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The enhanced cubication method is applied to develop approximate solutions for the most common nonlinear oscillators found in
the literature. It is shown that this procedure leads to amplitude-time response curves and angular frequency values withmaximum
relative errors lower than those found by previously developed approximate solutions.

1. Introduction

In this paper, we use the enhanced-cubication method to
develop the approximate solution of some conservative non-
linear oscillators of the form

�̈� + 𝑓 (𝑥) = 0; 𝑥 (0) = 𝐴, �̇� (0) = 0, (1)

where 𝑓(𝑥) is the system restoring force which could have
rational or irrational elastic terms, and 𝐴 is the oscillation
amplitude. We recall that the enhanced-cubication method
uses the Chebyshev polynomial expansion to replace the sys-
tem restoring force by an equivalent one. Then, the nonline-
arization method is used to find and equivalent Duffing
equation for (1) that is valid for the complete range of oscil-
lation amplitudes [1]. Eĺıas-Zúñiga and coworkers used this
technique to derive the approximate solution of the Duffing-
harmonic oscillator of the form

�̈� + 𝑓 (𝑥) = 0; 𝑓 (𝑥) =

𝜀𝑥

3

(𝐵 + 𝐶𝑥

2
)

, (2)

where 𝐵, 𝐶, and 𝜀 are constant system parameters [1]. They
found by using this method that the approximate angular fre-
quency values agree well with the exact ones for the whole

range of oscillation amplitude values with a maximum rela-
tive error value that is less than 0.055%.

Here in this paper, we examine the application of the
enhanced-cubication method to obtain approximate solu-
tions of the general pendulum equation, the generalized
power-form elastic term oscillator, the general restoring force
term oscillators, and of the singular oscillator that arises in
plasma physics. To assess the accuracy of the enhanced-cubi-
cationmethod, we compare our derived approximate angular
frequency values with those obtained by numerical integra-
tion. It is shown that inmost cases, our derived solutions have
maximum relative errors that are lower than those obtained
by using other solution techniques.

We will next start with the application of our enhanced
cubication approach by deriving the approximate solution of
the general pendulum equation.

2. A General Pendulum Equation

We first consider the general pendulum equation of the form
[2]

𝑑

2
𝑦

𝑑𝑡

2
+ 𝑓 (𝑦) = 0, 𝑓 (𝑦) = −𝑏𝑦 + 𝑎 sin𝑦,

(3)
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with initial conditions 𝑦(0) = 𝐴 and �̇�(0) = 0, and sys-
tem parameters 𝑎 and 𝑏. Next, we use the following transfor-
mation 𝑥 = 𝑦/𝐴 and rewrite (3) as

𝑑

2
𝑥

𝑑𝑡

2
+ 𝑓 (𝑥) = 0,

𝑓 (𝑥) = −𝑏𝑥 +

𝑎

𝐴

sin (𝐴𝑥) ; 𝑥 (0) = 1, �̇� (0) = 0.

(4)

Then, we write 𝑓(𝑥) in equivalent form by using the Cheby-
shev polynomials of the first kind [3–6]:

𝑓 (𝑥) =

𝑁

∑

𝑛=0

𝑏

2𝑛+1
(𝑥

10
) 𝑇

2𝑛+1
(𝑥) , (5)

where

𝑏

2𝑛+1
=

2

𝜋

∫

+1

−1

1

√

1 − 𝑥

2
𝑓 (𝑥) 𝑇

2𝑛+1
(𝑥) 𝑑𝑥, (6)

𝑇

1
(𝑥) = 𝑥;

𝑇

3 (
𝑥) = 4𝑥

3
− 3𝑥;

𝑇

5
(𝑥) = 16𝑥

5
− 20𝑥

3
+ 5𝑥.

