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OPTIMIZATION OF DISTRIBUTION NETWORKS USING
EVOLUTIONARY ALGORITHMS

by
Juan Pablo Avilés Arévalo

Abstract

One of the biggest problems that a distribution network (DN) must face is the constant
increase in load demand, which eventually will cause the degradation of its optimal opera-
tion. To overcome these challenges the distribution network usually is oversized or rein-
forced, however, although this is a quick and practical solution, it is not necessarily the most
economical and efficient one. For this reason, it is desirable to implement an optimization
algorithm to improve the network without increasing investment costs. The optimization of
a power distribution network is not an easy task, because this is the most extensive part of
the entire electrical system. Due to this extension, along with the high complexity of the to-
pology, and some quality parameters that must be respected, the entire design or improve-
ment of a distribution network can be considered as an extremely hard combinatorial, non-
convex, and non-linear optimization problem, difficult to solve by conventional methods.

For these reasons, we propose a Two-Stage Multiobjective Evolutionary Approach (TS-
MOEAP) capable to design and optimize distribution networks, at primary and secondary
levels. Due to the complexity of the optimization problem, the approach is implemented in
two stages, that can be summarized as follows:

Stage-1. Optimal placement and sizing of generation units, as well as optimal branch routing
and conductor sizing. For this purpose, an Improved Particle Swarm Optimization technique
(IPSO) combined with a greedy algorithm is introduced.

Stage-2. Optimal network reconfiguration. For this, an Improved Nondominated Sorting Ge-
netic Algorithm with a Heuristic Mutation Operator (INSGA-HO) is presented, aiming at min-
imizing the total power loss and investment cost of the system.

Finally, to complement the optimization process, the software DER-CAM will be used to
find optimal investment solutions for Distributed Energy Resources (DER). Both algorithms
are successfully applied to design and optimize real distribution networks that presented
several problems, concluding that the combination of these approaches -network reconfig-
uration with optimal installation of DERs- can converge toward better configurations than

other algorithms.
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Chapter 1

Introduction

In this chapter, we provide a general introduction to the challenges of designing and op-
timizing distribution networks, and we briefly study their structure, common technical issues,
and conventional design. Due to the complexity that presents these type of combinatorial
optimization problems, we present and justify the implementation of a Two-Stage Multi-

objective Evolutionary Approach (TS-MOEAP) to design and optimize distribution networks.

1.1. Distribution Network Planning

A power distribution network is the most extensive part of the entire electrical system
and consists of Low Voltage (LV) and Medium Voltage (MV) networks. Its extension hinders
its planning, since it is necessary to respect certain quality parameters towards the final con-
sumer, maintaining adequate levels of reliability.

In the LV network planning the designer must find the optimal network topology, for later
set the optimal capacity and placement of distribution transformers. At this level, the design
must be done minimizing investment costs and line power losses.

In the MV network planning, the designer must identify the location and size of distribution
substations and MV feeders. Also, the optimal path and size for the conductors must be
found to feed all distribution transformers. The objective at the MV level is to minimize the

total investment cost along with line power losses, to improve reliability indices [1].

During the planning procedure several constraints should be satisfied, for example, the
bus voltage magnitude should be maintained within a standard range and the branch cur-
rents must not exceed the ampacity of conductors. Furthermore, the capacity of transform-
ers and MV feeders must not be exceeded. Apart from these constraints, the planning must
consider line loss reduction as well as load growth and peak loads, particularly for urban and
rural areas. To meet all these requirements, the networks could incorporate more equip-
ment and reinforce their structure (e.g. transformers and conductors) what causes the in-

crease of investment costs, however, the utilities always try to minimize their budgets, which



are inversely proportional to the robustness of the network. Therefore, network planning

become a complex multiobjective optimization problem.

In practical distribution networks, the demand grows gradually, for example for South
America the projected average growth of electricity demand for the 2010-2022 horizon are
Bolivia 6.3%; Chile 5.3%; Colombia 3.5%; Ecuador 5.5%; and Peru 6.7% [2]. The projected

load profiles for these countries are shown in Figure 1.1.

100
90
80
70
60
50
40
30
20

GWh

Né X
S i X
" )
10 v S SK- 7 " N
N ¢ S i O O

=

" 2
N ~

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

—¥—Bolivia ——Chile Colombia  —&—Ecuador —@—Peru

Figure 1.1. South America projected average growth of electricity demand.

This load growth eventually causes degradation of optimal operating conditions of the distri-
bution networks, therefore the electrical system must be modernized and improved very
often. However, current commercial software such as HOMER and DER-CAM only serves to
optimize existing networks through the implementation of distributed generation and they
do not apply to design and reconfigure the network topology. Other software such as ETAP
help us to design distribution networks but all the decisions must be taken by the designer,

i.e. ETAP is only an evaluation software.

Due to the discrete and nonlinear nature of the entire distribution network planning, con-
ventional optimization methods are not suitable to solve these problems. Therefore, the best
option is to implement metaheuristic-based methods which can deal with the particularities

of the design.
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1.2. Distribution Network Structure and Overview

1.2.1. Electric Power Distribution

Electric power distribution is the final stage in the delivery of electric power; it carries
electricity from the transmission system to individual consumers. Distribution substations
connect to the transmission system and lower the transmission voltage to medium voltage
ranging between 5 kV and 35 kV, with the use of transformers. Primary distribution lines
carry this medium voltage power to distribution transformers located near the customer's
premises. Distribution transformers again lower the voltage to the utilization voltage used
by lighting, industrial equipment or household appliances. Often several customers are sup-
plied from one transformer through secondary distribution lines. Commercial and residential
customers are connected to the secondary distribution lines through service drops. Custom-
ers demanding a much larger amount of power may be connected directly to the primary

distribution level or the sub-transmission level [3].

Electric power distribution systems are designed to serve their customers with reliable
and high-quality power. The most common distribution system consists of simple radial cir-
cuits (feeders) that can be overhead, underground, or a combination. From the distribution
substation, feeders carry the power to the end customers, forming the medium-voltage or
primary network, operated at a medium voltage level. Feeders range in length from a few
kilometers to several tens of kilometers. As they must supply all customers in the designated
distribution area, they often curve and branch along the assigned corridors. A substation

typically supplies 3—30 feeders.

Distribution transformers or secondary transformers, placed along feeders, convert the
voltage from the medium to a low voltage level, suitable for direct consumption by end cus-
tomers. Typically, a rural primary feeder supplies up to 50 distribution transformers, spread
over a wide region, but the number can vary depending on configuration. They are sited on
pole tops, cellars or designated small plots. From these transformers, low-voltage or second-
ary network branches off to the customer connections at customer premises, equipped with

electricity meters [4].

Figure 1.2 shows the basic structure of the electric power system with the typical voltage
level for each stage. In the following, we describe the characteristics of primary and second-

ary lines.
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Figure 1.2. The basic structure of the electric power system.

a) Primary distribution lines

Primary distribution voltages range from 5 kV to 35 kV (phase-to-phase). The higher the
voltage, the lower the current, and thus the lower the resistive losses on these lines. How-
ever, higher voltages require taller poles (or more expensive undergrounding technology),
so there is a cost/efficiency tradeoff. Only large consumers are fed directly from distribution
voltages; most utility customers are connected to a distribution transformer, which reduces

the distribution voltage to the "utilization voltage".

For primary lines, we have two types of configurations, radial or meshed. A radial system
is arranged like a tree where each customer has one source of supply. A meshed system has
multiple sources of supply operating in parallel. Meshed networks are used for concentrated
loads and radial systems are commonly used in rural or suburban areas.

Long feeders experience voltage drops (power factor distortion) requiring capacitors or volt-
age regulators to be installed. Reconfiguration, by opening or closing specific switches, rep-
resents one of the most important measures which can improve the operational perfor-
mance of a distribution system. The optimization problem through the reconfiguration of a
power distribution system was introduced by Merlin and Back (1975) [5] with the main ob-

jective to minimize active power losses.

b) Secondary distribution lines

A low-voltage network or secondary network is a part of electric power distribution which
carries electric energy from distribution transformers to electricity meters of end customers.
Secondary networks are operated at a low voltage level, which is typically equal to the mains

voltage of electric appliances. Most modern secondary networks are operated at AC rated
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voltage of 100 — 127 or 220 — 240V, at the frequency of 50 or 60 Hz. The operating voltage
establishes the number of phases (three-phase or single-phase) and the required reliability
dictates the topology and configuration of the network. The simplest form is a radial service
drop line from the transformer to the customer premises. Electric wiring can be realized by

overhead power lines or underground power cables, or their mixture.

Urban distribution is mainly underground, sometimes in common utility ducts. Rural dis-
tribution is mostly above ground with utility poles, and suburban distribution is a mix. Closer
to the customer, a distribution transformer steps the primary distribution power down to a
low-voltage secondary circuit for residential customers. The power comes to the customer
via a service drop and an electricity meter. The final circuit in an urban system may be less

than (15 m) but may be over 300 feet (90 m) for rural customers [4].

Figure 1.3 shows a typical layout of a distribution network, composed of a medium-volt-
age network (green line) and a low-voltage network (blue line). The secondary network, pre-
sented in a radial form, shows a three-phase (urban network) and single-phase (rural net-

work) connections.
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Figure 1.3. Typical Layout of an electric distribution system [6].



1.2.2. Conventional Design of Distribution Networks

In this section, we briefly explain how LV and MV distribution networks are designed fol-

lowing the regulations of the utility company EERSSA [7] from Ecuador. According to this

manual, the general procedure is as follows:

Vi.

Vil.

viii.

a) Design of LV Networks

To begin the design, a georeferenced topographic survey must first be carried out
under the WGS84 UTM coordinate system, to define the location of users and utility
poles.

Depending on whetheritis a rural or urban area, define a single-phase or three-phase
system and the level of tension, e.g. 240/120 V or 220/127 V.

Identify if there are especial loads above 10 kVA. If this is the case, the special con-
sumer must install his own transformer.

Calculate the Maximum Projected Demand (MPD) considering the installed capacity
per user, the number of users, and a coincidence factor. For residential loads, the
consumer demand is established by the utility company with a projection of 10 years.
Calculate the capacity of Distribution Transformers (DTs) using the MPD and an over-
load factor (according to the installed capacity of residential users).

Establish the route for the conductors and place the DT at a node, regarding the de-
signer's criteria.

Calculate the voltage drop (VD). For secondary lines in rural areas the VD must not
exceed 5.5 %, and for urban areas must not exceed the 4.5 %.

If the VD exceeds the limit, change the position of the transformer or the size of the

conductors.

b) Design of MV Networks

Once the LV network has been designed, we proceed to design the MV network as follows:

First, the designer must choose the route for the medium voltage lines.
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i.  Choose the voltage level (13.8/7.97 kV or 22/12.7 kV) and the configuration of the
network such as single-phase, two-phase or three-phase. The MV network must be
projected for 15 years.

iii.  Determine the conductor considering the loads and the allowable voltage drop (3.5%
for urban areas and 7% for rural areas). The utility must provide the voltage drop
value and the power losses at the starting point of the project. The conductor must
be ACSR.

iv.  Install fuse switches on all three-phase and single-phase branches that derive from a
primary feeder.

v. If the technical requirements and voltage drops are not met, select another path or

another feeder.

1.2.3. Distributed Generation

As this research also covers the optimal localization of distributed generation, a brief ex-
planation of this topic is necessary. Distributed generation (DG), also known as distributed
energy, on-site generation or decentralized generation is electrical generation and storage
performed by a variety of small grid-connected devices referred to as distributed energy re-
sources (DER) [8].

Distributed generation employs small-scale technologies to produce electricity close to the
end users. DG technologies often consist of modular generators, and they offer several po-
tential benefits. In many cases, distributed generators can provide lower-cost electricity,
higher power reliability, and more security with fewer environmental consequences than can

traditional power generators.

DG systems typically use renewable energy sources, including small hydro, biomass, bio-
gas, solar power, wind power, and geothermal power, and increasingly play an important
role in the electric power distribution system. Among the services provided by the DGs, we
have reduction in peak power requirements, provision of ancillary services, emergency power
supply and diversification of energy sources. These services may lead to the reduction of
power losses in transmission and distribution lines, increase the reliability of the systems
(working in isolated mode), minimize the growing congestion and correct poor power quality
that results from a variety of factors, including poor switching operations in the network,

voltage dips, interruptions, transients, and network disturbances from loads.



1.3.  Quality Issues, Power Losses, and Possible Solutions

Within the design and optimization of distribution networks, several constraints must be
considered to deliver quality power to end users. Among the most important quality issues

(Ql) that we must avoid in the network design are:

e Voltage Drop: a decrease in voltage along a conductor due to its impedance, through
which current is flowing. Voltage drop is considered as a long-time voltage variation
caused by an excess of loads, thin electrical conductor, or poor power factor.

e Branch Overcurrent: a larger than intended electric current through a conductor,
leading to excessive generation of heat. Possible causes for overcurrent include short
circuits, excessive load, incorrect design, or a ground fault.

e OQverloaded Transformer/Generator: caused by the rapid expansion of the net-
work/loads without adequate capacity planning. An overloaded transformer presents
an obstacle to future plant expansion and heavily overloaded transformers can over-

heat and pose a potential fire hazard.

To avoid these problems, constraints for voltage magnitudes, the ampacity of conductors,
and the maximum capacity for transformers/generators must be introduced at the beginning
of the design. For the case of islanded networks, the capacity of the battery banks should
also be considered as a constraint.

Apart from the power quality, the DN must be designed to minimize power losses and
investment costs. To minimize power losses, the structure of the network can be reinforced,
and during this process, the power quality and reliability of the system are improved as well.
The disadvantage is that reinforcing the network also increases investment costs, therefore,
the design problem can be considered as a complex combinatorial multi-objective optimiza-

tion problem, where the main objectives to minimize are power losses and investment costs.

In the following, we describe the causes of power losses in distribution networks and what

are the alternatives to minimize them.

1.3.1. Power Losses in Distribution Networks

Electricity losses occur at each stage of the power distribution process, beginning with the
step-up transformers that connect power plants to the transmission system and ending with

the customer wiring beyond the retail meter. System average line losses are in the range of
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6 to 10 percent of the total power generated on most utility grids. The largest amounts of
these losses occur in primary and secondary distribution networks and can be classified as

either technical or non-technical losses.

a) Technical Losses

Occur when the energy is dissipated by the equipment and conductors of the network.
Some losses, called “core” or “no-load” losses, are incurred to energize transformers in sub-
stations and on the distribution system. A larger share is labeled “resistive” or “copper”
losses. These losses reflect the resistance of the materials themselves to the flow of electric-
ity. Core losses are typically 25 to 30 percent of total distribution losses and do not increase
(or decrease) with changes in load [9]. Resistive losses are analogous to friction losses in the
lines and transformers. As loads increase, the wires get hotter, the material becomes more
resistive, and line losses increase. For this reason, resistive losses increase exponentially to
the current (I°R) and are typically 70 to 75 percent of the technical losses in a distribution
system [9]. Among the causes of technical losses are inefficient equipment, inadequate size
of conductors, long distribution lines, load imbalance among the phases, low power factor,
overloading of lines, transformers installed far from the load centers, and inadequate size of

transformers.

b) Non-Technical Losses

The non-technical losses also referred to as commercial losses, are those related to un-
metered supplies, incorrect billing, untimely billing, wrong tariff, defective meters and en-

ergy thefts.

1.3.2. Alternatives to Minimize Power Losses and Quality Issues

Some potential methods for dealing with power losses include:

e Replacing old equipment: Installing cables with a higher power rating and updating
distribution transformers can reduce the total power loss and voltage drops.

e Right-sizing transformers: Transformers operate most efficiently when they are at 80-

100% of maximum capacity. Underloaded transformers are inefficient due to core
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losses. A careful analysis is needed to determine when it would make sense financially
to upsize, downsize, or shut off a transformer.

e Phase balancing: Considering that resistive losses are a nonlinear function of current,
balancing the current delivered through each phase line can reduce the total losses
of the system. An analysis of customer loads and circuit geometry can be used to
determine the best way to rebalance the loads on each phase.

e Demand management: Customer demand can be reduced by offering rewards for
reducing power consumption during peak periods. Because loss is a nonlinear func-
tion of current flow, even modest reductions in power usage at peak periods can have
a substantial effect on total loss.

e \oltage optimization: By carefully re-adjusting voltage levels in a network it may be
possible to reduce the current flow in parts of the network, decreasing the total re-
sistive loss of the system.

e feeder Restructuring: The topology of the network can be changed by opening or
closing specific switches to minimize active power losses.

e DG Implementation: As DG systems generate power locally to fulfill customer de-
mands, appropriate size and placement of DG can drastically reduce power losses.

e (Capacitor Placement: Capacitor banks are installed in power distribution systems for
voltage support, power factor correction, reactive power control, loss reduction, sys-

tem capacity increase, and billing charge reduction.

Identifying the best method for reducing power losses can be challenging, due to the com-
plexity of the network topology, the mixture of discrete variables (transformers, capacitors,
and DG placement) and the set of nonlinear equations. However, recent proposals are im-
plementing metaheuristic methods to overcome these inconveniences, since evolutionary

algorithms are ideal to solve this kind of combinatorial optimization problems.

1.4.  Optimization Challenges

One of the biggest problems that utility companies face is the constant increase in load
demand with the increasing penetration of distributed generation (DG) and renewable en-

ergy sources (RES). Furthermore, they must mitigate other problems such as voltage devia-
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tions, power quality issues, and system reliability. To overcome these challenges, the distri-
bution network (DN) usually is oversized, however, although this is a quick and practical so-

lution, it is not necessarily the most economical and efficient one.

Since distribution networks display high complexity in terms of their topology, their opti-
mal planning is not an easy task. For the design must be considered the optimal number,
placement, and size of generation plants, in order to feed all users under strict power quality
requirements. Furthermore, the system must be designed to minimize power losses and in-
vestment costs. This problem becomes even more challenging when DG is involved. Addi-
tional difficulties include the consideration of non-uniform loads, the future projection of
user growth, the remote location of RES, and geographical constraints.

This has brought new opportunities to improve electrical systems. For instance, optimal
placement and adequate size estimation of DGs, with a suitable network configuration can
improve an electrical system by reducing power losses, excessive generation, and overall
costs. These goals can potentially improve the service quality, reliability and voltage profiles
provided to end customers and enable the integration of RES to the grid [10-14]. In the fol-

lowing, a bibliographic review of these two research directions is presented.

1.4.1. Network Reconfiguration

Among the methods used to improve distribution systems, Network Reconfiguration (NR)
[15] is a well-known technigue that consists in changing the topology of the network by open-
ing or closing existing switches, aimed to find a new radial configuration where one or more
objectives can be minimized [16]. Common issues treated by NR are the minimization of
power losses or voltage deviations, for which different meta-heuristic methods such as bio-
geography-based optimization (BBO) [17]; selective particle swarm (SPSO) [18]; genetic algo-
rithms (GA) [19, 20] and ant colony algorithms (ACA) [21], have been applied (e.g. in 12.66
kV systems). However, due to the complexity of such combinatorial optimization problem,
these heuristic methods require considerable time to converge to a solution, therefore com-
pensation techniques for switch exchange or simplifications in the power flow calculation
[14, 22] can be applied to reduce the computational time. Although these optimization meth-

ods offer satisfactory results, the location of DGs must be pre-established.

