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This paper compares stiffness degradation models of cross-ply glass fiber/epoxy laminates based on four of the most commonly
used approaches to micromechanical modelling: shear-lag, variational, McCartney, and synergistic damage mechanics (SDM). All
of these include the process of defining [0/90]s laminate unit cell, from which governing differential equations and corresponding
boundary conditions are stated. Afterwards, these boundary value problems (BVP) are solved in order to obtain a stress
function which couples the initial and perturbation stresses, the latter being in function of crack density, thus related to material
stiffness reduction. When compared against experimental results, shear-lag model presented accurate results however, additional
differentiation and integration steps were required in order to obtain the final stress field. Hashin’s variational method predicts
correctly the boundary conditions at crack surfaces and gives out the complete stress field. McCartney’s approach shows further
improvement over the previous two models, taking into account thermal strains and stresses. Finally, SDM, which is designed for
numerical experimentation, implying a more economical alternative in comparison to traditional physical experimentation, also
presented very good agreement with experimental results and can be extended to arbitrary laminate stackings, going beyond the
classical cross-ply.

1. Introduction

Composite laminates have found increased use inmechanical
applications over the last years, especially in areas related to
aerospace, civil, and mechanical systems. Efforts have been
particularly intense on damage assessment of large composite
structures.There aremanymodels such as the ones developed
by Shokrieh [1] that focus on the degradation of mechanical
properties, relying on experimental curve fits which do not
necessarily have a direct physical interpretation. This can
represent a large obstacle for understanding the mechanisms
of onset and propagation of damage over a component or
structure.

Of these damagemodes, matrix cracking has received the
most attention, followed by delamination. After the material
reaches certain level of crack density, there is progressively
less space for transverse crack formation. This phenomenon
is known as crack saturation [2] and the corresponding

density is known as Characteristic Damage State (CDS), but
before this happens, delamination may occur. Delamination
[3] is the mechanism of separation between plies caused by
an interfacial weakening partially due to previously formed
intralaminar cracks. Delamination proves to be more catas-
trophic than matrix cracking, because it could render the
structure useless in a short amount of time driving it to failure
[4].

Matrix cracking in 90-degree plies was first studied
by Reifsneider [5], who experimentally investigated this
phenomenon on [0/±45/90]s laminates subjected to uniaxial
quasistatic and cyclic tests. Although practical, physical
experiments can become relatively expensive when less
assumption is considered, especially when compared with
ever-increasing computer capacity [6].

The first micromechanical model was shear-lag, intro-
duced by Garrett and Bailey [7–9] and significantly improved
by Cox [10]. Shear-lag model relies on the basic principle that
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Figure 1: Unit cell for shear-load and variational methods. (a) Geometry. (b) Equilibrium. The crack is supposed to span all the laminate
width, adapted from [12, 14].

relaxed stresses arising from the formation of intralaminar
cracks transfer to ply interface [11] in form of shear stress,
increasing in turn the occurrence of delamination. In the
present review, Berthelot complete parabolic shear-lag model
is used [12], which means a parabolic variation of axial dis-
placement is introduced for both 0- and 90-degree layers (see
(1a)-(1b)).Then, corresponding stress functions are obtained,
which ultimately translate into stress accumulation and
degradationmechanical properties, particularly stiffness [13].

Another family of micromechanical approaches is pro-
posed by Hashin [14] who proposes a variational stress-
perturbation function, departing from crack-free stress state.
In order to achieve this, Hashin applied the minimum
complementary energy principle and optimized it. Subse-
quently, the total stress field (crack-free plus perturbation)
was recovered for cross-ply (0/90m)s laminates. Similar to
the first approach, the stresses formed cracks, which in turn
translated inmaterial degradation, chiefly stiffness reduction.
Hashin’s variational analysis has become a seminal work in
the field of micromechanical damage analysis on composite
materials [14]. For example, it has been used and adapted
for predicting fatigue [15], random crack growth [16], and
delamination [17].Thereafter, McCartney [18] introduced his
model based on Hashin’s variational approach and classical
elasticity, presenting three novelties: inclusion of the thermal
expansion strains, explicit expressions for displacements, and
a further expansion to three-dimensional stress evaluation
that will not be reviewed in this work.

Continuum damage mechanics (CDM) is another family
that has become more commonplace in literature over the
last years due to increased computational capacity. These
models are based on updating stiffness matrices in function
of crack opening displacement (COD) or density. Their
scheme may be iterative, such as the so-called self-consistent
methods [19, 20] and the proposed by Barbero [21–23],
or departing from an initial set of real-life [24] or virtual
finite element simulations such as the Synergistic Damage
Mechanics (SDM) model presented by Singh and Talreja
[25–27], which expanded the scope of micromechanical
modelling to laminates other than cross-ply.

Driven by aerospace and wind energy applications in
which other laminate configurations such as the [0/±45/90]s

are preferred, recent models such as the ones proposed by
Hajikazemi [28] and Adumitroaie [29] have also expanded to
laminates other than cross-ply. However, as these models are
usually extensions of previous models (Hashin’s variational
for the case ofHajikazemi’smodel and SDMforAdumitroaie’s
model), the main goal of this work is drawing a com-
parison between these four approaches (shear-lag, Hashin’s
variational, McCartney, and SDM) and highlighting the
advantages and setbacks for each one. This comparison will
be helpful for selecting the most appropriate matrix cracking
approach for future works related to damage propagation
in fiber-reinforced polymers for different applications. The
nomenclature used throughout the article is summarized in
the Nomenclature.

2. Models

2.1. Shear-Lag Model. As mentioned above, the shear-lag
models were the first approaches on intralaminar cracking.
The basic governing principle consists in stress redistribution
along the loading direction causing an increase in interfacial
shear-load due to crack onset. The basic unit cell is shown in
Figure 1, representing a symmetric (0/90)s laminate element
composed of two 0∘-degree outer plies of thickness 𝑡0 and a
90∘-degree inner ply of thickness 𝑡90. Total laminate thickness
is thus ℎ = 2(𝑡0 + 𝑡90). In addition, 𝑥 is loading direction, 2𝑙
is crack spacing, and ply interface is located along coordinate𝑧 = 𝑡90.

