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Abstract

Computationally efficient sensitivity analysis of a large-scale air pollution model is an im-
portant issue we focus on in this paper. Sensitivity studies play an important role for reliability
analysis of the results of complex nonlinear models as those used in the air pollution modelling.
There is a number of uncertainties in the input data sets, as well as in some internal coeffi-
cients, which determine the speed of the main chemical reactions in the chemical part of the
model. These uncertainties are subject to our quantitative sensitivity study. Monte Carlo and
quasi-Monte Carlo algorithms are used in this study.

A large number of numerical experiments with some special modifications of the model
must be carried out in order to collect the necessary input data for the particular sensitivity
study. For this purpose we created an efficient high performance implementation SA-DEM,
based on the MPI version of the package UNI-DEM. A large number of numerical experiments
were carried out with SA-DEM on the IBM MareNostrum III at BSC - Barcelona, helped us
to identify a severe performance problem with an earlier version of the code and to resolve it
successfuly. The improved implementation appears to be quite efficient for that challenging
computational problem, as our experiments show. Some numerical results with performance
and scalability analysis of these results are presented in the paper.
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1 Introduction to sensitivity analysis

In a popular definition (due to A. Saltelli [11]), sensitivity analysis (SA) is the study of how
uncertainty in the output of a model can be apportioned to different sources of uncertainty in
the model input. The uncertainties in the model input can be due to various reasons: inaccurate
measurements or calculation, approximation, data compression, etc.. In order to measure the
specific contribution of the uncertainty in each input parameter, considered to be a potential
source, the sensitivity indices (SIs) have been introduced. Two kinds of sensitivity analysis have
been discussed in the literature: local and global. Here we focus on global SA, which takes into
account the whole domain of variation changes in the set of input parameters, and apportions
the output uncertainty to the uncertainty in the input data. In particular, we search for efficient
numerical algorithms for computing the global sensitivity indices (SIs) for the Unified Danish
Eulerian Model (UNI-DEM) [16]. This large-scale model is described by a large system of
partial differential equations (the number of equations being equal to the number of chemical
species studied by the model). In dependence with the resolution of the discretization grid, the
size of the final numerical problem can reach several millions of equations. This means that
enormous computational tasks arise in the treatment of such a large-scale air pollution model,
and great difficulties arise even when modern high-performance computers are used.

Therefore, it is highly desirable to simplify as much as possible the model. A careful sen-
sitivity analysis is needed in order to decide where and how simplifications can be made. On
the other hand, air pollution modelers might ask the extent to which their results depend on
assumptions of initial conditions, boundary conditions, or chemical reaction rate constants.
This analysis can give valuable information about how precise the model output is and identify
which variables should be investigated more closely if the uncertainty is unacceptably high.
The goals may be to rank the importance of input variables, improve precision, screening, and
decision making.

Among quantitative methods, variance-based methods are the most often used [10]. The
main idea of these methods is to evaluate how the variance of an input or a group of inputs
contributes into the variance of an output variable. Variance-based methods deliver global,
quantitative and model-independent sensitivity measures. A general sensitivity concept, namely
the variance-based sensitivity analysis using a Monte Carlo technique, has been used in [6]. This
concept is sampling-based, that is why a Monte Carlo simulation is applied. The techniques
based on Monte-Carlo methods require a lot of simulations. The uncertain input parameters
are modeled by random variables and characterized by their probabilistic density functions.
The variance-based analysis focuses on the following questions: ”Which of the input variables
variances influences the model output variance at most?” and ”Which of the input variables has
to be known more accurately to reduce the output variance?”

The sensitivity analysis concept is used here to study the sesnsitivity of the output ozone
concentrations, calculated by the Danish Eulerian Model, with respect to some perturbations
in the intut data or uncertain parameters. More specificly, we introduced two kinds of pertur-
bations: to the values of the input anthropogenic emissions and to some chemical reactions rate
coefficients. This study can be used for increasing the reliability of the model, as well as for
identifying those parameters, which should be measured more precisely.

Let us consider a scalar function, representing some model output: u = f(x), where the input
parameters x = (x1, x2, . . . , xd) ∈ Ud ≡ [0, 1]d are assumed to be independent (non-correlated)
random variables with a known joint probability density function p(x) = p(x1, . . . , xd). In this
way the output u becomes also a random variable (as it is a function of the random vector x)
and let E be its mathematical expectation. Let D[E(u|xi)] be the variance of the conditional
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expectation of u with respect to xi and Du - the total variance according to u. This indicator
is called first-order sensitivity index by Sobol [12] or sometimes correlation ratio.

