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Abstract
We have developed a mathematical model for video on demand server design based on principal
component analysis. Singular value decomposition on the video correlation matrix is used to
perform the PCA. The challenge is to counter the computational complexity, which grows
proportionally to n3, where n is the number of video streams. We present a solution from
high performance computing, which splits the problem up and computes it in parallel on a
distributed memory system.
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1 Introduction

Video on Demand (VOD) is an online service with a growing popularity. It can be used
for many kinds of applications. Scientific fields like collaboration or E-Learning as well as
commercial content like entertainment or news are only few examples of successful applications
of this technology. With a growing worldwide network coverage and available bandwidth, it
becomes more and more attractive for companies as well as for educational institutions to
provide digital video content (DVC) online instead of via conventional channels of distribution,
e.g. DVD disks. The advantages are obvious: More cost-efficient, easier to distribute and more
economically friendly.

High-definition television (HDTV) is steadily gaining popularity as well. This technology
enables video content to be shown in a much higher resolution than via the conventional PAL
or NTSC standards. The result is a better image quality with more details and more realistic
pictures. The frames of high definition videos do have a higher mean size due to their higher
resolution, which increases the demand on the bandwidth simultaneously when a video stream is
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transmitted by a factor of 5.33 [9]. Today HDTV content is usually transmitted via conventional
TV satellite and cable networks, but there are tendencies to distribute television channels also
via IP-based networks.

VOD is the most demanding type of content distribution as quality of service (QoS) has to
be assured to individual users (as opposed to video broadcasting). But this is very difficult since
the characteristics of different video streams vary very much. Needless to say that this becomes
even more challenging if HDTV content shall be offered on demand. The global Internet
bandwidth of today is capable to carry this heavy load, but it also causes higher requirements
on the video streaming servers. This work addresses the problem of buffer size prediction. [9]
shows that the allocated buffer size for a single client with a high QoS can be up to 1 Gigabyte.
Thus, it is of high interest to find an efficient way to calculate an optimal buffer size of a video
stream regarding to its characteristics. The next step would be to predict the maximum number
of simultaneous users per server with a constant level of QoS. This step is challenging, because
a general statement has to be made about the characteristics of all provided videos. The next
sections speak about how this shall be achieved and which methods are used in order to get a
good prediction result.

2 Principal Component Analysis on Video Data

In [10], [9], [11], Raúl Ramı́rez-Velarde et al. introduced a new mathematical model to determine
the maximum user load of a VBR video server. The model is based on statistical evaluation of
performance measures of real MPEG-4 frame traces and should model the actual data behavior.
In order to make a prediction of the required buffer size of a video, a statistical analysis of the
video trace has to be performed. The analysis provides values like mean, variance, symmetry,
kurtosis and self-similarity, which can be achieved with standard statistical methods. These
values can be fed into the model in order to simulate the estimated buffer size.

On [8], we developed a mathematical model to design video on demand servers based on
self-similarity and the Pareto Probability Distribution. We were also able to establish that
principal component analysis can capture most of the behavior of a rather large collection of
video files into one single video stream which we called the Characteristic Video Trace (CVT).
We used principal component analysis to creat the CVT. Principal component analysis (PCA)
is a common technique to reduce multidimensional data sets [7]. In this case, it is used to
handle the different characteristics of the video traces, that is, each video is a dimension. As
determined by the eigen values of correlation matrix, the CVT can capture increasing amounts
of the total variability of the collection of data by adding principal components to the CVT.

Nevertheless one important question has not been addressed. Just how representative is
the sample? In other words, if we have a sample size of n videos, what size of the population
does it represent? This is important, because no doubt a video database for a video-on-demand
service would contain a large collection of videos, probably in the range from 300 to 3,000 and
would constantly grow. And although there are several strategies that we could use to keep the
characteristic video file current, such as periodic re-computation of the characteristic video, if
we knew the size of the population it represents, we believe it would not be necessary to re-
compute the characteristic video until de population represented by the video taken to compute
it is reached. It means for example, that if we used m videos to compute the characteristic
video frame representing a population of 1,000 videos, but the video service only possesses 500
video, the characteristic video would not have to be recomputed until de video service could
offer close to 1,000 videos to its users.

But determining sample size might prove difficult. Since we are using highly chaotic data
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presuming it conforms to a long-tailed probability distribution, how are we to determine the
appropriate samples size and population representation? One instance though, for which the
sampling process is well understood is when the mean of each of the video samples is normally
distributed, then we can determine sample size using well-known models.

According to the central limit theory [3], the arithmetic mean of a sufficiently large number
of iterates of independent random variables, each with a well-defined expected value and well-
defined variance will be approximately normally distributed. Therefore, a normality test was
carried out on the mean video frame size for each video on a database of 23 videos and we
found that mean video frame size is in fact normally distributed. In Figure 1 we can see the
q-q plot which throws a correlation index against the normal distribution of 0.9747.

