continuous case (namely

(2.4)) based on inequalities, we can extend this idea to the QdF-based stability condition

in (3.7) by first noting that the left-hand member of (3.2) can be written as

R(�)w =
h
R0 R1 · · · R

N

i

2

66664

w

�w
...

�Nw

3

77775
. (3.8)

Therefore, we can define a coe�cient matrix for (3.8) as

eR :=
h
R0 R1 · · · R

N

i
. (3.9)

Similarly, we can define a coe�cient matrix for Y (�) in (3.7) as

eY :=
h
Y0 Y1 · · · Y

N

i
.

Moreover, we define

vT =
h
wT �wT · · ·�NwT

i
.

Using these new coe�cient matrices, as well as the definition of a QdF in (3.4) and its

time-shift in (3.6), we can express the stability condition (3.7) as

�QK(w)z }| {

vT

"
0
q⇥q

0
q⇥Nq

0
Nq⇥q

K

#
v�

QK(w)z }| {

vT

"
K 0

Nq⇥q

0
q⇥Nq

0
q⇥q

#
v

+ vT eRT eY v + vT eY T eRv| {z }
w

T
R(�)TY (�)w+w

T
Y (�)TR(�)w

< 0 .

Notice that the inequality “< 0” is used in place of the right-hand member of (3.7) in

order to maintain the required negative rate of change. By linear algebra principles,

such a stability condition can be reduced to computing a matrix K which satisfies the

following linear matrix inequality (LMI):
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"
0
q⇥q

0
q⇥Nq

0
Nq⇥q

K

#
�
"

K 0
Nq⇥q

0
q⇥Nq

0
q⇥q

#
+ eRT eY + eY T eR < 0 . (3.10)

Notice that matrices K and eY can be numerically computed using standard LMI solvers

such as Yalmip [27].

3.4 Conclusion

In this chapter, we introduced the basic concepts and notions regarding linear discrete

time systems. This was done as a preamble of the main contribution in this thesis:

data-driven control, which is naturally carried out using discrete time frameworks.

We also studied Lyapunov stability in terms of higher-order discrete systems. Note that

the LMI in (3.10) is linear, and is therefore numerically simple to compute. On the other

hand, from [31] we recall that, given a discrete autonomous system represented in state

space e.g. �x = Âx, its stability condition is described by

ÂTPÂ� P < 0 ;

which is quadratic by nature. Thus, from a numerical standpoint, its computation

becomes highly di�cult in comparison to the linear inequalities built from higher-order

representations.

In this chapter we o↵ered a solution to modeling and stability working purely from data,

bypassing the need to implement state space techniques which are not always imperative

or essential. In the following, we apply the material developed in this chapter in the

context of dynamic system control purely from data.





Chapter 4

Data-driven control of DC-DC

converters

In this chapter we continue the study of discrete-time systems; we develop an approach

to control systems where dynamical models are either not readily available or highly

complex in terms of equations and/or the amount of state variables. We thus resort to a

data-driven paradigm which consists in using periodic measurements to approximate a

dynamic model, which is then subjected to a control strategy. We endeavor to test such

a control strategy operating on a boost converter under various increasingly complex

scenarios, both theoretical and experimental, in order to properly verify the accuracy

and plausibility of the entire data-driven approach. The following is an introduction to

the fundamental concepts regarding the theory used to develop the main results.

4.1 Data suitability: Hankel matrix criteria

As previously discussed, we aim to develop a control strategy on a linearly approximated

model. The process of generating such a model from sets of measured data is known as

system identification. However, we must first examine some important conditions which

determine whether the measured data are suitable for the analysis.

Notice that we endeavor to represent an unknown dynamical model; therefore, su�ciency

conditions must be set to mathematically determine whether the data contain enough

information about the model’s dynamics. In order to define such conditions, we introduce

the notion of a matrix constructed from data.

Consider a time series of length T expressed as w(1), w(2), w(3), ..., w(T ), with w :

Z+ ! Rq that corresponds to a set of measured data. A Hankel matrix of depth L, with

T � L 2 Z+ associated to this time-series is defined as

33
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H
L

(w) :=

2

66664

w(1) w(2) · · · w (T� L+ 1)

w (2) w (3) · · · w (T� L+ 2)
...

... · · ·
...

w (L) w (L+ 1) · · · w (T)

3

77775
. (4.1)

Where T denotes the length of the time series, i.e., the amount of sampled data. As

discussed in [33], the value of T must be high enough in order to guarantee optimal

data quality and to increase the accuracy of the proposed system approximation. In

practice, this is achieved by taking T to be “as long as possible” in order to mitigate

the problem of consistency, i.e., the convergence of the identified system to the “true

system”. Moreover, depth L is associated to the maximum order of the shift operator in

the identified system and is required when determining further Hankel matrix properties

associated with rank verification.

4.2 Classification of variables

Given a set of available system variables w, they can be classified as either input or output

variables. Input variables are independent (e.g. duty cycle), while output variables are

consequences of the inputs (e.g. output voltage). Such a concept is formalized below.

Given w that satisfies (3.2), the partition w := col(u, y) is an input/output partition if

1) u is free, i.e., for all u there exists y such that w = col(u, y).

2) u is maximally free, i.e., given u, no component of y is free.

If 1) and 2) hold, then u is called an input variable and y an output variable.

4.3 Persistency of excitation

Section 4.1 discussed the need to meet su�ciency conditions in order for a set of data

to be considered suitable for analysis. One of these mathematical conditions is known

as persistency of excitation, and implies that the measured input variable must exhibit

an acceptable amount of variation over time. This is expressed formally in Theorem 4.1:

Theorem 4.1. “An input vector u = u(1), u(2), ..., u(T ) is persistently exciting of order

L if H
L

(u) is of full row rank.”

Persistency of excitation has the following important implication according to [33]. Re-

call that N denotes the maximum degree of a given linear di↵erence system, and let
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n be known as the McMillan degree, i.e. the smallest state space dimension among all

possible state representations of (3.2). Given a time-series

w = w(1), w(2), w(3), ..., w(T ) := col(u, y) ,

that satisfies (3.2), if u is persistently exciting of at least order N + n, then

colspan(HN+n (w)) corresponds to the set of all possible solutions of (3.2). Therefore,

the measured data is said to be su�ciently informative.

If the data is su�ciently informative, then a dynamical model of the system can be

constructed from the set of available measurements w(1), ..., w(T ) in the form of a lin-

ear di↵erence system as described by equation (3.1). This implies that any admissible

trajectory and behavior of w satisfying (3.2) can be recovered from such measured data.

4.4 Computation of coe�cient matrices from data

As previously discussed, su�ciency of information implies that a given time series is

suitable for analysis and control purposes. Moreover, such a time series can be used

in the computation of the left kernel, or nullspace, of H
L

(w), i.e. a set containing a

polynomial matrix R(�) such that R(�)w = 0. This idea is formalized below.

Given w = w(1), w(2), w(3), ..., w(T ) := col(u, y), a su�ciently informative time series

that satisfies (3.2). There exists eR 2 Rp⇥(N+1)q such that

eR

2

66664

w

�w
...

�Nw

3

77775
= 0 ;

for all w that satisfies (3.2).

In order to compute such matrix eR, we apply singular value decomposition (SVD) to

the Hankel matrix [34]. For ease of reference, we recall the specifics behind SVD:

Consider HN+1 (w), where N corresponds to the maximum degree of the shift operator.

Using SVD, such a matrix can be decomposed (factorized) in the following way:

H
N+1 (w) := U⌃V > ;

where U 2 Rq⇥q and V 2 RT⇥T are orthogonal, square matrices. Moreover, ⌃ 2 Rq⇥T

is a diagonal matrix with nonnegative real values �1 � �2 � · · · � �
min

� 0 on the

diagonal. Notice that �
i

is known as the i-th singular value of ⌃. Moreover, the number

of nonzero singular values in the diagonal is determined by r := rank(HN+1 (w)). Thus,

matrix ⌃ can be written as

⌃ =

"
⌃0 0

r⇥(T�r)

0(q�r)⇥r

0(q�r)⇥(T�r)

#
,
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where ⌃0 2 Rr⇥r is a sub-diagonal matrix representing the set of nonzero singular values

in the diagonal.

As previously discussed, singular value decomposition is of utmost importance in system

identification theory since it provides a way to compute an annihilator of HN+1 (w), i.e.

its left kernel, a polynomial matrix R(�) such that (3.2) is satisfied. This idea is further

formalized as follows.