(7)

Thus, the equivalent restoring force 𝑓(𝑥) can be written as

𝑓 (𝑥) ≡ 𝑏

1
(𝑞) 𝑇

1
(𝑦) + 𝑏

3
(𝑞) 𝑇

3
(𝑦) + 𝑏

5
(𝑞) 𝑇

5
(𝑦)

≈ 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
,

(8)

where the coefficients 𝛼(𝐴), 𝛽(𝐴), and 𝛾(𝐴) depend on 𝑓(𝑥),
the amplitude of oscillation,𝐴, and the Chebyshev coefficient
terms. Therefore, the nonlinear differential equation (4) can
be replaced by an equivalent cubic-quintic Duffing equation
of the form

𝑑

2
𝑥

𝑑𝑡

2
+ 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
≈ 0.

(9)

Since the cubication procedure requires a cubic polynomial
representation of the restoring force, we shall next transform
the restoring force term of (9) into an equivalent cubic poly-
nomial

𝑓 (𝑥) = 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
≡ 𝛿 (𝐴) 𝑥 + 𝜖 (𝐴) 𝑥

3
,

(10)

where 𝛿(𝐴) and 𝜖(𝐴) can be found by using the equivalent
nonlinearization method [2]. In this method, we replace the
terms 𝛼(𝐴)𝑥 + 𝛽(𝐴)𝑥

3
+ 𝛾(𝐴)𝑥

5 by the cubic polynomial
𝛿(𝐴)𝑥 + 𝜖(𝐴)𝑥

3 that satisfies

𝐹 (𝛿, 𝜖) = ∫ 0

𝜎
(𝛼𝑥 + 𝛽𝑥

3
+ 𝛾𝑥

5
− 𝛿𝑥 − 𝜖𝑥

3
)

2

𝑑𝑥 → min,

𝜕𝐹

𝜕𝛿

= 0,

𝜕𝐹

𝜕𝜖

= 0.

(11)

By following this procedure, the coefficients 𝛿(𝐴) and 𝜖(𝐴)

can be determined by using the expressions

𝛿 (𝐴) =

1

21

(21𝛼 − 5𝛾𝜎) ,

𝜖 (𝐴) =

1

9

(9𝛽 + 10𝛾𝜎

2
) ,

(12)

where the value of 𝜎 is fitted to satisfy (11). Thus, the equi-
valent representation form of (4) is given by

𝑑

2
𝑥

𝑑𝑡

2
+ 𝛿 (𝐴) 𝑥 + 𝜖 (𝐴) 𝑥

3
≈ 0

(13)

whose exact angular frequency-amplitude relationship is
given by

Ω

𝐶
=

𝜋𝜔

𝐶

2𝐾 (𝑘

2

𝐶
)

, (14)

where

𝜔

𝐶
=
√
𝛿 (𝐴) + 𝜖 (𝐴),

(15)

𝑘

𝐶
=
√

𝜖 (𝐴)

2 (𝛿 (𝐴) + 𝜖 (𝐴))

.
(16)

Here, the coefficients 𝛼(𝐴), 𝛽(𝐴), and 𝛾(𝐴) are obtained by
using (6)–(8). It is easy to show that these coefficients are
given as

𝛼 (𝐴) =

6𝑎

𝐴

4
(𝐴 (𝐴

2
− 80) 𝐽

1
(𝐴) − 16 (𝐴

2
− 20) 𝐽

2
(𝐴)) − 𝑏,

𝛽 (𝐴) =

32𝑎

𝐴

4
(−𝐴 (𝐴

2
− 60) 𝐽

1
(𝐴) + 2 (7𝐴

2
− 120) 𝐽

2
(𝐴)) ,

𝛾 (𝐴) =

32𝑎

𝐴

4
(𝐴 (𝐴

2
− 48) 𝐽

1(
𝐴) − 12 (𝐴

2
− 16) 𝐽

2 (
𝐴)) ,

(17)

where 𝐽

1
(𝐴) and 𝐽

2
(𝐴) are the first and second order Bessel

functions of the first kind, and 𝐾(−𝐴

2
) and 𝐸(−𝐴

2
) are the

complete elliptic integral of the first and second kinds for the
modulus𝐴, respectively. Figure 1 illustrates the relative errors
achieved by comparing the approximate angular frequency
values computed from (14) with the exact ones, obtained by
using Radhakrishnan et al. procedure introduced in [7]. As
we may see from Figure 1 and for 0∘ ≤ 𝐴 ≤ 113

∘, the relative
error values are not bigger than 0.2%.