Shear-lag model is considerably simple compared to the
other approaches presented below because of the following
assumptions: (a) plane stress and (b) longitudinal stresses 𝜎𝑥𝑥
are assumed to be uniform across the thickness of 0∘ and 90∘
plies and (c) the tensile load applied to 0∘ plies is considered
to be transmitted into the 90∘ ply by shear of the transverse
ply [12].

However, these assumptions may compromise the accu-
racy of the model. For this reason, Berthelot [12] introduced
parabolic profiles for 𝑥-direction displacements in 0- and 90-
degree plies.

𝑢0 (𝑥, 𝑧) = 𝐴0 (𝑥) 𝑧2 + 𝐵0 (𝑥) 𝑧 + 𝐶0 (𝑥) (1a)

𝑢90 (𝑥, 𝑧) = 𝐴90 (𝑥) 𝑧2 + 𝐵90 (𝑥) 𝑧 + 𝐶90 (𝑥) , (1b)
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Table 1: Comparison of boundary conditions of the four models analyzed in the present article.

Boundary conditions governing shear lag model [12]
(i) Traction free crack surfaces 𝜎90𝑥𝑥 (𝑙) = 0
(ii) Interlaminar shear stress symmetry condition 𝜏 (0) = 0

Boundary conditions governing variational model [14]
(i) Symmetry 𝜎90𝑥𝑧 (𝑥, 0) = 0
(ii) Traction continuity 𝜎90𝑥𝑧 (𝑥, 𝑡90) = 𝜎0𝑥𝑧 (𝑥, 𝑡90)𝜎90𝑧𝑧 (𝑥, 𝑡90) = 𝜎0𝑧𝑧 (𝑥, 𝑡90)
(iii) Traction-free end 𝜎0𝑥𝑧 (𝑥, ℎ) = 0

𝜎0𝑧𝑧 (𝑥, ℎ) = 0
(iv) Traction-free crack surfaces 𝜎90𝑥𝑥 (±𝑎, 𝑧) = −𝜎90𝜎90𝑥𝑧 (±𝑎, 𝑧) = 0

Boundary conditions governing McCartney model [18]

(i) Perfect interlaminar bonding 𝜎𝑚𝑥𝑥 = 𝜎𝑓𝑥𝑥, 𝜎𝑚𝑥𝑦 = 𝜎𝑓𝑥𝑦@𝑥 = 𝑎, 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 ≤ 𝐿
𝑢𝑚 = 𝑢𝑓, V𝑚 = V𝑓@𝑥 = 𝑎, 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 ≤ 𝐿

(ii) Stress-free external surface of outer plies 𝜎𝑓𝑥𝑥 = 0, 𝜎𝑓𝑥𝑦 = 0@𝑥 = ℎ, 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 ≤ 𝐿
(iii) Symmetry about 𝑦-axis 𝜎𝑚𝑥𝑦 = 0, 𝑢𝑚 = 0@𝑥 = 0, 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 ≤ 𝐿
(iv) Symmetry about 𝑥-axis 𝜎𝑚𝑥𝑦 = 0, V𝑚 = 0@𝑦 = 0, 0 ≤ 𝑥 ≤ 𝑎

𝜎𝑓𝑥𝑦 = 0, V𝑓 = 0@𝑦 = 0, 𝑎 ≤ 𝑥 ≤ ℎ
(v) Stress-free crack surface 𝜎𝑚𝑦𝑦 = 0, 𝜎𝑚𝑥𝑦 = 0@𝑦 = 𝐿, 0 ≤ 𝑥 ≤ 𝑎
(vi) Bridging outer plies 𝜎𝑓𝑥𝑦 = 0@𝑦 = 𝐿, 𝑎 ≤ 𝑥 ≤ ℎ

V𝑓 = 𝐿𝜖𝑥@𝑦 = 𝐿, 𝑎 ≤ 𝑥 ≤ ℎ
Boundary conditions governing SDM model [25]

(i) Symmetry about midplane 𝑤 = 0@𝑧 = 0
(ii) Displacement condition at right face 𝑢 = 𝑢0@𝑥 = 2𝑙 = 𝑠𝛼
(iii) Fixture at left face 𝑢 = 0@𝑥 = 0

where𝐴,𝐵, and𝐶 are integration constants.These profiles are
then introduced within the framework of classic equations
for elasticity: first kinematics (strain-displacement), then
compliance, and finally equilibrium within the unit cell
shown in Figure 1(b) [12].

𝜕𝜎90𝑥𝑥𝜕𝑥 + 𝜕𝜎90𝑥𝑧𝜕𝑧 = 0. (2)

This produces the boundary value problem (BVP) with
governing equation in terms of average longitudinal stress in
the 90-degree layer (𝜎90𝑥𝑥)

𝑑2𝜎90𝑥𝑥𝑑𝑥2 − 𝜆2𝜎90𝑥𝑥 = −𝜆2𝐸22𝐸0𝑥 𝜎𝑐, (3a)

where 𝜆2 = 3𝐺0𝑥𝑦(𝑡0 + 𝑡90)𝐸0𝑥/𝑡290𝑡0𝐸11𝐸22, and the laminate
stiffness constants for shear𝐺0𝑥𝑦 = 𝐺23/(1+𝑡0𝐺23/𝑡90𝐺12) and
Young’s modulus 𝐸0𝑥 = (𝑡0𝐸11 + 𝑡90𝐸22)/(𝑡0 + 𝑡90), subject to a
global load 𝜎𝑐.

This governing equation is subject to the boundary
conditions (BCs) shown in Table 1.

