
Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

School of Engineering and Sciences

Control charts for autocorrelated processes under parameter estimation

A dissertation presented by

Jorge Arturo Garza Venegas

Submitted to the
School of Engineering and Sciences

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Engineering Science

Major in Industrial Engineering

Monterrey, Nuevo León, December 4th, 2018







Dedication

To my parents: Minerva Venegas Chavarrı́a and Oscar Garza Mora, for their unconditional
love and support.

iii



Acknowledgments

First of all, I would like to express my deepest gratitude to my family, especially to my
parents Minerva and Oscar for their unconditional love, the most amazing feeling I have
experienced; to my brothers “Heri” and “Rola” for all the years we shared growing up to-
gether. To Brenda for giving me the bliss of being the uncle of, until now, four girls. I love
all of you.

I want to thank my advisor, Dr. Vı́ctor Gustavo Tercero Gómez, for his support over these
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Control charts for autocorrelated processes under parameter estimation.

By

Jorge Arturo Garza Venegas

Abstract

Statistical Processes Monitoring is a collection of statistical-based methodologies and methods for monitor-
ing the quality of manufactured products or services. Within these tools, control charts are powerful ones
to assist practitioners on the detection of departures from in-control situations as long as the assumptions
made on their design are fulfilled; otherwise, their power might decrease. For instance, control charts per-
formance has been shown to be negatively affected when using estimated parameters (in which case the
Average Run Length, ARL, becomes a random variable) or when dealing with autocorrelated data. Given
that, this research is focused on the effect of parameter estimation on the performance of the X̄ and the
modified S2 control charts for monitoring the mean and the variance, respectively, of autocorrelated pro-
cesses under parameter estimation. The average of the ARL and its standard deviation are considered as
performance measures as they take into account the sampling variability of the ARL. Furthermore, a boot-
strapping methodology is applied to adjust control limits in order to have a guaranteed conditional in-control
performance with a certain probability and the effect on the out-of-control ARL is also studied.
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Chapter 1. Introduction

1.1 History and background

One common task done when considering manufacturing processes is their monitoring, which allows to
determine whether or not the products obtained meet some constraints related to their quality. It is usually
desired to obtain products as similar to a quality standard as possible, however, Shewhart (1931) stated
that there is always a variation when doing the same task several times, and that this variation could be
considered as a natural (or inherent to the process) variation, due to common causes or it could be due
to some specific causes, called assignable causes. Furthermore, he provided the basis of what is known
as Statistical Process Control (SPC) (recently, Statistical Process Monitoring (SPM)) founded on several
postulates, within which the third one states: “Assignable causes of variation may be found and eliminated”
(Shewhart, 1931). For such purpose, SPM provides statistical methods or tools to help practitioners in the
searching of assignable causes of variation, being the control charts one of the most widely used ones
due to their simplicity and easiness to be implemented as well as their power to detect departures from
in-control situations. Control charts were originally developed by Shewhart and since their creation, other
control charts have been proposed as the Cumulative Sum (CUSUM) chart of Page (1954) and the Expo-
nentially Weighted Moving Average (EWMA) chart introduced by Roberts (1959), which are preferred over
Shewhart control charts when the main concern is the detection of small shifts in the mean.

Despite their usefulness, control charts are designed by considering certain assumptions about the process
under monitoring and therefore their performance is tightly related to the compliance of them. Common as-
sumptions include a specific parametric model or distribution for observations; uncorrelated/independent
data; prior knowledge of the true values of the in-control parameters, among others. Moreover, the fact that
these assumptions are seldom met in practice make the charts no longer suitable to be used for searching
assignable causes of variation as their behaviour is unpredictable. For instance, Shewhart charts are de-
signed for independent observations when in-control process parameters are known beforehand, leading to
a well-known chart performance which usually is quite different than the one observed under correlated ob-
servations and/or estimated parameters, as summarized in Jensen et al. (2006) and Psarakis et al. (2014)
literature reviews which include several types of control charts.

Control charts performance is related to the Run Length (RL), which is defined as the number of observa-
tions obtained before a signal is triggered by the chart, and which is a random variable. Charts performance
has been usually measured in terms of the Average Run Length, ARL, the expected number of observed
points within control chart limits before the chart triggers a signal. It is called in-control ARL, denoted by
ARL0, or out-of-control ARL, denoted by ARL1 according to whether the process is under statistical control
or not, respectively. Nevertheless, these performance measures might not be suitable to characterize the
chart performance (for instance when the RL’s distribution is skewed or heavy-tailed) and Jones-Farmer
et al. (2004) suggested to report not only the ARL but also other RL distribution characteristics, including
its standard deviation SDRL or even some quantiles of its distribution. For Shewhart control charts where
the statistic used for running the chart turns out to be independent, the RL has a geometric distribution and
thus, the ARL could be obtained easily. On the other hand, Brook and Evans (1972) developed a Markov
Chain approach to obtain approximations of the RL distribution for CUSUM control charts that was adapted
by Lucas and Saccucci (1990) for EWMA control charts.

As some assumptions made on charts’ design are rarely met in practice, several approaches to assess
those situations have been proposed allowing the use of control charts for process monitoring. For in-
stance, one of the main issues that have taken the attention of several researchers is the unknown parame-
ters case. One approach to address this situation is to collect an assumed in-control sample (called Phase
I sample, Chakraborti et al., 2009), to use it to estimate the process’ parameters and use those estimations
as process parameters true values to run the chart. Nevertheless, charts might no longer have the ex-
pected performance due to the estimation variability (Ghosh et al., 1981) and therefore, their use might not
be longer suitable. In order to diminish that variation, it is suggested to collect a certain number of Phase
I samples in order to have a more precise estimation, since the closer the estimation to the true value, the
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closer the chart performance to the known parameter performance. When the latter approach is not feasible
(for instance, when dealing with start-up processes or short runs with few or not all historical data), the self-
starting methodology proposed by Hawkins (1987) or the Q-statistics introduced by Quesenberry (1991a)
are recommended since these approaches avoid the necessity of large initial in-control samples as parame-
ters estimations are done from the very beginning of the process and are updated as more data is available.

Another assumption often made is the independence of the observations which not always could be en-
sured, as practical situations where autocorrelation arises are found in health surveillance, crop monitor-
ing, chemical processes, etc.; where observations are collected from the same object or from continuous
streams of data or within small periods of time. In fact, control charts are sensitive to the independence
assumption as it has been shown by Johnson and Bagshaw (1974), Bagshaw and Johnson (1975) and
Alwan (1992), among others. Nonetheless, there are several approaches to deal with this situation, includ-
ing removing the autocorrelation between observations by using different sampling techniques (e.g. Franco
et al., 2014), modification of control the control limits (e.g. Costa and Castagliola, 2011) and the time series
approach where the residuals of a fitted time series model are monitored instead of the observations (e.g.
Alwan and Roberts, 1988). The latter approach leads to the design of control charts called residuals control
charts and it has been widely used since it allows to handle several autocorrelation structures. However,
main drawbacks of implementing residuals charts are the necessity of prior knowledge of the model (to
ensure residuals are independent) and the fact that a change in the observations might not be captured by
residuals, affecting their performance (Longnecker and Ryan, 1991). As an alternative for residuals charts,
several control charts for stationary processes have been developed (e.g. Alshraideh and Khatatbeh, 2014;
Zhang and Pintar, 2015; Franco et al., 2015; Osei-Aning et al., 2017a).

Regardless the fact that these approaches allow the use of control charts, the non-compliance of the as-
sumptions made on their design make the RL distribution behaves quite different as expected. For instance,
under the known parameters case the ARL is a constant in opposition to the estimated parameters case,
where the ARL becomes a random variable, and therefore, making the previous performance measures
not suitable for evaluating charts performance. The rationale is that the ARL will be conditioned on the
estimates obtained during Phase I and used to design the control chart: two different random samples
taken from the very same process will lead to different control limits and therefore different ARL’s. The
practical implication is that two practitioners could (and probably) observe quite different performance when
implementing the same control chart to data gathered from the same process distribution, leading to an
uncertainty about the effectiveness in implementing the chart for the search of assignable causes of vari-
ation (the false-alarm rate might be inflated or the ability to detect true changes might be low). The ARLs
sampling variation was recognized by Jones and Steiner (2012) and some authors called it as “practitioner-
to-practitioner” variability (Zhang et al., 2014, Saleh et al., 2015a, Saleh et al., 2015b) and they proposed
to use the ARL’s distribution to characterize the charts performance under parameter estimation, being
the AARL and SDARL measures commonly reported when evaluating control chart performance under
estimated parameters.

The amount of data gathered from Phase I samples in practice turns out to be insufficient to achieve the
known parameter case performance when the “practitioner-to-practitioner” variability is considered. As a
rule of thumb Zhang et al. (2014) suggested to have an SDARL0 within the 10% of the nominal ARL0

value. Therefore, Shewhart, CUSUM and EWMA control charts have been reevaluated considering their
in-control conditional performance and it was concluded the necessity of quite large (and practically unre-
alistic) amounts of Phase I data to achieve Zhang et al.’s suggestion. However, Gandy and Kvaløy (2013)
developed a methodology in order to obtain a guaranteed conditional in-control performance (with certain
probability) when designing control charts, consisting on the adjustment of the control limits via bootstrap-
ping methods. The main advantage of this methodology is that it is applicable to Shewhart, CUSUM and
EWMA charts and that the control limits adjustment has been proved to have a moderate impact on the
ARL1.

To sum up, two main issues arising when implementing a control chart are the parameters estimation
and the correlated observations since charts performance is affected negatively and lead to an uncertainty
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about their effectiveness to detect out-of-control situations. Given that the independence assumption is
not always suitable and that the in-control parameters are often unknown, it is desirable to have a process
monitoring tool capable to deal with both issues effectively in terms of charts performance, which have to
take into account the “practitioner-to-practitioner” variation due to the Phase I estimations. Therefore, this
research is focused on the evaluation of the performance of control charts for autocorrelated processes un-
der parameters estimation, particularly the well-known X̄ and S2 control charts for monitoring the mean and
the variance, respectively, of autoregressive processes or order 1, AR(1), in order to see if: (1) these well-
known tools used on the independent case are good enough to monitor correlated processes or (2) they
could be easily adapted to deal with this kind of processes or (3) there is a real necessity to develop new
tools. The next subsection is devoted to the motivation for this research with the advantages and drawbacks
of previous proposed approaches whereas Chapter 2 contains more details about these approaches.

1.2 Motivation

Even though control charts are powerful tools for process monitoring, they should not be implemented
carelessly in practice as pointed out previously. For instance, for the Shewhart control charts under known
parameters the RL has a geometric distribution with parameter α, where α is the probability of a false alarm.
As control limits are set to be ±3σ from the process mean µ, therefore the interval [µ− 3σ, µ+ 3σ] covers
approximately the 99.73% of the population and then α = 0.0027. Therefore, ARL0 = 1

α ≈ 370.4.

The previous statement means that when applying a Shewhart control chart to an in-control normally dis-
tributed process it is expected that the chart will trigger a signal every 370 observations. Now, applying
the previous Shewhart control chart design to an AR(1) process with unknown parameters could lead to a
different situations illustrated in Figures 1.2.1 to 1.2.4, where control limits were calculated considering the
estimated mean and variance from an initial in-control sample of 100 observations from an AR(1) process
and after that this chart is used for process monitoring. In Figure 1.2.1, the Shewhart control chart was
applied to a one realization of the AR(1) process with autocorrelation coefficient φ = 0.9 leading to 57 sig-
nals in a series of 370 in-control observations whereas in Figure 1.2.2, a sustained shift in the mean of 2
standard deviations at the 185-th observation is missed by the chart (even when it is noticeable by the naked
eye). Considering negative values of φ, Figure 1.2.3 is the Shewhart control chart applied to a one real-
ization of an in-control AR(1) process with φ = −0.9 where there is no signal in 370 observations whereas
Figure 1.2.4 is the chart applied to an AR(1) process with a shift in the mean of 1.5 standard deviations at
the 185-th observation which is missed by the chart.

Figure 1.2.1: Example of a Shewhart control chart applied to an in-control AR(1) process with φ = 0.9.
The chart signals 57 times of 340.

From Figures 1.2.1 and 1.2.3 one might think that the solution is to widen control limits in order to take
into account the variance of the process to avoid false alarms. On the other hand, Figures 1.2.2 and 1.2.4
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Figure 1.2.2: Example of a Shewhart control chart applied to an AR(1) process with φ = 0.9 with a shift in
the mean of 2 standard deviations at the 185-th observation.

Figure 1.2.3: Example of a Shewhart control chart applied to an in-control AR(1) process with φ = 0.9. No
one signal in 370 runs.

Figure 1.2.4: Example of a Shewhart control chart applied to an AR(1) process with φ = −0.9 with a shift
in the mean of 1.5 standard deviations at the 185-th observation.

suggest that this widening should not be made carelessly, since shifts in the process mean of 2 and 1.5
standard deviations, respectively, are missed by the control chart. Even though the autocorrelation coeffi-
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cients used here are for high correlation levels, this kind of processes are found in literature and might be of
more interest since low to moderate levels of autocorrelation may be addressed with traditional techniques.

The issue of parameters estimation has been addressed for the independent and identically distributed
(i.i.d.) case considering different approaches, each one with their own advantages and disadvantages. For
example, using parameters estimates as the true vales allows to implement a traditional control chart as
in the known parameters case. Nevertheless, doing this always involves an estimation error which makes
the chart underperforming or having an unexpected behaviour. After that, the efforts were focused on the
determination of the estimators to be used and on the initial in-control sample size required to diminish
the estimation error in order to the chart to behave as in the known case. As this approach is not feasible
when sampling costs are highly expensive and/or when dealing with start-up processes the self-starting
methodology and the Q-charts were developed. The main idea of these approaches is to transform the
collected data to independent normal standard random variables and to use control charts on the trans-
formed data. However, the magnitude of a change on the original variables might not be preserved on the
transformed data and also biased charts (charts which the property that the probability to correctly signal an
out-of-control situation is less than the probability to give a false alarm) could be obtained. In such cases,
a slight modification on the chart leads to a better chart performance, as suggested by He et al. (2008) for
the Shewhart Q-charts. These approaches are summarized on Table 1.2.1.

Table 1.2.1: Summary of solution approaches for the i.i.d. case under parameter estimation.

Solution approach Advantages Drawbacks

Use estimates. Allows use of traditional charts. Performance is negatively af-
fected due to the estimation
error.

Use of a (suffi-
ciently) large initial
in-control sample.

Diminishes the estimation error,
and thus, the effect on chart
performance due to estimation.

Not suitable for processes with-
out historical data or expensive
sampling costs.

Self-starting
methodology

Avoid the necessity of Phase I
samples to run the chart.

Provides biased charts.

Modified self-
starting method-
ology.

Improve Self-starting control
charts (SSCC) performance.

Formulation and/or imple-
mentation might be difficult
to understand for practition-
ers/managers.

When dealing with autocorrelared streams of data, the first advice is to remove the autocorrelation structure
of the process, which could be done by sampling less frequently or considering the variable sample interval
(V SI) technique. However, there are several processes or situations with an inherent or natural autocorre-
lation structure where another approaches could be used such as taking into account the information given
by the correlation structure and use it to modify charts design, e.g. by adjusting the control chart limits
taking into account the process variation. One approach widely used is the time series approach, were data
is fitted to a time series model where errors are assumed to be independent and then residuals of the fitted
model are monitored with a control chart for independen observations. These charts are called residuals
control chart. This approach allows to handle a wide variety of correlations since errors of the model are
assumed to be independent; but, as in the i.i.d. case model, parameters are rarely known and have to be
estimated and residuals (used as estimators of the errors) are not independent. In addition to this, a change
in the observations might not be captured by residuals, as it is the case with the transformations involved on
the self-starting control charts. Finally, several control charts have been proposed for stationary processes
but there is a lack of studies about their performance, in terms of SDARL. Approaches used to assess the
issue of correlated observations are summarized in Table 1.2.2.



Chapter 1. Introduction 6

Table 1.2.2: Summary of solution approaches for the autocorrelated data case.

Solution approach Advantages Drawbacks

Remove the auto-
correlation.

Allows the use of traditional
charts.

Not all available information is
used. Might not apply to several
processes.

Modification of
control limits.

Charts take into account the
autocorrelation.

Performance might be nega-
tively affected due to parame-
ters estimation.

Time series Allows to handle a wide variety
of correlations.

Performance relies on the com-
plete knowledge of the process
model.
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Figure 1.2.5: Number of publications about control charts for autocorrelated data under estimated param-
eters.

In addition to the problem of estimation, charts performance has been usually measured in terms of ARL
and RL moments instead of using AARL and SDARL since the ARL is a random variable when param-
eters are estimated. In fact, recently several authors have been reevaluated control charts performance
under estimated parameters using the AARL and SDARL as performance measures as they render bet-
ter what happens in practice; for instance, Saleh et al. (2015b) and Goedhart et al. (2017b) reevaluated
Shewhart control charts; Keefe et al. (2015), self-starting control charts; Saleh et al. (2015a) and Aly et al.
(2016), EWMA control charts; and Saleh et al. (2016), CUSUM control charts, to mention a few (more infor-
mation can be found in Chapter 2). In addition to these studies, head-to-head comparisons between control
charts have been done: Hawkins and Wu (2014) considered the comparison under known parameters case
whereas Zwetsloot and Woodall (2017) considered the unknown parameters case. General conclusions
include the necessity of larger (in some cases unrealistic) amounts of Phase I data to achieve the known
parameter case performance and that the EWMA and CUSUM control charts performance are not similar
under parameters estimation, as was believed before. However, all these studies are devoted to the inde-
pendent case and there has not been found works for their autocorrelated counterpart.
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As shown above even the time series approach for handling autocorrelated data have to deal with parame-
ter estimation in addition to the complexity of the model selection process and the fact that changes might
not be captured by residuals. Moreover, there is a gap on the evaluation of control charts for autocorrelated
processes under parameters estimation and/or with a guaranteed conditional in-control performance as can
be seen in Figure 1.2.5. In that figure, the number of papers found in Jensen et al. (2006) (who consid-
ered papers from 1939 to 2005) and Psarakis et al. (2014) (who updated the studies up to 2013) literature
reviews are shown in blue for the i.i.d. case and in red for the case of autocorrelated data. The column
“Total” stands for the sum of the number of papers within this two literature reviews and the last column for
the number of papers devoted to the conditional in-control performance and/or the guaranteed conditional
performance (labeled as “SDARL-G”).

There is also a need of having tools easy to be implemented like the Shewhart control charts. Given
these points, this research is focused on the study of the effect of parameters estimation on the modified
X̄ and S2 control charts for autocorrelated processes using the AARL and SDARL as performance mea-
sures. The rationale of doing this is to have a better understanding of charts performance under parameter
estimation and to have evidence about whether or not these tools are good enough to be implemented
in practice by considering the new chart parameters that take into account the practitioner to practitioner
variability or whether there is a necessity to improve them or even to develop new ones.

1.3 Problem Statement

Consider a sequence of observations {Xi,1, Xi,2, . . . , Xi,n} distributed according to

• the following AR(1) model:

Xi,j − µ0 − δσ0 = φ0 (Xi,j−1 − µ0 − δσ0) + εij (1.3.1)

if the process mean is monitored, and

• the following model:
Xi,j − µ0

τσ0
= φ0

(
Xi,j−1 − µ0

τσ0

)
+ εij (1.3.2)

if the process variance is monitored,

for i = 1, 2, . . . and j = 1, 2, . . . , n where n is the subgroup size at the time i and where:

• εij ∼ N (0, σε) are uncorrelated.

• Process’ parameters µ0, σ0, φ0 are unknown.

• φ0 ∈ (−1, 1) in order to have a stationary process.

• δ =
|µ1 − µ0|

σ0
is the shift in the mean from µ0 to µ1 measured in standard deviations. Thus, δ = 0

means no change in the mean.

• τ2 =
σ2

1

σ2
0

measures variance shifts. Then, τ2 = 1 indicates no changes in variance.

• When δ = 0 and τ2 = 1, the process is said to be under statistical control.

• Xi,0 is assumed to have the steady-state process distribution.

• Autocorrelation is assumed to be within not between samples: that is to say, ∀j = 1, . . . , n, Xi,j and
Xi+1,j are considered to be independent.
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The AR(1) model in (1.3.1) is a widely known AR(1) model with mean µ0 + δσ0 whereas the model shown in
(1.3.2) is a modification of the traditional AR(1) model where the process variance is no longer related to the
errors variance, as it will be seen in Chapter 5. The rationale of using model (1.3.2) is because assuming
the steady-state distribution for all Xi’s the changes in variance do not involve the errors variance, as it was
usually done. However, a model similar to that in equation (1.3.1) could be used for variance monitoring, as
they are equivalent.

This research addresses the problem of measuring the effect of the Phase I sample used to estimate
parameters on the performance of mean and variance control charts for autocorrelated processes in terms
of the AARL0 and SDARL0 and the corresponding effect on ARL1 of using bootstrapping approaches to
guarantee a minimum conditional in-control performance. The main goal is to evaluate the performance
of control charts for monitoring AR(1) processes, particularly, the modified X̄ control chart for monitoring
the process mean, µ0, and the modified S2 control chart for monitoring the process variance, σ2

0 , under
estimated parameters.

It is expected that the performance of control charts will be affected due to parameter estimation as in
the i.i.d. case and as Figures 1.2.1 to 1.2.4 suggest. Moreover, as the widening of the control chart lim-
its has not to be done carelessly, the bootstrapping methodology proposed by Gandy and Kvaløy (2013)
where control limits are adjusted in order to guarantee a certain conditional in-control performance might
be applied to these charts and the effect on ARL1 should be studied.

1.4 Research questions

This research is a three-folded research consisting on the following studies:

1. The effect of the autocorrelation estimators on the X̄ control chart performance

2. The conditional performance of the X̄ control chart for AR(1) processes under estimated parameters

3. The conditional performance of the S2 control chart for AR(1) processes under estimated variance,

where the first one is done in order to see the effect of autocorrelation estimators on the chart performance,
for which the process mean and variance are considered as known and fixed and only the autoregressive
parameter is unknown. After that, the next step is to assume all parameters as unknown. The third one is left
for monitoring process variance, where the effect of autocorrelation as well as process variance estimation
will be considered.

• Q1.- What is the conditional performance of X̄ control chart for monitoring the mean of AR(1) pro-
cesses when using autocorrelation estimators?

• Q2.- What is the conditional performance of X̄ control chart for monitoring the mean of AR(1) pro-
cesses under parameter estimation?

• Q3.- What is the conditional performance of the modified S2 control chart for monitoring the variance
of AR(1) processes when the variance is estimated?

• Q4.- What is the effect on the performance (in terms of AARL and SDARL) of X̄ and S2 control
charts when applying the Gandy and Kvaløy’s bootstrap methodology to adjust control limits to have
a guaranteed conditional in-control performance?

First three questions are related to the effect of parameter estimation on the ARL of the X̄ and S2 control
charts, which has not been addressed yet while, the fourth one, is non-trivial since Gandy and Kvaløy
methodology assumes handling independent observations coming from a probability distribution function
whereas for AR(1) processes observations follows a model instead of a probability distribution function
alongside the fact that observations are not independent.
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1.5 Research hypotheses

Considering the previous research questions, it is suspected that:

• H1.- The performance, in terms of the AARL0 and SDARL0, of the X̄ control chart is different from
the known parameter case and it is negatively affected by using autocorrelation estimators.

• H2.- The performance, in terms of the AARL0 and SDARL0, of the X̄ control chart is different from
the known parameter case and it is negatively affected under parameter estimation.

• H3.- The performance, in terms of the AARL0 and SDARL0, of the modified S2 control chart is
different from the known variance case and it is negatively affected under variance estimation.

• H4.- When applying Gandy and Kvaløy’s methodology to X̄ and S2 control charts for AR(1) processes
the effect on the ARL0 is as desired and on ARL1 is not so severe.

The general hypothesis is that similar situations as in the i.i.d. case are going to arise: larger amounts of
Phase I data have to be gathered in order to achieve the known parameter case performance, in some cases
unrealistic amounts of data. Moreover, it is expected that this will be found specially in those cases with high
degrees of autocorrelation. However, this could be addressed using the Gandy and Kvaløy methodology.

1.6 Research purpose and objective

Consider the process models stated in equations (1.3.1) and (1.3.2). The main purpose of the research is
the evaluation of the effect of parameter estimation for autocorrelated processes following an AR(1) model
in order to see if there is a necessity to develop a tool, a control chart, for managing processes in presence
of autocorrelation and parameters estimation, and the implementation of bootstrapping approaches to guar-
antee a conditional in-control performance with certain probability. Even though there are several control
charts that deal with the estimation problem, they were designed assuming an independent data structure
and, similarly, control charts for autocorrelated processes usually assume prior knowledge of the in-control
parameters, as it will be seen in the gap analysis of Chapter 2.

Therefore, the objectives of the research are:

• Evaluate the effect of estimating φ0 on the conditional performance the X̄ control chart for auto-
correlated processes when only φ0 is unknown. That is to say, study the relationship between the
conditional ARL and φ̂0.

• Evaluate the conditional performance of the X̄ control chart for AR(1) processes when µ0, σ0 and
φ0 are unknown by means of AARL and SDARL and varying the number of Phase I data used to
estimate process parameters.

• Evaluate the conditional performance of the modified S2 control chart for AR(1) processes when σ2
0 is

estimated by means of AARL and SDARL and varying the number of Phase I data used to estimate
the process variance.

• Show that it is possible to guarantee, with a certain probability, a conditional in control performance
for the X̄ and S2 charts by adjusting their control limits carefully using a bootstrapping methodology
and study the effect on the out-of-control performance.

1.7 Delimitations

Given the assumptions made in the models shown in equations (1.3.1) and (1.3.2), the following limitations
arise:

• The random error is assumed to be distributed as εij ∼ N (0, σε). Thus, other kind of noises are not
considered on this study.
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• Only AR(1) processes are considered in this study.

• The Average Run Length (ARL) distribution might not be obtained analytically, due to the lack of an
exact or closed form of the chart statistic.

• Process model is assumed to be known a priori. Therefore, model selection procedures are not
considered here.

Despite the limitations mentioned above, it is worthy to say that: the random errors are usually assumed
to be distributed as εij ∼ N (0, σε); that AR(1) processes could be used to represent a wide variety of
real life processes and therefore, might set the basis to extend this studies to Moving Averages (MA), and
Autoregressive and Moving Average (ARMA) processes; and that even when the ARL distribution might
not be obtained analytically it is possible to obtain it by extensive Monte Carlo simulations.

1.8 Research outputs and outcomes

The major output of this research is the evaluation of the X̄ and S2 control charts performance for AR(1)
processes under parameter estimation. There is not evidence of a previous study like this for autocorrelated
processes, particularly for AR(1) processes. In that sense, better knowledge on the conditional performance
of those control charts is expected to be obtained in this research. As other outputs of this research are (i)
the calculation of the chart constants via bootstrapping methods in order to adjust the control charts limits,
and (ii) a gap analysis making evident the lack of studies on SPM when handling autocorrelated data (and
the exploration/modification of techniques proven to be useful for control charts for independent data).

On the other hand, the outcome is a procedure to assist in process management when dealing with au-
tocorrelated processes without prior knowledge of the in-control process parameters, by considering the
adjusted control limits to guarantee a conditional in-control performance with certain confidence, to be used
in practice, that is to say, the implementation of these control charts under parameter estimation.

