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The aim of this paper focuses on applying a nonlinearization method to transform forced, damped nonlinear equations of motion
of oscillatory systems into the well-known forced, damped Duffing equation. The accuracy obtained from the derived equivalent
equations of motion is evaluated by studying the amplitude-time, the phase portraits, and the continuous wavelet transform
diagrams of the cubic-quintic Duffing equation, the generalized pendulum equation, the power-form elastic term oscillator, the
Duffing equation with linear and cubic damped terms, and the pendulum equation with a cubic damped term.

1. Introduction

Here, in this paper, we illustrate how the nonlinearization
approach can be used to obtain equivalent equations of
motion of forced, damped nonlinear oscillators of the form

𝑥̈ + 𝐹 (]𝑥̇) + 𝑓 (𝑥) + 𝑄 (𝜔𝑓𝑡) = 0; 𝑥 (0) = 𝐴, 𝑥̇ (0) = 0,

(1)

where 𝐴 is the initial oscillation amplitude, 𝑓(𝑥) and 𝐹(]𝑥̇)
are the system conservative and nonconservative restoring
forces, respectively, ] is a damping parameter, and 𝑄(𝜔𝑓𝑡)

is a periodic external force with driving frequency 𝜔𝑓. In
accordance with the nonlinear transformation approach [1],
we first write the conservative force terms as a polynomial
expression by using the Chebyshev polynomials of the first
kind [2–4]:

𝑓 (𝑥) =

𝑁

∑

𝑛=0

𝑏2𝑛+1 (𝑥10) 𝑇2𝑛+1 (𝑥) , (2)

where

𝑏2𝑛+1 =
2

𝜋

∫

+1

−1

1

√

1 − 𝑥

2
𝑓 (𝑥) 𝑇2𝑛+1 (𝑥) 𝑑𝑥, (3)

and𝑇2𝑛+1 are the Chebyshev polynomials of the first kind.We
can see that the usage of (3) could transform (2) into a fifth
or higher order polynomial expression. In the case for which
a fifth-order Chebyshev polynomial is used, the conservative
force in (2) becomes

𝑓 (𝑥) ≡ 𝑏1 (𝑞) 𝑇1 (𝑦) + 𝑏3 (𝑞) 𝑇3 (𝑦) + 𝑏5 (𝑞) 𝑇5 (𝑦)

≈ 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
,

(4)

where𝛼(𝐴),𝛽(𝐴) and 𝛾(𝐴)will be defined later on.Therefore,
the equivalent representation form of (1) is given as

𝑥̈ + 𝐹 (]𝑥̇) + 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
+ 𝑄 (𝜔𝑓𝑡) ≈ 0.

(5)

By following the nonlinearization method, we now find the
equivalent representation form of (1) as a function of a cubic-
like polynomial equation. This procedure leads to

𝑥̈ + 𝐹 (]𝑥̇) + 𝛼 (𝐴) 𝑥 + 𝛽 (𝐴) 𝑥

3
+ 𝛾 (𝐴) 𝑥

5
+ 𝑄 (𝜔𝑓𝑡)

≃ 𝑥̈ + 𝐹 (]1𝑥̇) + 𝛿 (𝐴) 𝑥 + 𝜖 (𝐴) 𝑥

3
+ 𝑄 (𝜔𝑓𝑡) ,

(6)
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where ]1, 𝛿, and 𝜀 are determined from

𝐹1 (𝛿, 𝜖, ]1, 𝑄)

= ∫

𝜎

0
(𝐹 (]𝑥̇) + 𝛼𝑥 + 𝛽𝑥

3
+ 𝛾𝑥

5
+ 𝑄 (𝜔𝑓𝑡)

− 𝐹 (]1𝑥̇) − 𝛿𝑥 − 𝜖𝑥

3
− 𝑄 (𝜔𝑓𝑡))

2
𝑑𝑥 󳨀→ min

(7)

𝐹2 (𝛿, 𝜖, ]1, 𝑄)