Thus, the complete solution for 𝑥-direction stress field in
0-degree and 90-degree plies is given out by

𝜎90𝑥𝑥 (𝑥) = 𝜎𝑐𝐸22𝐸0𝑥 (1 −
cosh 𝜂𝑎 (𝑥/𝑙)

cosh 𝜂𝑎 ) (4a)

𝜎0𝑥𝑥 (𝑥) = 𝜎𝑐𝐸11𝐸0𝑥 (1 +
𝑡90𝑡0

𝐸22𝐸11
cosh 𝜂𝑎 (𝑥/𝑙)

cosh 𝜂𝑎 ) (4b)

𝜎0𝑥𝑥 (𝑥, 𝑧) = 𝜎0𝑥𝑥 (𝑥) − 𝜎𝑐 𝐸112𝐺12
𝐸22𝐸0𝑥

𝑡90𝑡0
⋅ 𝜂2 [( 𝑧𝑡90)

2 − 2 (1 + 𝛼) 𝑧𝑡90 +
23𝛼2 + 2𝛼 + 1]

⋅ cosh 𝜂𝑎 (𝑥/𝑙)
cosh 𝜂𝑎

(4c)

𝜎90𝑥𝑥 (𝑥, 𝑧) = 𝜎90𝑥𝑥 (𝑥) + 𝜎𝑐 𝐸2222𝐺23𝐸0𝑥 𝜂
2 [( 𝑧𝑡90)

2 − 13]
⋅ cosh 𝜂𝑎 (𝑥/𝑙)

cosh 𝜂𝑎
(4d)
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𝑎 = 𝑙𝑡90 (4e)

𝜂2 = 𝜆2𝑡290 = 3𝐺0𝑥𝑦 (𝑡0 + 𝑡90) 𝐸0𝑥𝑡0𝐸11𝐸22 (4f)

𝛼 = 𝑡0𝑡90 , (4g)

where (4e) expresses the aspect ratio 𝑎. This parameter is
of great importance as it reflects the relationship of crack
spacing to ply thickness, having a profound impact on the
degradation model. Meanwhile, (4g) shows the stacking
parameter 𝛼. Shear-lag method calculates in a straightfor-
ward fashion the interfacial shear-load that may be applied
later to delamination models. The complete model for inter-
laminar shear stress is also obtained as follows:

𝜏 (𝑥) = 𝜎𝑐𝐸22𝐸11 𝜂
sinh 𝜂𝑎 (𝑥/𝑙)
cosh 𝜂𝑎 . (5)

The shear stress field is obtained introducing (4c)-(4d)
into (2) and solving for 𝜎𝑥𝑧. Subsequently the 𝑧-direction
axial stress field is obtained introducing this solution into
equilibrium equation (6) and solving for 𝜎𝑧𝑧.This procedure
is repeated for the 0-degree ply.

𝜕𝜎90𝑥𝑧𝜕𝑥 + 𝜕𝜎90𝑧𝑧𝜕𝑧 = 0. (6)

Finally, these stresses have an effect on the material, which is
reflected in degradation rules such as the stiffness reduction
formula obtained by Ogin [13]:

𝐸𝑥𝐸0𝑥 =
11 + (𝑡90/𝑡0) (𝐸22/𝐸11) (1/𝜂𝑎) tanh 𝜂𝑎 . (7)

2.2. Variational Method. In 1985, Hashin proposed another
approach to solve the crack problem in a cross-ply laminate,
already shown in Figure 1. The variational method is an
energetic approach that consists in posing an internal energy
formulation for a perturbation stress, which is considered
a variation from the intact material stress, caused by crack
onset. Because this is an equilibrium situation, total energy
change is considered near zero, with this method being
therefore soundly based on virtual work statics.

The assumptions taken for this approach are as follows:

(i) The normal stress in external load direction is con-
stant over ply thickness.

(ii) Shear stresses develop only within a boundary layer
of unknown thickness in between plies.

(iii) Cracks remain sufficiently far apart so that their
mutual interaction can be neglected.

Said this, the stresses in the cracked laminate are

𝜎𝑚𝑖𝑗 = 𝜎𝑚𝑖𝑗,0 + 𝜎𝑚𝑖𝑗,𝑝, (8)

where 𝑖, 𝑗 subscripts stand for 𝑥, 𝑧 direction of the stresses.
The index 𝑚 represents the ply, whether 0- or 90-degree.

Finally, the subscript 0 represents the stress of the intact
matrix and 𝑝, the perturbation stress generated by the crack.
After applying the equilibrium equations obtained from basic
elasticity over the region illustrated in Figure 1 and the
boundary conditions listed in Table 1, the perturbation stress
field in terms of intact 90-degree ply stress (𝜎90) is found out.

𝜎0𝑥𝑥,𝑝 (𝑥, 𝑧) = −𝜎90𝜙 (𝑥) (9a)

𝜎0𝑥𝑧,𝑝 (𝑥, 𝑧) = 𝜎90𝜙󸀠 (𝑥) 𝑧 (9b)

𝜎0𝑧𝑧,𝑝 (𝑥, 𝑧) = 𝜎90𝜙󸀠󸀠 (𝑥) 12 (ℎ𝑡90 − 𝑧2) (9c)

𝜎90𝑥𝑥,𝑝 (𝑥, 𝑧) = 𝜎90 (𝑡90𝑡0 )𝜙 (𝑥) (9d)

𝜎90𝑥𝑧,𝑝 (𝑥, 𝑧) = 𝜎90 (𝑡90𝑡0 )𝜙󸀠 (𝑥) (ℎ − 𝑧) (9e)

𝜎90𝑧𝑧,𝑝 (𝑥, 𝑧) = 𝜎90 (𝑡90𝑡0 )𝜙󸀠󸀠 (𝑥)
12 (ℎ − 𝑧)2 , (9f)

where the perturbation function 𝜙(𝑥) is evaluated by the
following formulation, provided that in most epoxy/carbon
materials, 4𝑞 > 𝑝2:

𝜙 = 𝐴1 cosh𝛼1𝜉 cos𝛼2𝜉 + 𝐴2 sinh𝛼1𝜉 sin𝛼2𝜉 (10a)

𝜉 = 𝑥𝑡90 (10b)

𝐴1 = 2 (𝛼1 cosh𝛼1𝑎 sin𝛼2𝑎 + 𝛼2 sinh𝛼1𝑎 cos𝛼2𝑎)𝛼1 sin 2𝛼2𝑎 + 𝛼2 sinh 2𝛼1𝑎 (10c)