11



The use of NR with a single-objective function does not ensure the resolution of all the
quality issues in the network, therefore multi-objective approaches are preferred. For exam-
ple, in [23], a multi-objective differential evolution algorithm (DE) is presented for optimal
NR, minimizing power losses and voltage deviations. Despite the satisfactory results, the
drawback is the use of scalarization, which requires a new weighting when the user's prefer-
ences change. Moreover, other approaches such as [24, 25] and [26] solve these multi-ob-
jective optimization problems using fuzzy logic. However, the drawback of these methods is
the proper tuning of membership function parameters (MF) when the algorithm is intended
to be applied to other systems. As we argue in this paper, to avoid these disadvantages, in

[27], a nondominated sorting particle swarm optimizer (NSPSO) is presented for NR.

1.4.2. Optimal Placement and Sizing of Distributed Generation

Another well-known method to optimize DNs is the Optimal Placement and Sizing of dis-
tributed generation (DG) (e.g. see [10, 28]) for a given network topology. The implementa-
tion of new generators, in radial distribution systems, could minimize the total power loss,
reactive power flow, and voltage deviation. For example, in [29] and [30] a krill herd algo-
rithm (KHA) and a symbiotic organism search (SOS) are implemented to minimize total power
losses through optimal placement of DGs. In [31], a combination of NR and DG optimal place-
ment is tested for power loss reduction, however, voltage deviation and branch overcurrents
are not considered. In [32], a two-stage evolutionary optimization method is implemented
for multi-year expansion planning of primary distribution systems (e.g. 20 kV), although only
the investment cost is considered. In [33], a multi-objective approach for optimal placement
of DGs and capacitors is presented, with the goal of minimizing the real power loss and the
net reactive power flow of 12.66 kV systems. Although satisfactory results are achieved, the
number of DGs to install must be pre-specified. Finally, in [34] an improved nondominated
sorting genetic algorithm (INSGA) is proposed to minimize power losses, voltage deviations,
and to improve the voltage stability of primary distribution networks, combining optimal

placement and sizing of DGs.

Other proposals focus on the improvement of the network through the optimal placement
of distributed generation and capacitors. For example, in [35], a multi-objective approach is
used to minimize the real power loss and the net reactive power flow, by means of optimal
placement and sizing of DGs and capacitors and in [36], the power quality of DNs is improved

by optimal sitting, sizing, and harmonic tuning orders of LC filters.
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Even though a simultaneous solution of the two research directions outlined above is
highly desirable, we can find only a few contributions with this aim, e.g. [37-39]. Particularly
in [37], a meta-heuristic method based on a greedy randomized adaptive search procedure
(GRASP) is used to design off-grid electrification systems with distributed generation. How-
ever, a non-trivial computational effort is demanded as the complexity of the system in-
creases. In [38], a genetic algorithm-based tool is tested to solve a dynamic multistage plan-
ning that aims at sizing and locating substations in distribution networks. This algorithm gen-
erates satisfactory results, as long as a set of plausible substation locations and branch inter-
connections are provided a priori. In [39], a model for active distribution systems expansion
planning based on genetic algorithms is presented, where DG integration is considered to-
gether with network reconfiguration. The possible drawback of this model is that only con-
siders the minimization of a single objective function based on costs and cannot guarantee

the network radiality and accomplishment of power quality parameters.

1.5. Objectives and Hypothesis
e Main Objective:

Get an approach to optimize or design primary and secondary distribution networks, con-

sidering the problems caused by the growing demand.
e Secondary Objectives:

i.  Thealgorithm must be able to design form scratch off-grid electrification projects
or optimize existing networks with several quality issues.

ii.  The approach must combine the advantages of network reconfiguration and op-
timal placement of distributed generation.

iii.  The approach must be able to solve a multiobjective, combinatorial, nonconvex,
and non-linear optimization problem, so-called distribution network design.

iv.  The algorithm must find the optimal topology of the network, dividing the users
into groups and selecting the optimal path of the conductors.

v.  Once the topology has been defined, the algorithm must select the optimal ca-
pacity and placement of transformers/distributed generators. The algorithm

must also consider the optimal size of conductors.
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vi.  The algorithm must design the network under strict power quality requirements
trying to minimize power losses and investment costs.
Vii. To complement the network optimization a second algorithm such as DER-CAM

can be implemented after the network reconfiguration.
e Hypothesis:

An evolutionary approach, based on the concepts of network reconfiguration and optimal
placement of distributed generation, can optimize or help with the design of distribution
networks, mitigating quality issues, power losses and excessive investment costs caused by

the growing demand.

1.6. A Two-Stage Multiobjective Evolutionary Approach

1.6.1. The Proposal

Considering all the arguments described in section 1.1 (regarding the planning of distri-
bution networks), the optimization challenges presented in section 1.4, and the required ob-
jectives of section 1.5, we propose a Two-Stage Multiobjective Evolutionary Approach (TS-
MOEAP) to design and optimize distribution networks, at primary and secondary levels.

The approach is implemented in two stages, due to the complexity of the entire optimization
problem, which is nonconvex, nonlinear and mixed-integer. TS-MOEAP will be able to im-
prove a DN which may have several problems or to design a DN from scratch. Each stage can

be summarized as follows:

e Stage-1: Optimal placement and sizing of DTs/DGs, as well as optimal branch routing
and conductor sizing. For this purpose, a particle swarm optimization technique and
a greedy algorithm can be used to minimize power losses and quality issues.

e Stage-2: Optimal network reconfiguration. For this, a genetic algorithm or a more
complex variant of it, can be implemented to find the optimal topology of the net-

work, aiming at minimizing the total power loss and investment cost of the system.

The proposed structure permits to find the optimal network topology and the optimal num-

ber of DTs/DGs with their capacity and best location. Furthermore, the algorithm must design
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the system under power quality requirements, network radiality, and geographical con-
straints. The approach uses GPS coordinates as input data and develops a network topology
from scratch, driven by overall costs and power losses minimization.

Figure 1.4 shows the general structure of TS-MOEAP. Genetic algorithms were selected for
the Stage-2 since they can work with discrete variables, and their genetic operators can be
adapted to modify the structure of the network. A particle swarm optimization technique
was chosen for Stage-1 for its simplicity and outstanding performance, being ideal to be used

as a sub-optimization function within the general algorithm.

PSQ: Optimal placement of DTs/DGs
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TS-MOEAP —

l

DT/DG sizing and conductor optimization

Figure 1.4. General structure of TS-MOEAP.

We must emphasize that the hybrid algorithm must be able to design a DN from scratch
or restore the optimal condition of existing networks, therefore TS-MOEAP can be imple-
mented to solve some problems that other authors have not been able to do it. For example,
the design from scratch of small off-grid networks with DGs, since unlike grid-connected sys-
tems, off-grid projects have more freedom to locate DGs in different points of the network,
even small generation units can be installed at each house. This implies a greater number of
possible configurations, becoming a hard-combinatorial optimization problem, difficult to
solve with conventional methods.

Also, TS-MOEAP will be applied to restore the optimal condition of distribution networks,
particularly for secondary lines which present several quality issues, since no proposals have

been made on this subject before. Although some works in section 1.4 focus on power loss
15



reduction, voltage deviation, cost minimization, and other quality issues, they only consider
primary distribution lines. For the case of LVDNs, different considerations must be taken, e.g.
there are no switches as in MV lines, and contrary to DGs, DTs can be easily changed in quan-
tity and location. Moreover, due to a high R/X ratio LVDNs have more I?R losses than primary
distribution lines, this implies that the conductor's size must be considered in the optimiza-
tion problem. All this has made it difficult to find a method to optimize LVDNs, but as ex-

plained later, our proposal can solve this type of problems.

Furthermore, to expand the performance of TS-MOEAP an Improved Nondominated Sort-
ing Genetic Algorithm with a Heuristic Mutation Operator (INSGA-HO) is proposed for Stage-
2. This multiobjective evolutionary algorithm has been designed especially for the optimiza-
tion of DNs, therefore it can overcome state of the art algorithms such as: a Nondominated
Sorting Genetic Algorithm Il (NSGA-I1) [40] and a Multiobjective Evolutionary Algorithm Based
on Decomposition (MOEA-D) [41]. For the Stage-1, an Improved Particle Swarm Optimization
technique (IPSO) is presented to overcome the computational time of a conventional PSO,

reducing the amount of power flow analysis required to evaluate the particles.

As will be shown later, the combination of the INSGA-HO with the IPSO gets better results
than other mentioned algorithms in this thesis. To prove this performance, six real cases are
considered: a) two rural communities that need off-grid electrification projects with photo-
voltaic units and battery banks, b) two urban secondary networks with several quality issues
due to an excessive demand of energy, and c) two primary networks that need a reconfigu-

ration to support a new topology and to minimize power losses.

1.6.2. Outline of Thesis

We now describe the contents of this thesis:

e Chapter 2. Basic concepts about evolutionary algorithms and multiobjective optimi-
zation are shown in this chapter. The description of a GA, PSO, NSGA-II, and MOEA-D
are detailed, to understand, in a better way, the algorithms proposed in this thesis.

e Chapter 3. We explain how the topology of the distribution network is built by means

of a greedy algorithm (PRIM). Also, it is explained how the network is evaluated
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through a power flow analysis and an investment cost function. Furthermore, it ex-
plains the sizing of DTs and DGs and the selection of optimal conductors. This chapter
is a key component before implementing the optimization approach.

Chapter 4. In this chapteritis introduced the first stage of TS-MOEAP. Here we explain
how a particle swarm optimization technique is applied to find the optimal placement
of distribution transformers or distributed generation. Also, it is explained how the
IPSO acts in networks with several quality issues.

Chapter 5. In this chapter, it is introduced the second stage of TS-MOEAP. Here is
explained the attributes of the INSGA-HO algorithm and how it is applied for optimal
network reconfiguration. Also, the total structure of the INSGA-HO/IPSO algorithm is
presented in detail with a flowchart and a pseudocode.

Chapter 6. We present the implementation of TS-MOEAP for real applications, from
designing a network from scratch to optimizing existing low and medium voltage net-
works (MVDN). Several scenarios are tested and some comparisons against other al-
gorithms are presented. Also, an app developed on Android is introduced to help in
the design of LVDN.

Chapter 7. In this chapter, we introduce DER-CAM for the optimization of distribution
networks by Implementing DERs. Different scenarios are tested for a real case study
to verify the advantages of installing DERs. At the end of this chapter, we present the
test system optimized by TS- MOEAP and DER-CAM.

Chapter 8. We provide some general conclusions and future research directions.

Appendix A contains the data of the solar radiation of some case studies.
Appendix B shows the urban area of the case studies that need improvement.
Appendix C shows the active and reactive loads for a secondary distribution network.

Appendix D shows part of the code of the android app.

Finally, the following flow-diagram illustrates the content and organization of the mate-

rial of this thesis.
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Chapter 2

Evolutionary Algorithms

The aim of this chapter is to describe what an evolutionary algorithm (EA) is, to better
understand the proposal of this thesis and the algorithms that compose it. In order to give a
unifying view, we present a general scheme that forms the common basis for all the different
variants of evolutionary algorithms. The main components of EAs are detailed, explaining
their role in the optimization process. Finally, we describe the application of evolutionary

techniques to solve a complex class of problems, namely multiobjective optimization.

2.1. What is an Evolutionary Algorithm?

An evolutionary algorithm can be defined as a population-based metaheuristic optimiza-
tion method, which uses mechanisms inspired by biological evolution such as reproduction,
mutation, recombination, and selection, to find a solution to a problem (see chapter 3 of
[42]). The common underlying idea behind this concept is as follows: given a population of
individuals within some environment that has limited resources, competition for those re-

sources causes the survival of the fittest and a rise in the fitness of the population.

Given a quality function to be maximized, we can randomly generate a set of candidate
solutions to then get a fitness of each one applying the quality function (the higher the bet-
ter). On the basis of these fitness values, some of the better candidates are chosen to seed
the next generation. This is done by applying recombination and mutation to them. Recom-
bination is an operator that is applied to two or more candidate solutions (the parents), mix-
ing their information to produce one or more new individuals (the children). Mutation is an
operator applied at random over a few individuals to change their fitness. Therefore, the
constant application of recombination and mutation on the parents leads to the creation of
a set of new candidates (the offspring). These then compete, based on their fitness, with the
old ones for a place in the next generation.

The process described above can be iterated until a candidate with sufficient quality is
found, or until some stop criterion is satisfied. So, the two main concepts that form the basis

of evolutionary algorithms are:
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e Variation Operators (recombination and mutation), create the necessary diversity

within the population.

e Selection, which increases the mean quality of solutions in the population.

The combined application of variation and selection leads to improving fitness values in con-
secutive populations, where can exist an optimal solution to our problem.
The general scheme of an evolutionary algorithm is given in pseudocode in Figure 2.1 and is

shown as a flow chart in Figure 2.2.

1: BEGIN

2 INITIALIZE population with random candidate solutions;
3 EVALUATE each candidate;

4 REPEAT UNTIL (Termination condition is satisfied) DO

5: SELECT parents;

6 RECOMBINE pair of parents;

7 MUTATE the resulting offspring;

8 EVALUATE new candidates;

9: SELECT individuals for the next generation;

10: END
11: END

Figure 2.1. The general pseudocode of an evolutionary algorithm.

PARENTS

Evaluation
Selection

Recombination
POPULATION Mutation

Replacement

OFFSPRING

Figure 2.2. The general scheme of an evolutionary algorithm.



Chapter 2 — Evolutionary Algorithms
2.2. The Components of Evolutionary Algorithms

There are different components and operators of EAs that we must specify to create a

complete runnable algorithm. Among the most important are:

e Representation: It serves to link the “real world” to the “EA world”. Here we define
how possible solutions should be specified and stored in a way that can be manipu-
lated by the different operators in the EA. The physical solutions within the original
problem are called phenotypes (e.g. the network topology), while their encoding, that
is the individuals within the EA are referred to as genotypes (e.g., an integer vector).
We must note that the whole evolutionary search takes place in the genotype space.

e Fvaluation Function: From the problem-solving perspective, it represents the task to
be solved in the EA. Technically, it is a function or procedure (e.g. a power flow) that
assigns a quality measure to genotypes (e.g. the power loss of the system).

e Population: A population holds a set of possible solutions, expressed in genotype
form. The population has a defined size, and the individuals that compose it do not
change or adapt.

e Selection: This operator selects the best individuals from the current population to
become them in parents of the next generation. The selection is based on the quality
of the individuals, thus high-quality individuals have more chance to become parents
than those with low quality.

e Recombination: According to the type of representation this can be also named as
crossover. This operator swaps information from two parents to get one or two off-
spring genotypes. The choices of what parts (genes) of each parent are combined
depend on random selections.

e Mutation: This operator is applied to a few genotypes of the offspring to deliver
slightly modified mutants, in order to improve the gene pool. Commonly, the deci-
sions to change a part of the chromosome is taken at random, however for some
practical problems this operator can find the weak spot of an individual and improve
it by performing specific changes on its chromosome.

e Replacement: Similar to the selection, this operator is based on the quality of individ-
uals. Its role is to keep the size of the population, selecting individuals from the old

or new generation.
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2.3. Evolutionary Algorithm Variants

An evolutionary algorithm can have different variants based on the type of representa-
tion, and how the variation operators are applied. Technically, one representation might be
preferable to others if it matches the given problem. Among the most important variants we

have:

e Genetic Algorithms (GA): This is the most popular type of EA. It uses a binary repre-
sentation, fitness proportionate selection, a low probability of mutation, and an em-
phasis on genetically inspired recombination.

e FEvolution Strategies (ES): This method uses vectors to represent the genotypes and
implements self-adaptation of strategy parameters such as the mutation. The selec-
tion is stochastic.

e Fvolutionary Programming (EP): This method implements real-valued vectors for the
representation, and not uses recombination. In EP each parent generates exactly one
offspring via mutation and has self-adaptation of mutation step sizes.

e Genetic Programming (GP): This differs from other EAs in that uses trees for the rep-
resentation of chromosomes. Its recombination implements exchange of subtrees
and the mutation performs random changes in the trees.

e [earning Classifier System (LCS): Here the solution is a set of classifiers (rules or con-
ditions) rather than parse trees. LCS is used primarily in applications where the ob-
jective is to evolve a system, regarding the inputs to such system.

e Differential Evolution (DE): This method uses real-valued vectors for the representa-
tion of genotypes, and its mutation is based on the difference of two random vectors
whose result is added to a third vector.

e Particle Swarm Optimization (PSO): This algorithm is inspired by social behavior of
bird flocking or fish schooling, where each element (particle) is a possible solution.
These particles depend on three factors: individual best position, global best position,
and inertia. The PSO does not use the crossover and its mutation is defined through

a vector addition.

Considering that the elementary model of TS-MOEAP is based on a GA and a PSQO, in the

following, we present in detail these two algorithmes.
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2.3.1. Particle Swarm Optimization

The PSO is a swarm intelligence technique inspired by social behavior of bird flocking or
fish schooling. It solves a problem by moving particles (candidate solutions) around in the
search-space, according to simple mathematical formulae over the particle's position (1) and
velocity (2) [43].

t+1 t t+1
1D = 4O 4 D €3]
t+1 t t t
vl.( ):y-vi()+a-r1-[19i—)(i()]+/3-r2-[a—)(i()] (2)
inertia cognitive behaviour social behaviour

Each particle's movement is influenced by its cognitive behavior, social behavior and inertia,

as expressed in equation (2), where ¥; is the local best-known position of the particle and o
@®)

is the best-known position among all particles. For both equations, v;

(®)

i

is the current velocity

of the particle and x; " is its position for the iteration (t). y, @, and 8 are weights to calibrate
the inertia, cognitive behavior, and social behavior, respectively. r; , are random values be-
tween [0,1]. In the optimization process, y can change dynamically to improve the explora-
tion of the search space. In the beginning, it can take a higher value (typically 0.9) to allow
the particles to move freely around the searching space, to later narrow the search using a
lower inertia. @ and 8 can be modified (typically between 1-2) to improve the local search

by each particle or to give greater importance to the optimum found by the entire group.

2.3.2. Genetic Algorithm

The GA is a meta-heuristic optimization method inspired by natural evolution [42]. It is

based on a population that evolves with the aid of four genetic operators:

i.  Representation: Each possible solution must be represented as a string (chromo-
some), containing the relevant information to be evaluated. For this purpose, a binary
or integer vector representation can be implemented.

ii.  Selection: This operator creates a new generation by selecting the best individuals
from an older population. The selection can be proportional, by ranking, implement-

ing selection probabilities, or by tournament selection.
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iii. Recombination: This operator swaps chromosome segments (genes) between two
individuals to create an offspring. The recombination can be an n-point crossover,
uniform crossover, arithmetic recombination and blend crossover.

iv.  Mutation: Commonly this operator causes random changes on the alleles of few
chromosomes, in order to improve the diversity of the gene pool. The mutation can
be by bitwise, swapping, insertion, scramble and inversion. Heuristic-based methods
can also be applied to perform specific changes on the alleles of the chromosomes in

order to improve the quality of the solution.

To better interpret the action of each genetic operator, Figure 2.3 shows the general pseu-

docode of a GA with a numerical example. In this case, the objective function to minimize

is f(x) = x2.