To further assess the applicability of the enhanced cubi-
cation approach, we next derive the solution of an oscillator
with fractional restoring form.

3. A Generalized Power-Form Elastic
Term Oscillator

In this case, the restoring force term in (3) has the form

𝑓 (𝑦) = ℎ sgn (𝑦)









𝑦









𝛼
. (18)
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Figure 1: Prediction of the error attained by computing the general
pendulum angular frequency oscillator values by the enhanced
cubicationmethod. Notice that themaximum relative error attained
between the approximate and the exact angular frequency values
does not exceed of 0.2% for 0∘ ≤ 𝐴 ≤ 113

∘.

The restoring force given by (18) is similar in form to the
one proposed by Pilipchuk [9], and due to its oddness
with respect to time, the exponent 𝛼 can continuously take
any nonnegative real value, such as odd, even, rational, or
irrational that is, 0 ≤ 𝛼 < ∞. Notice that ℎ is a constant
parameter whose value depends on the physical systemunder
consideration. We next use the transformation 𝑦 = 𝑥/𝐴 and
write the corresponding equation of motion in the form

𝑑

2
𝑥

𝑑𝑡

2
+ 𝑓 (𝑥) = 0,

𝑓 (𝑥) = 𝑐

1
sgn (𝑥) |𝑥|

𝛼
; 𝑐

1
= ℎ𝐴

(𝛼−1)
;

𝑥 (0) = 1, �̇� (0) = 0.

(19)

Then, we use Chebyshev polynomial expansion and write the
restoring force as

𝑓 (𝑥) ≈ 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
, (20)

where

𝛼 (𝐴) =

3𝑐

1
(𝑚 − 5) (𝑚 − 3) Γ [𝑚/2 + 1]

2√𝜋Γ [(7 + 𝑚) /2]

,

𝛽 (𝐴) = −

8𝑐

1
(𝑚 − 5) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(7 + 𝑚) /2]

,

𝛾 (𝐴) =

8𝑐

1
(𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(7 + 𝑚) /2]

.

(21)

Here, Γ[𝑤] is the Euler gamma function. Table 1 shows the
corresponding values of the fitting parameter 𝜎 that satisfies
(11), for selected values of 𝛼 exponent. In all cases, we found
that the maximum relative errors attained by comparing
the approximate angular frequency values computed from
(14) with the exact ones never exceed 1𝐸 − 06 for the
interval 0 ≤ 𝐴 ≤ 100. The amount of error attained by
our enhanced cubication approach is remarkably lower than

Table 1: Fitting parameter 𝜎 for selected values of the exponent 𝛼.

Exponent value Fitting parameter value
𝛼 𝜎

1/3 1.0481977
2/3 1.045645
4/3 1.041253
5/3 1.039345
7/5 1.040857
√
2003 0.99608975
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Figure 2: Amplitude-time response curve by assuming that 𝛼 =

√
2003, ℎ = 1, 𝐴 = 1, and 𝜎 = 0.99608975. Here, the solid

lines represents the numerical integration solution of (19), while
the dashed lines represent the enhanced cubication approximate
solution.

those previously found in the literature. See, for instance, [10–
12] and references cited therein. This confirms the usefulness
of our enhanced cubication approach to obtain approximate
solutions of nonlinear oscillators with generalized power-
form elastic terms. For illustrative purposes, Figure 2 shows
the corresponding amplitude-time curve by assuming that
𝛼 =

√
2003, ℎ = 1, 𝐴 = 1, and 𝜎 = 0.99608975. There, the

solid line represents the numerical integration solution of (19)
obtained by using the fourth-order Runge-Kutta algorithm
provided by theMathematica symbolic package, while the red
dashed lines represent the enhanced cubication approximate
solution. As we can see from Figure 2, both solutions agree
well. In fact, the relative error between both solutions is less
than 1𝐸 − 06.