𝐴2 = 2 (𝛼2 cosh𝛼1𝑎 sin𝛼2𝑎 − 𝛼1 sinh𝛼1𝑎 cos𝛼2𝑎)𝛼1 sin 2𝛼2𝑎 + 𝛼2 sinh 2𝛼1𝑎 , (10d)

where 𝛼1 = 𝑞1/4 cos(1/2)Θ, 𝛼2 = 𝑞1/4 sin(1/2)Θ, and tanΘ =
√4𝑞/𝑝2 − 1.Thematerial constants 𝑝 and 𝑞may be evaluated
as follows:

𝑝 = 𝐶02 − 𝐶11𝐶22 ;
𝑞 = 𝐶00𝐶22

(11a)

𝐶00 = 1𝐸22 +
1𝛼𝐸11 ;

𝐶02 = ( ]23𝐸22)(𝛼 +
23) − ]12𝛼3𝐸11

(11b)

𝐶22 = (𝛼 + 1) (3𝛼2 + 12𝛼 + 8)
60𝐸22 ;

𝐶11 = 13 ( 1𝐺23 +
𝛼𝐺12) .

(11c)

For the equations governing case 4𝑞 < 𝑝2, the reader is
referred to Talreja [11]. As in the previous method, a stress
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Figure 2: (a) Unit cell used to derive the equations of the McCartney model. (b) Coordinates for boundary conditions shown in Table 1.
Adapted from [18].

field is recovered and then applied in a degradation rule that
has an effect on material’s elasticity.

1𝐸𝑥 =
1𝐸0𝑥 +

1𝐸22 𝑘21
𝜇 (𝛼)𝑎 𝜒 (𝑎) , (12a)

where 𝑘1 = 𝜎90/𝜎𝑐 and is obtained from traditional laminate
analysis. The other functions are evaluated as follows:

𝜒 (𝑎) = −𝜙󸀠󸀠󸀠 (𝜉 = 𝑎) (12b)

𝜇 (𝛼) = (3𝛼2 + 12𝛼 + 8)
60 . (12c)

Finally, it is important to take into account the fact that this
formulation is only applicable to equally spaced cracks. If
the separation is arbitrary, a probabilistic distribution such
as those used by Vinogradov [16] must be used.

2.3. McCartney Method. McCartney proposed another ana-
lytical method in 1992 [18]. Similar to variational approach,
the method models the same phenomenon by optimizing
an energetic expression. As in the previous two models,
it only considers cross-ply laminates. Nevertheless, there
are three noteworthy novelties. First of all, components of
thermal expansion are taken into account for stain and
stress modelling. Then, even though precision is similar
to Hashin, McCartney model includes explicit expressions
for displacement field. Finally, in contrast to shear-lag, the
McCartney model satisfies exactly a more comprehensive set
of boundary conditions. The basic unit cell of the laminate

between two cracks, subjected to uniaxial stress, is shown in
Figure 2(a).

Then, from basic elasticity and including thermal strains,
the field equations for generalized plane strain conditions are
expressed by

𝜕𝜎𝑥𝑥𝜕𝑥 + 𝜕𝜎𝑥𝑧𝜕𝑧 = 0,
𝜕𝜎𝑥𝑧𝜕𝑥 + 𝜕𝜎𝑧𝑧𝜕𝑧 = 0

𝜖𝑥𝑥 = − ]󸀠12𝐸󸀠11 𝜎𝑧𝑧 +
1𝐸󸀠11 𝜎𝑥𝑥 + 𝛼

󸀠
𝐴Δ𝑇

− ]12
𝐸22𝐸11 𝜖∗𝑐 =

𝜕𝑢𝜕𝑥
𝜖𝑧𝑧 = 1𝐸󸀠22 𝜎𝑧𝑧 −

]󸀠12𝐸󸀠11 𝜎𝑥𝑥 + 𝛼
󸀠
𝑇Δ𝑇 − ]23𝜖∗𝑐

= 𝜕𝑤𝜕𝑧
𝜖𝑥𝑧 = 𝜎𝑥𝑧2𝐺12 =

12 (𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑥 ) .

(13)

It is important to keep in mind that (13) actually represents
two sets of equations, one for outer 0-degree plies and another
one for inner 90-degree plies. Engineering elastic constants
that feature an apostrophe are the modified moduli, which
are shown in more details in [18]. The original moduli
appear with no apostrophe. Finally, the development for the
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uniform transverse strain in the cracked laminate 𝜖∗𝑐 is also
shown in the referred paper. Assuming perfect interlaminar
bonding, McCartney model is governed by the boundary
conditions shown in Table 1 (cf. Figure 2(b)), where 𝜖𝑐 is the
longitudinal strain experienced by the cracked composite and
is also explained in further details in [18]. Now, assume that
longitudinal stress components 𝜎0𝑥𝑥 and 𝜎90𝑥𝑥 are independent
of 𝑧 and are of the form

𝜎0𝑥𝑥 = 𝐶 (𝑥) + 𝐸󸀠11 (𝜖 + V12
𝐸22𝐸11 𝜖∗ − 𝛼󸀠𝐴Δ𝑇)

= 𝐶 (𝑥) + 𝜎0
𝜎90𝑥𝑥 = − 𝑡0𝑡90𝐶 (𝑦) + 𝐸󸀠22 (𝜖 + V12𝜖∗ − 𝛼󸀠𝑇Δ𝑇)

= − 𝑡0𝑡90𝐶 (𝑥) + 𝜎90,

(14)

where 𝜖 and 𝜖∗ are the corresponding longitudinal and
transverse strains for the undamaged laminate. We now
proceed to introduce (14) in field (1a) and (1b) with boundary
conditions (Table 1) in order to obtain the following stress
field:

𝜎0𝑥𝑧 = 𝐶󸀠 (𝑥) (ℎ − 𝑧)
𝜎0𝑧𝑧 = 12𝐶󸀠󸀠 (𝑥) (ℎ − 𝑧)2
𝜎90𝑥𝑧 = 𝑡0𝑡90𝐶󸀠 (𝑥) 𝑧
𝜎90𝑧𝑧 = 12 𝑡0𝑡90𝐶󸀠󸀠 (𝑥) (ℎ𝑡90 − 𝑧2) .