Total Sensitivity Index (TSI) [12] of an input parameter xi, i ∈ {1, . . . , d} is the sum of
the complete set of mutual sensitivity indices of any order (main effect, two-way interactions
(second order), three-way interactions (third order), etc.):

Stot
xi

= Si +
∑
l1 �=i

Sil1 +
∑

l1,l2 �=i,l1<l2

Sil1l2 + . . .+ Sil1...ld−1
, (1)

where Sil1...lj−1
– jth order sensitivity index for the parameter xi (1 ≤ j ≤ d), j = 1 : Si

– the ”main effect” of xi. According to the values of their total sensitivity indices, the input
parameters can be classified by the level of their importance. In most practical problems the
high dimensional terms are sufficiently small and can be neglected, thus reducing significantly
the number of summands in (1). In addition, a numerical approach for evaluating the small
sensitivity indices that combines reduction of the mean value and correlated sampling suggested
in [13] has been applied. Here we are not going into deeper details on the sensitvity analysis
matter, because the main purpose of this paper is to discuss the performance and scalability of
the numerical algorithms, used in this study. However, if the reader is particularly interested
in that topic, in [2, 4, 5] he can find more detailed description, analysis and results of various
sensitivity analysis studies performed so far.

2 The Danish Eulerian Model – description, versions, par-
allelization

The Danish Eulerian Model (DEM) [15] is a large-scale air pollution model, used to calculate
the concentrations of various dangerous pollutants and other species over a large geographical
region (4800 × 4800 km), covering the whole of Europe, the Mediterranean and some parts of
Asia and Africa. It takes into account the main physical, chemical and photochemical processes
between the studied species, the emissions, the quickly changing meteorological conditions.

The Danish Eulerian Model is mathematicaly represented as a large system of partial differ-
ential equations (2), in which the unknown concentrations of a large number of chemical species
(pollutants and other chemically active components) take part. The main physical and chemical
processes (advection, diffusion, chemical reactions, emissions and deposition) are represented
as separate additive terms in the right-hand-side of this system.

∂cs
∂t

= −∂(ucs)
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+

+
∂

∂x

(
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∂cs
∂x

)
+

∂

∂y

(
Ky

∂cs
∂y

)
+

∂

∂z

(
Kz

∂cs
∂z

)
+ (2)

+ Es +Qs(c1, c2, . . . cq)− (k1s + k2s)cs, s = 1, 2, . . . q .

Here it is a short description of the functions, participating in the above system:

• cs = cs(x, y, z, t) are the concentrations of the chemical species. All the functions de-
scribed in the next items are also dependent on the space and time coordinates (x, y, z, t),
but for the sake of shortening the formulae they are usually not written explicitly.

• u, v, w – the components of the wind vector �W (x, y, z, t) along the coordinate axes.
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• Kx, Ky, Kz – diffusion coefficients.

• Es – the emission functions.

• k1s, k2s – dry / wet deposition coefficients.

• Qs(c1, c2, . . . cq) – non-linear functions describing the chemical reactions between species
under consideration.

2.1 Numerical treatment of the model

The above large and rather complex system (2) is not suitable for direct numerical treatment.
For the purpose of numerical solution it is split into submodels, which represent the main
physical and chemical processes. The sequential splitting [7] is used in the production version
of the model, although other splitting methods have also been considered and tested in some
experimental versions [1].

Below the 3 basic submodels of DEM are given (obtained by using the most straightforward
sequential splitting scheme in accordance with the major physical and chemical processes).

∂c
[1]
s

∂t
= −∂(uc

[1]
s )

∂x
− ∂(vcs)

[1]

∂y
+

∂
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(
Kx

∂c
[1]
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∂x

)
+

∂

∂y

(
Ky
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∂y

)
= A1c

[1]
s (t) (3)

(horizontal advection and diffusion)

∂c
[2]
s

∂t
= Es +Qs(c

[2]
1 , c

[2]
2 , . . . c[2]q )− (k1s + k2s)c

[2]
s = A2c

[2]
s (t) (4)

(chemistry, emission and deposition)

∂c
[3]
s

∂t
= −∂(wc

[3]
s )

∂z
+

∂

∂z

(
Kz

∂c
[3]
s

∂z

)
= A3c

[3]
s (t) (5)

(vertical transport)

These submodels are solved numericaly in a cycle at each time step ti. The second and

third submodel at i-th time step use for initial values of c
[m]
s (x, y, z, ti) , m = 2, 3 the results

c
[m−1]
s (x, y, z, ti) of the previous submodel at the same time step, while the first submodel uses

for initial values the results c
[3]
s (x, y, z, ti−1) of the third submodel at the previous time step

ti−1.
Spatial and time discretization makes each of the above submodels a huge computational

task, challenging even for the most powerful supercomputers available nowadays. That is why
the parallelization has always been a key point in the computer implementation of DEM since
its very early stages. A coarse-grain parallelization strategy based on partitioning of the spatial
domain appears to be the most efficient and well-balanced way on widest class of nowadays
parallel machines (with not too many processors), although some restrictions apply.