Figure 1: QQ plot for mean frame size

If the mean video frame size is normally distributed, then sample size and population sizes
can be determined by well known formulas shown in table 1 [12]:

Population Margin of error
10 % 5 % 1 %

100 50 80 99
500 81 218 476
1,000 88 278 906
10,000 96 370 4,900
100,000 96 383 8,763
+ 1,000,000 97 384 9,513

Table 1: Sample size for different population sizes

As we can see from table 1, a sample of 23 video with 5% Margin of error only represent
the sample itself and not any significant population. This table shows that we need to obtain
the characteristic video stream from 370 videos (assuming random selection) to represent a
database of 10,000 videos, and that 384 videos would represent a video database of more than
a million. So 384 is the magical number. A truly representative characteristic video would
need to be obtained from at least 384 videos. This task requires of course the use of heavy
computational power. As the main task of PCA is obtaining the SVD of the correlation matrix
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we developed a parallel algorithm that could be implemented in computational clusters and
grids.

2.1 Parallel PCA

We do PCA, as suggested by several authors, e.g. [2] or [7], by carrying out a Singular Value
Decomposition (SVD) over the correlation matrix. The mentioned model to determine the
maximum user load per video server has to be adaptable to virtually any number of streams.
From a certain number of streams n on, this states a problem because the computational
complexity of the SVD grows proportionally to n3. Consequently, the problem becomes very
difficult if one takes into consideration that about 64,000 movies have been created in the history
of movie making.

Given the facts that the data load to be handled by the PCA procedure is quite large, that
the eigenvalue problem (which is the core problem of the SVD) is principally parallelizable we
decided to implement a parallel version of PCA. Although its true that there exists parallel
very optimized implementations of SVD (see [4],[1] and [6]), we decided to implement our own
parallel version since we need to handle specific aspects of SVD results in the context of PCA
for video.

2.2 SVD for PCA

The singular value decomposition of a matrix A ∈ R
m×n has the form

A = QSPT

where Q is a m×m orthogonal matrix, S is a m×n rectangular diagonal matrix with non-zero
elements and P is a n× n orthogonal matrix.

The elements on the main diagonal of S are referred to as the singular values of A, denoted
s1, . . . , sl, where l = min(m,n). The columns of Q, q1, . . . , qm, and of P , p1, . . . , pn, are called
the singular vectors of A. Usually, the singular value problem is solved in a way that the singular
values in S (and their corresponding singular vectors in Q and P ) are ordered descendingly,
hence:

s1 ≤ s2 ≤ · · · ≤ sl ≤ 0

This is already very practical for the PCA, as the first singular value can already be used
to extract the most important PC, called the scores, from the data set.

The singular vectors in Q are the eigenvectors of AAT , the singular vectors in P are the
eigenvectors of ATA. The singular values stored on the main diagonal of S are the square roots
of the corresponding eigenvalues (which are equal in both cases).

According to [5], an efficient way (and the most common method today) for the symmetric
eigenvalue problem is to tridiagonalize the matrix before the eigenvalues are computed, so that
UT
0 AU0 = T where A is the original matrix and T the tridiagonal part of the decomposition.

Eigenvalues are computed from T and are equal with those of A. The eigenvectors of A can be
found via reduction transformations.

Since correlation matrices are symmetric, the common way to store a symmetric matrix is
to store only the upper or the lower triangular part and the main diagonal. So in order to
tridiagonalize a symmetric matrix, we can also perform the overall process only in one of the
both parts.

Algorithm 1 shows a Givens rotation for symmetric matrices, where the computational costs
are almost halved compared to the traditional algorithm.
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Data: A
Result: A′

j = rows(A);
for i = 1 : columns(A)− 2 do

while j > 1 + i do
/* rotating two appropriate rows */

[c s] = givenscs (A(j − 1, i), A(j, i));
A(j − 1 : j, i : columns(A)) = givensrow(A(j − 1 : j, i : columns(A)), c, s);
/* rotating the intersection square transposed */

A(i− 1 : i, j − 1 : j) = givenscol(A(i− 1 : i, j − 1 : j), c, s);
j −−;

end

end
Algorithm 1: function A′ = givenstridiagsymm(A) for a symmetric matrix A

The overall process of tridiagonalizing a symmetric n×n matrix requires 8
3n

3 flops. This are
by the factor 2 more operations than the common algorithms, like say, Householder reflections
require.