1.9 Dissertation organization

This dissertation follows a three paper style, so it is organized as follows: Chapter 2 gives the insights of
the state of the art and summarizes the main contributions done in SPM, concluding with a gap analysis.
Chapters 3, 4 and 5 are research papers that help to support the dissertation arguments: Chapter 3 is
focused on the study of the effect of the autocorrelation estimators on the X̄ control chart performance in
terms of AARL0 and SDARL0, Chapter 4 is focused on the study of the performance of X̄ control chart
for monitoring the mean of AR(1) processes when all parameters are unknown, and Chapter 5 is left for
the performance of the modified S2 control chart for monitoring the variance of AR(1) processes when the
process variance is estimated. Finally, conclusions and future work are left in Chapter 6.



Chapter 2. Background and literature review

2.1 Introduction

Shewhart (1931) set the scientific basis of quality control and provided statistical tools known as control
charts (or Shewhart charts, named after him) for processes management. These tools were created with
the main purpose of monitoring the process variation and determine whether or not it is under statistical
control, which could boost the detection and elimination of special causes of variation in order to secure
a state of control. The main advantages of Shewhart charts are their easiness to be understood and to
be implemented whereas their main drawback is the fact that the assumptions made on their design are
rarely met in practice, leading to unexpected, usually worst performance. Assumptions made on their de-
sign include the independence of observations, an underlying normal distribution and in-control process
parameters known a priori, among others. Further, Shewhart charts are not the best option when concerns
are the finding of small shifts in the process mean.

Given that there are some practical situations were the performance of the Shewhart control charts is
not satisfactory or when the assumptions made on their design could not be validated or suitable to be
used, several control charts or methodologies have been developed in order to overcome these situations.
For instance, when dealing with small shifts in the mean, the Cumulative Sum (CUSUM) chart proposed
by Page (1954) and the Exponentially Weighted Moving Average (EWMA) introduced by Roberts (1959)
are better detecting those kind of shifts than Shewhart charts. Considering the parameter estimation case,
it has been shown that the chart capability detection decreases due to the estimation error and that the
performance measure common used, the Average Run Length (ARL) becomes a random variable instead
of being a constant. Several approaches have been considered to assess this problem, being the increase
of the Phase I sample size, the Q-transformation proposed by Quesenberry (1991a) and the self-starting
methodology introduced by Hawkins (1987) the principal ones, all of them developed and used mainly for
the i.i.d. case.

When dealing with autocorrelated streams of data, it has been proved that applying traditional control charts
to these kind of data lead to chart underperformance. Solution approches to this issue include the modi-
fication of traditional control charts (Vasilopoulos and Stamboulis, 1978), the modification of the sampling
technique (Reynolds et al., 1988) or the time series based control charts (as the residuals control charts
introduced by Alwan and Roberts, 1988) or development of control charts for stationary processes. The
time series approach is of particular interest since it allows to handle a wide variety of correlation structures
such as the Autoregressive and Integrated Moving Average models (ARIMA) models.

Even though there are other issues when designing a control chart (such as the economic design or the
economic-statistical design of a control chart) and as all Phase I methods are beyond the scope of this
research (the reader is referred to the works of Chakraborti et al., 2009 and Jones-Farmer et al., 2014 for
literature reviews about Phase I methods), this research is mainly focused on the parameter estimation
problem alongside the autocorrelated data issue. Therefore, the next subsections are devoted to the pre-
sentation of the state of the art for the effect of parameter estimation on control charts performance, the
self-starting methodology for the independent case and the SPM tools developed to deal with autocorrelated
streams of data.

2.2 Effect of parameter estimation on control charts performance

When dealing with processes whose in-control parameters are unknown, the control charts applied to such
processes tend to have a performance quite different to that expected under the known parameter case.
Therefore, the majority of the works for this issue were devoted to have responses of the questions stated
in Jensen et al. (2006):

“Just how poorly (or maybe well) might a chart perform if designed with estimates in place of
known parameters? What sample size is needed in Phase I to ensure adequate performance in



Chapter 2. Background and literature review 12

Phase II? How should the Phase II limits be adjusted to compensate for the size of the Phase I
sample?”.

or to develop alternatives to minimize the differences on the chart performance between known and un-
known parameters cases.

The chart performance has been commonly studied by means of the Run Length (RL) which is a ran-
dom variable that equals the number of plotted statistics before a signal is triggered from the control chart.
The average of the RL (ARL) is commonly used to evaluate the chart performance and it is defined as
the expected number of plotted statistics before a triggered signal from the chart. Considering the case of
known parameters, as long as the chart statistics are independent and the control limits are fixed, which
turns out to be the case of Shewhart charts, the RL has a geometric distribution with parameter α, the prob-
ability of a signal, and therefore, ARL = 1

α . Concerning the CUSUM control chart Brook and Evans (1972)
developed a Markov Chain approach to calculate the ARL based on a discretization of the statistic val-
ues whereas Crowder (1987) considered an integral-equation for the same end but considering the EWMA
control chart for which Lucas and Saccucci (1990) adapted the Markov Chain approach by discretizing the
infinite-state transition probability matrix of the chain.

On the other hand, when parameters are estimated then the ARL is a random variable which is condi-
tioned to the estimates obtained from the Phase I, and therefore is called conditional ARL. However, this
quantity reflects only the performance for an specific chart, which does not provide a lot of information about
the chart performance. When the ARL of the chart is calculated by averaging over all the possible values
of the parameters, then it is called marginal or unconditional ARL. In addition to this measure, the Stan-
dard Deviation of the RL, (SDRL) was usually also reported in several works that evaluated control charts
performance as well as some quantiles of the RL’s distribution in order to have a better understanding of
the chart performance properties.

Several works were devoted to compare estimators for the mean and/or the variance and to calculate
the marginal ARL, SDRL, and other RL quantiles. These works can be found in the literature reviews of
Jensen et al. (2006) and Psarakis et al. (2014), where the general conclusions include the fact that charts
performance under estimated parameters is no longer the same as in the known parameters case and that
a large amounts of Phase I data are required in order to diminish this difference, among others. In order to
avoid this Phase I problem other approaches have been proposed, such as the self-starting methodology
introduced by Hawkins (1987) and the Q-charts developed by Quesenberry (1991a). The main advantage
of these methods is that they avoid the necessity of high amounts of Phase I data as the parameters are
updated as soon as observations are available. For the sake of brevity, only key works are mentioned here
and the reader is referred to the literature reviews mentioned above.

There are two recent works in SPM that have taken the attention of several authors due to their relation
to the conditional control chart performance under parameter estimation. First, as the marginal or uncon-
ditional ARL is a random variable it also has a variation which could be though as the ARL’s sampling
variation or as the “practitioner-to-practitioner” variation from a manufacturing point of view. In the work
of Jones and Steiner (2012) the Standard Deviation of the ARL, (SDARL) was introduced as a perfor-
mance measure to evaluate the risk-adjusted CUSUM control charts. The rationale of these authors for
considering it as a performance measure was that in manufacturing processes the monitored data tend to
be homogeneous whereas in patient surveillance, they tend to be heterogeneous and therefore, it should
be a difference between patients. The other work is due to Gandy and Kvaløy (2013) where a methodol-
ogy to adjust control charts limits in order to guarantee an in-control performance with certain probability
conditioned on the Phase I estimates based on bootstrapping is provided. It has to be noted that even
though the adjustment of the control limits to have a guaranteed performance was previously considered by
Albers and Kallenberg (2005) it was with Gandy and Kvaløy’s work that this topic regained the attention of
SPM researchers. These two works seem to provoke an increase in SPM research consisting mainly in the
(re)evaluation of control charts under parameter estimation with the AARL and SDARL as performance
measures, and the design of control charts to have a guaranteed performance, usually the in-control per-
formance, via exact or bootstrap-based methods.



Chapter 2. Background and literature review 13

Concerning the estimated parameter issue when designing and implementing control charts, the topics
of conditional and guaranteed performance were considered by SPM researchers. Most of the works have
been focused on the evaluation of the control charts performance by means of AARL and SDARL and/or
on the adjustment of the control limits. For instance, concerning attribute data Zhang et al. (2013) evalu-
ated the geometric control charts (g-charts) whereas Lee et al. (2013), the upper-sided Bernoulli CUSUM
charts. Zhao and Driscoll (2016) and Faraz et al. (2017) evaluated and adjusted the control chart limits via
the bootstrap method proposed by Gandy and Kvaløy for the c and the np-chart.

Concerning the monitoring of the process mean, Zhang et al. (2014) evaluated the Exponential CUSUM
control chart considering both the marginal and conditional ARL distribution. They also suggested to have
an SDARL within 10% the nominal ARL value. Saleh et al. (2015b) evaluated the performance of the X̄
and X control charts by considering several variance estimators. For the EWMA control chart Saleh et al.
(2015a) reevaluated the performance considering the SDARL and adjusted the control chart limits; Aly
et al. (2015b) compared the Shewhart, EWMA and Adaptive EWMA (AEWMA) control charts by means of
SDARL considering both the adjusted and unadjusted control limits cases; Aly et al. (2016) evaluated the
Multivariate version of the AEWMA finding that around 90% of the in-control ARL distribution lies under
the nominal ARL value for small Phase I sample sizes m and adjusted the MAEWMA control limits using
the bootstrapping methodology proposed by Gandy and Kvaløy (2013) in order to overcome that situation.
Concerning CUSUM control charts, Saleh et al. (2016) used the Markov Chain approach of Brook and
Evans (1972) and the Gaussian Quadrature method to compute the integral-equations related to the com-
putations of the AARL and SDARL involved there; Hany and Mahmoud (2016) evaluated the Crosier’s
CUSUM control chart; Jeske (2016a) and Jeske (2016b) provided the Phase I sample size required to
achieve a conditional ARL0 closer, within certain relative error, of the CUSUM control chart for exponen-
tially distributed data and normally distributed data, respectively. The X̃ control chart was considered by Hu
and Castagliola (2017). Finally, Goedhart et al. (2017b) developed an exact method to adjust the Shewhart
X̄ and X control chart limits.

Concerning the variance monitoring, Epprecht et al. (2015) considered the conditional distribution of the
false-alarm probability, (FAP, related to the in-control ARL) of the S and S2 control charts and provided
the minimum number of Phase I data needed to guarantee, with a certain probability, that the FAP will not
exceed a nominal FAP value. The study of the S2 control chart performance in terms of the SDARL was
done by Faraz et al. (2015) who also used a bootstrapping methodology to adjust the chart control limits
in order to lower the SDARL values. The adjustment of the control charts via exact methods was done by
Goedhart et al. (2017a) for the one-sided Shewhart S control chart, by Diko et al. (2017) for the R and S
two-sided control charts, and by Guo and Wang (2017) for the two-sided S2 control chart. Recently, Faraz
et al. (2018) proposed exact methods to adjust the control limits of the Shewhart X̄ and S2 control charts to
have a guaranteed conditional in-control performance. On the other hand, Aparisi et al. (2018) provided the
first work to consider the trade-off between the conditional in-control and out-of-control performances for
the S2 control chart under estimated parameters. They developed a technique to determine the minimum
Phase I sample size to guarantee, with a certain probability, both in-control and out-of-control performances.

Considering the self-starting methodology, Keefe et al. (2015) evaluated the performance of the Shewhart
Q and CUSUM Q-charts in terms of the SDARL. They found that even when consistent estimators are
used, the reduction on the ARL’s variability is not monotonically related to the increase in the sample size,
at least upon a certain size. For simple linear profiles monitoring, Aly et al. (2015a) studied the performance
of three different approaches where large amounts of Phase I data are needed to have an SDARL within
10% the nominal value. Cheng et al. (2018) evaluated the effect of parameter estimation on the Phase II
synthetic exponential control charts for monitoring the time between events.

It is noteworthy to say that the adjustment control limits lead to high in-control ARL values, as it is often
used to ensure that 90% of the charts will be over the nominal ARL value. However, this adjustment leads
to an in-control ARL distribution with higher variability when compared to the case without the adjustment.
Taking this in mind, Zwetsloot and Woodall (2017) proposed a definition of what should be understood as
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“better performance” when comparing control charts. In the proposed definition, they stated that if the differ-
ence of the ARL’s obtained with each chart lies within the 5% of the nominal ARL value, those charts are
considered as having an equivalent performance. Otherwise, the chart whose ARL is closer to the desired
ARL is considered to have better performance than the other. With this definition, they made a head-to-
head comparison between Shewhart, CUSUM and EWMA control charts for monitoring the process mean
under parameter estimation, concluding that the EWMA and CUSUM do not have equivalent performance
in opposition to the findings of Hawkins and Wu (2014) for the known parameter case.

Table 2.2.1 stands for the works done in parameter estimation by considering mainly the works that are not
included in Jensen et al. (2006) and Psarakis et al. (2014) reviews and the works devoted to the conditional
in-control performance and methods for adjustment of the control charts limits to guarantee conditional
performance.

Table 2.2.1: Summary of works related to the i.i.d. case.

Author/Year Contribution

Brook and Evans
(1972)

Develop a methodology to compute the ARL of CUSUM control charts
using a Markov chain approach.

Crowder (1987) Develop an integral-equation method to compute the ARL of the EWMA
control chart.

Hawkins (1987) Proposed the self-starting methodology to address the Phase I problem.

Lucas and Saccucci
(1990)

Modified the Markov Chain approach of Brook and Evans (1972) to com-
pute the ARL of the EWMA control chart.

Quesenberry
(1991a)

Proposed the Q-charts for known and unknown parameters.

Albers and Kallen-
berg (2005)

Proposed a methodology to adjust control chart limits in order to guaran-
tee an in-control performance with certain probability.

Jensen et al. (2006) Literature review for the effect of parameter estimation on control charts
performance.

Jones and Steiner
(2012)

Considered the SDARL as a performance measure for control charts with
estimated parameters.

Gandy and Kvaløy
(2013)

Bootstrapping methodology to adjust chart control limits to guarantee an
in-control performance, with certain probability, for control charts with esti-
mated parameters.

Lee et al. (2013) Compare the conditional in-control performance of g-charts and the
Upper-sided Bernoulli CUSUM when monitoring non-conforming propor-
tions.

Zhang et al. (2013) Evaluate the performance of the g-charts using SDARL as performance
measure.

Hawkins and Wu
(2014)

Head-to-head comparison of power detection of EWMA and CUSUM
charts under known parameters.

Psarakis et al.
(2014)

Extension of the literature review of Jensen et al. (2006).

Zhang et al. (2014) Evaluated the Exponential CUSUM through the conditional and marginal
ARL’s distribution.

Aly et al. (2015a) Compared three different approaches for simple linear profile monitoring
using SDARL as performance measure.
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Table 2.2.1: (cont.) Summary of works related to the i.i.d. case.

Author/Year Contribution

Aly et al. (2015b) Compared the AEWMA, EWMA and Shewhart X̄ control charts under pa-
rameter estimation using SDARL as performance measure.

Epprecht et al.
(2015)

Calculated the required Phase I sample sizes for the S and S2 charts
needed to guarantee that the false-alarm probability will not exceed some
nominal value.

Faraz et al. (2015) Adjusted S2 chart control limits using the bootstrap method to overcome
the Phase I problem.

Keefe et al. (2015) Evaluated the conditional in-control performance of the self-starting con-
trol charts and its relation with the over-understimation of the mean and
variance.

Saleh et al. (2015a) Reevaluated the EWMA control charts with estimated parameters, consid-
ering several estimators for the process standard deviation.

Saleh et al. (2015b) Shown that unrealistic amounts of Phase I data are required to guarantee
a conditional in-control performance of X̄ and X Shewhart charts.

Aly et al. (2016) Evaluated the in-control performance of the MEWMA for normally dis-
tributed random vectors.

Hany and Mahmoud
(2016)

Evaluated the Crosier’s CUSUM control chart under estimated parame-
ters.

Jeske (2016a) Obtained the reference sample size needed to guarantee an in-control
performance for CUSUM control chart for exponential random variables.

Jeske (2016b) Calculate the minimum Phase I sample size to have a desired in-control
performance for CUSUM control chart for normal variables.

Saleh et al. (2016) Reevaluated the one and two-sided CUSUM control chart considering the
SDARL.

Zhao and Driscoll
(2016)

Evaluated the conditional in-control performance of the c-chart and ad-
justed the control limits using the bootstrap method.

Diko et al. (2017) Proposed a modification of the Goedhart et al. (2017a) method to adjust
control limits for the two sided R and S control charts.

Faraz et al. (2017) Evaluated the conditional in-control performance of the np-chart and ad-
justed the control limits using the bootstrap method.

Goedhart et al.
(2017a)

Developed an exact method to adjust the one-sided Shewhart S control
chart to guarantee a conditional in-control performance.

Goedhart et al.
(2017b)

Proposed a method to adjust control limits of the X̄ control chart to guar-
antee an in-control performance. This adjusted values depends on the
subgroup size (n) and the number of Phase I samples (m).

Guo and Wang
(2017)

Proposed an exact method to adjust the two-sided S2 control chart to
guarantee a conditional in-control performance.

Hu and Castagliola
(2017)

Evaluated the in-control performance of the median X̃ control chart and
adjusted the control limits by a bootstrap method.

Zwetsloot and
Woodall (2017)

Provide a definition of “better performance” to compare charts. Also, found
that CUSUM and EWMA charts do not have an equivalent in-control per-
formance under this definition.
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Table 2.2.1: (cont.) Summary of works related to the i.i.d. case.

Author/Year Contribution

Aparisi et al. (2018) Developed an exact technique to determine the minimum Phase I sample
size to guarantee both in-control and out-of-control performances for the
S2 control chart.

Cheng et al. (2018) Evaluated the conditional in-control performance of a synthetic exponen-
tial control chart for monitoring the time between events.

Faraz et al. (2018) Proposed exact methods to adjust control limits for the Shewhart X̄ and
S2 control charts.

2.3 Self-starting control charts

It is well known that control charts performance are negatively affected when using estimations as the pro-
cess true parameters values, and that it is due to the estimation error. That error could be diminished (and
the chart performance improved) by considering a reference sample large enough to provide accurate es-
timates. This is the so-called Phase I problem under the SPM label which has been deeply studied for the
independent case. Nevertheless, when the process has no historical data or when the sampling costs are
quite expensive, this approach is not suitable and other approaches are needed.

This necessity of a large in-control initial sample size was avoided by Hawkins (1987) with the self-starting
methodology. The idea is collect data (assumed to be independent and normally distributed random vari-
ables) and update the parameter estimations as more observations are available, constructing a sequence
of independently random variables distributed as t with certain (different) degrees of freedom. Thereafter,
in order to all of them have the same distribution, these statistics are again transformed by means of the t
distribution and the inverse of the normal standard distribution, to generate approximately normal standard
random variables. To assess the same problem, Quesenberry (1991a) proposed the Q charts considering
i.i.d. normal observations using Q statistics which were developed considering process parameters as un-
known and were proved to constitute a sequence of independent normal standard random variables. After
that, he proposed the Q charts for data following a binomial model Quesenberry (1991b), and Q charts
for attribute data from a Poisson approach Quesenberry (1992). Following the guidelines of Quesenberry
(1991a,b), Zantek (2006) evaluated the performance of the CUSUM Q chart and noticed that optimal values
proposed for the CUSUM chart are not the same for the CUSUM Q charts, due to there was not considera-
tion on the chart statistic distribution under a shift in the mean. Later, considering the work of Zantek (2006)
and the HQK methodology (Hawkins et al., 2003), Li and Wang (2010) studied the impact of the choice of
the parameters and the masked effect on the CUSUM Q chart and designed the Adaptive CUSUM Q chart
(ACQ chart) by proposing an adaptive technique to choose the chart parameters.

In order to create self-starting control charts, Hawkins et al. (2003) proposed a methodology to design this
type of charts (is also known as HQK) considering several scenarios including all parameters unknown
and using a change-point formulation. According to each scenario, they recursively used the test statistic
in order to calculate the control limits of the chart. Hawkins and Zamba (2005) created a control chart for
monitoring the variance of normally distributed processes using the GLR and the Bartlett factor correction
for the equal variances test. Considering the LRT approach and the EWMA procedure, Li et al. (2010)
proposed a self-starting control chart (SSELR) to monitor the mean and variance of normally distributed
processes and used a two-dimensional Markov chain model to calculate the in-control ARL of the chart.
Even though its advantages over other approaches, self-starting methodology produces biased charts as it
was proved by He et al. (2008) for the Shewhart Q charts. However, they also proposed a modification to
these charts which diminishes the bias of the charts and thus, improves the Q charts detection capability.

Concerning nonparametric approaches, the HQK methodology was considered by Zhou et al. (2009):
they developed a nonparametric control chart for shifts in the mean without prior knowledge of the under-
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lying distribution only assuming that there are m historical samples available. The chart is based on the
Mann-Whitney test and it provides also a comparison with the HQK chart for a few distributions such as
normal, lognormal, χ2 and t. Based on the same test and the HQK methodology, Hawkins and Deng
(2010) developed the corresponding nonparametric control chart using the change-point formulation and
compared it with Zhou et al.’s chart concluding that the assumption made by the latter ones only provides
benefits for small shifts. After that, Liu et al. (2013) designed a nonparametric control chart to detect shifts
in the mean of continuous distributions based on sequential ranks and considering the Adaptive EWMA
(AEWMA) chart proposed by Capizzi and Masarotto (2003). This chart is distribution free, which means
that the ARL does not depend on the data’s distribution. Recently, Liu et al. (2015) modified the AEWMA
(or NAE) control chart proposed by Liu et al. (2013) using the VSI procedure.

For multivariate processes, Sullivan and Jones-Farmer (2002) extended the methodology used on the Mul-
tivariate EWMA chart (MEWMA chart) but considering that mean vector and covariance matrix as unknown
to develop the SSMEWMA to monitor the mean vector. They used a low value of the false alarm probability
(FAP) in order to avoid false alarms due to thicker control limits. After that, Maboudou-Tchao and Hawkins
(2011) designed a control chart to detect shifts in the covariance matrix extending the Multivariate Exponen-
tially Moving Covariance Matrix chart (MEWMC) using the self-starting methodology and the SSMEWMA
to monitor both covariance matrix and mean vector, respectively. This procedure is called Self-Starting
Multivariate Exponentially Weighted Moving Average and Moving Covariance Matrix (SSMEWMAC) chart.

Considering different models, Zou et al. (2007) proposed a self-starting control chart for monitoring the
slope, intercept and standard deviation of linear profiles assuming unknown parameters. This chart is
based on recursive residuals and two EWMA charts with the control limits calculated using the Markov
Chain approach. Zhang et al. (2012) designed a self-starting cumulative count-of-conforming chart CCCg)
using the self-starting procedure and integrating it with an approximated ARL. Recently, Capizzi and
Masarotto (2012) suggested a new self-starting control chart using a procedure based on Adaptive CUS-
CORE, (ACUSCORE) to detect shifts in the mean. This chart uses Q statistics whose reference values are
updated by means of an adaptive EWMA.

The work of Keefe et al. (2015) was mentioned in the previous section since it is devoted to the condi-
tional in-control performance of the Shewhart Q and CUSUM Q control charts. The work of Snoussi et al.
(2005) will be mention again in the next section, as it is related to control charts for autocorrelated data and
seems to be better consider it there. These works are mentioned here just for the sake of completeness.
As it can be seen in Table 2.3.1, almost all self-starting charts were developed for independent data, letting
a gap when independence assumption is not met.

Table 2.3.1: Summary of works related to self-starting methods.

Author/Year Contribution Type of data.

Hawkins (1987) Set the theoretical basis to develop self-starting charts. Variable.

Quesenberry
(1991a)

Developed Q charts for known and unknown parameters
under normality.

Variable.

Quesenberry
(1991b)

Develop the Q charts for binomial distributions. Variable.

Quesenberry (1992) Q charts for Poisson processes Attribute.

Sullivan and Jones-
Farmer (2002)

Self-starting Multivariate EWMA (SSMEWMA) for monitor-
ing the mean vector of multivariate normal processes.

Variable.

Hawkins et al. (2003) Methodology to create self-starting charts based on
change-point model.

Variable.



Chapter 2. Background and literature review 18

Table 2.3.1: (cont.) Summary of works related to self-starting methods.

Author/Year Contribution Type of data.

Hawkins and Zamba
(2005)

Control chart based on the LRT of a variance test with
the Bartlett correction factor and using Change-point ap-
proach.

Variable.

Snoussi et al. (2005) Evaluated the performance of the Shewhart Q and EWMA
Q control charts applied to the residuals of an AR(1) pro-
cess assuming parameters as known.

Variable.

Zantek (2006) Provide optimal values for the CUSUM charts applied to Q
statistics.

Variable.

Zou et al. (2007) Self-starting chart for linear profiles. Variable.

He et al. (2008) Proved that Q charts are biased and proposed an im-
provement.

Variable.

Zhou et al. (2009) Nonparametric control chart using the HQK methodology. Variable.

Hawkins and Deng
(2010)

Nonparametric chart for monitoring the mean based on
the HQK methodology.

Variable.

Li and Wang (2010) Propose an Adaptive CUSUM for Q statistics. Variable.

Li et al. (2010) Develop a control chart based on the LRT and EWMA
methodology for normal processes to monitor both mean
and variance.

Variable.

Maboudou-Tchao
and Hawkins (2011)

Self-starting chart for multivariate normal processes for
monitoring the covariance matrix and the mean vector.

Variable.

Capizzi and
Masarotto (2012)

Propose a technique to develop self-starting control
charts: Adaptive CUSCORE (ACUSCORE) to assess
charts biasedness.

Variable.

Zhang et al. (2012) Self-starting Cumulative count-of-conforming chart
(CCCg).

Attribute.

Liu et al. (2013) Nonparametric chart based on the Adaptive EWMA of
Capizzi and Masarotto (2003).

Variable.

Liu et al. (2015) Nonparametric chart for mean based on the AEWMA of
Liu et al. (2013)

Variable.

Keefe et al. (2015) Evaluated the conditional in-control performance of the
self-starting control charts and its relation with the over-
understimation of the mean and variance.

Variable.

2.4 SPC for autocorrelated data

Another important issue to consider when developing a control chart is the independence assumption of
the data, since control charts are sensitive to departures of independence. Considering that it could not be
validated nor to be suitable for monitoring processes such as chemical ones (Montgomery, 2007 contains
several examples), the main efforts go from the evaluation of the control charts performance under autocor-
relation for Shewhart, CUSUM and EWMA control charts to the design of control charts based on ARMA
time-series models. It is noteworthy to say that the monitoring of correlated processes is more difficult than
in the i.i.d. case as a model is fitted and its parameters, estimated. This increases the uncertainty on the
model and on the estimations. However, these kind of processes arise in real life applications and some
approaches were developed to overcome these issues. For an in-depth study of the SPC procedures to
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handle autocorrelated processes, the reader is referred to the literature reviews of Psarakis and Papale-
onida (2007) and Prajapati and Singh (2012) and for the sake of brevity of the document, only key works in
this area and recent developments will be considered here.

There are some approaches which deal with techniques to make feasible the use of traditional control
charts. One of these approaches is to remove the autocorrelation of the data. This could be done by omit-
ting certain number of collected data points or changing the sampling scheme (for instance, the variable
sampling interval introduced by Reynolds et al. (1988) or the use of batch means Runger and Willemain
(1996)). The main drawback of these approaches might be the fact that not all available information is used
to understand the process behavior, which could be useful to understand the process dynamics. However,
the effect of autocorrelation on traditional charts performance was evaluated for Shewhart (Stamboulis,
1971 for X̄ and Amin et al., 1997 for R and S2 charts), CUSUM (Johnson and Bagshaw, 1974) and EWMA
(Harris and Ross, 1991) charts in terms of the RL distribution and it was found that the rate of false alarms
increases in presence of autocorrelation, specially for high levels of autocorrelation. As control limits are
constructed taking into account the process variance Stamboulis (1971) showed that AR(1) process vari-
ance differs from the process variance on the i.i.d. case and proposed to adjust control limits using the
process true variance. However, this adjustment lead to the widening (or shrinking) of the control lim-
its, which will affect both in-control and out-of-control ARL’s, that is why the adjustment should be made
carefully as in Vasilopoulos and Stamboulis (1978) in order to avoid a high rate of false-alarms or missing
noticeable changes, as shown in Section 1.2.

