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Bearing Fault Diagnosis in Spindles using Vibration
and Acoustic Emission

By
Oscar Darı́o Tamayo Pazos

Abstract
In modern automated manufacturing processes, machinery has become more flexible and auto-

matic but also more susceptible to conditions in different parts like spindles. The main conditions
affecting them are focused in the shaft and bearings. To successfully detect and identify each con-
dition, methodologies based on new transforms and sensors are used in controlled environments,
in order to recognize the conditions effects in vibration and sound.

To detect machining conditions there are two important factors: (1) The feature extraction
method and (2) the type of sensor used. In feature extraction methods reviewed, Cepstrum Pre-
Whitening (CPW) is remarkable useful for vibration. Its main feature is suppress the shaft speed
waveform of the motor in rotational machine systems and help to detect bearing faults. The main
sensor used is the accelerometers to acquire vibration, but recently acoustic emission (AE) acquired
from transducers are studied to improve the diagnosis along with accelerometers. In this study, an
experimental system was built to acquire vibration and AE signals from faulted bearings and a
methodology based on CPW, tested for vibration signals, was applied for both type of signals to
compare and enhance results on machining condition monitoring.

A methodology proposed using CPW, envelope spectrum, trend removal, compression and
RMS limit filters (the last two just for AE) was applied to 9 vibration and 9 AE signals taken from
the experimental system with the purpose of diagnosing bearing faults in the inner race (IR), outer
race (OR) and rolling element (RE) in low frequencies for both signals and high frequencies in AE.
For the 18 analyzed signals, in 5 the identification of fault components were easily made, in 12
signals the fault identification was possible; but there were peaks with similar amplitudes of the
fault components and in 1 signal the identification of fault components was unsatisfactory because
there was no peak that matches the bearing fault frequencies. The comparison between vibration
and AE showed that in 6 from 9 tests, vibration have a better result diagnosing bearing faults than
AE, specifically in the IR and RE, for the remaining 3 tests that correspond to OR, AE have a better
result than vibration. Finally, the high frequencies in AE revealed that just RE faults had high
frequency components in one of the three analyzed tests that can be related to remarkable faults in
the ball.
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Chapter 1

Introduction

It is important to know and recognize the Mexico’s role in automotive manufacture. According to
the ProMéxico 2018 [México, 2018] report, investment in Mexico’s automotive industry represent
the 7,17% of the total investment in the first six months of the year and the percentage of money
income from exports in Mexico corresponding to the automotive industry is 9.6% in the same lapse
of time. Thus, having a better production in the automotive industry and their parts can increase
the productivity, profitability and consumption of them worldwide.

To achieve that improvement the process by which these parts are made (e.g. Machining,
Milling) should be improved and monitored to get the best possible efficiency. Automotive com-
panies invests big sums of money in the latest technology machinery expecting to have the best
performance, but avoiding faults in the equipment is essential to achieve this goal. An unexpected
fault can cause accidents, downtimes or stops in processes or even heavy damages in machinery
that can cause break downs and financial losses for the companies.

1.1 Motivation

Nowadays, machining is one of the most important and widely used process in manufacturing in-
dustry instead of forming, molding, and casting processes. Generally, machining can be defined as
a process of removing material from a workpiece in the form of chips. In modern automated man-
ufacturing processes, machinery has to become more flexible and automatic [Deris et al., 2011].
Some reviews [Cohen, 1989] have shown that the effective machining time of a machine tool can
be increased from 10% to 65% with machines condition monitoring and control systems. In order
to increase productivity, enhance quality and reduce costs, spindle and machine tools have to work
in the best environment and with the least possible error. Spindle’s fault detection and diagnosis
like Unbalance (UB), Misalignment (MA), Bent Shaft (BS) or rolling element bearings faults, have
always been a challenge in rotating machining monitoring. To face these challenges, new machin-
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2 CHAPTER 1. INTRODUCTION

ing monitoring systems are always being developed for improving machining performance using
sensors different from the usual ones and/or new fault recognition algorithms. The intention of
this research is to develope a methodology, using this fault recognition algorithms, to detect spin-
dle’s faults with better results over the traditional algorithms specially focused in the analysis of
vibration and AE (Acoustic Emission) signals to diagnose those faults.

1.2 Problem Description

The machining processes can be divided in two types: conventional machining, where non au-
tomated machines are used to manufacture products like regular lathe and milling machines, and
modern machining, where CNC (Computer Numerical Control) machines are used to manufac-
ture products with higher precision. Machining centers tend to fail in two specific parts of them,
the spindle and tool, which affects directly the process efficiency. Thus, machining monitoring
different approaches are focused into tool and spindle conditions to identify and prevent failures.

Both, spindle and tool condition monitoring, get information from different aspects of the
same process and analyze that information expecting for a common result, reducing the process
overall cost and prevent machine failures. But in spindle monitoring case the specific focus is
to prevent spindle failures and extend the spindle’s useful life as much as possible. The spindle
system is composed by: tool holder, spindle nose, housing, shaft, bearings and pulleys as Fig. 1.1
shows, where the housing hold bearings that allow the free rotational movement of the system.
Successful application of machining technology is highly dependent on spindles operating free of
faults without overloading the angular load of contact bearings [Cao and Altintas, 2007].

Spindle monitoring architecture has three main different elements or characteristics as Fig.
1.2 shows. The first characteristic allows to identify the type of failure in the spindle; bearing
conditions in the Inner Race (IR), Outer Race (OR), Rolling Element (RE) or cage (C); the shaft
mechanism like UB, MA or BS; or in other housing elements like washers. The second is the sensor
used to measure the condition consequence which can be a transducer for AE, an accelerometer for
vibration, temperature sensors for energy and entropy and an amperemeter for electrical current.
The third is the signal processing method, which includes the feature extraction, feature selec-
tion and decision making methods that will reveal, classify and control every diagnosable spindle
condition respectively.
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Figure 1.1: Spindle system architecture from [SKF, 2018].

Figure 1.2: Spindle monitoring architecture
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The most typical faults in the rolling element bearings are produced by localized wear in the IR,
OR, or the ball. Localized defects include cracks, pits and spalls on the rolling surface, although the
dominant fault mode is race spalls. When the RE strikes the defect, a shock is produced, exciting
high frequency resonances of the structure. The presence of such a defect causes a significant
increase in the vibration level [Bediaga et al., 2013]. Those vibration levels can be detected by
multiple kind of forms using different sensors as shown in Fig. 1.2, but the most commonly
used sensor in spindle monitoring is the accelerometer to measure vibration. On the other hand,
AE has proven its effectiveness in detecting bearing faults too. Unlike vibration, the AE is less
affected by noise and by structural vibration e.g. a bearing installed in a mechanical system where
the resonance frequencies of the structure between the bearings and the transducers exist at high-
frequency resonant bands have more difficulty in detecting bearing faults using vibration than AE
[McFadden and Smith, 1984].

In spindles, the raw vibration or acoustic signals are illegible and demand signal processing
to extract the significant features out of them. Several signal parameters are used to correlate the
UB level, bearing conditions, MA level, washer wear and other occurrences involved in machining
with the captured signal such as RMS (Root Mean Square), Kurtosis, Peak to Peak (PTP) values
among others. Usually, the pattern recognition analysis is used to characterize the signal pattern
and thus to monitor the spindle performance. But, the most common signal processing method
presented in Fig. 1.2 uses feature extraction methods in several domains like time, frequency and
time-frequency to detect the occurrences features.

A complete signal processing example process is shown in Fig. 1.3. It begins with an analog
signal (Vibration or AE) obtained from a data acquisition system, then it gets preprocessing by a
filtering system or an A/D segmentation to clear noise; after that, the feature extraction method is
applied using a time, frequency or time-frequency domain method. In time signals there are some
general purpose time domain analyses that reveal the intensity level of occurrences like RMS,
Kurtosis or PTP values. On the other hand, the main frequency domain transformation used is
the FFT (Fast Fourier Transform); but, when there is noise or difficulty of pattern recognition,
other transforms are used like the CPW (Cepstrum Pre-Whitening), STFT (Short-Time Fourier
Transform), HT (Hilbert Transform) or WT (Wavelet Transform). Finally, with the known signal
features, the feature selection method correlate and link those features with previously known ones
taught or determined using algorithms like neural networks-based systems ([He and He, 2017],
[Hwang et al., 2009]), Neuro-Fuzzy logic ([Attoui et al., 2017], [Yan et al., 2011]), Support Vector
Machines ([Guo et al., 2009], [Gowid et al., 2015]), among others. In more complex systems, there
are a decision-making method, which takes control of the process settings to solve the abnormal
features problem of the signal and therefore resolve the occurrence in the process.
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Figure 1.3: Feature extraction and selection process [Bhuiyan and Choudhury, 2014]

1.3 Research Question

In machining manufacturing, the main goal is to obtain a machined part with the desired character-
istics using the least possible material, energy and time. With this objective, machining condition
monitoring is implemented to diagnose any spindle fault and help increase the efficiency of the pro-
cess. Using this approach, the hypothesis of this proposal is the feasibility of diagnose a bearing
spindle fault using a machining condition monitoring system that uses vibration and/or AE signals
acquired in real time, processed using a frequency domain feature extraction method to recognize
and classify the specific condition in the bearing.

Using the aforementioned hypothesis, the purpose of this study divides in two parts:

• To propose a methodology using CPW transform to diagnose spindle bearing conditions in
the inner, outer race and rolling element of bearing using both vibration and AE signals.

• To apply the proposed methodology in bearing fault signals (faults in IR, OR and RE of
bearing) obtained from an experimental system with two types of sensors (vibration and
AE) specially made for this study and diagnose each specific fault using visual inspection
in the frequency spectrum obtained from the methodology application, in order to compare
vibration and AE efficiency to diagnose bearing faults using this methodology.

1.4 Solution Overview

The purpose of this study is to propose a methodology using CPW and other pre-processing meth-
ods like Trend removal, Companding filter and Envelope spectrum to get an easily diagnosable
spindle monitoring system using both vibration and AE signals. The road to this purpose can be
achieved by the application of the proposed methodology in vibration and AE signals obtained spe-
cially from an experimental system constructed to simulate bearing faults in the IR, OR and RE.
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This in order to test the efficiency and reliability of the vibration and AE signals using a well know
diagnose method like CPW and comparing it with some basic methods like FFT and Envelope
Analysis. The study can help to identify the main advantage and disadvantages of each type of
sensor to help as starting point in the hybrid sensor monitoring systems development to diagnose
spindle conditions.

1.5 Main Contribution

The main contribution of this study is focused on the application of the methodology with CPW
and other pre-processing methods like trend removal and companding filter in the vibration and
AE signals obtained from an experimental system to diagnose bearing faults, with the purpose of
study the CPW algorithms in AE signals and compare their efficiency with vibration signals from
the same tests. Also, a dual (vibration and AE) sensor monitoring system could be developed with
this study to increase data acquisition systems performance with the inclusion of transducers (eg.
microphones) that help to diagnose parts of the spindle that are hard to reach without modifying
spindle architecture.

1.6 Disertation

This thesis is structured as follows:

• Chapter 2 introduces the state of art for different approaches of signal analysis in bear-
ing fault detection emphasizing the Cepstrum Pre-Whitening method and vibration/AE re-
search done. Also, this chapter includes theoretical background of Bearing faults, Fast
Fourier Transform, Short-Time Fast Fourier Transform, Cepstrum Pre-Whitening and En-
velope Spectrum.

• Chapter 3 introduces the proposed methodology for each type of signal (vibration and AE)
with a detailed description of each part.

• Chapter 4 introduces two case studies used for validate the methodology: Case Western
Reserve University bearing database, Experimental system database including construction
of test rig and DoE (Design of Experiment).

• Chapter 5 shows the results produced by the proposed methodology and a comparison with
other traditional methods.

• Chapter 6 presents the conclusions, contributions made with this work, published articles
during this research and introduces future work.



Chapter 2

State of the Art

2.1 Literature Review

The machining condition monitoring research can be done using multiple signals of the machine
(e.g Vibration, Acoustic Emission, Current) for diagnose UB, Rolling element bearings faults, MA,
ML, etc. These machine signals are processed using several methods in the literature; the best
know method in frequency spectrum signal processing is the FFT, nevertheless is the method most
susceptible to noise, for this reason different methods, using FFT as its base, are proposed in the
literature to clean different kind of noises.

In the literature review done in this study the main approaches were finding out vibration and
AE based experiments that use FFT (Fast Fourier Transform), STFT (Short-Time Fourier Trans-
form) or CPW (Cepstrum Pre−Whitening). Any other work that uses other approaches like WT
(Wavelet Transform) or HHT (Hilbert−Huang Transform) were used as state of art for vibration
and AE signal processing. Its important to say that most of the works reviewed have industrial
equipment or test rigs that runs on rotational speeds lower than 10,000 RPM, except [Gowid et al.,
2015] that worked with an air blower with a rotational speed of 15,650 RPM, in order to train an
algorithm to diagnose bearing faults on its system. The sensor signals division is illustrated in Fig.
2.1a, where the total of works are 21 and there are works that used both AE and vibrations signals.
In the other hand, the fault approach has a wider classification because it can be about bearing
faults: Inner Race (IR), Outer Race (OR) or Rolling Element (RE). Or fault faults: misalignment
(MA), mechanical looseness (ML), unbalance (UB) among others. Fig. 2.1b shows the literature
review fault approach classification where same as Fig. 2.1a, there are 21 works and there are
works that study all bearing faults, some bearing faults, UB and MA, just UB or just MA among
others.

7
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(a) Division by sensor used (b) Division by fault approach

Figure 2.1: State of art division

2.1.1 Rolling Element Bearings Monitoring

The bearing condition based monitoring is the principal focus of this study. For this reason most of
the works despite of not being fully focused into spindle bearings monitoring, a good approach can
be achieved using the current literature focused in general rotating machines bearing diagnose. A
lot of works have a FFT analyses as base reference of bearing condition monitoring performance
like [Bediaga et al., 2013], [Bujoreanu et al., 2013], [Boudiaf et al., 2016] [Gowid et al., 2015],
[Phadatare and B., 2016]. As Fig. 2.1b shows, the main bearing faults that are studied in the
literature are IR, OR and RE faults; most of them using the Case Western Reserve University
(CWRU) database like in [Attoui et al., 2017], [Boudiaf et al., 2016], [Quiroga et al., 2012] and
[Smith and Randall, 2015]. In the others, experimental test rigs where implemented using electric
motors, industrial equipment or simulated signals. In terms of feature extraction methods used
to diagnose bearing faults, the three main methods reviewed were: FFT, STFT, and Cepstrum
Analysis (CA) and for each one different works were reviewed and analyzed focusing into database
used, fault detection approach and results obtained:

• FFT

[Bediaga et al., 2013] used four different methods to diagnose bearing faults in a test bench with
two different fault diameters: 2.5 and 4.5 mm; the method used were FFT, CA, HT and AD (Am-
plitude Demodulation); the approach of this investigation was the comparison of traditional signal
processing algorithms to diagnose bearing faults and the results using FFT corresponding to ø

2.5mm were non distinguishable and for ø 4.5mm the results were that high amplitudes at the res-
onance frequencies show the presence of the fault but not at low amplitudes. [Boudiaf et al., 2016]

used four different methods to diagnose bearing faults in CWRU vibration signals; the methods
used were FFT, CA, Envelope Analysis (EA), and WT. As [Bediaga et al., 2013], the approach of
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this investigation was to make a comparative study of newer methods of bearing fault diagnosis.
The results using FFT were that it allows the detection of the fault but a strong disadvantage is the
inability of the method to determine the component of bearing which is defective. [Gowid et al.,
2015] used FFT to diagnose bearing faults using AE signals in an industrial air blower simulating
faults in the OR; the rotational speed of the experiments were 15,650 RPM which can be consid-
ered as HSM. Finally the approach of this work was the classification of the datasets obtained using
a Support Vector Machine (SVM).

[Quiroga et al., 2012] used FFT, EA and CA to diagnose bearing faults in a test rig using
vibration signals and validating the method with CWRU signals too, his objective was carrying out
a comparative study of them. The results obtained with the FFT were not the best because the
algorithm had natural frequencies interference of the system; compared to the other two methods
studied in this work at diagnose bearing faults, it was not the best algorithm. [Guo et al., 2009]

used FFT along with EA to diagnose bearing faults in a test rig using vibration signals with the
objective of classify them using SVM algorithm. In their work, before using the EA, they filtered
the signal with a band-pass filter to obtain frequencies between 1 to 5 KHz, then the EA is applied
using the HT and the SVM algorithm is used to classify the signals.

• STFT

[Attoui et al., 2017] used WPT and STFT to diagnose bearing faults in CWRU signals; where
WPT decompose the signal into four data sets and the STFT is applied to the lower frequency data
set with 10 windows and no overlap to eliminate the redundancy of information; finally they are
classified using a Linear Discriminant Analysis (LDA). [He et al., 2016] used a STFT and Manifold
Analysis based methodology to diagnose bearing faults using AE signals in a test rig; the Manifold
Analysis approach is extract the variation among the manifolds to reflect the condition states of a
mechanical system rather than abstracting a feature by averaging all points with the time evolution.
The tests were did at several rotational speeds (120, 240, 360, 480 and 600 RPM) were the better
results obtained were in 240 and 360 RPM showing a better separation of faults than the other
speeds.

• CA

CA was used by [Bediaga et al., 2013] to diagnose bearing faults in a test bench with two different
fault diameters: 2.5 and 4.5 mm; the results using this methods were bad for ø 2.5mm and ø

4.5mm due to the need of exact spacing frequency to the algorithm work properly. [Boudiaf et
al., 2016] also used CA to diagnose bearing faults in CWRU database. The results using CA were
that it can detect the fault and identify its nature with a certain amount of confidence but its main
disadvantage is that it generates many undesired large peaks near the zero point; which makes
the output a little difficult to interpret. [Choi and Kim, 2007] used a variation of the CA called
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Minimum Variance Cepstrum (MVC) which uses a band-pass filter to detect the fault striking other
bearing elements as impulses convolved with a periodic impulse train; the approach of this study
was studying the feasibility of MVC in bearing fault detection using a test bench and bearing fault
simulated by an electric drill pen and a sharp file with fault dimensions of 6x0.34 mm for OR and
6x0.42 mm for IR. The results were successful for 3 of 4 signals presented using this methodology
but it is important to say that the analyses were made just in the time domain.

[Fan and Li, 2015] used another variation of the CA called Cepstrum Pre-Whitening (CPW)
which is a method for separate the discrete components and random components of a signal. The
main interest in the signals from a faulty bearing is the random part rather than the deterministic,
so its a wise choice to filter all the deterministic components to facilitate bearing diagnosis. It is
important to mention that CPW remove both harmonics and modulation sidebands of a signal when
applied [Randall and Sawalhi, 2011]. This investigation approach was the bearing diagnosis using
vibration signal acquired from a planetary bearing gearbox using an hybrid methodology based
on CPW, Minimum Entropy Deconvolution (MED) as filtering methods and EA as the feature
extraction method. The results obtained from this work divided in two parts: IR and OR. For the
OR the diagnosis results were successful in different tests with variable load of 30, 50 and 70 Nm
and variable location of the sensor putting it in the external or internal part of the gearbox. On
the other hand, the IR the diagnosis results were mixed where all the different load signals with
the sensors in the external part was non diagnosable and the internal sensor location in all the load
were successfully diagnosable.