2.3 Data Dependencies and Parallel Concept

If we have a look at the inner while-loop of Algorithm 1, we can see that the single rows have
to be processed sequentially and bottom up. Figure 2 shows the data dependencies when the
elements A(3 : n, 1) are annihilated. But what the illustration also shows is that there are no
dependencies between the single elements of a row. And this is the key point of how parallelism
can be introduced here. Instead of considering the zeroing of a single element, for what the
Givens Rotations are usually used for, the overall process of zeroing a whole column up to its
(2 + j)th element has to be seen. Figure 3 shows a possible solution of how the annihilation of
the elements A(3 : n, 1) of a 5× 5 matrix can be split up and distributed over five processors.

Figure 2: Data Dependencies between the rows

In this way, a single step of annihilating the lower elements of the first column can be
efficiently parallelized. But what the figure does not consider is that each node requires the
both values c and s from the Givens matrix. Referring to the inner loop of algorithm 1, both
values are computed in each iteration. This increases of course the communication overhead,
since the first node has to broadcast the values in each iteration as well. One solution is to
re-order the sequence of the events in the algorithm in a way that a “vector” of c and s values is
computed and distributed by the first node. In this way, there is only one broadcasted message
for annihilating one sub-column.
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Figure 3: Distributing the data over 5 processors

2.4 Tridiagonalization

Now we adapt the algorithm for the whole tridiagonalization process. The pseudocode in
algorithm 2 shows how this can be done. It is a simplified version which should only show the
parallelization related components.

Data: A
Result: A′

for i = 1 : columns(A)− 2 do
if process contains the first column then

Generate the c and s vector;
Broadcast both vectors;
forall the local columns do

forall the elements in the column do
Perform a rotation step;

end

end
(local columns)-=1;

else
Receive vectors c and s;
forall the local columns do

forall the elements in the column do
Perform a rotation step;

end

end

end

end
Algorithm 2: An algorithm of the tridiagonalization process

The described parallel algorithm shows only the very principal concept of how the communi-
cation works and which data has to be processed. Some important details have been neglected
and will be discussed later. Considering only this simplified algorithm, the number of sent or
received messages for tridiagonalizing a n× n matrix would be n− 2 ≈ n for each node.

2.5 Intersection Square

The intersection square plays a special role. If an element in the lower triangular part of a
symmetric matrix is zeroed, two rows are rotated. Since the matrix is symmetric, the same
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process can be applied transposed in the two columns with a permuted row- and column-index.
An exception is the intersection square. The rotation has to be applied here twice, once for the
lower and once for the upper triangular part. How this can be solved for a sequential routine
has already been shown, but if the data is distributed over several nodes, there are additional
data dependencies arising. Let S ∈ R

2×2 be a submatrix of A ∈ R
n×n:

S =

(
s11 s12
s21 s22

)

A rotation in the lower triangular part is performed by algorithm 3, the matching algorithm
for the upper triangular part is shown in algorithm 4.

q = columns(A);
for j = 1:q do

τ1 = A(1, j);
τ2 = A(2, j);
A(1, j) = cτ1 − sτ2;
A(2, j) = sτ1 + cτ2;

end
Algorithm 3: A rotation in the lower triangular part

q = rows(A);
for i = 1:q do

τ1 = A(i, 1);
τ2 = A(i, 2);
A(i, 1) = cτ1 − sτ2;
A(i, 2) = sτ1 + cτ2;

end
Algorithm 4: A rotation in the upper triangular part

In algorithm 1, the transformation for the lower triangular part is applied first on the
intersection square (givensrow), then the algorithm for the upper triangular part (givenscol).
Figure 4 shows the data dependencies inside the intersection square graphically.

Figure 4: Data dependencies inside the intersection square

In §2.3 we assume that in the parallelization process the global matrix is split up column
wise over the processes. This means that there exist additional data dependencies between the
processes if the intersection square “lies between two processes”. Figure 5 shows an example of
a matrix A ∈ R

8×8 distributed over 4 processes in which the 3− n elements of the first column
are zeroed. The dashed squares represent the intersections without data dependencies, the ones
with a solid line have dependencies between two processes.
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Data: A
Result: A′

for i = 1 : columns(A)− 2 do
if process contains the first column then

Generate the c and s vector;
Broadcast both vectors;
forall the local columns do

forall the elements in the column do
Perform a rotation step;

end

end
(local columns)-=1;

else
Receive vectors c and s;
forall the local columns do

forall the elements in the column do
if Process contains column with the same column-index as row-index of
element then

if first local column then
exchange first two column elements of the intersection square with
left neighbor

else
if last local column then

exchange second two column elements of the intersection square
with the right neighbor

end

end
Perform a transposed rotation step;

end
Perform a rotation step;

end

end

end

end
Algorithm 5: An algorithm of the parallel tridiagonalization process considering the inter-
section square

Each time a process has to calculate a “half” intersection square, it has to exchange its
two column-elements with those of his left or right neighboring process. The first and the last
process (in the figure p1 and p4) play a special role because they have to exchange their elements
only with one neighbor. This has to be considered for the algorithm as well. Algorithm 5 shows
an improved version of the simplified communication algorithm 2 considering the intersection
square.