1: BEGIN
Initialize population with random candidate solutions
Xy =25  x,=30;, x3=12
3: Evaluate each candidate using f(x) = x?
f(x1) =625, f(x2) =900; f(x3) = 144;
REPEAT UNTIL the diversity of individuals is higher than an established error

5. Selection operator takes the candidates with best fitness

N

B

min f(x) - x, and x3
6: Representation operator converts the phenotypes to genotypes
x1=[11001]; x3=[01100]
7.  Crossover operator selects two random crossover points to interchange gene blocks
x1=[11|00|1]} x13=[11101]
x3 =[01|10]0] x31=[01000]

8: Mutation operator flips bits at random
x13:[11101] - xm13:[01101]
9: Representation operator converts the genotypes to phenotypes

Xmiz = 13; x31 =8;
10:  Evaluate the new candidates
12: END
13: END

Figure 2.3. General pseudocode of the GA with a numerical example.



Chapter 2 — Evolutionary Algorithms
2.4. Multiobjective Evolutionary Algorithms

In this section, we describe the application of evolutionary algorithms to solve multiobjec-
tive problems (MOPs), where the quality of a candidate solution is defined by its performance
in relation to several conflicting objectives.

In practice, many problems (that are multiobjective) have been transformed into single-ob-
jective functions, in order to make the optimization tractable. A popular alternative to do this
is assigning a weight (usually fixed) to each objective and then combine these scores into a
single fitness score. This weighted sum approach is called Scalarization, but suffers from the

following drawbacks:

e Forapplications where their characteristics are changing repeatedly, we should mod-
ify these weights in order to get acceptable results in each scenario.
e In scalarization, we assume that we can capture all the user’s preferences, without

even know the range of possible solutions.

For these reasons, it is preferred to use methods that can find a diverse set of high-quality
solutions without the need to convert the multiobjective problem into a single-objective
function. EA-based methods intended to solve multiobjective problems are based on the
concept of Dominance and Pareto Optimality and have a proven ability to identify high-qual-
ity solutions in high-dimensional search spaces, containing difficult features such as noncon-
vexity, discontinuities, and multiple constraints. Therefore, in the following, we will describe
this concept and present two novel methods, NSGA-1I [40] and MOEA-D [41], for multiobjec-

tive optimization problems.

2.4.1. Dominance and Pareto Optimality

If we expressed a multiobjective optimization problem as follows:

min f;(x), i =1,2,..,Nypj, x €Il 3

where f;(x) is the ith objective function, IT is the feasible searching space, and Noypj is the

number of objectives, a solution x; is said to dominate x, (denoted by x; < x,) if an only if

Vi, j €{1,2, .., Nop}: fi(x) < fi(o) A £ (1) < fi(xp)- 4)
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A solution is called nondominated if this is not dominated by any other. The set of all non-
dominated solutions is called the Pareto front. These concepts are illustrated in Figure 2.4,
where the x and y-axes represent two conflicting objectives subject to constraints. If the op-
timization problem is to minimize both objectives (lower is better), we can say that point A
dominates point D and all other points in the blue area. A and C do not dominate each other,
and the blue line represents the Pareto front, where A is a nondominated point. Solutions

under and to the left of the line, such as B, are infeasible.

N

Pareto Front

n
>

X

Figure 2.4. Illustration of the Pareto front and dominance concept.

2.4.2. Nondominated Sorting Genetic Algorithm 11 (NSGA-II)

NSGA-Il is a multiobjective evolutionary algorithm that uses nondominated sorting, an
elitist approach, and a crowded-comparison method in order to find multiple solutions to a
problem [40]. For a better understanding, the procedure of this algorithm is illustrated in
Figure 2.5 and it will be detailed as follows: this algorithm takes a population R® and sorts
it in fronts based on nondomination. The first front (F;) is composed of nondominated indi-
viduals (the so-called Pareto front), and the second front (F,) is composed by individuals
dominated only by the first front, and so on. Each individual is assigned with a rank according
to the front that it belongs, this is, individuals in the first front have rank 1, individuals in the
second front have rank 2, and so on. Additionally, each individual is assigned with a crowding
distance value, which is a measure of how close an individual is to its nearest neighbors in
the same front. The larger this value, the fewer solutions reside in the vicinity of this point.

This parameter is used to maintain diversity among the solutions.



Chapter 2 — Evolutionary Algorithms

From the sorted population R®, a new population Pt*1 is obtained by accepting individu-
als from progressively inferior fronts until it is full (size N). If not, all individuals from the last
considered front (F,.) can be accepted based on their crowding distance (the larger the bet-
ter). Then, from P&+ some individuals are selected to be parents through a tournament
selection based on the rank and the crowding distance. Between two solutions with different
nondomination ranks, it is preferred the solution with the lower rank. Otherwise, if both so-
lutions belong to the same front, then the solution with a greater crowding distance is se-
lected. The selected population generates an offspring Q¢*VYusing conventional crossover

and mutation operators.

Finally, the current population P¢*1 and the offspring Q¢+ are merged to form R¢+1

(size 2N), to repeat the entire process until converge to a set of optimal solutions.

Nondominated Crowding
R(® sorting distance paE+)
B sorting
Fi

- L]
} Rejected
%3, — — Rejected

Figure 2.5. NSGA-Il procedure.

2.4.3. Evolutionary Algorithm Based on Decomposition (MOEA-D)

MOEA-D is an algorithm that combines features from the single-objective weighted sum
approach and the population-based approaches. Its aim is to distribute the population evenly
along the current approximation to the Pareto front.

MOEA-D starts by evenly distributing a set of N weight vectors (i.e. 11,12, ...,A") in the
objective space and then for each builds a list of its T closest neighbors (using Euclidean dis-

tances), please see Figure 2.6. Then, it creates an evolves a population of N individuals, each
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associated with one of the weight vectors, which it uses to calculate a single fitness value g

of the jth subproblem, implementing a decomposition approach as Tchebycheff:

g(x|V,z%) = 122)151{/1{ fix) =z}, x€ll (5)

7 = min{f;(0|x € I} )

. . ST
where m is the number of objectives, A/ = (A], ...,/Un) are the weight vectors, z; is a ref-

erence point, and f;(x) is the quality of each objective.

MOEA-D minimizes all these N scalar subproblems simultaneously in a single run. We must
note that g is continuous of A, and the optimal solution ofg(x|/1i,z*) should be close to that
ofg(xMj,z*) if A and A/ are close each other. Therefore, any information about these g's
with weight vectors close to A should be helpful for optimizing g(x|/1i,z*). Finally the pop-

ulation is composed of the best solutions found so far for each subproblem.

f2

Neighborhood of j
g T =3
Subproblem
J
A ® .
@ »*
Pareto Front fi

Figure 2.6. MOEA-D procedure.

2.5. Summary

We have introduced fundamental concepts of evolutionary algorithms, used to develop
TS-MOEAP. In particular, genetic algorithms, particle swarm optimization, and multiobjective

evolutionary methods (NSGA-Il and MOEA-D) were reviewed.



Chapter 3

Construction and Evaluation of a DN Model

This chapter is a key component before implementing the optimization approach, be-
cause here we explain how a network model can be obtained to evaluate the possible con-
figurations. In addition, it is explained how the network is represented as a genotype to be
manipulated for the different optimization algorithms, and how the possible configurations

are evaluated through a power flow and an investment cost function.

3.1. Representation and Model Construction

The most difficult part of implementing an evolutionary algorithm is to find a proper sys-
tem representation that meets all its characteristics. The algorithm starts by creating an ini-
tial random population, on which each individual is a possible configuration of the system. In
our case, as the DN is composed of several groups of loads connected to different feeders,

we can apply an integer vector representation such as:

¢; = [pin iz Pis - Piul; Pij ELZY; i=12,..,N (7

where p;; is the group number of the loads, N is the size of the population and p is the total
number of users in the chromosome c;. Therefore, as each user (called as u;) can belong to
any group/set (Gy) within a configuration/chromosome (as shown in Figure 3.1), we can rep-
resent the entire population by a matrix, whose p;; values denote the group number of the

jth user in the jith chromosome, i.e.

u1 u2 u3 u”

€1 P11 P12z P13 7 Pu
Population= €2 | pp; pz; P23 " P2 (8)

CNlpn1 Pn2 PNz 7 Php

For example, the system configurations of Figure 3.1 can be represented by ¢; and ¢, re-

spectively, as follows:
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U Uy Uz Uy Us Ug U7 Ug Ug Ugg Ugg 9
€1 [1 111 3 3 2 2 2 2 2
c;l1 1.1 1 2 2 1 2 3 2 3

Cl—G3 TS

s ﬁ ’\.\4

A/.
/U’Ser u](x],y])

Configuration ¢, Configuration c,

Figure 3.1. Representation of a distribution network.

We must note that the users are sorted in ascending order with respect to the x-GPS coordi-

nate, and this order is maintained throughout the entire process, i.e. {u1 U, uu} where
w; (X3, i)
Once we have the representation of the network, the next step is to build the model. From

c; we can get the Gy, sets, selecting the u; elements with the same group number, e.g.

Gy = [ug Uy Uz Uy (10)
C1: [11113322222] i Gz = [u7u8u9u10u11]
Gz = [us ug].

Considering that, each Gy set represents a real network; this must be built in radial form. To
do this, the network can be considered as a weighted undirected graph from which we can
obtain a minimum spanning tree using a greedy algorithm. A well-known method is PRIM
[44], which takes a graph as input and finds the subset of edges/branches (U;;) which will
form a tree (the network) with the minimum amount of weight (wire length).

The algorithm starts by calculating the Euclidean distance d;; between all the u; nodes con-

tained in Gy, using their (x;, y;) GPS coordinates, i.e.
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ul uz s u‘lp
W[ 0 dy o diy
Wldyy 0 - dyy (11)
“ldy, dy - 0 |

where i is the length of each set G and d;; is represented as

(12)
dij#j = \/(Xi — %)%+ (i — y)>
If within Gy there are two nodes (u;, u;) that can form a restricted branch Uirj“ €T, apen-
alty w can be applied to d;; to avoid selecting that specific branch, i.e.,
Uy = U] = [dij = dij + w]. (13)

After that, PRIM operates by building the network one node at a time, from an arbitrary
starting node u;, adding at each step the shortest branch Uj;, until all nodes are included in

the network. This process is illustrated in Figure 3.2.

4
ORI (W

’; \42 ; h
b PRIM Branches:
30[}! ’,(, ’J' U13
;A 30 U
'/ K \‘ F, 34
' ,/’42 1 l’ U42

ul \ / u3 ul
Q 20 O u3

Figure 3.2. Model construction by using PRIM.

3.2. Evaluation of the Model

To know if a possible configuration is technically correct we must run a power flow study.
This is of great importance in the planning, and design of power systems, as well as in deter-
mining the best-operating conditions of existing systems. The most important information

obtained from a power flow study is the magnitude and phase angle of the voltage at each
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bus bar, and the real and reactive power flowing through each line. We can use these results
to evaluate the performance of the network and establish the desired objective functions.
To solve a power flow problem, it is possible to use the self- and mutual admittances that
compose an admittance matrix Ygys, or the impedances that composes the Zgys. In our
case, we focus our attention on the methods that use admittances, and where the distribu-
tion lines are represented by per-phase nominal-r equivalent circuits. In the following, we
are going to describe how the admittance matrix is calculated, how the power-flow equations
are obtained, and how the set of non-linear equations are solved by using an iterative
method such as Gauss-Seidel. In the last part of this chapter, we briefly explain how a distri-

bution network can be evaluated economically.

3.2.1. Calculation of the Admittance Matrix

The first step before calculating the admittance matrix is to obtain the reactance per
length (Q/km) of the cables that we are going to use in the system. For this, we need the
Geometric Mean Radius (GMR) regarding the type of conductor and number of strands and
the Geometric Mean Diameter (GMD) regarding the layout of conductors and their spacing.
These two parameters can be obtained using ETAP, as shown in Figure 3.3, where a 2 AWG

ACSR conductor type Sparrow with 6 strands is taken as an example.

Info Parameter  Configuration  Grouping Eath Impedance ifo Pacter | Corfigueton | Grauping Earh Impedanc
) ‘ Southwire/S LAYER T 2T Code 66,36 kemil
Southwire/S.LAYER m At Code 66,36 kemi ACSh €0 He ™ OWT & Strands
AR Mk T2 T b Stancs
Corfiguration Type GMD Layout
Phase Conductor \CTE] 1= 0
Ph — ')
Conductor Lib... e Heidht .:
ConductorType ~ RTTRC) RT2H0T)  ¥a il Spacing e
m AB| D2
N [ ] [ | [0 | smsperirie "
BC| 02 |m Haight
Outside Diamete ¥
0316 [in\| 0.00426 01542 | megohms per 1mie CAm

Figure 3.3. Obtainment of the GMR and GMD using ETAP.

Then, the reactance for each conductor can be calculated using the following equation:

(14)

GMD)

XL=.12--1(
0.00126 - f - In
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where f is the frequency of the system. Therefore, the impedance for the most important
conductors used in distribution networks, at low and medium voltage levels, can be estab-

lished as:

Table 3.1. Impedance for the most important conductors used in DNs.

Impedance ZL [Q)/km]

Three Phase Single Phase
Conductor type Low voltage networks Medium voltage networks Low voltage networks
2 AWG, Sparrow 1.0105+0.3907i 1.0105+0.5273i 2.021+0.6588i
1/0 AWG, Raven 0.6470+0.35809i 0.6470+0.3233i 1.294+0.5951i
2/0 AWG, Quail 0.5302+0.3520i 0.5302+0.4829i 1.0604+0.5814i
3/0 AWG, Pigeon 0.3963+0.34009i 0.3963+0.4692i 0.7927+0.5591i

With these values, a subroutine can calculate the y;; admittance for each branch of the
network, multiplying their length by 1/ZL;}, according to the type of selected conductor.
Finally, the Ygys (15) can be calculated using these y;; admittances to compute the elements
in the matrix by means of (16) and (17), where n is the total number of bus bars. The ¥;;
elements are the self-admittances, and the Y;; elements represent the mutual admittances
between the nodes i and j.

We should note that this process is performed automatically thanks to PRIM, which finds
the branches of the network and their respective lengths. So, PRIM and the calculation of
the admittance matrix are implemented whenever it is required to evaluate the network,

being the most used subroutines within the optimization algorithm.

Yig - Yip (15)
Ypys =1+ ™~
Yor o Yog
- (16)
Yy = z}’ij
=0
Yij = —wij 17)

3.2.2. Power Flow Equations

Taking as reference the system shown in Figure 3.4, the sum of currents in the k-bus can
be established as
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e = Vo Vie + Vit (Ve = V) + Yo (Ve = Vo) oo + Yien (Vie = Vi) (18)

which can be rewritten using summations as follows:

n n (19)
I, = VkZij _Zykj 4
j=0 j=1
- (20)
Ik = Vk Ykk+zYk1VJ
=
%k

where Z}Loykj = Yy, represents the sum of all admittances connected to the node k in-

cluding any Shunt admittance, and —yy; = Yj; represents the mutual admittance between

the nodes k and j.

k
Iy
_.. 1
Yr1
. V.
Io = Yo Vi Iy1 !
It = Y1 Ve — V1) 2
Io = Yz Vg — V) Vi
) - v,
Iy
Ien = Yen (Ve — V)
n
I \ Yko Yin
— —_— v,
Ixo Ien "

Figure 3.4. System model for the power flow analysis.

Now supposing a system of n bars, these equations can be represented in matrix form as
YV =1(21), where Y is the admittance matrix.

Vi

[Yn o Yip

1_1] @)
I

Ynl Ynn Vn

Now, the power that is injected into the bar k can be represented by
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Se=Veli - Si=ViI, (22)

and replacing (20) in (22) we have

Si = Vi |V Y= ) Yeg V| = P = (23)

Jj=1
j#*k

From (23) we can obtain the voltage of the k-node by rewriting this equation as

(24)

I_____J

]Qk z
V. = Y,
k Ykk +' ki Vi
];tk

In the case that the admittance matrix is singular, a value can be assigned to one of the var-
iables so that the others are expressed as a function of it, making the system linearly inde-
pendent, with which a solution can be found by using an iterative method. In our case, we
must assume a known value of voltage (magnitude and phase angle) in one of the bars, i.e.

we must define a Slack bus.

3.2.3. The Gauss-Seidel Method

To solve the set of non-linear equations formed with the voltages (24) of each k-bus, we
can implement an iterative method such as Gauss-Seidel. Its operation is as follows: for a
system of n non-linear equations with n unknowns, we proceed to clear one of the variables

as shown in (25).

) .
i” ) = gl(xf),xél) ...,x,(ll))
xg”l) ga (Y, xgl), ey D) (25)
xr(lHl) n(x(l+1) x§l+1)’ ""xr(l,l—-l-ll)’xr(ll))

Then, initial values are assigned to each one of the unknown variables of the problem to find
a new value in the immediate iteration. In this way, it will converge more quickly to the solu-
tion. The iterative process must be stopped if the error between two consecutive iterations

is less than an established tolerance, i.e. |xi+1 — xi| < tol.
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To implement the Gauss-Seidel method, we must consider the type of bus bars of the system,
which in our case are PQ type. Therefore, we know the active and reactive powers injected
into the nodes and the unknown variables will be the magnitude and phase angle of the
voltage at each node. Considering this, we can clear the voltage variable using the equation

(24) and reordering the summation as follows:

k— n
1 |p |
Ve = o kV*(fl)Qk E Vi V0D 4 E ¥, v, © (26)
k j=1

j=k+1

where (i) indicates the value of the previous iteration, and (P, Q) are the total values of

the active and reactive powers (27) injected to each k-node.

P, = Pgen;, — Pload,,

Qx = Qgeny — Qload @7

After each iteration, the voltage value of each bus bar is successively improved, so it is nec-
essary to verify the convergence using the error between two consecutive calculated values,

ie.
VD — v O] < tol. (28)

The Slack bar does not merit any calculation because the magnitude and phase angle of the
voltage are already specified, therefore this node does not contribute with unknowns.
Finally, knowing the voltages of each node in the system, we can determine the current and

power flow through each line applying the following equations:
Y;(Vi - ) (29)
Sij = Vijlij” = Pij +jQyj (30)

which will allow us to evaluate the network in a technical way.

3.3. Economic Evaluation

Once the technical part of the system is evaluated, we must proceed with its economic

evaluation based on the type, number, size, and capacity of its components. In our case, the
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total investment cost will be calculated considering conductors, insulators, transformers, DG

units (photovoltaic generation), and storage units (battery banks).

For the economic analysis, we must select available commercial equipment, therefore, it is

important to calculate the required capacity before the selection of the most suitable unit.
For electrical conductors, we must select them considering their ampacity and the current

through the line. In our case we are going to use the conductors shown in Table 3.2.

Table 3.2. Available conductors with their amapcities and costs [45].

Conductor type Ampacity [A] Cost [S/m]
2 AWG, Sparrow 184 0.70
1/0 AWG, Raven 242 1.09
2/0 AWG, Quail 276 1.40
3/0 AWG, Pigeon 315 1.71

In the case of transformers, their capacity can be calculated using the following equation:
CAPDT=(HO'91'PUD +L-Pg) & 31)

where H is the total number of houses connected to the transformer and Py is the pro-
jected unit demand according to the type of users. L is the number of street lights and Pg;, is
their power. & is an overload factor usually used by utility companies for DT sizing. Once
CAPpr is calculated, this value is compared with a list of available commercial transformers
(see Table 3.3) and the closest one is selected.