Recall w := col(u, y) and consider a Hankel matrix HN+1 (w). Given a singular value

decomposition U⌃V >, consider the partition U =
h
U1 U2

i
, where U1 has r columns and

U2 has a q � r number of columns equal to the number of outputs in w. Then, eR = U>
2

is the left kernel of HN+1 (w). Note that matrix eR contains su�cient information about

the system dynamics based on the gathered data.

As a summary of the previously discussed ideas, we develop the algorithm depicted in

Fig. 4.1, which shows how to perform the computation of the coe�cient matrix eR from

a set of measured data.

Figure 4.1: Algorithm for the computation of the coe�cient matrix eR from measure-
ment data.

The following subsection shows how matrix eR can be applied to the design of stabilizing

controllers.
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4.5 Control design purely from data

From Section 2.2.2, recall that we focus our e↵orts on studying system stability properties

at the origin; therefore, we define error variables for each measured variable in a system.

Namely, let u : R ! Rm and y : R ! Rn be the input/output variables. Particularly, in

a boost converter, we recall that the input u := d is the duty cycle while the output y :=

col(i, v) contains the input current and output voltage. Thus, let w := col(u, y) be the

global set of variables of interest measured from a boost converter. The error variables

for this set, denoted by ŵ, are defined by

ŵ := w � w̄ ;

where w̄ contains the values of the variable set at the fixed equilibrium. The following

analogous notation for the input-output partition is used:

ŵ = col(û, ŷ) .

Similar to the continuous-time control analysis studied in Section 2.3, when designing

data-driven discrete controllers we do not impose a particular controller structure (P,

PI, PID); instead, we adopt a general point of view for control design and let both the

specific application and the data itself dictate the type of stabilizing controller to be used.

Note that in this case, for ease of implementation we use a state space representation

for the controller in a similar manner to the continuous case; however, these controllers

also allow for higher-order representations due to the nature of the descriptions used in

the discrete-time framework. Following these ideas, a feedback controller can adopt a

general form

(
�z = Az +Bu0 ,

y0 = Cz +Du0 ;
(4.2)

where z : R ! Rn, A 2 Rn⇥n, B 2 Rn⇥m, C 2 Rk⇥n, D 2 Rk⇥m. In order to

perform an interconnection between such a controller and a boost converter, let us define

the controller input/output variables as the converter’s output/input respectively; i.e.,

u0 := ŷ and y0 = û. This process, as well as the realization of the controller/converter

combination, are depicted in Fig. 4.2.

Note that this controller admits any possible architecture (P, PI, PID) feedback con-

figuration. Moreover, we resort to such a general point of view in accordance with our

proposed line of study where we do not focus on a particular dynamical model; rather,

we let the data invoke the requirements for stabilization.

Following this idea, the unknown model of the converter is thus considered as being

represented by

R(�)ŵ = 0 ;
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Figure 4.2: General realization of a data-driven feedback controller in state space
form.

which can be congruently input-output partitioned as

h
R0(�) R00(�)

i "û
ŷ

#
= 0 ; (4.3)

Let us now consider such a partition, as well as the controller equations in (4.2). Recall-

ing that u0 := ŷ and u0 = ŷ, then performing straightforward algebraic manipulation,

yields the combined converter-controller model:

2

64
R0(�) R00(�) 0

p⇥n

0
n⇥k

�B �I
n

�A

I
k

�D �C

3

75

| {z }
=:P (�)

2

64
û

ŷ

z

3

75 = 0 . (4.4)

From such a matrix, we can now obtain its coe�cient matrix eP as done in (3.8)-(3.9).

Moreover, notice that coe�cients eR associated to
h
R0(�) R00(�)

i
are directly obtained

from the data and using the algorithm shown in Fig. 4.1.

Having obtained the combined converter-controller model, we recall that the stability

conditions for linear di↵erence systems established in section 3.3 can be applied to the

combined model (4.8) in such a manner that a stable plant-converter interconnection

can be mathematically established by solving the augmented version of the inequality

previously described by (3.10):

"
0
r⇥r

0
r⇥Nr

0
Nr⇥r

K

#
�
"

K 0
Nr⇥r

0
r⇥Nr

0
r⇥r

#
+ eP> eY + eY > eP < 0 ; (4.5)

where the controller parameters A, B, C and D (commonly known as gains) which are

now embedded in eP , are unknown; r := q+ k+m+n is a matrix dimension parameter,

and N denotes the maximum lag in the discrete system.
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Since parameters of both eP and eY are unknown, condition (4.5) is, in general, a bi-

linear matrix inequality (BMI), for which solutions can be found by standard iterative

algorithms (see Fig. 2.8).

4.6 Gain computation

The general converter-controller structure in (4.4) allows us to design controllers without

imposing a particular control scheme, but instead letting the specific application be the

determining factor for such a decision. For instance, let us consider the particular case

of a commercial boost converter whose manufacturer’s pre-defined controller only allows

for gain modification and is comprised by a double loop current-voltage nested controller,

as depicted in Fig. 4.2.

Figure 4.3: Predefined feedback controller example.

Defining the converter error variables as ŵ = col(d̂, ŷ) with ŷ = col( ˆi, v), then the

proposed controller equations can be written as follows:

Voltage loop:

(
�x = x+ v̂ � v̂

ref

,

î
ref

= �g1x� g2v̂ ;
(4.6)

Current loop:

(
�z = z + î� î

ref

,

d̂ = �k1z � k2î ;
(4.7)

where �, z : Z+ ! R and k
i

, g
i

, i = 1, 2, are scalar quantities known as gains. Given this

set of equations and considering the unknown converter model

h
R0(�) R00(�) R000(�)

i
2

64
d̂

î

v̂

3

75 = 0 ,
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we can construct the augmented model

2

66664

R0(�) R00(�) R000(�) 0
p⇥1 0

p⇥1

1 k2 0 k1 0

0 �1 �g2 � � 1 �g1

0 0 �1 0 � � 1

3

77775

| {z }
=:P (�)

2

6666664

d̂

î

v̂

x

z

3

7777775
= 0 . (4.8)

Then controller gains k1, k2, g1 and g2, which guarantee converter stability, can be com-

puted using (4.5) by means of standard LMI solvers such as Yalmip [27].

4.7 Results

Simulations and experimental tests were carried out in order to validate the above theo-

retical achievements. By means of the numerical environment MATLAB, we write computer

algorithms to perform computations where needed. Moreover, we simulate circuits using

the power electronics software PSIM. Finally, we carry out an experimental setup in order

to demonstrate the application of data-driven control theory on a tangible, dynamically

complex system.

4.7.1 Control of DC-DC converter with nominal resistive load

Using the predefined controller structure depicted in Fig. 4.3, we first test the data-

driven control strategy on a traditional boost converter with a resistive load and the

nominal parameters shown in Table 4.1.

Table 4.1: Nominal parameters for simulation.

Notation Parameter description Value

V
in

Input voltage 50V

V̄ Output voltage at equilibrium 100V

L Inductor 300µH

C Capacitor 10µF

R Load resistance 50⌦

h Time step for numerical method 1µs

f
s

Transistor switching frequency 50kHz

Using the averaged boost converter model, it is easy to verify the equilibrium values for

the proposed circuit to be
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d̄ =
v̄ � v

in

v̄
= 0.5 ; ī =

v̄

R

✓
1

1� d̄

◆
= 1 A .

Recall from section 4.3 that one of the principles behind data-driven control is persistency

of excitation. Thus, in order to gather su�ciently informative data from the to-be-

controlled system, we generate an arbitrary custom sinusoidal waveform to act as the

input d, shown in Fig. 4.4.

Figure 4.4: Varying input signal.

For reference, note that such a waveform is described by the following expression:

d = 0.1 sin (60⇡t) + 0.15 sin (20⇡t) + 0.5 .

A PSIM schematic depicting the previously described boost converter with the proposed

variable input is shown in Fig. 4.5.

Figure 4.5: Boost converter with variable input used to gather data.

Notice that the sole purpose of this circuit is to provide su�ciently informative data to

be processed with the algorithm shown in Fig. 4.1, whose goal is to approximate an

unknown dynamic model. Fig. 4.6 shows the circuit response; as expected, the variable

input causes an unstable voltage behavior which allows for data gathering and further

processing.
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Figure 4.6: Unstable voltage response for data gathering.

Such data, as well as corresponding current and duty cycle values, are expressed as a

time series w := w(1) w(2) · · · w(T ) and converted to error variables, i.e. ŵ = w � w,

which are used as the input to the aforementioned algorithm. Thus, coe�cient matrix
eR is numerically computed and represented as:

eR :=

"
0.7281 �0.0154 �0.0001 0.6846 0.0305 �0.0074

0.6840 �0.0207 �0.0001 �0.7289 0.0201 0.0004

#

| {z }
:=[R0 | R1]

; (4.9)

which corresponds to the coe�cient matrix of a linear di↵erence system with lag N = 1.