We next develop the approximate solution of a most gen-
eral restoring force-type that involves terms that describing
some of the most common conservative nonlinear oscillators
found in the literature.
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4. A General Restoring Force Term

Here, we use the enhanced cubication approach to develop
the approximate solution of a general oscillator described by
(1) with a restoring force given by

𝑓 (𝑦) = 𝜆

1
𝑦 + 𝜆

2

sgn (𝑦)









𝑦









𝛼
1

(1 + 𝛼

3
𝑦

2
)

𝛼
2

, (22)

where 𝛼

1
, 𝛼
2
, 𝛼
3
, 𝜆
1
, and 𝜆

2
are system parameter values. If

we introduce the transformation 𝑥 = 𝑦/𝐴, then the general
oscillator differential equation becomes

𝑑

2
𝑥

𝑑𝑡

2
+ 𝑓 (𝑥) = 0, 𝑓 (𝑥) = 𝜆

1
𝑥 + 𝜆

2

𝐴

(𝛼
1
−1) sgn (𝑦)









𝑦









𝛼
1

(1 + 𝛼

3
𝐴

2
𝑦

2
)

𝛼
2

,

(23)

with initial conditions 𝑥(0) = 1 and �̇�(0) = 0. We next use
Chebyshev polynomials to find the equivalent representation
of 𝑓(𝑥) as

𝑓 (𝑥) ≈ 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
, (24)

where

𝛼 (𝐴) = 𝜆

1

+ ((−1 + (−1)

𝛼
1
) 𝐴

𝛼
1
−5
𝜆

2
Γ [1 +

𝛼

1

2

]

× (− (80 (2 + 𝛼

1
) (3 + 𝛼

1
)

+ 16𝐴

2
(2 + 𝛼

1
) (30 + 7𝛼

1
− 14𝛼

2
) 𝛼

3

+35𝐴

4
(3 + 𝛼

1
− 2𝛼

2
) (5 + 𝛼

1
− 2𝛼

2
) 𝛼

2

3
)

×

2
𝐹

1

[(2 + 𝛼

1
) /2, 𝛼

2
, (3 + 𝛼

1
) /2, −𝐴

2
𝛼

3
]

Γ [(3 + 𝛼

1
) /2]

+ 16 (2 + 𝛼

1
) (1 + 𝐴

2
𝛼

3
)

× (5 (3 + 𝛼

1
) + 𝐴

2
(15 + 2𝛼

1
− 4𝛼

2
) 𝛼

3
)

×

2
𝐹

1

[(4+𝛼

1
) /2, 𝛼

2
, (3+𝛼

1
) /2,−𝐴

2
𝛼

3
]

Γ [(3+𝛼

1
) /2]

))

× (
√
𝜋 (3 + 𝛼

1
− 2𝛼

2
) (5 + 𝛼

1
− 2𝛼

2
) 𝛼

2

3
)

−1

,

𝛽 (𝐴)

= ((
√
𝜋Γ[

(7 + 𝛼

1
)

2

]) 4 (−1 + (−1)

𝛼
1
) 𝐴

𝛼
1
−1

× 𝜆

2
Γ [1 +

𝛼

1

2

]

× ( (5 + 𝛼

1
) (7 (3 + 𝛼

1
)

×

2
𝐹

1
[

(2 + 𝛼

1
)

2

, 𝛼

2
,

(3 + 𝛼

1
)

2

, −𝐴

2
𝛼

3
]

− 26 (2 + 𝛼

1
)

×

2
𝐹

1
[

(4 + 𝛼

1
)