(15)

It is interesting to note the similarities between (10a), (10b),
(10c), and (10d) from Hashin and (14) and (15) fromMcCart-
ney. Now, the corresponding displacement field (16a), (16b),
(16c), and (16d) is obtained

𝑤90 = 𝑡0𝑡90
V󸀠23𝐸󸀠22𝐶 (𝑥) 𝑧 −

16 𝑡0𝑡90
1𝐸󸀠22𝐶
󸀠󸀠 (𝑥) 𝑧 (𝑧2

− 3𝑡90ℎ) − ( V󸀠23𝐸󸀠22 𝜎90 − 𝛼
󸀠
𝑇Δ𝑇 + V12𝜖∗)𝑧

(16a)

𝑤0 = [ V󸀠23𝐸󸀠22 𝑡0 −
V󸀠12𝐸󸀠11 (𝑧 − 𝑡90)]𝐶 (𝑥)

+ { 16𝐸󸀠22 [𝑡
3
0 − (ℎ − 𝑧)3] + 13𝐸󸀠22 𝑡0𝑡90 (ℎ +

12𝑡0)}
⋅ 𝐶󸀠󸀠 (𝑥) − ( V󸀠12𝐸󸀠11 𝜎0 − 𝛼

󸀠
𝑇Δ𝑇 + V23𝜖∗) (𝑧 − 𝑡90)

− ( V󸀠23𝐸󸀠22 𝜎90 − 𝛼
󸀠
𝑇Δ𝑇 + V12𝜖∗) 𝑡90

(16b)

𝑢0 = { V󸀠122𝐸󸀠11 (𝑧 − 𝑡90)
2 − V󸀠23𝐸󸀠22 𝑡0 (𝑧 − 𝑡90)

− 12𝐺12 [(𝑧 − ℎ)2 − 𝑡20]}𝐶󸀠 (𝑥)
− { 124𝐸󸀠22 [(𝑧 − ℎ)

4 + 4𝑡30 (𝑧 − 𝑡90) − 𝑡40]
+ 13𝐸󸀠22 𝑡0𝑡90 (ℎ +

12𝑡0) (𝑧 − 𝑡90)}𝐶󸀠󸀠󸀠 (𝑥) + 𝐴 (𝑥)

(16c)

𝑢90 = 𝑡02𝑡90 (
1𝐺23 −

V󸀠23𝐸󸀠22)(𝑧
2 − 𝑡290) 𝐶󸀠 (𝑥) + 124𝐸󸀠22

⋅ 𝑡0𝑡90 [𝑧4 − 𝑡490 − 6𝑡90ℎ (𝑧2 − 𝑡290)] 𝐶󸀠󸀠󸀠 (𝑥) + 𝐴 (𝑥) ,
(16d)

where𝐴(𝑥) is the 𝑥-displacement at the interface of inner and
outer plies

𝐴 (𝑥)
= 1𝐸󸀠11𝐶 (𝑥) − (

V󸀠123𝐸󸀠11 −
V󸀠232𝐸󸀠22 +

13𝐺12) 𝑡20𝐶󸀠 (𝑥)
+ [ 120𝐸󸀠22 +

112𝐸󸀠22
𝑡90𝑡0 (2

𝑡90𝑡0 + 3)] 𝑡40𝐶󸀠󸀠󸀠 (𝑥)
+ 𝜖𝑥.

(17)

And perturbation function 𝐶(𝑥), similar to Hashin’s, is
defined for most composites as

𝐶 (𝑥) = 𝑃 cosh
𝑝1𝑥𝑡0 cos

𝑞1𝑥𝑡0 + 𝑄 sinh
𝑝1𝑥𝑡0 sin

𝑞1𝑥𝑡0 (18a)

𝑝1 = √12 ( 𝐺2𝐹 + √𝐻𝐹 ),

𝑞1 = √12
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐺2𝐹 − √𝐻𝐹

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(18b)

𝑃 = Λ(𝑞1 sinh 𝑝1𝑙𝑡0 cos
𝑞1𝑙𝑡0 + 𝑝1 cosh

𝑝1𝑙𝑡0 sin
𝑞1𝑙𝑡0 )

⋅ 𝑡90𝑡0 𝜎90,
𝑄 = Λ(𝑞1 cosh 𝑝1𝑙𝑡90 sin

𝑞1𝑙𝑡90 − 𝑝1 sinh
𝑝1𝑙𝑡90 cos

𝑞1𝑙𝑡90 )
⋅ 𝑡90𝑡0 𝜎90

(18c)

1Λ = 𝑞1 sinh 𝑝1𝑙𝑡0 cosh
𝑝1𝑙𝑡0 + 𝑝1 sin

𝑞1𝑙𝑡0 cos
𝑞1𝑙𝑡0 . (18d)
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Figure 3: (a) Representative unit cell for a laminate under SDM micromechanics analysis, adapted from [25]. (b) Special case for cross-ply
analysis, adapted from [24].

Here 𝐹, 𝐺, and 𝐻 are constants dependent on geometry
and material and are defined thoroughly in [18]. Then, the
function 𝐶(𝑥) is computed from the following integral:

𝐶 (𝑥) = ∫𝑥
0
𝐶 (𝑥󸀠) 𝑑𝑥󸀠. (19)

Once the perturbation function is obtained it is used to
calculate stiffness reduction in the cracked laminate.

1𝐸𝑥 =
1𝐸0𝑥 +

1Ξ [(1 − ]0𝑥𝑦V12) 𝐸󸀠22𝐸0𝑥 ]
𝑡290ℎ𝑙 𝐻Φ (20a)

Φ = 2Λ𝑝1𝑞1𝑝21 + 𝑞21 (cosh
2𝑝1𝑙𝑡0 − cos2

𝑞1𝑙𝑡0 ) (20b)

Ξ = 1 − (V12 − V12
𝐸22𝐸11)
2 𝑡20ℎ𝑙 Φ𝐻𝐸0𝑦 , (20c)

where ]0𝑥𝑦, 𝐸0𝑥, and 𝐸0𝑦 are the longitudinal Poisson ratio
and longitudinal and transverse Young’s moduli of the
undamaged laminate, respectively. Finally, in the same work,
McCartney introduces a novel 3D version of the formerly
explainedmodel, which is not included in this analysis for the
sake of comparison, and because the plane strain assumption
under which the 2Dmodel operates is enough for adequately
modelling the mechanics of cracked composite plies.