Such a matrix is then embedded into the augmented converter-controller model described

by (4.8), obtaining matrix eP to be used in the stability condition (4.5). Finally, the LMI

of such a condition is solved, yielding the following gain values:

k1 := 0.0065 ; k2 := 0.0343 ; g1 := 0.0008 ; g2 := 0.0011 .

Using these gains, the proposed control circuit is implemented by means of the Control

toolbox in PSIM and is shown in Fig. 4.7. Notice that such a circuit is built in accordance

with the proposed pre-defined control structure, i.e., Fig. 4.3. Moreover, the equilibrium

values and reference constants for the errror variables ŵ are represented by blank boxes

in the summation points. Finally, notice that the circuit output is a value for the duty

cycle d. However, we translate such a value into a switching signal for the active switch

by means of a classic PWM generator, which consists of a comparator with a 50 kHz, 1

V
peak

triangular waveform.

Results of the circuit subjected to the proposed control strategy are depicted in Fig. 4.8.

As expected by design, the data-driven controller is able to regulate the output voltage

at the desired equilibrium value.

In order to further test the controller’s performance, we induce a +10V step in the

input voltage starting at t = 0.4s. We show the response to this disturbance in Fig.

4.9. Notice that the controller is able to robustly maintain the output at a desired value

regardless of abrupt changes to the input voltage.



Chapter 4 Data-driven control of DC-DC converters 43

Figure 4.7: Control circuit implemented in PSIM.

Figure 4.8: Circuit response to data-driven controller.

Figure 4.9: Disturbance rejection at time step t = 0.4s.
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4.7.2 Control of DC-DC converter with DC machine load

As a further proof of concept regarding the data-driven control scheme, consider the

circuit in Fig 4.10, consisting of the same boost converter as the previous section (please

refer to Table 4.1 for nominal parameters of converter) but with a di↵erent type of load.

In this case, the armature winding of a separately excited DC machine with a nominal

load torque (please refer to Table 4.2 for parameters) is placed at the output of the

converter. Notice that in order to derive the equations for this new system, several new

state variables would need to be taken into account; this would imply a notable increase

in complexity regarding the new model. Moreover, there is no deterministic approach

to the modeling of the load torque. Motivated by such issues, we resort to a data-driven

control strategy which can guarantee asymptotic stability without the need to consider

mathematically complex scenarios.

Table 4.2: DC machine parameters.

Notation Parameter description Value

V
a

Induced armature voltage 150V

R
a

Armature winding resistance 6.5⌦

i
a

Field winding current 0.45A

L
af

Mutual inductance 65mH

J Rotor moment of inertia 0.005kg/m2

B
L

Viscous friction coe�cient 0.5

Figure 4.10: Boost converter with DC machine load.

Notice that the variable input, necessary for persistency of excitation to be fulfilled,

is the same signal as in the previous case, i.e. Fig. 4.4. Similarly, the corresponding

unstable output voltage is shown in Fig. 4.11.



Chapter 4 Data-driven control of DC-DC converters 45

Figure 4.11: Unstable voltage response for data gathering in DC machine-loaded
circuit.

As in the previous case, such a signal along with current and duty cycle are taken as

data and placed in a time series w := w(1) w(2) · · · w(T ), whose elements are then

converted to error variables i.e. ŵ = w � w and used as the input to the algorithm in

Fig. 4.1. Thus, coe�cient matrix eR is numerically computed and represented as:

eR :=


�0.2489 �0.0037 0.0122 0.0278 �0.0017 �0.6750 0.2579 0.0003 0.6442

�0.6167 �0.0082 0.0330 �0.0649 �0.0054 0.2310 0.6973 �0.0026 �0.2733

�

| {z }
:=[R0 | R1 | R2]

;

which corresponds to a linear di↵erence system with lag N = 2. Matrix eR is then

substituted into the converter-controller augmented model described by (4.8). Thus,

such a model’s coe�cient matrix eP is used in order to solve the stability condition in

(4.5) using Yalmip. This computation yields the following controller gains:

k1 := 0.0045 ; k2 := 0.0175 ; g1 := 0.0142 ; g2 := 0.0827 .

Consequently, these gains are used as parameters in the control circuit shown in Fig.

4.7, whose output is fed to the boost converter as a variable duty cycle. Shown below

in Fig. 4.12 are the results of the proposed control strategy; as expected, the output

voltage is robustly regulated at the desired equilibrium point despite abrupt changes at

the input voltage, namely a +10 V step added at time instant t = 0.3 s.

Figure 4.12: Controlled voltage of a Boost converter with DC machine load.

Additionally, Fig. 4.13 shows the input current being regulated. Note that, at the

aforementioned time instant where the disturbance is induced, the current moves to a
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new equilibrium value; this is as expected by the fact that the double-loop controller

ensures that the reference current –that maintains the output voltage at a constant

value– is a function of the output voltage variable.

Figure 4.13: Controlled current in Boost converter.

4.7.3 Experiment: Control of DC-DC converter with constant power

load (CPL)

We now endeavor to experimentally validate our proposed data-driven control strategy

on two conventional boost converters, one of them operating as a constant power load

(CPL). Note that such DC-DC converter interconnections are a common occurrence in

energy distribution networks. However, from electronics theory, we recall that feed-

ing an individually controlled boost converter with a nonlinear load causes instability.

Moreover, there remains the issue of dealing with increasingly complex mathematical

models which we become unable to describe using conventional tools and representa-

tions. Thus, we resort to a data-driven control strategy in an attempt to mitigate the

aforementioned issues and, most fundamentally, guarantee asymptotic stability in the

entire network-interconnected model.

The proposed circuit diagram is shown in Fig. 4.14, part of which consists of a traditional

boost converter (known as “source”) with duty cycle d, input current i, output voltage

v, and output current I
o

. The source converter does not have a nominal load at the

output; rather, a second boost converter (known as “constant power load (CPL)”) is

connected as a load.

Note that the source converter’s output variables are considered as inputs to the CPL;

i.e., the latter’s available variables are comprised of input voltage v, input current I
o

and duty cycle u.

As previously discussed, the main contribution in this section is the development and

testing of prototypes which endeavor to validate the data-driven control material pre-

sented in this chapter. We thus choose to implement the CPL case discussed in this

subsection. To such purpose, we build two separate boost converters (source and load)
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Figure 4.14: Source and load converters and corresponding controllers.

using the nominal parameters shown in Table 4.3. Photographic evidence of the experi-

mental testbed is depicted in Fig. 4.15. Controllers are implemented by means of a DSP

card TI28335, acquiring signals from both voltage and current sensors at 10 kHz. How-

ever, the transistor switching frequency is fixed at 50 kHz. Moreover, the load converter

delivers constant power to an electronic load BK-8616.

Table 4.3: Data of the experiment

Notation Parameter 20cmValue/Part

v
in

Input voltage (changes) 25V, 30V, 35V

v
C

Equilibrium voltage (Source converter) 60V

L1, L2 Inductors 1 and 2 240µH

C1, C2 Capacitors 1 and 2 10µF

S1, S2 MOSFETs 1 and 2 IRFP264pbf

D1, D2 Diodes 1 and 2 MBR40250G

R Resistor (Electronic load) 150⌦

f
s

Sampling frequency (controller) 10kHz

f
c

Transistor switching frequency 50kHz

k1, k2 Gains of CPL loop control 0.0039, 0.0099

Based on this setup, we perform three main experiments in order to show:

1. The standalone performance of the source converter with a nominal resistive load;

2. Such a converter’s unstable, degraded behavior when connected to a CPL instead

of a nominal load;
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Figure 4.15: Experimental setup.

3. The stabilization of both interconnected converters using a data-driven control

strategy.

As a preamble of the main contribution, we implement a controller with an optimal

performance and disturbance rejection capabilities, i.e., we test a standalone closed-loop

design on a tangible converter prototype considering a nominal resistive load of 24 ⌦. A

traditional linear controller, such as the one described by (4.6) - (4.7), is implemented

with the following gain values:

k1 := 0.0045 ; k2 := 0.0112 ; g1 := 0.0056 ; g2 := 0.0301 .

Shown in Fig. 4.16 is the circuit’s closed-loop response under abrupt changes at the

input voltage (please see Table 4.3 for details). As expected, the response is asymp-

totically stable and the output voltage is robustly regulated despite the aforementioned

disturbances.