= ∫

𝜐

0
(𝐹 (]𝑥̇) + 𝛼𝑥 + 𝛽𝑥

3
+ 𝛾𝑥

5
+ 𝑄 (𝜔𝑓𝑡)

− 𝐹 (]1𝑥̇) − 𝛿𝑥 − 𝜖𝑥

3
− 𝑄 (𝜔𝑓𝑡))

2
𝑑𝑥̇ 󳨀→ min,

(8)

in which

𝜕𝐹1 (𝛿, 𝜖, ]1, 𝑄)

𝜕𝛿

= 0,

𝜕𝐹1 (𝛿, 𝜖, ]1, 𝑄)

𝜕𝜖

= 0,

𝜕𝐹2 (𝛿, 𝜖, ]1,𝑄)

𝜕]1
= 0.

(9)

Notice that in our proposed procedure we are assuming that
the magnitude of the external force and its driving frequency
remain constants during the transformation process.Thus, (1)
can be written in equivalent form as

𝑑

2
𝑥

𝑑𝑡

2
+ 𝐹 (]𝑥̇) + 𝑓 (𝑥) + 𝑄 (𝜔𝑓𝑡)

≡

𝑑

2
𝑥

𝑑𝑡

2
+ 𝐹 (]1𝑥̇) + 𝛿 (𝐴) 𝑥 + 𝜖 (𝐴) 𝑥

3
+ 𝑄 (𝜔𝑓𝑡) ≈ 0.

(10)

We will next explore the applicability of our proposed
approach and derive the equivalent representation form of
some forced, damped nonlinear systems.

2. The Forced, Damped Cubic-Quintic
Oscillator

The equation of motion that describes the dynamical
response of the forced, damped cubic-quintic oscillator is
given as

̈𝑦 + 2] ̇𝑦 + 𝐴𝑦 + 𝐵𝑦

3
+ 𝐺𝑦

5
= 𝑄0 cos𝜔𝑓𝑡,

with 𝑦 (0) = 𝑦10, ̇𝑦 (0) = 0,

(11)

where 𝑦 denotes the displacement of the system, ] is the
damping coefficient, 𝐴, 𝐵, and 𝐺 are system constant param-
eters, 𝑄0 is the magnitude of the external force, and 𝜔𝑓 is the
driving frequency [6, 7]. We next use 𝑥 = 𝐴/𝑦 and write (11)
as

𝑥̈ + 2]𝑥̇ + 𝛼𝑥 + 𝛽𝑥

3
+ 𝛾𝑥

5
= 𝑄 cos𝜔𝑓𝑡,

with 𝑥 (0) = 1, 𝑥̇ (0) = 0,

(12)
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Figure 1: Amplitude-time response curves obtained from the
numerical integration solution of (12) and (13) for the system
parameter values of ] = 0.01, 𝐴 = 3, 𝐵 = −4, 𝐺 = 1, 𝑄0 = 0.1,
and 𝜔𝑓 = 3 with 𝑦(0) = 1/2 and ̇𝑦(0) = 0. Here, the black solid line
represents the numerical integration solution of (12), while the red
dashed line represents the prediction obtained by using the derived
equivalent equation of motion (13) with 𝛿 = 2.8713, 𝜖 = −0.7178,
]1 = 0.0101, 𝜎 = 2.1191, and 𝜐 = −350.4.

where 𝛼 = 𝐴, 𝛽 = 𝐵𝑦

2
10, 𝛾 = 𝐺𝑦

4
10, and 𝑄 = 𝑄0/𝑦10. By

following our proposed nonlinear method and by using (4)
and (7)–(9), we obtain the equivalent representation form of
(12) as

𝑥̈ + 2]1𝑥̇ + 𝛿𝑥 + 𝜖𝑥

3
= 𝑄 cos𝜔𝑓𝑡, (13)

where 𝛿, 𝜖, and ]1 can be determined from the following
equations:

𝛿 = 𝛼 −

25𝛾𝜎

4

21

, 𝜖 = 𝛽 +

50𝛾𝜎

2

27

, ]1 = ] +

32𝛾𝜎

5

189𝜐

,

(14)

𝛿 = 𝛼 −

5𝛾𝜎

4

49

, 𝜖 = 𝛽 +

190𝛾𝜎

2

189

, ]1 = ] −

32𝛾𝜎

5

1323𝜐

.