[Smith and Randall, 2015] used three different methodologies to compare their efficiency in
diagnose bearing faults using CWRU database, one of the methodologies is based in the CPW.
The methodologies used by them were based on: (1) EA, (2) CPW + EA and (3) Discrete/random
separation (DRS) + Spectral Kurtosis (SK) + EA. From all of these methodologies the results were
reported in three different types of diagnosable signal: (Y) for easily diagnosable, (P) for partially
diagnosable and (N) for non-diagnosable; a full description of this classification can be seen further
in section 4.3. The comparison made between the methodologies were done based on the difficulty
of diagnose where the first methodology was better for partial and non diagnosable signals, the
second for easy diagnosable and the third had the better results for non and easy diagnosable.

2.1.2 Shaft Faults Monitoring

Other machine faults like UB, MA, and ML are also studied widely using the previous mentioned
methods in 2.1.1 but using less elaborated methods because the unbalance condition is measured in
the shaft speed and its harmonics which are located in low frequencies. From the works reviewed
in this study there are four that focused their investigation into shaft faults:

[Chandra, 2016] studied shaft fault detection in rotor bearing systems using time frequency
techniques like STFT, CWT and HHT in a simulated model system where the faults diagnosed were
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UB and MA and Shaft Crack (SC) where STFT can detect UB and MA with lower performance
compared to the other methods and in SC it cannot detect the fault. [Hwang et al., 2009] used
CA to diagnose bearing faults but with shaft approach (e.g UB, MA and ML in rotating bearing
systems) and used an ANN to classify them. The feature extraction method used in this study was
specifically Cepstrum - coefficient extraction method which is a time domain extraction method to
compare signal’s coefficient to normal state and reveal faults.

2.1.3 Methodology approach

Literature review done in this study was focused into three specific feature extraction methods:
FFT, STFT and CA. Most of them are widely applied into bearing and shaft fault diagnosis both
in vibration and AE; but there is an specific variation of CA that is CPW analysis that was being
studied just for vibration and there are no studies of this technique focused into AE. For that reason,
the most solid methodology developed by [Smith and Randall, 2015] in their work using CPW and
EA to diagnose bearing faults in vibration signals is proposed for AE applications to determine its
feasibility.

2.2 Theoretical Background

The main theorical background in this work is based on the vibration occurring in the spindle’s
machining centers, that can be detected using vibration and AE sensors, where and how they affect
it but specially which parts of the spindle are the most compromised by these vibrations. The main
spindle defects according to [Randall, 2011] are MA, UB, BS, ML and RE bearing defects. The
main approaches of this work is RE bearing defects described in section 2.2.2. For monitoring
and detecting those conditions there are specific purpose sensors described in section 2.2.3 and
specialized methods presented in section 2.3. The vibrations and acoustic sound signals processing
can be analyzed using Fast Fourier Transform (FFT), section 2.3.1, Short Time Fourier Transform
(STFT), section 2.3.2, Cepstrum Pre-Whitening (CPW), section 2.3.3 or Wavelets Transform (WT)
among others.

2.2.1 Rotating Machines Vibration

Rotating machines have dynamic components in their design, which when get damaged, cause
vibrations. Those forces, produced by cyclic variations in the dynamic components of the cutting
forces, usually start as small chatter responsible for the serrations on the finished surface of the
machining piece and chip thickness irregularities, and progress to what has come to be commonly
termed vibration. [Dimla, 2004] has measured the tool holder vibration and correlated them with
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the tool wear. The observation has shown that at different cutting speed, the magnitudes of vibra-
tion signal spectra were higher along the z-axis and lower along the x-axis, which was observed to
be significantly small along the y-axis. Vibration also tend to change with the speed and load of a
machine, so for condition monitoring purpose the speed and load must be constant, which will be
typically stationary and/or cyclo-stationary signals.

It is important to reduce those vibration as much as possible to ensure a long life-time of the
rotating machine. They tend to change with the speed and load of a machine, so to guarantee a
stationary vibration signals is recommended to work with constant speed and load.

2.2.2 Bearings

Bearings faults are the main machine’s breakdown reason in rotating machines. The vibration
generated by its faults are being widely studied using different methods like Wavelet Transform
(WT), Short Time Fourier Transform (STFT), Wigner-Ville Transform (WVD) among others. Fig.
2.2 shows typical vibration signals of a rolling element bearing with localized faults in the main
parts of it: IR, OR and RE as well as its envelope behavior respectively. In order to locate the defect
frequencies the following kinematic formulas (2.1), (2.2) and (2.3) [Randall, 2011] are used based
on the bearings characteristics:

Figure 2.2: Raw and envelope signals for bearings faults. Modified from [Attoui et al., 2017].
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where fr is the shaft speed, n is the number of RE, d is the RE diameter, D is the pitch bearing
diameter and α is the angle of the load from the radial plane. It is important to mention that in
BSF the ball strikes the same race (IR or OR) so in general there are two shocks in frequency
spectrum per basic period. However, these frequencies are obtained assuming no slip, and in fact
there is always be some slip because of the angle α, which varies with the position of each RE in
the bearing as the ratio of local radiar or axial load changes, thus each rolling element has different
rolling diamenter and speed.

2.2.3 Monitoring Systems Sensors

Health’s machine monitoring is mostly inspected using data acquisition systems based on vibration
accelerometer sensors. But, there is a tendency in investigation which is the study of AE sensors
on monitoring systems. As section 2.2.1 presents, vibration caused by machines faults in constant
speed and load tends to get stationary or cyclo-stationary behavior which can be detected using
accelerometers and common signal processing methods in modulated signals. In the opposite case
when speed and load are variable through time the vibrations signals have a non-stationary behav-
ior e.g. engine starts. But in the AE case there are studies, [Law et al., 2012], that shows that AE
also has modulations signals frequencies that represent faults generated by shaft and bearings con-
ditions. Those frequencies are focused in the high frequency. Using [Abellan-Nebot and Subirón,
2010], and [Bhuiyan and Choudhury, 2014] sensor application reviews in machining monitoring
systems and TCM (Tool Condition Monitoring) respectively, a sensors comparison for wear ma-
chining monitoring in cost, intrusive nature, signal reliability and other applications are presented
in Table 2.1 where more checkmarks means a higher level of the feature e.g cost, intrusive nature.
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Table 2.1: Sensor monitoring systems comparison

Sensor Cost Intrusive nature Signal reliability Applications

Dynamometer !!! !!! !! Tool wear (flank, crater, notch, and nose wear)
monitoring; Machinability observation; Process
monitoring

Accelerometer !! !! !!! Process monitoring; Flank wear estimation

AE !! !! !! Chatter monitoring; Tool wear and breakage
monitoring

Current/Power ! ! ! Tool (flank) wear monitoring

2.3 Signal Processing and Analizing Methods

In machining condition monitoring the vibration signals are captured and recorded by the vibra-
tion/ AE sensor and then a feature extraction method is used, which is usually a general purpose
time-domain method. There are two types of distributions patterns in a time vibration signal which
are stationary and non-stationary. Stationary can also divided themselves into random and de-
terministic stationary signals. Most of vibrations signals for a one shaft rotating machine tends
to be stationary deterministic signals which are signals made up entirely of discrete sinusoidal
components. [Bhuiyan and Choudhury, 2014]’s review list and describe some signal pre and post
processing method, specifically feature extraction methods are presented in Table 2.2.

Table 2.2: Feature extraction methods for signal processing

General purpose time−domain Time−series modeling Frequency Time−Frequency

RMS 1st, 2nd, 3rd, 4th, 5th order AR. FFT WT

Variance Moving average DFT DWT

Kurtosis AR moving average STFT WPT

Signal power KLT HHT

PTP or PTV amplitude Signal spectrum WVD

Crest factor Permutation entropy

Ratio of signal increment

RMS value is used to recognize if a signals is stationary because it represent the energy content
of a vibration/AE signal. Same as Kurtosis which indicates the intensity level of occurrences
present in those signals. Besides this, the frequency analyses methods like FFT can significantly
expedite an existing spindle machine condition. The development of FFT allows the conversion
of time-domain data into frequency spectra with ease with the objective of obtain a frequency
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decomposition of the original signal in which abnormal features can be detected in a simpler way.
On the other hand, Time-Frequency domain signals are used to represent the occurrences both in
the time and frequency extent concurrently for non-stationary vibration signals. The STFT is a
time-frequency analysis based on the FFT which is commonly used in the non-stationary signal
processing. In vibration, previous knowledge of bearing or unbalance conditions can be used to
assess a spindle condition or detect faults present in a machine and asses the fault severity. AE is
still an experimental detection sensor approach, so there are no standards for machine condition
detection that endorse the use of AE in the industry expect for tool breakage or stops due to machine
failure which are simpler cases of machine conditions.

2.3.1 Fast Fourier Transform

Fast Fourier Transform (FFT) is one of the most used frequency method in the rotating machines
diagnose for its ability to analyze stationary signals and obtain information of them using frequency
spectrum. The FFT method is based on the DFT, being this one a more efficient version of DFT
presented in equation (2.4) in terms of computational resources needed [Cao and Fan, 2011].

Xk =
N−1∑

n=0

x(n)e−jwn (2.4)

where x(n) is the discrete vibration signal and N is the total samples in x(n). This version of the
DFT when the signal is discrete and finite corresponds to the Fourier series in which the direct
transform is divided by the length of the signal N to provide components of the Fourier series
correctly scaled. FFT is good enough to describe a stationary signal behavior. However, when
it’s used with non−stationary signals, it averages the frequency composition over the duration of
the signal; in result FFT will show an unaccurate frequency spectrum in non−stationary signals
case. If FFT is used in random transient or stationary, the scaling must be adjusted according to
the Nyquist criteria.

2.3.2 Short Time Fourier Transform

Short Time Fourier Transform (STFT) is a time−frequency FFT based distribution which is used
because of its ability to analyze non−stationary signals. Traditionally, time-frequency distributions
are used to reveal the bearing failure patterns evolution through time, which represent the energy of
the failure frequency that correspond to a bearing failure[Lopez-Ramı́rez et al., 2016]. The basic
idea is to split the signal into segments with a short time window as Fig. 2.3 shows, and then apply
FFT to each segment. The STFT of a signal is represented in equation (2.5):
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XSTFT (w) =
∞∑

n=0

x(n)h(n−mR)e−jwn (2.5)

where x(n) is the discrete vibration signal, h(n-mR) is the short time window and mR is the overlap
between windows. Among the existing windows, the most used is the Hanning window, which
considers a 50% overlap. This window has a better accuracy in frequency estimation compared to
other windows, such as rectangular, [Yan et al., 2011]. However, there is an inherent disadvantage
in the STFT, the compensation between time and frequency resolutions, meaning that the higher
the frequency resolution, the lower the time resolution and vice versa, [Gu et al., 2002]. Unlike the
FFT, the STFT can be used for the analysis of non-stationary signals, such as machining signals,
where the shaft speed and the effort of the spindle vary with respect to time.
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Figure 2.3: STFT window’s distribution.

2.3.3 Cepstrum Pre−Whitening Transform

Cepstrum Pre−Whitening (CPW) is a pre processing method of the signal. It is based on the
Cepstrum principle that allows highlighting the effects of bearing failures, removing shaft speed
frequency, its harmonics and sidebands from unwanted components [Barbini et al., 2016]. The
Cepstrum contains information on the ratio of change of the components of the spectrum in fre-
quency, so that a series of components separated at a constant distance in the spectrum is observed
as a peak in the Cepstrum at the period of the base frequency. In the CPW, the Cepstrum is used
to remove not wanted components and resonances, which is done by setting the real Cepstrum as
a reference of the spectrum. It can be implemented using the equation (2.6):

xCPW = F−1
{ F(x)

|F(x)|

}
(2.6)
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where F(x) is the Fast Fourier Transform of the signal and F−1(x) is the Inverse Fast Fourier
Transform. Bearing failures cause cycle-stationary conditions which are not strictly periodic, so
they are not affected by the algorithm of the CPW.

2.3.4 Envelope Spectrum

Envelope spectrum analysis using Hilbert Transform (HT) as a pre-processing method is widely
used in the bearing fault detection ([Guo et al., 2009],[Ho and Randall, 2000],[Sheen, 2007]).
The envelope signal E(t) of a original signal s(t) can be obtained by taking the amplitude of the
analytical signal formed from s(t) as the real part and its Hilbert transform as the imaginary part.
Then the envelope spectrum can be obtained by taking the FFT of the envelope signal E(t). Given
the real time signal s(t), the Hilbert Transform h(t) = H[s(t)] is defined as [Boashash, 1992] did in
equation (2.7):

h(t) = H[s(t)] =
1

π

∫ ∞

−∞

s(τ)

t− τ dτ =
1

πt
∗ s(t) (2.7)

Therefore, h(t) is obtained as the convolution of the function 1
πt

and the original signal s(t). Since
the Fourier Transform of 1

πt
is defined in equation (2.8):

F

(
1

πt

)
= −jsgn(f) =




−j if f > 0

j if f < 0
(2.8)

The Hilbert transform can be used as a filter of unitary amplitude and phase ±90 depending on the
sign of the frequency of input signal spectrum. The real signal s(t) and its Hilbert transform h(t)
can form a new complex signal called the analytical signal defined in equation (2.9).

z(t) = s(t) + jh(t) (2.9)

Finally, the envelope E(t) of the complex signal z(t) is shown in equation (2.10).

E(t) = |z(t)| = |s(t) + jh(t)| =
√
s2(t) + h2(t) (2.10)

Doing the spectrum analysis using FFT to the envelope signal E(t), the envelope spectrum can
be obtained. When a fault is present in a rolling element bearing, some of the characteristic fre-
quencies shown in 2.2.2 appear in the envelope spectrum. These frequencies according to [Ho and
Randall, 2000] are quite clear using envelope spectrum and can be used as a reliable source for
bearing diagnosis.



Chapter 3

Proposal

3.1 Introduction

A methodology proposed by [Smith and Randall, 2015] for bearing fault detection using CPW and
EA with vibration is presented; this methodology was applied only for vibration and the specific
method CPW has not been applied in AE so the application to audio signals is a new approach.
First the signal is acquired by the acquisition system; then the kind of signal is selected among
vibration and AE by a selection criteria. If the signal is AE two pre-processing filters are applied
before the methodology, which are RMS limit filter and compression filter with the purpose of
expanding the bearing fault transient hidden in the AE signal. If the signal is vibration then the
methodology is directly applied. The methodology is based on CPW and EA, where its first step is
perform the CPW, followed by the envelope spectrum of the signal, after this the trend and mean
of the signal are eliminated to clear any offset from external sources and the FFT is performed
to analyze the frequency spectrum. Finally a normalization is made to compare vibration and AE
signals in an equal scale and the diagnose of the frequency spectrum is done.

3.2 Methodology

The methodology purpose is detect bearing faults (IR, OR, RE) and shaft faults (UB) by combining
several filters and frequency techniques, Fig. 3.1. To execute the methodology MATLAB software
was used. The steps of the methodology are described below:

3.2.1 Data Acquisition

The signal to analyze must come from a sensor attached to the machine spindle (accelerometer
for vibration), or close to it (transducer for AE). The sensor must have a sampling frequency high
enough to detect the fundamental frequencies and first harmonics of the bearing’s and shaft’s faults.

18
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Figure 3.1: Proposed methodology flowchart

Then a simple selection criteria is applied where if the signal acquired is AE then two filters are
applied before the methodology and if the signal is vibration then the methodology is applied
directly.

3.2.2 RMS limit filter

The RMS limit filter is a tool used to limit the maximum values of the AE signals in order to obtain
a proper threshold for applying the compression filter of the compandig tool. This filter takes all
the values over a multiple of the RMS value of the signal and approximate them to that multiple to
ensure that any value can not be higher than that RMS multiple.

if |x(t)| > |L ∗XRMS| =




if x(t) < 0 then x(t) = − |L ∗XRMS|
if x(t) > 0 then x(t) = |L ∗XRMS|

(3.1)

where x(t) is the time signal to be filtered in time t, L is the RMS multiple that will be the maximum
limit for the magnitude value and XRMS is the magnitude of the RMS value for the original signal.
An example of the application is shown in Fig. 3.2 where a) and b) is the same AE signal with
abnormal peaks and c) is the signal trimmed in magnitude to the fourth multiple of the RMS of the
original signal.
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Figure 3.2: a) and b) AE raw signal with RMS and time limits c) Signal trimmed d) Compression
and e) Expansion examples

3.2.3 Compression filter (Companding tool)

The companding is a compression and expansion logarithmic audio tool used to reduce the dynamic
range of an audio signal. It is mostly used to clear noise from audio signals in the PCM (Pulse Code
Modulation) compression using a logarithmic threshold to compress any noise in magnitude down
of the threshold and keep everything up to the threshold. [ITU, 1993] standard defines companding
applications in 8-bit PCM digital telecommunication systems using two versions: u-law for North
America and Japan and A-law for Europe. The main difference between both laws is that the -law
algorithm provides a slightly larger dynamic range than the A-law at the cost of worse proportional
distortions for small signals. The A-law and -law mathematic representation are shown in eqns.
(3.2) and (3.3) respectively:

y =





xmax
A(|x|/xmax)
1+logeA

sgnx 0 <
(
|x|
xmax

)
≤ 1

A

xmax
1+loge[A(|x|/xmax)]

1+logeA
sgnx 1

A
<
(
|x|
xmax

)
≤ 1

(3.2)

y = xmax
loge [1 + µ(|x| /xmax)]

loge(1 + µ)
sgnx sgnx =





+1 for x ≥ 0

−1 for x < 0
(3.3)

As shown in eqns. (3.2) and (3.3) both laws use a compression factor named A and µ in each
respectively law. Those factors are determined in the 8-bit PCM by the [ITU, 1993] standard as
A=87.6 and µ=255 but in [Sklar, 2001] a graphic representation of both laws are presented to get a
better perception of compression and expansion rates. Those representation are shown in Fig. 3.3.
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Figure 3.3: Compression characteristics (a) µ-law (b) A-law.

where the input in the x axis is the original signal and the output is the resultant signal after
applying the filter, the output scale |y| /ymax is the relationship between the actual output value y
and the maximum output ymax, and the input scale |x| /xmax is the same relationship as the output.
The curves in these graphics represent how the output of the filter change with respect to the input.
During compression, which can be seen applied to an AE signal in Fig. 3.2 d), an analog signal is
quantized to create a digital signal using unequal steps in order to amplify the quiet sounds while
attenuating the loud ones. Conversely, at the expansion, which is applied to the same AE signal in
Fig. 3.2 e), the digital signal is converted back to an analog signal after expansion, in which the
low amplitude signals are amplified less when compared to higher ones. Using the compression
filter part of this tool with the standard compression can expand the bearing fault’s behavior hidden
in the signal.

3.2.4 Cepstrum Pre-Whitening (CPW)

The Cepstrum Pre-Whitening CPW pre-processing is an algorithm developed to remove cyclical
signal behaviors like the rotational shaft speed ones and keep the cyclo-stationary bearing faults
behaviors. It is based in the FFT algorithm like subsection 2.3.3 presents. Fig. 3.4 a) present the
same pre-processed AE signal in Fig. 3.2 d) using a compression filter, Fig. 3.4 b) present the
raw vibration signal and Fig. 3.4 c) and d) show the AE and vibration signals respectively after
applying the CPW algorithm.