As per point 2) of the experiment list, we now replace the nominal resistive load by a

CPL (load converter) extracting as much power from the source converter as the previous

nominal load, i.e. P = 150 W . In order for this value to remain constant, the CPL’s

input current must satisfy the following nonlinear algebraic equation:

I
o

=
P

v
.

Such a current is tracked by the current controller depicted in the right-hand side of

Fig. 4.14, with gain values defined as k1 := 0.0039, k2 := 0.0099.

Shown in Fig. 4.17 is the source converter’s output voltage subjected to the same

control strategy as in the standalone case. Notice that such a behavior is oscillatory,
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Figure 4.16: Input current iin and output voltage vC1 behavior under abrupt changes
at the input voltage vin.

i.e. unstable; this is deemed unacceptable for practical implementations, since the DC

bus exhibits a low quality energy profile. Hence, this experiment illustrates the well-

known problem of instability in interconnected power converters (see [6, 21–24]. Namely,

individual closed-loop converters become unable to regulate their output voltage when it

is connected to a CPL, which implies a degraded performance. Moreover, the complexity

of the interconnected source-CPL dynamics implies that traditional model-dependent

control schemes are rendered di�cult to use in such a case.

Figure 4.17: Instability in the source converter produced by the connection of a
constant power load.

Motivated by the aforementioned ideas and as per point 3) of the experiment list, we

propose a data-driven stabilizing control strategy. For ease of implementation, we use

the data provided in Fig. 4.17; such an option becomes plausible when we notice that

the system’s naturally unstable behavior satisfies the persistency of excitation condition.

This, in turn, implies that the data is su�ciently informative for us to process and use in

system identification. As such, we build data vectors ŵ = col(d̂, î, v̂) from the unstable

converter response in order to run the algorithm in Fig. 4.1 and to solve inequality (4.5)

using Yalmip. Such a process yields the following new stabilizing gains:

k1 := 0.0022 ; k2 := 0.0278 ; g1 := 0.0028 ; g2 := 0.1441 .
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The controller shown in the left-hand side of Fig. 4.14 is thus implemented. For ease of

reference, we recall its equations:

(
�z0 = Az0 +Bŷ ,

d̂ = Cz0 +Dŷ ;
(4.10)

where z0 : R ! Rq is a vector containing q number of controllers. Thus, recalling the

structure of the proposed double-loop controller described by (4.6) - (4.7), it follows that

(4.10) is merely a state space representation of (4.6) - (4.7) where z0 := col(z,�) and,

evidently, q = 2. As such, the corresponding coe�cient matrices are defined as

A :=

"
1 0.0028

0 1

#
; B :=

"
1 0.1441

0 1

#
;

C :=

"
�0.0022 0

0 0

#
;D :=

"
�0.0278 0

0 0

#
.

Shown in Fig. 4.18 are the results of this test. We start the experiment from the

originally unstable behavior caused by the previous controller, then switch into a data-

driven strategy which reformulates the gains and steers the output voltage into a stable

behavior with minimum oscillation. Moreover, due to the stabilization of the source

converter’s output voltage, the CPL’s input current I
o

is now constant; therefore, it

follows that the CPL’s output voltage v
C2 will behave in a stable manner as well.

Figure 4.18: Source converter’s input current i and output voltage v stabilization
derived from modifying the control strategy.

4.7.4 Data-driven multi-controller system

As done in Section 2.5.3 with the continuous-time case, we now endeavor to test the

multi-controller strategy applied to the data-driven control strategy developed in this

chapter. Although the main motivation and theoretical details surrounding the use of

multi-controller systems are explained thoroughly in Section 2.4, for ease of reference we

recall the fundamentals of such material.
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Consider a converter-controller combined model, such as the one described by (4.8).

This augmented model’s coe�cient matrix eP can be substituted in condition (4.5) in

order to compute stabilizing controller gains. By noticing that such a condition is

an inequality, it becomes evident that multiple solutions (stabilizing gain sets) can be

computed, each one inducing a di↵erent dynamic profile on the controlled system’s

behavior. These multiple profiles, or scenarios, can be switched into depending on some

arbitrarily imposed condition. Recall that we impose this condition to be

kE(5nT )� E(5(n� 1)T )k  ✏ ,

whose parameters are defined and explained in (2.18). Moreover, for ease of reference,

a graphical depiction of the logic behind multi-controller systems is given by Fig. 2.5.

Following these ideas, consider the traditional boost converter subjected to a data-driven

control strategy in Section 4.7.2 We calculate multiple stabilizing gains for this converter,

thus generating a ”bank” of controllers, by using the linearization algorithm shown

and explained in Fig. 2.8. Note that we have developed such theory for continuous-

time systems; however, the existing analogy between continuous-time and discrete-time

systems allows us to easily adapt the material from one domain to the other. Therefore,

Fig. 4.19 shows a discrete-time version of the algorithm which now considers matrix eP
and inequality (4.5).

Figure 4.19: Discrete-time algorithm for controller bank generation.

The aforementioned traditional boost converter, whose parameters are detailed by Table

4.1, has an associated coe�cient matrix eR shown in (4.9). Such a matrix is embedded
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in the augmented model (4.8), thus forming matrix eP to be used in the controller bank

algorithm.

Starting such an algorithm with initial conditions

k1 := 0.001 ; k2 := 0.0001 ; g1 := 0.0001 ; g2 := 0.0001 ,

for an arbitrary n = 40, we generate the gain matrix C40 (see Section 2.5.3 for details)

in table form, shown in Fig. 4.20.

Figure 4.20: Stabilizing controller bank for n = 40.

As in the continuous-time case, notice that the gain values exhibit a linear convergence

to an unknown value as we repeatedly solve the gain computation algorithm. However,

unraveling such a value is not the focus of this analysis; rather, we benefit from the

fact that this process generates asymptotically stable gains for the converter-controller

interconnection.

Consider the to-be-controlled boost converter, whose nominal parameters are shown in

4.1 and whose diagram is shown in Fig. 2.1. Using PSIM, we carry out a simulation of

the multi-controller strategy with a maximum switching threshold error of ✏ = 1, as well

as the following desired trajectory :

y⇤(t) = 80[1� e�1000t cos (700t)] .

Shown in Fig. 4.21 is the control circuit implementing the multi-controller strategy.

Note that this diagram is similar in structure to the one used in previous simulations

(see Sections 4.7.1 and 4.7.2), di↵ering mainly in the addition of C Blocks in order to

implement modules corresponding to desired trajectory generation, switching condition

implementation and controller switching execution. Such modules are programmed by

means of input-output oriented C language. Classic programming structures, e.g. arrays,

were also used in the C Blocks in order to include the controller bank shown in Fig. 4.20.
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Figure 4.21: Multi-controller strategy implemented in PSIM.

Fig. 4.22 (a) shows the circuit’s response when controlled using only one set of gains

from the gain matrix. In contrast, Fig. 4.22 (b) shows the response when the converter is

subjected to the proposed multi-controller method. Note that the ”real trajectory” is col-

ored red, whereas the desired trajectory is colored blue. Notice that the multi-controller

strategy causes a slightly perceptible improvement in response time with respect to the

single-controller response. Moreover, the multi-controller strategy steers the output ”as

close as possible” to the desired trajectory within the allowed threshold ✏.

Figure 4.22: Output behavior with (a) a single controller, (b) the multi-controller
strategy.





Chapter 5

Conclusions and future work

We proposed a model-less approach to DC-DC power converter control based purely on

data, using concepts of discrete-time system analysis such as behavioral system theory,

system identification and Lyapunov stability criteria. Moreover, we developed a multi-

controller framework which, according to specific performance conditions, switches into

di↵erent sets of controllers in order to robustly regulate the output dynamics to a desired

behavior. In the following, we summarize the material covered in this thesis.

Chapter 2:

• We introduced the concept of average modeling, which is an instrumental element

in both linear and nonlinear power converter analysis. We discussed that averaging

involves modeling a converter’s equivalent topologies when the switching input is

on, i.e. u = 1, and when it is turned o↵, i.e. u = 0. Such a binary input variable

is then replaced by the duty cycle which is, intuitively, an average input variable

acting over a switching time period.

• We discussed linearization and argued that the use of linear feedback controllers

to regulate nonlinear converters is an appropriate choice due to their single equi-

librium point. Therefore, by using first degree Taylor series expansion and defining

error variables, we developed a linearized model of a boost converter from which

stabilizing controllers were to be synthesized.

• A general framework for converter-controller interconnections was given. We dis-

cussed that such interconnections produce augmented state-space representations,

for which stabilizing controller gains can be computed by using Lyapunov criteria

and finding solutions to an LMI.