For insulators, at LV level we consider the type 53-2, and for MV level of type UP, each
one with a price of $15 and $18 USD [45], respectively.

Table 3.3. Available transformers with their costs [45].

Transformer capacity [kVA] Cost [S USD]

30 3100
50 3800
75 4200
100 4800

For the case where we need a DN with distributed photovoltaic generation (DPG), the

required capacity for a small photovoltaic system can be calculated by
CAPpy = h®°1-E - £/(30 - A) (32)
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where h is the number of users, E is the average energy consumption per month
(kWh/month), € is a compensation factor for power losses, and A is the average solar radia-

tion. Furthermore, if the system requires a battery bank, this can be calculated by

33
1000 (33)

CAPBatt = CAPpry "RD - A~
@ Pv Vin - €

where RD is the number of reserve days, V;, is the input voltage for the inverter, and € is
the discharge rate. Finally, these results can be compared with commercial equipment and
those that can supply the required demand will be chosen. For our case study, the considered
inverters and batteries are shown in Table 3.4. We must note that for the DPG sizing, photo-
voltaic panels of 240 W (I, = 8.19 Adc, V,, = 29.3 Vdc) and a cost of $ 250 are considered.

Table 3.4. Considered inverters and batteries [46, 47].

Equipment Characteristics Capacities Price/U.
Inverters Vin = 340 — 500 Vdc 5.5 kW S 1675
Vyar = 348 Vdc 10 kW $2925
Vour = 240 Vac 12.5 kW $3285
Eff =098% 15 kW S 3665
20 kW $ 4215
Batteries 48V 24 Ah $310
Disch.R.= 0.8 40 Ah S 475
60 Ah S 645
90 Ah $725
120 Ah $925

After the selection of the commercial equipment, we can calculate the total investment

cost by adding individual expenses of each element, i.e.

Total Investment Cost = CGU + CSB + CCO + CIN (34)

where CGU is the total cost of DGs or DTs, CSB is the total cost of storage units (if they exist),
CCO is the total cost of conductors, and CIN is the total costs of insulators. This equation

will be more detailed in chapter 4 according to the type of system to solve.

3.4. Summary

In this chapter we have explained how the DN is constructed and evaluated by means of
a greedy algorithm and a power flow with an economic analysis.



Chapter 4

Stage-1 of TS-MOEAP (IPSO - PRIM)

In this chapter, it is explained how the first stage of TS-MOEAP is applied to optimize a
radial distribution network by selecting the optimal placement and capacity of DGs/DTs, as
well as the optimal branch routing and conductor sizing. Here we explain in detail the formu-
lation of the entire problem and how the IPSO-PRIM algorithm is applied to build the network
and optimize it, minimizing power losses and quality issues. At the end of this chapter, some

simulations are presented to prove the performance of the first-optimization stage.

4.1. Objective Functions for the Evolutionary Algorithms

The intention of our proposal, in the real world, is to design or restore the optimal condi-
tion of DNs, by applying optimal network reconfiguration and optimal placement of DTs/DGs.
In particular, we need to reinforce the structure of the network or install new equipment,
i.e.increasing the capacity and number of their components (transformers, conductors, DGs)
or changing their topology. A variable that is directly related to this reinforcement is the
power loss (greater reinforcement causes fewer power losses), therefore this can be applied
in the optimization model as one of the objective functions.

On the other hand, while the network is reinforced and expanded, the expenses also in-
crease and considering that distribution companies always want to minimize this variable,
the total investment cost can be considered as the second objective function. Therefore, we
can say that the combination of optimal reconfiguration of DNs with optimal placement of
DTs/DGs is a complex combinatorial, non-convex, and non-linear optimization problem with
the purpose of identifying an optimal network configuration (c¢) to minimize power losses
(f1) and investment costs (f3), expressed as

(35)
minimize[f; (c), f2(c)], cell

where Il is a feasible solution space. In the following we describe each objective function and

the constraints of the optimization problem.
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4.1.1. Minimization of Power Losses

The first objective of our problem is the minimization of power losses of the entire system

(see Sec. 9.1 of [48]), expressed as

minimize f; (c) = minimize ) g;; (V2 + ij — 2V;V; cos Hl-j) (36)
n=1
where 7 is the total number of branches, (i,j) are the nodes of a branch, and g;; is the
conductance between the respective nodes. V; and V; are the voltage magnitudes at each

node and 6;; is the difference between phase angles of the respective voltages.

4.1.2. Minimization of Investment Cost

The second objective is the minimization of the total investment cost. For the case of a

traditional distribution network (using DTs), the objective function can be expressed as

2 ¢
minimize £°7 (¢) = minimize z Gn Pn + z Lyon+ud (37)
n=1 n=1

where 4 is the total number of available transformer capacities, g, is the number of trans-
formers, and p,, is the cost per unit. ¢ is the total number of conductor sizes, L,, is the total
length, and g,, is the cost per meter of the conductor. u is the total number of utility poles,

and C is the cost of LV ceramic insulators per utility pole.

For the case of a DN using photovoltaic distributed generation the objective function for

the investment cost can be expressed as

U b 3
minimize £°¢(¢) = minimize Z Ipty + Z B, vy + Z l,on+ PV (38)
n=1 n=1 n=1

where # is the total number of inverter types, 7, is the number of inverters for each type,
and t, is its cost. & is the total number of battery types, B,, is the number of batteries for
each type, and v,, is its cost. Finally, P is the total number of photovoltaic panels and 9 is the

cost of each one.
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Power losses and quality issues of the distribution network can be minimized by improving
the network infrastructure and equipment capacity. This implies high investment costs;

therefore, (37) or (38) are crucial to balance the optimization of the problem.

4.1.3. Constraints

The equality constraints of the problem are represented by the power-flow equations
(39), since the generated power must be equal to the total load plus power losses. (F;,, Qg,)
are the active and reactive generation outputs, and (Pl., Q;,) are the active and reactive
loads at node i. G;; and B;; are the conductance and susceptance of the admittance matrix,

respectively.

u
Py, — P, = V; ) V;(Gijcosb;; + Byjsin6;)

j=1

p (39)
Qg,— Qi = Vi ) V;(Gysin6;; + Byj cos6;;).

j=

=y

The inequality constraints include: a) DTs/DGs capacity (40), where (§™%*, S™™) are the ap-
parent power limits and 7 is the total number of DTs/DGs in the system; b) capacity of bat-
teries (41), where (SB™*,SB™™) are the permissible limits to store energy; c) voltage
magnitude (42), where V™" and V™% are established limits; and d) thermal limits (43),
where I;; is the magnitude of the current between the nodes (i,j), I™** is the conductor

ampacity, (V;, 17]-) are voltages in phasor representation, and y;; is the branch admittance.

SN < Sp S SM; i =12,...,1T

(40)
SBMin < SBTi <Spmax. i =172,...,T (41)
ymin < Yo <ymex. =12 ...,u (42)
Iy = (Vi = V) -yl < 17 (43)
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For the distribution network planning we also need geographical constraints to avoid using:

d) restricted branches (44), where Uj; is the branch between the nodes (i, j) and I'is the set

of branches with restriction (Uiert); and e) restricted nodes (45), where the DTs/DGs cannot
rst

be located, for this, W is the set of nodes with restriction (u*") and ur, is a node where a

DT or DG is installed.

Uij * le:ert € F; UU = [ul- u]] (44)

up, #Vup € ¥ i=12,...,1. (45)

4.1.4. Reformulation of the Objective Function in Terms of Constraints

For the first stage of TS-MOEAP only it is considered the power loss of the system (36).
Therefore, the equality constraints (39) can be satisfied during the power-flow calculation
and the inequality constraint (44) can be satisfied during the network construction. The ine-
quality constraints (42), (43) and (45) can be satisfied through penalizing f; (36). Finally, the

objective function for the first stage can be reformulated as

minimize f; (¢) = minimize(f;(c) + fo1 + fp2 + f53) (46)
u
fo1 =Wy Z|min(Vi — ymin o, ymax — )| (47)
n
fp2z = W Z max(l;; — I™*,0) (48)
frs = w3 ) max([ur; = ul] = [1],0) (49)

where equations (47), (48), and (49) are penalty functions applied when voltage magnitudes
are out of limits, when there are overcurrents in the branches, and when transformers are
located at restricted utility poles, respectively. Parameters wy, w,, and ws are penalty factors
to delimit in a lesser (or greater way) the search space, and to ensure the desired operation

regarding standard concerns.
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4.2. Implementation of Stage-1 (IPSO — PRIM)

For the optimal placement of DTs/DGs, an IPSO algorithm is proposed based on a regular
PSO [42, 43], which is a meta-heuristic method inspired by social behavior of bird flocking or
fish schooling. The algorithm works with a population where each particle is a candidate so-
lution, in our case a possible DT/DG location. As illustrated in Figure 4.1, each particle is in-
fluenced by its inertia, individual best position, and the global best position found among all
particles. Unlike the PSO, the IPSO does not initiate the particles randomly, and it has an
accumulative memory to reduce the computational time, due to the complexity of evaluating
a DN by means of a power flow analysis. The equation that governs the movement of each
particle was represented in (2), and the equation that updates their position is illustrated in

(1) (please see section 2.3.1 for more details).

Optimum DG placement

T
o ad
Updated Position \_@ e .\ ﬁ ~7 Inertia

_-® Individual best position

/, . ¥ Global best position
Initial Position ____7" 7] =

Figure 4.1. Optimal placement of DTs/DGs by the IPSO.

4.2.1. Initialization

The IPSO algorithm begins assigning a €, number of particles to each Gy, set within a chro-

mosome c;, according to its size Yy, i.e.

(50)
g, = max[round( Y, - 0),2]; k=1.2,..,T

where O is a constant value assigned by the user. Considering that the set Gy, represents a
real network, the particles can be linearly distributed, excluding the extremes for practical

reasons, e.g.

(51)
G1 = [uy Eg Us Bﬁ Uy].
X1 X2
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Figure 4.2 shows a graphical illustration of this process, where two particles (represented as

photovoltaic panels, y; and y,) are located in each group.

4.2.2.

Figure 4.2. IPSO-PRIM operation.

Particle Evaluation

The fitness f;'(x;) of each particle is calculated through (46), performing the following steps:

a)

Network Construction: As explained in section 3.1, a radial distribution network can
be found by considering it as a weighted undirected graph, from which we can obtain
a minimum spanning tree by using a traditional Prim's algorithm. From a starting
node, this algorithm adds at each step the shortest possible branch to make a new
link to another node. An example of this process is shown in Figure 4.2, for the group
G1. The construction starts at the generation center y;, then the following nodes to

add based on the Euclidean distance are us, uy, u;, and uy through the branches

Uy U3, UylUy, UgU,, and U, U4 (dotted red lines). To avoid selecting a restricted branch
(e.g. Uzu;) a penalty is added to its distance, therefore another alternative must be
taken. With this penalty, we satisfy the inequality constraint (44).

Power Flow Computation: Using the y;; admittance of the branches found in the pre-
vious step, an admittance matrix Y3, can be calculated, as explained in section 3.2.1.
Considering the location of each particle y; as the slack bus of the system, and the
remaining nodes as PQ type, the power-flow equations (39) can be solved using an
iterative method such as Gauss-Seidel, as explained in sections 3.2.2 and 3.2.3. From
the power flow analysis, we can get voltage nodes, branch currents, power losses,
and therefore f;'(x;) through (46). As the power flow analysis is a process that con-

sumes valuable computational time, the IPSO records all the solutions found so far



Chapter 4 — Stage-1 of TS-MOEAP (IPSO — PRIM)

by the particles, this avoids repeating the power-flow computation if another particle
falls in the same place.

c) Conductor Optimization: For the DT/DG optimal placement, the algorithm builds the
network with the thickest conductor available, this way we are sure to apply a penalty
to the fitness value f;'(;) if a voltage node or a branch current is out of limits. When
the DT/DG placement is found, and the current network of G, does not have any
technical problem, the algorithm reduces the wire size of the branches and recalcu-
lates the power-flow. If the network still does not present any problem, the wire size

is reduced again; otherwise, the algorithm stops and keeps the last wire. i.e.

VY U;j € Gk lzjo, 270, 1/0, 2awe (52)

where 3/0, 2/0, 1/0 and 2 AWG are available ACSR wire sizes.

d) DG/DT sizing and Cost Calculation: The last step in the evaluation of each particle is
the cost calculation of each group Gy, through (37) or (38). This process is required
for the second stage of TS-MOEAP which implements both objective functions, f;(c)
and f,(c). The investment cost of each group, named as f,(Gy), can be calculated in
this stage after find the size of the DT or DG, the conductor size, and the topology of
the network, please see section 3.3 for more details. We must note that the IPSO
does not require this value to find the optimal placement of DTs/DGs and this infor-

mation is only collected for Stage-2.

4.2.3. Saving Results and Updating Data

After the evaluation, if f;'(;) is the lowest personal fitness found so far by the particle
Xi, its current position is saved in ¥;. At the same time, if ¥; is the best position among all the

particles this result is saved in g, and the fitness of the group is established by

fi'(Gk) = f'(0). (53)

Using the memories 9; and g, each particle updates its velocity and direction through (1) and
(2), as explained in section 2.3.1. Finally, the DG or DT for each group will be placed in g, as
shown in Figure 4.3. Please note that Figure 4.3 also shows the optimal trajectory for the
conductors of each group. Stage-1 is repeated for each group within a chromosome, and
these results are sent to the second stage to optimize the topology of the network, as will be
explained later in Chapter 5.
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Figure 4.3. Optimal result after Stage-1 of TS-MOEA.

IPSO-PRIM Complete Algorithm

The general flowchart of the proposed IPSO-PRIM algorithm is shown in Figure 4.4.

Initialize Population
Linear distribution of particles within each group

ﬂ<

l

Iteration = 1:limit

l

)

Evaluation of each particle:

+  Network Construction (PRIM)

+  PowerFlow Analysis
*  Conductor Optimization
+  DG/DT sizing and Cost Calculation

l

Save individual and global best results
Update velocity and position of each particle

Diversity of particles < Tol.
|| Iteration == limit

Initialize Population
Linear distribution of particles within each group

Calculate the distance between all the GPS
points

!

Select as starting point the node with the particle

|

Select the shortest branch

!

Add the node and branch to the network

Are all the nodes in the
network?

Figure 4.4. General flowchart of the IPSO-PRIM algorithm.
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4.4. Simulations and Results for the IPSO-PRIM Algorithm

To prove the effectiveness of the IPSO-PRIM algorithm, three test systems are considered
which present different quality issues. For the design process the following data is used:
three-phase systems; distribution voltage of 220 V; maximum voltage drop of 5 %; available
transformers of 15, 30, 50, 75 and 100 kVA; and available ACSR conductors of 4, 2, 1/0, 2/0
and 3/0 AWG. Finally, the IPSO parameters chosen for these simulations are 0 = 0.2,y =
0.6, a =0.5,and g = 2.

4.4.1. LVDN Design Minimizing Power Losses

In this case, the IPSO-PRIM algorithm must design an LVDN minimizing power losses when
several options do not have quality issues. The parameters of the system are 167 users, 17
utility poles, and demand per user of 0.65 kVA.

The optimal design is shown in Figure 4.5, and as we can see the algorithm built the net-
work radially. Furthermore, the transformer was located at p;o, Wwhere the total power loss
is minimized as well as the fitness value. This is illustrated in Figure 4.6 (a). Note that pg and
D10 do not have quality issues.

If a restriction is imposed, e.g. on the utility pole p;q, the fitness value will be penalized
for that node, and the IPSO will select another utility pole such as pg. This is illustrated in
Figure 4.6 (b). Note that the transformer is always located at the utility pole with the lowest

fitness value.

AV% 4.9 D AV% 26
p6-24u : p1 3-18u

©  Utility pole
A Transformer

: — 3/0AWG, ACSR
p4-12u : - 2AWG, ACSR

AV% 3.9 :
p1-0u D p11-13u
p3-0u 7-
DT

© 50.0kVA

p2-7u
AV% 3.9 P8'25$00 Ao p12-12u
p10-0u ; P
O AV% 0.1 el
p9-6u p155u . AV% 37
p16-11u  ©
p17-3u

Figure 4.5. LVDN design with/without quality issues.
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Figure 4.6. Curves for the fitness, power losses and quality issues. a) Considering only power losses.
b) Considering a restriction on pyg.

4.4.2. LVDN Design considering Branch Overcurrents

In this case, the IPSO-PRIM algorithm must design an LVDN with branch overcurrents. The
parameters of the system are 85 users, 6 utility poles, and demand per user of 1.36 kVA. The
optimal design is shown in Figure 4.7 (a), and as we can see, the transformer is placed at ps
where does not exist quality issues. The algorithm made this selection due to an overcurrent
in the branch U3 5 (321 A, when the limit is 315 A). This is illustrated in Figure 4.7 (b).

© AV% 2.1 9
| opd-12u g 8
jl —_—
AV 27 i ge7 _
0. pi-tau j o Utity pole 586 2
~ | A Transformer g2, =
~. | -~ 1/0 AWG,ACSR a3 S
DN - 2AWG,ACSR §94 =
. c 2
§. 3 g 3
J \‘\ 2 4]
! N 1
1 ~. DT 0
I /\p5-42u
i Ap._ 1 2 3 4 5 6
X T5.0kVA - .
AV% 180 p2-4u T Utility Poles
-<#--Fitness —a =Qualitylssues ---a- Power Loss —&— Current
-.p6-Su
(a) AV% 09 © b)

Figure 4.7. LVDN design considering branch overcurrents. a) LVDN optimal design. b) Fitness value,
quality issues, power losses, and current per utility pole.
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4.4.3. LVDN design considering branch overcurrents and voltage drops

In this case, the proposed algorithm must design an LVDN which can present several qual-
ity issues. The parameters of the system are 112 users, 16 utility poles, and demand per user
of 1.02 kVA. The optimal network design is shown in Figure 4.8 (a), and as we can see the
network was built radially, the transformer was placed at pg, and some branches have the
maximum available conductor size (3/0 AWG). To prove that this is the optimal configuration,
the transformer is moved to ps and p;; (see Figure 4.8 (b) and Figure 4.8 (c), respectively),

where several quality issues such as voltage drops and overcurrents appear.

O  Utility pole

,é p7-8u A Transformer

! @  Userswith voltage drop
=== Branch overcurrent

¢p6-3u

ps-ou DT 75.0 kvA
- AV% 3.0

? 8-13u p15-3u
4-9u P
j P AV% 3.3
/
/0p3 21u p16-Su
/
01p1—1u
0 AV% 2.9
p2-0u

AV% 4.5¢@ p10-7u

(a)

0 AV%438 AV% 6.5
p9-11u p9-11u
5 30 AWG, ACSR
Tp7-8u . 2/0 AWG, ACSR
1/0 AWG, ACSR
- 2 AWG, ACSR
Op6-3u
p5-0u . DT 75.0kVA
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Figure 4.8. LVDN design regarding voltage drops and overcurrents. a) LVDN optimal design. b)
Transformer located at ps. c) Transformer located at pq1.
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4.5. Summary

We have described the implementation of the first stage of TS-MOEAP, composed of a
greedy algorithm (PRIM) and an improved particle swarm optimization technique (IPSO).
This chapter detailed the problem formulation, particularities of the algorithm and some sim-

ulations to prove the performance of Stage-1.