Therefore, in order to monitor and detect efficiently changes in autocorrelated process, several control
charts have been developed, considering mainly time series models. For instance, Alwan and Roberts
(1988) proposed the Special Cause Chart (SCC or residual chart) which uses the residuals (instead of
observed data) obtained from a fitted time series model (usually a particular ARIMA model) to collected
data. However, Longnecker and Ryan (1991) show that performance of traditional control charts applied
to residuals from a fitted AR(1) process is not the same that the one under the independence assumption.
Aside the residuals control charts, some control charts for stationary processes were developed, namely the
Exponentially Weighted Moving Average for Stationary Processes, EWMAST (introduced by Zhang, 1998);
the Autoregressive and Moving Average for Stationary Processes, ARMAST (proposed by Jiang et al., 2000
as an extension of the EWMAST); and the distribution free tabular CUSUM, (DFTC) for autocorrelated data
developed by Kim et al. (2007).

There have been other works on this line that have not been included in the literature reviews mentioned
above. Among these, Croux et al. (2011) considered robust estimators used with control charts for time
series data, particularly considering non-stationary time series whereas Chang and Wu (2011) proposed a
Markov Chain-based approach to compute the ARL for the Shewhart, CUSUM and EWMA control charts,
while Lwin (2011) considered the estimation of the autoregressive parameter φ0 by using a parametric and
semi-parametric approach and their implementation with the EWMAST control chart. The problem of the
model selection was considered by Ledolter and Bisgaard (2011) who presented an example of real data
that could be modeled sufficiently well by different time series models. The change-point analysis was
considered by Wu (2016) who provided more accurate confidence intervals for the change-point location
using a CUSUM control chart for AR(1) processes while De Ketelaere et al. (2016) evaluated different Prin-
cipal Component Analysis (PCA)-based methods to monitor AR(1) and ARI(1,1) processes and consider
the extension to multivariate time-series. Lee and Wei (2017) considered the Likelihood Ratio Test (LRT)
of a change in the mean of ARMA models and they compared its power when using non-aggregated and
aggregated data.

Concerning the residuals control charts introduced by Alwan and Roberts (1988), Snoussi et al. (2005)
consider the Shewhart Q and EWMA Q control charts applied to the residuals of AR(1) processes but
assuming that process parameters are perfectly accurate. Trying to improve the performance of these
charts, Triantafyllopoulos and Bersimis (2016) proposed a modification based on a Bayes factor to detect
departures from in-control situations. The problem of the effect of the model accuracy on these charts was
addressed by Zhou and Goh (2016) who evaluated such effect on multivariate autoregressive process of or-
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der 1, MAR(1). Recently, Dawod et al. (2017) evaluated the performance of the residuals Shewhart, EWMA
and CUSUM charts for AR(1), MA(1) and ARMA(1,1), but considering that process parameters estimations
were sufficiently accurate.

Asides residuals control charts, Alshraideh and Khatatbeh (2014) considered the Gaussian Process control
chart; Zhang and Pintar (2015) extended the Exponentially Weighted Mean Square, EWMS for variance
monitoring; Harris et al. (2016) proposed a multivariate control chart to monitor an autocorrelated tool wear
process; Dasdemir et al. (2016) evaluated the effect of two Phase I approaches when dealing with outliers
on the Phase II performance of the modified AR(1) Shewhart chart. Osei-Aning et al. (2017b) provided
the optimal scheme for the CUSUM and EWMA control charts for monitoring the mean of stationary AR(1)
processes whereas Osei-Aning et al. (2017a) proposed the mixed EWMA-CUSUM and mixed CUSUM-
EWMA control charts for the same end. Nevertheless, these works did not consider the issue of estimated
parameters. Recently, Weiß et al. (2018) considered the guaranteed conditional in-control performance of
the Shewhart X control chart for AR(1) processes. The adjustment of the control limits is done via both
parametric and non-parametric bootstraps.

Even though the time series approach allows to deal with autoregressive and integrated moving averages
ARIMA models it often requires a model selection and parameter estimation, which makes the procedure
more complex than in the i.i.d. case. A summarize of the works done when dealing with autocorrelation are
found in Table 2.4.1.

Table 2.4.1: Summary of works related to SPC methods for autocorrelated processes.

Author/Year Contribution

Vasilopoulos and
Stamboulis (1978)

Developed the modified X̄ control chart for AR(1) processes.

Amin et al. (1997) Developed the modified R and S2 control charts for AR(1) processes and
provided a way to compute the ARL of the modified S2 control chart.

Zhang (1998) Introduced the EWMAST control chart: an EWMA control chart for station-
ary processes.

Jiang et al. (2000) Developed the ARMAST control chart: an ARMA chart for stationary pro-
cesses with the EWMAST as a special case.

Snoussi et al. (2005) Evaluated the performance of the Shewhart Q and EWMA Q control
charts applied to the residuals of an AR(1) process assuming parameters
as known.

Capizzi and
Masarotto (2007)

Studied the effect of parameters estimation on the EWMAST control chart.

Kim et al. (2007) Developed a distribution free tabular CUSUM for autocorrelated data.

Psarakis and Papa-
leonida (2007)

Literature review for SPC techniques for autocorrelated processes.

Chang and Wu
(2011)

Markov Chain approach to compute the ARL for Shewhart, CUSUM and
EWMA control charts for autocorrelated data.

Croux et al. (2011) Developed a control chart for monitoring non-stationary time series under
parameter estimation.

Ledolter and Bis-
gaard (2011)

Expose the difficulty of time-series modeling problem consider data sets
that could be equally fitted to different models.

Lwin (2011) Consider the problem of robust estimation of the autoregressive parame-
ter of stationary AR(1) processes.
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Table 2.4.1: (cont.) Summary of works related to SPC methods for autocorrelated processes.

Author/Year Contribution

Prajapati and Singh
(2012)

Summary of control charts for autocorrelated processes.

Alshraideh and
Khatatbeh (2014)

Introduced the Gaussian Process control chart to monitor stationary pro-
cesses, based on the multivariate normal distribution.

Zhang and Pintar
(2015)

Extended the EWMS control chart for stationary processes and evaluate
their performance by means of ARL and MRL.

Dasdemir et al.
(2016)

Consider the effect of outliers in the performance of control charts for
AR(1) processes.

De Ketelaere et al.
(2016)

Review of Principal Component Analysis (PCA)-based methods to monitor
autoregressive processes.

Harris et al. (2016) A Multivariate control chart for monitoring tool wear processes.

Triantafyllopoulos
and Bersimis (2016)

Propose a method based on a Bayesian factor to detect departures from
an in-control time series model.

Wu (2016) Provides bias and pivots for the change-point considering an AR(1) pro-
cess.

Zhou and Goh
(2016)

Evaluated the effect of model accuracy on the performance of residuals
charts for multivariate AR(1) processes.

Dawod et al. (2017) Compared the Shewhart, CUSUM and EWMA residuals control chart for
AR(1), MA(1) and ARMA(1,1) processes.

Lee and Wei (2017) Studied the effect of aggregation on the LRT for changes in the mean of
stationary AR(1) processes.

Osei-Aning et al.
(2017b)

Provide the optimal EWMA and CUSUM schemes to be used for station-
ary AR(1) processes.

Osei-Aning et al.
(2017a)

Proposed mixed EWMA-CUSUM and mixed CUSUM-EWMA control
charts for monitoring AR(1) processes.

Weiß et al. (2018) Bootstrapping methods to adjust the Shewhart X control chart for AR(1)
processes.

2.5 Gap Analysis

It has been proved that control charts are helpful for assist managers on the decision-making process as
they are good to detect special causes of variation. However, their efficiency is negatively affected when the
assumptions are not met by the process, situation that arises naturally in several real life applications, such
as the parameters estimation issue and the autocorrelated data. As it can be seen from Tables 2.2.1, 2.3.1
and 2.4.1, there has been many efforts to deal with these issues trying to provide guidelines for practitioners
in the searching of assignable causes of variation.

Considering independent observations and the Phase I problem, the collection of an initial in-control sam-
ple of a sufficiently large size as a solution approach was deeply studied and considered by many authors.
However, for start-up processes or those without historical data that approach is not feasible and therefore,
the self-starting methodology or the Q-transformations are preferred. Even though these methodologies
provide biased charts, some authors have been proposed modifications in order to improve Self-Starting
Control Charts (SSCC) performance. Furthermore, the performance of this kind of charts is suggested to
be done in terms of the AARL and the SDARL, since there have a variation due to the initial-sample used
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to start the recursion for updating the parameters/statistics.

When dealing with autocorrelation, residuals charts were proposed as a solution approach by consider-
ing time series model which allows to use all available data at hand and also to avoid those approaches
which are not suitable when considering short runs, such as skipping several observations to diminish the
autocorrelation. Nevertheless, as in the independent case, there is a parameter estimation issue which
has not been deeply studied yet from a self-starting point of view and/or considering the SDARL as a
performance measure for the autocorrelated case. There are some studies about the effect of parame-
ters estimation when dealing with autocorrelated data (e.g. Capizzi and Masarotto (2007) for the EWMAST
chart), but no one considering the SDARL as performance measure was found.

Summarizing these facts and all previous comments, we have that:

• There are several works considering the effect of parameter estimation on the performance of tradi-
tional control charts, i.e. Shewhart, EWMA and CUSUM charts. Nevertheless, there is a lack of the
effect of parameter estimation on the performance of control charts for monitoring the mean and vari-
ance of autocorrelated data. Particularly, for the modified X̄ and S2 control charts, which are widely
used in practice under the i.i.d. case.

• There is a lack of studies about guaranteeing the conditional in-control performance of control charts
for autocorrelated processes. Just one work was found, and it is quite recent.

• Concerning the SDARL as a performance measure, there is a lack of studies considering a compar-
ison of control charts for autocorrelated processes when applied to the process observations (or to
the residuals).

• There is not a single work about the guaranteed conditional in-control performance based on exact
methods instead of bootstrap methods.

• Only two works are mentioned on McCracken and Chakraborti (2013) about to the joint monitoring of
the mean and variance in presence of autocorrelation and none of them provide a detailed study of
the effect of parameter estimation on the chart performance.

• The self-starting methodology has not been applied to the residuals of fitted time series model under
estimated parameters.

• When evaluating control charts under estimated parameters there are two approaches: (i) try to get an
small SDARL value in order to ensure that chart’s performance is near to some nominal ARL value,
and (ii) have a guaranteed conditional in-control performance. The latter one usually is reached by
adjusting (usually widening) the control limits, leading to higher ARL values that inflate the SDARL.
According to the approach some charts might be preferred over others or even over their “adjusted
versions”. There is a lack of head-to-head comparisons of control charts for autocorrelated processes:
applied to the observations or to the residuals.

• The problem of model selection has not been deeply studied for control charts for autocorrelated data.

Therefore, there are several lines to follow, but the line to follow up in this research is first to evaluate the
performance of the modified Shewhart X̄ and S2 control charts to try to see if these tools are good enough
to be used in practice, since they are widely used in the i.i.d. case, and if it is possible to have a guaranteed
performance with certain probability, just as the actual tendency on the i.i.d. case. After that, the joint mon-
itoring of the mean and variance could be addressed. Finally, residuals control charts might be compared
to these tools developed for observations in order to see if there is any advantage in using residuals as they
are independent as long as parameters are well estimated and the model well specified.

As it is not possible to deal with all of these research lines in this document only the first part is consid-
ered here: the evaluation of the modified X̄ and S2 control charts. Therefore, the effect of autocorrelation
estimators on the conditional in-control performance of the X̄ chart for stationary AR(1) processes is de-
tailed in Chapter 3 whereas in Chapter 4 the performance of the X̄ control chart considering all parameters
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as unknown is studied. In Chapter 5, the modified S2 chart when the process variance is estimated is
evaluated.



Chapter 3. Effect of autocorrelation estimators on the performance
of the X̄ control chart

Abstract

Control charts are powerful Statistical Process Monitoring tools to detect departures from in-control situa-
tions. However, their power detection relies on the fact that all assumptions underlying their design are met,
such as independence of data and knowledge of the process model parameters. When parameters are es-
timated, the Average and the Standard Deviation of the ARL, (AARL and SDARL, respectively) are used
as performance measures as they summarize the variation due to the Phase I estimations. Considering
these performance measures, the effect of several autocorrelation estimators on the X̄ chart performance
was investigated in case of stationary AR(1) processes. Further, a bootstrapping technique was developed
to adjust the corresponding control limits and obtain a guaranteed ARL performance. The effect on the
out-of-control ARL due to this adjustment is also presented. Results show that overestimation of the au-
toregressive parameter leads to higher values of both in-control and out-of-control ARL’s.

Keywords: AR(1) process; X̄ control chart; estimated parameters; Standard Deviation of the ARL; guar-
anteed performance.

3.1 Introduction

Statistical Process Monitoring (SPM) is a collection of statistical techniques used to assess if a process is
in statistical control or special causes of variation are present and need to be addressed. Control charts are
one of the most known and widely used SPM tools due to their ability to detect shifts from a target value.
However, to correctly implement a control chart several assumptions should be made, such as defining the
distribution of the observed data, establishing prior knowledge of the parameters, considering the indepen-
dence of observations, among others. The correct estimation of the control chart’s performance strongly
relies on the satisfaction of these assumptions whereas, in practice, they are seldom met.

Autocorrelated streams of data arise when taking measurements of the same object, when considering
a continuous flow of data, or when data are collected within small periods of time. Practical examples
are found in health surveillance, crop monitoring, chemical processes, etc. Technological advances make
possible to gather data at high rates, making the series likely to be autocorrelated. In these cases, tra-
ditional control charts should not be used carelessly, since their performance is known to degrade due to
the presence of correlation (Psarakis et al., 2014). If a practitioner wants to implement these charts under
these circumstances, an approach to decrease the level of correlation and improve charts performance is
to collect data at a lower rate or skip some observations as in Costa and Castagliola (2011).

When the process parameters are unknown they are usually estimated from an (assumed) in-control his-
torical data sample (called Phase I, Chakraborti et al., 2009) and, therefore, the chart is set up and used
for process monitoring (Phase II). Parameter estimation allows to define control charts by using estimates
as the parameters true values. This leads to a decrement in performance due to the added variability of
estimations – which diminishes as more Phase I data is gathered and consistent statistics are used as es-
timators. Performance of control charts with estimated parameters has been deeply studied. For instance,
Jones-Farmer et al. (2001), Chakraborti (2006), Bischak and Trietsch (2007), Graham et al. (2012), Teoh
et al. (2014), Teoh et al. (2014) and Yeong et al. (2015) have focused on location type control charts (i.e.
X̄ and X̃); whereas Maravelakis et al. (2002), Castagliola et al. (2009) and Castagliola and Maravelakis
(2011) have focused on dispersion type control charts (i.e. S, S2 and R); and Braun (1999), Chakraborti
and Human (2006), Castagliola and Wu (2012) and Castagliola et al. (2014) have focused on attribute type
charts. For an in depth review on the effect of parameters estimation see Jensen et al. (2006) and Psarakis
et al. (2014).

On the other hand, when the independence assumption is not suitable, control charts for autocorrelated
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processes have been investigated, often assuming a specific time series model. For instance, considering
autoregressive processes of order 1, i.e. AR(1), Kramer and Schmid (2000) studied the performance of
the Shewhart residual chart and the modified Shewhart chart when parameters are unknown while, Lwin
(2011), proposed a parametric EWMAST approach based on variograms to adjust the control limits in or-
der to avoid a high false alarm rate of the EWMAST chart for AR(1)-EIV processes, that is, AR(1) process
with errors in the variables. For Autoregressive and Moving Average (ARMA) processes, Chin and Apley
(2008) investigated the performance and the robustness of several residuals control charts and Lee and
Apley (2011) proposed an improved design of the EWMA chart using a Bayesian approach for widening the
control chart limits.

Recently, the performance evaluation of control charts with estimated parameters has been revisited by
taking into account the variation due to the Phase I samples used to estimate the process parameters into
account. A new performance indicator has been proposed, the standard deviation of the average run length
(SDARL), also called as the “practitioner-to-practitioner” variance which is a performance measure sum-
marizing this variation. The first ones who advocated the use of this new indicator were Jones and Steiner
(2012) by considering a health surveillance application and, therefore, the heterogeneity of the population
when applying control charts. After that, Gandy and Kvaløy (2013) proposed an efficient bootstrapping
technique to provide a guaranteed performance with a certain probability conditioned on the Phase I esti-
mations. Considering the ARL’s mean and standard deviation, AARL and SDARL, respectively, Zhang
et al. (2014) suggested to guarantee an SDARL value within 5% to 10% of the target in-control ARL.

As a result, based on these considerations, the performance of the control charts under estimated pa-
rameters have been revisited using the SDARL: the Shewhart X̄ and X control charts were studied by
Saleh et al. (2015b) and Goedhart et al. (2017b), the EWMA X̄ control chart by Saleh et al. (2015a) whereas
the Adaptive EWMA (AEWMA) X̄ chart by Aly et al. (2016) and its multivariate version (MAEWMA) by Aly
et al. (2015b). The one and two-sided CUSUM control charts were revisited by Saleh et al. (2016) who
used a Markov Chain approach to calculate the ARL and the Gaussian-Quadrature method to compute
the AARL and SDARL. The in-control performance of the CUSUM and EWMA control charts was studied
by Hawkins and Wu (2014) under the known parameters case and by Zwetsloot and Woodall (2017) for
the unknown parameters case. It was found that these charts have not a similar in-control performance
under parameters estimation. The self-starting Q and CUSUM Q control charts were studied by Keefe et al.
(2015) who found that the amount of variation using these charts is lower than those obtained by using
traditional Phase I methods but the authors warned that process estimation with few data may lead into
data contamination. Considering variance monitoring Faraz et al. (2015) evaluated the performance of the
S2 control chart whereas Epprecht et al. (2015) studied the effect on the false alarm rate of the S and S2

charts with estimated parameters.

In this research, using the AARL and SDARL as performance measures, we investigate the X̄ control
chart for monitoring the mean of an AR(1) process with estimated parameters. We particularly focus on the
effect on the chart performance due to the estimation of the autoregressive parameter by considering five
estimators including the least squares, unbiased and robust estimators for the autoregressive parameter,
and we provide adjusted control limits to ensure a desired in-control ARL (ARL0) with a certain probability.

The remaining of the chapter is organized as follows: in Section 3.2 the X̄ control chart for an AR(1)
process is introduced; Section 3.3 presents the design of the simulation to evaluate the chart’s performance
as well as the results. Section 3.4 provides the adjusted control limits to guarantee a conditional in-control
performance and the effect of this adjustment on the out-of-control ARL (ARL1) is commented. Finally,
conclusions and future works are discussed in section 3.5.
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3.2 Shewhart X̄ chart for autocorrelated data

3.2.1 Known parameter case

Consider a sequence of observations {Xi,1, Xi,2, . . . , Xi,n} following an autoregressive first order model
AR(1):

Xi,j − µ0 − δσ0 = φ0(Xi,j−1 − µ0 − δσ0) + εi,j , (3.2.1)

for i = 1, 2, . . . and j = 1, 2, . . . , n, where n is the subgroup size at time i, µ0 and σ0 are the in-control
process mean and standard deviation, respectively, εi,j ∼ N(0, σε) are independent, φ0 ∈ (−1, 1) is the
in-control autoregressive parameter, δ = |µ0−µ1|

σ0
is the standardized mean shift from µ0 to µ1 and Xi,0 is

assumed to have the steady-state distribution, i.e. Xi,0 ∼ N (µ0, σ0). If δ = 0 the process is considered as
in-control, otherwise, it is considered as out-of-control. The process standard deviation σ0 is related to σε
by means of

σ0 =

√
σ2
ε

1− φ2
0

. (3.2.2)

The X̄ control chart uses the statistic X̄i =
Xi,1+Xi,2+···+Xi,n

n for monitoring the mean µ0 of an AR(1)
process. Considering that, for j = 1, 2, . . . , n, Xi,j and Xi+1,j are independent, the standard deviation
σ(X̄i) is given by

σ(X̄i) =
σ0√
nC2

(3.2.3)

where

C2 =

√√√√ n

n+ 2
(
φn+1
0 −nφ2

0+(n−1)φ0

(φ0−1)2

) (3.2.4)

as long as |φ0| < 1, Alwan and Radson (1992). Note that C2 only depends on n and φ0.

When the process parameters µ0, σ0 (or σε) and φ0 are known the control limits LCL and UCL of the
X̄ chart for monitoring the process mean are given by

LCL = µ0 −K
σ0√
nC2

, (3.2.5)

UCL = µ0 +K
σ0√
nC2

, (3.2.6)

where K > 0 is a positive real valued constant chosen to satisfy some desired ARL0 (for instance, K = 3 if
we desire ARL0 = 370.4 when C2 = 1). The type II error β of the X̄ chart for an AR(1) process with known
parameters is given by

β = Φ(K − δ
√
nC2)− Φ(−K − δ

√
nC2) (3.2.7)

where Φ(·) is the c.d.f. of the normal standard distribution. The corresponding ARL is equal to ARL = 1
1−β .

The effects of autocorrelation on the X̄ control chart when all parameters are known have already been
studied by Costa and Castagliola (2011). When some parameters are estimated, the ARL becomes a
random variable as shown in the following section.

3.2.2 Estimated parameter case

In order to evaluate the effect of the estimation of the autoregressive parameter φ0 on the X̄ control chart,
we will consider that the in-control process parameters µ0 and σ0 are known while the in-control autore-
gressive parameter φ0 is unknown and has to be estimated from a Phase I random sample.

As we are considering autocorrelation within samples and not between samples then the Phase I is done by
collecting m consecutive observations in order to capture the information contained on the autoregressive
parameter of the AR(1) process. With this sample of size m, φ0 is estimated and the control chart is set up
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for Phase II, where samples of n subsequent autocorrelated observations are taken to compute the sample
mean. These Phase II samples are collected sufficiently separated over time (say, every h hours) in order
to the sample means could be considered as independent. This follows a common practice in the industry
where consecutive items are measured as part of a sample, but samples are separated over time, leading
to reduced correlation between samples to the point where autocorrelation can be ignored.

Therefore, the model for Phase I could be written as:

Xj − µ0 = φ0 (Xj−1 − µ0) + εj (3.2.8)

with X0 ∼ N (µ0, σ0). This model will be used through this paper when considering Phase I.

Letting X1, X2, . . . , Xm be the Phase I sample, then five estimators were considered for this research.
First:

φ̂0,LS =

∑m
j=2XjXj−1∑m−1
j=1 X2

j

, (3.2.9)

the least squares (LS) estimator, which have been proved to be biased by Marriot and Pope (1954) and
Kendall (1954). Shenton and Johnson (1965) derived the first moment of this estimator, for small |φ0|, by
the series

E(φ̂0,LS) = φ0 −
2 (m− 2)φ0

(m+ 1)
[2]

+
12φ3

0

(m+ 5)
[3]

+
18 (m+ 8)φ5

0

(m+ 9)
[4]

+
24 (m+ 10) (m+ 12)φ7

0

(m+ 13)
[5]

+ · · · ,

where m[s] = m (m− 2) . . . (m− 2 (s− 1)), or as the asymptotic series (when m is large):

E(φ̂0,LS) = φ0 −
2φ0

m
+

4φ0

m2
−

2φ0

(
1− 8φ2

0 + 4φ4
0

)
m3 (1− φ2

0)
2

+
4φ0

(
1− 30φ2

0 + 12φ4
0 − 4φ6

0

)
m4 (1− φ2

0)
3 − · · · .

From where it can be seen that the bias of φ̂0,LS is O (1/m). Further, E(φ̂0,LS) could be written as:

E(φ̂0,LS) = φ0

(
1− 2 (m− 2)

(m+ 1)
[2]

)
+O

(
1/m3

)
or as:

E(φ̂0,LS) = φ0

(
1− 2

m
+

4

m2

)
+O

(
1/m3

)
which leads to the creation of two less biased estimators:

φ̂0,LS1 = φ̂0,LS ·

(
1− 2 (m− 2)

(m+ 1)
[2]

)−1

=

(
m2 − 1

m2 − 2m+ 3

)
φ̂0,LS

and

φ̂0,LS2 = φ̂0,LS

(
1− 2

m
+

4

m2

)−1

=

(
m2

m2 − 2m+ 4

)
φ̂0,LS (3.2.10)

whose bias is O
(
1/m3

)
. Given the similarity between these estimators, we only consider the one shown in

equation (3.2.10).
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A third estimator considered in this research was proposed by Quenouille (1949). It is an unbiased, least-
squares based estimator given by

φ̂0,Q = 2φ̂0,LS −
1

2

(∑bm/2c
j=2 XjXj−1∑bm/2c−1
j=1 X2

j

+

∑m
j=bm/2c+2XjXj−1∑m−1

j=bm/2c+1X
2
j

)
, (3.2.11)

where b·c is the rounded down integer function. Aside from the least-squares based estimators, and also
considered in this paper as our fourth estimator, Hurwicz (1950) proposed an estimator based on the median
of the ratios:

φ̂0,H = median

(
X2

X1
,
X3

X2
, . . . ,

Xm

Xm−1

)
(3.2.12)

in order to provide robustness over outlying observations and data contamination. Finally, the fifth esti-
mator under consideration was proposed by Haddad (2000) with the introduction of the median substitute
estimator φ̂0,MS as the solution of the quadratic equation:

sign (φ) 0.26φ2 + 0.195φ− 0.4705× median(X1X2, . . . , Xm−1Xm)

median(X2
1 , X

2
2 , . . . , X

2
m−1)

= 0. (3.2.13)

The distribution of the least squares estimator φ̂0,LS has been deeply studied before due to its relation with
the invertibility and/or stationarity of AR(1) processes as well as for the development of hypotheses tests.
Due to the lack of a closed form for the distribution function of φ̂0,LS , some approximations have been sug-
gested Wang (1992),Ali (2002), as well as other estimators, such as the Yule-Walker, Burg and a modified
least squares estimator. However, the Least Squares estimator is less biased among those estimators
Provost and Sangel (2005).

Therefore, when φ0 is unknown and it is estimated with any of the previous estimators φ̂0 ∈ {φ̂0,LS , φ̂0,LS2,

φ̂0,Q, φ̂0,H , φ̂0,MS} in (3.2.9) to (3.2.13), respectively, the (estimated) control limits of the Shewhart X̄ chart
for autocorrelated data become

L̂CL = µ0 −K
σ0√
nĈ2

, (3.2.14)

ÛCL = µ0 +K
σ0√
nĈ2

, (3.2.15)

where
Ĉ2 =

√√√√√ n

n+ 2

(
φ̂n+1

0 − nφ̂2
0 + (n− 1)φ̂0

(φ̂0 − 1)2

) . (3.2.16)

as long as
∣∣∣φ̂0

∣∣∣ < 1 in order to equation (3.2.16) be valid.