2.4. Synergistic Damage Mechanics (SDM). Up to now,
micromechanical models shown in Sections 2.1 to 2.3 refer
to cracked composites limited to the cross-ply case, which
has very limited applications. For most aerospace and wind
energy applications, a [0/±45/90]s configuration is more
common. For this reason, Singh and Talreja developed the
Synergistic Damage Mechanics (SDM) model [25], which is
explained as follows.

The basic cell under which the SDM model operates is
shown in Figure 3(a). The picture clearly shows that the

model is flexible for stacking more arbitrary ply orientations
than those presented previously. For the sake of comparison
against previous shown models, the basic cell used for simu-
lations shown in Section 3 is also cross-ply [24], Figure 3(b);
nevertheless, in this section the general case is described in
order to discuss all the innovations the SDMmodel poses.

Of these innovations, the most important over the pre-
vious micromechanical models is that SDM can initiate and
multiply cracks in any of the layers of the laminate, even if
the probability of this occurring at 0∘ is relatively low. Each of
these crack orientations is defined in SDM as damage modes,
denoted by 𝛼. As it will be described, each of these modes
will have their particular stress fields, stiffness changes, and
damage tensors as each one of them contributes individually
to the total damage state and stiffness reduction in the
laminate.

The model starts with a damage state tensor D𝛼ij, with a
given spacing (𝑠𝛼), thickness (𝑡𝛼), restriction parameter (𝜅𝛼),
and orientation 𝑛𝑖𝑛𝑗 for the damage mode 𝛼. Finally, the total
laminate thickness is represented by 𝑡.

D𝛼ij = 𝜅𝛼 (𝑡𝛼)2𝑠𝛼𝑡 𝑛𝑖𝑛𝑗. (21)

The normal orientation vector is expressed by 𝑛𝑖 = (sin 𝜃,
cos 𝜃, 0). Meanwhile, the restriction parameter 𝜅𝛼 accounts
for the constraining effect on ply cracks caused by adjacent
plies in the laminate.

𝜅𝛼 = 𝑢̃𝛼𝑛𝜖22𝑡𝛼 , (22)

where 𝜖22 is the transformed applied strain component
normal to the crack surface and 𝑢̃𝛼𝑛 is the normal average
crack opening displacement (COD) for a given crack spacing.
These averaged CODs are computed previously from a series
of FE simulations using software such as ANSYS [30]. The
micromechanical unit cell (Figure 3) is modelled by repli-
cating the material stacking and elastic constants, defined by
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the size of crack spacing, and three boundary conditions [25]
shown in Table 1.

Another important quantity resulting from the model is
the stiffness tensor and its reduction caused by the presence of
the microcracks. For the case being [25], the damage stiffness
tensors for each mode 𝐶𝛼𝑝𝑞 are expressed by

𝐶1𝑝𝑞 + 𝐶2𝑝𝑞 = 𝜅𝜃𝑡𝜃𝑠𝜃𝑡
[[[
[

2𝑎1,21 𝑎1,24 0
𝑎1,24 2𝑎1,22 0
0 0 2𝑎1,23

]]]
]
= 𝐷𝜃 [𝑎1,2𝑖 ] (23a)

𝐶3𝑝𝑞 = 𝜅90𝑡90𝑠90𝑡
[[[
[

2𝑎31 𝑎34 0
𝑎34 2𝑎32 0
0 0 2𝑎33

]]]
]
= 𝐷90 [𝑎3𝑖 ] (23b)

𝐶4𝑝𝑞 = 𝜅0𝑡0𝑠0𝑡
[[[
[

2𝑎41 𝑎44 0
𝑎44 2𝑎42 0
0 0 2𝑎43

]]]
]
= 𝐷0 [𝑎4𝑖 ] . (23c)

This stiffness reduction scheme needs the determination
of material constants 𝑎𝛼𝑖𝑗. In order to obtain these con-
stants, stiffness reduction curves are taken from previously
described ANSYS simulations over [0/90]s laminates where
the values of 𝐸11, 𝐸22, 𝐺12, and V12 are plotted against the
value of crack spacing 𝑠𝛼 for each ply. Finally, a curve fitting
procedure is conducted in order to satisfy the following set of
equations:

𝐶𝑝𝑞 =
[[[[[[[
[

𝐸0𝑥1 − V0𝑥𝑦V0𝑦𝑥

V0𝑥𝑦𝐸0𝑦1 − V0𝑥𝑦V0𝑦𝑥
0

V0𝑥𝑦𝐸0𝑦1 − V0𝑥𝑦V0𝑦𝑥

𝐸0𝑦1 − V0𝑥𝑦V0𝑦𝑥
0

0 0 𝐺0𝑥𝑦

]]]]]]]
]

−∑
𝛼

𝑎𝛼𝐷𝜃 [𝑎𝛼𝑖 ] ,

(24a)

where the 0-superscripted engineering constants correspond
to those of the virgin laminate. For a [0/±𝜃/90]s laminate, the
total damage tensor is given by

∑
𝛼

𝑎𝛼𝐷𝜃 [𝑎𝛼𝑖 ] = ∑
𝛼

𝐶𝛼𝑝𝑞
= 2 {𝐶1𝑝𝑞 + 𝐶2𝑝𝑞} + 𝐶3𝑝𝑞 + 2𝐶4𝑝𝑞.

(24b)

Once the model is ready, (24a) and (24b) is applied again,
but now for the current crack separation parameter present

in the laminate. The final results are the degraded elasticity
engineering constants of the material.