Chapter 5

Stage-2 of TS-MOEAP (INSGA - HO)

In this chapter we explain how the second stage of TS-MOEAP is applied to optimize the
topology of distribution networks, at primary and secondary level, minimizing power losses
and investment costs. Here is detailed the proposed INSGA-HO algorithm and each one of its
operators such as the selection, the heuristic mutation, and the recombination. At the end
of this chapter, a summary of the TS-MOEAP approach is presented along with a flowchart
and a pseudocode of the entire proposed algorithm (INSGA-HO/IPSO).

5.1. Reformulation of the Objective Functions in Terms of Constraints

For the second stage of TS-MOEAP, the optimization is performed by minimizing power
losses and investment costs, considering quality issues as the constraints of the problem. We
select these two objectives because they are related to the change of network topology. For
example, to minimize power losses we can install more DTs or DGs, changing their location,
or dividing users into smaller groups. These changes cause an increment of investment costs;
therefore, this variable is also taken into account to avoid unnecessary costs due to oversiz-

ing. Finally, the objective functions for Stage-2 can be reformulated as

C e , , ) fll(c) :fl(c)+fp1+fp2+fp3 54
MINIMIZE ey [fl (C), fZ (C)], { le(c) — f2 (C) + fp4— + fpS ( )
foa = Wy Z|min(STi — §min, 0, smax — S )| (55)

frs = Ws Z|min(SBTl. — SB™in, 0, 5B — SB.)| 56)

where f{(c) is similar to (46), and (55) and (56) are penalty functions applied to the total

investment cost when the capacity of DTs/DGs and battery banks are out of limits. w, and
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we are penalty factors to delimit in a lesser or greater way the search space. These two ob-

jectives should be minimized using the proposed INSGA-HO explained below.

5.2. Implementation of Stage-2 (INSGA-HO)

The proposed INSGA-HO algorithm is based on the multi-objective evolutionary algorithm
NSGA-II (please see section 2.4.2) that uses nondominated sorting and sharing. For a multi-
objective problem as shown in (54), a solution ¢; is said to dominate ¢; (represented as ¢; <

¢j) when
vne{l2,...m} ¢ < ¢ © fulc) < fulcp). (57)

Considering this concept, each solution can be assigned a rank equal to its nondominated
level. ¢; solutions not dominated by any other have rank 1 (they belong to the pareto front,
F;), the next best-solutions have rank 2 (front F,) and so on. As we can see in in Figure 5.1,
the proposed INSGA-HO algorithm does not find all nondominated fronts at once, first, it
finds F;; if its size is smaller than N (size of the population), their members are chosen to
form A®*D = A+D y F,, and the next front can be found. If the size of [A®*D U F,|is
smaller than N, the members of F, are chosen to form AWHD) = A+ F,, and the next

front 3 can be found, and so on.

R®. Nondominated sorting ACE+D)
5 A®. Fq
©
-
C -
8— 1 Tz
o~ C2
c = >
t g
2 ||| - — -
i —|| % ]
5 E@©
-+ r . . -
L:,U = Crowding distance sorting
o [
b 2 - CN+2 <
S - : ©
oo * —_
a w® c
£ o C2N -)
O o

Figure 5.1. Nondominated sorting and crowding distance procedure.
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This process is repeated until |A(t+1) U Tr| = N, in this case, the nondominated sorting is
stopped, and the remaining members of the population A+ must be chosen from the last
front F. by a crowding distance procedure (D).

Finally, in order to create an offspring population E®, a binary tournament selection, re-
combination, and a mutation operator are used. In the tournament selection, two random
individuals are compared by rank and crowding distance. The individual with the best rank is
selected, but if both individuals belong to the same front, the individual with greater crowd-

ing distance is selected.

5.2.1. Nondominated Sorting Procedure

In order to find the rank of each solution ¢; within a population R of size N, each solution
can be compared with every other solution in the population to find if it is dominated. In this

process for each solution we calculate two entities:

1. Domination count n.,, that means the number of solutions which dominate the solu-
tion ¢;, and

2. S, aset of solutions that ¢; dominates.

All solutions in the first nondominated front will have their domination count as zero. Now,
for each solution ¢; with n., = 0, we visit each member ¢; that belongs to its set S, and
reduce its domination count by one. If for any member ¢; the domination count becomes
zero, we put this solution in a separate set T, which will be the second nondominated front.
The above procedure is repeated then for each member of T to identify the third front and

so on. This process continues until all fronts are identified.

For each solution ¢; in the second or higher level of nondomination, the domination count
n¢, can be at most N — 1. Thus, each solution ¢; will be visited at most N — 1 times before
its domination count becomes zero. At this point, the solution is assighed a nondomination
rank and will never be visited again. The pseudocode of the nondominated sorting is illus-

trated in Figure 5.2.

For the Stage-2, the fitness values used for nondominated sorting and crowding distance
calculation can be obtained by adding the individual fitness values of each G, group found in

Stage-1, i.e.
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foreach ¢; € RY do

S, =0

Ne, = 0

foreach ¢; € R®) do

if (¢; < ¢;) then
S-’-'i = Sr-‘i U {CJ"}

Mg, =N, + 1
end
end
end
f (n, =0) then
rank, =1
}'1 = F] U {C.,;}

end

end
k=1
while F;. # 0 do
T=0
foreach ¢; € F;, do
foreach ¢; € S, do
M =T, — 1
if n.. = 0 then
’ra.nk,_.j =k+1
T=TU{c}
end
end

If ¢; dominates c;
Add ¢; to the set of solutions dominated by ¢

else if (¢; < ¢;) then If ¢; dominates ¢;

Increment the domination counter of ¢;

¢; belongs to the first front

Initialize the front counter

Used to store the members of the next front

¢; belongs to the next front

Figure 5.2. Pseudocode of the Nondominated Sorting.
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5.2.2. Crowding Distance Calculation

Instead of the sharing function approach implemented by other multiobjective genetic
algorithms, the NSGA-II proposes a crowded-comparison approach which does not require
any user-defined parameter for maintaining diversity among population members and has a
better computational complexity.

To get an estimate of the density of solutions surrounding a particular c; solution in the pop-
ulation, the average distance of two points can be calculated on either side along each of the
objectives. This quantity serves as an estimate of the perimeter of the cuboid formed by
using the nearest neighbors as the vertices, calling this the crowding distance (D).

Figure 5.3 shows the crowding distance of the c¢; solution as the average side length of the

cuboid shown with a dashed box.

f2
@
e / Cuboid
Cl—l ’ _____ I
| .Ci I
L@ °
Ci+1

h

v

Figure 5.3. Crowding distance calculation.

Therefore, the operator D estimates the density of solutions surrounding a particular it"
solution calculating the sum of individual distance values corresponding to each objective

expressed as:

D; = Di+ [f (ciu) = F (D) = 17 n=12,...,m (59)

where £fmax and fmin represent the maximum and minimum fitness values of the nt" objec-
tive function. A solution with a smaller D value is more crowded by other solutions, therefore

to maintain diversity, the members with greater D are selected.
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5.2.3. Initialization

The INSGA-HO algorithm starts creating an initial random population R of size 2N, on
which each individual ¢; is a possible configuration of the system, see Figure 5.1. This popu-
lation can be represented by a matrix as explained in section 3.1. We must remember that
the IPSO works with the sets G contained in ¢;, while the INSGA-HO works with the entire
integer vector c;. Therefore, the initial population can be created by using the pseudocode

shown in Figure 5.4, where (t™", t™%%) gre the limits for the number of DGs or DTs to install.

1 fori=1:2N do

2 gr = randi[Toin Trmaz)
3 for j=1:pdo
4 | R(4,) = randi[l gr]
end
end

Figure 5.4. Creation of a random population R.

5.2.4. Heuristic Mutation Operation

Considering the combinatorial complexity of DNs, the mutation operator has been modi-
fied to obtain better network topologies. Something well-known about DNs is that loads usu-
ally are connected to the nearest transformer group or generation center. Using this charac-
teristic, the heuristic mutation operator (H') can find better solutions than a regular opera-
tor. For example, as shown in Figure 5.5, the heuristic operator first calculates the average
center of each group (e.g. a, b, c) and takes the farthest load to the respective center (e.g.
Uy, U7, Ug). Later, the distances to the center of other groups are compared, e.g. u; — b is
compared with u; — a and u;, — c. If a shorter distance is found the load is switched, e.g. u,
is switched to G3, ug is switched to G; and uy is maintained in G;.

A configuration mutates if a random value between [1,0] is superior to a mutation rate @, as
shown in equation (60). Applying the heuristic operator H to the configuration ¢; =
[11221223333]ofFigure5.5,theresultisH(c;) =[11221231333].

ey = {}[(ci), if rand[0,1] > @ (60)

¢;, if rand[0,1] < @.
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Figure 5.5. Heuristic mutation operation.

5.2.5. Recombination Operation

Due to the integer encoding, and the random order of G groups, a uniform crossover is
used for recombination (see Sec. 4.2 of [42]). This operator takes two parents from the pop-
ulation A4*D) and creates two new individuals by selecting each gene from the first or sec-
ond parent at random. For each position of the new chromosome, if a random value between
[0,1] is below a crossover rate §, the gene is inherited from the first parent, otherwise from
the second. The second chromosome is created using the inverse mapping of the first one.
For example, assuming that the parents are ¢; = [311 Ajp ... aiu].and ¢ = [b]-1 bj, ... biu]-

the offspring is created by

Ain, 1 <
r, = { ino if rand[O, 1] <é n = 1’2’ o (61)

bjn, if rand[0,1] > 6.
Cij = [T'l ... T'”].

A graphic representation of the recombination and heuristic mutation is shown in Figure
5.6 (a) and the result of both operators is illustrated in Figure 5.6 (b). Finally, we can conclude
that a system can be improved by means of network reconfiguration, obtaining a new topol-

ogy in each evolution, where power losses and investment costs can be minimized.
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Figure 5.6. INSGA-HO process. a) Recombination and heuristic mutation. b) Configuration result.

5.2.6. Termination Condition

As EAs are stochastic and mostly there are no guarantees of reaching an optimum, a ter-
mination condition based on the fitness level might never get satisfied, and the algorithm
may never stop. Therefore, we must extend this condition with one that certainly stops the

algorithm. The following options are commonly used for this purpose:

a
b

)
)
c) The fitness improvement remains under a threshold value for a given period of time.
d)

The maximally allowed CPU time elapses.

A maximum number of iterations or evolutions.

The population diversity drops under a given threshold.

In our particular case, for the INSGA-HO we are going to use a maximum number of itera-

tions, and for the IPSO the diversity of the population.
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5.3. Summary of TS-MOEAP

TS-MOEAP can be defined as an algorithm composed of two stages of optimization, each
implementing an EA, in order to design or improve a distribution network. The operation of

each stage can be summarized as follows:

e Stage-1. Optimal placement and sizing of DTs/DGs, as well as optimal branch routing
and conductor sizing, please see Figure 5.7 (a).
e Stage-2. Optimal network reconfiguration, that implies changing the topology of the

network and the number of DTs/DGs (or user groups), please see Figure 5.7 (b).

Stage-1 G1 /\4”—“‘ DT/DG relocation
()

O Y g Q,
u2 4 ~u6 g A 9
Increase DT/DG "

capacity — ‘ﬁ G2 L?;:;ease wire

~ ~
Qu i3 U5 Ou?

(a)

Stage-2 AGl
Ous O/Ug Qg

é G3
¥—___ New
OS—O DT/DG

ul u3 u u7
(b)

Network ud

reconfiguration

Figure 5.7. TS-MOEAP operation. a) Stage-1. Optimal size and placement of DTs/DGs and conduc-
tors. b) Stage-2. Network reconfiguration.

For the first stage, an IPSO algorithm is proposed for its simplicity and outstanding perfor-
mance being ideal as a subroutine. For the second stage, an INSGA-HO is proposed for its
ability to solve complex multiobjective problems without the need to calibrate several pa-
rameters, furthermore, its heuristic mutation operator has the advantage to find better so-

lutions by performing specific changes on the chromosomes.
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In order to develop TS-MOEAP, the following assumptions were made:

i. aprojected unit demand (Pyp) is used for the network design and transformer sizing;

i. primary lines can be extended to any utility pole to feed DTs or DGs;

iii. the quantity and location of utility poles do not change, something common in practice;

'2.

the loads connected to one transformer or distributed generator will form a group, and

<

each utility pole, interconnection point, or load will have a (x;, y;) GPS coordinate.

In the following section, the complete algorithm of TS-MOEAP (combining both the IPSO
and the INSGA-HOQ) is presented, with a general flowchart and a detailed pseudocode.

5.4. Complete Algorithm of TS-MOEAP (INSGA-HO/IPSO)

The proposed algorithm of TS-MOEAP is developed in MATLAB and its pseudocode is

shown in Figure 5.8. The general flowchart of the proposal is shown in Figure 5.9.

5.5.  Main Contributions of the Proposal

Among the most important contributions of TS-MOEAP we have:

i.  The proposal can optimize primary and secondary DNs, unlike other works that can
only optimize MVDNs.

ii.  The optimization of both levels is possible thanks to the type of representation. In-
stead of using binary vectors to represent switches, we use integer vectors to repre-
sent groups of loads. This permits the algorithm to face the complicated topology of
LVDNs and use the same code for optimizing MVDNs.

iii.  The approach can find the optimal network topology and the optimal location of DTs
or DGs, at the same time. This is possible thanks to the implementation of two stages.

iv.  The INSGA-HO is proposed specially for DN design. It overcomes a conventional
NSGA-II by finding the nondominated fronts one at a time and incorporates a heuris-
tic mutation operator for a better search of solutions.

v. The IPSO is proposed to overcome the computational time of a conventional PSO
through an accumulative memory and a linear distribution of the particles. This helps

reduce excessive repetitions of the power flow analysis.
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Vi.

Vil.

The approach uses a greedy algorithm to build the network -always in radial form-
using the GPS coordinates of the loads.
Finally, the proposed approach is able to design a distribution network from scratch

or redesign an existing network to improve it.

Data: System parameters, GPS coordinates, users and loads, geographical and

technical constraints, available equipment and costs.

STAGE-2: NSGA-HO

1 Create a random population R® of size 2N ¢; € R®, i =1,2,...,2N
2 for t = 1:t"* do

oM o o B

o =y

10
11

12
13

14
15
16

17
18

19
20

21

22

fori:=1:2N do
Identify T3 groups inside ¢;, T3 € ;.
f(e) «—0; f3(e)+—0;
fork=1:7do
STAGE-1: IPSO
Initialize x; particles within T3
Network construction using PRIM
while Population diversity > Tol. do
Power-flow computation
Calculate objective function fi (x;)
Save the global best result, fi (T%)
Update v; velocity and y; position
end
Optimize conductor size
Calculate transformer capacity
Calculate objective function f, (7})
fLle) < fi.(e) + £,(T)
faled < forled + £ (D)
end
end
Sort R by nondominated fronts and crowding distance
Truncate R® to form A® (size N)
Make selection, recombination, and mutation operations on A® to form an
offspring E®
Combine current population and offspring, R« A® y E®

end
Result: The most economical ¢; configuration from the pareto set.

Figure 5.8. Pseudocode of TS-MOEAP.
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Chapter 6

Implementation of TS - MOEAP

In this chapter, we present different case studies solved by TS-MOEAP such as the design
of off-grid electrification projects, optimal condition restoration of low voltage distribution
networks, and optimal reconfiguration of medium voltage networks. For each case different
scenarios will be presented, and the results will be compared against other algorithms. A

practical tool developed on Android will also be presented at the end of this chapter.

6.1. Optimal Design of Off-Grid Electrification Projects with DG

The TS-MOEAP approach is proposed to design two off-grid electrification projects that
require distributed generation (DG). The design of this type of systems can be considered as
an NP-Hard combinatorial optimization problem; therefore, due to its complexity, the ap-
proach tackles the problem from two fronts: optimal network configuration, and optimal
placement of DGs. As the first attempt of TS-MOEA, the approach will be based on a particle
swarm optimization technique (PSO) and a genetic algorithm (GA), improved with the heu-
ristic mutation operator explained in section 5.2.4. In this particular case, the multiobjective

problem is transformed into a single-objective problem using scalarization, i.e.

min f = wq fi'(c) +wp f(¢) (62)

TS-MOEAP will permit to find the optimal network topology, the optimal number and capac-
ity of the generation units, as well as their best location. Furthermore, the algorithm must
design the system under power quality requirements, network radiality, and geographical
constraints. The approach uses GPS coordinates as input data and develops a network topol-

ogy from scratch, driven by overall costs and power losses minimization.

The main challenge about the design of Off-Grid Electrification Projects is to know how
many DGs we should install to feed all users, satisfying power quality constraints, while min-
imizing investment costs. If a fully centralized system (only one DG for all users) is chosen,
the total investment cost will decrease, but the power losses and quality issues may increase

as well. On the other hand, if a fully decentralized system (a DG per user) is chosen, the total
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power losses will be reduced but the total investment cost may increase. This hinders the
network design; therefore, an optimization approach must be used to establish the optimal
number of DGs and the optimal topology of the network. Considering these particularities,

we illustrate the general idea to design an off-grid electrification project in Figure 6.1.

Figure 6.1. Application of TS-MOEAP to design an off-grid electrification project.

6.1.1 The Case Study

TS-MOEAP will be applied to design off-grid electrification projects for two rural commu-
nities, in the Ecuadorian Andes, which lack electric power. Each community will be denoted
as CM1 and CM2, hosting 36 and 48 users respectively. Distributed photovoltaic generation
was selected because the area of study is located at 2500 m above sea level, at 0° latitude,
allowing an average solar radiation of 4.4 kWh/m?, and an average temperature of 18 °C as
shown in Appendix A. These data were obtained from RETScreen [49]. The geographical co-
ordinates for each community were obtained in situ, see Figure 6.2 (a) and (b). Each GPS

point can either represent a load, a cluster of loads, or a waypoint.

Due to the lack of an existing distribution system, battery banks are implemented. The
entire system is designed at 240 V, with a voltage drop limit (AV) of 5.5%, a peak load per
user of 2.23 kVA, and an average energy consumption of 200 kWh/month. The impedance

of the different conductors was obtained from libraries available in ETAP™.
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Figure 6.2. Geographical coordinates of the case studies. a) Community CM1. b) Community CM2.

The main characteristics and reference prices (SUS) of the considered equipment are listed
in Table 3.2 and Table 3.4, of section 3.3. We must note that the considered inverters can
control the power supply at a given voltage-frequency and charge/use the battery bank ac-
cording to the amount of generation.

Finally, the effectiveness of the proposed GA-PSO algorithm is tested under two scenarios:
1) simulating a centralized and decentralized system by blocking the number of DGs to be
installed, and 2) using a single objective fitness function and standard variation operators

(crossover and mutation).

6.1.2. TS-MOEAP Optimal Results

The evolution process -for the GA-PSO scheme applied to CM1- is shown in Figure 6.3.
Each capture shows the best configuration found until the nth-evolution with their respective
fitness, power losses, and total costs. For each G,, group, the required photovoltaic capacity
and the size of the battery bank are detailed. The description of each element used in the

graphic is shown in Table 6.1.

Table 6.1. Nomenclature.

o) Waypoint - 2 AWG conductor

\v4 One Load L 1/0 AWG conductor
0 Load Group L 2/0 AWG conductor
O Distributed Generation ~ ------ 3/0 AWG conductor
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Figure 6.3. TS-MOEAP evolution process and results for CM1.