2

, 𝛼

2
,

(5 + 𝛼

1
)

2

, −𝐴

2
𝛼

3
])

+ 20 (2 + 𝛼

1
) (4 + 𝛼

1
)

×

2
𝐹

1
[

(6 + 𝛼

1
)

2

, 𝛼

2
,

(7 + 𝛼

1
)

2

, −𝐴

2
𝛼

3
]))

−1

,

𝛾 (𝐴)

= −1((
√
𝜋Γ[

(7 + 𝛼

1
)

2

]) 4 (−1 + (−1)

𝛼
1
)

× 𝐴

𝛼
1
−1
𝜆

2
Γ [1 +

𝛼

1

2

]

× (5 (3 + 𝛼

1
)

× ( (5 + 𝛼

1
)

×

2
𝐹

1
[

(2 + 𝛼

1
)

2

, 𝛼

2
,

(3 + 𝛼

1
)

2

, −𝐴

2
𝛼

3
]

+ 4 (2 + 𝛼

1
)

× (−5 (5 + 𝛼

1
)

2
𝐹

1
[

(4 + 𝛼

1
)

2

, 𝛼

2
,
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(5 + 𝛼

1
)

2

, −𝐴

2
𝛼

3
])

+ 5 (4 + 𝛼

1
)

2
𝐹

1
[

(6 + 𝛼

1
)

2

, 𝛼

2
,

(7 + 𝛼

1
)

2

,

−𝐴

2
𝛼

3
])))

−1

.

(25)

Here,

2
𝐹

1 [
𝑎, 𝑏, 𝑐, 𝑧] =

∞

∑

𝑛=0

(𝑎)

𝑛
(𝑏)

𝑛

(𝑐)

𝑛
𝑛!

𝑧

𝑛 (26)

is the Gauss hypergeometric function.Thus, the approximate
solution to (23) is obtained by using (13), (14), (15), and (16).

To assess the accuracy of our enhanced cubication solu-
tion, let us consider first the case of a nonlinear dynamical
oscillator with an irrational restoring force for which 𝛼

1
= 1,

𝛼

2
= 1/2, 𝛼

3
= 1, 𝜆

1
= 1, and 𝜆

2
= −1 [13]. Figure 3

shows that the maximum error attained by comparing our
approximate angular frequency values with the exact ones is
less than 0.05%. This error is bigger than the error value of
0.04% computed by Lai and Xiang in [13] by using the first
two order approximations of the generalized Senator Bapat
perturbation technique. Both solutions as well as the numer-
ical integration of (23) are plotted in Figure 4 by considering
that 𝐴 = 10. As we can see from Figure 4, all solutions have
the same qualitative and quantitative behaviors. Here, the
solid black line represents the numerical integration solution,
the red dashed line our proposed solution, while the black
dots describe the solution derived by Lai and Xiang [13]. For
convenience, we have plotted in Figure 5 the frequency ratio
versus the amplitude𝐴.Wemay notice that both approximate
angular frequency values are close to the exact one. However,
we found that Senator Bapat solution fail for small values
of 𝐴, that is, for 𝐴 < 0.0012. Of course, we can improve
the percentage error value computed from our enhanced
cubication method by considering additional terms in the
Chebyshev polynomial expansion of the restoring force term.
In the present paper, we shall not consider these additional
Chebyshev polynomial expansion terms.

We next study the applicability of the enhanced cubica-
tionmethod by deriving the approximate solution of the finite
extensibility nonlinear oscillator for which 𝛼