3.3 Conditional performance of the X̄ for an AR(1) process when φ0 is estimated

In this section, the X̄ control chart for an AR(1) process is evaluated considering the average and standard
deviation of the ARL, i.e. AARL and SDARL, respectively, as performance measures. There are two
possible approaches to compute these measures:

• either use the p.d.f. (if known) of the ARL with a numerical method for integration, such as the Gaus-
sian quadrature method,

• or run extensive Monte Carlo simulations to get a sufficiently precise estimation.
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The second approach is chosen as there is no closed-form for the ARL distribution. The conditional type II
error of the X̄ chart for an AR(1) process is

β = P(X̄i ∈ [L̂CL, ÛCL]|φ̂0)

which could be written, after some manipulations, as:

β = Φ

(
K
C2

Ĉ2

− δC2

√
n

)
− Φ

(
−KC2

Ĉ2

− δC2

√
n

)
. (3.3.1)

Given a fixed value of the estimate φ̂0 obtained in Phase I, the chart statistics (the sample means X̄i)
are assumed to be independent. Therefore, the run length of the X̄ chart for an AR(1) process follows a
geometric distribution of parameter β and, consequently, the conditional ARL given a sample is equal to

ARL =
1

1− β

As a first step, the effect of the estimation of φ0 on the ARL was studied by considering values of φ̂0 ∈
(−1, 1) for selected true values of φ0 ∈ {±0.1,±0.5,±0.9}. These values were considered in order to exam-
ine low, medium and high correlation levels for both positive and negative values. By considering φ0, n and
δ as fixed then the ARL is a function only of Ĉ2 or, more specifically, of φ̂0.

Concerning the in-control case (δ = 0) with target ARL0 = 370.4, the relation between ARL and φ̂0 is
illustrated in Figure 3.3.1 for different values of φ0. Only some values are considered here, but the curves
have the same shape for any values of φ0 ∈ (−1, 1) and remain the same for different ARL0 values. It can
be seen from Figure 3.3.1 that it is more likely to have large ARL values when φ0 is overestimated, despite
φ0 is positive or negative. It also can be seen that small variations from the true φ0 value leads to relatively
big variations on the conditional ARL.

On the other hand, concerning the out-of-control case for δ = 1 (in this case, no reference line is shown
since ARL1 differs from one to another value of φ0), the relation between ARL and φ̂0 is illustrated in Figure
3.3.2. It can be noticed that as φ̂0 increases so ARL1 does, as in the in-control case. Thus, overestimating
φ0 leads to larger values of ARL than those obtained under known parameter case.
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Figure 3.3.1: ARL0 vs φ̂0, for n = 5, δ = 0, (in-control
process)
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Figure 3.3.2: ARL1 vs φ̂0, for n = 5, δ = 1,
(out-of-control process)

As the values of φ̂0 could vary from sample to sample (and from estimator to estimator), the conditional
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in-control performance of the X̄ control chart is evaluated considering all the estimators introduced in
Section 3.2.2 using Algorithm 1. The analysis was done by considering different Phase I sample sizes
m ∈ {50, 100, 200, 500, 1000}, different values for the autoregressive parameter φ0 ∈ {±0.1,±0.5,±0.9} with
a target ARL0 = 370.4, samples of size n = 5, δ = 0 and rep = 10000, where φEST is one of the estimators
shown in equations (3.2.9) to (3.2.13).

Algorithm 1 Calculation of AARL, SDARL and MARL

Define m, n, φ0, ARL0, δ, rep, φEST .
K ← Φ−1

(
1− 1

2ARL0

)
.

C2 ← Calculate using equation (3.2.4) with φ0.
r ← 1.
while r ≤ rep do

Generate X1, X2, . . . , Xm based on the AR(1) model in (3.2.8)
Xj − µ0 − δσ0 = φ0(Xj−1 − µ0 − δσ0) + εj , where εj ∼ N

(
µ0, σ0

√
1− φ2

0

)
Estimate φ0 with φEST and denote it as φ̂0,r.
if
∣∣∣φ̂0,r

∣∣∣ < 1 then

Ĉ2,r ← Calculate using equation (3.2.16) with φ̂0,r and denote it by Ĉ2,r.
βr ← Φ

(
K C2

Ĉ2,r
− δC2

√
n
)
− Φ

(
−K C2

Ĉ2,r
− δC2

√
n
)

.

ARLr ←
1

1− βr
.

r ← r + 1.
end if

end while
AARL← mean(ARL1, . . . , ARLrep).
SDARL← stdev(ARL1, . . . , ARLrep).
MARL← median(ARL1, . . . , ARLrep).

Tables 3.3.1 and 3.3.2 show the resulting in-control mean (AARL0), standard deviation (SDARL0) and
median (MARL0) of the ARL0 for all estimators under study. From these measurements, we can drawn
the following conclusions:

• When φ0 is fixed and m increases the SDARL0 decreases and the AARL0 gets closer to the desired
ARL0 = 370.4 for both positive and negative values of φ0, as well as for all φ0 estimators.

• When m is fixed and φ0 increases, most cases show that AARL0 gets closer to the desired ARL0

value and SDARL0 decreases in almost all cases. This is not observed when φ0 changes from −0.9
to −0.5. This apparent contradiction can be explained by observing Figure 3.3.1, where the slope of
the ARL0 is higher around the neighborhood of φ̂0 = -0.5 than around the neighborhood of φ̂0 = -0.9.
The farther the slope is from zero, the bigger the variation of the ARL0 is expected to be.

• With the constraint
∣∣∣φ̂0

∣∣∣ < 1, ARL values obtained when φ0 = 0.9 are bounded above by 850 whereas
for φ0 = −0.9, are bounded below by 280 (see Figure 3.3.1).

• The robust estimators φ̂0,H and φ̂0,MS performs poorly in almost all cases. They have quite large
SDARL0 values, specially for small values of m and φ0.

• The value of MARL0 is close to the nominal ARL0 value for different estimators and Phase I sample
sizes in most of the cases.

In order to explain the last point, note from Figure 3.3.1, that ARL0 is a monotonically increasing function
of φ̂0 in (−1, 1) for every φ0 value. Now, as quantiles are preserved under monotonic increasing functions,
therefore quantiles of ARL0 coincides with the ARL0 obtained with the corresponding quantile of φ̂0. Taking
a look at φ0 estimations (which are not included here for the sake of brevity), the median of φ̂0 is close to
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Table 3.3.1: Descriptive statistics for the ARL0 distribution considering n = 5, a desired ARL0 = 370.4 and
φ0 ∈ {0.9, 0.5, 0.1}

m φ̂0
φ0 = 0.9 φ0 = 0.5 φ0 = 0.1

AARL0(SDARL0) MARL0 AARL0(SDARL0) MARL0 AARL0(SDARL0) MARL0

50

φ̂0,LS 280.44 (129.86) 267.55 547.11 (670.61) 340.34 885.72 (2631.74) 366.99
φ̂0,LS2 370.60 (185.58) 347.93 690.28 (952.81) 397.58 1019.87 (3680.05) 378.52
φ̂0,Q 339.07 (175.15) 316.46 793.40 (1989.57) 384.72 1138.41 (4981.59) 381.89
φ̂0,H 325.92 (204.47) 285.32 1824.36 (6777.25) 363.23 21324.42 (646297.67) 369.40
φ̂0,MS 345.11 (226.58) 301.25 3111.37 (10151.83) 451.57 47476.01 (1.33×106) 374.43

100

φ̂0,LS 327.95 (110.85) 324.07 449.05 (340.80) 359.72 559.70 (713.48) 372.15
φ̂0,LS2 378.06 (133.21) 372.27 494.66 (393.84) 389.38 581.33 (783.18) 378.08
φ̂0,Q 373.69 (144.89) 358.55 504.66 (447.29) 386.76 589.81 (860.77) 377.15
φ̂0,H 369.84 (179.69) 342.49 791.26 (1521.40) 373.39 1538.25 (12517.98) 370.72
φ̂0,MS 392.59 (209.10) 364.79 1321.98 (4101.09) 436.41 2495.16 (41057.60) 360.42

200

φ̂0,LS 352.30 (84.13) 350.70 409.06 (210.76) 363.21 443.02 (288.92) 371.68
φ̂0,LS2 378.43 (92.34) 376.40 427.53 (224.90) 377.90 448.49 (297.36) 374.62
φ̂0,Q 379.20 (102.25) 371.74 429.85 (232.43) 377.54 449.68 (303.13) 372.96
φ̂0,H 378.19 (139.58) 362.03 521.72 (519.11) 368.42 627.09 (1194.65) 372.79
φ̂0,MS 428.56 (186.30) 407.22 694.44 (962.07) 427.22 691.26 (1256.27) 355.50

500

φ̂0,LS 364.45 (55.32) 364.41 385.40 (121.85) 367.42 399.16 (150.67) 372.20
φ̂0,LS2 375.04 (57.44) 374.96 391.86 (124.84) 373.31 400.69 (152.04) 373.38
φ̂0,Q 375.10 (59.69) 373.52 392.28 (126.00) 372.69 400.91 (152.85) 372.74
φ̂0,H 375.09 (89.81) 368.89 417.39 (222.84) 367.46 450.48 (301.16) 373.94
φ̂0,MS 447.76 (147.29) 430.20 511.06 (346.83) 416.50 447.91 (321.78) 356.41

1000

φ̂0,LS 368.30 (40.01) 367.79 377.60 (83.71) 368.19 382.32 (96.62) 370.20
φ̂0,LS2 373.62 (40.77) 373.08 380.69 (84.70) 371.13 382.98 (97.02) 370.78
φ̂0,Q 373.76 (41.62) 372.91 380.73 (85.07) 371.07 383.08 (97.19) 370.89
φ̂0,H 374.13 (64.62) 370.74 395.07 (143.58) 368.26 403.78 (165.53) 371.46
φ̂0,MS 445.80 (113.76) 432.92 459.61 (203.46) 417.95 394.10 (179.54) 353.07

φ0 in most of the cases. This means that around 50% of the times, φ̂0’s obtained are below/above φ0 and
since ARL0 = 370.4 when φ̂0 = φ0, then ARL0’s obtained are around 50% of the times below/above the
nominal value. Thus, MARL0 is close to the nominal value in several cases.

The fact that in several cases AARL0 is far from the nominal value might be explained with the same
argument. Despite the quantiles of the ARL0 and φ̂0 values will coincide, this is not true for the expected
value due to the slope of the curve. However, that around 50% of the charts will have an ARL0 below the
nominal value is undesirable, but it could be assessed by adjusting control limits to achieve a desired value
(with a certain degree of confidence). A solution of this problem is proposed in the following section with an
analysis of the effect on the ARL1.

3.4 Guaranteed conditional in-control performance control limits

The results presented in the previous section show that the ARL performance of the X̄ control chart for an
AR(1) process is around 50% of the times below the nominal ARL0 value. In order to assess this problem
and to have a guaranteed conditional in-control performance (with a certain probability), a bootstrapping
methodology introduced by Gandy and Kvaløy (2013) was used. With this technique it is possible to have a
minimum ARL0 value with a certain probability by adjusting the chart’s control limits.

If δ = 0 and n is fixed, the AR(1) process in equation (3.2.8) reduces to

Xj − µ0 = φ0 (Xj−1 − µ0) + εj

with X0 ∼ N (µ0, σ0) which only depends on the unknown parameter φ0. Therefore, this reduced model is
denoted here as P = P (φ0). Using this notation, the proposed procedure is the following:
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Table 3.3.2: Descriptive statistics for the ARL0 distribution considering n = 5, a desired ARL0 = 370.4 and
φ0 ∈ {−0.1,−0.5,−0.9}

m φ̂0
φ0 = −0.1 φ0 = −0.5 φ0 = −0.9

AARL0(SDARL0) MARL0 AARL0(SDARL0) MARL0 AARL0(SDARL0) MARL0

50

φ̂0,LS 1063.67 (5464.59) 376.95 1853.01 (13644.16) 411.86 1179.16 (9423.53) 474.42
φ̂0,LS2 1151.32 (7487.81) 365.35 1698.42 (13897.72) 343.57 881.94 (6840.31) 384.34
φ̂0,Q 1444.02 (21264.86) 368.74 1754.56 (12706.19) 356.56 1038.41 (10431.19) 412.57
φ̂0,H 460504.25 (3.89×107) 371.30 193994.11 (8.63×106) 379.81 16438.14 (583621.97) 448.26
φ̂0,MS 111211.90 (7.32×106) 377.20 2.44×106 (1.63×108) 305.47 105685.89 (6.72×106) 427.75

100

φ̂0,LS 574.25 (742.44) 374.63 655.62 (1066.44) 381.43 514.99 (1005.50) 404.43
φ̂0,LS2 575.22 (777.44) 368.77 604.80 (1008.68) 347.96 459.93 (841.25) 367.61
φ̂0,Q 581.06 (766.41) 370.94 616.29 (1028.52) 349.43 476.54 (988.49) 377.24
φ̂0,H 1581.18 (12633.49) 372.53 1949.87 (17642.45) 368.91 799.62 (8804.68) 391.39
φ̂0,MS 2362.82 (60278.19) 391.28 2060.09 (19449.45) 307.12 1306.94 (39875.12) 371.96

200

φ̂0,LS 461.37 (321.45) 375.74 473.57 (353.23) 376.64 412.96 (107.04) 384.59
φ̂0,LS2 459.51 (324.31) 372.80 453.12 (340.20) 359.66 393.11 (96.59) 367.16
φ̂0,Q 461.01 (327.94) 372.39 456.51 (347.96) 358.98 396.23 (101.71) 369.52
φ̂0,H 668.76 (1272.59) 374.85 662.24 (1482.46) 365.10 437.23 (211.91) 375.97
φ̂0,MS 684.39 (2425.51) 390.91 679.40 (1786.14) 313.86 450.11 (412.04) 349.06

500

φ̂0,LS 401.91 (157.04) 371.44 409.65 (162.44) 376.79 383.51 (44.89) 373.98
φ̂0,LS2 400.86 (157.27) 370.26 402.25 (159.78) 369.89 376.41 (42.95) 367.22
φ̂0,Q 401.08 (157.66) 370.05 402.60 (160.69) 370.30 376.81 (43.97) 368.02
φ̂0,H 450.62 (306.38) 371.50 453.77 (312.17) 368.37 388.95 (74.90) 370.33
φ̂0,MS 463.89 (307.86) 388.25 418.98 (360.96) 320.31 369.89 (103.52) 339.79

1000

φ̂0,LS 385.97 (102.16) 369.79 388.62 (104.85) 372.47 376.72 (28.28) 372.63
φ̂0,LS2 385.41 (102.20) 369.20 385.06 (103.97) 369.04 373.26 (27.64) 369.24
φ̂0,Q 385.59 (102.40) 369.19 385.09 (104.34) 368.64 373.36 (28.16) 369.51
φ̂0,H 407.61 (177.62) 369.72 410.37 (180.45) 371.32 379.16 (45.83) 370.77
φ̂0,MS 425.02 (182.88) 388.76 367.37 (189.40) 322.91 352.90 (55.90) 339.36

1. Generate an in-control Phase I sample of size m from P (φ0) and use this sample to estimate the
process distribution, P̂ = P (φ̂0), where φ̂0 is one of the estimators shown in Section 3.2.2 and use
this estimation to compute K(P̂ , φ̂0) defined in Appendix.

2. Generate B bootstrap samples from the estimated in-control distribution P̂ and compute the cor-
responding estimated distribution P̂ ∗b = P (φ̂∗0,b) and the quantities K(P̂ ∗b , φ̂

∗
0,b) and K(P̂ , φ̂∗0,b) for

b = 1, 2, . . . , B.

3. Consider the bootstrap distribution of K(P̂ ∗b , φ̂
∗
0,b) − K(P̂ , φ̂∗0,b) and let Kα∗ be the α∗−th quantile of

that distribution. Then, the quantity K(P̂ , φ̂0)−Kα∗ is taken as the K-value to adjust the chart control
limits.

This procedure is detailed in Algorithm 2. In Appendix it is shown that

K(P̂ , φ̂0) = K(P̂ ∗b , φ̂
∗
0,b) = Φ−1

(
1− α

2

)
,

and

K(P̂ , φ̂∗0,b) =
Ĉ∗2,b

Ĉ2

Φ−1
(

1− α

2

)
.

Therefore, finding K(P̂ , φ̂0) −Kα∗ is the same as finding the α∗-th quantile of the bootstrap distribution of
K(P̂ , φ̂∗0,b). Further, since the estimated distribution and parameters obtained in Step 1 could differ from
sample to sample the bootstrapping methodology was applied several times. It has to be noted that equation
(3.3.1) is valid as long as |φ0| < 1 and |φ̂0| < 1. While the former is always met since the election of φ0

values on the simulation study, the latter one depends on the estimation of φ0 and then on the observed
series. When a series does not met this constraint it is not considered and another one is generated. This
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procedure is stated in Algorithms 1 and 2 with the if condition.

Algorithm 2 Calculation of the adjusted K-values

Define m, n, φ0, ARL0, α∗, B, rep, φEST .
δ ← 0
α← 1

ARL0

r ← 1
while r ≤ rep do

Generate X1, X2, . . . , Xm based on the AR(1) model:
Xj − µ0 = φ0(Xj−1 − µ0) + εj , where εj ∼ N

(
µ0, σ0

√
1− φ2

0

)
Estimate φ0 with φEST and denote it by φ̂0,r

if
∣∣∣φ̂0,r

∣∣∣ < 1 then

Ĉ2 ← calculate using equation (3.2.16) with φ̂0,r.
b← 1
while b ≤ B do

Generate X∗1 , X∗2 , . . . , X∗m based on the estimated AR(1) model:
Xj − µ0 = φ̂0,r (Xj−1 − µ0) + εj , where εj ∼ N

(
µ0, σ0

√
1− φ2

0

)
.

Estimate φ̂0,r with φEST and denote it by φ̂∗0,b.

if
∣∣∣φ̂∗0,b∣∣∣ < 1 then

Ĉ∗2,b ← calculate using equation (3.2.16) with φ̂∗0,b.

K
(
P̂ , φ̂∗0,b

)
←
(
Ĉ∗

2,b

Ĉ2

)
Φ−1

(
1− 1

2ARL0

)
.

b← b+ 1.
end if

end while
Kr ← is the α∗-th quantile of K

(
P̂ , φ̂∗0,b

)
r ← r + 1.

end if
end while
K ← mean (K1, . . . ,Krep)

First, the adjusted K-values were obtained using Algorithm 2 and then Algorithm 1 was used consider-
ing these K-values to compute the corresponding ARL’s.

Table 3.4.1 shows the averaged adjusted K-values and the ARL0,0.1, the 10-th quantile of the ARL0’s
distribution with adjusted control limits. It can be seen that in all cases control limits are widened which
is known to increase the ARL0 but at the same time affects the out-of-control ARL, ARL1. In order to
evaluate the effect of the control limits adjustment, the ARL1 for the X̄ control chart with both unadjusted
(U) and adjusted (A) control limits was obtained by using Algorithm 1 based on the corresponding adjusted
K-values in Table 3.4.1. As the overestimation of φ0 could lead to high ARL1 values (see Figure 3.3.2),
the 90-th quantile of the conditional distribution of the ARL1, ARL1,0.9, is reported in Table 3.4.2 to show
that 90% of the charts will have an ARL1 of at most that value. If all parameters are known, the ARL1 is
known, and it is reported at the bottom of Table 3.4.2 for δ = 1. As expected, as the Phase I sample
size increases the ARL1 values decrease despite of the value of φ0. However, for negative values of φ0 the
effect on the increase of ARL1 values due to the control limits adjustment is less intense than for positive
values of φ0. Nevertheless, this effect is mitigated as the Phase I sample size increases (see Table 3.4.2).
In all cases, the robust estimators have a larger ARL1,0.90 than the least-squares based estimators.
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Table 3.4.1: The averaged adjusted K values for the control limits for different values of m and φ0 for a de-
sired ARL0 = 370.4 and n = 5. ARL0,0.1 is the 10-th quantile of the simulated ARL0 distribution obtained
using these values.

m φ̂0
φ0 = 0.9 φ0 = 0.5 φ0 = 0.1 φ0 = −0.1 φ0 = −0.5 φ0 = −0.9

K ARL0,0.1 K ARL0,0.1 K ARL0,0.10 K ARL0,0.1 K ARL0,0.1 K ARL0,0.1

50

φ̂0,LS 3.37 325.39 3.47 352.22 3.48 369.19 3.47 370.95 3.40 363.06 3.13 493.21
φ̂0,LS2 3.28 411.91 3.44 388.47 3.49 359.30 3.50 338.45 3.47 287.33 3.12 440.40
φ̂0,Q 3.31 377.80 3.46 369.21 3.50 351.41 3.51 326.92 3.48 285.72 3.14 449.76
φ̂0,H 3.48 231.82 3.70 190.22 3.78 177.94 3.79 165.46 3.67 156.12 3.20 440.36
φ̂0,MS 3.53 193.49 3.72 178.96 3.83 161.65 3.89 127.86 3.77 107.58 3.23 432.96

100

φ̂0,LS 3.22 354.24 3.32 374.76 3.33 370.62 3.32 370.73 3.29 362.74 3.07 409.29
φ̂0,LS2 3.17 403.16 3.29 398.00 3.33 368.88 3.34 357.27 3.33 324.13 3.08 384.98
φ̂0,Q 3.18 384.45 3.30 387.22 3.33 361.97 3.34 353.86 3.33 319.13 3.08 383.26
φ̂0,H 3.29 286.92 3.47 239.71 3.53 213.00 3.54 202.06 3.49 200.77 3.11 371.58
φ̂0,MS 3.31 245.93 3.49 217.23 3.55 217.61 3.60 169.42 3.61 140.66 3.13 363.67

200

φ̂0,LS 3.13 369.43 3.21 367.47 3.23 368.43 3.23 370.07 3.21 371.12 3.05 383.11
φ̂0,LS2 3.11 395.34 3.20 379.75 3.23 368.66 3.23 364.40 3.23 351.63 3.05 370.31
φ̂0,Q 3.12 386.98 3.20 376.00 3.23 367.96 3.23 361.67 3.23 349.76 3.05 368.50
φ̂0,H 3.18 313.07 3.32 266.58 3.36 253.98 3.37 246.06 3.35 242.36 3.08 353.35
φ̂0,MS 3.19 295.03 3.33 258.98 3.37 261.72 3.40 227.43 3.46 177.78 3.09 336.76

500

φ̂0,LS 3.07 370.35 3.13 372.15 3.14 372.80 3.14 367.72 3.14 365.56 3.03 372.38
φ̂0,LS2 3.06 380.77 3.13 377.50 3.14 373.31 3.14 365.85 3.14 358.11 3.03 366.80
φ̂0,Q 3.07 378.35 3.13 376.21 3.14 372.97 3.14 365.95 3.14 358.32 3.03 365.97
φ̂0,H 3.11 333.92 3.20 297.55 3.22 286.81 3.23 284.91 3.22 283.42 3.05 351.15
φ̂0,MS 3.09 336.8 3.19 304.44 3.23 280.97 3.23 280.24 3.31 224.28 3.06 322.63

1000

φ̂0,LS 3.05 371.86 3.09 369.34 3.10 369.80 3.10 370.91 3.10 370.29 3.02 370.80
φ̂0,LS2 3.04 377.12 3.09 372.07 3.09 370.14 3.10 370.07 3.10 366.60 3.02 367.85
φ̂0,Q 3.05 376.16 3.09 371.64 3.10 369.37 3.10 370.20 3.10 366.24 3.03 367.17
φ̂0,H 3.07 344.85 3.14 319.37 3.16 307.77 3.16 310.49 3.16 306.34 3.04 354.40
φ̂0,MS 3.05 364.39 3.12 329.66 3.16 290.75 3.16 308.68 3.23 246.59 3.05 321.86

3.5 Conclusions and future work

As the autocorrelation degrades the performance of control charts, the relationship between the conditional
in-control and out-of-control ARLs and the estimation of the autoregressive parameter φ0 was presented.
Results show that overestimation of φ0 provides higher ARL values for either the process being under con-
trol or not. When φ0 < 0 it is more likely to have larger ARL0 values and small ARL1 ones. However, even
for φ0 < 0 around 50% of the times control charts have a smaller ARL0 than the expected one, and it was
shown that control limits adjustment to guarantee an in-control performance had little impact on ARL1.

As the overestimation of φ0 affects the ARL of the X̄ chart, it is recommended to use an estimator with the
smaller bias and standard deviation. It does not seem that one estimator dominates the other ones in all
cases, but φ̂0,LS performs better in most of them. Even though φ̂0,LS is outperformed in some scenarios the
difference between estimators becomes small as m increases.

The evaluation of the X̄ control chart performance in presence of outliers where the robust estimators
might have better performance is left as future work as well as the extension to AR processes of higher
orders, Moving Averages (MA) and ARMA processes. Also the evaluation of the EWMA and CUSUM con-
trol charts. On the other hand, recently Zwetsloot and Woodall (2017) provided a definition to standardize
the meaning of better conditional performance among two charts, when they are compared head-to-head.
This definition alongside with the AARL and SDARL metrics might be considered to reevaluate the charts
performance.

Appendix

Here it is explained how to calculate the adjusted K-values in order to obtain the adjusted control limits for
the Shewhart X̄ control chart for AR(1) processes. The statistic under control is the sample mean from
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Table 3.4.2: ARL1,0.9 is the 90-th quantile of the simulated ARL1 values considering a shift of δ = 1, with
n = 5,ARL0 = 370.4

m φ̂
φ0 = 0.9 φ0 = 0.5 φ0 = 0.1 φ0 = −0.1 φ0 = −0.5 φ0 = −0.9

U A U A U A U A U A U A

50

φ̂0,LS 42.34 111.50 30.38 112.80 12.11 37.55 6.95 18.42 2.19 3.53 1.07 1.10
φ̂0,LS2 52.91 148.61 35.53 140.61 12.82 40.76 7.05 18.84 2.11 3.35 1.06 1.08
φ̂0,Q 49.69 138.06 36.94 144.70 13.11 42.38 7.19 19.39 2.16 3.42 1.07 1.09
φ̂0,H 52.80 145.63 57.17 271.41 21.65 87.70 10.93 40.02 2.86 5.32 1.10 1.13
φ̂0,MS 56.37 160.10 87.01 478.17 26.45 132.92 12.23 41.99 3.00 5.64 1.12 1.16

100

φ̂0,LS 43.17 74.83 24.73 55.59 9.49 18.75 5.47 9.87 1.90 2.51 1.05 1.06
φ̂0,LS2 48.24 85.12 26.47 60.66 9.68 19.27 5.49 9.91 1.87 2.45 1.05 1.05
φ̂0,Q 48.68 86.06 26.72 62.36 9.82 19.59 5.54 9.92 1.88 2.47 1.05 1.06
φ̂0,H 52.74 92.80 37.99 93.34 13.75 29.49 7.55 14.96 2.18 3.13 1.06 1.07
φ̂0,MS 56.98 103.68 49.80 131.88 15.43 34.00 7.39 14.70 2.23 3.30 1.06 1.08

200

φ̂0,LS 42.26 59.01 21.48 35.61 8.05 12.24 4.79 6.80 1.74 2.07 1.04 1.05
φ̂0,LS2 44.62 62.65 22.15 36.93 8.11 12.36 4.79 6.79 1.73 2.05 1.04 1.04
φ̂0,Q 45.20 63.31 22.28 37.12 8.13 12.37 4.80 6.83 1.73 2.06 1.04 1.04
φ̂0,H 48.79 69.04 27.78 47.97 10.08 16.14 5.82 8.63 1.91 2.33 1.05 1.05
φ̂0,MS 56.82 81.65 34.44 63.27 10.66 17.00 5.70 8.29 1.91 2.34 1.05 1.05

500

φ̂0,LS 40.44 48.71 18.91 24.97 7.07 9.00 4.25 5.17 1.64 1.81 1.04 1.04
φ̂0,LS2 41.31 49.82 19.12 25.28 7.09 9.03 4.25 5.17 1.63 1.80 1.04 1.04
φ̂0,Q 41.51 50.07 19.16 25.30 7.10 9.03 4.25 5.16 1.64 1.80 1.04 1.04
φ̂0,H 44.26 53.49 21.67 29.76 8.07 10.59 4.74 5.90 1.73 1.92 1.04 1.04
φ̂0,MS 54.13 66.16 25.76 34.92 8.18 10.69 4.79 5.97 1.71 1.90 1.04 1.04

1000

φ̂0,LS 39.48 44.34 17.63 21.38 6.61 7.78 4.02 4.61 1.59 1.70 1.03 1.04
φ̂0,LS2 39.90 44.83 17.73 21.50 6.62 7.79 4.02 4.61 1.59 1.70 1.03 1.04
φ̂0,Q 39.97 44.91 17.75 21.45 6.62 7.79 4.02 4.61 1.59 1.70 1.03 1.04
φ̂0,H 41.89 47.22 19.61 23.66 7.22 8.58 4.34 5.00 1.65 1.77 1.04 1.04
φ̂0,MS 50.72 57.55 22.19 27.01 7.19 8.58 4.44 5.14 1.63 1.75 1.04 1.04

Known case values 36.12 15.00 5.72 3.54 1.50 1.03
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subgroups of size n drawn from the process. Assuming an in-control process (δ = 0), where µ0 and σ0 are
known parameters, we calculate K(P, φ̂0) as the solution of 1 − α = P(L̂CL < X̄i < ÛCL|φ̂0), i.e. , the
value that solves:

1− α = Φ

(
K
C2

Ĉ2

)
− Φ

(
−KC2

Ĉ2

)
(3.5.1)

where α is the probability of the chart to signal an out-of-control observation. Using the notation introduced
in Section 3.4 where P = P (φ0) refers to the autoregressive model in equation (3.2.8) with δ = 0 and
autoregressive parameter φ0, thenK(P, φ̂0) depends upon P and φ̂0 in the following manner: C2 in equation
(3.5.1) is calculated using the autoregressive parameter from the model P whereas Ĉ2 by using φ̂0. Note
that P̂ = P (φ̂0) and P̂ ∗b = P (φ̂∗0,b). Therefore, we can calculate K(P̂ , φ̂0), K(P̂ ∗b , φ̂

∗
0,b) and K(P̂ , φ̂∗0,b).