(15)

Here, 𝜎 and 𝜐 are fitting parameters that satisfy (7)-(8). To
examine the accuracy of (13), we next compare its solution
with the one obtained from (12) by using the fourth-order
Runge-Kutta numerical integration method. Let us consider
the parameter values of 𝑦10 = 1/2, ] = 0.01, 𝐴 = 3, 𝐵 = −4,
𝐺 = 1, 𝑄0 = 0.1, and 𝜔𝑓 = 3. In this case, the parameter
values assigned to 𝐴, 𝐵, and 𝐺 provide a triple-well potential
to the cubic-quinticDuffing oscillator that can have up to four
resonance frequencies [8]. Figure 1 illustrates the comparison
between the amplitude-time response curves of (12) and
(13) obtained from their corresponding numerical integration
solutions. As one can see form Figure 1, both solutions are
almost the same. In fact, the computed root-mean-square
error (RMSE) value does not exceed 0.0741 on 0 ≤ 𝑡 ≤ 50

with 𝛿 = 2.8713, 𝜖 = −0.7178, ]1 = 0.0101, 𝜎 = 2.1191,
and 𝜐 = −350.4. The accuracy of the numerical simulations is
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Figure 2: Amplitude-time response curves, phase diagrams, and Morlet CWT plots of (12) and (13), for the system parameter values of
] = 0.01, 𝐴 = 1, 𝐵 = 3.5, 𝐺 = 0.5, 𝑄0 = 0.5, 𝜔𝑓 = 0.5 with 𝑦(0) = 1 and ̇𝑦(0) = 0. Here, the black solid line represents the numerical
integration solution of (12) while the red dotted and the red dashed lines represent the prediction obtained by using the derived equivalent
equation of motion (13) with 𝛿 = 0.9838, 𝜖 = 3.7827, and ]1 = 0.0099.

surprisingly good if we consider that the potential of a cubic
Duffing oscillator cannot have triple-well form.

As a second example, let us consider the parameter values
of 𝑦10 = 1, ] = 0.01, 𝐴 = 1, 𝐵 = 3.5, 𝐺 = 0.5, 𝑄0 = 0.5,
and 𝜔𝑓 = 0.5. Figure 2 shows the amplitude-time response
curves and the corresponding phase portraits, as well as the
Morlet continuos wavelet transforms (CWT) obtained from
the numerical integration solutions of (12) and (13). Here,
the values of 𝜎 = 0.75 and 𝜐 = 100 were computed from
(15) which provides good agreement between (12) and (13).
Notice that the numerical integration solutions of (12) and
(13) are almost the same. In this particular problem, the
Morlet CWT was used to extract system dynamics effects
such as the one shown at the system transient motion in
which the transient frequency has strong influence on the
system dynamic behavior. In fact on the time interval 0 ≤ 𝑡 ≤

100, the transient frequency dominates the system motion.
When 𝑡 > 100, the system oscillates at the driving frequency
𝜔𝑓. Besides, we have computed the RMSE value between both
numerical solutions and found that it has the value of 0.0301.
Here, 𝛿 = 0.9838, 𝜖 = 3.7827, and ]1 = 0.0099. Of course,
we can consider other parameter values, as those shown in
Table 1, to describe the dynamic response of (12) by using
(13). Therefore, we can conclude that our nonlinear method

leads to the derivation of an equivalent equation of motion
that follows well the qualitative and quantitative numerical
response of the original equation (12).

We next determine the equivalent representation form of
the forced, damped general pendulum equation.