In the submodel for the vertical transport – Finite Elements, followed by θ-methods. We
should mention that it is possible to switch off the vertical transport submodel (optionally),
resulting in a simplified 2D version of the model with about 10 times less computational com-
plexity, compared to the corresponding 3D version (the latter splits the atmosphere into 10
layers, in spite of the horizontal discretization step). The 2D version, although not so accurate,
is quite practical when the solution time is critical, and especially in case of insufficient memory
of the computing system to execute the 3D version.
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2.2 UNI-DEM package, features and parameters

The development and improvements of DEM throughout the years has lead to a variety of
different versions with respect to the grid-size/resolution, vertical layering (2D or 3D model
respectively) and the number of species in the chemical scheme. The most prospective of them
have been united in the packege UNI-DEM. The available up-to-date versions, the selecting
parameters and their optional values are shown in Table 1.

Table 1: User-determined parameters for selecting an appropriate UNI-DEM version

Parameter Description Supported optional values

NX = NY Grid size 96× 96 288× 288 480× 480
(Grid step) (50 km) (16.7 km) (10 km)

NZ # layers (2D/3D) 1 10
NEQUAT # chemical species 35 56 168

A coarse-grain parallelization strategy based on partitioning of the spatial domain in strips or
blocks is currently used in UNI-DEM. For the purpose of this study, the strip-based distributed
memory parallelization of the model via MPI is used [3, 9]. It is based on partitioning of
the horizontal grid, which implies certain restrictions on the number of MPI tasks and requires
communication on each time step. Improving the data locality for more efficient cache utilization
is achieved by using chunks to group properly the small tasks in the chemistry-deposition and
vertical exchange stages. Additional pre-processing and post-processing stages are needed for
scattering the input data and gathering the results, causing some overhead.

2.3 SA-DEM and its parallelization properties

A special parallel version (SA-DEM) of the UNI-DEM has been created to produce the necessary
data for our sensitivity analysis algorithm (see [2, 8] for more detail). It has been implemented
first on the IBM Blue Gene/P platform at the Bulgarian Supercomputing Center.

SA-DEM is composed of the following three parts:

(i) A modification of UNI-DEM with ability to modify certain parameters, subject to SA
study. By now we have been interested in some chemical rate constants as well as in
the input data for the anthropogenic emissions. A small number of input parameters is
reserved for this purpose.

(ii) A driver routine that automatically generates a set of tasks to produce the necessary
results for a particular SA study. It allows to perform in parallel a large number of runs
with common input data (reusing it), producing at once a whole set of values on a regular
mesh (used later for calculating the sensitivity indices).

(iii) An additional program for extracting the necessary mean monthly concentrations and
computing the normalised ratios to be analysed.

Significant improvements of the first version of SA-DEM were made by introducing two
additional levels of parallelism: top-level(MPI) and bottom-level(OpenMP). They allow us to
use efficiently the computational power of a typical state-of-the-art supercomputer cluster with
multicore nodes.
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A new subroutine that splits the global communicator MPI COM WORLD and defines separate
communicators for each of the top-level parallel tasks is introduced in SA-DEM. The commu-
nicators are very useful on the lower level of parallelizm (where intensive communications are
performed on each time-step).

3 Numerical results from experiments with SA-DEM on
an IBM MareNostrum III supercomputer

In this section we present some scalability results (including execution times, speed-ups and
parallel efficiencies ), obtained from our experiments with SA-DEM on the largest supercom-
puter system in Spain - IBM MareNostrum III (managed by BSC - Barcelona). It consists of
3028 nodes IBM dx360 M4 (16 core) with 32 GB RAM per node. The total number of cores
is 48488 (Intel SandyBridge-EP E5-2670, 2600 MHz). It has total RAM more than 94 TB,
total disk storage about 1,9 PB and two interconnection networks (Infiniband / Gigabit Eth-
ernet). The system has theoretical peak performance ∼ 1 PFLOPS. Table 2 contains results of
experiments on different number of processors, showing the scalability of SA-DEM on the IBM
MareNostrum III machine at BSC.