• We developed an algorithm for the generation of a switching multi-controller sys-

tem using gains from a gain matrix (or controller bank), benefitting from the fact

that the linearization of the Lyapunov criteria provides us with multiple solutions

55
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to an LMI. We showed that a switching controller framework induces robustness

and endeavors to steer the output dynamics into the best-performing profile avail-

able.

• We carried out simulations as a proof of concept; we showed that boost converters

can be stabilized with gains computed from Lyapunov criteria. We also discussed

that the switching multi-controller strategy is able to steer the dynamics as close

as possible to a desired trajectory, inducing notable improvements in the transient

response.

Chapter 3:

• We switched the focus of study to discrete-time systems, establishing an analogy

between continuous-time and discrete-time representations; namely, we introduced

linear di↵erence systems as a way to model systems of order N .

• We established quadratic di↵erence forms as the means to study stability proper-

ties in linear di↵erential systems.

• Further analysis regarding Lyapunov criteria has been given; we developed a

discrete-time version of the augmented inequality established in Chapter 2. As

such, we showed that by using a system’s coe�cient matrix widetildeR, the Lya-

punov inequality provides information about system stability based on quadratic

di↵erence forms.

Chapter 4:

• We discussed the possibility of controlling systems whose model is either highly

complex or not readily available; to such purpose, we introduced the concept of

Hankel matrices, which are matrices constructed from a set of data. We argued that

the use of such matrices is fundamental in what is known as system identification,

i.e., the process of recreating a previously unknown model using only measured

data from the system.

• We introduced the concept of persistency of excitation as a condition for the mea-

sured data to be su�ciently informative about the to-be-recreated model’s dy-

namics. We showed that the rank of a Hankel matrix plays an important role in

verifying such a condition, and that su�ciency of information implies the possibil-

ity of computing the unknown system’s coe�cient matrix.

• We developed an algorithm for the computation of an unknown system’s coe�cient

matrix. Given a su�ciently informative set of data, we showed that its associated

Hankel matrix can be factorized using singular value decomposition. Such a tech-

nique allows us to obtain coe�cient matrix eR in a straightforward manner.
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• We developed a discrete-time counterpart to the augmented state space represen-

tation developed in Chapter 2. Using higher-order representations with the recre-

ated model’s coe�cient matrix eR as a parameter, we create a converter-controller

interconnection matrix from which stability properties can be determined.

• We created a framework for stability in discrete-time systems using quadratic

di↵erence forms and Lyapunov criteria. This allows for a deterministic approach

to the study of stability properties of higher-order systems, and serves as a basis

for the data-driven control strategy.

• As proof of concept, we carried out both simulated and experimental tests regard-

ing control based purely on data. In all cases, we showed that a data-driven control

strategy can successfully regulate a converter’s output voltage even in the most

complex of cases, i.e. the constant power load scenario. The theoretical material

was validated with successful experimental tests, which makes them one of the

most instrumental contributions in this thesis.

The theoretical framework and results presented in this thesis contribute to overcome

some of the limitations imposed by model-restrictive approaches to control systems.

However, the material covered here is still at an early phase in development and its

research can take a considerable variety of directions. The following is a discussion of

such possibilities regarding future work.

Data-driven control:

• Di↵erent topologies. The results developed in this thesis have been shown to suc-

cessfully regulate the output of traditional boost converters with various dynam-

ically complex loads. However, we are interested in observing the performance of

such data-driven control strategy applied to di↵erent converter topologies control-

lable by linear feedback, e.g. [35] or [36]. As in the case of the boost converter,

we would be interested in analyzing scenarios with increasingly complex loads,

ranging from a nominal resistor to a CPL.

• Application to other engineering branches. We have observed that the data-driven

control strategy proved to be e↵ective in an electrical engineering context. How-

ever, there remains the question of whether such a technique is applicable to other

engineering sciences that make use of control systems and dynamical representa-

tions, e.g. mechanical and/or chemical engineering.

Multi-controller approach:

• Algorithm convergence. The algorithm shown in Fig. 4.19 has been proven to be

e↵ective under specific initial conditions; however, we are interested in analyzing
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the target LMI from an optimization standpoint in such a way that optimal initial

conditions for the algorithm can be known from the start.

• Performance conditions. The condition established in (2.18) is entirely arbitrary;

we are therefore interested in discovering whether a di↵erent set of switching

thresholds and conditions a↵ect the multi-controller’s response.

• Experimental validation of multi-controller scheme. The multi-controller scenario

was verified using PSIM, a power electronics simulator, proving to be successful in

improving the converter’s transient behavior. Moreover, a physical implementation

using a converter prototype as well as data acquisition cards for programming

would prove to be appropriate as a final validation process.
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MATLAB Codes

A.1 Continuous-time

A.1.1 Nonlinear model solver in open loop

1 %%%%%% This code solves the nonlinear boost converter model using the

2 %%%%%% Improved�Euler numerical method. Particularly, this system is ...

solved in

3 %%%%%% open loop; no control action has been added yet.

4

5 %%% Model parameters %%%

6

7 E=30; % Input voltage

8 R=100; % Output resistance

9 C=220e�6; % Capacitance

10 L=250e�6; % Inductance

11

12 t=0; % Initial time

13 h=1e�4; % Integration step

14 tf=0.5; % Final time

15 pasos=tf/h; % Total number of steps for num. method

16

17 grassgreen = 1/255⇤[226,20,20]; % RGB color code for plots

18

19 %%% Equilibrium values %%%

20

21 VC=200; % Output voltage

22 D=(VC�E)/VC; % Duty cycle

23 IL=(1/R)⇤(1/(1�D))⇤VC; % Input current

24

25 %%% Initial conditions %%%

26

27 i=0;

28 v=0;

59
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29

30

31 %%%%%%%%%%%%%% Begin Improved Euler method %%%%%%%%%%%%

32

33 for n=1:pasos

34 t(n+1)=t(n)+h;

35

36 ii=i(n);

37 vv=v(n);

38

39

40 if ii0

41 ii=0;

42 end

43

44 di1= E/L � (1�D)⇤vv/L;
45 dv1 = (1�D)⇤ii/C�vv/(R⇤C);
46

47 ii=ii+ h⇤di1;
48 vv=vv + h⇤dv1;
49

50 di2= E/L � (1�D)⇤vv/L;
51 dv2 = (1�D)⇤ii/C�vv/(R⇤C);
52

53 i(n+1)=i(n)+(h/2)⇤(di1+di2);
54 v(n+1)=v(n)+(h/2)⇤(dv1+dv2);
55

56

57 if i(n+1)0

58 i(n+1)=0;

59 end

60

61 end

62

63 %%%%%%%%%%%%%% End Improved Euler method %%%%%%%%%%%%

64

65

66 %%%%%%%%% Output voltage plot %%%%%%%%%%%

67

68 figure( Position ,[58 327 930 378]);

69

70 subplot(1,2,1);

71 plot(t,v, LineWidth ,2)

72 title( Capacitor output voltage )

73 xlabel( Time [s] , FontSize , 12, FontWeight , bold );

74 ylabel( Output voltage [V] , FontSize , 12, FontWeight , bold );

75 xlim([0 0.25])

76 grid on

77

78 %%%%%%%% Input current plot %%%%%%%%%%%

79

80 subplot(1,2,2);
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81 plot(t,i, Color , grassgreen, linewidth ,2)

82 title( Inductor input current )

83 xlabel( Time [s] , FontSize , 12, FontWeight , bold );

84 ylabel( Input current [A] , FontSize , 12, FontWeight , bold );

85 xlim([0 0.35])

86 grid on

A.1.2 Continuous-time control: Gain computation by Lyapunov LMI

solving

1 clear

2 close

3

4 %%%%%%%%%%%%%%%%%%% This code solves the Lyapunov state�space
5 %%%%%%%%%%%%%%%%%%% LMI �multiple times� in order to generate

6 %%%%%%%%%%%%%%%%%%% controller parameters from an augmented (plant�
7 %%%%%%%%%%%%%%%%%%% controller) state space autonomous system.