Considering first K(P̂ , φ̂0), as the autoregressive parameter from model P̂ is φ̂0 then K(P̂ , φ̂0) is the value
of K such that 1− α = Φ(K)− Φ(−K) = 2Φ(K)− 1, i.e.

K = Φ−1
(

1− α

2

)
,

and that is also true for K(P̂ ∗b , φ̂
∗
0,b) since the autoregressive parameter in model P̂ ∗b is φ̂∗0,b. Finally, in order

to obtain K(P̂ , φ̂∗0,b), we have to find the K-value satisfying:

1− α = Φ

(
K

Ĉ2

Ĉ∗2,b

)
− Φ

(
−K Ĉ2

Ĉ∗2,b

)
= 2Φ

(
K

Ĉ2

Ĉ∗2,b

)
− 1,

i.e.

K =

(
Ĉ∗2,b

Ĉ2

)
Φ−1

(
1− α

2

)
.



Chapter 4. The conditional performance of the X̄ control chart for
AR(1) processes under estimated parameters

Abstract

Control charts are Statistical Process Monitoring tools known to be helpful for the detection of assignable
causes of variation. Despite their ability to identify departures from in-control situations, their sensitivity
can be negatively affected by the violation of the independence assumption of observations and the lack
of knowledge of the true values of the process parameters. Control charts are usually evaluated by means
of the Average Run Length, ARL, which is a random variable when process parameters are estimated. In
that case, the Average and Standard Deviation of the ARL, (AARL and SDARL, respectively), are the
suggested performance measures since they capture the sampling variability of the ARL due to Phase I
estimations. In this research, the performance of the X̄ control chart for monitoring the mean of stationary
AR(1) processes is evaluated by considering different estimators for the process parameters. A bootstrap-
based method is applied to adjust the X̄ control limits in order to have a guaranteed in-control performance
and its impact on the out-of-control ARL is also presented. A numerical example based on a real dataset is
provided in order to illustrate how the chart and the techniques developed here are implemented in practice.

Keywords: AR(1) process; X̄ control chart; estimated parameters; guaranteed performance.

4.1 Introduction

Control charts are Statistical Process Monitoring (SPM, also called Statistical Process Control or SPC)
tools for monitoring and detecting changes in process parameters. Their performance depends upon the
validation of assumptions made at the design stage, such as the distribution of the data, independence
of observations, or prior knowledge of the process in-control parameters, among others. When these as-
sumptions are not met, control charts might no longer be suitable to be implemented in practice. Their
performance might have an unexpected behavior, unless a modification is made to their design.

There are many practical situations where assuming independence might not be appropriate due to a
significant level of autocorrelation in the process. These situations are commonly found, for example, in
health surveillance and crop monitoring, where measurements are taken from the same object; chemical
processes, where a continuous flow is monitored; or processes where observations are collected within
small periods of time. It is known that the implementation of the traditional control charts, built for indepen-
dent observations, is not advisable, as serial correlation has a significant effect on performance (Psarakis
et al., 2014). Nevertheless, there are some techniques to improve the charts performance when dealing
with these situations, or even to develop new control charts, as Psarakis and Papaleonida (2007) and Pra-
japati and Singh (2012) pointed out in their literature reviews.

A widely known approach to handle autocorrelated data is the time-series approach by Alwan and Roberts
(1988), where a time-series model is fitted to the observed data, and the corresponding residuals are
assessed with a control chart scheme that assumes independence. Trying to improve the performance
of these charts for residuals, Triantafyllopoulos and Bersimis (2016) proposed a modification based on a
Bayes factor to detect departures from in-control situations, making a comparison with the former. Recently,
Dawod et al. (2017) evaluated the performance of the Shewhart, EWMA and CUSUM charts for residuals
over AR(1), MA(1) and ARMA(1,1) processes by considering well-fitted models with known parameters.

Different developments were carried by Lwin (2011) who considered the estimation of the autoregressive
parameter to set up the EWMAST control chart for AR(1) processes with measurement errors in the vari-
ables. Alshraideh and Khatatbeh (2014) used the multivariate normal distribution to introduce the Gaus-
sian Process control chart, and Zhang and Pintar (2015) considered the Exponentially Weighted Mean
Square (EWMS) control chart for monitoring the variance of stationary processes. Wu (2016) considered
the change-point problem for AR(1) processes monitored with a model-based CUSUM control chart. Das-
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demir et al. (2016) evaluated the effect of outliers on the Phase II performance of a modified AR(1) Shewhart
chart. Osei-Aning et al. (2017b) provided an optimal scheme for monitoring the mean of stationary AR(1)
processes for the CUSUM and EWMA control charts by finding the parameters that minimize the extra
quadratic loss function over a range of possible changes. Finally, Osei-Aning et al. (2017a) introduced the
mixed EWMA-CUSUM and CUSUM-EWMA control charts for autocorrelated processes.

In addition to the fact that the observations might not be considered independent, in-control process pa-
rameters are often unknown. A lot of research work has been done over several scenarios, including
independent data, autocorrelated data and attribute data, among others. Most of these works have been
devoted to compare estimators for the mean and/or the variance, and to evaluate the charts performance
using measures related to the Run Length RL, such as the Average Run Length (ARL), its standard devia-
tion (SDRL), or some quantiles of the RL’s distribution. Readers interested in this topic are referred to the
literature reviews from Jensen et al. (2006) and Psarakis et al. (2014).

Recently, two topics about the evaluation and design of control charts under estimated parameters have
attracted the attention of SPM researchers: the first one is the ‘practitioner-to-practitioner’ variability of the
ARL due to Phase I estimations: Jones and Steiner (2012) introduced the Standard Deviation of the ARL
(SDARL) as a performance measure to account for this variability. The second one is the guaranteed
in-control performance: Gandy and Kvaløy (2013) proposed a bootstrapping method to adjust the control
chart limits to have a guaranteed performance with a certain probability. There are other techniques to
guarantee an in-control performance, such as the adjustment proposed by Albers and Kallenberg (2005),
the use of tolerance limits or exacts methods developed for specific charts (e.g. Goedhart et al. 2017a,
Goedhart et al. 2017b, and Faraz et al. 2018). Following these results, the evaluation and design of several
control charts have been revisited.

Within control charts revisions, for attribute data, we have Zhang et al. (2013), Lee et al. (2013), Zhao
and Driscoll (2016) and Faraz et al. (2017); control charts for monitoring the mean by Zhang et al. (2014),
Saleh et al. (2015a), Saleh et al. (2015b), Aly et al. (2015b), Aly et al. (2016), Jeske (2016b), Saleh et al.
(2016), Hany and Mahmoud (2016), Hu and Castagliola (2017) and Goedhart et al. (2017b); control charts
for monitoring the variance by Epprecht et al. (2015), Faraz et al. (2015), Diko et al. (2017), Goedhart et al.
(2017a), Guo and Wang (2017); the self-starting methodology by Keefe et al. (2015); the linear profiles by
Aly et al. (2015a) and monitoring of time between events by Cheng et al. (2018). Moreover, the Shewhart,
EWMA and CUSUM control charts were compared by Zwetsloot and Woodall (2017) using a definition for
a ‘better performance’ introduced by the authors: if the ARL’s values of each chart lies within 5% of the
nominal ARL value they are considered as to have an equivalent performance; otherwise, the one with the
ARL closer to the nominal ARL value is considered to have better performance. With this definition, they
concluded that the EWMA and CUSUM charts do not have an equivalent performance under parameter
estimation in opposition to the findings of Hawkins and Wu (2014) for the known parameter case.

Considering the literature reviews of Psarakis and Papaleonida (2007) and Prajapati and Singh (2012),
around 251 works were reviewed under the label of monitoring autocorrelated processes whereas the liter-
ature reviews for the effect of parameter estimation due to Jensen et al. (2006) and Psarakis et al. (2014)
considered around 159 works. However, only 14 of them considered the monitoring of autocorrelated pro-
cesses. Then, the effect of parameter estimation on charts performance for this kind of processes has not
been thoroughly studied as its counterpart for independent observations. Runger and Willemain (1995),
Snoussi et al. (2005), and Dawod et al. (2017) evaluated the performance of residuals control charts as-
suming that ‘perfectly accurate’ parameters have been estimated; and apart from residuals charts, Lu and
Reynolds Jr. (1999) and Lu and Reynolds Jr. (2001) provided limited simulation studies about the effect of
parameter estimation. Now, considering performance measures related to the ARL distribution and/or the
guaranteed conditional in-control performance topics, 25 works were found but none of them was devoted
to autocorrelated processes.

With this in mind, in this study, the performance of the X̄ control chart for monitoring the mean of sta-
tionary AR(1) processes under estimated parameters is evaluated by considering several estimators for the
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process mean, variance and the autoregressive parameter, and using AARL and SDARL as performance
measures. In addition, the bootstrapping methodology of Gandy and Kvaløy (2013) is applied to adjust the
control limits to ensure, with a certain probability, a conditional in-control performance. The impact of this
adjustment on the out-of-control ARL (ARL1) is also discussed.

The remaining of this chapter is organized as follows: Section 4.2 introduces the design of the X̄ con-
trol chart for AR(1) processes dealing with unknown parameters, and several estimators used in the design
process are introduced. In Section 4.2 the marginal relationship of the ARL with estimated parameters is
shown along the approach and algorithm used to compute the AARL and SDARL. At the end of the sec-
tion, numerical results in the form of AARL and SDARL over several in-control scenarios are presented.
Section 4.4 is devoted to the adjustment of the control limits and the impact on the ARL1, while a numerical
example is considered in Section 4.5. Conclusions and future work are discussed in Section 4.6.

4.2 Design of the Shewhart X̄ chart for AR(1) processes under estimated parame-
ters

The study of the X̄ control chart for AR(1) processes was first considered by Costa and Castagliola (2011)
whereas the effect of parameter estimation was addressed in Chapter 3 but assuming that only φ0 was
estimated. Now, the process mean µ0 and process variance σ2

0 are considered as unknown and therefore
several estimators are considered for the study.

The same model stated in Chapter 3 is considered through this chapter, but it is stated here again for
the sake of completeness. Let us assume that the observations {Xi,1, Xi,2, . . . , Xi,n} follow the AR(1)
model, given by

Xi,j − µ0 − δσ0 = φ0 (Xi,j−1 − µ0 − δσ0) + εi,j , (4.2.1)

for i = 1, 2, . . . and j = 1, 2, . . . , n; where εi,j ∼ N (0, σε) is a normal random noise; µ0, σ0 and φ0 ∈ (−1, 1)
are the in-control process mean, process variance and process autoregressive parameter, respectively.
Further, δ = |µ0−µ1|

σ0
is the standardized mean shift from µ0 to µ1 measured in standard deviations. The

process is said to be under statistical control whenever δ = 0; otherwise, it is considered to be out-of-control.
Furthermore, under model 4.2.1 the process variance is related to the errors variance by means of

σ2
0 =

σ2
ε

1− φ2
0

. (4.2.2)

The sample statistic used by the Shewhart X̄ control chart for monitoring the mean µ0 of AR(1) processes
is the sample mean X̄i = 1

n (Xi,1 + Xi,2 + · · · + Xi,n). A widely used sampling strategy calls for collecting
consecutive parts or cycles as rational subgroups (Wheeler, 2015), which can lead to autocorrelation within
samples. If the sampling interval is sufficiently large, then autocorrelation between consecutive samples
is neglegible, and, for j = 1, 2, . . . , n, Xi,j and Xi+1,j can be considered independent. It is noteworthy to
say that, under model stated in equation 4.2.1, the variable Xi,0 is non-observable, and, as the sampling
interval is large, it can be assumed to follow the steady-state distribution N (µ0, σ0). In this case, Alwan and
Radson (1992) found that the standard deviation of the sample mean σ(X̄i) of the marginal distribution of
stationary AR(1) processes (|φ0| < 1) is given by

σ(X̄i) =
σ0√
nC2

, (4.2.3)

where C2 is a function of n and φ0 defined as

C2 = C2 (n, φ0) =

√√√√ n

n+ 2
(
φn+1
0 −nφ2

0+(n−1)φ0

(φ0−1)2

) . (4.2.4)
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Note that equation 4.2.4 is valid whenever |φ0| < 1.

When the process parameters are unknown, a retrospective Phase I implementation of the control chart
is performed to get reliable estimates, and, at the same time, to assess process stability. In this research,
as we are assuming that the autocorrelation is within but not between samples, the Phase I is done by
collecting m (larger than n) consecutive observations over a sufficiently large period of time to check for
process stability and also to capture all the information in the sample about the process parameters. After
that, the X̄ control chart is set up for Phase II, where each sample consists of n consecutive autocorrelated
observations. Samples are collected over sufficiently long time intervals (for example, every h hours) in
order to reduce the autocorrelation between samples to the point where it is suitable to assume that the
sample means are independent. Under this approach, consider that, within the Phase I sample, observa-
tions follow the model

Xj − µ0 = φ0 (Xj−1 − µ0) + εj , (4.2.5)

for j = 1, 2, . . . ,m, where X0 ∼ N (µ0, σ0) , εj ∼ N (0, σε) and |φ0| < 1.

When implementing the Shewhart X̄ control chart for autocorrelated processes with estimated parame-
ters, the control limits become

L̂CL = µ̂0 −K
σ̂0√
nĈ2

, (4.2.6)

ÛCL = µ̂0 +K
σ̂0√
nĈ2

, (4.2.7)

with
Ĉ2 = C2

(
n, φ̂0

)
=

√√√√√ n

n+ 2

(
φ̂n+1

0 − nφ̂2
0 + (n− 1)φ̂0

(φ̂0 − 1)2

) , (4.2.8)

where µ̂0, σ̂0 and φ̂0 are estimators (to be defined) of µ0, σ0 and φ0, respectively.

In order to set up the X̄ control chart with estimated parameters, let us consider a Phase I sample of
consecutive observations X1, X2, . . . , Xm, where the estimator of the process mean µ0 is the sample mean

µ̂0 = X̄ =
1

m

m∑
j=1

Xj . (4.2.9)

Concerning the process standard deviation σ0, four different estimators are considered here. The first one
is the sample standard deviation

σ̂0,SQ1 = S =

√√√√ 1

m− 1

m∑
j=1

(
Xj − X̄

)2
, (4.2.10)

which is commonly used in the i.i.d. case. Under the normal i.i.d. assumption, an unbiased estimator of the
standard deviation is

σ̂0,UN =
S

c4 (m)
, (4.2.11)

where c4 (m) =
√

2
m−1

Γ(m2 )
Γ(m−1

2 )
. Another estimator based on the sums of the squared deviations from the

mean is the one used in time series analysis

σ̂0,SQ =

√√√√ 1

m

m∑
j=1

(
Xj − X̄

)2
. (4.2.12)
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In addition, a fourth estimator for the process standard deviation is the moving range, sometimes used in
the i.i.d. case

σ̂0,MR =
MR

1.128
=

0.8865

m− 1

m∑
j=2

|Xj −Xj−1| . (4.2.13)

Concerning the autoregressive parameter, φ0, the five estimators introduced in Chapter 3 are again consid-
ered in this study. They are mentioned here for the sake of completeness. The least-squares estimator

φ̂0,LS =

∑m
j=2XjXj−1∑m−1
j=1 X2

j

, (4.2.14)

a less biased least squares based estimator

φ̂0,LS1 = φ̂0,LS

(
1− 2

m
+

4

m2

)−1

=

(
m2

m2 − 2m+ 4

)
φ̂0,LS , (4.2.15)

the unbiased estimator given by

φ̂0,Q = 2φ̂0,LS −
1

2

(∑bm/2c
j=2 XjXj−1∑bm/2c−1
j=1 X2

j

+

∑m
j=bm/2c+2XjXj−1∑m−1

j=bm/2c+1X
2
j

)
, (4.2.16)

where b·c is the rounded down integer function is considered. In addition to those estimators, the estimator
based on the median of the moving ratios

φ̂0,H = median

(
X2

X1
,
X3

X2
, . . . ,

Xm

Xm−1

)
, (4.2.17)

and the mean substitute estimator, φ̂0,MS , given as the solution to the quadratic equation

sign (φ) 0.26φ2 + 0.195φ− 0.4705× median(X1X2, . . . , Xm−1Xm)

median(X2
1 , X

2
2 , . . . , X

2
m−1)

= 0. (4.2.18)

Once the parameters are estimated, the Phase II implementation of the X̄ control chart can be started to
monitor the mean of stationary AR(1) processes by using the control limits shown in (4.2.6) and (4.2.7).
The performance of the X̄ chart for AR(1) processes with estimated parameters is evaluated in the next
section.

4.3 Conditional in-control performance of the X̄ chart for an AR(1) process under
parameter estimation

The AARL and SDARL can be computed from the ARL distribution or by running extensive Monte Carlo
simulations in order to increase the estimation accuracy. In the i.i.d. case, several authors (Saleh et al.,
2015a, Saleh et al., 2015b, Saleh et al., 2016 and Zwetsloot and Woodall, 2017) have considered the first
approach, i.e., the use of the ARL’s distribution. They have rewritten the chart statistic and they have used
the fact that X̄ and S2 are independent in order to find the ARL’s distribution. The integrals involved in
the expectations have been obtained numerically by using Gaussian quadrature methods. Even though the
statistic might be rewritten in a similar way for AR(1) processes, the independence of X̄ and S2 does not
hold any longer, (Schöne and Schmid, 2000), and it is not possible to obtain the p.d.f. of the ARL using the
same approach as in Zwetsloot and Woodall (2017). As a consequence, we used Monte Carlo simulations
to compute the AARL, SDARL and other quantiles of the ARL distribution.

The conditional probability of not getting an out-of-control signal in the X̄ control chart for AR(1) processes
is given by

β = P(X̄i ∈ [L̂CL, ÛCL]|µ̂0, σ̂0, φ̂0),
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and, after some manipulations, this probability becomes

β = Φ

(√
nC2

σ0
(µ̂0 − µ0 − δσ0) +K

σ̂0C2

σ0Ĉ2

)
− Φ

(√
nC2

σ0
(µ̂0 − µ0 − δσ0)−K σ̂0C2

σ0Ĉ2

)
, (4.3.1)

where µ0, σ0 and φ0 denote the true in-control process parameters and µ̂0, σ̂0 and φ̂0 are their respec-
tive estimations obtained from the retrospective Phase I study. Conditioned on these estimations, sample
means X̄i’s are assumed to be independent, and, therefore, the run length of the X̄ control chart follows a
geometric distribution with parameter 1− β and mean ARL = 1/(1− β).

We first examine the marginal effect of each parameter on the ARL, that is, we investigate the effect of
the estimation of only one parameter when all other parameters are fixed at their true in-control values, with
n,K and δ also fixed at some constant value. For instance, if we want to see the marginal effect of the
estimation of the process mean, we will consider that σ̂0 = σ0 and φ̂0 = φ0, (which implies that Ĉ2 = C2),
for some fixed φ0 values in equation (4.3.1). For convenience, we will assume n = 5, ARL0 = 370.4, δ = 1
for the ARL1 and φ0 ∈ {±0.1,±0.5,±0.9} in order to explore low, medium and high levels of both positive
and negative autocorrelation. In addition, and without loss of generality, we consider normal observations
with µ0 = 0 and σ0 = 1. In this case, equation (4.3.1) reduces to

β = Φ
(√

5C2 (µ̂0 − δ) + 3
)
− Φ

(√
5C2 (µ̂0 − δ)− 3

)
. (4.3.2)

Figure 4.3.1 (for δ = 0) and Figure 4.3.2 (for δ = 1) show the relationship between the ARL and µ̂0

where the ARL was calculated using equation (4.3.2). From these figures it can be inferred that (i) the ARL
is symmetrical with respect to µ̂0 = δ (in general, with respect to µ0 + δσ0) for both in-control and out-of-
control ARL no matter the true value of φ0, and (ii) the ARL tends to be larger for positive autocorrelation
than for negative one. The marginal effect on the ARL due to the estimation of σ0 is shown in Figures
4.3.3 and 4.3.4 for δ = 0 and δ = 1, respectively. Note that Figure 4.3.3 only has one curve, since, in that
particular set up, µ̂0 = µ0, δ = 0 and φ̂0 = φ0 (which implies Ĉ2 = C2) so that C2 is not involved in equation
(4.3.1) and, therefore, in the calculation of the ARL0. It can be seen that (iii) for a fixed value of σ̂0 the ARL1

tends to be larger for positive autocorrelation than for negative one, and (iv) overestimation of σ0 leads to
higher ARL values. Finally, recall that the marginal effect on the ARL due to φ0 estimation was addressed
in Chapter 3, and it is depicted in Figures 3.3.1 and 3.3.2, for δ = 0 and δ = 1, respectively. The plots show
that (v) overestimation of φ0 leads to larger ARL values.
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Results (i) to (v) are explained here by considering first that, when n is fixed, C2 = C2 (n, φ0) is a de-
creasing function of φ0. In fact, C2 (n, φ0) > 1 if φ0 < 0 and 0 < C2 (n, φ0) < 1 if φ0 > 0. This means that
there is a widening (shrinking) of the control limits for positive (negative) autocorrelation. Now, concerning
the marginal effect of estimating µ0, the estimated control limits used are ÛCL/L̂CL = µ̂0 ±K

σ0√
nC2

, and

the widening (or shrinking) of the control limits is around the line µ̂0. Hence, if µ̂0 6= µ0, these control
limits will move away from the true center line µ0, but the proportion of observations lying within the control
limits will be (i) the same, symmetrically around µ0 + δσ0 since X̄ is distributed symmetrically around that
value, and (ii) greater for φ0 > 0 than for φ0 < 0, despite the direction of the displacement. Concerning

the marginal effect of estimating σ0, the estimated control limits are ÛCL/L̂CL = µ0 ± K
σ̂0√
nC2

. So, (iii)

the control limits are wider for φ0 > 0 than for φ0 < 0 for the same reason explained before and (iv) they
will expand (contract) as σ0 is overestimated (underestimated) with the widening (shrinking) of the control
limits by a factor of σ̂0. Finally, concerning the marginal effect of estimating φ0, the estimated control limits
become ÛCL/L̂CL = µ0 ±K

σ0√
nĈ2

. As Ĉ2 is a decreasing function of φ̂0, its reciprocal 1/Ĉ2 is increasing

for φ̂0, and therefore, (v) overestimating φ0 leads to higher values of the ARL for both positive and negative
autocorrelation.

However, since different Phase I samples lead to different estimations, different control limits and, con-
sequently, different ARLs, in order to evaluate the effect of the estimators on the conditional in-control
performance of the X̄ chart for AR(1) processes, the AARL and SDARL have been calculated using Al-
gorithm 3 considering values of the Phase I sample size m ∈ {50, 100, 200, 500, 1000}, values of the true
in-control autoregressive parameter φ0 ∈ {±0.1,±0.5,±0.9}, a nominal ARL0 = 370.4, subgroup size of n
= 5, µ0 = 0, σ0 = 1, δ = 0 and rep = 10000. In Algorithm 3, µEST is the sample mean shown in (4.2.9),
σEST is one of the estimators shown in equations (4.2.10) to (4.2.13) and φEST is one of the estimators
shown in equations (4.2.14) to (4.2.18).

Tables 4.3.1 to 4.3.3 show the resulting AARL0 and SDARL0. From these measurements, we can
drawn the following conclusions:

• When φ0 is fixed and m increases, the SDARL0 decreases and the AARL0 gets closer to the de-
sired ARL0 = 370.4 for almost all cases, except for σ̂0,MR which has, generally speaking, the worst
performance among all the σ0 estimators.

• When m is fixed the SDARL0 and AARL0 tend to increase with φ0 in most of the cases. This is not
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Algorithm 3 Calculation of AARL and SDARL

Define m, n, µ0, σ0, φ0, ARL0, δ, rep, µEST , σEST , φEST .
K ← Φ−1

(
1− 1

2ARL0

)
.

C2 ← C2 (n, φ0) =
√

n

n+ 2
(
φn+1
0 −nφ2

0+(n−1)φ0

(φ0−1)2

) .

r ← 1.
while r ≤ rep do

Generate X1, X2, . . . , Xm based on the AR(1) model
Xj − µ0 − δσ0 = φ0 (Xj−1 − µ0 − δσ0) + εj , where εj ∼ N

(
0, σ0

√
1− φ2

0

)
.

Estimate µ0, σ0 and φ0 with µEST , σEST and φEST and denote them as µ̂0,r, σ̂0,r and φ̂0,r, respec-
tively.
if
∣∣∣φ̂0,r

∣∣∣ < 1 then

Ĉ2,r ← C2

(
n, φ̂0,r

)
←
√√√√√ n

n+ 2

(
φ̂n+1

0,r − nφ̂2
0,r + (n− 1)φ̂0,r

(φ̂0,r − 1)2

)

βr ← Φ

[
√
nC2

(
µ̂0,r − µ0 − δσ0

σ0

)
+K

σ̂0,rC2

σ0Ĉ2,r

]
− Φ

[
√
nC2

(
µ̂0,r − µ0 − δσ0

σ0

)
−K σ̂0,rC2

σ0Ĉ2,r

]
.

ARLr ←
1

1− βr
.

r ← r + 1.
else

Eliminate the current sample X1, X2, . . . , Xm.
end if

end while
AARL← mean(ARL1, . . . , ARLrep).
SDARL← stdev(ARL1, . . . , ARLrep).
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observed just in few cases, for instance, when φ0 changes from -0.9 to -0.5.

• Considering the estimators of φ0, the robust estimators φ̂0,H and φ̂0,MS have larger SDARL0 and
AARL0 values in most of the cases compared to the least-squares based estimators φ̂0,LS , φ̂0,LS1

and φ̂0,Q.