1
= 1, 𝛼

2
= 1,

𝛼

3
= −1, 𝜆

1
= 0, and 𝜆

2
= 1 [14, 15]. As we can see from

Figure 6, the maximum relative error between the approxi-
mate angular frequency value and the exact one is not bigger
than −3.451% at 𝐴 = 0.9953 with 𝜎 = 0.9985. This value is
lower than the error value of −3.53% for 𝐴 = 0.9 reported in
[14, 15]. Figure 7 shows the amplitude-time response curves
with an initial oscillation amplitude value of 𝐴 = 0.9953.
Here, we compare our cubication solution (red dashed line)
with respect to the approximate Beléndez et al. solution (black
dots) and with the numerical integration solution of (23)
(black solid line). As one can see from Figure 7, our derived
solution is closer to the numerical integration one. Further-
more, we have computed the approximate angular frequency
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Figure 3: Prediction of the error attained by computing the elastic
wire angular frequency oscillator values by the enhanced cubication
method. Notice that the maximum relative error between the
approximate and the exact angular frequency values does not exceed
of 0.05%.
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Figure 4: Amplitude-time response curves of a nonlinear oscillator
with an irrational restoring force for which 𝛼

1
= 1, 𝛼

2
= 1/2,

𝛼

3
= 1, 𝜆

1
= 1, and 𝜆

2
= −1 with a fitting parameter value of

𝜎 = 1.03875. Here, the red dashed line, the black dots, and the
green solid line represent the enhance cubication solution, Senator
Bapat perturbation solution, and the numerical integration solution
of (23), respectively.

values of our derived solution for several values of𝐴 and com-
pared these with respect to the exact values obtained from
numerical integrations and with those values computed from
the approximate solution derived by Beléndez and cowork-
ers in [15]. Table 2 shows that in general, our enhanced angu-
lar frequency value is closer to the exact numerical one even
for larger values of𝐴. Finally, we have plotted the angular fre-
quency ratio versus the amplitude 𝐴. It is clear from Figure 8
that both approximate solutions follow well the exact num-
erical value, however, Beléndez et al. solution shows higher
deviation on 0.9 < 𝐴 < 0.9953. This confirms the applica-
bility of our enhanced-cubication approach to obtain accu-
rate solutions of strongly nonlinear oscillators.

Of course, other equivalent restoring force representa-
tions can be studied by assuming different parameters values
of 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝜆
1
, and 𝜆

2
in (22).
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Figure 5: Comparison of the frequency ratios versus the amplitude
𝐴. Here, 0.1 ≤ 𝐴 ≤ 20.
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Figure 6: Finite extensibility nonlinear oscillator for which 𝛼

1
= 1,

𝛼

2
= 1, 𝛼

3
= −1, 𝜆

1
= 0, and 𝜆

2
= 1. The maximum relative error

value of −3.451% between the approximate angular frequency value
and the exact one occurs at the oscillation amplitude of 𝐴 = 0.9953

with a fitting parameter value of 𝜎 = 0.9985.

Table 2: Comparison of the exact and the approximate angular
frequency values for a finite extensibility nonlinear oscillator.

𝐴 𝜔exact 𝜔Enhanced/𝜔exact 𝜔Belendez/𝜔exact

0.5 1.1113 0.9988 1.0000
0.75 1.3369 0.9922 1.0004
0.85 1.5412 0.9848 0.9991
0.95 2.0355 0.9723 0.9707
0.98 2.4600 0.9776 0.9098
0.985 2.5901 0.9836 0.8861
0.9953 3.0856 1.0345 0.7875

5. A Singular Oscillator

As a final example, we now focus our attention onderiving the
approximate solution of the singular oscillator that describes
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Figure 7: Amplitude-time response curves of the finite extensibility
nonlinear oscillator for which 𝛼

1
= 1, 𝛼

2
= 1, 𝛼

3
= −1, 𝜆

1
= 0,

𝜆

2
= 1, and 𝐴 = 0.9953 with a fitting parameter value of 𝜎 =

0.9985. Here, the red dashed line, the black dots, and the black
solid line represent the enhance cubication solution, Beléndez et
al. approximate solution, and the numerical integration solution of
(23), respectively.
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Figure 8: Comparison of the frequency ratios versus the amplitude
𝐴.

the motion of injected electrons in plasma physics. In this
case, the corresponding equation of motion is given as