8

9

10 % Plant model parameters (Boost converter):

11 E=30; % Input voltage

12 R=100; % Load resistance

13 C=220e�6; % Capacitance

14 L=250e�6; % Inductance

15

16 VC=200; % Equilibrium output voltage

17 D=(VC�E)/VC; % Equilibrium duty cycle

18 IL=(1/R)⇤(1/(1�D))⇤VC; % Equilibrium input current

19

20 % Linearized plant model parameters

21

22 A=[0 �(1�D)/L;(1�D)/C �1/R/C];
23 B=[VC/L;�IL/C];
24 C1=[1 0]; % State pointer (i, input current)

25 C2=[0 1]; % State pointer (v, output voltage)

26

27 % Controller gains: Initial conditions (Very close to zero)

28

29 k1 = 0.001;

30 k2 = 0.0001;

31 g1 = 0.0001;

32 g2 = 0.0001;

33 pasofinal = 500; % Number of times the LMI will be solved

34 cont = zeros(pasofinal,4); % Definition of controller bank array

35

36 %%%%%%%%%%% Begin BMI linearizing loop %%%%%%%%%%%

37

38 for i=1:pasofinal
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39 P=sdpvar(4,4); % Unknown matrix with dimension 4 x 4

40 H=[A�k2⇤B⇤C1 �k1⇤B zeros(2,1);C1+g2⇤C2 0 g1;C2 0 0];

41 Q=transpose(H)⇤P+P⇤H; % Lyapunov criteria

42 F=[P�0;Q0]; % Inequality constraints

43 solvesdp(F); % Solve inequality

44

45 P=double(P); % Save value of P, it is now known so used as input

46 k1 = sdpvar(1,1);

47 k2 = sdpvar(1,1);

48 g1 = sdpvar(1,1);

49 g2 = sdpvar(1,1); % Now, gains are unknown

50

51 H=[A�k2⇤B⇤C1 �k1⇤B zeros(2,1);C1+g2⇤C2 0 g1;C2 0 0];

52 Q=transpose(H)⇤P+P⇤H;
53 F=[Q0];

54

55 solvesdp(F);

56

57 k1 = double(k1);

58 cont(i,1) = k1;

59 k2 = double(k2);

60 cont(i,2) = k2;

61 g1 = double(g1);

62 cont(i,3) = g1;

63 g2 = double(g2);

64 cont(i,4) = g2; % Controller bank filling

65

66 eigv(i,:)=eig(double(H)); % Verify asymptotic stability of

67 % coefficient matrix H with obtained gains

68

69 end

70

71 %%%%%%%%%%% End BMI linearizing loop %%%%%%%%%%%

72

73

74 %%%%%% Display variables %%%%%%%

75

76 double(k1)

77 double(k2)

78 double(g1)

79 double(g2)

80 double(P)

81 1/eig(double(H))

82 cont

83 eigv

A.1.3 Nonlinear model solver in closed loop with multi-controller func-

tion
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1 %%%%%% This code solves the nonlinear boost converter model in closed ...

loop.

2 %%%%%% Additionally, it incorporates the multi�controller switching

3 %%%%%% operation using gain sets obtained by solving the

4 %%%%%% Lyapunov LMI in multiple instances.

5

6 close

7

8

9

10 %%%%%%%%%%%%%%% Model parameters %%%%%%%%%%%%%%%

11

12 E=30; % Input voltage

13 R=100; % Load (output) resistance

14 C=220e�6; % Capacitance

15 L=250e�6; % Inductance

16 t=0; % Initial time

17 h=1e�06; % Integration step

18 tf=1; % Final time

19 pasos=tf/h; % Total number of steps for method

20

21 %%%%%%%%%%%% RGB color codes for plots %%%%%%%%%%%%%%%%%%

22

23 royalred = 1/255⇤[226,20,20];
24 defaultblue = [0, 0.4470, 0.7410];

25 defaultorange = [0.8500, 0.3250, 0.0980];

26

27 %%% Equilibrium values %%% Note: Comment following 3 lines if using

28 %%% trajectory tracking.

29 VC=200;

30 D=(VC�E)/VC;
31 IL=(1/R)⇤(1/(1�D))⇤VC;
32

33 %%%%%%%%%%%%%%% Model initial conditions %%%%%%%%%%%%%%%

34

35 i=0; % Initial current

36 v=0; % Initial voltage

37 z=0; % Current controller variable

38 w=0; % Voltage controller variable

39

40 m = 0; % Multi�controller bank index variable

41 j = 2; % Multi�controller 5nT sampling index

42 eps = 0.1; % Multi�controller performance condition (epsilon)

43 p = size(cont,1); % Limiter variable for multicontroller re�initialization
44

45 %%%%%%%%%%%%%%% Begin model solving %%%%%%%%%%%%%%%%%

46

47 for n=1:pasos

48 t(n+1)=t(n)+h; % Time vector

49

50 %%%%%%%%%%%% Disturbance: �20 V step in input voltage at t = 0.6 s
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51

52 if n == 0.6/h

53 E = E�20;
54 end

55

56 %%%%%%%%%%%% Disturbance: resistance decreases by half at t = 0.4 s

57

58 if n � 0.4/h

59 R = R/2;

60 end

61

62

63 %%%%%%%%%%%% Trajectory tracking %%%%%%%%%%%%

64 % NOTE: If using this, please comment lines 29�31
65

66 % VC = 200⇤(1�exp(�40⇤t(n+1)));
67 % VC= 200⇤(1�exp(�20⇤t(n+1)).⇤cos(100⇤t(n+1)));
68 % D=(VC�E)/VC;
69 % IL=(1/R)⇤(1/(1�D))⇤VC;
70

71 %%%%%%%%%%%% End trajectory tracking %%%%%%%%%%%%

72

73 %%%%%%%%%%% Controller gains %%%%%%%%%%%%%

74

75 k1=cont(m,1);

76 k2=cont(m,2);

77 g1=cont(m,3);

78 g2=cont(m,4);

79

80 %%%%%%%%%%% Begin improved Euler method %%%%%%%%%%%%%

81

82 ii=i(n);

83 vv=v(n);

84 zz=z(n);

85 ww=w(n);

86

87 if ii0

88 ii=0; % Continuous conduction mode (CCM)

89 end

90

91 DeltaD=�[k1 k2]⇤[zz;ii�IL];
92 d=DeltaD+D;

93 di1=E/L � (1�d)⇤vv/L;
94 dv1=(1�d)⇤ii/C � vv/R/C;

95 dz1=ii�IL + [g1 g2]⇤[ww;vv�VC];
96 dw1=vv�VC � 0;

97

98 ii=ii + h⇤di1;
99 vv=vv + h⇤dv1;

100 zz=zz + h⇤dz1;
101 ww=ww + h⇤dw1;
102
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103 if ii0

104 ii=0;

105 end

106

107 di2=E/L � (1�d)⇤vv/L;
108 dv2=(1�d)⇤ii/C � vv/R/C;

109 dz2=ii�IL + [g1 g2]⇤[ww;vv�VC];
110 dw2=vv�VC�0;
111

112

113 i(n+1)=i(n)+(h/2)⇤(di1+di2);
114 v(n+1)=v(n)+(h/2)⇤(dv1+dv2);
115 z(n+1)=z(n)+(h/2)⇤(dz1+dz2);
116 w(n+1)=w(n)+(h/2)⇤(dw1+dw2);
117

118 if i(n+1)0

119 i(n+1)=0; % Continuous conduction mode (CCM)

120 end

121

122 %%%%%%%%%%% End improved Euler method %%%%%%%%%%%%%

123

124 %%%%%%%%%%% Begin multi�controller function %%%%%%%%%%%%%

125

126 % Family of possible desired trajectories:

127

128 %trajdes(n+1) = 200⇤(1�exp(�40⇤t(n+1)));
129 %trajdes(n+1) = VC⇤(1�exp(�40⇤t(n+1)));
130 trajdes(n+1)=200⇤(1�exp(�40⇤t(n+1)).⇤cos(300⇤t(n+1)));
131

132 trajerror(n+1) = v(n+1) � trajdes(n+1); % Instantaneous error E(t)

133

134 %%%%%%%%%%%%%%%% Switching condition at 5nT %%%%%%%%%%%%%%%%%%%

135

136 if n+1 == j+4

137 �e = abs(trajerror(n+1) � trajerror(n�3));
138 if �e > eps

139 m = m + 1;

140 disp([ Switching to row ,num2str(m), of controllers at ...

step ,...