𝐸𝑥 = 𝐶11𝐶22 − 𝐶212𝐶22 ,
𝐸𝑦 = 𝐶11𝐶22 − 𝐶212𝐶22 ,
V𝑥𝑦 = 𝐶12𝐶22 ,
𝐺𝑥𝑦 = 𝐺66,
V𝑦𝑥 = V𝑥𝑦

𝐸𝑦𝐸𝑥 .

(25)

Subsequently, the resulting stress tensor is recalculated

𝜎𝛼𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 (𝐷𝛼𝑖𝑗) 𝜖𝑘𝑙. (26)

As stated previously, even if Synergistic Damage Mechanics
(SDM) model has the capability of analyzing stresses and
stiffness degradation in laminates such as [0/±45/90]s, it is
first necessary to perform simulations on cross-ply laminates.
As in all other stiffness degradation models, SDM stiffness
reduction for [0/90]s glass/epoxy laminates is plotted against
crack density, which is also in terms of the reciprocal of crack
spacing as per (27). This means that for each case of crack
density (𝑠𝜃 = 16, 8, 4, 2, 1, 0.75, 0.5, 0.2, and 0.1mm) FE
modelswere prepared and analyzed usingANSYSby applying
loading, geometry, and boundary conditions as shown in
Figure 3(b). An intact case simulated with highly spaced
cracking (𝑠𝜃 = 32) was also prepared.

𝑐 = 1𝑠𝜃 =
12𝑎𝑡90 . (27)

Boundary conditions for each crack spacing case remained
the same, with applied displacement at right face of (𝑢)𝑥=2𝑙
= 5 𝜇m. Left face is fixed and there is a symmetry condition
in the bottom face, along 𝑧-axis. Cracks were supposed to
have grown throughout the width of the cell. Subsequently,
each model was meshed using 10,000–25,000 3D tetrahedral
elements. Then, stress field was recovered and averaged
along the volume. At last, longitudinal Young’s modulus is
then obtained, according to [31], by applying the following
equation:

𝐸𝑥 = ⟨𝜎𝑥𝑥⟩⟨𝜖𝑥𝑥⟩ = (1/𝑉RVE) ∫𝑉 𝜎𝑥𝑥𝑑𝑉𝑢0/2𝑙 , (28)

where 𝑉RVE is the volume of the whole unit cell, ∫
𝑉
𝜎𝑥𝑥𝑑𝑉 ∼∑𝑖(𝜎𝑥𝑥,𝑖𝑉𝑖), where 𝜎𝑥𝑥,𝑖 and 𝑉𝑖 are the normal axial stress and

volume of element 𝑖; 𝑢0 is the applied displacement in the
right face, as well. Finally, these curves can later be used for
obtaining through fitting, materials constants 𝑎𝛼𝑖𝑗, which can
later be used in (24a) and (24b) in order to calculate stiffness
degradation in stacking cases such as [0/45/90]s.
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Table 2: Elastic engineering constants for glass-fiber/epoxy and
carbon fiber/epoxy composites [5].

Property GFRP CFRP
Longitudinal Young’s modulus (𝐸11), GPa 41.7 208.3
Transverse Young’s modulus (𝐸22), GPa 13.0 6.5
Longitudinal shear modulus (𝐺12 = 𝐺13), GPa 3.4 1.65
Transverse shear modulus (𝐺23), GPa 4.58 2.3
Longitudinal Poisson’s ratio (V12 = V13) 0.3 0.255
Transverse Poisson’s ratio (V23) 0.45 0.413
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Figure 4: Normal longitudinal stress distribution 𝜎𝑥𝑥 in 90-
degree layer for a glass fiber/epoxy cross-ply [0/90]s laminate using
Berthelot-modified shear-lag model [12].

3. Results and Discussion

From the formulation explained in Section 2, stress distribu-
tion is drawn for longitudinal stress 𝜎𝑥𝑥 in 90-degree layer
for an 𝐸-glass fiber/epoxy laminate with material constants
(Table 2) obtained from Highsmith and Reifsneider [5],
with 90-ply thickness 𝑡90 = 0.203mm, stacking parameter𝛼 = 1, and aspect ratio of cracking 𝑎 = 2.5 and 𝑘1 =
0.464. Cracking aspect ratio and 90-ply thickness will be
kept constant through results analysis; for other values their
variation will be presented as needed.

It is seen from Figure 4 that minimum normal stress is
zero and is found where the cracks are located; meanwhile
the maximum longitudinal stress is found midway between
consecutive cracks. Furthermore, it is observed from Figure 5
that crack onset has increased interlaminar shear.

Nevertheless, shear-lag method is at disadvantage when
compared to variational micromechanics because the shear-
lag assumption forces the model not to follow the zero-
traction boundary condition, in stark comparison to Hashin
formulation. This brings considerable error for the shear-lag
method as it approaches the crack surface (Figure 6).

Taking the shear stress variation for the interface located
between 0- and 90-degree plies from Hashin variational
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Figure 5: Variation of interlaminar shear in 0/90 interface for a glass
fiber/epoxy cross-ply [0/90]s composite using Berthelot-modified
shear-lag model [12].
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Figure 6: Comparison of longitudinal stress obtained by shear-lag
and variational methods for 90-degree ply in a glass fiber/epoxy
cross-ply [0/90]s composite under longitudinal stress.

method (Figure 7(a)) [14], it is observed from Figure 7
that shear stress redistributes to somewhere in the middle
between crack surface and the 𝑧-axis of symmetry because of
the restriction imposed on crack surface. Again, this contrasts
with Berthelot shear-lag model, which puts the maximum
location of shear redistribution just above the cracking
surface (Figure 5). Finally, a complete stress distribution field
for 𝜎90𝑥𝑧 by Hashin method is illustrated in Figure 7(b), from
where it is observed that 𝜎90𝑥𝑧 becomes progressively higher as
it approaches the interlaminar interface.
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variational method [14].
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fiber/epoxy laminate.