𝑑

2
𝑥

𝑑𝑡

2
+ 𝑓 (𝑥) = 0,

𝑓 (𝑥) = (

1

𝐴

2
𝑥

)

𝑚

, 𝑥 (0) = 1, �̇� (0) = 0,

(27)

where 𝑚 is a positive entire number that usually takes the
value of one [8, 16]. By using (6)–(8), we can write the
approximate Chebyshev equivalent representation form of
the restoring force as

𝛼 (𝐴)

=

3 (−(−1/𝐴

2
)

𝑚

+ (1/𝐴

2
)

𝑚

) (3 + 𝑚) (5 + 𝑚) Γ [1 − 𝑚/2]

4√𝜋Γ [(7 − 𝑚) /2]

,
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Figure 9: Amplitude-time response curves of a singular oscillator with initial conditions 𝑥(0) = 1, �̇�(0) = 0 (a) 𝜎
1
= 1.061800921, and (b)

𝜎

2
= 1.3853631. Here, the solid line represent the derived enhanced-cubication solution, the dashed lines represents the numerical integration

solution, while the black dots represent the approximate solution derived in [8] by using Jacobi elliptic functions.

𝛽 (𝐴)

=

4 (−(−1/𝐴

2
)

𝑚

− (1/𝐴

2
)

𝑚

) (1 + 𝑚) (5 + 𝑚) Γ [1 − 𝑚/2]

√𝜋Γ [(7 − 𝑚) /2]

,

𝛾 (𝐴)

=

4 (−(−1/𝐴

2
)

𝑚

+ (1/𝐴

2
)

𝑚

) (1 + 𝑚) (3 + 𝑚) Γ [1 − 𝑚/2]

√𝜋Γ [(7 − 𝑚) /2]

.

(28)

It was found in [8, 16, 17] that the exact angular frequency
value of (27) when𝑚 = 1 is given as

𝜔ex =

1.2533131

𝐴

. (29)

To find the approximate angular frequency value by using
the enhanced cubication approach, we now substitute (28)
into (14) and (16), to get that

Ω

𝐶
=

𝜋
√
(5/14) (224𝜎

2
− 48𝜎

4
− 189)

3𝐴𝐾 [𝑘

2
]

,

(30)

𝑘

2
=

(756 − 560𝜎

2
)

(945 − 1120𝜎

2
+ 240𝜎

4
)

,

(31)

where 𝜎 is a fitting parameter that satisfies (11). In this
particular case, we note that 𝜎 can be found by equating (29)
with (30) since this provides an equation that depends only
on 𝜎. By numerically solving the resulting equation, we found
two real roots for the fitting parameter 𝜎. These real roots
have the values of 𝜎

1
= 1.061800921 and 𝜎

2
= 1.3853631. In

this way, we have found two possible approximate solutions
to (27) since Ω

𝐶
is equal to (29), that is, Ω

𝐶
= 1.2533131/𝐴.

Figure 9 shows the amplitude-time plots obtained by using
the values of 𝜎

1
, 𝜎
2
, and the solution of (13)

𝑥 (𝑡) = 𝑐𝑛 (𝜔

𝐶
𝑡, 𝑘

2

𝐶
) (32)

with initial conditions 𝑥(0) = 𝐴 = 1, and �̇�(0) = 0. Notice
from Figure 9(a) that when we use the root value of 𝜎

1
, the

estimated amplitude-time curve follows surprisingly well the
exact numerical solution curve. In this case, the modulus of
the elliptic function, 𝑘, has the value of 𝑘 = 3.13864𝑖, where
𝑖 =

√
−1. Also, we have plotted in Figure 9(a) the approxi-

mate solution of (27) derived in [8] for which its predicted
numerical solution has a dispersion value of 𝑑 = 0.044 when
compared to the numerical integration one. As we can see
from Figure 9(a), these solutions are almost the same. In
Figure 9(a), the solid line represents the derived enhanced-
cubication solution, the dashed line represents the numerical
integration solution, while the black dots are the estimated
prediction values obtained by using the approximate solution
derived in [8]. We next use the parameter value of 𝜎