3. The Forced, Damped General
Pendulum Equation

Wenow proceed to derive the equivalent representation form
of the forced, damped pendulum equation

𝑑

2
𝑦

𝑑𝑡

2
+ 2] ̇𝑦 − 𝑏𝑦 + 𝑎 sin𝑦 = 𝑄0 cos (𝜔𝑓𝑡) ,

𝑦 (0) = 𝐴, ̇𝑦 (0) = 0,

(16)

where 𝑎 and 𝑏 represent system constant parameter values, ]
is the damping coefficient, 𝜔𝑓 is the driving frequency, and
𝑄0 is the external force magnitude [9]. If we introduce the
transformation 𝑥 = 𝑦/𝐴, then (16) can be rewritten as

𝑑

2
𝑥

𝑑𝑡

2
+ 2]𝑥̇ − 𝑏𝑥 +

𝑎

𝐴

sin (𝑥𝐴) = 𝑄 cos (𝜔𝑓𝑡) ,

𝑥 (0) = 1, 𝑥̇ (0) = 0,

(17)
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Table 1: Estimated RMSE values computed on the time interval of 0 ≤ 𝑡 ≤ 50 with 𝜔𝑓 = 1 and ] = 0.01.

Oscillator 𝑥0 = 1/2 𝑥0 = 1

𝑄 = 0.1 𝑄 = 1 𝑄 = 0.1 𝑄 = 1

Cubic-quintic duffing oscillator with parameter values of RMSE RMSE RMSE RMSE
𝐴 = 1, 𝐵 = 0.1, 𝐺 = 0.1, 𝜎 = 2.1, 𝜐 = 30 0.0600 2.2148 0.0967 0.1147
𝐴 = 10, 𝐵 = 10, 𝐺 = 10, 𝜎 = 0.915, 𝜐 = −350.4 0.0121 0.0270 0.2948 0.0530
Pendulum oscillator with parameter values of
𝑎 = 0.1, 𝑏 = −5, 𝜎 = 0.8, 𝜐 = −50 0 0 0.00001 0.00001
𝑎 = 5, 𝑏 = −1, 𝜎 = 0.8, 𝜐 = −50 0 0 0.0009 0.0008
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Figure 3: Amplitude-time response curves, phase diagrams, andMorlet CWR plots of (17) and (18) for the system parameter values of 𝑎 = 1,
𝑏 = −1, ] = 0.035, 𝑄 = 1, 𝜔𝑓 = 2 with 𝑥(0) = 57.3

∘ and 𝑥̇(0) = 0. Here, the black solid line represents the numerical integration solution of
(17), while the red dotted and red dashed lines represent the predictions obtained from the derived equivalent equation of motion (18). Here,
𝛼 = 1.999, 𝛽 = −0.1664, 𝛾 = 0.0079, 𝛿 = 1.999, 𝜖 = −0.1613, and ]1 = 0.035.

with 𝑄 = 𝑄0/𝐴. By applying our proposed transformation
method to (17), we obtain the following expression:

𝑑

2
𝑥

𝑑𝑡

2
+ 2]1𝑥̇ + 𝛿𝑥 + 𝜖𝑥

3
= 𝑄 cos (𝜔𝑓𝑡) , (18)

where

𝛼 =

6𝑎

𝐴

4
(𝐴 (𝐴

2
− 80) 𝐽1 (𝐴) − 16 (𝐴

2
− 20) 𝐽2 (𝐴)) − 𝑏,

𝛽 =

32𝑎

𝐴

4
(−𝐴 (𝐴

2
− 60) 𝐽1 (𝐴) + 2 (7𝐴

2
− 120) 𝐽2 (𝐴)) ,

𝛾 =

32𝑎

𝐴

4
(𝐴 (𝐴

2
− 48) 𝐽1 (𝐴) − 12 (𝐴

2
− 16) 𝐽2 (𝐴)) ,

(19)

and 𝛿, 𝜖, and ]1 are given by (14) and (15). Here, 𝐽1(𝐴) and
𝐽2(𝐴) are the first and second order Bessel functions of the
first kind. To illustrate the degree of accuracy attained by our
derived solution (18), let us consider the system parameter
values of 𝑎 = 1, 𝑏 = −1, ] = 0.035, 𝑄 = 1, and 𝜔𝑓 = 2 with
𝑥(0) = 1 or 57.3∘ and 𝑥̇(0) = 0. One can notice from Figure 3
that the numerical integration solutions of (17) and (18) are
almost the same. In this case, 𝛼 = 1.999, 𝛽 = −0.1664, 𝛾 =

