
Curso	Distribución de la energía eléctrica
Tema	4. Características de las cargas
Subtema	4.3. Factores de la demanda
Componente	HMTL

Factor de potencia

En los sistemas de corriente alterna, la potencia total consumida por las cargas tiene dos **componentes vectoriales**:

- **Potencia activa (Watts) P:** Es el componente de la potencia que realiza el trabajo físico, se traduce en movimiento mecánico o calor.
- Potencia reactiva (Volt-Ampere reactivo) Q: Es el componente de la potencia asociado con los campos magnéticos y eléctricos en las máquinas. No produce trabajo físico, pero es esencial para sustentar el funcionamiento de las máquinas eléctricas.

La suma vectorial de estos dos componentes da como resultado la **potencia aparente** (Volt-Ampere) **S**. Estos tres componentes pueden expresarse de forma gráfica en el triángulo de potencias.

El ángulo de **potencia Phi F** expresa la relación ente los tres componentes de la potencia en el sistema eléctrico. Esta relación se conoce con el nombre de **factor de potencia (FP)**.

El factor de potencia expresa el **porcentaje de potencia aparente** (total) que se está utilizando como potencia activa (útil) y puede expresarse de la siguiente manera:

$$FP = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}} = \cos\emptyset$$

El factor de potencia puede tener valores entre 0 y 1. Un **factor de potencia ideal** se considera 1, ya que esto quiere decir que la totalidad de la potencia utilizada se está aprovechando como potencia activa.

Por el contrario, un factor de potencia 0 implica que toda la potencia se está utilizando como potencia reactiva, la cual **no produce un trabajo útil**. Normalmente en los sistemas eléctricos encontramos un factor de potencia que oscila entre 0 y 1.

Un bajo factor de potencia está asociado a varios **efectos indeseables** en las instalaciones eléctricas, tales como:

Por ahora has conocido acerca de todos aquellos factores que permiten dar forma a la demanda de un sistema eléctrico. Continúa con el curso para seguir aprendiendo.