2
=

1.3853631 and plot the amplitude-time curves by using
(32). In this case, although our enhanced-cubication solu-
tion provides the same angular frequency value Ω

𝐶
, the

amplitude-time response curve showed in Figure 9(b) differs
from the curve obtained by numerical integration.Therefore,
we must conclude that the value of 𝜎

2
is not a valid solu-

tion to (27). Furthermore, one can numerically prove that
this solution does not satisfy (27) at all times 𝑡. Thus, we
can conclude that only the fitting parameter value of 𝜎

1
=

1.061800921 provides a solution that predicts well the traject-
ory of the singular oscillator. Finally, we must mention that
during the derivation of the equivalent restoring force repre-
sentation of (27), Chebyshev polynomial expansion provides
a poor fit to this force term. Due to this finding, we ran
several computer simulations by considering different ini-
tial condition values. Then, we plotted the amplitude-time
response curve of our derived solution and compared this
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with the exact numerical one. We found in all cases that for
𝐴 > 0.001, our enhanced solution provided the same qualita-
tive and quantitative behaviors than those of the numerical
integration solutions of (27).

6. Conclusions

In this paper, we have used the enhanced cubication pro-
cedure introduced by Eĺıas-Zúñiga et al. in [1] to develop
approximate solutions of some strongly nonlinear oscillators
that described the dynamical behavior response of several
physical and engineering systems. During the solution pro-
cesses, we used the enhanced cubication approach to replace
the original equation of motion by the homogeneous Duffing
equation. This transformation is achieved by computing the
Chebyshev polynomial representation of the restoring force
terms. Then, we used the homogenous Duffing equation to
find the angular frequency expression since it is well known
that the Duffing equation has an exact solution that depends
on Jacobi elliptic functions. Based on these expressions, we
have assessed the accuracy of the angular frequency equa-
tions for the complete range of oscillations amplitudes. For
instance, we have examined the general pendulum response,
given by (4), at the interval oscillation values of 0∘ ≤ 𝐴 ≤

113

∘. In this case, we have found that the maximum relative
error does not exceed 0.2%. Then, we used our enhanced
cubication method to derive the approximate solution of a
generalized power-form elastic term oscillator and found,
in all cases, that the maximum error attained is less than
1𝐸 − 06 which is remarkably lower when compared to other
approximate solutions [10–12]. However, when we examined
the nonlinear oscillator described by (23) for which 𝛼

1
= 1,

𝛼

2
= 1/2, 𝛼

3
= 1, 𝜆

1
= 1, and 𝜆

2
= −1, the percentage error

value found by the enhanced cubication method is bigger
than that obtained by using the generalized Senator Bapat
perturbation technique [13]. Of course, further improvement
could be achieved in our enhanced perturbationmethod if we
consider more terms on the Chebyshev polynomial expan-
sion (6).

We next used the enhanced cubication approach and
derived the approximate solution of the finite extensibility
nonlinear oscillator and found a maximum error of about
−3.451% for 0 < 𝐴 ≤ 0.99853 which represents an improve-
ment of the error values estimated by using other perturba-
tion techniques [14, 15]. Finally, we examined the dynamical
response of a singular oscillator (27) and found that our
enhanced cubication technique provides two approximate
solutions by using the same initial conditions. However,
the solution related to the fitting parameter value of 𝜎

2
=

1.3853631 provides an amplitude-time curve whose trajec-
tory differs from the numerical one, and then it was discarded
as a possible solution to (27).

Based on the previous results, we can conclude that
our proposed enhanced-cubication method provides good
approximate solutions to strongly nonlinear oscillators even
for irrational restoring forces.

In a forthcoming paper, we shall introduce some modi-
fications to our enhanced cubication method to account for

linear or nonlinear damping effects of strongly nonlinear
oscillators.
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