• For positive (negative) autocorrelation φ̂0,LS (φ̂0,LS1) seems to have a better performance in most of
the cases.

• Considering estimators of the process standard deviation, σ̂0,SQ has the best performance for all
combinations of m and φ0 over all φ0 estimators. In contrast, σ̂0,MR has the worst performance,
except in some particular cases (m = 50 and φ0 = ±0.1). This can be explained by considering that
the overestimation of one or both parameters lead to higher ARL values, but this increase in the ARL
is reduced when one of them is underestimated. In particular, in those cases σ̂0,MR underestimates
σ0 more frequently than the other estimators.

• The values of the median of the ARL0, MARL0, (which are not reported on the tables for the sake
of brevity) are below the nominal value ARL0 = 370.4 for almost all cases, (without considering the
results for σ̂0,MR).

The fact that, when m is fixed, the AARL and SDARL increases with φ0 (except for the case when φ0

changes from −0.9 to −0.5) is related to the condition
∣∣∣φ̂0

∣∣∣ < 1. This implies that when a series is gen-

erated, a value of φ̂0 not satisfying this restriction is removed, thus creating some kind of censure on the
estimations. As it will restrict the percentage of times a value of φ̂0 is below the true value of φ0 = −0.9, this
favours the overestimation of φ0 and, therefore, this generates larger ARL values, in contrast with the other
cases of φ0 = ±0.1,±0.5.

Finally, the fact that the MARL0 is below the nominal ARL0 means that more than 50% of control charts
with estimated parameters will have a worst performance than expected. In the next section, an approach
to assess this problem is presented.

4.4 Guaranteed conditional in-control performance

To assess the problem that more than 50% of the X̄ control charts for AR(1) processes will have an in-
control conditional ARL lower than the nominal value, Gandy and Kvaløy’s bootstrapping method is applied
in order to adjust the X̄ control limits to guarantee an in-control conditional performance with a certain prob-
ability. This approach has been proved to be effective for control charts monitoring the mean or variance
of independent random variables and, also, for discrete data. The implementation of this methodology for
AR(1) processes is detailed here.

Before explaining the methodology, it has to be pointed that exact methods are of course preferred over
bootstrap-based methods, as those developed by Goedhart et al. (2017a), Goedhart et al. (2017b) and
Faraz et al. (2018). In their papers, the authors used the fact that, for normal i.i.d. random variables,
(n− 1)S2

σ2
∼ χ2

n−1 to find the p.d.f. of the random variable W = σ̂/σ (which turns out to be a scaled-χ

random variable if S2 is replaced by σ̂2 in the previous formula). But, in the case of AR(1) processes, things

turn to be more complicated: finding the distribution of W =
σ̂/Ĉ2

σ/C2
is clearly much more difficult due to the

presence of the term Ĉ2 and the dependence between X̄ and S2.

As this technique is used to guarantee an in-control conditional performance, we have to assume δ = 0,
which is the reduced AR(1) model stated in equation (4.2.5):

Xj − µ0 = φ0 (Xj−1 − µ0) + εj ,
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Table 4.3.1: AARL0 and SDARL0 (below) considering n = 5, a target ARL0 = 370.4 and φ0 ∈
{−0.9,−0.5}

m φ̂0
φ0=-0.9 φ0=-0.5

σ̂0,SQ1 σ̂0,UN σ̂0,SQ σ̂0,MR σ̂0,SQ1 σ̂0,UN σ̂0,SQ σ̂0,MR

50

φ̂0,LS 544082.62 665609.84 367004.96 2.30×1012 651.70 695.06 574.84 16523.11
3.50×107 4.30×107 2.34×107 1.28×1014 1565.16 1708.87 1318.68 88032.32

φ̂0,LS1 400533.41 488281.51 272046.37 1.25×1012 544.05 579.24 481.52 11277.06
2.55×107 3.12×107 1.72×107 6.46×1013 1327.59 1447.62 1121.34 54703.87

φ̂0,Q 500072.80 611203.21 337935.40 2.25×1012 586.15 624.89 517.46 14586.58
3.24×107 3.97×107 2.17×107 1.28×1014 1503.91 1642.44 1266.46 76156.97

φ̂0,H 471691.92 575712.99 319652.77 1.89×1012 10658.92 12157.55 8258.10 1.44×106

2.99×107 3.66×107 2.00×107 1.02×1014 225328.63 262173.56 167628.64 6.17×107

φ̂0,MS 788412.55 968814.07 527222.13 1.97×1012 25268.01 29413.75 18810.87 3.47×106

5.27×107 6.50×107 3.50×107 1.02×1014 765123.05 902986.01 553499.36 2.66×108

100

φ̂0,LS 30266.48 32878.77 25709.09 7.89×1011 460.76 473.66 436.28 7435.72
2.30×106 2.51×106 1.92×106 4.91×1013 484.73 502.10 452.13 15224.79

φ̂0,LS1 28039.74 30449.55 23833.51 7.64×1011 420.08 431.64 398.12 6349.45
2.13×106 2.33×106 1.79×106 4.90×1013 439.20 454.74 410.02 12488.91

φ̂0,Q 29954.91 32543.57 25439.19 7.85×1011 431.35 443.32 408.63 6913.39
2.29×106 2.50×106 1.92×106 4.91×1013 470.07 486.89 438.50 15615.99

φ̂0,H 38483.87 41911.22 32524.90 7.79×1011 1487.09 1556.89 1359.07 45961.52
3.11×106 3.41×106 2.60×106 4.91×1013 30813.79 32972.05 26954.65 1.59×106

φ̂0,MS 34107.96 37015.50 29028.53 1.25×1012 1685.83 1767.18 1536.79 73717.61
2.35×106 2.57×106 1.97×106 9.21×1013 35721.72 38224.92 31245.21 3.73×106

200

φ̂0,LS 1420.45 1450.52 1362.61 2.07×109 406.21 411.51 395.88 5421.73
12473.90 12838.63 11779.30 2.00×1011 246.00 249.95 238.34 7050.76

φ̂0,LS1 1357.95 1386.56 1302.94 1.87×109 387.85 392.86 378.06 5038.73
11934.18 12281.82 11272.01 1.80×1011 233.60 237.32 226.38 6365.05

φ̂0,Q 1374.19 1403.19 1318.39 2.10×109 389.54 394.58 379.69 5140.19
12212.97 12570.22 11532.64 2.03×1011 241.58 245.45 234.05 7916.00

φ̂0,H 1464.55 1495.65 1404.74 1.82×109 558.03 566.21 542.13 8304.94
12458.55 12820.29 11769.39 1.76×1011 864.57 881.86 831.20 19295.62

φ̂0,MS 1587.06 1621.59 1520.70 1.67×109 590.79 599.95 573.01 9716.69
14849.82 15291.67 14008.95 1.58×1011 1511.04 1544.85 1446.04 47372.59

500

φ̂0,LS 566.14 569.45 559.61 349309.19 385.55 387.49 381.70 4682.43
884.13 891.06 870.46 7.49×106 134.97 135.79 133.35 2633.44

φ̂0,LS1 555.83 559.06 549.44 336627.52 378.46 380.36 374.69 4553.42
867.50 874.28 854.11 7.22×106 132.26 133.06 130.68 2548.84

φ̂0,Q 557.01 560.25 550.60 341083.00 378.73 380.64 374.97 4567.88
870.39 877.21 856.96 7.40×106 133.22 134.02 131.63 2592.82

φ̂0,H 573.22 576.57 566.59 326122.13 430.05 432.31 425.59 5403.52
904.19 911.30 890.16 6.48×106 282.90 284.73 279.29 4879.89

φ̂0,MS 549.88 553.09 543.53 308454.04 393.77 395.82 389.70 4831.84
912.59 919.83 898.32 6.30×106 306.47 308.46 302.54 5541.83

1000

φ̂0,LS 447.85 449.04 445.49 71486.07 376.02 376.96 374.16 4395.53
338.41 339.52 336.19 230308.55 91.14 91.41 90.60 1643.23

φ̂0,LS1 443.77 444.95 441.43 70239.52 372.56 373.48 370.71 4335.59
335.19 336.29 333.00 225920.60 90.22 90.49 89.69 1617.41

φ̂0,Q 443.86 445.04 441.52 70453.98 372.49 373.41 370.65 4336.57
335.65 336.75 333.45 227943.45 90.35 90.62 89.82 1624.70

φ̂0,H 450.79 451.99 448.41 70585.32 398.53 399.54 396.51 4754.35
344.17 345.31 341.92 217976.72 168.74 169.26 167.71 2737.34

φ̂0,MS 419.82 420.93 417.63 61810.76 357.27 358.17 355.49 4076.06
327.13 328.20 324.99 192976.31 179.09 179.64 178.00 2808.90
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Table 4.3.2: AARL0 and SDARL0 (below) considering n = 5, a target ARL0 = 370.4 and φ0 ∈ {−0.1, 0.1}

m φ̂0
φ0=-0.1 φ0=0.1

σ̂0,SQ1 σ̂0,UN σ̂0,SQ σ̂0,MR σ̂0,SQ1 σ̂0,UN σ̂0,SQ σ̂0,MR

50

φ̂0,LS 1620.71 1789.80 1339.08 1033.70 1610.71 1763.95 1350.66 280.81
48417.12 55796.14 36691.68 3551.36 17226.49 19499.87 13526.32 520.87

φ̂0,LS1 1938.59 2157.91 1577.79 1019.33 1974.57 2172.44 1641.10 295.93
73728.14 85349.09 55379.18 3771.50 24368.48 27700.96 18976.34 571.10

φ̂0,Q 4490.92 5164.48 3430.85 1124.75 2306.18 2545.14 1904.98 321.98
321203.66 377492.43 234220.79 4294.57 25672.65 29069.10 20141.10 816.35

φ̂0,H 53200.03 62506.88 38881.33 13083.56 428797.72 523484.99 290560.40 1048.62
2.18×106 2.61×106 1.54×106 430509.01 2.70×107 3.32×107 1.81×107 14647.19

φ̂0,MS 167298.12 201444.55 116540.99 166753.75 6.50×107 8.44×107 3.91×107 8927.31
9.60×106 1.17×107 6.52×106 1.27×107 6.48×109 8.41×109 3.89×109 665858.27

100

φ̂0,LS 592.30 610.80 557.40 760.16 689.31 712.56 645.63 247.77
1337.77 1396.90 1228.25 962.55 2566.69 2694.44 2331.91 249.33

φ̂0,LS1 592.99 611.59 557.91 750.46 723.25 748.01 676.79 252.95
1406.87 1469.93 1290.19 957.78 2844.98 2988.58 2581.33 259.77

φ̂0,Q 601.15 620.08 565.46 768.87 726.54 751.33 680.02 256.52
1405.84 1468.28 1290.23 1056.27 2630.99 2760.76 2392.33 266.86

φ̂0,H 1759.55 1839.88 1611.60 1545.99 2480.67 2609.69 2245.34 380.61
24723.70 26386.40 21739.70 7469.70 47904.74 51257.49 41908.32 981.28

φ̂0,MS 1894.61 1980.66 1735.90 1845.27 7913.19 8452.99 6949.69 542.16
15348.02 16267.56 13681.09 21277.34 292278.99 315934.92 250593.93 2471.99

200

φ̂0,LS 448.24 454.34 436.34 667.03 475.26 481.91 462.31 233.14
428.42 435.88 413.95 479.71 546.31 556.07 527.40 135.88

φ̂0,LS1 446.12 452.19 434.28 661.90 481.86 488.63 468.68 235.16
430.30 437.81 415.75 477.17 561.55 571.63 542.02 137.94

φ̂0,Q 447.67 453.78 435.78 665.40 483.46 490.26 470.22 235.82
436.11 443.74 421.33 486.47 567.39 577.58 547.64 140.42

φ̂0,H 623.05 632.61 604.48 858.80 679.97 690.81 658.94 279.81
1186.23 1210.57 1139.27 1202.67 1829.79 1872.04 1748.67 285.63

φ̂0,MS 632.94 642.72 613.94 875.71 768.25 781.09 743.38 300.16
1299.05 1326.33 1246.48 1344.29 2292.10 2344.55 2191.30 386.60

500

φ̂0,LS 399.22 401.26 395.17 630.21 402.77 404.85 398.66 228.58
198.74 199.98 196.29 267.04 230.81 232.26 227.94 80.44

φ̂0,LS1 398.14 400.17 394.10 628.13 404.37 406.45 400.23 229.29
198.60 199.84 196.16 266.37 232.53 234.00 229.63 80.87

φ̂0,Q 398.25 400.29 394.21 628.53 404.55 406.64 400.42 229.43
198.80 200.03 196.35 267.51 232.27 233.74 229.38 81.08

φ̂0,H 445.90 448.28 441.20 691.01 450.01 452.43 445.23 243.39
350.92 353.26 346.28 463.85 382.19 384.77 377.10 127.28

φ̂0,MS 457.56 460.01 452.72 711.43 452.98 455.43 448.12 242.83
342.28 344.54 337.82 464.97 474.64 478.08 467.83 143.50

1000

φ̂0,LS 382.63 383.59 380.72 615.92 385.67 386.64 383.74 227.86
126.10 126.48 125.35 175.40 147.17 147.62 146.28 54.81

φ̂0,LS1 382.06 383.02 380.16 614.87 386.35 387.32 384.41 228.20
126.04 126.42 125.28 175.18 147.66 148.11 146.77 54.96

φ̂0,Q 382.11 383.07 380.20 615.00 386.45 387.42 384.51 228.25
126.27 126.64 125.51 175.68 147.77 148.22 146.88 55.05

φ̂0,H 403.16 404.19 401.11 643.85 408.50 409.55 406.41 236.22
195.08 195.69 193.88 276.04 213.16 213.83 211.84 83.59

φ̂0,MS 419.62 420.70 417.47 671.54 397.28 398.29 395.25 230.30
202.57 203.20 201.32 289.10 219.36 220.04 217.99 88.06
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Table 4.3.3: AARL0 and SDARL0 (below) considering n = 5, a target ARL0 = 370.4 and φ0 ∈ {0.5, 0.9}

m φ̂0
φ0=0.5 φ0=0.9

σ̂0,SQ1 σ̂0,UN σ̂0,SQ σ̂0,MR σ̂0,SQ1 σ̂0,UN σ̂0,SQ σ̂0,MR

50

φ̂0,LS 5365.59 6060.05 4238.40 26.39 7443.79 8685.45 5513.63 2.48
129100.27 149659.02 96735.01 21.15 530830.23 626862.43 383482.71 0.43

φ̂0,LS1 9545.14 10888.51 7394.38 28.99 19398.43 22918.83 14017.94 2.57
266554.48 311566.76 196527.96 24.76 1.48×106 1.76×106 1.04×106 0.46

φ̂0,Q 8737.04 9938.09 6806.04 29.17 7720.53 9006.20 5721.53 2.54
224133.80 261786.89 165517.36 25.63 541278.78 639291.42 390924.97 0.46

φ̂0,H 104539.29 124128.75 74804.60 33.81 6037.57 6983.52 4548.49 2.50
4.32×106 5.19×106 3.02×106 51.77 317140.51 372071.32 232084.23 0.47

φ̂0,MS 232015.66 280327.24 160553.72 48.47 10315.09 12108.72 7549.64 2.51
1.72×107 2.10×107 1.16×107 104.98 794721.67 942422.58 569441.36 0.51

100

φ̂0,LS 1470.73 1546.74 1332.57 27.37 6458.96 6933.48 5616.71 2.62
52298.50 56244.94 45292.21 13.41 345705.43 374285.38 295454.48 0.35

φ̂0,LS1 1868.82 1972.18 1681.92 28.61 10036.27 10807.80 8672.67 2.66
76331.58 82253.56 65848.08 14.38 565547.39 613831.10 480961.21 0.37

φ̂0,Q 1898.77 2004.35 1707.94 28.72 6708.03 7196.49 5840.25 2.66
78954.90 85098.88 68081.72 15.04 330970.33 358150.15 283146.66 0.37

φ̂0,H 2618.93 2753.76 2372.62 30.90 7667.98 8242.26 6650.30 2.63
38524.36 41173.93 33780.73 23.87 388362.97 420365.84 332069.84 0.38

φ̂0,MS 6943.32 7365.58 6181.07 38.22 10218.40 11035.17 8781.08 2.65
129974.52 139624.53 112819.49 44.23 734800.56 799019.30 622591.35 0.42

200

φ̂0,LS 553.08 561.43 536.85 28.41 910.56 929.40 874.28 2.73
1042.06 1063.00 1001.66 9.58 7128.67 7322.25 6758.90 0.27

φ̂0,LS1 584.11 593.03 566.77 29.03 1031.31 1053.17 989.26 2.75
1129.55 1152.50 1085.26 9.91 8398.21 8630.17 7955.41 0.27

φ̂0,Q 585.41 594.36 568.03 29.07 1016.84 1038.35 975.48 2.75
1126.42 1149.26 1082.36 10.04 8329.52 8559.64 7890.25 0.27

φ̂0,H 780.31 793.67 754.44 30.05 948.47 968.10 910.67 2.74
3040.51 3116.44 2895.07 14.13 6784.37 6964.56 6439.85 0.28

φ̂0,MS 1275.04 1300.28 1226.38 34.47 1164.62 1190.30 1115.31 2.78
9941.34 10236.10 9380.47 21.95 12465.46 12833.56 11764.74 0.33

500

φ̂0,LS 432.24 434.54 427.69 29.04 479.18 482.02 473.57 2.83
361.39 363.82 356.60 6.01 959.05 966.60 944.16 0.16

φ̂0,LS1 440.12 442.47 435.47 29.29 496.25 499.21 490.40 2.84
370.66 373.16 365.72 6.09 1005.53 1013.51 989.81 0.17

φ̂0,Q 440.16 442.51 435.51 29.29 495.83 498.79 489.98 2.84
369.04 371.52 364.14 6.11 1002.15 1010.08 986.50 0.17

φ̂0,H 482.46 485.13 477.18 29.80 494.76 497.72 488.92 2.83
544.45 548.40 536.67 8.22 1017.76 1025.88 1001.75 0.17

φ̂0,MS 582.91 586.27 576.26 32.49 600.19 603.92 592.82 2.90
749.98 755.67 738.74 10.92 1314.75 1325.57 1293.44 0.21

1000

φ̂0,LS 396.75 397.76 394.74 29.28 423.14 424.28 420.86 2.87
199.67 200.29 198.44 4.24 466.05 467.67 462.84 0.11

φ̂0,LS1 400.12 401.14 398.08 29.40 429.90 431.06 427.58 2.88
201.94 202.56 200.69 4.27 475.80 477.46 472.51 0.11

φ̂0,Q 400.08 401.10 398.04 29.40 429.86 431.03 427.55 2.88
202.16 202.79 200.92 4.28 475.82 477.47 472.53 0.11

φ̂0,H 416.29 417.37 414.14 29.64 430.67 431.84 428.34 2.87
247.68 248.46 246.13 5.63 488.93 490.64 485.53 0.12

φ̂0,MS 487.82 489.13 485.22 31.97 524.19 525.68 521.23 2.94
348.86 350.03 346.53 7.49 667.39 669.84 662.51 0.15
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for j = 1, 2, . . . ,m, where X0 ∼ N (µ0, σ0) , εj ∼ N (0, σε) and |φ0| < 1. At this stage, it is necessary
to introduce an estimator for σε which was not introduced before as its estimation was not involved on the
calculation of the ARL. However, in this stage, it plays a role on the calculation of the adjusted control limits,
and an estimator for σε is now needed. Considering the relationship shown in (4.2.2), a natural estimator
for σε is given by

σ̂ε = σ̂0

√(
1− φ̂2

0

)
. (4.4.1)

In order to apply the bootstrap method, let P denote the process shown in equation (4.2.5) and ξ = ξ (P )

denote the process P parameters, that is to say, ξ = 〈µ0, σ0, φ0, σε〉. Thus, ξ̂ = ξ(P̂ ) =
〈
µ̂0, σ̂0, φ̂0, σ̂ε

〉
stands for the estimated process parameters. The variable analyzed in the bootstrap procedure is the
value of K required to get the target ARL0 and it is computed by using Algorithm 4. In addition, due
to the fact that the estimated model might differ from sample to sample, the bootstrapping methodol-
ogy was applied several times and the K-values reported in Table 4.4.1 are the averaged adjusted K-
values. To do so, Algorithm 4 was applied using rep = 100 runs, B = 1000 bootstrap replications,
α∗ = 0.9, ARL0 = 370.4, µEST = X̄, σEST = σ̂0,SQ, φEST is one of the estimators in equations (4.2.14)
to (4.2.18) and σεEST is obtained using equation (4.4.1). We considered rep = 100 since this value pro-
vides a good balance between computational time and estimation accuracy. For instance, the relative
standard error of the estimation of the averaged adjusted K-value for φ̂0,LS when m = 50 and φ0 = 0.9 is
1.76%, being this the highest value for φ̂0,LS with other combinations of m and φ0. Besides the adjusted
K values, the 10-th quantile (ARL0,0.1) of the distribution of the ARL0 with adjusted control limits is also
reported based on 10000 ARL values, calculated with Algorithm 3 but using these adjusted K-values.

From Table 4.4.1 we could see that the control limits become thinner as m increases. This happens be-
cause the estimators tend to be more accurate. In almost all cases the ARL0,0.1 is within 10% the nominal
ARL0 value except for the cases where φ0 = ±0.9 and for small values of m. However, the performance is
better than the non-adjusted case (not shown here). Even though an in-control ARL0 could be guaranteed
by using this methodology, it is well known that the adjustment of the control limits has a negative effect on
the out-of-control ARL. In order to explore that effect, the ARL1 of the X̄ control chart has been calculated
considering Algorithm 3 with δ = 1, by using the K-value as in Algorithm 3 for the unadjusted (U) control
limits case and by replacing that value with the one reported on Table 4.4.1 for the case of adjusted (A)
control limits.

Table 4.4.2 shows the values of ARL1,0.9, i.e., the 90-th quantile of the distribution of the ARL1 which
means that around 90% of the control charts will have an ARL1 of at most that value. Furthermore, the
ARL1 values for a shift size δ = 1 and known parameters are shown in the last row of the table. It can
be seen that the increment in the ARL1 due to the adjustment is lower for φ0 < 0 than for φ0 > 0, and in
almost all cases φ̂0,LS has the lowest ARL1,0.9 among the φ0 estimators considered here. As φ0 increases,
a larger retrospective Phase I dataset of observations is required to reduce the loss in statistical sensitivity.
In fact, it can be seen that φ0 = 0.9 is the only case where the ARL1,0.9 does not decrease as m increases.
This is observed because, for the generated series, the constraint

∣∣∣φ̂0

∣∣∣ < 1 restricts the percentage of times

a value φ̂0 is above φ0 = 0.9, especially for small values of m, where the estimators accuracy is not good
enough to mitigate the impact of the censure.

4.5 Illustrative example

In this Section, the sampling methodology is illustrated using a dataset found in Box et al. (2015) corre-
sponding to viscosity readings (unit not specified), taken every hour from a chemical process and labeled
as Series D. Before setting up the X̄ control chart, recall that the Phase I is done by sampling m consecu-
tive individual (n = 1) observations, collected to estimate the process parameters and to check for process
stability. After that, the Phase II process monitoring is performed by collecting, each h hours, independent
samples of n consecutive autocorrelated observations.
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Algorithm 4 Calculation of the adjusted K-values

Define m, n, µ0, σ0, φ0, ARL0, α∗, B, rep, µEST , σEST , φEST , σεEST .
δ ← 0.
α← 1

ARL0
.

r ← 1.
while r ≤ rep do

Generate X1, X2, . . . , Xm based on the AR(1) model:
Xj − µ0 = φ0(Xj−1 − µ0) + εj , where εj ∼ N

(
0, σ0

√
1− φ2

0

)
Estimate µ0, σ0, φ0, σε with µEST , σEST , φEST , σεEST and denote them as µ̂0,r, σ̂0,r, φ̂0,r and σ̂ε,r, re-
spectively.
if
∣∣∣φ̂0,r

∣∣∣ < 1 then

Ĉ2,r ← C2

(
n, φ̂0,r

)
=
√√√√√ n

n+ 2

(
φ̂n+1

0,r − nφ̂2
0,r + (n− 1)φ̂0,r

(φ̂0,r − 1)2

) .

b← 1.
while b ≤ B do

Generate X∗1 , X∗2 , . . . , X∗m based on the estimated AR(1) model:
Xj − µ̂0,r = φ̂0,r (Xj−1 − µ̂0,r) + εj , where εj ∼ N (0, σ̂ε,r)

Estimate µ0, σ0, φ0, σε with µEST , σEST , φEST , σεEST and denote them as µ̂∗0,b, σ̂
∗
0,b, φ̂

∗
0,b and σ̂∗ε,b,

respectively.
if
∣∣∣φ̂∗0,b∣∣∣ < 1 then

Ĉ∗2,b ← C2

(
n, φ̂∗0,b

)
=
√√√√√ n

n+ 2

(
φ̂∗n+1

0,b − nφ̂∗20,b + (n− 1)φ̂∗0,b

(φ̂∗0,b − 1)2

) .