141 num2str(n)])

142 if m == p % If controller bank limit has been reached

143 disp( Reinitializing controller bank... )

144 m = 1;

145 end

146 end

147 j = j + 5;

148 end

149

150 indice(n)=m; % Index vector for plotting

151 end

152

153 %%%%%%%%%%%%%%% End multi�controller function %%%%%%%%%%%%%%%
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154

155 %%%%%%%%%%%%%%% End model solving %%%%%%%%%%%%%%%%%

156

157 %%%%%%%%%%%%%%%%%%% Begin plotting %%%%%%%%%%%%%%%%%%%

158

159 %%%%%%%%%%%%% Current �and� voltage %%%%%%%%%%%%%%%%%%

160

161 % figure( Position ,[58 327 930 378]);

162 %

163 %

164 % subplot(1,2,1);

165 % plot(t,v, LineWidth ,2)

166 % title( Capacitor output voltage )

167 % xlabel( Time [s] , FontSize , 12, FontWeight , bold ) ;

168 % ylabel( Output voltage [V] , FontSize , 12, FontWeight , bold ) ;

169 % grid on

170 %

171 %

172 %

173 % subplot(1,2,2);

174 % plot(t,i, Color , royalred, linewidth ,2)

175 % title( Inductor input current )

176 % xlabel( Time [s] , FontSize , 12, FontWeight , bold ) ;

177 % ylabel( Input current [A] , FontSize , 12, FontWeight , bold ) ;

178 % ylim([0 30])

179 % grid on

180

181

182 %%%%%%%%%%%%% Plot voltage and desired trajectories %%%%%%%%%%%%%%%%%%

183

184 figure( Position ,[193 188 630 378]);

185 hold on

186 plot(t,trajdes, LineWidth ,1.5, DisplayName , Desired trajectory ,...

187 Color , defaultorange)

188 plot(t,v, LineWidth ,1.5, DisplayName , Output ...

voltage , Color ,defaultblue)

189 xlim([0 tf])

190 title( Multi�controller system performance, ? = 0.1 )

191 xlabel( Time [s] , FontSize , 12, FontWeight , bold );

192 ylabel( Voltage [V] , FontSize , 12, FontWeight , bold );

193 grid on

194 legend( location , southeast )

195

196

197 %%%%%%%%%%%%%%%%%%% End plotting %%%%%%%%%%%%%%%%%%%



Appendix A MATLAB Codes 67

A.2 Discrete-time

A.2.1 Data extractor: Importing data from .txt file to MATLAB and

reducing its integration step

1 %%%%% This code is used for data�driven control purposes; first, given a

2 %%%%% set of data corresponding to variable measurements, this code ...

reduces

3 %%%%% their integration step to any arbitrary number for ease of

4 %%%%% implementation in numerical computations.

5

6 %%%%% Second, this code calculates the �error variables� by subtracting

7 %%%%% their value from a desired equilibrium.

8

9 %%%%% This algorithm assumes that data are given in a matrix

10 %%%%% formed by �column vectors�.
11

12

13 %%%%%%%%%%%%%%%%%%% Data reading %%%%%%%%%%%%%%%%%%%

14

15 M = dlmread( datos.txt ); % This command accepts a .txt file containing

16 % the data (note: there must be NO text inside the file for this to work)

17 v = M(:,2); % In .txt file, column 2 corresponds to voltage data

18 d = M(:,3); % In .txt file, column 3 corresponds to duty cycle data

19 i = M(:,4); % In .txt file, column 4 corresponds to current data

20

21 %%%%%%%% Equilibrium values %%%%%%%%

22

23 V = 100; % Voltage

24 D = 0.5; % Duty cycle

25 I = 4; % Current

26

27 %%%%%%%% Creation of error variables %%%%%%%%

28

29 �v=v�V;
30 �d=d�D;
31 �i=i�I;
32

33 %%%%%%%% Transposing data to make them �row vectors� %%%%%%%

34

35 �v=transpose(�v);

36 �d=transpose(�d);

37 �i=transpose(�i);

38

39 %%%%%%%% Creation of new, smaller vectors %%%%%%%%%

40

41 �vf = �v(:,1);

42 �df = �d(:,1);

43 �i f = �i(:,1);
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44

45 %%%%%%%% Time step reduction %%%%%%%%

46

47 paso = 100; % Define number by which to divide original integration step

48

49 k=2;

50 for j=paso:paso:size(M,1)

51 �vf(:,k) = �v(:,j);

52 k=k+1;

53 end

54

55 k=2;

56 for j=paso:paso:size(M,1)

57 �df(:,k) = �d(:,j);

58 k=k+1;

59 end

60

61

62 k=2;

63 for j=paso:paso:size(M,1)

64 �i f(:,k) = �i(:,j);

65 k=k+1;

66 end

67

68

69 w = [�df;�i f;�vf]; % Algorithm output: Data matrix w of the form

70 % w(t) = [� D(t);� i(t);� v(t)], one set for each step (t)

71 % Note: The resulting time series / data matrix can be used in the

72 % calculation of �Hankel matrices� for data�driven control purposes.

A.2.2 Hankel matrix builder from data set in time-series form: Lag 1

1 %%%%%% This code is used to construct a Hankel matrix of depth 2 from ...

a congruently

2 %%%%%% partitioned set of data. This code admits a previously obtained ...

data set

3 %%%%%% labeled as w. The output is therefore coefficient matrices R0 and

4 %%%%%% R1.

5

6

7 N = 1 ; % Lag (Max. derivative coefficient)

8 L = N + 1; % Depth of Hankel matrix

9 T = size(w,2); % Length of time series

10

11 %%%%%%%% Build Hankel matrix in form of cell array %%%%%%%

12

13 for i=1:L

14 for j=1:T�L+1
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15 H{i,j} = w(:,j+i�1);
16 end

17 end

18

19 H2 = cell2mat(H); % Converts cell array to matrix

20

21 [U,S,V] = svd(H2); % Perform singular value decomposition of Hankel matrix

22

23 %%%%%%%%% Apply system identification theory %%%%%%%%%

24

25 u2 = [U(:,5) U(:,6)]; % Number of columns in u2 is equal to number of ...

outputs

26 R = transpose(u2);

27 R0 = [R(:,1) R(:,2) R(:,3)]

28 R1 = [R(:,4) R(:,5) R(:,6)]

A.2.3 Hankel matrix builder from data set in time-series form: Lag 2

1 %%%%%% This code is used to construct a Hankel matrix of depth 2 from ...

a congruently

2 %%%%%% partitioned set of data. This code admits a previously obtained ...

data set

3 %%%%%% labeled as w. The output is therefore coefficient matrices R0,

4 %%%%%% R1 and R2.

5

6

7 N = 2 ; % Lag (Max. derivative coefficient)

8 L = N + 1; % Depth of Hankel matrix

9 T = size(w,2); % Length of time series

10

11 %%%%%%%% Build Hankel matrix in form of cell array %%%%%%%

12

13 for i=1:L

14 for j=1:T�L+1
15 H{i,j} = w(:,j+i�1);
16 end

17 end

18

19 H2 = cell2mat(H); % Converts cell array to matrix

20

21 [U,S,V] = svd(H2); % Perform singular value decomposition of Hankel matrix

22

23 %%%%%%%%% Apply system identification theory %%%%%%%%%

24

25 u2 = [U(:,5) U(:,6)]; % Number of columns in u2 is equal to number of ...

outputs

26 R = transpose(u2);

27 R0 = [R(:,1) R(:,2) R(:,3)]
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28 R1 = [R(:,4) R(:,5) R(:,6)]

29 R2 = [R(:,7) R(:,8) R(:,9)]

A.2.4 Discrete-time control: Gain computation by Lyapunov LMI

solving (LDS of lag 1)

1

2 %%%%%% This code solves the higher�order discrete�time Lyapunov LMI

3 %%%%%% multiple times, using coefficient matrices built via Hankel matrix

4 %%%%%% SVD in conjunction with discrete�time linear controllers.

5 %%%%%% The output of interest in this algorithm are gain values

6 %%%%%% k1, k2, g1, g2.

7

8 close

9 clc

10

11 N = 1; % Maximum lag in linear difference system

12 q = 5; % Size of augmented external variable vector

13

14 % Controller gains: Initial conditions (Very close to zero)

15 % Note: Can be whatever is expected to converge optimally

16

17 k1 = 0.001;

18 k2 = 0.001;

19 g1 = 0.001;

20 g2 = 0.01;

21

22 pasos = 50; % Number of times LMI will be solved

23 cont = zeros(pasos,4); % Controller bank array definition

24

25 %%%%%%%%%%% Begin BMI linearizing loop %%%%%%%%%%%

26

27 for i=1:pasos

28

29 Y=sdpvar(q,(N+1)⇤q); % Unknown matrix with accurate dimensions

30 K = sdpvar(N⇤q,N⇤q); % Coefficient matrix that ensures stability

31 R = [R0 zeros(size(R0,1),1) zeros(size(R0,1),1) R1 ...

zeros(size(R1,1),1)...