With each annihilated column, each active process has to send 2 additional sent and 2
additional received messages. This increases the number messages of the overall parallel tridi-
agonalization process by averagely 4 · n

2 = 2n. The total number of sent or received messages
for tridiagonalizing a n× n matrix to approximately n+ 2n = 3n.
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Figure 5: Intersection dependencies of a 8× 8 matrix over 4 processes

2.6 Implementation

Since the goal is to develop an application which can perform the singular value decomposition
as a step of the principal component analysis in parallel and in order to provide a program
which is easy to adopt in different Linux and UNIX environments, the following programming
standards were met for the implementation:

• Target platform: GNU/Linux

• Programming language: ANSI C

• Message passing API: MPI

• Except the below described parallel libraries, only libraries from the C standard library
shall be used

• Usage of the parallel libraries:

– ScaLAPACK for finding eigenvalues

– PBLAS for matrix operations

– BLACS for the data distribution

• From the used libraries above derive the following dependencies:

– LAPACK

– BLAS

3 Results

Benchmarks for several matrix sizes were made, to see how the implemented routines perform.
For the benchmarks all singular values and their corresponding vectors were computed. The
measurements are taken from matrices of several sizes, beginning with N = 512 up to N = 3072.
In the usual case, the efficiency becomes better with an increasing problem size, because the
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sequential part of the program, which is here the initialization and the data distribution- and
gathering, grows slower with the problem size than the parallel part. Test on a larger cluster
and even grid environments are on the works in order to test the implementation for really huge
matrices.

The main conclusion of Gustafson’s Law is: An appropriate efficiency will be obtained as
long as the problem size is big enough. Generally we can say that theoretically the sequential
part grows by O(N2) and the parallel part by O(N3). We’ve proven this by comparing the
growth of runtimes of the both parts. Figure 6 shows a comparison between the two parts. The
parallel part represents only the computation routines in parallel, i.e. the transposing, matrix
multiplication and eigenvalue algorithm. The sequential part is a sum of the initialization time,
the data distribution time and the data gathering time. To make it comparable, the both values
are normalized to the first value.
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512 1024 1536 2048 3072

tnorm

Matrix size

sequential part
parallel part

Figure 6: Growth of the sequential and the parallel part, normalized

We can see that the parallel part, represented by the dotted lines, grows faster than the
sequential part. But the growth is much smaller than in the theoretical assumption, in which
there is a difference of one polynomial degree. Let us have a look at another graph, shown in
figure 7. It shows the speedup gained for different number of processors over the matrix size.
In this way we can see very good how the speedup develops referring to Gustafson’s Law.

Obviously the curves become better the more processing elements are used. The graph
shows from which matrix sizes it makes sense to use parallelization. The first size, N = 512,
has always a speedup below 1, so here it is better to run the process only on one processor. From
N = 1024 on it starts to make sense to use more processing units. But since the speedup has
more or less the same value, p = 2 has the best efficiency. With the growing size of the matrix,
we can see that the speedup differs more and more between the number of used processors.

As a next step, we evaluated the efficiency. For a matrix of the size N = 512, the efficiency
is obviously more than poor, since a number of processors of p = 2 has already a speedup below
1. The communication overhead exceeds the performance gain so that a speedup can not be
reached.
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Figure 7: Speedup gained against the matrix size

The matrix size of N = 1024 shows another picture. Running the application on two
processors (p = 2), the efficiency is E = 0.67, which is quite acceptable. With an increasing
number of processors, the efficiency becomes worse and is not very feasible.

Matrix sizes N = 1536 and N = 2048 show a slightly improved picture. The efficiency do
not fall as fast, but the results are still not very satisfying.

The only case with a reasonably good efficiency curve is the one of the matrix size of
N = 3072. Still, the efficiency of p = 8 processing units lies below E = 0.4. We should also
consider that the runtimes of this version already are between 20 and 5 minutes (depending on
the number of used processors), which is quite long.

From the data above we can conclude that if the long latencies of the underlying Gigabit
Ethernet could be avoided, efficiency could be improved for small matrices. However, with big
matrix sizes, an appropriate speedup can be achieved and the presented implementation shows
properly how the problem of finding the principal components of a video correlation matrix can
be found in parallel.

4 Conclusions

We have shown a solution to compute the singular value decomposition in parallel. The focus
is on performing the PCA, so only the greatest singular values respectively the principal com-
ponents are searched. This makes the process more efficient, since superfluous information (the
following PCs) are not considered. Data source are video correlation matrices, which are al-
ways symmetric. Thus, only routines for symmetric matrices are used, which speeds the overall
process up, as redundant computation is avoided.
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