K
(
P̂ , φ̂∗0,b

)
← calculate as the solution of equation

1− α = Φ

[
√
nĈ2,r

(
µ̂∗0,b − µ̂0,r

σ̂0,r

)
+K

(
P̂ , φ̂∗0,b

) σ̂∗0,bĈ2,r

σ̂0,rĈ∗2,b

]
−

Φ

[
√
nĈ2,r

(
µ̂∗0,b − µ̂0,r

σ̂0,r

)
−K

(
P̂ , φ̂∗0,b

) σ̂∗0,bĈ2,r

σ̂0,rĈ∗2,b

]
.

b← b+ 1.
else

Eliminate the current sample X∗1 , X∗2 , . . . , X∗m.
end if

end while
Kr ← is the α∗-th quantile of K

(
P̂ , φ̂∗0,b

)
.

r ← r + 1.
else

Eliminate the current sample X1, X2, . . . , Xm.
end if

end while
K ← mean (K1, . . . ,Krep).
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Table 4.4.1: The averaged adjusted K values for the control limits for different values of m and φ0 for a
desired ARL0 = 370.4 and n = 5. ARL0,0.1 is the 10-th quantile of the simulated ARL0 obtained using
these values.

m φ̂0
φ0 = −0.9 φ0 = −0.5 φ0 = −0.1 φ0 = 0.1 φ0 = 0.5 φ0 = 0.9

K ARL0,0.1 K ARL0,0.1 K ARL0,0.1 K ARL0,0.1 K ARL0,0.1 K ARL0,0.1

50

φ̂0,LS 4.04 161.02 3.57 356.60 3.74 312.61 3.87 317.62 4.22 292.12 5.65 94.50
φ̂0,LS1 4.79 648.88 3.63 353.40 3.76 306.68 3.88 320.34 4.20 311.14 7.09 1111.58
φ̂0,Q 4.53 378.96 3.66 348.56 3.78 311.12 3.90 314.71 4.22 315.94 6.82 647.10
φ̂0,H 4.59 469.62 3.91 355.03 4.03 307.54 4.16 326.62 4.47 335.12 7.57 1783.45
φ̂0,MS 5.09 1263.73 4.06 335.24 4.13 298.79 4.22 327.04 4.67 534.80 8.50 9279.41

100

φ̂0,LS 3.76 228.96 3.37 360.73 3.49 348.17 3.55 327.38 3.78 328.51 4.82 216.67
φ̂0,LS1 3.95 318.46 3.40 354.39 3.50 349.12 3.56 330.61 3.77 335.01 5.04 375.16
φ̂0,Q 3.96 331.29 3.40 355.35 3.51 347.95 3.56 333.90 3.77 340.25 5.15 452.91
φ̂0,H 4.07 459.42 3.58 345.39 3.69 348.03 3.73 341.14 3.92 350.80 5.29 529.53
φ̂0,MS 4.52 1370.08 3.71 333.95 3.74 347.52 3.74 359.39 3.94 388.82 5.78 1618.68

200

φ̂0,LS 3.61 331.22 3.24 357.96 3.33 358.52 3.37 354.18 3.51 346.56 4.13 285.22
φ̂0,LS1 3.67 371.09 3.25 358.35 3.33 359.92 3.37 354.51 3.50 344.68 4.18 346.10
φ̂0,Q 3.72 432.15 3.26 354.49 3.33 356.86 3.37 355.52 3.50 351.26 4.59 966.55
φ̂0,H 3.72 440.05 3.39 367.58 3.45 350.64 3.48 354.89 3.58 346.05 4.27 398.18
φ̂0,MS 4.16 1413.26 3.50 351.65 3.48 355.62 3.49 356.51 3.59 359.73 4.75 1458.54

500

φ̂0,LS 3.38 387.28 3.14 369.42 3.19 363.53 3.22 358.55 3.30 366.81 3.63 346.14
φ̂0,LS1 3.40 399.12 3.15 371.09 3.19 360.15 3.22 360.49 3.29 365.35 3.63 359.14
φ̂0,Q 3.40 397.50 3.15 368.67 3.20 364.68 3.22 358.55 3.29 361.99 3.63 365.32
φ̂0,H 3.41 411.96 3.23 366.90 3.27 363.34 3.29 354.42 3.34 362.33 3.65 355.13
φ̂0,MS 3.61 674.63 3.32 369.13 3.27 365.82 3.29 349.06 3.32 372.61 3.84 678.22

1000

φ̂0,LS 3.25 371.25 3.10 364.64 3.13 366.08 3.15 366.16 3.20 367.67 3.40 367.35
φ̂0,LS1 3.26 374.95 3.10 365.92 3.13 365.60 3.15 368.23 3.20 368.50 3.41 373.20
φ̂0,Q 3.26 374.01 3.10 364.67 3.13 366.50 3.15 367.81 3.20 367.37 3.41 373.21
φ̂0,H 3.26 375.96 3.16 366.80 3.18 365.27 3.20 365.88 3.23 367.35 3.41 367.10
φ̂0,MS 3.41 532.31 3.23 367.22 3.18 368.05 3.21 356.26 3.21 367.77 3.47 489.41

As seen in Table 4.5.1, the first 72 observations of the original series were used as a Phase I sample.
They were analyzed following the Box-Jenkins approach. Autocorrelation and partial autocorrelation func-
tions (ACF and PACF, respectively) indicated that an AR(1) model might be appropriate to fit the series. The
AR(1) model was fitted: the parameters were estimated as µ̂0 = 8.5153, σ̂0,SQ = 0.4377, and φ̂0,LS = 0.8243.
The fit was evaluated using the Ljung-Box Q (LBQ) statistics over residuals, and showed to be not signif-
icant at α = 0.05 even at lag 48, meaning that the residuals of the fitted model are actually independent.
Correlograms from the ACF and PACF over residuals agreed with this conclusion using the same α level
over each lag. In addition, the Anderson-Darling goodness of fit test applied to the same residuals showed
a p-value of 0.065, failing to reject the normality assumption. With this, it was concluded that the AR(1) was
a suitable model for the series. Finally, in order to check for process stability, a Phase I X control chart
for the AR(1) process was set considering n = 1. Using Ĉ2 = 1 when n = 1, and a value of K = 3 to
get an expected ARL0 of 370.4, the corresponding control limits were calculated as L̂CL = 7.2022 and
ÛCL = 9.8283. This Phase I control chart is presented in Figure 4.5.1a. It shows that the process is stable
and the process parameter estimates can be used to set a Phase II, online monitoring.

To show how the monitoring is done over batched samples, Phase II samples of n = 5 observations
were collected every 24 hours, starting at the 73rd observation of the original series. This is, the first batch
corresponds to observations 73 to 77, the second batch corresponds to observations 97 to 101, and so
on. The data in Table 4.5.2 present the collected samples. Their corresponding means were plotted in a
Phase II X̄ control chart. In this case, the unadjusted estimated control limits are L̂CLU = 7.3755 and
ÛCLU = 9.6550, since Ĉ2 = 0.5152 when n = 5 and φ̂0,LS = 0.8243. Figure 4.5.1b shows the Phase II X̄
control chart with these unadjusted control limits in solid lines, where two signals are triggered at samples
#3 and #9, suggesting that assignable causes of variation might be found and eliminated. However, if
the bootstrapping methodology is applied, then the obtained adjusted K-value (by applying Algorithm 4
with rep = 100 runs, B = 1000 bootstrap replications, α∗ = 0.9, ARL0 = 370.4, µEST = µ̂0 = 8.5153,

σEST = σ̂0,SQ = 0.4377, φEST = φ̂0,LS = 0.8243 and σεEST = σ̂0,SQ

√
1− φ̂2

0,LS = 0.2478) is K = 4.8633.
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Table 4.4.2: The 90-th quantile of the simulated ARL1 values (ARL1,0.9) considering a shift of δ = 1, with
n = 5, ARL0 = 370.4

m φ̂
φ0 = −0.9 φ0 = −0.5 φ0 = −0.1 φ0 = 0.1 φ0 = 0.5 φ0 = 0.9
U A U A U A U A U A U A

50

φ̂0,LS 1.11 1.89 2.25 4.58 9.20 54.20 19.58 246.75 88.49 9993.36 65.84 1.27×106

φ̂0,LS1 1.10 4.34 2.16 4.64 9.20 57.33 20.50 276.10 106.28 13337.03 82.81 4.88×109

φ̂0,Q 1.10 3.18 2.19 4.96 9.36 62.18 20.76 289.53 105.40 14368.49 73.95 7.93×108

φ̂0,H 1.12 3.79 2.81 14.20 14.55 348.63 30.80 1961.74 123.21 84292.04 67.50 1.86×1010

φ̂0,MS 1.13 11.32 2.81 21.11 15.23 596.88 34.40 3489.78 177.64 8.08×105 66.40 5.44×1011

100

φ̂0,LS 1.11 1.52 1.95 2.79 6.88 18.29 13.20 49.74 54.24 701.40 116.89 1.57×105

φ̂0,LS1 1.10 1.71 1.90 2.79 6.87 18.78 13.42 51.73 58.78 757.09 133.08 6.85×105

φ̂0,Q 1.10 1.74 1.91 2.83 6.86 18.72 13.62 53.03 58.70 755.01 127.93 1.14×106

φ̂0,H 1.11 1.99 2.22 4.68 8.78 44.90 17.21 129.34 69.45 1880.80 123.13 2.04×106

φ̂0,MS 1.12 3.59 2.24 6.01 8.80 52.40 19.34 171.29 91.85 3453.44 120.70 3.68×107

200

φ̂0,LS 1.09 1.33 1.77 2.15 5.54 9.67 10.51 22.99 37.34 157.59 138.14 9490.33
φ̂0,LS1 1.09 1.36 1.75 2.15 5.53 9.77 10.59 23.22 38.66 158.37 147.65 13927.34
φ̂0,Q 1.09 1.40 1.76 2.16 5.53 9.74 10.60 23.42 38.73 162.04 147.93 1.05×105

φ̂0,H 1.09 1.41 1.93 2.85 6.41 15.38 12.42 38.95 43.74 256.22 143.85 19845.73
φ̂0,MS 1.09 1.98 1.93 3.25 6.43 16.50 12.59 39.88 54.80 359.77 156.24 2.54×105

500

φ̂0,LS 1.07 1.15 1.66 1.84 4.68 6.28 8.22 12.37 26.88 55.99 101.49 781.73
φ̂0,LS1 1.07 1.16 1.66 1.84 4.68 6.26 8.23 12.43 27.22 55.93 104.16 823.70
φ̂0,Q 1.07 1.16 1.66 1.84 4.68 6.29 8.27 12.44 27.25 55.69 104.15 840.95
φ̂0,H 1.07 1.16 1.75 2.11 5.07 7.84 8.99 15.82 29.31 70.18 104.74 885.80
φ̂0,MS 1.07 1.24 1.73 2.26 5.13 8.05 9.04 15.98 33.55 79.28 118.66 2282.66

1000

φ̂0,LS 1.05 1.10 1.61 1.72 4.29 5.17 7.36 9.54 22.60 35.98 79.56 265.87
φ̂0,LS1 1.05 1.10 1.61 1.72 4.29 5.17 7.37 9.58 22.73 36.07 80.50 270.69
φ̂0,Q 1.05 1.10 1.61 1.72 4.29 5.17 7.37 9.59 22.80 36.13 80.56 271.50
φ̂0,H 1.05 1.10 1.66 1.87 4.53 5.96 7.86 11.25 23.88 41.44 80.39 275.30
φ̂0,MS 1.05 1.13 1.64 1.95 4.61 6.06 7.78 11.28 26.78 44.54 94.23 412.15

Known case values 1.0321 1.5001 3.5440 5.7199 14.9949 36.1217

Table 4.5.1: Phase I data for the illustrative example.

1-12 8.0 8.0 7.4 8.0 8.0 8.0 8.0 8.8 8.4 8.4 8.0 8.2
13-24 8.2 8.2 8.4 8.4 8.4 8.6 8.8 8.6 8.6 8.6 8.6 8.6
25-36 8.8 8.9 9.1 9.5 8.5 8.4 8.3 8.2 8.1 8.3 8.4 8.7
37-48 8.8 8.8 9.2 9.6 9.0 8.8 8.6 8.6 8.8 8.8 8.6 8.6
49-60 8.4 8.3 8.4 8.3 8.3 8.1 8.2 8.3 8.5 8.1 8.1 7.9
61-72 8.3 8.1 8.1 8.1 8.4 8.7 9.0 9.3 9.3 9.5 9.3 9.5

Table 4.5.2: Phase II data for the illustrative example.

k X1 X2 X3 X4 X5 X̄k

1 9.5 9.5 9.5 9.5 9.5 9.50
2 9.4 9.0 9.0 8.8 9.0 9.04
3 9.5 9.5 9.5 9.9 9.9 9.66
4 9.4 9.4 9.4 9.4 9.6 9.44
5 9.4 9.8 8.8 8.8 8.8 9.12
6 10.0 10.0 9.6 9.2 9.2 9.60
7 8.6 9.0 9.4 9.4 9.4 9.16
8 9.0 9.4 9.4 9.4 9.6 9.36
9 10.4 10.4 9.8 9.0 9.6 9.84

10 10.0 9.6 9.0 9.0 8.6 9.24
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Figure 4.5.1: Control charts for viscosity data. Panel (a) corresponds to the Phase I X control chart.
Panel (b) is the Phase II X̄ control chart with unadjusted limits (solid) and adjusted limits (dashed).

With this value, the adjusted control limits are given by L̂CLA = 6.6677 and ÛCLA = 10.3629. These
adjusted limits are shown in Figure 4.5.1b in dashed lines. In this case, no signal is triggered by the chart.

4.6 Conclusions and future work

It is well known that control charts underperform in the presence of autocorrelation, or when they are imple-
mented with estimated parameters. The X̄ control chart performs worst for positive autocorrelation than for
negative one, since there is a widening (shrinking) on the control limits for φ0 > 0 (φ0 < 0) due to the coef-
ficient C2, even in the known parameters case. With this in mind, the relationships between the conditional
ARL and the estimated values of µ0, σ0 and φ0 for the X̄ control chart monitoring stationary AR(1) pro-
cesses have been presented considering two of the estimators fixed at their corresponding true parameter
values. This gives an insight about the dynamics between the ARL and the estimation of the parameters.
The results presented in this paper have shown that (i) the overestimation of φ0 and/or σ0 leads to higher
ARL values; (ii) the effect on the estimation of µ0 is symmetrical around the current process mean µ0 + δσ0

and leads to lower ARL values despite it is over or underestimated. Concerning the estimators considered
in this study, σ̂0,SQ has the best performance over the other σ0 estimators whereas φ̂0,LS is suggested to be
used for φ0, since it provides a good performance in both in-control and out-of-control situations. It has also
been found that under estimated parameters, more than 50% of the times the ARL0 of the control chart is
below the nominal value ARL0 = 370.4.
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For the control limits adjustment, Gandy and Kvaløy’s bootstrap methodology was applied having the de-
sired effect on theARL0 for almost all cases, except for those with high levels of autocorrelation (φ0 = ±0.9).
It is also worth to note that the effect on the ARL1 is not severe for cases φ0 < 0, but it increases with φ0.
This effect can be mitigated by collecting larger Phase I retrospective samples, but for φ0 = 0.9 it still re-
quires at least 1000 observations.

The evaluation of control charts for monitoring the variance of autoregressive processes is left as a fu-
ture work, as well as a comparison with the EWMA and CUSUM control charts for this kind of processes
assuming the definition of ‘better performance’ provided by Zwetsloot and Woodall (2017). The adjustment
of the control chart limits via exact or bootstrap-based methods ensures a conditional in-control perfor-
mance with a certain probability, for both cases of independent and autocorrelated data. However, there is
always an increase on the out-of-control ARL that it is worth to consider and that has not been thoroughly
studied even for the i.i.d. case. With this in mind and the lack of knowledge about the distribution of the

random variable W =
σ̂/Ĉ2

σ/C2
, this issue is left as a future work.

Finally, the extension of the X̄ control chart for AR(p) processes with p > 1 is also left as a future work,
since to obtain the control limits, we need to calculate the variance of X̄, which is given by

V ar
[
X̄
]

=
σ2

0

n

[
1 + 2

n−1∑
i=1

(
1− i

n

)
ρi

]
,

where ρi has to be computed according to the type of process under study. For AR(p) processes, the ρi’s
have to be calculated recursively according to the Yule-Walker equations

ρi = φ1ρi−1 + φ2ρi−2 + . . .+ φpρi−p, for i > 0.

which clearly might complicate the calculations in opposition of the case of p = 1, where ρi = φi, for all i.



Chapter 5. The conditional performance of the modified S2 control
chart for AR(1) processes with estimated variance

Abstract

Control charts are widely used tools in Statistical Process Monitoring (SPM) because they are powerful in
detecting departures from in-control situations. However, their power relies on the validation of the assump-
tions made on their design, among which are the prior knowledge of the in-control process parameters
and uncorrelated (or independent) data, while in practice parameters are often estimated and several pro-
cesses deal with streams of autocorrelated data, such as chemical processes. The evaluation of control
charts performance when dealing with estimated parameters has recently been done by means of the Stan-
dard Deviation of the ARL, SDARL, as this performance measure stands for the sampling variability of the
ARL due to the Phase I estimation, also called the “practitioner-to-practitioner” variation. In this study, the
performance of the modified S2 control chart for AR(1) processes is evaluated assuming unknown process
variance and using the SDARL as the performance measure. A bootstrapping technique to adjust the chart
control limit is developed to have a guaranteed in-control conditional performance, with a certain probability,
and the effect on the out-of-control ARL is studied by simulation. Results show that the overestimation of
the variance has a strong effect on both in-control and out-of-control ARLs.

Keywords: AR(1) process; modified S2 control chart; variance monitoring; estimated parameters; SDARL.

5.1 Introduction

When managing a process or a system, departures from a desired in-control or target state are wanted
to be avoided and, when that occurs, to be detected as quickly as possible. The identification of these
situations can be made via control charts, well known tools used in Statistical Process Monitoring SPM due
to their usefulness and their easiness to be understood and implemented by practitioners. Nevertheless,
their detection capability relies on the validation of the assumptions made at the design stage and many of
them are scarcely met in practice, leading to unexpected and/or unpredictable charts performances.

One of the common assumption made on charts’ design is that data have to be independent. Even though
there are several applications were this is suitable, there are also several applications were it is not. For
instance, Montgomery (2007) provided several examples of the implementation of control charts for au-
tocorrelated processes using data taken from the chemical industry. Furthermore, a significant level of
autocorrelation is expected to be present when the measurements are taken from the same object, when
the data are collected over small periods of time, or when dealing with continuous flows of data. Concerning
autocorrelated data, two literature reviews were found: Psarakis and Papaleonida (2007) which considered
Statistical Process Control, SPC, techniques whereas Prajapati and Singh (2012) just focused on control
charts.

The monitoring of autocorrelated data using control charts is usually done by means of: (i) the modifi-
cation of the traditional control charts by taking into account the process true variance due to the presence
of autocorrelation when setting the control limits, (such charts are known as modified control charts), (ii)
the time series approach, where the residuals of a fitted time series model are monitored, (such charts
are known as residuals control charts), or (iii) another approach from which a control chart with an specific
name is designed. For instance, Vasilopoulos and Stamboulis (1978) and Amin et al. (1997) modified the
X̄ and S2 control charts for monitoring the mean and the variance, respectively, of AR(1) processes. Con-
cerning residuals control charts, Dawod et al. (2017) compared the Shewhart, EWMA and CUSUM control
charts applied to the residuals of AR(1), MA(1) and ARMA(1,1) processes, following the work of Runger and
Willemain (1995) and Snoussi et al. (2005) where the process parameters are supposed to be accurately
estimated. Besides modified and residuals control charts, Alshraideh and Khatatbeh (2014) proposed the
Gaussian Process control charts for the monitoring of the mean; Zhang and Pintar (2015) the Exponentially
Weighted Mean Square (EWMS) control chart for variance monitoring; Harris et al. (2016) proposed a mul-
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tivariate control chart, applied to autocorrelated tool wear processes; Osei-Aning et al. (2017a) designed
mixed CUSUM-EWMA and mixed EWMA-CUSUM control charts for AR(1) process mean monitoring; and
Osei-Aning et al. (2017b) provided the optimal design for the EWMA and CUSUM control charts for AR(1)
processes.

Among other works considering AR(1) processes we have Chang and Wu (2011), which provided a Markov
Chain approach to compute the ARL and Dasdemir et al. (2016) who evaluated the effect of outliers in the
Phase II control charts performance. A recent contribution has been done by Weiß et al. (2018), which pro-
vide both parametric and non-parametric bootstrap methods to adjust control chart limits to have a guaran-
teed conditional in-control performance for AR(1) processes when parameters are unknown. The practical
problem of building a time series model and that of the effect of model accuracy on the performance of
control charts is discussed in Ledolter and Bisgaard (2011) and Zhou and Goh (2016), respectively.

It is well known that control charts when parameters are estimated underperform, as pointed out in Jensen
et al. (2006) and Psarakis et al. (2014) literature reviews. Most of the works related to the monitoring of
the process variance when parameters are estimated has been done under the assumption of independent
observations. For example, Chen (1998), Maravelakis et al. (2002), Castagliola et al. (2009), Huwang et al.
(2009), Maravelakis and Castagliola (2009), Castagliola and Maravelakis (2011), Zwetsloot et al. (2015),
to mention a few. Recently, there was an increase on the number of researches concerning: (i) the effect
of parameter estimation on control chart performance by means of the AARL and SDARL, performance
measures introduced by Jones and Steiner (2012), in order to take into account the Phase I sampling vari-
ability, also called the “practitioner-to-practitioner variability”; and, (ii) the guaranteed conditional in-control
performance, for which Gandy and Kvaløy (2013) provided a bootstrapping method. Since then, several
works were devoted to these research topics. Among the works concerning variance monitoring are: Ep-
precht et al. (2015), Faraz et al. (2015), Goedhart et al. (2017a), Guo and Wang (2017) and Faraz et al.
(2018). A recent contribution that seems to be of strong practical impact is that of Aparisi et al. (2018), which
are the first ones to design a control chart guaranteeing both the in-control and out-of-control performances.

It can be seen that the study of the performance of control charts for the variance monitoring of autocor-
related processes has not been deeply studied, although there are several studies about SPC techniques
for autocorrelated process, and the effects of parameter estimation alongside the guaranteed conditional
in-control performance in the independent data case. In this paper, the performance of the modified S2

control chart when the process variance is estimated is evaluated. The rest of the chapter is organized as
follows: Section 5.2 stands for the previous and proposed approaches to evaluate the performance of the
modified S2 control chart for AR(1) processes. The simulation study carried out to evaluate the conditional
in-control performance is contained in Section 5.3 followed by the adjustment of the control limits in Section
5.4, where the effect on the out-of-control ARL is also studied. A numerical example is shown in Section
5.5 whereas conclusions and future works are discussed in Section 5.6.

5.2 The modified S2 control chart for AR(1) processes

First of all, a brief description of the S2 control chart for independent and identically distributed, i.i.d. normal
observations is presented. Under that scenario, we have that (n−1)S2

σ2 ∼ χ2
n−1, and therefore, the one-sided

S2 control chart is set up by considering an upper control limit of the form: UCL = σ2

n−1L, where L is a
constant chosen accordingly to have a desired ARL0. If α denote the probability of a type I error, then the
one-sided S2 control chart for the normal i.i.d. case signals whenever S2

i >
σ2

n−1χ
2
1−α,n−1, where χ2

1−α,n−1

is the (1 − α)-th quantile of a χ2
n−1 random variable. Unfortunately, for autocorrelated processes the exact

distribution of S2 (or of some transformation of it) is unknown, and other techniques must be applied in that
case, as it is detailed in the following subsection.
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5.2.1 Previous approach: known variance case

Amin et al. (1997) followed the suggestion of Vasilopoulos and Stamboulis (1978) of modifying the control
limits by considering the process true variance. Given that the distribution of S2 is not known, they did
the modification by considering approximations to the probability density function, (p.d.f.) and the cumula-
tive density function, (c.d.f.) of a function of S2. In order to do this, they wrote the function (n− 1)S2/σ2 as
a quadratic form and they used the approximations of its p.d.f. and c.d.f. found in Mathai and Provost (1992).

Amin et al. (1997) they considered the common and widely used AR(1) model, given by

Xi,j − µ0 = φ (Xi,j−1 − µ0) + εi,j , (5.2.1)

where εi,j ∼ N (0, σε) are uncorrelated normal random variables; φ ∈ (−1, 1) to ensure that the process
is stationary; and Xi,j and Xi+1,j are uncorrelated, ∀j = 1, 2, . . . , n, that is to say, the autocorrelation is
present within but not between samples. This sampling scheme is often applied in practice: independence
between samples is suitable to be assumed when they are collected over sufficiently separated intervals of
time. Under this model, there is a relationship between the process and errors variances given by:

σ2
0 =

σ2
ε

1− φ2
.

Amin et al. (1997) rewrote the chart statistic as:

(n− 1)S2
i

σ2
0

=
(n− 1)S2

i

σ2
ε

1− φ2

=

n∑
j=1

(xi,j − x̄i)2

σ2
ε

1− φ2

=

n∑
j=1

 xi,j√
σ2
ε

1− φ2

− x̄i√
σ2
ε

1− φ2


2

=

n∑
j=1

(yi,j − ȳi)2

where yi,j = xi,j/
√

σ2
ε

1−φ2 , and wrote this equation in a quadratic form:

(n− 1)S2
i

σ2
0

= Y ′i

(
I − 1

n
J

)
Yi = Y ′iAYi (5.2.2)

where: Y ′i = (yi,1, yi,2, . . . , yi,n)
′, I is the identity matrix of order n, J is an n×n matrix whose all entries are

ones, and A = I − 1
nJ is a positive semidefinite matrix of rank (n− 1). Given the model stated in equation

(5.2.1), it follows that Xi ∼ Nn
(
0, σ2

0Σ
)
, the normal multivariate distribution, and therefore, Yi ∼ Nn (0,Σ).

Now, the distribution of Q(Y ) =
(n− 1)S2

σ2
0

could be approximated using the theorem found in Mathai and

Provost (1992), which is stated in the Appendix and it is based on power series and generalized Laguerre
polynomials.

Let β denote the conditional probability of a type II error, then it is given by

β = P
(
S2
i ≤ UCL|σ̂2

0

)
= P

(
(n− 1)S2

i

σ2
0

≤ σ̂2
0

σ2
0

L

)
= FQ(Y )

(
σ̂2

0

σ2
0

L

)
.

As autocorrelation within samples and not between samples is assumed, then the Run Length, RL, follows
a geometric distribution with parameter 1−β, and, therefore, ARL = 1/(1−β). With this result, the authors
calculated the ARL for several combinations of Phase II sample sizes (n) and φ0, finding the necessity
of modifying the control limits since ARL0 values lower than the nominal ARL0 were obtained whenever
φ0 6= 0.

In order to modify the control limits to achieve a nominal ARL0, the authors solved for L the following
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non-linear equation for several combinations of n and φ0:

ARL0 =
1

1− β
=

1

1− FQ(Y )

(
σ̂2

0

σ2
0

L

) , (5.2.3)

but considering that σ̂2
0 = σ2

0 . We will denote those modified control limits here as L (n, φ0), since they
depend only on n and φ0. The calculation of the ARL via generalized Laguerre polynomials and the
modification of the control limits are remarkable contributions from Amin et al.’s paper. However, the case
of estimated parameters was not deeply studied and the modification (adjustment) of the control limits was
not done in terms of guaranteeing a conditional in-control performance. These issues will be explored in
Section 5.3 whereas the proposed model is detailed in the following subsection.

5.2.2 The proposed approach: estimated variance case

Considering the transformation of the chart statistic found in Amin et al. (1997), we are motivated to in-
troduce an equivalent model. Consider that, at the i-th sampling point, the sequence of observations
{Xi,1, Xi,2, . . . , Xi,n} follow the model:

Xi,j − µ0

τσ0
= φ0

(
Xi,j−1 − µ0

τσ0

)
+ εi,j , (5.2.4)

for j = 1, 2, . . . , n, where n stands for the subgroup size, µ0 and σ0 are the in-control process mean and
standard deviation, respectively, whereas φ0 is the in-control autoregressive parameter which lies on the
interval (−1, 1). The random variables εi,j ∼ N(0, σε) are assumed to be uncorrelated, τ2 = σ2

1/σ
2
0 stands

for changes in variance and Xi,0 has the steady-state distribution, i.e. Xi,0 ∼ N (µ0, τσ0).

The same sampling scheme introduced before is considered for this model, that is to say, for j = 1, 2, . . . , n,
Xi,j and Xi+1,j are regarded as independent. Furthermore, as samples are assumed to be independent,
the model in (5.2.4) could be rewritten (in order to have a simpler notation) by saying that the i-th sample
follows the model:

Xj − µ0

τσ0
= φ0

(
Xj−1 − µ0

τσ0

)
+ εj . (5.2.5)

It can be shown that under this model, the autoregressive parameter φ0 is related to the errors variance by
means of:

σ2
ε = 1− φ2. (5.2.6)

Even though this model has not been considered before, we think that it is suitable due to the changes in
the process variance are not defined in terms of changes in the errors variance. However, as stated before,
both models are equivalent and the first one could be considered in order to maintain the status quo.

The main objective is to detect departures from the in-control process variance, σ2
0 , and evaluate the ca-

pability detection of the modified S2 control chart. Particularly, increases on the variance are wanted to
be detected, so, the case τ2 ≤ 1 is not considered as an out-of-control behavior and then, a one-sided
modified S2 control chart is considered here. In the next section, the methodology applied to evaluate the
conditional in-control performance of the modified S2 control chart is introduced as well as the adjustment
of the control limits with the corresponding performance study.

5.3 Performance of the modified S2 control chart when σ2
0 is estimated

Since the distribution of the sample variance, S2, is unknown for time series models, (just only a few mo-
ments of its distribution are known; Anderson, 2011), the approximations given in Mathai and Provost (1992)
(stated here in the Appendix) will be considered. These approximations were previously validated by Amin
et al. (1997) and they were again validated by the author of the manuscript.
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There are two approaches to compute the AARL, SDARL and other quantiles related to the ARL distribu-
tion: either to use its p.d.f. or to run extensive Monte Carlo simulations until a desired estimation accuracy
is reached. The former approach has been considered by several authors (Saleh et al., 2015a; Saleh et al.,
2015b; and Zwetsloot and Woodall, 2017, to mention a few) were the numerical integrals involved in the
expectations were solved by Gaussian Quadrature methods; the latter approach is considered here, due to
the lack of an exact distribution of S2 or of some transformation of it.