0.0079, 𝛿 = 1.999, 𝜖 = −0.1613, and ]1 = 0.035, and the values
of𝜎, 𝜐, and ]1 were fitted by using (15), since these expressions
provide the best predictionswith a RMSE value of 0.0087.The
same degree of accuracy was found by considering different
system parameter values, as those illustrated in Table 1 in
which the RMSE values are close to zero.
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To further assess the applicability of our nonlinear cubi-
cation approach, we next derive the equivalent representation
form of a forced, damped oscillator with a power-form elastic
term.

4. A Generalized Forced, Damped Power-Form
Elastic Term Oscillator

The equation of motion of this oscillator is given as

𝑑

2
𝑦

𝑑𝑡

2
+ 2]

𝑑𝑦

𝑑𝑡

+ 𝜔

2
𝑛𝑦 + ℎ sgn (𝑦)

󵄨

󵄨

󵄨

󵄨

𝑦

󵄨

󵄨

󵄨

󵄨

𝑚

= 𝑄0 cos (𝜔𝑓𝑡) , 𝑦 (0) = 𝐴, ̇𝑦 (0) = 0,

(20)

where 𝜔𝑛 and ℎ are constant parameters and 𝑚 can take
any nonnegative real value, such as odd, even, rational, or
irrational, that is, 0 ≤ 𝑚 < ∞ [10]. As usual, let us use the
following coordinate transformation 𝑥 = 𝑦/𝐴 and write (20)
as,

𝑑

2
𝑥

𝑑𝑡

2
+ 2]

𝑑𝑥

𝑑𝑡

+ 𝜔

2
𝑛𝑥 + 𝑐1 sgn (𝑥) |𝑥|

𝑚
= 𝑄 cos (𝜔𝑓𝑡) ,

𝑐1 = ℎ𝐴

(𝑚−1)
; 𝑄 =

𝑄0

𝐴

with 𝑥 (0) = 1, 𝑥̇ (0) = 0.

(21)

We next use Chebyshev polynomial expansion to write the
restoring forces 𝜔

2
𝑛𝑥 + 𝑐1 sgn(𝑥)|𝑥|

𝑚 as a nonic polynomial
expression

𝜔

2
𝑛𝑥 + 𝑐1 sgn (𝑥) |𝑥|

𝑚
≈ 𝛼2𝑥 + 𝛽𝑥

3
+ 𝛾𝑥

5
+ Δ𝑥

7
+ 𝜀𝑥

9
, (22)

where

𝛼2 =
5𝑐1 (𝑚 − 9) (𝑚 − 7) (𝑚 − 5) (𝑚 − 3) Γ [𝑚/2 + 1]

8√𝜋Γ [(11 + 𝑚) /2]

+ 𝜔

2
𝑛,

(23)

𝛽 = −

10𝑐1 (𝑚 − 9) (𝑚 − 7) (𝑚 − 5) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

,

(24)

𝛾 =

42𝑐1 (𝑚 − 9) (𝑚 − 7) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

, (25)

Δ = −

64𝑐1 (𝑚 − 9) (𝑚 − 5) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

,

(26)

𝜀 =

32𝑐1 (𝑚 − 7) (𝑚 − 5) (𝑚 − 3) (𝑚 − 1) Γ [𝑚/2 + 1]

√𝜋Γ [(11 + 𝑚) /2]

. (27)

Notice that in (23)–(27) the terms Γ[𝑚] represent the Euler
gamma function. It is important to point out that in this
particular problem we have used five Chebyshev expansion
coefficient terms that provide, for the system restoring force,
an equivalent representation form that is based on a ninth-
order polynomial expression. This example illustrates the
applicability of our procedure in usingmore than three terms

in (4). We next follow our solution procedure and find, by
using (7) and (8), that