3.2.5 Signal envelope

The envelope spectrum of a signal, explained in subsection 3.2.5, is applied to get the absolute
value function to reveal the characteristic frequencies of bearing’s faults according to [Ho and
Randall, 2000]. It is important to mention that the envelope of a signal affects the signal adding a
trend to it so its imperative to remove it after applying the envelope. In Fig. 3.5 a) and b) the AE
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Figure 3.4: CPW pre-processing example using AE and vibration signals

and vibration signals from Fig. 3.4 c) and d) respectively after applying the CPW are presented
and in Fig. 3.5 c) and d) their Envelope are presented.
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Figure 3.5: Envelope example using AE and vibration signals

3.2.6 Trend Removal

Vibration and AE signals acquired from any rotation machines are susceptible to background
noise from its environment, specially in early faults. Therefore, the acquired signals must be
pre-processed or post-processed to reduce this background noise and the errors from measurement
systems. One technique to clear this is the trend removal. The Direct Current Component (DCC)
present in any signal, also know as mean value, barely shows the relevant information from the
mechanic faults of a machine because its behavior is constant [Lei, 2016]. Thus, the DCC should
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be removed before analyzing the signal. To obtain the trend of a signal, a linear polynomial curve
is fitted to the vibration/AE data using the command fit in matlab and the eqn. 3.4.

x(t) = p1 ∗ t+ p2 (3.4)

where x(t) is the vibration/AE signal, t is the time and p1 and p2 are the polynomial values fitted
to the line curve. Fig. 3.6 a) and b) shows the AE and vibration signals from Fig. 3.5 c) and d)
respectively with the envelope applied. Also the trend is shown in each figure in red color. Below
them, in Fig. 3.6 c) and d) the AE and vibration signals are presented without the trend and its
clear that the Gaussian noise is reduced using this post-processing.
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Figure 3.6: Signal’s trend removal process

3.2.7 Fast Fourier Transform (FFT)

The FFT is a frequency domain transform based on the Discrete Fourier Transform (DFT) but
with a better efficiency in terms of computational time. It is the most used transform for diagnose
rotating machine conditions for its ability to analyze stationary signals and obtain information of
them using frequency spectrum. This spectrum can be used to analyze the fundamental frequencies
of bearing’s and shaft’s faults and its harmonics. The algorithm gives a frequency vs magnitude
graphic that shows how much a signal changes over a range of frequencies. In Fig. 3.7a the AE
and vibration frequency spectrum of the signals processed in Fig. 3.6 c) and d) are presented.

3.2.8 Normalization

In several methods used in this study to compare and validate the CPW efficiency, a threshold is
needed; because of that a normalization method is applied. To do this, eqn. (3.5) is applied where
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each value of the FFT spectrum is divided for the maximum value in the whole spectrum, ensuring
that the values will be in the range from 0 to 1.

FN(i) = F(i)
max(F) for i = 0, 1, 2, ..., length(F) (3.5)

where FN(i) is the normalized magnitude value of the FFT in i, F(i) is the current FFT magnitude
value of i and max(F) is the maximum magnitude in the whole FFT spectrum. At the end, the F
spectra presented in Fig. 3.7a are normalized and presented in Fig. 3.7b; where a easier comparison
can be made because both spectra have the same scale from 0 to 1. These normalization, in terms of
different sensors used, is necessary because AE signals have a higher dynamic range than vibration
ones.
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Figure 3.7: FFT of AE and vibration signals original and normalized

3.2.9 Diagnosis

The diagnosis of the frequency spectrum obtained from the methodology use different specifica-
tions and standards based on the position and magnitude of the frequency peaks of bearing faults
and shaft rotational speed. For bearings faults, in vibration, the frequency spectrum according to
[Scheffer and Girdhar, 2004] divides into four zones, where the changes in bearing wear notes as
it increases. These zones are described as:

Zone A: Machine rotational speed and harmonics zone (0-5,000 RPM)

Zone B: Bearing defect frequencies zone (5,000-30,000 RPM)

Zone C: Bearing component natural frequencies zone (30,000-120,000 RPM)

Zone D: High-frequency detection (HFD) zone (beyond 120,000 RPM)
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According to [Scheffer and Girdhar, 2004], zone B, defined as third stage, is where bearing de-
fects are present. These faults are noticeable when the bearing have visible wear that may expand
through to the edge of the bearing raceway. In this zone the fault frequencies defined using eqns.
(2.1), (2.2) and (2.3) have visible peaks with and without side-bands. The literature review ([Hem-
mati et al., 2016], [He et al., 2016]) done for AE investigation of bearing fault diagnosis revealed
that this zone division is the same for both kind of sensors with the difference that AE and vibration
comparisons reveals that in AE most authors analyze high frequency peaks in zones like C and D.
In Fig. 3.8 a graphic representation of all zones are presented, where Fig. 3.8 a) shows that BPFO
appears without side-bands, Fig. 3.8 b) shows BPFI present with side-bands of RPM and Fig. 3.8
c) shows BSF present with side-bands of the Fundamental Train Frequency (FTF) of the bearing.
It is important to say that fault frequencies have 1-2% deviation from the calculated value and as a
random variation around the mean frequency [Randall, 2011].
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Chapter 4

Experimental System

4.1 Introduction

This chapter present the experimental system and the obtained vibration and AE signals from it.
The full mechanical specifications and designs from the experimental system and the Design of
Experiment (DoE) for the data obtained from it is presented with the purpose of applying the
methodology defined in chapter 3. Also, the CWRU experimental system and database obtained
from it are presented with [Smith and Randall, 2015] classification of them for validation purpose.

4.2 Experimental System

To develop a bearing fault methodology based on both vibration and AE signals, the best way to
do it is comparing and analyze them. Due to the need for a bearing faults database in which AE
and vibration signals of the same fault can be compared, an experimental system was designed
and manufactured.The experimental system is shown in Fig. 4.1 and consists of a data acquisition
system described in Table 4.1 and the test rig where the data acquisition module is used to acquire
both vibration and AE signals from the DeltaTron accelerometer and the GRAS 40PH microphone
respectively.
The sensors are attached at the bearing base at a sample rate of 25.6 KHz using LabVIEW as the
acquisition software. A second DeltaTron accelerometer was attached to the Emerson Electric mo-
tor to record its vibration. The test rig system consist of a two motor transmission using a toothed
pulley-belt system to move a steel shaft which is placed using rolling element bearings (6204-2Z
SKF) with the specifications shown in Table 4.2 and Table 4.3 where the Emerson Electric motor
moves the whole system and the Dayton Gearmotor gear system works as the load of the system.
The toothed pulleys have the same outer diameter to have the same rotational speed of the Emerson
Electric motor into the test rig steel shaft.

26
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Figure 4.1: Experimental system

Table 4.1: Data Acquisition parts for the experimental system

Equipment Model Specifications Number

Data Acquisition

System Module
NI 9234- 4 channels Sample rate: 51.2KHz/s/ch, Output: ±5 V 1

Triaxial

Accelerometer
DeltaTron 4535-B

Frequency range: 0.3-10k Hz, Range: ± 714 [g]

Sensitivity: (X: 9.765 Y: 9.871 Z: 9.611) mV/g
2

Free-Field

Array Microphone
GRAS 40 PH

Frequency range: 10-20k Hz, Range: 135 [dB]

Sensitivity: 50 mV/Pa
1

Laptop Dell Precision M4800 Processor: Intel(R) Core i7 2.9GHz, RAM:8 GB 1

Table 4.2: 6204-2Z SKF Bearing specifications.

Inner

diameter

Outer

diameter

Rolling element

diameter
Pitch # Rolling elements

0.787 in 1.85 in 0.3126 in 1.319 in 8

4.2.1 Bearing faults diameters

The bearings were damaged using a wide grain sandpaper, faults images can be appreciated in
Appendix B. The faults were measured using a stereo microscope Zeiss Discovery V8 in a 30o
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Table 4.3: Mechanical parts of the experimental system

Equipment Model Specifications Number

AC Gearmotor Dayton 2z803 Power: 1/15 hp Speed: 100 RPM 1

AC Electric Motor Emerson 0213 Power: 1/2 hp Speed: 3450 RPM 1

Coupling NA Diameter: 20 mm 1

Steel shaft NA 1018 Steel 1

Aluminum bearing holders NA Height: 15 cm Width: 10 cm 2

Thoothed belt Jason Pitch: 1/5 inch Length: 25 inch 1

Thoothed pulley Martin Pitch: 1/5 inch Diameter: 2 inch 2

degree of inclination. To compare the experimental system faults with the CWRU ones, the CWRU
faults were assumed to have a circular shape to get their areas presented in Table 4.6 in section
4.3. With the areas of CWRU faults, the comparison of them with the experimental system’s ones
is made using the area values obtained from figures analyzed in Appendix B and showed in Table
4.4. Experimental system’s faults have horizontal shapes so in most cases the only measurements
available are area and length, so in this case the comparison will be only in area to have an idea
of the severity of the faults. Most of the values from BD, IR, and OR defects areas are between
0.007 and 0.014 inches diameters of faults from CWRU database, so it can be assumed that the
fault approximated values are among 0.007 and 0.014 inches of diameter.

Table 4.4: Experimental system areas of available faults

Area (um2)

BD

defect

90,638 78,577 35,298 35,241 23,485

23,956 23,356 14,245 20,128 20,863

IR

defect
43,969 16,0306 635,439

OR

defect
177,744 24,115 36,606 33,687

4.2.2 Design of experiments in test rig

Data from tests made in the experimental system was recorded by two DeltaTron accelerometers
at two places: one at the motor and other at the bearing’s base; and a GRAS 40PH microphone
near the experimental system. The accelerometers used in this system are tri-axial so they can
record vibration in three axes, but the data acquisition system just had 4 channels and one of them
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is used to record the audio, so the vertical perpendicular vibration of both accelerometer and the
horizontal perpendicular vibration of the bearing were recorded. The experimental system motor
have a 3850 RPM speed, measured by a Check-Line laser tachometer model: CDT-2000HD and
use three bearing each one with a different fault, IR, OR and RE.
The tests were recorded for 10-11 seconds with a sampling rate of 25,600 samples/s; four different
tests with each damaged bearing were recorded to get a total of 12 tests each one with 4 signals.
Having a total of 48 signals available, 12 audio, 24 vibration from the bearing’s base and 12 from
the motor. Fig. 4.2 shows and example of the four signals that are acquired from the two DeltaTron
accelerometers and the GRAS 40PH microphone.
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Figure 4.2: Experimental system DoE data acquisition example

4.3 Case Western Reserve University database

The database used to validate the methodology proposed in this study is the Case Western Reserve
University (CWRU) Bearing Data Base which provides ball bearing test data for normal and faulty
bearings. The experimental system used in this database is shown in Fig. 4.3 and consist of a 2 hp
reliance electric motor, a dynamo-meter to apply loads to the shaft, accelerometers located to the
side of the bearings and the base of the structure and bearings (6205-2RS JEM SKF and 6203-2RS
JEM SKF) with the specifications shown in Table 4.5. The data acquisition was made using two
different sample frequency of 12,000 and 48,000 Hz.
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Table 4.5: 6203-2RS JEM SKF Bearing specifications.

Inner race

diameter

Outer race

diameter

Rolling element

diameter
Pitch # Rolling elements

0.9843 in 2.0472 in 0.3126 in 1.537 in 9

Figure 4.3: CWRU experimental system [CWRU, 2018]

Table 4.6: CWRU diameters and areas of available faults

Diameter (inch) Diameter (um) Area (um2)

0.007 177.8 24,816

0.014 355.6 99,264

0.021 533.4 223,344

0.028 711.2 397,057

The motor bearings were seeded with faults using electro-discharge machining (EDM). Faults
ranges go from 0.007 inches to 0.040 inches in diameter introduced separately at IR, OR and
RE. Damaged bearings were used in several test and data was recorded for motor loads of 0 to
3 hp in motor speed of 1797 to 1720 RPM. For the data classification the [Smith and Randall,
2015] benchmark study of the CWRU data were used. There the signals were tested using three
different methods, FFT, Envelope + FFT and CPW; and the results were classified using every
method diagnose performance in order to get the following classification reproduced from [Smith
and Randall, 2015] work in Table 4.7.
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Table 4.7: Categorization of CWRU diagnosis results

Diagnosis

category

Diagnosis

success
Explanation

Y1 Yes
Data clearly diagnosable with classic characteristics for the given bearing fault in both time and

frequency domains

Y2 Yes
Data clearly diagnosable but with non−classic characteristics in either or both of the time and

frequency domains.

P1 Partial
Data probably diagnosable; e.g., envelope spectrum shows discrete components at the expected

fault frequencies but they are not dominant in the spectrum.

P2 Partial
Data potentially diagnosable; e.g., envelope spectrum shows smeared components that appear to

coincide with the expected fault frequencies

N1 No Data not diagnosable for the specified bearing fault, but with other identifiable faults (e.g., ML)

N2 No
Data not diagnosable and indistinguishable from noise, with the possible exception of shaft

harmonics in envelope spectrum

For the test and validation of certain methods, used in the current methodology, the Y1 and Y2
signals will be used. After this, the methodology will be tested using P1 and P2 signals in order to
test the performance of the method and finally N1 and N2 signals, after a proper revision to see if
the problem is noise and not data acquisition problems, will be the last phase of testing process of
the methodology.



Chapter 5

Results

5.1 Introduction

This chapter presents the data analyzed from the experimental system’s test rig using the proposed
methodology described in Chapter 3. There are five sections in this chapter, CWRU, experimen-
tal system vibration, experimental system AE and GROB data where results are presented and
analyzed and result discussion where the results are discussed.

5.2 CWRU Database for validation

For validation, the CWRU vibration database was used to analyze three types of fault signals, IR,
OR and RE, in three levels of diagnose state: (Y) for easily diagnosable signals, (P) for partially
diagnosable and (N) for no diagnosable signals following the criteria of [Smith and Randall, 2015]

presented in Table 4.7. Every analysis done is described in Appendix D and the identification of
fault components is summarized in Table D.1 with information of the identification of fault compo-
nents in the CWRU signals including name of signals, difficulty of diagnose, maximum magnitude
in the spectrum, which is the reference for the normalization, amplitude of the expected faults and
its first harmonic, localization of the maximum magnitude and fault components found that were
different from the expected fault. The analyzed signals were labeled according the difficulty of the
diagnosis in the following way:

• Easy: The largest peaks coincide with the bearing fault frequencies. This does not consider
the shaft speed frequency.

• Medium: High peaks coincide with the bearing fault frequencies; but, there are too many
components with similar amplitude that are associated to the shaft frequency and their har-
monics, or there are other components with high amplitude considered as noise.

32
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• Hard: No peaks coincide with the bearing fault frequencies.

5.3 Experimental System Database application

The application of the proposed methodology in vibration, as in AE, for the experimental system’s
signals were analyzed. First, four tests were done using three different bearings with IR, OR and
RE defects in the experimental system and three of the recorded signals were analyzed in vibration
and AE; vibration signals are presented in Figs. 5.1 a), b) and c) correspond to IR fault selected
tests 2, 3 and 4 respectively; where the three signals show signs of the IR waveform, but slightly
noisy, the selected tests for OR fault were tests 1, 2 and 3 presented in Fig. 5.1 d), e) and f)
respectively; where the signals also show the OR waveform slightly noisy. Finally, the selected
tests for RE fault were tests 1, 3 and 4 presented in Fig.5.1 g), h) and i) respectively; where the RE
waveform is notable in the first two test at the first 0.5 seconds in Fig. 5.1 g), h) with some noise
at the end but in Fig. 5.1 i) the waveform is hardly notable and overwhelmed by noise.
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Figure 5.1: Vibration signals

The selected AE tests are the same for the vibration but in this case the waveform is remarkable
in all cases before the use of the compression filter shown in subsection 3.2.3 but the frequency
spectrum doesn’t show the peaks according to the faults, for that reason the compression filter is
used. Also, is clearly notable that AE signals shown in Fig. 5.2 have more ground noise than
vibration ones shown in Fig. 5.1 . For IR fault signals the waveform is remarkable in Figs. 5.2
a), b) and c) corresponding to tests 2, 3 and 4 respectively. For OR fault the waveform is clearly
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visible in Fig. 5.2 d) and f) corresponding to tests 1 and 3; and slightly remarkable in Figure 5.2
e) for test 2. Finally, for RE fault signals the waveform is clearly notable in Fig. 5.2 g) and i)
corresponding to test 1 and 4 and hardly remarkable in Fig. 5.2 h) for test 3. After the use of
the compression filter most of the low magnitudes waveforms are amplified, but in the frequency
spectrum the peaks corresponding to low magnitudes must be identified and discriminated as faults
or noise.
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Figure 5.2: AE signals before using the compression filter

For every frequency analysis made further Table 5.1 present the numerical value of every funda-
mental frequency for shaft rotational speed (RPM), BPFI, BPFO and BSF in Hertz, the graphic
representation in every frequency domain figure and the color of it.

Table 5.1: Bearing fault frequency features for experimental system @3858 RPM

Feature Frequency (Hz) Graphic representation Color

RPM 59.75 ......... Cyan

BSF 118.9758 .-.-.-.-.- Green

BPFO 182.3575 .-.-.-.-.- Yellow

BPFI 295.6425 .-.-.-.-.- Red

5.3.1 Experimental System Vibration Results

The analysis of the vibration signals from the experimental system begin with the analysis of the
Normal State (NM) of the machine in Fig. 5.3 where the result of the methodology showed only
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frequencies in the rotational speed of the shaft at 1x, 3x, 6x and 9x RPM and a peak in 1x BPFO
with a magnitude approximately of 0.4 that can be explained due to the fixation of the bearing in
the base using a bolt to press the bearing in its position.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2
Time (s)

-10

0

10

M
ag

ni
tu

de
 (

g)

Normal State @ Exp System Test:2 Speed:3585RPM

0 100 200 300 400 500 600
Frequency (Hz)

0

0.5

1

M
ag

ni
tu

de
 (

g)

CPW Methodology

1x RPM

1x BPFO

3x RPM
6x RPM

9x RPM

Figure 5.3: Normal state test:2 vibration signal.

Figure 5.4 show the results of the methodology applied to the 9 vibration signals selected in Fig. 5.1
from the experimental system database, where only the fault frequencies will be analized because
as [Barbini et al., 2016] mentioned, the CPW removes not only the shaft rotational information
but the sidebands too. Also, two other transforms were compared to the CPW methodology for
the OR case in Fig. 5.6a, using the current methodology only applying FFT is one of them and
applying FFT + envelope is the other one, with the purpose of measure the maximum peaks values
in each transform and compare their efficiency. In this section only some spectrum are presented,
the remaining results can be found in Appendix E section E.1.
IR signals: First, the results from the IR fault signal corresponding to test 2 shown in Fig. 5.5
was deeply analyzed using the CPW methodology and the presence of a peak in 1x BPFI with
a magnitude approximately of 0.5 is remarkable in addition of some harmonics of the rotational
speed at 1x and 2x; but there is noise at low frequencies (22 Hz approx.) that overwhelm the
spectrum but the fault peak is present; also its important to remark that a peak close to 2x BSF is
present, with a exact value of 239.8 Hz which is at 2% of difference of the calculated harmonic
frequency of 234.3 Hz but its out of the 1% tolerance permitted by [Randall, 2011] so it can be
taken as noise. The second signal analyzed using the methodology was from test 3 shown in Fig.
5.4 b) where the presence of 1x BPFI is remarkable, also a peak in a half harmonic of the rotational
speed is present at 1.5x which means there are presence of shaft faults, specifically ML, in this test;
same as the last signal there is noise at low frequencies non related to the rotational speed that
overwhelm the spectrum. Finally, the last signal analyzed using the CPW methodology was from
test 4 shown in Fig. 5.4 c) where the presence of 1x BPFI is hardly remarkable because there
are other peaks related and non-related to the rotational speed, where the only ones that can be
identified are 1x and 2x harmonics; this signal can be taken as a partially diagnosable case.
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Figure 5.4: Experimental System vibration signals after applying the methodology
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Figure 5.5: IR Test:2 vibration signal.