32 zeros(size(R1,1),1);

33 1 k2⇤[1 0] k1 0 0 0 0 0 0;

34 0 �[1 g2] �1 �g1 0 0 0 1 0;

35 0 0 �1 0 �1 0 0 0 0 1]; % Augmented coefficient matrix

36 Q = [zeros(q,q) zeros(q,N⇤q); zeros(N⇤q,q) K] � [K zeros(N⇤q,N⇤q);...
37 zeros(q,N⇤q) zeros(q,q)] + R ⇤ Y + Y ⇤ R; % Stability condition

38

39 F=[Q0;K�0]; % Inequality constraints

40 solvesdp(F); % Solve inequality

41
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42

43 Y = double(Y); % Save value of Y; now serves as input

44 K = sdpvar(N⇤q,N⇤q);
45 k1 = sdpvar(1,1);

46 k2 = sdpvar(1,1);

47 g1 = sdpvar(1,1);

48 g2 = sdpvar(1,1); % Gains are now unknown

49

50 R = [R0 zeros(size(R0,1),1) zeros(size(R0,1),1) R1 ...

zeros(size(R1,1),1)...

51 zeros(size(R1,1),1);

52 1 k2⇤[1 0] k1 0 0 0 0 0 0;

53 0 �[1 g2] �1 �g1 0 0 0 1 0;

54 0 0 �1 0 �1 0 0 0 0 1];

55 Q = [zeros(q,q) zeros(q,N⇤q); zeros(N⇤q,q) K] � [K zeros(N⇤q,N⇤q);...
56 zeros(q,N⇤q) zeros(q,q)] + R ⇤ Y + Y ⇤ R;
57

58 F=[Q0;K�0];

59 solvesdp(F); % Solve inequality once more

60

61 k1 = double(k1);

62 cont(i,1) = k1;

63 k2 = double(k2);

64 cont(i,2) = k2;

65 g1 = double(g1);

66 cont(i,3) = g1;

67 g2 = double(g2);

68 cont(i,4) = g2; % Controller bank filling

69

70 end

71

72 %%%%%%%%%%% End BMI linearizing loop %%%%%%%%%%%

A.2.5 Discrete-time control: Gain computation by Lyapunov LMI

solving (LDS of lag 2)

1 %%%%% This code solves the higher�order Lyapunov inequality for a linear

2 %%%%% difference system of lag 2. Code functionality is exactly the same

3 %%%%% as the lag 1 version; only coefficient matrices and dimensions

4 %%%%% change between versions.

5

6 clc

7 close

8

9 L = 2; % Maximum lag in linear difference system

10 w = 5; % Size of augmented external variable vector

11

12
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13 % Controller gains: Initial conditions (Very close to zero)

14 % Note: Can be whatever is expected to converge optimally

15

16 k1 = 0.001;

17 k2 = 0.001;

18 g1 = 0.001;

19 g2 = 0.01;

20

21 %%%%%%%%%%%

22

23 pasofinal = 50; % Number of times LMI will be solved

24 cont = zeros(pasofinal,4); % Controller bank array definition

25

26 %%%%%%%%%%% Begin BMI linearizing loop %%%%%%%%%%%

27

28 for i=1:pasofinal

29

30 Y=sdpvar(w,(L+1)⇤w); % Unknown matrix with accurate dimensions

31 Psi = sdpvar(L⇤w,L⇤w); % Coefficient matrix that ensures stability

32 P = [1 k2⇤[1 0] k1 0 0 0 0 0 0 zeros(1,5); R0 zeros(2,2) R1 zeros(2,2)...

33 R2 zeros(2,2); 0 �[1 g2] �1 �g1 0 0 0 1 0 zeros(1,5); ...

34 0 �[0 1] 0 �1 0 0 0 0 1 zeros(1,5)]; % Augmented coeff. matrix

35 Q1=[zeros(w,w) zeros(w,L⇤w); zeros(L⇤w,w) Psi]�[Psi zeros(L⇤w,w);...
36 zeros(w,L⇤w) zeros(w,w)]+Y ⇤ P+P ⇤ Y; % Stability condition

37 F=[Q10;Psi�0]; % Inequality constraints

38 solvesdp(F); % Solve the LMI

39

40

41 Y=double(Y); % Save value of Y; now serves as input

42 Psi = sdpvar(L⇤w,L⇤w); % Calculate to ensure stability

43 k1 = sdpvar(1,1)

44 k2 = sdpvar(1,1);

45 g1 = sdpvar(1,1);

46 g2 = sdpvar(1,1); % Gains are now unknown

47

48 P = [1 k2⇤[1 0] k1 0 0 0 0 0 0 zeros(1,5); R0 zeros(2,2) R1 zeros(2,2)...

49 R2 zeros(2,2); 0 �[1 g2] �1 �g1 0 0 0 1 0 zeros(1,5);...

50 0 �[0 1] 0 �1 0 0 0 0 1 zeros(1,5)];

51 Q2=[zeros(w,w) zeros(w,L⇤w); zeros(L⇤w,w) Psi]�[Psi zeros(L⇤w,w);...
52 zeros(w,L⇤w) zeros(w,w)]+Y ⇤ P+P ⇤ Y;
53 F=[Q20;Psi�0;]; % Solve inequality once more

54 solvesdp(F);

55

56

57 k1 = double(k1);

58 cont(i,1) = k1;

59 k2 = double(k2);

60 cont(i,2) = k2;

61 g1 = double(g1);

62 cont(i,3) = g1;

63 g2 = double(g2);

64 cont(i,4) = g2; % Controller bank filling
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65

66 end

67

68 %%%%%%%%%%% End BMI linearizing loop %%%%%%%%%%%

A.2.6 Linearized model solver in closed loop

1 %%%%%% This code solves the linearzied boost converter model in

2 %%%%%% closed�loop. Two controllers are used: one for current and another

3 %%%%%% one for voltage. This code is useful for verifying whether or ...

not a

4 %%%%%% certain gain set is able to stabilize the model at the origin, i.e.

5 %%%%%% it abides by Lyapunov stability theory. Note that the Improved ...

Euler

6 %%%%%% method is applied.

7

8 %%%%%%%%%%%%%%% Model parameters %%%%%%%%%%%%%%%

9

10 E=30; % Input voltage

11 R=100; % Load (output) resistance

12 C=220e�6; % Capacitance

13 L=250e�6; % Inductance

14 t=0; % Initial time

15 h=1e�04; % Integration step

16 tf=1; % Final time

17 pasos=tf/h; % Total number of steps for method

18

19

20 %%%%%%%%%%%%%%% Model coefficient matrices %%%%%%%%%%%%%%%

21 % These are a discretized version of the linearized state�space ...

coefficient

22 % matrices A and B. These are obtained by means of the c2d command.

23

24 A= [0.998 �0.05982; 0.06798 0.9934];

25 B= [80.13;�3.321];
26

27 %%%%%%%%%%%%%%% Model initial conditions %%%%%%%%%%%%%%%

28

29 i=�20; % Initial current (Arbitrary)

30 v=�15; % Initial voltage (Arbitrary)

31 z=0; % Current controller variable z

32 w=0; % Voltage controller variable w

33 x=[i v] ; % State vector definition

34

35 %%%%%%%%%%%%%%% Controller gains (Obtained via Lyapunov LMI) ...

%%%%%%%%%%%%%%%

36

37 k1 = 0.0060;
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38 k2 = 0.0152;

39 g1 = 0.0544;

40 g2 = 0.5730;

41

42 %%%%%%%%%%%%%%% Ciclo de soluci n %%%%%%%%%%%%%%%

43

44

45 for n=1:pasos

46 t(n+1) = t(n)+h; % Time vector, used in plots

47 x(:,n+1) = A⇤x(:,n)+B⇤(�k1⇤z(n)�k2⇤[1 0]⇤x(:,n));
48 z(n+1) = z(n)+[1 0]⇤x(:,n)+g1⇤w(n)+g2⇤[0 1]⇤x(:,n);
49 w(n+1) = w(n)+[0 1]⇤x(:,n); % Model / controller equations

50 end

51

52 %%%%%%%%% Output voltage plot %%%%%%%%%%%

53

54 figure( Position ,[58 327 930 378]);

55

56 plot(t,x(1,:), LineWidth ,2)

57 title( Capacitor output voltage )

58 xlabel( Time [s] , FontSize , 12, FontWeight , bold );

59 ylabel( Output voltage [V] , FontSize , 12, FontWeight , bold );

60 xlim([0 tf])

61 grid on

Remark A.1. For a downloadable version of the previously presented codes, please refer

to the following link: https://tinyurl.com/y3tkqcon.

https://tinyurl.com/y3tkqcon
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