As we can see in Figure 6.3 the algorithm starts from scratch, taking the GPS points from
CM1 to propose, initially, random configurations. In the following generations, the GA algo-
rithm learns and proposes better configurations due to the selection, crossover, and muta-
tion. At the same time, the PSO searches the best location for the DGs and evaluates the
proposed configurations. In the first evolutions, the results are naturally primitive, since the
number of groups can vary drastically, the configurations present no logic, and some points
of the network violate the imposed constraints. However, after several evolutions, the sys-
tem develops a defined structure and its fitness decreases as well as power losses and costs.
For CM1, after 39 evolutions, the main result is the electrification of the entire community,

installing 4 DGs with a configuration with minimal power losses and investment costs.

To reach acceptable results some parameters must be tuned. For example, the constant
weights w, and w,, are the most difficult to establish because the balance of the system,
between efficiency and investment costs, depends on these two values. In order to select

these components, several simulations were carried out, concluding that f; must have more
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weight than f; . Moreover, it is important to calibrate the penalty values wy, w,, wg, w, and
ws of equations (47), (48), (49), (55) and (56) for the proper delimitation of the search space,
and to prevent the selection of unfeasible solutions within the evolutionary process. There-
fore, it was found (by try and error) that satisfactory results can be obtained with w, =1,
wp = 0.1, wy = 300, w, = 1500 and w345 = 10000. Other established parameters are:
GA population 70; the max-iteration number t74** = 300, tps5" = 100; crossover factor

6 = 0.5; and mutation rate w = 0.6.

Applying the aforementioned parameters, the most recurrent results for CM1 and CM2 -
after 100 simulations- are summarized in Table 6.2, and the network design for CM2 is shown
in Figure 6.4. From these results, we can notice that for each community the algorithm found
well-balanced configurations since DGs' capacities were better used. This is verified by ob-
serving that the algorithm grouped as many users as possible to a DG until reaching the max-
imum voltage drop limit (5.5 %), see e.g. Figure 6.4, nodes G, — u;, and Gs — u,. In addition,
we must note that the PSO located the DGs at nodes where power losses, voltage deviations,
and quality issues may be reduced; e.g. see Figure 6.4 (a), G; — ug, Gs — us. This is demon-

strated in Table 6.3, where other DG locations (for Gg) are evaluated.

Table 6.2. TS-MOEAP results for CM1 and CM2.

cM1 CM2
Users 36 48
Best Fitness 9593 13089
Total Power Loss [kW] 1.83 3.53
Total Cost [S] 95232 130050
DG units 4 5
Installed Capacity [kW] 60 85
Bat. Bank [Ah] 330 420
Max AV per node [%] 53 5.4
Total Evolutions 39 54
[teration Time [24] 3 9

Table 6.3. Results for different DG placement in CM2-Gs.

Node  Power Loss [kW] Max AV [%)] Quality Issues

Us 1.14 7.7 1
Uy 0.84 6.8 2
Us 0.98 5.4 0
u, 1.99 12.9 2
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Finally, although the possible configurations can be millions, the GA-PSO algorithm could
find satisfactory results analyzing only a few cases (e.g. 1400 for CM1), from which it took
the best genes to create better designs. This is validated with the convergence curve shown

in Figure 6.5.
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Figure 6.5. TS-MOEAP convergence curve.
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6.1.3. TS-MOEAP versus Centralized/Decentralized Systems

In this scenario, we want to prove the effectiveness of the TS-MOEAP approach to finding
a balanced design between costs and power losses. In order to do this, the number of DGs is
increased and decreased by one (respect to the optimal result) to obtain a centralized and
decentralized reference model. This was done by blocking the number of DGs that the algo-
rithm can install. As we can see in Figure 6.6 (a) and Table 6.4, with one less DG the total cost
of the system is reduced, but there are quality issues for some users, e.g. see Figure 6.6 (a) -
G4, nodes ug, Uy, U14. On the other hand, with an extra DG, the total power loss is reduced
but the total cost is increased, as shown in Figure 6.6 (b). This demonstrates that the config-
urations found by the GA-PSO algorithm have the optimal number of DGs to minimize costs

and satisfy the demand and power quality constraints.
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Figure 6.6. Non-optimal results for CM2 a) Centralized System. b) Decentralized System.

Table 6.4. TS-MOEAP vs centralized/decentralized models.

cM1 cMm2
Centralized TS- Decentralized | Centralized TS- Decentralized
MOEAP MOEAP
DG units 3 4 5 4 5 6
Ploss [kW] 2.30 1.83 1.55 3.88 3.53 3.35
Total Cost [$] 91759 95232 100157 127656 130050 133277
Quality Issues 4 0 0 3 0 0
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6.1.4. TS-MOEARP versus a Single Objective Model with Standard Operators

In this scenario, the importance of a multi-objective fitness function, and the need for
improved variation operators are demonstrated. In order to do this, f; (¢) is disabled to have
a single objective fitness function, and a 2-point crossover along with a common swap mu-
tation operator [42] is used.

The results are shown in Table 6.5, and as we can see, the single-objective model has resulted
in minor power losses and higher costs than the optimal model. The reason is that the algo-
rithm evenly distributed the users between the DGs, wasting installed capacity in the pro-
cess. Furthermore, without the counterbalance of f; (c), the algorithm tends to install a DG
per user, therefore for the simulation, the number of DGs was pre-established in 4 and 5 for
CM1 and CM2 respectively. On the other hand, the model with standard variation operators
reports the worst results, being 20% more expensive and 25% more inefficient than the op-
timal model. This result is mainly due to the random changes of the loads from one group to
another by the swap mutation operator. Therefore, we conclude that improved variation
operators (specially the mutation one) are extremely necessary to achieve satisfactory re-

sults in this type of optimization problems.

Table 6.5. TS-MOEAP vs Single Objective/Standard Operators.

Single Objective TS-MOEAP  Std. Operators

CcM1
Ploss [kW] 1.81 1.83 2.20
Total Cost [$] 106693 95232 113651
Installed Capacity [kW] 70 60 65
CM2
Ploss [kW] 3.51 3.53 9.21
Total Cost [$] 142656 130050 160483
Installed Capacity [kW] 95 85 85

The TS-MOEAP approach was successfully applied to design off-grid systems with distrib-
uted photovoltaic generation. Although the problem is multi-objective, the GA—PSO ap-
proach provided satisfactory configurations to feed all users with energy under power quality
requirements. We can say that the results belong to a space of solutions that is bounded
from above by a totally centralized system and from below by a totally decentralized one,

where the desired balance between cost and efficiency is kept.
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6.2. Optimal Condition Restoration of Secondary Distribution Networks

Since the secondary side of distribution networks (low voltage distribution lines) is con-
tinuously subject to changes through time due to the increase of load demand, its optimal
operation falls inevitably in degradation. Consequently, in order to avoid repercussions such
as faults, congestions and other issues that are detrimental to energy quality, we are
prompted to redesign the network. To do so, we can implement TS-MOEAP, which is able to
solve this kind of problems.

As explained before, the approach is composed of two stages due to the complexity to
redesign an entire network, therefore the optimization process is divided as follows: 1) opti-
mal placement and sizing of distribution transformers (DTs), as well as conductor sizing and
branch routing, and 2) optimal network reconfiguration (NR). For the first stage the improved
particle swarm optimization technique (IPSO) -explained in section 4.2- will be used, and for
the second stage the improved nondominated sorting genetic algorithm with a heuristic mu-
tation operator (INSGA-HO) -explained in section 5.2- will be implemented. TS-MOEAP is able
to find a new network configuration where all the quality issues are solved, taking as main

objectives the minimization of power loss and total investment cost of the system.

6.2.1. Background of the Problem

In the last few years, Ecuador has built several hydroelectric plants causing an excess of
generation capacity. Due to this particularity, the government is motivating residential users
to change gas stoves by induction stoves. The new electric loads, with an average power of
4 kW, have caused an increment of demand of almost twice, as shown in Figure 6.7. Here we
can see three defined peaks due to the use of the induction stove. The current LVDNs are
not prepared to support this increased demand; therefore, an optimal planning to reconfig-
ure them is needed.

In order to prove the effectiveness of TS-MOEAP two real SDNs -with critical quality issues
and technical problems- are considered to be improved, to then compare results with other
algorithms. The case studies -denoted as LVDN1 and LVDN2- were obtained from an urban
area as shown in Appendix B, and these present different characteristics such as topology,
installed capacity, number of users, load demand, and quality issues. The data, which can be
found in [50], is shared by the utility company E.E.R.C.S in collaboration with the Ecuadorian
government.
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6.2.2. Case Study LVDN1

The LVDN considered for this case study is shown in Figure 6.8 and has the following char-

acteristics: 3-phase system, primary voltage of 22 kV, secondary voltage of 220/127 V, 400

residential users, 88 utility poles, and 6 DTs with an installed capacity of 335 kVA. Active and

reactive loads, at each utility pole, are shown in Appendix C.
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The problems that affect the system are also shown in Figure 6.8 and summarized in Table
6.6, accounting for a total of 33 quality issues, including nodes with low voltage magnitude,
branches with overcurrent, and overloaded transformers. The system has a total power loss

of 58.8 kW with a total investment cost of S 23837, reference values that must be minimized.

Table 6.6. Quality issues of the test system LVDN1.

Qty. Specification
Overloaded DTs 2 T3, T4
Nodes with a low voltage magnitude 25 Ug, Ug, Ug, Uqg, Uqg, Up7, Uz, Ung, Usg, Uss,

U3 — Uzg, Ugs, U73, U7g — Ugg

Branches Wlth overcurrent 6 U7,12, U11,12, U51,53, U57,62f U66,681 U68,74—

The main input data for the algorithm are:
e GPS coordinates, and loads per utility pole, see Figure 6.8 and Appendix B,
e Geographical and technical constraints, see Table 6.7,
e Available main equipment and their average costs, see Table 3.2 and Table 3.3.
e Projected unit demand Pyp = 1.36 kVA and overload factor £ = 0.8,
e [teration limits for the IPSO and NSGA-HO, 100 and 200 respectively,
e Penalty factors wy , 3 = 1000, and w, = 300,
e NSGA-HO mutation rate @ = 0.8, crossover rate § = 0.5, and population size 100,
e |PSOfactorsy =04, a=1,8=2and0 = 0.3.

Table 6.7. Geographical and technical constraints of LVDN1.

Constraints

Restricted branches Ui4, Uig20, Uz738 Usoz1, Ugogs
Restricted utility poles for transformers Ug, Usg, Usg, Usy, Ugg, U7g
Conductor ampacity for ACSR 3/0 AWG 315 A

Voltage magnitude limits +45%

Maximum available transformer capacity 100 kVA

6.2.3. Results for LVDN1

Applying TS-MOEAP to solve the test system, the following result is the best obtained after
100 simulations. Figure 6.9 shows a random LVDN when the optimization process starts, and

Figure 6.10 shows an optimal LVDN when the optimization process ends.
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In the first generations, the configurations have poor quality because the initial population is
generated at random, but as this population evolves better results are found. As we can see
in Figure 6.10, TS-MOEAP converges to a solution where all the quality issues are solved,
minimizing power losses and investment costs, therefore we can say that the optimal condi-
tion of this distribution network is restored.

Figure 6.11 (a) shows a comparison between voltage magnitudes (in descending order),
before and after the optimization. Voltage drop is the most common problem in SDNs, how-
ever, TS-MOEAP found a network configuration where voltage magnitudes are above the
limit. Figure 6.11 (b), shows branch currents for both, the original and the optimized system.
As we can see, the original system exceeds the ampacity limit, even when the thickest con-
ductor (3/0 AWG) has been used. In contrast, the optimized system corrected this problem
and still has room to add more loads. Similarly, Figure 6.11 (c) shows a comparison between
branch power losses. The optimized system has less power loss per branch even when it has

one transformer less. This is possible thanks to the optimal network reconfiguration.
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Figure 6.11. Different results before and after the optimization for LVDN1. a) Magnitude of voltages.
b) Magnitude of currents. c) Branch power losses. d) Pareto front obtained by TS-MOEAP.
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TS-MOEAP can find several nondominated configurations that will form a pareto set, from
which the most economical is chosen, as shown in Figure 6.11 (d). A summary of results,
before and after the optimization, is shown in Table 6.8, where voltage deviation (VD) and

installed capacity (IC) are defined as follows

u
VD = Zlvref _Vil/Vref (63)
i=1
T
Ic = ZSTi. (64)
i=1

V7ef is the reference voltage of the SDN, V;isthe voltage at each node, and Sr, is the capacity
of each transformer. We should note that the optimized system obtained a lower investment
cost than the original one. This is quite impressive, considering that to solve all quality issues

the network usually must be oversized; therefore, investment costs also increase.

Table 6.8. Results for the test system LVDN1, before and after the optimization.

Before After Difference

Total investment cost [S] 23837 23062 -33%
Total power loss [kW] 19.6 12.8 347 %
Voltage deviation [p.u.] 1.45 0.99 -31.7%
Installed capacity [kVA] 335 350 +4.3
Max. AV per node [%] 9.5 4.4 --
Total transformers 6 5 -
Quality Issues 33 0 -

6.2.4. Comparison with other approaches

To validate the performance of TS-MOEAP, a comparison is made against the algorithms:
NSGA-II, a multiobjective evolutionary algorithm based on decomposition (MOEA/D), a con-
ventional GA and an analytic method (ANMT), for the Stage-2; and a traditional PSO for the
Stage-1. The analytical method represents a procedure used by the utility company to make
corrective maintenance as follows:

i.  For each Ty network with voltage drop problems, try to relocate the transformer, if

the problems persist, increase the conductor size.
ii. For each Ty network with branch overcurrents, try to relocate the transformer, if the

problems persist, increase the conductor size.
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iii. Ifi.and ii. do not fix up voltage drops and overcurrents, split the network on the
branch with the highest current.

iv.  If atransformer is overloaded, select a transformer with greater capacity. If the max-
imum available transformer is installed and the problem persists, split the network
on the branch with the highest current.

To test the effectiveness of the IPSO and the heuristic mutation operator (see sections 4.2
and 5.2.4) both will be implemented for the GA and MOEA/D to compare results against their
basic models. For the GA, the multi-objective problem is transformed into a single-objective
problem using the equation (62) with w, = 10 and w;, = 0.08. Finally, the input data for
these algorithms are the same as explained in section 6.2.2, and the parameters of MOEA/D
are Tchebycheff decomposition, maximum iterations 100, population size 200, and the num-

ber of weight vectors 15.

As shown in Figure 6.12, the combination of the INSGA-HO and IPSO (proposed for TS-
MOEAP) found the most economical configuration, amending all the problems despite an
acceptable increase in power losses (the lower the better). On the other hand, ANMT which
does not implement optimal NR, nor optimal DTs placement, has the highest investment
cost. Furthermore, we must note that the GA-HO and MOEA/D-HO found better configura-
tions than their basic models, thanks to the implementation of the heuristic mutation and
the IPSO. Additionally, the GA-HO obtained better results than the NSGA-II even though the

first one is using scalarization for the objective function.
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Figure 6.12. Algorithm comparisons for total investment cost, power loss, and quality issues.
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With respect to MOEA/D, we found that this algorithm tends to install a greater number
of transformers than other approaches. This causes an increase in the total investment cost
as shown in Figure 6.12. After an analysis, we conclude that due to the discrete nature of the
problem the solutions to neighboring subproblems are not very close in the decision space,
causing a lack of ability to explore new areas, and therefore a lack of dominant solutions. This
can be verified by observing the pareto front of MOEA/D and INSGA-HO in Figure 6.13. How-
ever, if the limits for the number of transformers to install is narrowed (e.g. T = 5: 6) and the
heuristic mutation along with the IPSO are implemented, results as good as those of INSGA-

HO can be found, with the advantage of less computational time.
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Figure 6.13. Pareto fronts of MOEA/D and INSGA-HO for the test system LVDN1.

Finally, Table 6.9 shows a comparison of different indexes. The most important is the ratio
between total cost and installed capacity. This parameter shows us the algorithm's ability to
find a cheap configuration which can feed all users under strict quality parameters. TS-
MOEAP got the best value (65.9 S/kVA) among the compared algorithms, proving that it can
search and converge towards better configurations. Furthermore, we have the installed ca-
pacity and the index of oversizing, which are used to prove how well the loads are distributed
among transformers. TS-MOEAP found a configuration that only needs an installed capacity
of 350 kVA, that represents an oversizing of 10.4 % with respect to an average load of 317
kVA. As before, ANMT got the worst results, with an oversizing of 29.3 %. The algorithms that
implemented the proposed heuristic mutation operator got better results in general. In sum-
mary, the aforementioned results provide evidence that TS-MOEAP can obtain better con-

figurations using the proposed INSGA-HO and IPSO algorithms.
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Table 6.9. Algorithm comparisons for LVDN1.

ANMT GA GA-HO  NSGAIIL MOEA/D  MOEA/D-HO  NSGA-HO

Investment cost [$] 27185 26670 24421 25351 26844 23145 23062
Power loss [kW] 315 29.7 333 35.7 315 34.8 384
Voltage deviation [pu] 0.85 0.83 0.81 0.91 0.79 0.90 0.99
Total transformers 7 6 6 6 8 6 5
Installed cap. [kVA] 410 385 360 365 385 325 350
Oversizing [%] 29.3 21.5 13.6 15.1 21.4 2.5 10.4
Cost/Inst. cap. [S/kVA] 66.3 69.3 67.8 69.5 69.7 71.2 65.9

6.2.5. Case Study LVDN?2

The LVDN considered for the second case study is shown in Figure 6.14 and has the fol-

lowing characteristics: 3-phase system, primary voltage of 22 kV, secondary voltage of

220/127 V, 563 residential users, 58 utility poles, and 4 distribution transformers with an

installed capacity of 375 kVA.
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The problems that affect the system are shown in Figure 6.14 and summarized in Table 6.10,
accounting for a total of 30 quality issues. The system has a total power loss of 93.9 kW with
a total investment cost of $ 35712.8, reference values that must be minimized.

The input data is similar to the LVDN1 case, changing only the GPS coordinates, the loads per
utility pole, and the geographical constraints (see Table 6.11).

Table 6.10. Quality issues of the test system LVDN2.

Qty. Specification
Overloaded DTs 2 T1,T2
Nodes with a low voltage 21 Ug, Ugg, Urz — Uqg, Uzg, Unq, Uzg, Uz7, Uz, Usy,
magnitude U3s, Usg, Usz, Usg, Usp — Us3, Usy
Branches with overcurrent 7 Uso, Uis21, Uz120, Uzg34, Uzgss, Uzsaz, Ussso

Table 6.11. Geographical and technical constraints of LVDN2.

Constraints

Restricted branches Uso, Uio,12, Uz1s, Uzs3e
Restricted utility poles for transformers Us, Uyz, Ugg, Usy
Conductor ampacity for ACSR 3/0 AWG 315 A

Voltage magnitude limits +45%

Maximum available transformer capacity 100 kVA

6.2.6. Results for LVDN2

Figure 6.15 shows the cheapest configuration found by TS-MOEAP, which can solve all the
quality issues presented in the test case. As illustrated in Figure 6.16, the new configuration
is 36 % cheaper and has 50 % fewer power losses than the original design. In this particular
case, the algorithm decided to install two new transformers to supply all the demand and
regrouped the users in a different way. We should also note that the algorithm selected the
most economic conductor for each branch, respecting voltage and current constraints.