OR signals: The result from the OR fault signal corresponding to test 1 shown in Fig. 5.4 d)
was analyzed using the methodology and the presence of multiple peaks are notable, specially
in rotational speed harmonics 1x, 2x and 4x and 1x BPFO with a magnitude around 0.7 which
means the OR fault is successfully diagnosable in this signal. The second signal analyzed using
the methodology was from test 2 shown in Fig. 5.4 e) where there are three notable peaks, the
second harmonic of the rotational speed, 1x and 2x of BPFO with lower magnitude than in the last
signal. Finally, the third signal analyzed using the methodology was from test 3 shown in Fig. 5.4
f) where there are also three notable peaks in frequency corresponding to the second and fourth
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harmonic of the rotational speed and 1x of BPFO, in this special case the OR fault is one of the
most relevant peaks in the spectrum so the fault is diagnosable in this case. Finally, a comparison
between the CPW methodology, envelope + FFT and FFT spectra explained at the beginning of
section 5.3.1 is presented in Fig. 5.6a, for efficiency purpose, using the signal from test 1 where
the maximum peak value for 1x BPFO is compared in the three spectra; at first sight the magnitude
of the peak is higher in the FFT than the methodology and envelope spectra, but using focusing
the image to the area of the specific frequency present in Fig. 5.6b it can be seen better that the
highest peak in the FFT spectrum correspond to the third harmonic of the rotational speed and 1x
of BPFO have almost the same magnitude than in the methodology which is an improvement at
the moment of diagnose a bearing fault. Also, in the methodology spectrum of Fig. 5.6a the fourth
harmonic of the rotational speed first detected can also correspond with 2x of BSF which means
the presence of a RE fault in the test. In general the noise at low frequencies are related to the CPW
method because in the Envelope and FFT is clear that the trend was removed.
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Figure 5.6: OR Test:1 vibration signal method comparison.

RE signals: The results from the RE fault signal corresponding to test 1 shown in Fig. 5.7 was
analyzed in detail using the CPW methodology and the presence of multiple peaks is notable in
this specific case, specifically at 1x BPFO and 1x and 2x of BSF; this signals is a clear example
of a noisy signal which need a more complete analysis of the bearing. The second signal analyzed
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using the methodology was from test 3 shown in Fig. 5.4 h) where there are three notable peaks
corresponding to the first harmonic of the rotational speed and 1x and 2x of BSF where the first
harmonic of it is the predominant frequency in the spectrum. As said before, RE faults in vibration
can be analyzed in the even harmonics of BSF [Randall, 2011]; so this means that there is a fault in
the RE in this test. Finally, the third signal analyzed using the methodology was from test 4 shown
in Fig. 5.4 i) where there are multiple peaks in frequency related to known and unknown effects,
the predominant ones are identified as the first harmonic of the rotational speed and 1x, 2x and 3x
of BSF which means there are a diagnosable fault at RE.
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Figure 5.7: RE Test:1 vibration signal.

5.3.2 Experimental System Acoustic Results

Same as in vibration signals, the analysis of the AE signals from the experimental system begin
with the analysis of the NM of the machine in Fig. 5.8 where the results of the methodology showed
multiple peak in frequencies corresponding to rotational speed harmonics at 0.5x, 1x, 3x, 5x, 6x
and 9x of RPM and the same peak in 1x BPFO that vibration showed is present in AE signals.
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Figure 5.8: Normal state test:2 AE signal.
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Figure 5.9 show the results of the CPW methodology applied to the 9 Acoustic emission sig-
nals selected in Fig. 5.2 from the experimental system database. Also, FFT and envelope + FFT
methodologies spectra explained in the beginning of section 5.3.1 were compared for the RE signal
to the CPW methodology in Fig. 5.12a to measure the maximum peaks values in each transform
and compare their efficiency. The same frequencies for BPFI, BPFO and BSF analyzed in vibra-
tion will be analyzed in AE which correspond to the zone B according to subsection 3.2.9 and the
zone D will be also analyzed to find any relevant high frequency peak related to any of the afore-
mentioned frequencies. In this section only some spectrum are presented, the remaining results
can be found in Appendix E section E.2.
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Figure 5.9: Experimental System AE signals after applying the CPW methodology

IR signals: First, the results from the IR fault signal corresponding to test 2 shown in Fig. 5.10a
was analyzed in detail using the CPW methodology, specifically in zone B (5k to 30k RPM or
83.33 to 500 Hz), and the presence of multiple peaks is notable; the most relevant were identified
as 1x, 1.5x, 2x and 4x harmonics of the rotational speed and 1x of BPFI which means there is
presence of UB since 2x and 4x RPM are greater than 1x RPM, ML because of the presence of
1.5x RPM and fault in the IR because of 1x BPFI; the predominant frequency in this test was 1.5x
RPM. After this, an analysis in zone D (beyond 120k RPM or 2 kHz) shown in Fig. 5.10b where
multiple peaks of magnitude approximately of 0.3 are detected but they can be taken as ground
noise because there are no relevant peak with higher magnitudes beyond 2 kHz. The second signal
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analyzed using the methodology was from test 3 shown in Fig. 5.9 b) where almost all the peaks
identified in test 2 were found; including 1x, 1.5x 2x of RPM and 1x BPFI and the 1.5x harmonic
of RPM is the predominant frequency in this test too. Finally, the last signal analyzed using the
methodology was from test 4 shown in Fig. 5.9 c) where the same peaks in the last two tests were
identified as 1x, 1.5x and 2x harmonics of RPM and apparently 1x of BPFI, but in a more clear
analysis that peak is out of the 1% of tolerance that [Randall, 2011] says so it not correspond to 1x
BPFI.
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Figure 5.10: IR Test:2 AE signal.

OR signals: First, the results from the OR fault signal corresponding to test 1 shown in Fig. 5.11a
was analyzed in detail using the CPW methodology, specifically in zone B (83.33 to 500 Hz), and
the presence of multiple peaks is clearly notable; the most relevant peaks identified were from 2x
and 5x of RPM and 1x and 2x of BPFO which means the presence of UB because of the magnitude
of the harmonics of RPM and BPFO because the presence of 1x BPFO and its first harmonic; the
predominant frequency in this case was from 5x of RPM. For the analysis in the zone D, shown
in Fig. 5.11b, as in the IR case there are no significant peaks beyond 2 kHz that have more than
0.25 magnitude which can be taken as noise. The second signal analyzed using the methodology
was from test 2 shown in Fig. 5.9 e) where all the peaks identified in test 1 were found; including
2x and 5x of RPM and 1x and 2x of BPFO and the predominant frequency is also 5x of RPM.
Finally, the last signal analyzed using the methodology was from test 3 shown in Fig. 5.9 f) where
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there same peaks from the last two tests were identified with the difference that 1x of RPM is also
present and the Gaussian noise in this case is remarkable; the predominant frequency in this case
is 1x of BPFO unlike the other cases.
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Figure 5.11: OR Test:1 AE signal

RE signals: First, the results from the RE fault signal corresponding to test 1 shown in Fig. 5.9
g) was analyzed using the methodology and the following peaks were identified: 1x, 5x and 6x of
RPM and 1x of BSF; this means there is presence of UB due to the harmonics of the rotational speed
with higher magnitudes compared to 1x RPM and there is no clear fault in RE diagnosable because
the even harmonics of BSF have no peaks. The second signal analyzed using the methodology
was from test 3 shown in Fig. 5.9 h) where the following peaks were identified: 3x RPM and 1x
and 2x of BSF which means the presence of UB and RE fault because the first even harmonic is
present in this case. Finally, the last signal analyzed using the methodology was from test 4 shown
in Fig. 5.9 i) where the following peaks were identified: 1x and 1.5x of RPM and 1x and 2x of BSF
which means there is shaft faults like: UB and ML. And RE fault because of the mentioned peaks
respectively. The comparison between the CPW methodology, envelope + FFT and FFT spectra,
for efficiency purposes, is presented in Fig. 5.12a using the signal from test 4 and analyzing them
in the zone B (83.33 to 500 Hz) where the 2x BSF fault peak magnitude was compared in all the
spectra; at first sight the peaks seems to be above 0.5 but doing a zoom to the spectrum at Fig. 5.12b
the fault frequency is lower and is around 0.4 but still higher than in the other spectra. There is



42 CHAPTER 5. RESULTS

also some peaks that appear to be harmonics of the rotational speed at 6x RPM but, it corresponds
to 1x BPFI. Another important fact in these analyzed signals is that 1x BSF is in all cases the RE
frequency with higher magnitude compared to its harmonics. Finally, the high frequency analysis
in zone D (beyond 2 kHz) is made into the comparison of all methodologies in Fig. 5.12c where
the CPW methodology and FFT shows clear peaks in high frequency which are measured and
compared to BPFI, BPFO and BSF in Table 5.4.
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Figure 5.12: RE Test:4 AE signal method comparison.
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The identification of fault components in the analyzed signals is an important feature that can be
evaluated in the proposed methodology. For this evaluation Table 5.2 was made with information
of the identification of fault components in the experimental system that summarize the name
of signals, difficulty of diagnose, maximum magnitude in the spectrum, which is the reference
for the normalization, amplitude of the expected faults and its first harmonic, localization of the
maximum magnitude and fault components found that were different from the expected fault. The
analyzed signals were labeled according the difficulty of the diagnosis in the same way as CWRU
in subsection 5.2.
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Table 5.2: Bearing fault results for experimental system’s database

Database Signal Difficulty Max mag. (g)
Fault amplitude normalized

Max amplitude Additional significant peaks1

Fault freq. Harmonic

Exp. System

Vibration

IR Test 2 Easy 0.0010 0.4655 NA 1 (Shaft SH) BPFI/ BSF/ Shaft

IR Test 3 Easy 9.3304e-04 0.3819 NA 1 (Shaft SH) BPFI/ BPFO/ Shaft

IR Test 4 Medium 7.5842e-04 0.5633 0.274 1 (Noise) BPFI/ Shaft H and SH

OR Test 1 Medium 8.3762e-04 0.702 NA 1 (Noise) BPFO/ BSF and H/ Shaft H

OR Test 2 Medium 9.9131e-04 0.5241 0.3976 1 (Noise) BPFO/ BSF and H/ Shaft H

OR Test 3 Easy 9.3429e-04 0.6829 NA 1 (Noise) BPFO/ BSF/ Shaft

RE Test 1 Medium 5.4423e-04 0.4988 NA 1 (1x Shaft) BSF H/ BPFI/ Shaft H

RE Test 3 Medium 5.8755e-04 0.5766 NA 1 (1x BSF) BSF H/ Shaft H

RE Test 4 Medium 4.1292e-04 0.7619 NA 1 (1x BSF) BSF H/ Shaft H and SH

Exp. System

AE

IR Test 2 Easy 5.6836e-04 0.8911 NA 1 (1.5x Shaft SH) BPFI/ BSF/ Shaft H and SH

IR Test 3 Medium 6.5332e-04 0.5352 NA 1 (1.5x Shaft SH) BPFI/ BSF H/ Shaft H and SH

IR Test 4 Hard 5.4949e-04 NA NA 1 (1.5x Shaft SH) BSF

OR Test 1 Medium 8.7464e-04 0.7448 0.8416 1 (5x Shaft) BPFO/ Shaft H

OR Test 2 Medium 9.0393e-04 0.6879 0.8767 1 (5x Shaft) BPFO/ BSF H/Shaft H

OR Test 3 Easy 6.0526e-04 1 0.9509 1 (1x BPFO) BPFO/ Shaft H and SH

RE Test 1 Medium 6.5875e-04 0.3646 NA 1 (5x Shaft) BSF odd H/ BPFI/ Shaft/ BPFO H

RE Test 3 Medium 4.2121e-04 0.2659 NA 1 (1x BSF) BSF odd H/ BPFI/ Shaft

RE Test 4 Medium 4.2313e-04 0.3958 NA 1 (1x BSF) BSF even H/ BPFI/ Shaft H and SH

SH = Half harmonic, H = Harmonics, NA= Not Available
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5.4 Results discussion

This section presents the result discussion for the experimental case studied.

5.4.1 Experimental system discussion

The results obtained from vibration and AE signals analyzed in the low frequency band (Zone B)
and the AE high frequency band (Zone D) are presented and compared in this section. The low
frequency comparison between vibration and AE signals from the same tests of the Experimental
System Database have two performance indicators: diagnose effectiveness and computational time
needed to process the signals.
Diagnostic effectiveness is explained using two criteria with Table 5.3 information of zone B
analyses; (1) considering the difficulty of diagnose, defined in section 5.2 with the CWRU database,
the signal that is easier to detect and identify the specific fault frequency is the best, and (2) in case
the difficulty is the same in both signals, the magnitude of frequency peaks is compared and the
signal with the higher one is the best. In 6 from 9 tests vibration have a better result than AE,
specifically in IR and RE faults, for the remaining tests that correspond to OR fault, AE have a
better result in frequency peak magnitudes because the difficulty of diagnose were the same in all
3 tests.

Table 5.3: Experimental System results comparison

Signal

Vibration Acoustic Emission

Best signal
Difficulty

Fault amplitude normalized
Difficulty

Fault amplitude normalized

Fault. freq Harmonic Fault. freq Harmonic

IR Test 2 Easy 0.4655 NA Easy 0.8911 NA Vibration

IR Test 3 Easy 0.3819 NA Medium 0.5352 NA Vibration

IR Test 4 Medium 0.5633 0.274 Hard NA NA Vibration

OR Test 1 Medium 0.702 NA Medium 0.7448 0.8416 AE

OR Test 2 Medium 0.5241 0.3976 Medium 0.6879 0.8767 AE

OR Test 3 Easy 0.6829 NA Easy 1 0.9509 AE

RE Test 1 Medium 0.4988 NA Medium 0.3646 NA Vibration

RE Test 3 Medium 0.5766 NA Medium 0.2659 NA Vibration

RE Test 4 Medium 0.7619 NA Medium 0.3958 NA Vibration

The high frequency band (zone D) the AE signals analyzed did not add value to the analysis expect
for the signals of RE where peaks of frequency of notable magnitude were identified. Taking into
account that the amount of peaks of frequency is much higher in high frequency bands than low
ones, only the most relevant ones were identified in Table 5.4 to compare their frequencies with
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BPFI, BPFO and BSF and RPM to see if they are harmonics of those frequencies or not. The
values in Table 5.4 are obtained dividing the frequency detected by the rotational speed RPM,
BPFI, BPFO and BSF specified in Table 5.1 and if the result have a 1-3% of error is highlighted.
There are four remarked values corresponding to rounded values of 33x of BPFO in Test 4, 22x of
BPFO in Test 1, 33x and 55x of BSF in Test 3; where Test 3 its the only test with close values to
RE fault harmonics in high frequency band.

Table 5.4: High frequencies found in AE signals for RE fault

Signal Frequency (Hz) Magnitude RPM BPFI BPFO BSF

Test 4

3723 0.4683 62.31 12.59 20.42 31.29

3793 0.4734 63.48 12.83 20.80 31.88

2205 0.3627 36.90 7.46 12.09 18.53

6016 0.3655 100.69 20.35 32.99 50.56

6950 0.3967 116.32 23.51 38.11 58.42

8293 0.337 138.79 28.05 45.48 69.70

5584 0.3136 93.46 18.89 30.62 46.93

Test 1

3496 0.2575 58.51 11.83 19.17 29.38

4008 0.2682 67.08 13.56 21.98 33.69

3200 0.2615 53.56 10.82 17.55 26.90

Test 3

3923 0.4137 65.66 13.27 21.51 32.97

4327 0.3554 72.42 14.64 23.73 36.37

7403 0.3771 123.90 25.04 40.60 62.22

6545 0.3017 109.54 22.14 35.89 55.01

7705 0.3395 128.95 26.06 42.25 64.76

3707 0.3566 62.04 12.54 20.33 31.16

Computational time is explained in Appendix C where it is clear that vibration signals requires
less computational time than AE when applying the methodology in the Experimental System
Database, this is because of the extra pre-processing required by the AE signals with the com-
pression and RMS limit filters. Comparing times from OR tests from vibration (Table C.2) and
AE (Table C.5) using 100 revolutions as window length; the mean time on vibration is 0.5073 secs
and on AE is 0.9285 secs which is a 83% increased computational time. For IR and RE the same
comparison was made given a 82% and 82.9% increased computational times which is consistent
with the last value obtained for IR fault.
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Conclusions

Spindle Condition Monitoring have great importance in machining, it allows to acquire and iden-
tify valuable information that is not easily accessible to improve the efficiency of machining pro-
cesses. Some of the multiple challenges in condition monitoring are the selection of the best feature
extraction method to extract and identify the condition signature information and data acquisition
instrument selection to help improve the information acquired, cost and accessibility of equipment.
In this work, a methodology based on CPW, proposed by [Smith and Randall, 2015], for bearing
condition detection is tested using two types of instruments currently used in the literature: vibra-
tion and acoustic emission in a self-made experimental system. This methodology allows to detect
bearing faults in medium and late stages. First, the type of signal to analyze is selected between
vibration and AE, for AE two extra filters are applied, first an RMS filter to erase the peaks over
a multiple of the RMS value of the original audio signal and second, a compression filter that ex-
pands logarithmically the lower magnitude waveforms to reveal the bearing signature information.
After that the CPW is applied to reveal bearing faults, envelope spectrum to identify them easier,
trend removal to eliminate any present trend, FFT to transform the signal to the frequency domain
and normalization to have a reference margin. Finally, for vibration signals the CPW methodology
is applied the same from CPW to normalization with the same purposes.
For the 18 analyzed signals from the experimental system in low frequency zone, 9 were from
vibration and 9 from acoustic emission, most of them have partially good results for bearing fault
detection; in 5 signals the identification of fault components were easily made, in 12 signals the
fault identification was possible; but there were peaks with similar amplitudes of the fault com-
ponents and in 1 signal the identification of fault components was unsatisfactory because there
was no peak that matches the bearing fault frequencies. A disadvantage was found when CPW is
applied, causing it to add low frequency peaks in noisy signals that trend removal can’t remove
and makes diagnose harder. In the high frequency zone analysis made for AE signals the results
were unsatisfactory for IR and OR because there were no relevant frequency peaks that stand out
the background noise, but in the RE case there were notable peaks in frequencies above 2000 Hz
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(Zone D), and just for 1 test from the 3 analyzed two harmonics of BSF were identified at 33x
and 55x of BSF. Using low and high frequency analyses, the result from both is that RE faults
are the most notable fault among the three, because there are information in both low and high
frequency peaks that support the presence of a ball with damages in AE and just in low frequency
for vibration.