Afterwards, degradation of longitudinal Young’smodulus𝐷 = 𝐸𝑥/𝐸0𝑥 against crack density 𝑐, (27) for [0/90]s
glass/epoxy laminates (𝛼 = 1, 𝑘1 = 0.464), is plotted for
all four stiffness reduction models (Figure 8). For shear-lag
model used by Berthelot [12], Ogin model stiffness reduction
curve is applied [13]. Meanwhile, for the Hashin variational
method [14], Reifsneider formulation was employed instead
[5]. McCartney [18] and SDM [25] incorporate their own
stiffness reduction methods. As a first verification step, con-
vergence for all four curves is verified against (29) proposed

by Reifsneider [5]; there is very good agreement between all
model results.

1𝐸𝑥 =
1𝐸0𝑥 +

𝑘21𝛼 + 1 ( 1𝐸22 +
1𝛼𝐸11) . (29)

Regarding experimental results, a comparison was drawn
between all four models and Smith and Wood experimenta-
tion [32]. Again, from Figure 8 it is seen that only shear-lag
and SDM follow good agreement at initial cracking stages.
Smith and Wood do not provide experimental results for
advanced (𝑐 > 2 cracks/mm), nonetheless convergence has
been proved with (29).

4. Conclusions

A comparison between four micromechanical models has
been presented. From degradation rules, it is noticed that all
four methods covered in this paper predicted convergence
value quite accurately. From Hashin’s variational method it
is important to remark that it not only predicts correctly the
boundary conditions at the surfaces of the crack but also
readily gives out the complete stress field. Although limited
by model assumptions, there are novel methods capable of
analyzing arbitrary stacking [28] based onHashin’s approach.
In contrast, shear-lag degradation model is more accurate
when compared against experimental results [32] but it
takes additional differentiation and integration steps in order
to obtain the final stress field. However, the assumptions
under which it is governed limit its application to cross-ply
laminates.

McCartney’s approach shows further improvement over
the last two methods because it takes the generalized plane
strain assumption, which soundly resonates with laminate
mechanics. This model is also unique because it takes
into account thermal strains and stresses. Furthermore,
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this model is applied to multiaxial loading conditions. By
last, McCartney provides explicit expressions for comput-
ing displacements throughout the laminate cell. However,
McCartney model is computationally expensive because of
higher order differentiation involved in the computation of
stiffness reduction.

For the case of SDM, the model not only converges but
also replicates experimental results with relative accuracy.
Furthermore, SDM is designed for numerical experimenta-
tion, implying a more economical alternative in comparison
to traditional physical experimentation. Damage mechanics
models present the advantage of being flexible because they
may be applied to a wider range of laminate stacking, going
beyond the classical cross-ply case and thus proving more
useful in practical cases that involve laminates of arbitrary
stacking [23, 25], such as the widely used [0/±45/90]s
laminates. However, these modelling approaches may be
computationally expensive and heavily dependent on mesh
size for the case of virtual simulations.

Nomenclature

𝐴(𝑥): Interlaminar region displacement
function (only McCartney model)𝐴1, 𝐴2: Integration constants (variational
method)𝐴0, 𝐵0, 𝐶0: Integration constants for parabolic
displacement profile in 0-degree plies
(shear-lag)𝐴90, 𝐵90, 𝐶90: Integration constants for parabolic
displacement profile in 90-degree plies
(shear-lag)𝐶(𝑥): McCartney perturbation function𝐶00, 𝐶22, 𝐶02, 𝐶11: Variational method material constants𝐶𝑝𝑞: Damaged stiffness tensor𝐶0𝑝𝑞: Undamaged stiffness tensor

D𝛼ij: SDM damage tensor𝐸11: Ply longitudinal Young’s modulus𝐸22: Ply transverse Young’s modulus𝐸0𝑥: Intact laminate longitudinal Young’s
modulus𝐸0𝑦: Intact laminate transverse Young’s
modulus𝐸𝑥: Cracked laminate longitudinal Young’s
modulus𝐹, 𝐺,𝐻: McCartney material constants𝐺12: Ply in-plane shear modulus𝐺23: Ply out-of-plane shear modulus𝑃,𝑄: McCartney integration constants𝑉RVE: Volume of unit cell𝑎: Crack aspect ratio𝑎𝛼𝑖𝑗: SDMmaterial constants for 𝛼 ply𝑐: Crack densityℎ: Half-laminate thickness𝑘1: Stress ratio in cross-ply laminates,
obtained from classical lamination
theory (CLT)

𝑙: Half crack spacing𝑛𝑖, 𝑛𝑗: Normal orientation vectors𝑝, 𝑞: Variational method material constants𝑝1, 𝑞1: McCartney integration constants𝑠𝛼: Crack spacing, that is, 𝑠𝛼 = 2𝑙𝑡0, 𝑡90, 𝑡: Ply thickness𝑢, V, 𝑤: Displacements𝑢0: Applied displacement𝑢̃𝑛: Normal average crack opening
displacement𝑥, 𝑦, 𝑧: PositionsΔ𝑇: Temperature increaseΘ: Variational method integration constantΛ: McCartney integration constantΞ,Φ: McCartney material degradation
constants𝛼: Laminate stacking parameter𝛼1, 𝛼2: Variational method integration
constants𝛼𝐴, 𝛼𝑇: Longitudinal and transverse thermal
expansion coefficients𝜖, 𝜖∗: Longitudinal and transverse strains in
undamaged laminates𝜖𝑐, 𝜖∗𝑐 : Longitudinal and transverse strains in
cracked laminates𝜖𝑖𝑖, 𝜖𝑖𝑗: Normal and shear strain𝜂: Shear-lag integration constant𝜃: Ply orientation respect loading axis𝜅: SDM interlaminar restriction parameter𝜆: Shear-lag integration constant

V12: In-plane ply Poisson’s ratio
V23: Out-of-plane ply Poisson’s ratio
V0𝑥𝑦: In-plane intact laminate Poisson’s ration𝜉: Normalized 𝑥-position coordinate𝜎0, 𝜎90: Stress in intact 0- and 90-degree plies𝜎𝑐: Longitudinal load applied on laminate𝜎𝑖𝑖: Normal stress𝜎𝑖𝑗: Shear stress𝜎𝑥𝑥: Average longitudinal stress𝜏(𝑥): Interlaminar shear stress function𝜙: Variation method perturbation

function.
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