Table 2: Time (T) in seconds and speed-up Sp of SA-DEM (finest grid) supercomputer IBM
MareNostrum III at BSC, Barcelona

Time and speed-up of SA-DEM (MPI only) on IBM MareNostrum III

(480× 480× 1) grid, 35 species, CHUNKSIZE=16

# # Advection Chemistry TOTAL

CPU nodes T [s] Sp T [s] Sp T [s] Sp E [%]

10 1 83460 10 77273 10 171707 10 100 %
40 3 19448 43 16946 46 40471 42 106 %
80 5 9874 85 9047 85 22261 77 96 %

160 10 5250 159 4562 169 12875 133 83 %
320 20 2895 288 2403 322 8233 209 65 %
640 40 1522 548 1269 609 5387 319 50 %
960 60 1215 687 822 940 4075 421 44 %

1600 100 873 956 502 1538 3289 522 33 %

4 Improved data management parallel algorithm

In order to resolve the severe data transfer problem and to improve the total efficiency of the
SA-DEM, the following changes were made in the strategy for data transfer and management.
A small (fixed) number of processors are used only for I/O procedures (global file transfer
and scatter/gather operations), as well as for exchange of data (via MPI) with the rest of the
processors. In particular, 11 processors are reserved for the 11 meteorological input data sets
and 5 - for the output data sets, (16 in total). The rest of the processors are executing the basic
algorithm without the above-mentioned (overhead-causing) operations. Recieving and sending
of (local) I/O data is done via MPI instead of reading/writing temporary files (normally, much
faster on most modern supercomputers). The number of opened files in a time is kept constant
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(independent of the number of MPI processes). Part of the non-scalable overhead (producing
and using local temporary files) is fully avoided.

Table 3: Time (T) in seconds and speed-up Sp of SA-DEM (finest grid) with the improved data
management strategy on the Spanish supercomputer IBM MareNostrum III at BSC, Barcelona

Time and speed-up of SA-DEM (MPI only) on IBM MareNostrum III

(480× 480× 1) grid, 35 species, CHUNKSIZE=16

# # Advection Chemistry TOTAL

CPU nodes T [s] Sp T [s] Sp T [s] Sp E [%]

10 1 83460 10 77273 10.00 169015 10 100 %
56 4 20117 41 16695 46 37983 44 79 %
96 6 10778 77 9148 84 21286 79 83 %

176 11 5219 160 4409 175 11080 153 87 %
336 21 2862 292 2214 349 6567 257 77 %
656 41 1491 560 1162 665 3833 441 67 %
976 61 1197 697 772 1001 2814 601 62 %
1616 101 848 984 479 1614 2173 778 48 %

Table 3 contains results of scalability experiments with the improved data management
version of SA-DEM (as described above) on the IBM MareNostrum III machine at Barcelona
are presented. As in 2, the times are for one year modelling period. The first row of the table
(for 10 CPU) is taken from Table 2, as we cannot apply the new parallelization strategy on
16 CPU or less. Even on 2 - 3 times more CPUs, the new algorithm will not work efficiently,
as relatively large part of the CPUs will be used to deal with the communication and data
distribution overhead only (not so heavy when the number of parallel tasks is relatively small),
in contrast with the rest of the CPUs, which will be rather busy with the main computational
work. The effect of this relatively poor load-balance can still be seen on the second row of the
table (where 40 out of 56 CPUs are engaged in executing the main computational work).

With increasing the total number of CPUs, however, this effect disappears and we obtain
better results for the total speed-up and efficiency (in comparison with those for the basic
version, shown in Table 2 ). The tiny part of the processors, selected to deal with the I/O
transfer and scatter/gather operations, helps a lot to avoid the communication bottleneck and
to provide conditions for smooth and efficient work for the rest (now – the vast majority) of
the CPUs executing in parallel the computational tasks. For the highest levels of parallelism
the new parallel algorithm appears to be much more efficient.

5 Conclusions and plans for future work

From the results, obtained in our scalability experiments and shown above in this paper, the
following conclusions can be drawn:

(i) SA-DEM is an efficient high performance tool, used to produce sensitivity analysis data
for the DEM. Its parallel implementations on the most powerful supercomputer in Spain, IBM
MareNostrum III, show very good scalability.

(ii) Chemistry, the most computationally expensive stage of DEM, has almost linear speed-
up in the whole range of experiments.
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(iii) Advection stage scales pretty well in most of the experiments, with certain slow-down in
the highly parallel experiments (expected). It is caused by the significant boundary overlapping
of the domain partitioning when approaching the inherent partitioning limitations.

(iv) With increasing the number of processors the time for I/O operations (non-scalable)
becomes strongly dominant. As a consequence, the total efficiency decreases with increasing
the CPU number (especially above certain high level of parallelizm in dependence with the grid
size).

(v) The above effect has been significantly reduced by improving the data management
strategy. It reduces the amount of I/O operations and executes part of them in parallel with
the computations on the other stages, a kind of pipelining between the I/O-intensive part
and the computationally-intensive stages of the model. The new data management strategy
improves the overall speed-up and efficiency of DEM and SA-DEM, as shown by experiments
on the IBM MareNostrum III supercomputer in BSC - Barcelona. These developments will
allow us to use widely the most detailed and, respectively, the most computationally expensive
finest-grid version in our future sensitivity studies of DEM.
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