6.1 Contributions

Condition based monitoring using Fast Fourier Transform based methodologies always have chal-
lenges with noise filtering, computational time reduction and data acquisition selection. The use
of Cepstrum Pre-Whitening for bearing condition diagnose have been investigated by a few au-
thors like [Smith and Randall, 2015] and [Fan and Li, 2015] only using vibration signals, on the
other hand authors like [He et al., 2016] used both vibration and AE signals in their investiga-
tion for bearing condition diagnose but using Short Time Fourier Transform which is a more basic
frequency analysis technique in noise filtering. Also [Law et al., 2012] used both vibration and
AE in their investigation but focused into MA diagnose. A mainly contribution to literature is the
application of CPW specially to AE signals and compare them with equivalent vibration signals.
A methodology proposed to process only vibration from bearing faults using CPW and envelope
spectrum is applied to both vibration and AE signals. The condition fault identification is made
using the frequency spectrum obtained from the methodology and the comparison between both
signals helps to identify the possible areas of opportunity and advantages that acoustic emission
have in this field compared to the mainly used type signal that is vibration e.g the high frequency
zone detection. Therefore, the methodology can detect bearing faults in medium and late stages
with a good accuracy using both vibration and/or AE sensors.

6.2 Publications

One published conference paper was presented during this research.

• ”Diagnostico de Fallas en Husillos usando la Transformada Rapida de Fourier”. Appendix.
G. National Congress of Automatic Control 2017 (04-06 October 2017, Monterrey, NL,
Mexico)

6.3 Future work

This investigation made a contribution for a better spindle fault detection. In addition to this work
some opportunities have been found:
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• Further analysis can be made by using AE signals and taking this work as a base of research
by attaching ultrasonic sensors to the Experimental system made for this research and study
ultrasonic frequencies influence into bearing condition monitoring.

• This methodology can be used to create an hybrid methodology by its combination with a
signal decomposition technique like Empirical Mode Decomposition or Wavelet Transform
to eliminate noise from resonance frequency bands of the system.

• The implementation of intelligent classification methods as Artificial Neural Networks, Sup-
port Vector Machines and Deep Learning can be applied to classify the type of fault without
a visual inspection.

• Further analysis can be made using the vibration signals from the electric motor recorded
using correlation methods like Coherence or Correlation Coefficients to identify vibrations
not transmitted by the toothed belt in the Experimental System.
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Appendix A

Acronyms and Variables Descriptions

Table A.1: Acronyms Definitions

Acronyms Description Acronyms Description

AD Amplitude Demodulation IFFT Inverse Fast Fourier Transform

AE Acoustic Emission IR Inner Race

ANN Artificial Neural Network KLT Karhunen Loeve Transformation

AR Autoregressive LDA Linear Discriminant Analysis

BPFI Ball-Passing Frequency Inner-Race MA Misalignment

BPFO Ball-Passing Frequency Outer-Race MED Minimum Entropy Deconvolution

BPFR Ball-Passing Frequency Roller ML Mechanical Looseness

BS Bent Shaft MVC Minimum Variance Cepstrum

BSF Ball Spin Frequency OR Outer Race

C Cage PCA Principal Component Analysis

CA Cepstrum Analysis PSD Power Spectral Density

CF Crest Factor PTP Peak to Peak

CNC Computer Numerical Control PTV Peak to Valley

COM Centre of Mass RE Rolling Element

CWT Continuous Wavelet Transform SC Shaft Crack

CPW Cepstrum Pre-Whitening SSA Statistical Signal Analysis

DWT Discrete Wavelet Transform STFT Short Time Fourier Transform

EA Envelope Analysis SK Spectral Kurtosis

EM Empirical Mode Decomposition UB Unbalance

FFT Fast Fourier Transform WPT Wavelet Packet Transform
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Table A.1: Acronyms Definitions (Continued)

Acronyms Description Acronyms Description

FTF Fundamental Train Frequency WT Wavelet Transform

HHT Hilbert Huang Transform WVD Wigner-Ville Distribution

HSM High Spindle Machining

Table A.2: Algorithms. Variables Descriptions

Variable Description Variable Description

φ Diameter of Bearing Fault h(n−mR) Short-Time Window

FUB Unbalance Force mR Overlap of Window

M Mass of the Rotor F(x) Fast Fourier Transform of x

e Rotor’s Radial Displacement F−1(x) Inverse Fast Fourier Transform of x

ω Shaft Rotation Speed H[T ] Hilbert Transform of T

n Number of Rolling Elements in Bearing E(t) Envelope Spectrum

fr Shaft Speed Frequency XRMS RMS Value of x

d Rolling Element Diameter L Limit Value of RMS Limit Filter

D Pitch Bearing Diameter A Compression Constant of Filter A-law

α Angle of the Load from Radial Plane µ Compression Constant of Filter µ-law

x(n) Discrete Vibration/Acoustic emission signal p1, p2 Polynomial Constant of Trend Line

FN (x) Fast Fourier Transform Normalized Spectrum



Appendix B

Experimental system additional results

B.1 Defects measurements
In the experimental system, properly described in section 4.2 with the technical specifications and design of experi-
ments in subsection 4.2.2, the bearings used to simulate faults in the experimental system were damaged using wide
grain sandpaper to sand the rolling elements, inner and outer race. The defects were measured using a stereo micro-
scope Zeiss Discovery V8, the bearing were focused perpendicular for RE defect and in a 30o degree of inclination
for the IR and OR defects then the defects areas were compared with the CWRU ones to have a reference margin of
the severity of the faults in the experimental system. For this comparison the CWRU faults were assumed to have a
circular shape to get their areas using the formula A = π ∗ r2, the values of them are presented in Table B.1. First
of all, a comparison between a good and bad condition in every part of the bearing is made between a RE, IR and OR
respectively in good and bad condition, where Fig. B.1a shows a RE in good condition with a few scratches and Fig.
B.1b shows a RE in bad condition with several fissures present in all the ball area. In Fig. B.3a an IR in good condition
is clearly visible without scratches and Fig. B.3b another IR in bad condition with some notable scratches and fissures
is presented. Finally, in Fig. B.2a a OR in good condition is presented without any notable scratches, meanwhile in
Fig. B.2b another OR in bad condition with some scratches is visible.

Table B.1: CWRU diameters and areas of available faults

Diameter (inch) Diameter (um) Area (um2)

0.007 177.8 24,816

0.014 355.6 99,264

0.021 533.4 223,344

0.028 711.2 397,057

Using the stereo microscope software, the defect areas were measured, the first measured was the RE defect which
raw image is shown in Fig. B.4a and next to it in Fig. B.4b some vertical defects are identified, quantified and
measured. The clearest ones in the image were five and have the following areas from left to right: 90,838.17 um2,
35,241.39 um2, 78,577.01 um2, 35,298.5 um2 and 23,485.57 um2. The second measurement made was the same
image presented in Fig. B.5a, but analyzing horizontal defects in this case. The clearest defects in Fig. B.5b identified
were five from top to bottom with the following areas: 23,956.15 um2, 23,356.71 um2, 14,245.3 um2, 20,128.18
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(a) RE in good condition (b) RE in bad condition

Figure B.1: RE condition comparison

(a) OR in good condition (b) OR in bad condition

Figure B.2: OR condition comparison

(a) IR in good condition (b) IR in bad condition

Figure B.3: IR condition comparison

um2 and 20,863.23 um2. Every defect in the RE have areas lower than 24,816 um2 or between it and 99,264 um2

what correspond to defects with radius of 0.007 and 0.014 inch respectively; thus, the RE defect are between these
two radius. The next defect measured is the OR, which raw images are shown in Fig. B.6a and B.7a and next to them
in Fig. B.6b and B.7b a few defects were identified as notable scratches with the following areas: 177,744.52 um2,
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36,606.01 um2, 24,115.62 um2 and 33,687.28 um2. Analyzing the defects, four were found in the OR located on the
orthogonal side of the OR and the quantity of them are significant lower than the ones on RE, their areas are between
24,816 and 99,264 um2 so the defects should be in the 0.007 and 0.014 inch radius scale. The final defect measured
is the IR defect, which raw image is shown in Fig. B.8a and next to it in Fig. B.8b some defects were identified,
being three the most notable with the following areas: 43,969.98 um2, 160,306 um2 and 635,439 um2. The defects
analyzed in the IR have areas between 24,816 and 223,344 um2 except from the last one, but the number of defects
present in this part of the bearing is lower than the others. So, the defect on IR should be in a wide range specifically
0.007, 0.021 and 0.028 inch depending on each area.

(a) RE image raw (b) RE defects measurement

Figure B.4: RE vertical defects measurement

(a) RE image raw (b) RE defects measurement

Figure B.5: RE horizontal defects measurement

As a conclusion, it can be said that most of the defects are between 0.007 and 0.014 inch radius scale comparing them
to the CWRU bearing defects and all the values without the decimal data were listed in Table 4.4 in subsection 4.2.1
to have a better perception of the experimental system severity of faults.
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(a) OR image raw (b) OR defects measurement

Figure B.6: OR 1st defects measurement

(a) OR image raw (b) OR defects measurement

Figure B.7: OR 2nd defects measurement

(a) IR image raw (b) IR defects measurement

Figure B.8: IR defects measurement
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B.2 Experimental results
The experimental tests recorded with the design of experiments described in subsection 4.2.2 are presented. Four tests
were obtained with 4 different bearings: 1 new bearing to record the normal state (NM) of the machine and 1 with each
know fault in bearings, IR, OR and RE. The NM signals for tests 1, 2, 3 and 4 are presented in Figs. B.9a and B.9b, IR
signals for tests 1, 2, 3 and 4 in Figs. B.10a and B.10b, OR signals for tests 1, 2, 3 and 4 in Figs. B.11a and B.11b and
RE signals for tests 1, 2, 3 and 4 in Figs. B.12a and B.12b.
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Figure B.9: Normal state AE and vibration signals
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Figure B.10: Inner race AE and vibration signals
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Figure B.11: Outer race AE and vibration signals
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Figure B.12: Rolling element AE and vibration signals



Appendix C

Window size selection

In monitoring systems the two most important requirements are low computational time and good frequency spectrum
resolution to identify machining condition components with the least possible resources. The methodology in this
study is focused into vibration and acoustic emission application. For both type of signals, the CPW envelope spec-
trum, trend removal, FFT and normalization are applied in that order but, in the AE case two extra filters are applied
before that are RMS and compression filters; for this reason the computational time of both type of signals in three
different type of bearing with faults are measured to know the increase of computational time in percentage. Also, in
both types of signals the envelope spectrum is used as the feature extraction method to identify bearing conditions;
thus, if the envelope spectrum resolution is affected by the signal length (the larger the better spectrum resolution) that
makes the diagnostic more difficult. The solution for one problem worsen the other problem, e.g. if a small sampling
frequency is selected the computational time will be reduced, but the spectrum may not include fault frequencies or
the resolution in the spectrum may not be appropriate to distinguish fault frequencies. This section is dedicated to
analyze this problem, find an optimum window size for the methodology and accurately measure the increase of com-
putational time that AE signals need. Test for Experimental System databases are based on revolutions of the shaft,
and the optimum window selection is given in revolutions.

C.1 CWRU Database
This database includes signals with speed fluctuations from 1, 720 - 1, 797 RPM (28.66 - 29.95 Hz). Envelope spec-
trum resolution was analyzed by [Campos et al., 2018] to identify fault frequency components using envelope spec-
trum. He concluded that using a 5 revolution window was enough to get a good frequency resolution in CWRU signals.
Based on that information, a few tests were made to analyze the minimum window size selection for these signals.
Based on Table 4.2 it is observed that frequency factors are not integer multiples of the shaft rotational speed, and the
identification of the fundamental fault frequencies in the spectrum should not be affected by the shaft frequency in the
low harmonics of BSF, BPFO and BPFI.

C.2 Experimental System Database
This database includes two type of signals with a constant speed of 3585 RPM (59.75 Hz). As tests are based on
revolutions and the signals are recorded in time, to guarantee that the whole fault waveform is covered in all signals, a
transient of 1 revolution of the speed was used (T = 1

f = 1
59.75 = 0.0167 sec). The signal’s length used in these tests
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is about 6-7 seconds with a sampling frequency of Fs = 25, 600Hz, this makes Fs
fr = 25,600

59.75 = 428 data/revolution.
A Table C.1 for experimental system data is presented based on Sinha’s example (Sinha p. 151) [Sinha, 2014] and
[Campos et al., 2018] works for the number of revolutions used in the tests; to explore the maximum frequency and the
envelope spectrum resolution for the selected revolutions, with the difference that in this case the minimum revolutions
used are 10 because the sample frequency is more than the double than in CWRU database.

Table C.1: Experimental system envelope resolution based on shaft rev. and Fs = 25,6 kHz

r N dt=1/Fs T= N dt df= 1/T Fq= Fs/2 nf= N/2

10 428 3.90625E-05 0.016719 59.81308 12800 214

25 10700 3.90625E-05 0.417969 2.392523 12800 5350

50 21400 3.90625E-05 0.835938 1.196262 12800 10700

100 42800 3.90625E-05 1.671875 0.598131 12800 21400

where r is the window size in revolutions, N is the number of data points, dt the time between two samples, T is the
window size in seconds, df is the expected envelope spectrum resolution, Fq is maximum frequency in the spectrum
based on Nyquist frequency, and nf is the number of lines in the spectrum plot. Based on Table 5.1 it is observed that
frequency factors are close to be integer multiples of the shaft rotational speed, for that reason the identification of the
fundamental fault frequencies in the spectrum should be heavily affected by the shaft frequency and its harmonics even
in the low harmonics of BSF, BPFO and BPFI. For that reason, a good frequency resolution is strongly recommended
in the Experimental System case specially when RE faults are diagnosed, e.g. the RE fundamental frequency = 118.97
Hz can be easily mistaken with the 2nd harmonic of the rotational speed = 119.5 Hz with a difference of 0.5 Hz which
is really low and an important fact to take account in the analysis.

C.2.1 Vibration
In Fig. C.1 it can be observed that the fundamental frequency of BPFO can be easily mistaken with the 3rd harmonic
of the rotational speed using 10 revolutions, but in Fig. C.2 using 100 revolutions it is clear that the peak correspond
to the fundamental frequency of BPFO. In terms of computational time based on Tables C.2, C.3 and C.4 it is clear
that using 100 revolutions in IR, OR and RE increase the computational time compared to 10 revolutions in around
700% but using 10 revolution the df = 59 Hz which is a bad frequency resolution; thus using 100 revolutions the df =
0.59 which is the minimum to identify any bearing fault.
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Figure C.1: Experimental system, OR vibration fault signal at window of 10 revolutions
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Figure C.2: Experimental system, OR vibration fault signal at window of 100 revolutions

Table C.2: Experimental system OR vibration signals computational times at 10, 25, 50, 100 revs

Outer Race Fault Vibration Experimental System

File Test TimeAvg 10 SD 10 TimeAvg 25 SD 25 TimeAvg 50 SD 50 TimeAvg 100 SD 100

Test 001 OR 0 0.05532 0.00272 0.07466 0.00189 0.16381 0.00153 0.47831 0.01697

Test 002 OR 1 0.05513 0.00137 0.0777 0.0009 0.1730 0.0086 0.4767 0.0034

Test 003 OR 2 0.0598 0.0034 0.0811 0.0011 0.1642 0.0016 0.4935 0.0125

Test 004 OR 3 0.0577 0.0018 0.0833 0.0038 0.1946 0.0072 0.5806 0.0158

Mean 0.0570 0.0023 0.0792 0.0019 0.1739 0.0048 0.5073 0.0122

Time increase compared to 10 rev 0.0222 0.1169 0.4503

Time increase in % compared to 10 rev 38.96 205.17 790.24

Table C.3: Experimental system IR vibration signals computational times at 10, 25, 50, 100 revs

Inner Race Fault Vibration Experimental System

File Test TimeAvg 10 SD 10 TimeAvg 25 SD 25 TimeAvg 50 SD 50 TimeAvg 100 SD 100

Test 001 IR 0 0.0600 0.0219 0.0809 0.0215 0.1677 0.0244 0.4810 0.0231

Test 002 IR 1 0.0587 0.0207 0.0802 0.0216 0.1635 0.0209 0.4749 0.0233

Test 003 IR 2 0.0605 0.0218 0.0851 0.0211 0.1680 0.0185 0.4830 0.0215

Test 004 IR 3 0.0642 0.0041 0.0948 0.0082 0.1677 0.0216 0.4861 0.0229

Mean 0.0608 0.0171 0.0852 0.0181 0.1667 0.0213 0.4813 0.0227

Time increase compared to 10 rev 0.0244 0.1059 0.4204

Time increase in % compared to 10 rev 40.12 174.07 691.14

C.2.2 Acoustic Emission
Acoustic emission signals according to the CPW methodology described in chapter 3, have two extra pre-processing
filter (RMS and compression filters); therefore, in addition to selecting the optimal window for the frequency analysis,
the computational time obtained applying the methodology in AE signals will be compared to the methodology applied
to vibration signals to measure the percentage increase of computational time. In Fig. C.3 it can be observed that
the fundamental frequency of BPFO can be easily mistaken with the 3rd harmonic of the rotational speed using 10
revolutions, but in Fig. C.4 using 100 revolutions it is clear that the peak correspond to the fundamental frequency of
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Table C.4: Experimental system RE vibration signals computational times at 10, 25, 50, 100 revs

Rolling Element Fault Vibration Experimental System

File Test TimeAvg 10 SD 10 TimeAvg 25 SD 25 TimeAvg 50 SD 50 TimeAvg 100 SD 100

Test 001 BD 0 0.0646 0.0254 0.0803 0.0227 0.2040 0.0293 0.4827 0.0225

Test 002 BD 1 0.0608 0.0236 0.0793 0.0219 0.1659 0.0254 0.5070 0.0263

Test 003 BD 2 0.0578 0.0212 0.0856 0.0257 0.1656 0.0229 0.4999 0.0261

Test 004 BD 3 0.0572 0.0209 0.0822 0.0208 0.1841 0.0322 0.4864 0.0228

Mean 0.0601 0.0228 0.0818 0.0228 0.1799 0.0274 0.4940 0.0244

Time increase compared to 10 rev 0.0217 0.1198 0.4339

Time increase in % compared to 10 rev 36.14 199.28 721.72

BPFO. In terms of computational time based on Tables C.5, C.6 and C.7 it is clear that using 100 revolutions in IR, OR
and RE increase the computational time compared to 10 revolutions in around 400%, but using 10 revolution the df =
59 Hz which is a bad frequency resolution; thus, using 100 revolutions the df = 0.59 which is the minimum to identify
any bearing fault.
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Figure C.3: Experimental system, OR AE fault signal at window of 10 revolutions
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Table C.5: Experimental system OR AE signals computational times at 10, 25, 50, 100 revs

Outer Race Fault AE Experimental System

File Test TimeAvg 10 SD 10 TimeAvg 25 SD 25 TimeAvg 50 SD 50 TimeAvg 100 SD 100

Test 001 OR 0 0.10222 0.05375 0.12468 0.05305 0.20639 0.05346 0.94741 0.10644

Test 002 OR 1 0.14710 0.11346 0.16565 0.07851 0.20988 0.05295 0.8968 0.04773

Test 003 OR 2 0.10351 0.05418 0.13794 0.05242 0.20682 0.05406 0.9719 0.06983

Test 004 OR 3 0.10308 0.05335 0.12148 0.05115 0.20650 0.05129 0.8978 0.06187

Mean 0.1140 0.0687 0.1374 0.0588 0.2074 0.0529 0.9285 0.0715

Time increase compared to 10 rev 0.0235 0.0934 0.8145

Time increase in % compared to 10 rev 20.58 81.96 714.47

Table C.6: Experimental system IR AE signals computational times at 10, 25, 50, 100 revs

Inner Race Fault AE Experimental System

File Test TimeAvg 10 SD 10 TimeAvg 25 SD 25 TimeAvg 50 SD 50 TimeAvg 100 SD 100

Test 001 IR 0 0.16672 0.08914 0.22808 0.09968 0.73432 0.17969 0.88147 0.08799

Test 002 IR 1 0.17127 0.09696 0.20369 0.08750 0.34675 0.09033 0.88551 0.08957

Test 003 IR 2 0.17351 0.08662 0.20948 0.09120 0.37268 0.09115 0.86240 0.08018

Test 004 IR 3 0.15493 0.08439 0.19392 0.07791 0.33929 0.07992 0.87558 0.09096

Mean 0.1666 0.0893 0.2088 0.0891 0.4483 0.1103 0.8762 0.0872

Time increase compared to 10 rev 0.0422 0.2817 0.7096

Time increase in % compared to 10 rev 25.32 169.05 425.93

Table C.7: Experimental system RE AE signals computational times at 10, 25, 50, 100 revs

Rolling Element Fault AE Experimental System

File Test TimeAvg 10 SD 10 TimeAvg 25 SD 25 TimeAvg 50 SD 50 TimeAvg 100 SD 100

Test 001 BD 0 0.16568 0.08407 0.21053 0.08712 0.38963 0.11143 0.90451 0.10216

Test 002 BD 1 0.16304 0.08535 0.20875 0.09088 0.38650 0.08779 0.88842 0.09500

Test 003 BD 2 0.17696 0.09480 0.22481 0.08927 0.43297 0.08984 0.90542 0.10733

Test 004 BD 3 0.17903 0.08848 0.21303 0.09672 0.40893 0.10064 0.91500 0.10515

Mean 0.1712 0.0882 0.2143 0.0910 0.4045 0.0974 0.9033 0.1024

Time increase compared to 10 rev 0.0431 0.2333 0.7322

Time increase in % compared to 10 rev 25.18 136.31 427.72
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C.2.3 Conclusions about window size selection
Comparing the Experimental System mean computational times using 100 revolutions, that will be the optimal window
selected for resolution purposes, from Tables C.2, C.3 and C.4 for vibration the times are: 0.4503 for OR, 0.4204 for
IR and 0.4339 for RE. And mean computational times using 100 revolutions from Tables C.5, C.6 and C.7 for AE the
times are: 0.8145 for OR, 0.7096 for IR and 0.7322 for RE. Using that information it is clear that AE signals analyzed
using the proposed methodology have more computational time than vibration ones in all bearing faults with, 83% for
OR, 82% for IR and 82.9% for RE, which at the end gives a better result for vibration signals in terms of computational
time.