To facilitate the analysis of the new network, the algorithm has been designed to display
all the relevant information of each group. For example, for the transformer T4 of Figure
6.15, we get the results of Table 6.12. Here we can observe -in detail- which are the branches
of the network with their distances and nodes; the number of users and lamps; the apparent
power at each node; the size of the conductor with the impedance of each branch; the volt-

age at each node with its respective voltage drop; and the current through each line.
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Table 6.12. Results for the network T4.

Br Bi B D Us Lp Cond S ZL YL VBus VD Imax
[m] [AWG] [kVA] [ohm] [s] | [%] [A]
1 50 48 15 19 1 2 2584 0.016 +0.006i 54.59-21.11i 218.0<0.10° 091 1189
2 50 43 27 8 1 2 10.88 0.028 +0.011i 31.49-12.181 218.5<0.07° 0.66 50.2
3 5051 25 16 1 1/0 21.76  0.016 +0.009i 46.94-26.04i 215.7<0.05° 194 22938
4 51 53 42 20 1 1/0 27.20 0.027 +0.015i 28.01-15.54i 211.7<0.10° 3.77 1288
5 50 52 15 8 1 2 10.88 0.015+0.006i 56.24-21.74i 217.6<0.11° 1.08 146.1
6 52 57 35 15 1 2 2040 0.036+0.014i 4.1-9.32i 213.9<0.29° 2.74 957
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If we compare the results of Table 6.12 against the results of Table 6.13 (transformer T2,

before the optimization) we found that indeed the algorithm solved all the quality issues
listed in the Table 6.10.

Table 6.13. State information for network T2 before the optimization.

Br Bi B D Us Lp Cond S ZL YL VBus VD Imax
[m] [AWG] [kVA] [ohm] [s] [V] [%] [A]
1 35 43 39 8 1 3/0 10.88 0.016 +0.013i 36.91-31.751 208.0<-0.47° 5.45 590.2
2 43 50 27 O 0 3/0 0 0.011 +0.0091 53.05-45.631 200.4<-0.80° 8.90 537.8
3 50 51 25 16 1 3/0 21.76  0.010 +0.009i 57.60-49.55i 197.2<-0.95° 1040 251.1
4 51 53 42 20 1 3/0 27.20 0.017 +0.014i 34.37-29.56i 194.1<-1.09° 11.78 140.6
5 50 52 15 8 1 3/0 10.88 0.006 +0.005i 94.74-81.491 199.2<-0.86° 9.47 158.6
6 52 57 35 15 1 3/0 2040 0.014+0.012i 40.59-34.92i 197.2<-095° 10.34 103.9
7 50 48 16 19 1 3/0 25.84 0.006+0.005i 91.96-79.11i 199.35<-0.85° 9.39 130.0

Figure 6.17 shows a comparison of voltage magnitudes, branch currents, and branch
power losses, before and after the optimization. In general, TS-MOEAP improved each of
these fields without exceeding established limits. Finally, Figure 6.18 shows the entire set of
possible solutions found by TS-MOEAP before converging to the pareto front shown in Figure
6.17 (d).
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Figure 6.17. Different results before and after the optimization for LVDN2. a) Magnitude of voltages.
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Figure 6.18. Entire set of possible solutions found by TS-MOEAP.

6.3. Optimal Reconfiguration of Primary Distribution Networks

The optimal reconfiguration of primary lines can improve the power system from different
aspects such as power loss reduction, voltage profile enhancement, load balance improve-
ment, and so forth. The regular process of reconfiguration is implemented by closing some
tie switches (normally open switch) and opening some sectionalizing switches (normally
closed switches) such that the network constraints are preserved, and the main targets are
achieved at the same time.

Power losses minimization in distribution systems has become one of the most important
challenges in this area, attracting a lot of attention to implementing different optimization
technigues. The most effective strategy to decrease power losses in distribution systems is
network reconfiguration that was introduced by Merlin and Back in 1975. The reconfigura-
tion of the distribution network is the process of altering feeder topological structure without
losing the radial topology or violating branch loading and voltage limits. Because of the huge
number of switching combinations, as the candidates of the optimal configuration, network
reconfiguration is known as a combinatorial, nonlinear, non-differentiable constrained opti-
mization problem.

In our case, TS-MOEAP will be implemented to perform the optimal reconfiguration of
primary distribution lines by changing the topology of groups (loads connected to different
feeders) instead of opening or closing switches. This strategy allows us to use the same algo-

rithm to optimize secondary networks in which switches are not implemented. Unlike low

83



voltage systems, in primary networks, the position of the feeder does not change therefore

TS-MOEAP only implements the Stage-2 for the optimization (please see section 5.2).

6.3.1. Case Studies

Now, TS-MOEAP will be implemented to reconfigure the primary lines of the test systems
LVDN1 and LVDN2 optimized in the previous sections. The primary networks to be reconfig-
ured are denoted as MVDN1 and MVDN2 and have the following characteristics: 3-phase
system, nominal voltage of 22 kV, 1 or 2 existing feeders, and maximum voltage drop limit of
3.5 %. The original diagrams of the test systems MVDN1 and MVDN?2 are shown in Figure
6.19 and Figure 6.20 respectively. We should note that the reconfiguration will be done with
the main objective of minimizing power losses and to support the new secondary networks
of Figure 6.10 and Figure 6.15.

In general, the input data for the algorithm will be the same GPS coordinates as for LVDN1
and LVDN2, the location and size of the transformers, the number and location of the feed-

ers, and the same geographical constraints shown in Tables Table 6.7 and Table 6.11.
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Figure 6.20. Test system MVDN2.

6.3.2. Results for MVDN1

For MVDN1 the feeders are located at nodes u;9 and ugg, as shown in Figure 6.19, and
the distribution transformers are located at nodes u;,, Usg, Us1, Ugz, aNd Uz, aS shown in
Figure 6.10. Applying TS-MOEAP for the reconfiguration of this network, we obtain the model
shown in Figure 6.21, and for illustrative purposes, Figure 6.22 shows how the network
evolves until reach an optimal topology.

In this case, TS-MOEAP distributed three transformers to feeder F1, and two transformers to
feeder F2, choosing the shortest path to interconnect them to each feeder. The new design
of the primary network allows a better balance of loads, lower voltage drops, and lower
power losses than the original system, supporting at the same time the new topology of

LVDN1. A comparison of results before and after the optimization are shown in Table 6.14.

Table 6.14. Results for MVDN1, before and after the optimization.

Feeder 1 [kVA] Feeder 2 [kVA] Ploss [kW] AV [%]
Before 105 230 0.077 0.0106
After 200 150 0.042 0.0076
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Finally, Figure 6.23 shows the pareto front of MVDN1 obtained by TS-MOEAP, which pre-
sents an irregular shape due to the complexity and discrete characteristic of the combinato-
rial problem. We must note that from the pareto front the configuration with less power loss
is selected, contrary to the optimization of secondary networks where the most economical

configuration is preferred.
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Figure 6.23. Pareto front of MVDN1 obtained by TS-MOEAP.

6.3.3. Results for MVDN2

For MVDN?2 the feeders are located at nodes u;7 and usg, as shown in Figure 6.20, and
the DTs are located at nodes ug, U4, Uzg, Uzs, Uss and Ugg as shown in Figure 6.15. Applying
TS-MOEAP we obtain the model shown in Figure 6.21, which is the best configuration to
minimize power losses and to support the new network topology of LVDN2.

In this particular case, TS-MOEAP proposes a configuration using both feeders, F1 and F2,
instead of one as in the original network. This causes a significant reduction in power losses,
a better voltage profile, and a better balance of loads, as summarized in Table 6.15.

Finally, to verify these results a power flow analysis was performed using ETAP, for the orig-
inal and optimized network. The simulation got similar results (bus voltages and power
losses) to those of TS-MOEAP, which can be seen in Figure 6.25.

Table 6.15. Results for MVDN2, before and after the optimization.

Feeder 1 [kVA] Feeder 2 [kVA] Ploss [kW] AV [%]
Before 375 0 0.1438 0.0178
After 175 225 0.0596 0.0069
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6.4. Implementation of the IPSO-PRIM Algorithm in Android-Java

In order to have a friendlier interface for the network design, the IPSO-PRIM algorithm
has been implemented in Android, giving the designer the capability to play with the topol-
ogy and characteristics of the network. The application is intended to help with the design of
a distribution network from scratch (using the proposed IPSO-PRIM algorithm) or to test the
performance of an existing network by means of a power flow analysis. As mentioned in
section 1.2.2, to begin the design of a DN we need a georeferenced topographic survey of
the users and utility poles under the WGS84 UTM coordinate system. Therefore, the appli-

cation in Android is ideal for network design since it can use the GPS of tablets or cellphones.
Among the advantages of this application, running on Android, we have:

e The code is written in Java; therefore, the application can run in small devices such
as phones and tablets.

e With the GPS of the device, the network can be designed in situ.

e The graphics interface -which is touch- allows us to play with the topology of the net-
work, e.g. changing the position of the transformer, the size of conductors, the num-
ber of phases, and the availability of branches.

e The application allows us to change some parameters for the network design such as
voltage magnitude, projected unit demand, power factor, the power of public lamps,
the maximum voltage drop limit, and the number of users/lamps per node.

e As the application is based on a power flow analysis, we can check if the proposed
configuration or an existing network meets the required constraints. For this, the ap-
plication will give us a visual warning of the elements that present problems.

e The application can show us in real time the final design of the network, greatly facil-

itating decision making by the designer.

6.4.1. Description of the Application

To start the network design, the first thing to do is to select the way in which the GPS
coordinates will be obtained, i.e. in situ using the GPS of the device, or preloading an excel
file, as shown in Figure 6.26. If we decide to load the coordinates using the device’s GPS, we
must specify the number of users and lamps for each point. The application gives us the

option to delete the points by clicking on them to then use the delete button.
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Figure 6.26. Obtaining GPS coordinates, using the device's GPS or an excel file.

Once the coordinates have been loaded, the application will give us a glimpse of the pos-
sible trajectory of the conductors, with the distance of each branch. At this point we can add
a geographical constraint on each branch if there is something that blocks the cable route.
For this, we must click on the branch and see if the status of the constraint changes from O

to 1, as shown in Figure 6.27.
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Figure 6.27. First glance of the network, with the activation of branch restrictions.
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The next step is to modify and select the parameters with which we will design the net-
work. Among these we have: nominal voltage, power factor, the power of public lamps, volt-
age drop limit, user category (projected unit demand [kVA]), and the number of phases (sin-
gle phase or three phase). To change each value, we must click on the items as shown in
Figure 6.28.
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Figure 6.28. Changing parameters for the network design.

Once the design parameters are established we have two options: a) allow the algorithm
to design the entire network, or b) test our own design. If we select the first option, we must
click on the "AUTO" button to execute the IPSO-PRIM algorithm. On the other hand, if we
select the second option we must first specify the position of the transformer and the size of
the conductors (please see Figure 6.29), to then press the "CALCULATE" button which exe-

cutes only a power flow analysis.

AUTO CALCULATE
Voltage [V] PF Plamp W] VD[%]
P4

220 0.85 100 5 (& VD: 327

Category Conductor Opt. Type
15m-2AW

C-2.23 [kvA] - Manual -

3F/1F system
P8
3F > @ VD: 4,73
< 91m-2AWG
CONDUCTOR SIZE Change generation center to: P2

“
Pi Pf CondS &
2

PS5
. VD: 490

WNONWN =

Figure 6.29. Setting the size of conductors and the location of transformer manually.
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Figure 6.30 shows how the final result of the IPSO-PRIM algorithm looks like. In the dia-
gram we can see the optimal location of the transformer with its size, and which is the opti-
mal size of the conductors, as well as the voltage drop at the end-nodes. Additionally, the
application summarizes the results of the power flow analysis such as line power losses, volt-

age magnitudes, number of loads, total power per node, currents through each branch, and

so forth.
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Figure 6.30. Network design by the IPSO-PRIM algorithm.

NoNww=Nw
omoNpO—
- U

During the design, the application allows us to change any parameter as well as the topol-
ogy of the network, with which we can compare different configurations to select the most
adequate. In this process, the application will warn us -drawing the element in red- if any
component in the network does not meet the established requirements such as minimum
voltage magnitude, conductor's ampacity, or transformer’s maximum capacity. An example
of this case es illustrated in Figure 6.31.

In this way, we can conclude that this Android app can be a very useful tool for the design
and control of distribution networks. For demonstration purposes only, the Java code for the

IPSO algorithm is shown in Appendix D.

6.5. Summary

In this chapter TS-MOEAP was applied to design -from scratch- two off-grid electrification
projects with PV systems, to optimize two existing secondary networks (with several quality

issues), and to reconfigure two primary networks to support the new LVDN topologies.
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Chapter 7

Network Optimization using DER-CAM

In this chapter, we will discuss how to optimize distribution networks through the instal-
lation of distributed energy resources (DERs) by means of a commercial software called DER-
CAM. This program is specialized in finding the optimal investment solutions for a power
system, with the main objective of minimizing total annual costs of energy supply. In our
particular case, we will analyze the case study MVDN2, which is currently making a transition
from the use of gas stoves to induction stoves. With DER-CAM we will see what the economic

impact of this change is and how we can reduce the total investment cost by installing DERs.

7.1. DER-CAM

DER-CAM is a decision support tool intended to find optimal investment solutions of dis-

tributed energy resources (DER). The problem can be formulated as a mixed integer linear
program (MILP) with the main objective of minimizing the total annual costs of energy supply
(including investment costs) or to minimize carbon dioxide (CO2) emissions.
DER-CAM supports a wide range of DER technologies (between conventional and renewable)
and can be used in multiple building and microgrid contexts such as grid-connected, islanded,
off-grid microgrids, and systems based on either AC or DC infrastructure. The optimal DER
investment solution found by DER-CAM includes the portfolio, sizing, placement, and dis-
patch of DERs [51].

The software consists of an optimization module, which includes an optimization algo-
rithm and the supporting mathematical solvers, a graphical user interface, and a server ap-

plication that enables remote access to the optimization component.
For the implementation of DER-CAM, the inputs of the model are:

a. Load Data: customer's end-use hourly load profiles, detailed for different uses such
as space heat, hot water, natural gas only, (electric) cooling, (electric) refrigeration,

and electricity only.
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Electricity Tariff and Fuel Costs: the structure and rates of the customer’s electricity

tariff, natural gas prices, and other relevant utility price data.

c. DER Technology Costs: capital costs, operation and maintenance (O&M) costs, along
with fuel costs associated with the operation of various available technologies.

d. Investment Parameters: discount rate to be considered in the DER investment analy-
sis and maximum allowed payback.

e. DER Technology Parameters: basic technical performance indicators of generation
and storage technologies.

f. Network Topology: in case of multi-node microgrids, we must specify the topology of

the network, including electricity cables and gas/heat pipes as well as their opera-

tional limits and characteristics, e.g. impedances, conductor ampacities, and voltage

constraints.

Finally, the outputs provided by DER-CAM are

a. A diagram of the network showing the optimal capacity and placement of all DER.
b. Optimized strategic dispatch of all DER, considering energy management procedures.

c. Detailed economic results, including costs of energy supply and all DER related costs.

An overall illustration of DER-CAM is shown in Figure 7.1.
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load data
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Portfolio
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DER technology Optimal
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Site weather
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Figure 7.1. Overall input and output structure of DER-CAM [51].
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7.2. Implementation of DER-CAM for the Case Study MVVDN2

As mentioned in section 6.2.1, the background of the problem is the transition of gas
stoves to induction stoves, which has caused a considerable increase in electricity demand,
that cannot be supported by the current infrastructure. The case study that we are going to

consider is MVDN2, detailed in section 6.3.1, and we will proceed as follows:

i. First, we will analyze the original network topology (see Figure 6.20) -only with the use
of gas stoves- by means of DER-CAM. This scenario will serve as a reference to verify the
economic impact of improving the system.

ii. As asecond scenario, we will analyze the original network with the increase in demand,
i.e. with the use of induction stoves, with and without the installation of DERs.

iii. In the third scenario, we will analyze the network obtained by TS-MOEAP (see Figure
6.24), with and without the installation of DERs.

iv. Finally, in the last scenario we analyze the impact of load shifting and peak shaving.

7.2.1. Scenario 1: Base Case

To start the analysis in DER-CAM we must first establish the topology of the network, as
shown in Figure 7.2 (a), to then enter the load profile of each bus. The load profile can be
obtained multiplying the curves of Figure 6.7 by a factor, based on the number of users con-
nected to each bus, and the curve for the natural gas can be obtained taking only the peaks
of the load profile with induction stoves and applying an efficiency factor of 47 % (efficiency

of gas stoves). For example, Figure 7.2 (b) shows the load profile for bus 1.

140 —<Load profile without induction stove

120 —&-Load profile with Induction stove 2
I\
-#-Load profile for natural gas stove e
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(b)
Figure 7.2. Scenario 1, base case. a) Topology of the network in DER-CAM. b) Load profile for Bus 1.
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For all scenarios, the electricity tariffs will be established in 0.093 S/kWh for regular hours
and 0.12 S/kWh for peak hours, with a tariff for natural gas of 0.016 S/kWh. Finally, for the
base case, the investment of renewable DERs will be disabled, and only the load profiles

without induction stoves and those for natural gas will be considered.

Applying the aforementioned data, the summary of results for the base case is shown in
Figure 7.3, detailing a total annual cost of S 302000 and a total annual CO2 emission of
588000 kg. The figure also shows that most of the cost is due to operating costs, and there
are only small investments for gas supply (conventional source). We should note that for this

case all the energy was purchased from the utility company.

Summary

Total Annual Energy Costs (k$) Total Annual CO2 emissions (metric
Reference 3 58
I io (incl, lized 302 588
capital costs and electricity sales)
Total Savings (%) (incl. annualized 049% 0.14%
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OPEX Savings (%) 200%
Total annual electricity balance (kwh) New generation technologies (kW) New storage technologies (k\wh) New investments (k$) Annualized Energy Costs (k$)
k
1
Optimized ‘
Toﬁ\ annual elecmcnly Reference Details
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from conventional (kWh I Annualized Investment Costs
Total annual on-site generation Cemral Heating Capacity Optimized - Total
from renewables (k\wh) W Central Heating N Reference

Yearly investments and operational costs (k$)
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0 5 10 15 20

— Aggregate Savings Aggregate Investments —— New Investments Bl Central Heating S OPEX

Figure 7.3. Summary of results for the base case.

7.2.2. Scenario 2: Original Network implementing Induction Stoves

Now, for this scenario, we will take the same topology of Figure 7.2 (a) using only the load
profiles with induction stoves. For the first run the investment of renewable DERs will be
disabled and for a second run it will be enabled (photovoltaic and electric storage). Between
the parameters for investment, the interest rate will be established in 3 % and the maximum
global payback period will be set to 10 years. Finally, the solar profile and the technical pa-

rameters of DERs will be taken from databases available in DER-CAM.
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Figure 7.4 shows the summary of results for the base case implementing induction stoves,
without the inversion of DERs. The total annual cost of energy increased to $ 459000, some-
what expected due to the increase in electricity demand. On the other hand, if we run the

same case enabling the investment of DERs, we obtain the results shown in Figure 7.5.