Before considering the conditional in-control performance of the modified S2 control chart, we will explore
the relationship between the ARL and the variance estimation. In order to do that, Algorithm 5 was used
by setting n = 5, ARL0 = 200, N = 100 (the number of terms of the series expansion considered),
φ0 ∈ {±(0.1, 0.5, 0.9)}, and without loss of generality, µ0 = 0, σ0 = 1. It was considered that τ2 = 1 for the
ARL0 whereas τ2 = 2 for the ARL1.

When φ0 is fixed, it can be seen from Figures 5.3.1 to 5.3.4: (i) that the overestimation (underestima-
tion) of σ2

0 leads to higher (smaller) ARL values, something expected due to the widening (shrinking) of the
UCL, and (ii) that the impact of overestimating the variance is stronger than that due to underestimating it,
since the change on the ARL0 is greater (less) than 1000 (200) when σ2

0 is overestimated (underestimated)
by 0.5 units, (see Figures 5.3.1 and 5.3.2). A similar behaviour is observed for the ARL1. On the other
hand, when σ̂2

0 is fixed, it can be inferred: (iii) that the ARL is not an increasing function of φ0, in opposition
with the findings for the X̄ control chart. Moreover, (iv) that for positive or negative values of φ0, the ARL
curves (for different φ0 values) intersect at σ̂2

0 = τ2 were they change their order relation. For instance, in
Figure 5.3.3, the ARL1 for φ0 = −0.9 is greater than for φ0 = −0.5 which is greater than for φ0 = −0.1
whenever σ̂2

0 < τ2 = 2, and the order is reversed when σ̂2
0 > τ2 = 2. A similar behaviour is observed for

positive values of φ0 and for the ARL0.

Figure 5.3.1: ARL0 vs σ̂2
0 , for n = 5, τ2 = 1 and

φ < 0, (in-control process)
Figure 5.3.2: ARL0 vs σ̂2

0 , for n = 5, τ2 = 1 and
φ > 0, (in-control process)

When implementing the control chart, each practitioner will collect a different Phase I sample, therefore,
they will have a different variance estimation, leading to a different control limit, and then, to a different ARL.
In order to consider the conditional in-control performance of the modified S2 control chart, Algorithm 5 was
used by setting m ∈ {25, 50, 100, 500}, n = 5, ARL0 = 200, µ0 = 0, σ0 = 1, τ2 = 1, rep = 1000, N = 100,
φ0 ∈ {±(0.1, 0.5, 0.9)}.

From Table 5.3.1 the following conclusions (which are true in almost all cases) arises

• AARL and SDARL tend to decrease as m increases, for fixed φ0.

• The AARL and SDARL tends to be higher as |φ0| → 1.

• The median of the ARL0, MARL0, is below the nominal ARL0 = 200.



Chapter 5. The conditional performance of the modified S2 control chart for AR(1) processes with
estimated variance 60

Figure 5.3.3: ARL1 vs σ̂2
0 , for n = 5, τ2 = 2 and

φ < 0, (out-of-control process)
Figure 5.3.4: ARL1 vs σ̂2

0 , for n = 5, τ2 = 2 and
φ > 0, (out-of-control process)

Algorithm 5 Calculation of AARL and SDARL

Define m, n, µ0, σ0, φ0, ARL0, τ2, rep, N .
L← L (n, φ0).
for r = 1 to rep do

Generate X1, X2, . . . , Xm based on the model
Xt − µ0

τσ0
= φ0

(
Xt−1 − µ0

τσ0

)
+ εt, where εt ∼ N (0, σε), t = 1, . . . ,m.

σ̂2
0,r ← S2

r , the sample variance.

yr ←
σ̂2

0,r

σ2
0

L

FQ(Y ),r (yr)←
∫ yr

0

(
x
2β

)n/2−1

e−
x
2β

2βΓ(n/2)
dx+

N∑
k=1

ck
(k − 1)!

Γ (n/2 + k)

(
yr
2β

)n/2
e−

yr
2βL

(n/2)
k

(
yr
2β

)
.

ARLr ←
1

1− FQ(Y ),r (yr)
.

end for
AARL← mean(ARL1, . . . , ARLrep).
SDARL← stdev(ARL1, . . . , ARLrep).

• AARL0 > MARL0, implying that the ARL0 distribution might be right-skewed.

Even though we consider the modified control limits reported by Amin et al. (1997), it can be seen that the
MARL0 is below the nominal ARL0 in almost all cases studied here. This means that more than 50%
of the times the control charts used by practitioners will show a performance below the expected one and
that the adjustment made by the authors is not enough to jointly overcome the issue of autocorrelation and
estimated parameters.

In the next section, the general guidelines to apply the bootstrapping methodology introduced by Gandy
and Kvaløy (2013) to adjust the control limits of the modified S2 control chart to have a guaranteed condi-
tional in-control performance are considered.

5.4 Guaranteed conditional in-control performance

Aside the work of Aparisi et al. (2018), almost all the papers prior this work were devoted to guarantee
a conditional in-control performance, usually done by exact methods or bootstrap-based techniques. The
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Table 5.3.1: Descriptive statistics for the ARL0 distribution considering n = 5 and a nominal ARL0 = 200
for different values of m and φ0.

m
25 50 100 500

φ0
AARL0 MARL0

AARL0 MARL0
AARL0 MARL0

AARL0 MARL0(SDARL0) (SDARL0) (SDARL0) (SDARL0)

−0.9
1.08×109 82.68 77008.79 110.15 7725.24 152.19 328.92 192.19(2.41×1010) (921209.17) (101705.17) (461.94)

−0.5
6000.86 159.04 692.54 195.73 341.87 191.40 224.60 197.87(72978.41) (3012.84) (587.22) (108.07)

−0.1
17878.63 146.12 594.81 183.11 342.14 188.87 222.20 200.85(482352.34) (1986.78) (616.49) (101.22)

0.1
4172.68 169.52 608.39 173.84 324.21 195.29 217.41 196.86(59409.43) (1926.99) (487.17) (99.37)

0.5
1242.73 96.82 2258.46 136.45 306.78 166.22 212.06 189.51(12673.31) (51639.08) (493.25) (102.62)

0.9
1102.56 11.60 2280.66 28.06 935.28 63.68 256.51 150.76(19711.30) (33439.42) (5885.15) (333.29)

success when developing an exact method often relies on the knowledge of the exact distribution of the
chart statistic or a transformation of it (as in Goedhart et al., 2017b; Goedhart et al., 2017a; and Faraz et al.,
2018), which is not our case. On the other hand, the Gandy and Kvaløy’s methodology has been widely
applied, (Hu and Castagliola, 2017, Saleh et al., 2015a, Aly et al., 2015b, Faraz et al., 2015).

The bootstrap methodology has been explained in previous chapters, but here it is stated again, for the
sake of completeness. Let P denote the process model and θ the vector of parameters of the model P .
With this notation, θ̂ and P̂ denotes the estimated model parameters and the estimated model, respectively.
In addition, let L (P,θ) denote the L value used to achieve a desired performance when data is generated
from model P and the control limit is set using θ. L

(
P̂ ∗b , θ̂

∗
b

)
and L

(
P̂ , θ̂

∗
b

)
are defined analogously. Then,

the general outline of the bootstrap method is:

1. From historical data X1, . . . , Xm, obtain θ̂ and P̂ .

2. Generate a bootstrap sample X∗1 , . . . , X∗m, from P̂ , and compute P̂ ∗ and θ̂
∗
. Repeat B times to have

P̂ ∗1 , . . . , P̂
∗
B and θ̂

∗
1, . . . , θ̂

∗
B .

3. Consider the bootstrap distribution of L
(
P̂ ∗b , θ̂

∗
b

)
− L

(
P̂ , θ̂

∗
b

)
and denote by Lα∗ its α∗-th quantile.

Then, take the adjusted control limit as the quantity L
(
P̂ , θ̂

)
− Lα∗

Note that L (P,θ) = L
(
P̂ ∗b , θ̂

∗
b

)
= L (n, φ0) because the process variance coincides with the variance es-

timation, and that was previously done in Amin et al. (1997). With that in mind, the adjusted L value is
calculated as the α∗-th quantile of the bootstrap distribution of L

(
P̂ , θ̂

∗
b

)
.

Despite the proven effectiveness of the bootstrapping methodology, this approach might be computation-
ally heavy and that is why exact methods are preferred over bootstrap based methods. In order to reduce
the computational time, the adjusted L-values were calculated using Algorithm 6. The rationale of calcu-
lating them in that way relies on the fact that Amin et al. have been previously solved the equation (5.2.3)
when σ̂2

0 = σ2
0 . Now, as the quotient D = σ̂2

0/σ
2
0 might be regarded as the coefficient of the control limit L,

trying to solve equation (5.2.3) for D · L will have a solution of the form 1
DL (n, φ0), where L (n, φ0) is the

adjusted control limit found by Amin et al. (1997). It is worthy to mention that this approach remarkably re-
duces the computational time as the non-linear equation is no longer required to be solved in each iteration.
However, as different Phase I samples will lead to different variance estimation, the bootstrap algorithm was
repeated several times. Algorithm 6 was used to compute the adjusted L-value by setting n = 5, µ0 = 0,
σ2

0 = 1, ARL0 = 200, α∗ = 0.9, B = 1000 and rep = 1000, for different values of m ∈ {25, 50, 100, 500} and
φ0 ∈ {± (0.1, 0.5, 0.9)}.
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Algorithm 6 Calculation of the adjusted L-values

Define m, n, µ0, σ0, φ0, ARL0, α∗, B, rep.
τ2 ← 1.
α← 1

ARL0
.

r ← 1.
for r = 1 to rep do

Generate X1, X2, . . . , Xm based on the model:
Xj − µ0

τσ0
= φ0

(
Xj−1 − µ0

τσ0

)
+ εj , where εj ∼ N (0, σε).

σ̂2
0,r ← S2

r

for b = 1 to B do
Generate X∗1 , X∗2 , . . . , X∗m based on the model:

Xj − µ0

τ σ̂0,r
= φ0

(
Xj−1 − µ0

τ σ̂0,r

)
+ εj , where εj ∼ N (0, σε).

σ̂2∗
0,b ← S2∗

b

L(r, b)←
σ̂2

0,r

σ̂2∗
0,b

L (n, φ0)

end for
Lr ← is the α∗-th quantile of L (r, b).

end for
L← mean (L1, . . . , Lrep).

Table 5.4.1 shows the averaged adjusted L values as well as ARL0,0.1, the 10-th quantile of the simu-
lated ARL0, in order to see if the desired in-control performance is reached. It can be seen that in almost
all cases it was achieved, and that the adjusted L value decreases as φ0 increases. It is well known that
there is a trade off between the in-control and out-of-control performances due to the widening of the con-
trol limits. In order to explore that effect, Algorithm 5 was run considering both the unadjusted (U) and the
adjusted (A) control limits, calculated using the L values provided in Amin et al. (1997) and in Table 5.4.1,
respectively. As the overestimation of σ2

0 leads to higher ARL1 values (see Figures 5.3.3 and 5.3.4), the
MARL1 and the ARL1,0.9, the median and the 90-th quantile of the conditional ARL1 distribution, respec-
tively, are reported in Table 5.4.2 to indicate that 50% and 90%, respectively of the control charts will have
an ARL1 of at most that value. Finally, the last column contains the ARL1 values corresponding to the
known variance case. It can be seen that the effect on the ARL1 is reduced as m is increased, but even

Table 5.4.1: The averaged adjusted L values for the control limits for different values of m and φ0 for a de-
sired ARL0 = 200 and n = 5. ARL0,0.1 is the 10-th quantile of the simulated ARL0 obtained using these
values.

m
25 50 100 500

φ0 L ARL0,0.1 L ARL0,0.1 L ARL0,0.1 L ARL0,0.1 L (n, φ0)
−0.9 104.80 194.60 77.08 201.51 60.64 205.13 43.19 209.00 33.17
−0.5 34.71 206.25 29.65 195.22 26.67 204.32 23.23 202.26 20.87
−0.1 23.74 186.57 20.66 207.03 18.89 203.15 16.91 197.61 15.54
0.1 22.25 188.24 19.21 203.70 17.50 217.24 15.60 205.28 14.33
0.5 22.05 176.06 17.90 196.68 15.67 195.44 13.37 204.41 11.95
0.9 19.88 222.01 12.26 219.91 8.49 205.80 5.30 195.54 3.92

more than m = 500 observations might be needed in order to mitigate that effect. The feasibility of that
amount of data depends on the kind of process that we are monitoring, but for traditional manufacturing
processes it might be regarded as infeasible.
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Table 5.4.2: The MARL1 and ARL1,0.9, the 90-th quantile of the simulated ARL1 (below within parenthe-
sis) values considering a shift of τ2 = 2, with n = 5, ARL0 = 200.

m
25 50 100 500

φ0 U A U A U A U A Known Case

−0.9
12.47 600.22 14.61 216.55 17.38 106.72 19.68 39.42 20.14(208.12) (7.85×106) (129.74) (14543.53) (82.97) (1332.99) (38.64) (92.90)

−0.5
11.78 68.11 13.18 41.38 13.02 28.30 13.26 18.31 13.33(53.75) (762.25) (34.52) (156.33) (25.75) (68.24) (18.10) (26.09)

−0.1
7.71 39.92 8.54 23.65 8.66 16.17 8.90 11.47 8.89(29.84) (355.17) (19.70) (75.74) (15.29) (33.51) (11.49) (15.00)

0.1
8.23 42.05 8.33 22.98 8.78 16.65 8.81 11.32 8.87(30.17) (292.54) (20.78) (69.67) (15.22) (33.17) (11.48) (14.74)

0.5
8.25 64.02 9.89 39.44 10.98 27.54 11.78 16.52 12.12(30.00) (819.98) (28.83) (176.11) (22.54) (67.37) (16.23) (24.07)

0.9
3.32 319.89 5.51 190.15 8.79 87.10 14.24 32.99 16.64(17.63) (186575.63) (26.85) (20615.25) (37.69) (1100.35) (28.65) (81.39)

5.5 Numerical Example

A numerical example using simulated data is shown here, in order to detail the methodology used here.
First of all, m = 100 subsequent observations following the model in equation (5.2.5) with µ0 = 0, σ0 = 1,
τ2 = 1 and φ0 = 0.5 were generated. This data is shown in Table 5.5.1 and constitutes the Phase I sample
used to estimate the process variance, which results in σ̂2

0 = 0.9038. After that, in order to check for process
stability a Phase I modified S2 control chart is designed, considering L = 15.67 (taken from Table 5.4.1), and

n = 5 so that ÛCLA =
σ̂2

0

n− 1
L = 3.5408. If the control limit is not adjusted, then L = 11.95 (taken from Amin

et al., 1997) and ÛCLU = 2.7002. The chart statistic is the sample variance, where each sample consisting
on 5 consecutive observations is collected every 15 units. The corresponding values used to compute the
variances are in bold in Table 5.5.1 and the control chart is depicted in Figure 5.5.1a. With this, we could
assume that the process is stable and the estimations might be used for a Phase II online monitoring. After

Table 5.5.1: Phase I data for the numerical example.

j S2

1-10 0.08 -0.78 -0.03 0.57 1.03 -0.08 0.35 0.26 0.85 0.89 0.4611-20 1.22 0.50 0.12 0.93 -1.37 -1.12 -1.66 -1.16 -0.02 0.71
21-30 -0.53 -0.67 -0.22 -0.36 0.08 0.39 -0.61 -0.46 -2.08 -0.05 0.0831-40 -0.57 -1.33 -0.88 -1.68 -0.86 -0.91 1.43 1.70 -1.31 -0.27
41-50 -1.35 -0.89 -0.31 0.50 0.01 1.37 0.27 0.42 0.78 0.47 0.5351-60 1.00 0.78 -0.29 -1.71 0.76 -0.15 0.02 0.50 0.35 -0.61
61-70 -0.71 -0.46 1.05 -0.22 0.57 0.55 0.07 -0.88 -0.69 -0.42 0.5571-80 -1.48 -0.57 -1.00 -0.58 0.00 -0.78 -0.64 -0.02 -1.60 0.10
81-90 2.15 1.91 0.68 0.71 -0.54 1.36 1.49 1.43 -0.04 0.25 1.1891-100 -0.36 -0.45 -0.72 -1.25 -1.41 -0.89 -1.91 -0.43 -0.32 0.45

that, observations are generated according to the model (5.2.5) with µ0 = 0, σ2
0 = 1, φ0 = 0.5, but τ2 = 2,

corresponding to a shift in the process variance. The collected samples are presented in Table 5.5.2 with
their respective variances in the last column. The effect of the adjustment of the control limit can be seen:
for the unadjusted control limit case, the chart signals at samples # 11, 15, 16, 17 and 34, in opposition to
the adjusted control limit case, where the first signal is triggered at the sample # 34.

5.6 Conclusions and future work

Amin et al. (1997) developed the modified S2 control chart for monitoring the variance of AR(1) processes.
Even though they provide a way to compute the ARL avoiding the use of simulation, they did not take into
account the variance estimation on their study. In this research, a re-evaluation of the modified S2 control
chart was carried out, finding that even when considering the modified S2 control chart, more that 50% of
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Table 5.5.2: Phase II data for the numerical example.

k X1 X2 X3 X4 X5 S2
k k X1 X2 X3 X4 X5 S2

k
1 -1.26 -0.94 -2.08 -2.09 0.06 0.80 18 0.63 0.75 0.10 -1.04 -0.31 0.54
2 1.07 -0.54 -0.08 -0.58 0.72 0.56 19 -0.53 -2.17 -0.46 -0.43 0.11 0.75
3 -1.09 1.36 -1.22 -0.25 -1.98 1.62 20 -0.74 0.47 -0.50 0.19 0.91 0.46
4 -1.03 -1.83 0.98 0.29 0.54 1.38 21 -0.18 -1.22 -0.32 1.16 -2.09 1.48
5 -2.04 -2.20 -0.67 -0.46 0.58 1.35 22 0.16 0.25 0.56 -0.19 0.32 0.07
6 1.64 -0.31 -1.34 -0.11 -0.20 1.15 23 -0.78 -0.08 1.37 0.57 -1.04 0.97
7 0.02 -1.08 -1.70 -0.30 1.76 1.72 24 -0.15 0.46 -0.10 1.98 0.45 0.75
8 -0.49 1.11 2.23 2.43 3.07 1.96 25 -0.60 1.70 1.21 1.26 2.26 1.16
9 0.51 -1.72 -1.87 -1.12 -2.34 1.22 26 -0.93 -0.69 0.72 -0.62 -0.02 0.44

10 -0.74 1.19 -0.36 0.07 0.38 0.55 27 -1.65 -0.20 2.64 1.12 0.07 2.55
11 2.61 1.00 1.29 -0.86 -1.51 2.80 28 2.35 0.03 -0.45 -0.26 0.61 1.28
12 0.46 0.87 -0.14 0.27 -0.69 0.36 29 -1.54 -1.96 -0.60 -0.53 -2.32 0.64
13 0.81 -0.45 0.08 0.47 1.99 0.84 30 -2.44 -3.34 -1.65 -0.27 0.68 2.63
14 -1.57 -0.52 -2.38 -1.03 0.44 1.13 31 -1.50 -3.21 -0.88 -0.54 -0.29 1.37
15 -1.51 -1.01 1.00 2.53 1.27 2.81 32 -0.57 -0.67 1.99 0.81 1.03 1.28
16 2.10 0.86 -0.64 -0.45 -2.36 2.82 33 -3.07 -3.36 -2.64 -1.14 -0.13 1.91
17 -1.17 -1.35 1.02 0.78 2.89 3.06 34 3.55 -0.38 -2.31 -1.50 -1.81 5.60

(a) Phase I modified S2 control chart. (b) Phase II modified S2 control chart.

Figure 5.5.1: The modified S2 control charts for simulated data, with unadjusted control limit (dashed line)
and adjusted control limit (solid line).

the times the charts designed by practitioners will perform worse than expected due to the variance estima-
tion.

Considering the practitioner-to-practitioner variability, a bootstrapping methodology based on Gandy and
Kvaløy’s method, was applied in order to guarantee, with a certain probability, a conditional in-control per-
formance. Results shown that such performance is reached but the effect on the ARL1 is quite strong. In
fact, more than m = 500 Phase I observations are required to mitigate this effect.

The design and performance of a S2 control chart when all parameters are estimated is left as a future
work. It is possible to design a Shewhart-type control chart for S2 when monitoring AR(1) processes, since
the first two moments of the S2 distribution are known (Anderson, 2011) and there is a methodology to com-
pute the chart constant to achieve a desired ARL0 with the approximation provided in Amin et al. (1997)
and that was used here.
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Appendix

In this section, the theorem used to approximate the distribution of S2 when dealing with AR(1) processes is
detailed. This theorem was found in Amin et al. (1997) and in Mathai and Provost (1992). Here, it is written
keeping the notation used throughout the paper.

Theorem 1. Let fQ(Y ) (y) and FQ(Y ) (y) be the p.d.f. and c.d.f. of the quadratic form Q (Y ) = Y ′AY ,
respectively, where A is a symmetric matrix positive definite and Y ∼ Nn (µ,Σ), with Σ a positive definite
matrix with entries given by φ|i−j|. It can be shown that:

1. fQ(Y ) (y) =

∞∑
k=0

ck
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where:

• λj , j = 1, 2, . . . , n are the eigenvalues of Σ1/2AΣ1/2.

• The vector b = P’ Σ−1/2µ where P is an orthogonal matrix with P’ Σ1/2AΣ1/2P = diag (λ1, . . . , λn)

• β =
λmax + λmin

2
, where λmax(λmin) is the largest (smallest) positive eigenvalue.

• c0 = 1; the other coefficients are calculated recursively using ck =
1

k

k−1∑
r=0

dk−rcr, for k ≥ 1.

• dk =
1

2

−k
β

n∑
j=1

λjb
2
j

(
1− λj

β
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• L(α)
k (x) =

1

k!
exx−α

[
dk

dxk
(
e−xxk+α

)]
for α > −1, k ∈ N, denotes the k-th generalized (or associated)

Laguerre polynomial.

If A is positive semidefinite with rank(A) = p < n, substitute n by p.

For the case of µ = 0, some of the parameters are reduced. For instance:

• The vector b = P’Σ−1/2µ = 0, meaning that bj = 0,∀j, and the computation of the matrix P is
unnecessary.

• The coefficients dk are calculated as dk =
1

2

 n∑
j=1

(
1− λj

β

)k, for k ≥ 1.

Note: In this research, the first N terms of the series expansion are considered, as suggested by Amin
et al. (1997).
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6.1 General conclusions

The effect of parameter estimation on the performance of control charts for autocorrelated data was carried
out through this research, focused on the modified X̄ and S2 control charts for AR(1) processes. Concerning
the research questions stated in Section 1.4 and the research hypotheses stated in Section 1.5, we found
that:

• Q1.- What is the conditional performance of X̄ control chart for monitoring the mean of AR(1) pro-
cesses when using autocorrelation estimators?

In general, the overestimation of φ0 provides higher ARL values for either the process being un-
der control or not. Moreover, it is more likely to have larger ARL0 values and small ARL1 ones when
φ0 < 0. Nevertheless, even in such cases, around 50% of the times control charts have a smaller
ARL0 than the expected one.

As the overestimation of φ0 affects the ARL of the X̄ chart, it is recommended to use an estima-
tor with the smaller bias and standard deviation. We recommend to use the least-squares estimator,
φ̂0,LS .

• Q2.- What is the conditional performance of X̄ control chart for monitoring the mean of AR(1) pro-
cesses under parameter estimation?

The X̄ control chart performs worst for positive autocorrelation than for negative one, since there
is a widening (shrinking) on the control limits for φ0 > 0 (φ0 < 0) due to the coefficient C2, even in the
known parameters case. Results shown that

1. The overestimation of φ0 and/or σ0 leads to higher ARL values.

2. The effect on the estimation of µ0 is symmetrical around the current process mean µ0 + δσ0 and
leads to lower ARL values despite it is over or underestimated.

3. More than 50% of the times the ARL0 of the control chart is below the nominal value.

Concerning the estimators considered in this study, σ̂0,SQ and φ̂0,LS are suggested to be used.

• Q3.- What is the conditional performance of the modified S2 control chart for monitoring the variance
of AR(1) processes when the variance is estimated?

Results show that the overestimation (underestimation) of σ2
0 leads to higher (smaller) ARL values,

and that the effect on the ARL is stronger for the overestimation than for the underestimation of the
process variance.

Even though the modified S2 control chart was considered, more that 50% of the times the charts
designed by practitioners will perform worse than expected due to the variance estimation.

• Q4.- What is the effect on the performance (in terms of AARL and SDARL) of X̄ and S2 control
charts when applying the Gandy and Kvaløy’s bootstrap methodology to adjust control limits to have
a guaranteed conditional in-control performance?

In general, it is possible to apply the Gandy and Kvaløy (2013) bootstrap methodology to guaran-
tee a conditional in-control performance. The conditional in-control performance is ensured, but there
are two side-effects: there is an increase on the AARL and the SDARL in both in-control and out-of-
control performances.

This technique might be computationally heavy, but some simplifications could be made, as the one
made in Section 5.4.



Chapter 6. General conclusions and future work 67

6.2 Future work

There are several lines to follow, as was mentioned in Section 2.5 and in Chapters 3,4 and 5. Considering
the work developed and applied here, we could say it is left as a future work:

• The extension of this work to another time series models such as AR(p) process with p > 1, MA
processes and ARMA processes. (Nevertheless, this is not something trivial and easy to do, as was
stated in Section 4.6, due to the distribution of X̄ and S2 are not easy to be obtained for processes
different from the AR(1) processes and the required effort might not be justified since it seems that a
wide variety of processes might be modeled as AR(1) processes).

• The extension of this work to CUSUM and EWMA control charts.

• Once the previous point is assessed, a head-to-head comparison between the Shewhart, CUSUM
and EWMA control charts for AR(1) processes might be done in order to identify which control chart
is preferred when monitoring AR(1) processes under estimated parameters.

• Concerning the variance monitoring, it is possible to design a Shewhart-type control chart for moni-
toring of AR(1) process, since the first two moments of the S2 distribution are known and there is a
way to compute values of its p.d.f. and c.d.f.

• If the control chart in the previous point is designed, then a joint X̄-S2 control chart for AR(1) processes
under estimated parameters might be easily developed. However, the adjustment of the control limits
would require more effort.

• Explore the effect of outliers on the conditional performance of the X̄ control chart for the autocorre-
lation estimators considered here, where the robust ones might perform better than the least-squares
based ones.

In addition to those works, another lines to follow include

• Explore the self-starting methodology applied to time series models (applied to the original autocor-
related observations or to the residuals of the fitted model).

• Head-to-head comparisons between Shewart, CUSUM and EWMA self-starting control charts for
autocorrelated processes when the parameters are estimated (applied to the observations or to the
residuals of the fitted model).

• Explore the feasibility of to develop exact methods to adjust control chart limits to have a guaranteed
conditional in-control performance.

• Explore the feasibility of to develop or proposed a method to simultaneously guarantee the in-control
and out-of-control performances.

• Explore the applicability of these methods (developed for AR(1) processes) to other ARIMA models.

• Explore the feasibility to design control charts for stationary processes without any assumption about
the process model.
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