Appendix D

CWRU Database validation

For validation of the proposed methodology, the CWRU vibration database was used analyzing three types of fault
signals, IR, OR and RE, in three levels of diagnosable state: (Y) for easily diagnosable signals, (P) for partially
diagnosable and (N) for no diagnosable signals following the criteria of [Smith and Randall, 2015] presented in Table
4.7. For the (Y) signals at Fig. D.1 a), b) the waveforms are clearly visible for IR and OR faults respectively, for the
(Y) at Fig. D.1 c) the RE fault waveform is visible with noise not overwhelming the signal. Meanwhile (P) signals at
Fig. D.1 b), e) and h) for IR , OR and RE faults respectively have a partially visible waveforms overwhelmed by noise
with similar magnitude as (Y) signal for only the IR case. Finally the (N) signal at Fig. D.1 c) for IR fault its hard to
distinguish the waveform despite having similar magnitudes as (Y) and (P) cases; the (N) signals at Fig. D.1 f) and i)
for OR and RE faults have both hard to distinguish and non similar magnitudes characteristics compared to (Y) and
(P) cases of the same faults.
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Figure D.1: CWRU analyzed signals used to validate the methodology
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D.1 CWRU Results
Figure D.2 show the results of methodology applied to the 9 signals selected in Fig. D.1 from CWRU database. Also,
the Envelope and FFT spectrum were compared to the methodology to measure the maximum peaks values in each
transform.
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Figure D.2: CWRU signals after applying the proposed methodology

IR signals: First, the results from the (Y) clearly diagnosable signal shown in Fig. D.2 a) was successfully analyzed
confirming the presence of the BPFI as the dominant frequency with a magnitude of 1 and 2 harmonics in a descendant
pattern as expected. In addition to this, a peak in the BSF is present but no harmonics as Fig. D.3 show; this can’t be
taken as a RE fault because BSF in the Envelope spectrum are present in even harmonics because the fault strikes the
same race (inner or outer) in every cycle, so there are two shocks per basic period [Randall, 2011]. In the (P) partially
diagnosable signal shown in Fig. D.2 b) the fundamental frequency of the rotational speed is the dominant frequency
in the spectra with a magnitude of 1 and some harmonics of it are present too; the presence of BPFI and the 2 following
harmonics of it is confirmed with a lower magnitude than in the (Y) type signal. Finally, the (N) non diagnosable signal
shown in Fig. D.2 c) confirmed that there are no peaks in BPFI or any of its harmonics and show a clear Gaussian
noise. A comparison between the methodology, Envelope and FFT spectra is presented using the (Y) category signal
in Fig. D.3 where the difference between the methodology and envelope spectra are minimal but mainly focused in
the fact that BPFI in Envelope spectrum is not the dominant frequency exceeded by the first harmonic of the rotational
speed. In the FFT comparison is clear that the dominant frequency are over the frequency limit of the graphic, so
BPFI is almost totally suppressed by it because of the normalization.
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Figure D.3: IR (Y) category signal method comparison (CWRU)

OR signals: The results obtained from the (Y) clearly diagnosable signal shown in Fig. D.2 d) as expected was easily
diagnosable confirming the presence of the BPFO as the dominant frequency with a magnitude of 1 and 3 harmonics
in a descendant pattern as expected. In the (P) partially diagnosable signal shown in Fig. D.2 e) the presence of
BPFO is hardly remarkable, same as its harmonics and there is no presence of any remarkable frequency peak, so this
signal can be barely diagnosable using the methodology. Finally, the (N) non diagnosable signal shown in Fig. D.2 f)
have no remarkable peak for any BPFO peak or harmonic of it as expected. A comparison between the methodology,
Envelope and FFT spectra is presented using the (Y) category signal in Fig. D.4 where there are no remarkable
difference between the methodology and envelope spectra besides some Gaussian noise present in the methodology
spectrum and the fact that BPFO harmonics only in the methodology spectrum have the descendant pattern expected.
In the FFT comparison is clear that the dominant frequency are over the frequency limit of the graphic same as IR
case, so BPFO is almost totally suppressed by it because of the normalization.
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Figure D.4: OR (Y) category signal method comparison (CWRU)

RE signals: The results obtained from the (Y) clearly diagnosable signal shown in Fig. D.2 g) have some peak noises
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at low frequencies around 1x RPM but the main feature of the signal that is the BSF at even harmonics 2x, 4x and 6x
are remarkable in the signal, it’s worth to repeat that BSF in Envelope spectrum is present in even harmonics because
the fault strikes the same race (inner or outer) in every cycle [Randall, 2011], despite of not following the descendant
pattern expected the signal in general is clearly diagnosable. In the (P) partially diagnosable signal shown in Fig. D.2
h) there are just one peak frequency at the second harmonic of BSF which confirm the fault but there is no peaks in the
other even harmonics. Finally, the (N) non diagnosable signal shown in Fig. D.2 i) where a peak in 2xBSF is hardly
remarkable because of the noise overwhelming it. The comparison between the methodology, Envelope and FFT
spectra is presented using the (Y) category signal in Fig. D.5 where the maximum peak value for 2xBSF is compared
in the three spectrum and its clear that the methodology have the higher value but in none of them that frequency is
the dominant in the spectrum. Also the frequency peaks recognized as noise are identified in the methodology. Same
as IR and OR in the FFT comparison is clear that the dominant frequency are over the frequency limit of the graphic,
so BSF is almost totally suppressed by it because of the normalization.
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Figure D.5: RE (Y) category signal method comparison (CWRU)

Table D.1: Bearing fault results for CWRU database

Database Signal Difficulty Max mag. (g)
Fault amplitude normalized

Max amplitude Additional significant peaks a

Fault freq. Harmonic

CWRU

IR (Y) Easy 0.0057 0.4724 0.2109 1 (BPFI) BPFI H/ Shaft

IR (P) Medium 0.0045 0.5584 0.3823 1 (1x Shaft) BPFI H/ Shaft

IR (N) Hard 0.0028 NA NA 1 (Noise) Negligible

OR (Y) Easy 0.0069 1 0.4674 1 (1x BPFO) BPFO H/ Shaft

OR (P) Medium 0.0023 0.3323 NA 1 (Noise) BPFO

OR (N) Hard 0.0029 NA NA 1 (Noise) Negligible

RE (Y) Easy 0.0023 0.7736 0.4556 1 (0.5x Shaft) BSF even H/ Shaft

RE (P) Easy 0.0042 0.5575 NA 1 (Noise) BSF even H

RE (N) Easy 0.0021 0.5053 NA 1 (Noise) BSF even H/ Shaft

aSH = Half harmonic, H = Harmonics, NA= Not Available



Appendix E

Additional results

E.1 Experimental system vibration results
The additional analysis for the experimental system vibration data is presented in this section; where Figs. E.1a, E.1b
show the IR comparison of the methodology results with envelope and FFT for test 3 and 4 signals respectively. Figs.
E.2a, E.2b show the OR comparison for partially test 2 and 3 signals respectively. Finally, Figs. E.3a, E.3b show
the RE comparison for test 1 and 3 signals respectively. Table 5.2 show the relevant frequency peaks found in all the
signals with the 1st and 2nd fault harmonic frequency magnitude and the difficulty of diagnosis of each signal.
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Figure E.1: IR vibration signals
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Figure E.2: OR vibration signals

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ag

ni
tu

de
 (

g)

CPW Methodology

1x RPM

1x BSF

2x BSF

(a) RE Test:3 vibration signal

0 100 200 300 400 500 600 700 800 900 1000

Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
ag

ni
tu

de
 (

g)

CPW Methodology

2x BSF

3x BSF

1x BSF2x RPM

1x RPM

(b) RE Test:4 vibration signal

Figure E.3: RE vibration signals

E.2 Experimental system acoustic results
The additional analysis for the experimental system about acoustic emission data is presented; where Figs. E.4a, E.4b
show the IR comparison of the methodology results with envelope and FFT for test 3 and 4 signals respectively. Figs.
E.5a, E.5b show the OR comparison for partially test 2 and 3 signals respectively. Finally, Figs. E.6a, E.6b show
the RE comparison for test 1 and 4 signals respectively. Table 5.2 show the relevant frequency peaks found in all the
signals with the 1st and 2nd fault harmonic frequency magnitude and the difficulty of diagnosis of each signal.
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Figure E.4: IR AE signals
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Figure E.5: OR AE signals
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Appendix F

Developed code

To implement the methodology four basic Matlab functions were developed, one function to trim the signal in a
window defined by the user in seconds, one function to compute the FFT of a signal, one function to compute the
envelope spectrum of a signal with trend removal included and one function to compute the CPW pre processing and
frequency analysis with option for FFT or Envelope spectrum. The following codes is used to analyze the CWRU
database with an easier selection using variables to avoid putting the name of the signals:

1 % Methodology f o r CWRU
2 % Oscar Tamayo P . tamayo . osca r@hotma i l . com
3 %
4 % This s c r i p t i s d e s i g n e d t o a n a l y z e t h e s i g n a l s from CWRU only .
5 %
6 c l e a r a l l %C l e a r e x i s t i n g d a t a
7 %% / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
8 % F i g u r e c o l o r s m a t r i x
9 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

10 0 .000 0 .000 0 . 0 0 0 ; % 1 Negro
11 1 .000 0 .141 0 . 4 2 0 ; % 2 Rosado
12 0 .180 0 .333 0 . 7 4 5 ; % 3 A z u l C e l e s t e
13 0 .950 0 .425 0 . 0 9 8 ; % 4 N a r a n j a
14 0 .466 0 .674 0 . 1 8 8 ; % 5 VerdeC
15 0 .929 0 .694 0 . 1 2 5 ; % 6 Mostaza
16 0 .301 0 .745 0 . 9 3 3 ; % 7 C e l e s t e
17 0 .494 0 .184 0 . 5 5 6 ; % 8 Morado
18 1 .000 0 .000 0 . 0 0 0 ; % 9 Rojo
19 0 .000 0 .800 0 . 5 0 0 ; % 10
20 ] ;
21 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
22 % G e n e r a l v a r i a b l e s
23 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
24 Fs =12000; %Sample f r e q u e n c y
25 l i m s =600; %S u p e r i o r l i m i t f o r f r e q u e n c y s p e c t r u m
26 Ancho = 5 . 5 ; %Dimens ions f o r f i g u r e p l o t s

75



76 APPENDIX F. DEVELOPED CODE

27 Al to = 6 . 2 ;
28 t h 1 = 1 . 2 ; %S i g n a l p l o t t h i c k n e s s
29 t h 2 =1; %G u i d e l i n e s p l o t t h i c k n e s s
30 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
31 % Data i m p o r t and s e l e c t i o n f o r CWRU
32 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
33 Se ns o r = ’ DE time ’ ; % {DE ( Dr ive End ) , FE ( Fan End ) ,BA ( Base ) }
34 f a u l t S e n s o r = ’DE12k ’ ; % {DE12k , DE48k , FE12k}
35 Exper =0; % Exper imen t l o a d : [ 0 , 3 ]
36 f a u l t M a g =21; % F a u l t magn i tude {7 ,14 ,21 ,28}
37 a d d p a t h ( ’ Pu t h e r e t h e r o u t e o f t h e d a t a ’ ) ;
38 a r c I R = s t r c a t ( f a u l t S e n s o r , ’ ’ , num2s t r ( Exper ) , ’ ’ , num2s t r ( fau l tMag , ’ %3.3u ’ ) , ’

IR ’ ) ;
39 a r c B = s t r c a t ( f a u l t S e n s o r , ’ ’ , num2s t r ( Exper ) , ’ ’ , num2s t r ( fau l tMag , ’ %3.3u ’ ) , ’ B ’

) ;
40 arc OR C= s t r c a t ( f a u l t S e n s o r , ’ ’ , num2s t r ( Exper ) , ’ ’ , num2s t r ( fau l tMag , ’ %3.3u ’ ) , ’

OR C ’ ) ;
41 arc OR Op= s t r c a t ( f a u l t S e n s o r , ’ ’ , num2s t r ( Exper ) , ’ ’ , num2s t r ( fau l tMag , ’ %3.3u ’ ) ,

’ OR Op ’ ) ;
42 arc OR Or= s t r c a t ( f a u l t S e n s o r , ’ ’ , num2s t r ( Exper ) , ’ ’ , num2s t r ( fau l tMag , ’ %3.3u ’ ) ,

’ OR Or ’ ) ;
43 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
44 % B e a r i n g d a t a 6205−2RS JEM SKF , deep groove b a l l b e a r i n g
45 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
46 n =9; %Number o f b a l l s
47 BD= 0 . 3 1 2 6 ; %R o l l i n g e l e m e n t d i a m e t e r
48 PD= 1 . 5 3 7 ; %P i t c h d i a m e t e r
49 t h e t a =0; %Angle o f t h e l o a d from r a d i a l p l a n e
50

51 s w i t c h Exper
52 c a s e 0
53 frm = 1 7 9 7 / 6 0 ; % Roto r speed i n Hz f o r each l o a d
54 c a s e 1
55 frm = 1 7 7 2 / 6 0 ;
56 c a s e 2
57 frm = 1 7 5 0 / 6 0 ;
58 c a s e 3
59 frm = 1 7 3 0 / 6 0 ;
60 o t h e r w i s e
61 d i s p ( ’ E r r o r ! ! ’ ) ;
62 end
63 f OD =0.5∗ n∗ frm ∗(1−(BD/ PD) ∗ cos ( t h e t a ) ) ; %BPFO
64 f I D =0.5∗ n∗ frm ∗ ( 1 + (BD/ PD) ∗ cos ( t h e t a ) ) ; %BPFI
65 f CD =0.5∗ frm ∗(1−(BD/ PD) ∗ cos ( t h e t a ) ) ; %FTF
66 f BD = 0 . 5∗ (PD /BD) ∗ frm ∗(1−(BD/ PD) ˆ2∗ cos ( t h e t a ) ˆ 2 ) ; %BSF



77

67 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
68 % Methodology a p p l i c a t i o n
69 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
70 f a u l t =5 ; %F a u l t t y p e s e l e c t i o n : 1 f o r IR , 2 f o r OR C , 4 OR Op , 5 OR Or , 6 RE
71 t i =0 ; %I n i t i a l t ime v a l u e f o r t ime s i g n a l
72 t f = t i + ( 2 5 / frm ) ; %F i n a l t ime v a l u e f o r t ime s i g n a l u s i n g 100 r e v o l u t i o n s
73

74 s w i t c h f a u l t
75 c a s e 1 %I n n e r Race c a s e
76 v a r s =whos ( ’− f i l e ’ , s t r c a t ( a r c I R , ’ . mat ’ ) ) ; %S t r i n g f o r i m p o r t IR
77 pos =0;
78 f o r i i =1 : l e n g t h ( [ v a r s . s i z e ] ) / 2
79 i f l e n g t h ( s t r f i n d ( v a r s ( i i , 1 ) . name , ’ DE time ’ ) )>=1
80 pos= i i ;
81 end
82 end
83 i f pos ==0
84 d i s p ( ’ E r r o r ’ ) ;
85 end
86 Data IR = l o a d ( a r c I R , v a r s ( pos , 1 ) . name ) ; %Im po r t d a t a f o r IR
87 D a t a O r i g i n a l = Data IR . ( v a r s ( pos , 1 ) . name ) ;
88 Data= R e c o r t a r ( D a t a O r i g i n a l , t i , t f , Fs ) ; %Crooped s i g n a l
89

90 [ freqFFT , FFT]= FFT OTP ( Data , Fs ) ; %FFT wi th t r e n d remova l
91 [ freqENV ,ENV]= e n v o l v e n t e T r e n d ( Data , Fs , 2 ) ;%Envelope wi th t r e n d remova l
92 [ freqCPW ,CPW]= cepstrumPWTrend ( Data , Fs , ’ e n v e l o p e ’ ) ; %CPW methodology
93

94 FFT norm= N o r m a l i z a r ( FFT ) ; %FFT n o r m a l i z a t i o n
95 ENV norm= N o r m a l i z a r (ENV) ; %Envelope n o r m a l i z a t i o n
96 CPW norm= N o r m a l i z a r (CPW) ; %CPW methodology n o r m a l i z a t i o n
97

98 c a s e 2 %C e n t r a l Ou te r Race c a s e
99 v a r s =whos ( ’− f i l e ’ , s t r c a t ( arc OR C , ’ . mat ’ ) ) ; %S t r i n g f o r i m p o r t OR C

100 pos =0;
101 f o r i i =1 : l e n g t h ( [ v a r s . s i z e ] ) / 2
102 i f l e n g t h ( s t r f i n d ( v a r s ( i i , 1 ) . name , ’ DE time ’ ) )>=1
103 pos= i i ;
104 end
105 end
106 i f pos ==0
107 d i s p ( ’ E r r o r ’ ) ;
108 end
109 Data OR C= l o a d ( arc OR C , v a r s ( pos , 1 ) . name ) ; %I mp or t d a t a f o r OR C
110 D a t a O r i g i n a l =Data OR C . ( v a r s ( pos , 1 ) . name ) ;
111 Data= R e c o r t a r ( D a t a O r i g i n a l , t i , t f , Fs ) ; %Crooped s i g n a l
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112