Y Topology Electricity Dispatch Electricity Dispatch Node Voltage HeatDispatch HeatDispatch Node Cooling Dispatch Cooling Dispatch Node  Investment Decisions EcnnE[
Summary
Total Annual Energy Costs (k$) Total Annual CO2 emissions (metric
Reference 460 5!
I io (incl. ized 459 556
capital costs and electricity sales)
Total Savings (%) (incl. annualized 0.15% 017%
capital costs and electricity sales)
OPEX Savings (%) 0.00%
Total annual electricity balance: (kwh) New generation technologies (kW) New storage technologies (kwh) New investments (k$)

s Total annual electricity Reference Detzis
purchase (Kwh)
Total annual on-site i . OPEX
from conventional DG (k\wh) W Annualized Investment Costs
Total annual on-site generation Optimized - Total
from renewables (k\wh) N Reference
Yearly d costs (k8)

ks
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Figure 7.4. Summary of results for the base case with induction stoves and without DERs.

Summary
Total Annual Energy Costs (k$) Total Annual CO2 emissions (metric

Reference 459 556
I io (incl, lized 393 370
capital costs and electricity sales)
Total Savings (%) (incl. annualized 14.35% 3351%
capital costs and electricity sales)
OPEX Savings (%) 31.00%

Total annual ricil (kwh) New storage technologies (kwh) New investments (k$)

 Tot3l annual electricity
purchase (KwWh)
Total annual on-site ion . OPEX
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Figure 7.5. Summary of results for the base case with induction stoves and DERs.
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As we can see, we have a total saving of 15% (including annualized capital costs and electric-
ity sales) respect to the case without DERs, of which 31% are savings of operating expenses.
This result is due in large part to the installation of a 311-kW photovoltaic system at bus 3
and the installation of 6 battery banks -with a capacity of 58 kWh each- in the remaining
buses, please see Figure 7.6. The operating expenses are minimized due to the dispatch of
the photovoltaic unit for self-consumption at noon, and by the use of batteries during peak

hours. This is shown in the electricity dispatch of Figure 7.7.

@ 58 kivh
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58 kih (

®

Figure 7.6. Installation of DERs for the base case with induction stoves.
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Figure 7.7. Electricity dispatch for the base case with induction stoves and DERs.
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7.2.3. Scenario 3: Network optimized by TS-MOEAP, with/without DERs.

In this scenario, we analyze the network MVDN2 of Figure 6.24, which was previously op-
timized by TS-MOEAP. We must remember that this primary network supports the secondary
network LVDN2, also optimized by TS-MOEAP (see Figure 6.15). If we do not implement DERs
in this model, we obtain a total annual cost of $475000 and a total annual CO2 emission of
$574000 kg. On the other hand, if we enable the installation of DERs, we obtain a total annual
cost of $ 406000 and a total annual CO2 emission of 381000 kg, as illustrated in Figure 7.8.

Summary
Total Annual Energy Costs (k$) Total Annual CO2 emissions (metric
Reference 475
Investment scenario (incl. annualized 406 381
capital costs and electricity sales)
Total Savings (%) (incl. annualized 14.48% 33.68%
capital costs and electricity sales)
OPEX Savings (%) 32.00%
Total annual electricity balance (kWh) New i hnologies (kW) New storage technologies (kWWh) New investments (k$)
651383
k
s
3z
Total annual electricity
W purchase (KWh)
Total annual on-site generation OPEX
from conventional DG (kiwh) Annuzlized Investment Costs
Total annual on-site generation Photovoltaic (kV/), peak power S\auonap Battery Capacity Photovoltaic Optimized - Total
from renewables (k\wh) under test conditions N Stationary Battery N Reference
Yearly investments and operational costs (k$)
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Figure 7.8. MVDN2 optimized by TS-MOEAP and DER-CAM.

Figure 7.9. MVDN2 optimized by DER-CAM.
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The total saving, which is around 15%, is mainly due to the installation of two photovoltaic
systems and eight battery banks, as illustrated in Figure 7.9. This configuration allows to gen-
erate energy for self-consumption and to charge the batteries which will be used during peak
hours (minimum state of charge 25% of the capacity). This can be seen in the electricity dis-
patch of Figure 7.10.

Electricity Dispatch
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Figure 7.10. Electricity dispatch for the optimized network with induction stoves and DERs.

7.2.4. Scenario 4: Impact of load shifting and peak shaving

If we calculate the load factor (f,,qq = Average Load/Peak Demand ) of the utility when:
DERs are not considered, when only PV systems are installed, and when PV systems along
with batteries are mounted, we obtain the results shown in Figure 7.11.

450

400 N

350

) '
300 \ Jfroaa =49 % |
250 \ A
£ »
200 \ P™
150 - 1 il
100 B—p o /I freaa = 40 %
! PR
50 = 0,
— fLoad =42 %
o
1 3 s 7 9 11 13 15 17 19 21 23
Hour
—@—Original Solar Solar + Storage

Figure 7.11. Load profiles of the utility and load factors.
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As might be seen, the installation of photovoltaic systems causes the deterioration of the
load factor (which is preferred close to 1). Therefore, to improve this parameter, peak shav-
ing and load shifting can be used. In DER-CAM we can implement both methods, forcing the
algorithm to install bigger batteries (e.g. 80 kWh per node) for peak shaving and enabling
part of the load that may be subject to shifting (e.g. 3 % at each node). The result of this
operation is shown in the electricity dispatch of Figure 7.12, and as we can see, DER-CAM
dispatches the batteries to provide energy at peak hours (7 am and 7 pm). Also, it changes
part of the load towards noon (red dotted line), where there is an excess of solar generation.
We should note that this excess of generation is also used to charge the batteries. Finally,

after this energy management procedures, the load factor is improved up to 53 %.
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Figure 7.12. Electricity dispatch implementing load shifting and peak shaving.

7.2.5. Result combining TS-MOEAP and DER-CAM

Figure 7.13 shows a comparison of the results of the four scenarios. As we can see, the
models that incorporate DERs present lower costs and emissions than those systems without
them. This demonstrates that a system can still be improved, even when it has been recon-
figured by TS-MOEAP. However, DER-CAM is intended only to find optimal investment solu-
tions of DERs, at medium and high voltage levels, therefore secondary networks can still pre-

sent technical problems.
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Figure 7.13. Comparison of scenarios, with/without DERs.

In this way, we can conclude that an entire system could be properly designed/improved
if we combine both algorithms. First, we must use TS-MOEAP to find the optimal topology of
the secondary and primary network, to later improve the operation of the primary network
by installing DERs with the help of DER-CAM.

As a final result of this thesis, Figure 7.14 shows the optimal configuration for the MVDN2-
LVDN2 system, obtained with the collaboration of TS-MOEAP and DER-CAM.
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Figure 7.14. Test system MVDN2-LVDN1, improved by TS-MOEAP and DER-CAM.
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7.3. Summary

In this chapter we have complemented the proposal TS-MOEAP with the commercial soft-
ware DER-CAM. This combination allows us to find the optimal topology of the network and
the optimal investment solutions of DERs. As result we have a considerable reduction of in-
vestment and operational costs, as well as an optimum dispatch of generation along with

peak shaving and load shifting.
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Chapter 8

Conclusions and Future Work

In this thesis we proposed a Two-Stage Multiobjective Evolutionary Approach to design
and optimize distribution networks at primary and secondary level. Due to the complexity of
the optimization problem, the approach was implemented in two stages:

e Stage-1, for optimal placement and sizing of DTs/DGs, as well as optimal branch rout-
ing and conductor sizing, and

e Stage-2, for optimal network reconfiguration.

For the first stage, an IPSO algorithm was proposed for its simplicity and outstanding perfor-
mance and for the second stage an INSGA-HO algorithm was introduced with the incorpora-

tion of a better mutation operator.
In the following, we summarize the main contributions developed in this thesis.

Chapter 3:

e We propose an integer vector representation for the genotype form of the distribu-
tion network. This new representation is better than the conventional binary repre-
sentation, and it is based on groups of loads instead of individual switches. This allows
us to use the same algorithm (INSGA-HO/IPSO) for LV and MV networks. The great
disadvantage of other proposals is that they can only optimize MV networks.

e The proposed integer vector representation can be manipulated by both algorithms,
the INSGA-HO and the IPSO. The genetic algorithm works with the complete chromo-
some, while the IPSO uses sub-vectors contained in the chromosome.

e For the construction of the network model, we consider the network as a weighted
undirected graph from which we can obtain a minimum spanning tree using a greedy
algorithm. For this, we use PRIM, which takes a graph as input and finds the subset
of branches which will form the network with the minimum amount of wire length.

The advantage of using PRIM is that the network is always built radially.

Chapter 4:
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The selected objective functions for the optimization problem are power losses and
investment costs. We choose these two functions since they are directly related to
the reinforcement of the network.

Unlike a regular PSO, the IPSO does not initiate the particles randomly, because in
practical cases a transformer is not located at the ends of the network. This helps
improve computational time by not evaluating unnecessary nodes. Furthermore, as
the power flow analysis is a process that consumes valuable computational time, the
IPSO records all the solutions found so far by the particles, this avoids repeating the
power-flow computation if another particle falls in the same place.

During the evolutionary process the size of the conductors is not optimized, instead,
the thickest available conductor is used. This helps to reduce computational time.
The IPSO-PRIM algorithm can find the best position for a DG/DT by minimizing only
power losses, applying penalties to the fitness value if there are voltage drops, branch
overcurrents, or restricted nodes. The DT or DG is always located at the node with

the lowest fitness value.

Chapter 5:

The incorporation of the heuristic mutation operator significantly improved the per-
formance of the INSGA-HO algorithm. This operator is one of the best contributions
of this thesis since it was designed specifically to improve the topology of a network
by changing the characteristics of chromosomes. This operator proved to be so effi-
cient that even simpler algorithms (such as a GA) that incorporated it could find bet-
ter results than other more complex algorithms such as an NSGA-II.

The algorithm INSGA-HO presents better computational time than the NSGA-II since
the first one was modified to not find all the nondominated fronts at once. Unlike
Stage-1, Stage-2 uses both objective functions to balance the design of the network.
Among the different recombination methods used for the INGA-HO, better results
could be obtained with the uniform crossover since this operator applies a greater
pressure of diversification.

Compared to MOEA-D, the INSGA-HO algorithm is more complex and may take longer
to converge to a solution. However, INSGA-HO can find better configurations in dif-
ferent scenarios, and MOEA-D has a poor performance when the number of DTs/DGs

to be installed is high.
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Chapter 6

For the different scenarios in which TS-MOEAP was tested, using the INSGA-HO and
IPSO algorithms, better results were obtained than other proposals. The algorithm
was able to identify the optimal number, placement, and size of DTs/DGs; as well as
the topology of the network and the size of the conductors.

It was found that the algorithm can design a distribution network from scratch or
reconfigure an existing network. In all cases, it was possible to minimize power losses,
investment costs, and quality issues.

The implementation of the IPSO-PRIM algorithm in Android proved to be very versa-

tile since it considerably facilitated the design of a network.

Chapter 7

DER-CAM is a decision support tool intended to find optimal investment solutions for
distributed energy resources (DER), with the main objective of minimizing the total
annual costs of energy supply or to minimize carbon dioxide (CO2) emissions.
DER-CAM supports a wide range of DER technologies and can be used in multiple
building and microgrid contexts. However, the software is not capable to optimize
secondary distribution networks.

The combination of DER-CAM with our proposal can further improve the configura-
tion of the network through the implementation of DERs, helping to reduce especially

operating expenses.

In the following we point out some future research directions:

It is proposed to incorporate the installation of DERs into the optimization model,
along with the optimal redesign of the network.

We recommended expanding the android application for the design of primary net-
works and photovoltaic systems.

It is proposed to test TS-MOEAP with different objective functions such as power

losses, operative costs, and reliability indices.
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Appendix A

Solar Radiation for the Case Studies CM1 y CM2

Table A.0.1. Solar radiation of the test area.

NASA Surface
| { ATMOSPHERIC Meteorology and. Air Relative Daﬂysplar Atmospheric Wind  Earth Heating Cooling
- SCIENCE Solar Month _ - radiation - degree- degree-
% DATA CENTER Energy: RETScreen D temperature UGy gy PIESSUTe - speed temperature = days
ata
Responsible > Data: Paul W. Stackhouse, Jr., Ph.D. °C % KWhim?d kPa m's °C °Cd  °Cd
Officials > Archive: John M. Kusterer January 178 76.7% 439 84.0 18 19.3 16 143
Site Administration/Help: NASA Langley ASDC User  |February 177 79.4% 4.25 84.0 18 189 17 218
Services (support-asdc.nasa.gov, March 18.0 71.9% 445 84.0 18 194 13 248
[Privacy Policy and Important Notices] April 17.6 71.3% 433 84.1 18 19.0 2 21
Document generated on Tue Oct 28 14:14:42 EDT 2014 [May 171 72.4% 419 84.1 20 185 31 22
June 167 66.5% 415 842 25 181 40 202
Latitude -3/ Longitude -78.8 was chosen uly 168 57.3% 419 a2 25 187 39 a8
August 179 51.3% 449 84.2 25 204 19 u£3
Unit Climate data location September 189 51.2% 455 84.1 22 218 5 266
Latitude °N -3 October 195 54.9% 454 84.0 20 27 3 293
Longitude °E -78.8 November 189 64.3% 473 84.0 19 207 5 266
Elevation m 1625 December 181 T4.4% 457 84.0 19 199 12 252
Heating design temperature °C 11.83
Cooling design temperature °C 239 Annual
Earth temperature amplitude °C 11.07 179 67.0% 44 84.1 21 199 22 2%
Frost days at site day 0 Measured at (m) 100 00
DAILY SOLAR RADIATION - AIR TEMPERATURE
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Figure A.0.1. Daily solar radiation and average temperature of the test area.
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Figure B.0.1. Diagram of the city, for the case studies LVDN1 and LVDN?2.
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Appendix C

Active and Reactive Loads for the Test System LVDN1

Table C.0.1. Active and reactive loads per node of the test system LVDN1.

U; P Q Uu; P Q U; P Q Uu; P Q
[kW] [kVAr] [kW] [kVAr] (kW] [kVAr] [kW]  [kVAr]

1 6.5 4.9 23 54 4.1 45 0.0 0.0 67 5.4 4.1
2 5.4 4.1 24 16.3 122 46 44 33 68 11 0.8
3 6.5 4.9 25 0.0 0.0 47 109 8.2 69 3.3 24
4 4.4 3.3 26 54 4.1 48 3.3 24 70 54 4.1
5 4.4 3.3 27 3.3 2.4 49 6.5 4.9 71 1.1 0.8
6 0.0 0.0 28 44 3.3 50 196 14.7 72 1.1 0.8
7 54 4.1 29 54 4.1 51 0.0 0.0 73 0.0 0.0
8 3.3 24 30 141 106 52 0.0 0.0 74 3.3 24
9 9.8 7.3 31 3.3 2.4 53 7.6 5.7 75 9.8 7.3
10 1.1 0.8 32 2.2 1.6 54 0.0 0.0 76 7.6 5.7
11 9.8 7.3 33 0.0 0.0 55 7.6 5.7 77 4.4 3.3
12 0.0 0.0 34 120 9.0 56 16.3 12.2 78 7.6 5.7
13 11 0.8 35 54 4.1 57 6.5 4.9 79 196 14.7
14 6.5 4.9 36 3.3 2.4 58 6.5 4.9 80 33 2.4
15 44 3.3 37 8.7 6.5 59 0.0 0.0 81 2.2 1.6
16 54 4.1 38 0.0 0.0 60 6.5 4.9 82 0.0 0.0
17 8.7 6.5 39 54 4.1 61 10.9 8.2 83 2.2 1.6
18 33 2.4 40 0.0 0.0 62 54 4.1 84 6.5 4.9
19 44 3.3 41 33 2.4 63 2.2 1.6 85 2.2 1.6
20 3.3 2.4 42 0.0 0.0 64 54 4.1 86 10.9 8.2
21 1.1 0.8 43 54 4.1 65 10.9 8.2 87 0.0 0.0
22 0.0 0.0 44 6.5 4.9 66 0.0 0.0 88 3.3 2.4
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Appendix D

Java Code for the IPSO Algorithm

public void IPSO (View view) {

int nn = a.length; //Number of particles

int partc = Math.round(nn*35/100) ;

if (partc <= 1) {partc = 2;}

double f;

double [][] RECP = new double [nn][2]; //Accumulative memory
int RP = partc;

int [] x1lim;
if (nn<=3) {xlim = new int []{0, nn-1};}
else{xlim = new int []{1, nn-2};} //Search limits

int iter = 100; //Iteration limits

double [] vx = new double [partc];
for (int i=0; i<partc; i++){vx[i]1=0.1;} //Initial velocity

double vmax x = (x1im[1]-x1im([0])/5; //Limits for velocity
double vmin x = -vmax Xx;

(@]

double wmax = 0.9; //Inertial weight limits
double wmin = 0.1;

[

double C1 = 1; //Cognitive and social variables
double C2 = 2;

double [] x linspace (x1im[0],x1im[1],partc);
double [] pBest = x.clone();

double [] fpBest = new double[partc];

for (int i=0; i<partc; i++){ //pBest

Trafo =(int) x[i]; //position of transformer
)

calculoDV () ; //Power flow subroutine
fpBest[i] = suma(D,16);
RECP[1][0] = x[1i]; RECP[i][1l] = fpBest[i];}

double gBest = Math.round((x1im[0]+x1im[1])/2); //Best result
Trafo = (int) gBest; calculoDV();
double fgBest = suma(D,16);

for (int i=0; i<iter; i++){

for (int ii=0; ii<partc; ii++){

int paux = -1;
for (int j = 0; Jj<RP; j++){if (RECP[]j][0]==x[11i]) {paux = J;
break; }}
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if (paux > -1){f = RECP[paux][1l];}
else {
Trafo = (int) x[ii];
calculoDV () ;
f = suma(D,16);
RECP[RP] [0]=x[1i1i]; RECP[RP] [1]=f; RP++;}

if (f < fpBest[ii]){ //Best local result
pBest[ii]=x[ii]; fpBest[ii]=f;}

if (fpBest[ii] < fgBest) {
gBest = pBest[ii]; fgBest = fpBest[ii];}
}

for (int 1i=0; ii<partc; ii++){
double w = wmax- (wmax-wmin) *i/iter; //Velocity
vx[ii]=w*vx[ii]+Cl*Math.random()* (pBest[ii]-
x[1i])+C2*Math.random() * (gBest-x[1i]) ;

if (vx[ii] > vmax x) {vx[ii] = vmax x;}
else if (vx[ii] < vmin x){vx[ii]=vmin x;}

x[1i] = x[1i1]+vx[1i]; //Actualization of position

if (x[ii] > x1im[1]) {x[1ii] = xlim[l]-Math.abs(vx[ii]);}

else if (x[ii] < x1im[0]) {x[ii1] = x1lim[O]+Math.abs(vx[ii]);}
x[1ii] = Math.round(x[ii]):;

}

//Stop criterion

double prom = 0;

for (int ii = 0; ii < partc; ii++) {prom = prom + x[ii];}

prom = Math.abs (prom/partc) ;

double ccc = 0;

for (int i1i=0; ii<partc; ii++)
double cc = (x[ii]-prom)*
ccc = ccctec;

{
(x[ii]-prom) ;
}

ccc = ccc*cce/partce;
if (ccc < 1) {break;}
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