113 [ freqFFT , FFT]= FFT OTP ( Data , Fs ) ; %FFT wi th t r e n d remova l
114 [ freqENV ,ENV]= e n v o l v e n t e T r e n d ( Data , Fs , 2 ) ;%Envelope wi th t r e n d remova l
115 [ freqCPW ,CPW]= cepstrumPWTrend ( Data , Fs , ’ e n v e l o p e ’ ) ; %CPW methodology
116

117 FFT norm= N o r m a l i z a r ( FFT ) ; %FFT n o r m a l i z a t i o n
118 ENV norm= N o r m a l i z a r (ENV) ; %Envelope n o r m a l i z a t i o n
119 CPW norm= N o r m a l i z a r (CPW) ; %CPW methodology n o r m a l i z a t i o n
120

121 c a s e 3 %O p p o s i t e Oute r Race c a s e
122 v a r s =whos ( ’− f i l e ’ , s t r c a t ( arc OR Op , ’ . mat ’ ) ) ; %S t r i n g f o r i m p o r t OR Op
123 pos =0;
124 f o r i i =1 : l e n g t h ( [ v a r s . s i z e ] ) / 2
125 i f l e n g t h ( s t r f i n d ( v a r s ( i i , 1 ) . name , ’ DE time ’ ) )>=1
126 pos= i i ;
127 end
128 end
129 i f pos ==0
130 d i s p ( ’ E r r o r ’ ) ;
131 end
132 Data OR Op= l o a d ( arc OR Op , v a r s ( pos , 1 ) . name ) ; %Im po r t d a t a f o r OR Op
133 D a t a O r i g i n a l =Data OR Op . ( v a r s ( pos , 1 ) . name ) ;
134 Data= R e c o r t a r ( D a t a O r i g i n a l , t i , t f , Fs ) ; %Crooped s i g n a l
135

136 [ freqFFT , FFT]= FFT OTP ( Data , Fs ) ; %FFT wi th t r e n d remova l
137 [ freqENV ,ENV]= e n v o l v e n t e T r e n d ( Data , Fs , 2 ) ;%Envelope wi th t r e n d remova l
138 [ freqCPW ,CPW]= cepstrumPWTrend ( Data , Fs , ’ e n v e l o p e ’ ) ; %CPW methodology
139

140 FFT norm= N o r m a l i z a r ( FFT ) ; %FFT n o r m a l i z a t i o n
141 ENV norm= N o r m a l i z a r (ENV) ; %Envelope n o r m a l i z a t i o n
142 CPW norm= N o r m a l i z a r (CPW) ; %CPW methodology n o r m a l i z a t i o n
143

144 c a s e 4 %O r t h o g o n a l Oute r Race c a s e
145 v a r s =whos ( ’− f i l e ’ , s t r c a t ( arc OR Or , ’ . mat ’ ) ) ; %S t r i n g f o r i m p o r t OR Or
146 pos =0;
147 f o r i i =1 : l e n g t h ( [ v a r s . s i z e ] ) / 2
148 i f l e n g t h ( s t r f i n d ( v a r s ( i i , 1 ) . name , ’ DE time ’ ) )>=1
149 pos= i i ;
150 end
151 end
152 i f pos ==0
153 d i s p ( ’ E r r o r ’ ) ;
154 end
155 Data OR Or= l o a d ( arc OR Or , v a r s ( pos , 1 ) . name ) ; %I mp or t d a t a f o r OR Or
156 D a t a O r i g i n a l =Data OR Or . ( v a r s ( pos , 1 ) . name ) ;
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157 Data= R e c o r t a r ( D a t a O r i g i n a l , t i , t f , Fs ) ; %Crooped s i g n a l
158

159 [ freqFFT , FFT]= FFT OTP ( Data , Fs ) ; %FFT wi th t r e n d remova l
160 [ freqENV ,ENV]= e n v o l v e n t e T r e n d ( Data , Fs , 2 ) ;%Envelope wi th t r e n d remova l
161 [ freqCPW ,CPW]= cepstrumPWTrend ( Data , Fs , ’ e n v e l o p e ’ ) ; %CPW methodology
162

163 FFT norm= N o r m a l i z a r ( FFT ) ; %FFT n o r m a l i z a t i o n
164 ENV norm= N o r m a l i z a r (ENV) ; %Envelope n o r m a l i z a t i o n
165 CPW norm= N o r m a l i z a r (CPW) ; %CPW methodology n o r m a l i z a t i o n
166

167 c a s e 5 %R o l l i n g Element c a s e
168 v a r s =whos ( ’− f i l e ’ , s t r c a t ( arc B , ’ . mat ’ ) ) ; %S t r i n g f o r i m p o r t RE
169 pos =0;
170 f o r i i =1 : l e n g t h ( [ v a r s . s i z e ] ) / 2
171 i f l e n g t h ( s t r f i n d ( v a r s ( i i , 1 ) . name , ’ DE time ’ ) )>=1
172 pos= i i ;
173 end
174 end
175 i f pos ==0
176 d i s p ( ’ E r r o r ’ ) ;
177 end
178 Data B= l o a d ( arc B , v a r s ( pos , 1 ) . name ) ; %Imp or t d a t a f o r RE f a u l t
179 D a t a O r i g i n a l =Data B . ( v a r s ( pos , 1 ) . name ) ;
180 Data= R e c o r t a r ( D a t a O r i g i n a l , t i , t f , Fs ) ; %Crooped s i g n a l
181

182 [ freqFFT , FFT]= FFT OTP ( Data , Fs ) ; %FFT wi th t r e n d remova l
183 [ freqENV ,ENV]= e n v o l v e n t e T r e n d ( Data , Fs , 2 ) ;%Envelope wi th t r e n d remova l
184 [ freqCPW ,CPW]= cepstrumPWTrend ( Data , Fs , ’ e n v e l o p e ’ ) ; %CPW methodology
185

186 FFT norm= N o r m a l i z a r ( FFT ) ; %FFT n o r m a l i z a t i o n
187 ENV norm= N o r m a l i z a r (ENV) ; %Envelope n o r m a l i z a t i o n
188 CPW norm= N o r m a l i z a r (CPW) ; %CPW methodology n o r m a l i z a t i o n
189 end
190 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
191 % CPW Methodology compar i son wi th Enve lope and FFT of s e l e c t e d s i g n a l
192 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
193 f i g u r e ( ’ u n i t s ’ , ’ i n c h e s ’ , ’ P o s i t i o n ’ , [ 3 0 Ancho ∗1 .75 Al to ∗ 0 . 6 5 ] )
194 s u b p l o t ( 1 , 3 , 3 )
195 p l o t ( freqFFT , FFT norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ; %FFT p l o t
196 ho ld on ;
197 i =1 ;
198 w h i l e ( i ∗ frm )<l i m s
199 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %RPM
200 i = i +1 ;
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201 end
202 i =1 ;
203 w h i l e ( i ∗ f I D )<l i m s
204 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BPFI
205 i = i +1 ;
206 end
207 i =1 ;
208 w h i l e ( i ∗ f BD )<l i m s
209 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BSF
210 i = i +1 ;
211 end
212 i =1 ;
213 w h i l e ( i ∗ f OD )<l i m s
214 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BPFO
215 i = i +1 ;
216 end
217 ho ld o f f ;
218 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
219 t i t l e ( ’FFT ’ , ’ F o n t S i z e ’ , 1 2 )
220 a x i s ( [ 0 l i m s 0 1 ] )
221

222 s u b p l o t ( 1 , 3 , 1 )
223 p l o t ( freqCPW , CPW norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ; %CPW p l o t
224 ho ld on ;
225 i =1 ;
226 w h i l e ( i ∗ frm )<l i m s
227 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %RPM
228 i = i +1 ;
229 end
230 i =1 ;
231 w h i l e ( i ∗ f I D )<l i m s
232 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BPFI
233 i = i +1 ;
234 end
235 i =1 ;
236 w h i l e ( i ∗ f BD )<l i m s
237 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BSF
238 i = i +1 ;
239 end
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240 i =1 ;
241 w h i l e ( i ∗ f OD )<l i m s
242 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BPFO
243 i = i +1 ;
244 end
245 ho ld o f f
246 y l a b e l ( ’ Magni tude ( g ) ’ ) ;
247 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
248 t i t l e ( ’CPW Methodology ’ , ’ F o n t S i z e ’ , 1 2 )
249 a x i s ( [ 0 l i m s 0 1 ] )
250

251 s u b p l o t ( 1 , 3 , 2 )
252 p l o t ( freqENV , ENV norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ;%Envelope p l o t
253 ho ld on ;
254 i =1 ;
255 w h i l e ( i ∗ frm )<l i m s
256 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %RPM
257 i = i +1 ;
258 end
259 i =1 ;
260 w h i l e ( i ∗ f I D )<l i m s
261 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BPFI
262 i = i +1 ;
263 end
264 i =1 ;
265 w h i l e ( i ∗ f BD )<l i m s
266 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BSF
267 i = i +1 ;
268 end
269 i =1 ;
270 w h i l e ( i ∗ f OD )<l i m s
271 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’

l i n e W i d t h ’ , t h 2 ) ; %BPFO
272 i = i +1 ;
273 end
274 ho ld o f f ;
275 t i t l e ( ’ Enve lope ’ , ’ F o n t S i z e ’ , 1 2 )
276 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
277 a x i s ( [ 0 l i m s 0 1 ] )

The following codes is used to analyze the Experimental System database with an easier selection using variables to
avoid putting the name of the signals:
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1 % Methodology f o r E x p e r i m e n t a l System
2 % Oscar Tamayo P . tamayo . osca r@hotma i l . com
3 %
4 % This s c r i p t i s d e s i g n e d t o a n a l y z e t h e s i g n a l s from t h e e x p e r i m e n t a l sys tem

on ly .
5 %
6 c l e a r a l l %C l e a r e x i s t i n g d a t a
7 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
8 % F i g u r e c o l o r s m a t r i x
9 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

10 co = [ . . .
11 0 .000 0 .000 0 . 0 0 0 ; % 1 Negro
12 1 .000 0 .141 0 . 4 2 0 ; % 2 Rosado
13 0 .180 0 .333 0 . 7 4 5 ; % 3 A z u l C e l e s t e
14 0 .950 0 .425 0 . 0 9 8 ; % 4 N a r a n j a
15 0 .466 0 .674 0 . 1 8 8 ; % 5 VerdeC
16 0 .929 0 .694 0 . 1 2 5 ; % 6 Mostaza
17 0 .301 0 .745 0 . 9 3 3 ; % 7 C e l e s t e
18 0 .494 0 .184 0 . 5 5 6 ; % 8 Morado
19 1 .000 0 .000 0 . 0 0 0 ; % 9 Rojo
20 0 .000 0 .800 0 . 5 0 0 ; % 10
21 ] ;
22 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
23 % G e n e r a l v a r i a b l e s
24 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
25 Fs =25600; %Sample f r e q u e n c y
26 l i m s =1000; %S u p e r i o r l i m i t f o r f r e q u e n c y s p e c t r u m
27 Ancho = 5 . 5 ; %Dimens ions f o r f i g u r e p l o t s
28 Al to = 6 . 2 ;
29 L=6; %Number o f RMS m u l t i p l e s o f RMS f i l t e r
30 t h 1 = 1 . 2 ; %S i g n a l p l o t t h i c k n e s s
31 t h 2 =1; %G u i d e l i n e s p l o t t h i c k n e s s
32 Rat ioExp = 8 7 . 6 ; %Expans ion p a r a m e t e r
33 CompType= ’ a / c o m p r e s s o r ’ ; %Compand t y p e a o r mu / e x p a n d e r o r c o m p r e s s o r
34 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
35 % B e a r i n g d a t a 6204−2Z SKF , deep groove b a l l b e a r i n g
36 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
37 n =8; %Number o f b a l l s
38 BD= 0 . 3 1 2 6 ; %R o l l i n g e l e m e n t d i a m e t e r
39 PD= 1 . 3 1 9 ; %P i t c h d i a m e t e r
40 t h e t a =0; %Angle o f t h e l o a d from r a d i a l p l a n e
41 frm = 3 5 8 5 / 6 0 ; %Roto r speed i n Hz
42 f OD =0.5∗ n∗ frm ∗(1−(BD/ PD) ∗ cos ( t h e t a ) ) ; %BPFO
43 f I D =0.5∗ n∗ frm ∗ ( 1 + (BD/ PD) ∗ cos ( t h e t a ) ) ; %BPFI
44 f CD =0.5∗ frm ∗(1−(BD/ PD) ∗ cos ( t h e t a ) ) ; %FTF
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45 f BD = 0 . 5∗ (PD /BD) ∗ frm ∗(1−(BD/ PD) ˆ2∗ cos ( t h e t a ) ˆ 2 ) ; %BSF
46 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
47 % Data i m p o r t f o r e x p e r i m e n t a l sys tem
48 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
49 Se ns o r =2; %S ens o r s i g n a l : {3= Acc x1 , 4= Acc z2 , 5= Acc z1 , 2=AE}
50 f a u l t =2 ; %F a u l t t y p e : 1 f o r IR , 2 f o r OR, 3 f o r RE , 4 f o r NM
51 t i = 3 . 5 ; %I n i t i a l t ime v a l u e f o r t ime s i g n a l
52 t f = t i + ( 1 0 0 / frm ) ; %F i n a l t ime v a l u e f o r t ime s i g n a l u s i n g 100 r e v o l u t i o n s
53 s w i t c h f a u l t %S e l e c t i o n o f f a u l t f o r i m p o r t d a t a s t r i n g
54 c a s e 1
55 t i t = ’ I n n e r Race ( IR ) @’ ;
56 c a t = ’ IR ’ ;
57 c a s e 2
58 t i t = ’ Oute r Race (OR) @’ ;
59 c a t = ’OR’ ;
60 c a s e 3
61 t i t = ’ B a l l D e f e c t (BD) @’ ;
62 c a t = ’BD’ ;
63 c a s e 4
64 t i t = ’ Normal S t a t e @’ ;
65 c a t = ’NM’ ;
66 end
67 t e s t = ’ 2 ’ ; %S e l e c t i o n o f f a u l t t e s t f o r i m p o r t d a t a s t r i n g
68 ExpSys a rc = s t r c a t ( ’ t e s t 0 0 ’ , num2s t r ( t e s t ) , ’ ’ , c a t , ’ . lvm ’ ) ;%Imp or t d a t a s t r i n g
69 ExpSys= i m p o r t d a t a ( ExpSys a rc ) ; %I mp or t d a t a
70 % % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
71 % Methodology a p p l i c a t i o n f o r v i b r a t i o n
72 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
73 s w i t c h S en so r
74 c a s e {3 , 4 , 5} % V i b r a t i o n s i g n a l s
75 Data=ExpSys ( : , S ens o r ) ; %S e l e c t i o n o f v i b r a t i o n d a t a from s t r u c t u r e
76 Data= R e c o r t a r ( Data , t i , t f , Fs ) ; %Crooped s i g n a l
77

78 [ freqFFT , FFT]= FFT OTP ( Data , Fs ) ; %FFT wi th t r e n d remova l
79 [ freqENV ,ENV]= e n v o l v e n t e T r e n d ( Data , Fs , 2 ) ;%Envelope wi th t r e n d remova l
80 [ freq CPW ,CPW]= cepstrumPWTrend ( Data , Fs , ’ e n v e l o p e ’ ) ; %CPW methodology
81

82 FFT norm= N o r m a l i z a r ( FFT , Fs ) ; %FFT n o r m a l i z a t i o n
83 ENV norm= N o r m a l i z a r (ENV, Fs ) ; %Envelope n o r m a l i z a t i o n
84 CPW norm= N o r m a l i z a r (CPW, Fs ) ; %CPW methodology n o r m a l i z a t i o n
85 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
86 % CPW Methodology compar i son wi th Enve lope and FFT ( v i b r a t i o n )
87 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
88

89 f i g u r e ( ’ u n i t s ’ , ’ i n c h e s ’ , ’ P o s i t i o n ’ , [ 3 0 Ancho ∗1 .75 Al to ∗ 0 . 6 5 ] )
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90 s u b p l o t ( 1 , 3 , 3 )
91 p l o t ( freqFFT , FFT norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ; %FFT p l o t
92 ho ld on ;
93 i =1 ;
94 w h i l e ( i ∗ frm )<l i m s
95 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’ l i n e W i d t h ’ ,

t h 2 ) ; %RPM
96 i = i +1 ;
97 end
98 i =1 ;
99 w h i l e ( i ∗ f I D )<l i m s

100 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’ l i n e W i d t h ’
, t h 2 ) ; %BPFI

101 i = i +1 ;
102 end
103 i =1 ;
104 w h i l e ( i ∗ f BD )<l i m s
105 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BSF
106 i = i +1 ;
107 end
108 i =1 ;
109 w h i l e ( i ∗ f OD )<l i m s
110 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFO
111 i = i +1 ;
112 end
113 ho ld o f f ;
114 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
115 t i t l e ( ’FFT ’ , ’ F o n t S i z e ’ , 1 2 )
116 a x i s ( [ 0 l i m s 0 1 ] )
117

118 s u b p l o t ( 1 , 3 , 1 )
119 p l o t ( freq CPW , CPW norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ; %CPW p l o t
120 ho ld on ;
121 i =1 ;
122 w h i l e ( i ∗ frm )<l i m s
123 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’ l i n e W i d t h ’ ,

t h 2 ) ; %RPM
124 i = i +1 ;
125 end
126 i =1 ;
127 w h i l e ( i ∗ f I D )<l i m s
128 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFI
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129 i = i +1 ;
130 end
131 i =1 ;
132 w h i l e ( i ∗ f BD )<l i m s
133 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BSF
134 i = i +1 ;
135 end
136 i =1 ;
137 w h i l e ( i ∗ f OD )<l i m s
138 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFO
139 i = i +1 ;
140 end
141 ho ld o f f
142 y l a b e l ( ’ Magni tude ( g ) ’ ) ;
143 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
144 t i t l e ( ’CPW Methodology ’ , ’ F o n t S i z e ’ , 1 2 )
145 a x i s ( [ 0 l i m s 0 1 ] )
146

147 s u b p l o t ( 1 , 3 , 2 )
148 p l o t ( freqENV , ENV norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ; % Envelope p l o t
149 ho ld on ;
150 i =1 ;
151 w h i l e ( i ∗ frm )<l i m s
152 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’ l i n e W i d t h ’ ,

t h 2 ) ; %RPM
153 i = i +1 ;
154 end
155 i =1 ;
156 w h i l e ( i ∗ f I D )<l i m s
157 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFI
158 i = i +1 ;
159 end
160 i =1 ;
161 w h i l e ( i ∗ f BD )<l i m s
162 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BSF
163 i = i +1 ;
164 end
165 i =1 ;
166 w h i l e ( i ∗ f OD )<l i m s
167 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFO
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168 i = i +1 ;
169 end
170 ho ld o f f ;
171 t i t l e ( ’ Enve lope ’ , ’ F o n t S i z e ’ , 1 2 )
172 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
173 a x i s ( [ 0 l i m s 0 1 ] )
174 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
175 % Methodology a p p l i c a t i o n f o r AE
176 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
177

178 c a s e 2 %A c o u s t i c e m i s s i o n s i g n a l s
179 Data=ExpSys ( : , S ens o r ) ; %S e l e c t i o n o f s p e c i f i c AE d a t a from s t r u c t u r e
180 Data= R e c o r t a r ( Data , t i , t f , Fs ) ; %Crooped s i g n a l
181 RMS=rms ( Data ) ; %RMS v a l u e o f o r i g i n a l s i g n a l
182

183 g =1; %RMS f i l t e r a p p l i c a t i o n
184 w h i l e g<=( l e n g t h ( Data ) )
185 i f abs ( Data ( g ) )>RMS∗L
186 i f Data ( g )>0
187 Data ( g ) =RMS∗L ;
188 e l s e
189 Data ( g )=−RMS∗L ;
190 end
191 end
192 g=g +1;
193 end
194

195 Data Comp=compand ( Data , Rat ioExp , ( max ( abs (RMS∗L ) ) ) , CompType ) ; %Companding
196 [ freqFFT Comp , FFT Comp ]= FFT OTP ( Data Comp , Fs ) ;%FFT wi th t r e n d remova l
197 [ freqENV Comp , ENV Comp]= e n v o l v e n t e T r e n d ( Data Comp , Fs , 2 ) ; %Envelope wi th

t r e n d remova l
198 [ freq Comp , CPW Comp]= cepstrumPWTrend ( Data Comp , Fs , ’ e n v e l o p e ’ ) ;%CPW

methodology a p p l i c a t i o n
199

200 FFT Comp norm= N o r m a l i z a r ( FFT Comp , Fs ) ; %FFT n o r m a l i z a t i o n
201 ENV Comp norm= N o r m a l i z a r ( ENV Comp , Fs ) ; %Envelope n o r m a l i z a t i o n
202 CPW Comp norm= N o r m a l i z a r (CPW Comp , Fs ) ; %CPW methodology n o r m a l i z a t i o n
203 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
204 % CPW Methodology compar i son wi th Enve lope and FFT (AE)
205 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
206 f i g u r e ( ’ u n i t s ’ , ’ i n c h e s ’ , ’ P o s i t i o n ’ , [ 3 0 Ancho ∗1 .75 Al to ∗ 0 . 6 5 ] )
207 s u b p l o t ( 1 , 3 , 3 )
208 p l o t ( freqFFT Comp , FFT Comp norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ;%FFT p l o t
209 ho ld on ;
210 i =1 ;
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211 w h i l e ( i ∗ frm )<l i m s
212 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’ l i n e W i d t h ’ ,

t h 2 ) ; %RPM
213 i = i +1 ;
214 end
215 i =1 ;
216 w h i l e ( i ∗ f I D )<l i m s
217 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFI
218 i = i +1 ;
219 end
220 i =1 ;
221 w h i l e ( i ∗ f BD )<l i m s
222 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BSF
223 i = i +1 ;
224 end
225 i =1 ;
226 w h i l e ( i ∗ f OD )<l i m s
227 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFO
228 i = i +1 ;
229 end
230 ho ld o f f ;
231 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
232 t i t l e ( ’FFT ’ , ’ F o n t S i z e ’ , 1 2 )
233 a x i s ( [ 0 l i m s 0 1 ] )
234

235 s u b p l o t ( 1 , 3 , 1 )
236 p l o t ( freq Comp , CPW Comp norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ; %CPW p l o t
237 ho ld on ;
238 i =1 ;
239 w h i l e ( i ∗ frm )<l i m s
240 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’ l i n e W i d t h ’ ,

t h 2 ) ; %RPM
241 i = i +1 ;
242 end
243 i =1 ;
244 w h i l e ( i ∗ f I D )<l i m s
245 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFI
246 i = i +1 ;
247 end
248 i =1 ;
249 w h i l e ( i ∗ f BD )<l i m s
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250 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’ l i n e W i d t h ’
, t h 2 ) ; %BSF

251 i = i +1 ;
252 end
253 i =1 ;
254 w h i l e ( i ∗ f OD )<l i m s
255 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFO
256 i = i +1 ;
257 end
258 ho ld o f f
259 y l a b e l ( ’ Magni tude ( Pa ) ’ ) ;
260 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
261 t i t l e ( ’CPW Methodology ’ , ’ F o n t S i z e ’ , 1 2 )
262 a x i s ( [ 0 l i m s 0 1 ] )
263

264 s u b p l o t ( 1 , 3 , 2 )
265 p l o t ( freqENV Comp , ENV Comp norm , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 ) ;%Envelop p l o t
266 ho ld on ;
267 i =1 ;
268 w h i l e ( i ∗ frm )<l i m s
269 p l o t ( [ i ∗ frm i ∗ frm ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’ l i n e W i d t h ’ ,

t h 2 ) ; %RPM
270 i = i +1 ;
271 end
272 i =1 ;
273 w h i l e ( i ∗ f I D )<l i m s
274 p l o t ( [ i ∗ f I D i ∗ f I D ] , [−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 9 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFI
275 i = i +1 ;
276 end
277 i =1 ;
278 w h i l e ( i ∗ f BD )<l i m s
279 p l o t ( [ i ∗ f BD i ∗ f BD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 5 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BSF
280 i = i +1 ;
281 end
282 i =1 ;
283 w h i l e ( i ∗ f OD )<l i m s
284 p l o t ( [ i ∗ f OD i ∗ f OD ] ,[−2 e6 2 e6 ] , ’ L i n e s t y l e ’ , ’−. ’ , ’ Co lo r ’ , co ( 6 , : ) , ’ l i n e W i d t h ’

, t h 2 ) ; %BPFO
285 i = i +1 ;
286 end
287 ho ld o f f ;
288 t i t l e ( ’ Enve lope ’ , ’ F o n t S i z e ’ , 1 2 )
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289 x l a b e l ( ’ F requency ( Hz ) ’ ) ;
290 a x i s ( [ 0 l i m s 0 1 ] )
291 end

The functions used in the codes are:

1 % Oscar Tamayo P . tamayo . osca r@hotma i l . com
2 % This f u n c t i o n t r i m t h e s i g n a l f o r a g i v e n window s i z e ( s )
3 % t = Time v e c t o r
4 % s i g n a l = O r i g i n a l s i g n a l
5 % t i = I n i t i a l t ime ( s )
6 % t f = F i n a l t ime ( s )
7 % Fs = Sampl ing f r e q u e n c y of t h e o r i g i n a l s i g n a l
8 %
9 f u n c t i o n Trim = R e c o r t a r ( s i g n a l , t i , t f , Fs )

10 t = ( 0 : 1 / Fs : ( l e n g t h ( s i g n a l )−1) / Fs ) ;
11 i =1 ;
12 l =1 ;
13 Trim= z e r o s ( 1 , l e n g t h ( s i g n a l ) ) ;
14 w h i l e i<=l e n g t h ( s i g n a l )
15 i f t ( i )>= t i && t ( i )<= t f
16 Trim ( l ) = s i g n a l ( i ) ;
17 l = l +1 ;
18 i = i +1 ;
19 e l s e
20 i = i +1 ;
21 end
22 end
23 r e t u r n

1 % Oscar Tamayo P . tamayo . osca r@hotma i l . com
2 % This f u n c t i o n compute t h e F a s t F o u r i e r Trans fo rm of a s i g n a l
3 % L = l e n g t h o f o r i g i n a l s i g n a l a r r a y
4 % S i g n a l = O r i g i n a l s i g n a l
5 % freqFFT = Frequency a r r a y f o r FFT Spect rum
6 % aux = Two−Sided Ampl i tude FFT Spect rum of t h e s i g n a l
7 % FFT = S i n g l e−Sided Ampl i tude FFT Spect rum of t h e s i g n a l
8 %
9 f u n c t i o n [ freqFFT , FFT]= FFT OTP ( S i g n a l , Fs )

10 L= l e n g t h ( S i g n a l ) ;
11 f reqFFT =Fs ∗ ( 0 : f l o o r ( L / 2 ) ) / L ;
12 aux = abs ( f f t ( S i g n a l ) / L ) ;
13 FFT= aux ( 1 : f l o o r ( L / 2 ) +1) ; FFT ( 2 : end−1) = 2∗FFT ( 2 : end−1) ;
14 r e t u r n

1 % Oscar Tamayo P . tamayo . osca r@hotma i l . com
2 % This f u n c t i o n computes t h e e n v e l o p e o f t h e s i g n a l by two d i f f e r e n t
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3 % methods : B u t t e r w o r t h low p a s s f i l t e r and H i l b e r t Trans fo rm
4 %
5 %F i r s t Method : By u s i n g Low Pass F i l t e r . The S i g n a l i s Squared , P as se d
6 %t h r o u g h LPF and t h e n t a k e n s q u a r e r o o t .
7 %
8 %Second Method : Using H i l b e r t Trans fo rm . H i l b e r t Trans fo rm i s t a k e n u s i n g
9 %t h e i n b u i l t f u n c t i o n i n Mat lab

10 %
11 %f r e q s = Frequency a r r a y f o r r e f e r e n c e
12 %Xmag es = Enve lope s p e c t r u m
13 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
14 f u n c t i o n [ f r e q s , Xmag es ]= e n v o l v e n t e T r e n d ( s i g n a l , Fs , method )
15 n = l e n g t h ( s i g n a l ) ; % Length o f s i g n a l
16 NFFT = 2ˆ nextpow2 ( n / 1 ) ; % Next power o f 2 from l e n g t h o f y
17 f r e q s = Fs / 2∗ l i n s p a c e ( 0 , 1 , NFFT / 2 + 1 ) ; % Frequency a r r a y
18

19 s w i t c h method
20 c a s e 1 %Low Pass F i l t e r
21 %Envelope D e t e c t i o n based on Low p a s s f i l t e r and t h e n FFT
22 [ a , b ]= b u t t e r ( 2 , 0 . 1 ) ; %B u t t e r w o r t h F i l t e r o f 2 p o l e s and Wn=0.1
23 s i g s q =2∗ s i g n a l . ∗ s i g n a l ; % S q u a r i n g f o r r e c t i f i n g
24 %g a i n o f 2 f o r m a i n t i a n i n g t h e same e n e r gy i n t h e o u t p u t
25 y s q = f i l t e r ( a , b , s i g s q ) ; %Apply ing LPF
26 y1= s q r t ( y s q ) ; %Taking Square r o o t
27 t = ( 0 : 1 / Fs : ( l e n g t h ( y1 )−1) / Fs ) ; %Time a r r a y f o r t r e n d remova l
28 po ly = f i t ( t ’ , y1 ’ , ’ po ly1 ’ ) ; %Trend f i t u s i n g p o l y n o m i a l approx
29 t r e n d = po ly . p1∗ t + po ly . p2 ; %Trend of 2nd o r d e r
30 y2=y1−t r e n d ; %S u b t r a c t i o n o f t r e n d o f t h e s i g n a l
31 X es = f f t ( y2 , NFFT) ; % FFT a p p l i c a t i o n
32 Xmag es =2∗ abs ( X es ( 1 : NFFT / 2 + 1 ) / n ) ;%S i n g l e−Sided Ampl i tude FFT Spect rum
33

34

35 c a s e 2 %H i l b e r t Trans fo rm
36 %Envelope D e t e c t i o n based on H i l b e r t Trans fo rm and t h e n FFT
37 a n a l y = h i l b e r t ( s i g n a l ) ; %I n b u i l t f u n c t i o n f o r H i l b e r t t r a n s f o r m
38 y1= abs ( a n a l y + s i g n a l ) ; %Sum of t h e c h a r a c t e r i s t i c f u n c t i o n wi th
39 %o r i g i n a l
40 t = ( 0 : 1 / Fs : ( l e n g t h ( y1 )−1) / Fs ) ; %Time a r r a y f o r t r e n d remova l
41 po ly = f i t ( t ’ , y1 ’ , ’ po ly1 ’ ) ; %Trend f i t u s i n g p o l y n o m i a l approx
42 t r e n d = po ly . p1∗ t + po ly . p2 ; %Trend of 2nd o r d e r
43 y2=y1−t r e n d ; %S u b t r a c t i o n o f t r e n d o f t h e s i g n a l
44 X es = f f t ( y2 , NFFT) ; % FFT a p p l i c a t i o n
45 Xmag es =2∗ abs ( X es ( 1 : NFFT / 2 + 1 ) / n ) ; %S i n g l e−Sided FFT Spect rum
46 end
47 end
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1 % Oscar Tamayo P . tamayo . osca r@hotma i l . com
2 % This f u n c t i o n computes t h e Cepstrum p r e w h i t e n i n g p r e p r o c e s s i n g o f t h e
3 % s i g n a l w i th two f r e q u e n c y s p e c t r u m t e c h n i q u e s : FFT and Envelope u s i n g
4 % H i l b e r t Trans fo rm
5 %
6 % f r e q s = Frequency a r r a y f o r r e f e r e n c e
7 % CPW spectrum = CPW f r e q u e n c y s p e c t r u m
8 % CPW time = Time s i g n a l w i th CPW p r o c e s s i n g done
9 % / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

10 f u n c t i o n [ f r e q s , CPW spectrum , CPW time ]= cepstrumPWTrend ( s i g n a l , Fs , method )
11

12 esp = f f t ( s i g n a l ) ; %Cepstrum Pre Whi ten ing p r e p r o c e s s i n g
13 CPW time = i f f t ( e sp . / abs ( esp ) ) ; %CPW= i f f t ( f f t ( s ) / | f f t ( s ) | )
14

15 n = l e n g t h ( s i g n a l ) ; % Length o f s i g n a l
16 NFFT = 2ˆ nextpow2 ( n / 1 ) ; % Next power o f 2 from l e n g t h o f y
17 f r e q s = Fs / 2∗ l i n s p a c e ( 0 , 1 , NFFT / 2 + 1 ) ; % Frequency a r r a y
18

19 s w i t c h method
20 c a s e ’FFT ’ %CPW + FFT
21 X = f f t ( CPW time , NFFT) ; %FFT a p p l i c a t i o n
22 CPW spectrum =2∗ abs (X( 1 : NFFT / 2 + 1 ) / n ) ; %S i n g l e−Sided FFT Spect rum
23

24 c a s e ’ e n v e l o p e ’ %CPW + Envelope
25 a n a l y = h i l b e r t ( CPW time ) ; %I n b u i l t f u n c t i o n f o r H i l b e r t t r a n s f o r m
26 y1= abs ( a n a l y +CPW time ) ; %Sum of t h e c h a r a c t e r i s t i c f u n c t i o n wi th
27 %o r i g i n a l
28 t = ( 0 : 1 / Fs : ( l e n g t h ( y1 )−1) / Fs ) ; %Time a r r a y f o r t r e n d remova l
29 po ly = f i t ( t ’ , y1 ’ , ’ po ly1 ’ ) ; %Trend f i t u s i n g p o l y n o m i a l approx
30 t r e n d = po ly . p1∗ t + po ly . p2 ; %Trend of 2nd o r d e r
31 y2=y1−t r e n d ; %S u b t r a c t i o n o f t r e n d o f t h e s i g n a l
32 X es = f f t ( y2 , NFFT) ; % FFT a p p l i c a t i o n
33 CPW spectrum =2∗ abs ( X es ( 1 : NFFT / 2 + 1 ) / n ) ; %S i n g l e−Sided FFT Spect rum
34

35 end
36 end
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Diagnóstico de Fallas en Husillos usando la
Transformada Rápida de Fourier ?
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Abstract: El monitoreo de la condición de una máquina es indispensable en los centros
de mecanizado para administrar el mantenimiento preventivo/correctivo. La calidad y la
eficiencia dependen de las condiciones del husillo. Se presenta un análisis detallado de los
métodos Transformada Rápida de Fourier, Transformada Corta de Fourier, usando una
ventana Hanning con 50% de traslape y Pre-blanqueamiento del Cepstrum para la detección
de fallas en los rodamientos de un husillo. La propuesta permite la detección de fallas del
elemento rodante, de la pista interna y externa con buena precisión.

Keywords: Diagnóstico Fallas, Vibraciones, Husillos, Transformada Rápida de Fourier

1. INTRODUCCIÓN

En las industrias manufactureras que cuentan con centros
de mecanizado, la confiabilidad es muy importante, no
es suficiente lograr una alta disponibilidad, sino también
mı́nimizar la probabilidad de falla en las máquinas
cŕıticas, es decir, lograr una alta confiabilidad.

Las consecuencias de una falla pueden ir desde la pérdida
de producción, horas-hombre de operación infruct́ıferas,
hasta la degradación y daño de las propias máquinas.
Una gran disponibilidad no implica una gran confiabili-
dad, pero una gran confiabilidad śı involucra una buena
disponibilidad y seguridad.

Teniendo en cuenta que la calidad de las piezas de los
centros de mecanizado depende de su precisión dimen-
sional, y ésta a su vez, no solo depende de la máquina
herramienta, sino también de la condición del husillo.

Un sistema de monitoreo del husillo en tiempo real,
además del reconocimiento temprano de las fallas, re-
duciŕıa notablemente el número de piezas defectuosas y
el posible tiempo de paro.

Existen dos grandes tipos de sistemas de monitoreo de
husillos: los sistemas que miden con contacto f́ısico y los
que no. Los acelerómetros son un ejemplo del primer tipo,
los sistemas ópticos y acústicos son ejemplos del segundo
tipo.

Se presentará un análisis de las señales de vibración de
rodamientos de un husillo usando algoritmos basados en
la Transformada Rápida de Fourier (FFT, Fast Fourier
Transform), Transformada Corta de Fourier (STFT,
Short Time Fourier Transform) y Cepstrum para de-

? Los autores agradecen al Tecnológico de Monterrey y CONACyT
por su apoyo parcial.

tección/diagnóstico de fallas. La Tabla 1 resume los
acrónimos utilizados.

La FFT es uno de los métodos de análisis de frecuencia
más utilizado en el diagnóstico de fallas en equipos rota-
tivos, por su capacidad de analizar señales transitorias
y obtener información en el dominio de la frecuencia.
Estas señales son generalmente vibraciones o emisiones
acústicas las cuales encubren las fallas de la máquina. La
FFT se basa en la Transformada Discreta de Fourier
(DFT, Discrete Fourier Transform), siendo FFT una
versión más eficiente de DFT. Esta versión de la DFT
cuando la señal es discreta y finita, corresponde a las
series de Fourier en que la transformada directa se divide
por la longitud de la señal N para proporcionar com-
ponentes de la serie de Fourier correctamente escalados.
Si se usa DFT en señales transitorias o estacionarias
aleatorias, se debe ajustar el escalamiento siguiendo el
criterio de Nyquist, Randall (2011).

Otro enfoque para analizar señales de vibración y/o de
emisión acústica es la Transformada de Tiempo Corto
de Fourier (STFT, Short Time Fourier Transform), la
cual es ampliamente utilizada debido a su capacidad para
analizar señales no estacionarias, Li (2002). Tradicional-
mente, se utilizan las distribuciones tiempo-frecuencia
para revelar los patrones de falla de rodamientos, que
representan la enerǵıa de las señales en las funciones
bidimensionales de tiempo y frecuencia. La STFT es una
de las distribuciones de tiempo-frecuencia más populares.
La idea básica es dividir la señal en segmentos con una
ventana de tiempo corto, y luego aplicar FFT a cada
segmento. La STFT de una señal es:

XSTFT (w) =
∞∑

n=0

x(n)h(n−mR)e−jwn (1)
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