𝑑

2
𝑥

𝑑𝑡

2
+ 2]

𝑑𝑥

𝑑𝑡

+ 𝜔

2
𝑛𝑥 + 𝑐1 sgn (𝑥) |𝑥|

𝑚

≃

𝑑

2
𝑥

𝑑𝑡

2
+ 2]1

𝑑𝑥

𝑑𝑡

+ 𝛿𝑥 + 𝜖𝑥

3
= 𝑄 cos (𝜔𝑓𝑡) ,

(28)

where

𝛿 = 𝛼2 −

5 (715𝛾𝜎

4
+ 1274Δ𝜎

6
+ 1701𝜀𝜎

8
)

3003

,

𝜖 = 𝛽 +

50𝛾𝜎

2

27

+

245Δ𝜎

4

99

+

420𝜀𝜎

6

143

,

]1 = ] +

32 (143𝛾𝜎

5
+ 273Δ𝜎

7
+ 378𝜀𝜎

9
)

27027𝜐

,

(29)

𝛿 = 𝛼2 −
5𝛾𝜎

4

49

−

10Δ𝜎

6

231

+

45𝜀𝜎

8

1001

,

(30)

𝜖 = 𝛽 +

190𝛾𝜎

2

189

+

85Δ𝜎

4

99

+

100𝜀𝜎

6

143

,

(31)

]1 =
189189]𝜐 − 32 (143𝛾𝜎

5
+ 273Δ𝜎

7
+ 378𝜀𝜎

9
)

189189𝜐

.

(32)

To assess the accuracy of our derived equivalent representa-
tion form (28) of (21), we shall consider the following data
values: 𝑚 = 8/5, 𝐴 = 1, 𝜔𝑛 = 0, ℎ = 10, 𝑄 = 10,
and ] = 0.1 with a driving frequency value of 𝜔𝑓 = 3

[11]. Figure 4 illustrates the amplitude-time response curves
obtained by numerically integrating (21) and (28). As we
can see from Figure 4, the numerical integration of (28)
follows closely the amplitude-time response curve obtained
from (21). In this case, the RMSE value of 0.384 is obtained
by using equations (30)–(32). Here, the red solid and black
dashed lines represent, respectively, the numerical integra-
tion solution of (21) and (28).The computed parameter values
are 𝛼2 = 3.0954, 𝛽 = 21.2256, 𝛾 = −36.7078, Δ =

35.2187, 𝜀 = −12.8501, 𝛿 = 3.5311, 𝜖 = 3.6588, ]1 =

0.1155, 𝜐 = −50, and 𝜎 = −1.22. Also, Figure 5 provides a
comparison of the numerical solutions of (21) and (28) with
respect to the approximate general solution of (28) derived
by using Jacobi elliptic functions [5]. One can notice from
Figure 5 that all solutions are almost the same. Therefore,
we can conclude that our derived equivalent representation
form (28) describes well the qualitative and quantitative
behavior of (21). The amplitude-frequency response curve of
(28) can be obtained by using, for instance, the approximate
solutions developed in [5, 11]. As a second case, we now use
our equivalent representation form (28) and consider the
following parameter values of 𝑚 = 1/3, 𝐴 = 1, 𝜔𝑛 = 2, ℎ =

0.1, 𝑄 = 0.1, ] = 0.025, and 𝜔𝑓 = 2 in (21) and compute the
corresponding amplitude-time response curve. We can see
from Figure 6 that the amplitude-time curve obtained from
(28) followswell the curve obtained from (21). In this case, the
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Figure 4: Amplitude-time response curves of (21) and (28) for the system parameter values of 𝑚 = 8/5, 𝐴 = 1, 𝜔𝑛 = 0, ℎ = 10, 𝑄 = 10,
] = 0.1, and 𝜔𝑓 = 3 with 𝑥(0) = 1 and 𝑥̇(0) = 0. Here, the red solid and black dashed lines represent, respectively, the numerical integration
solution of (21) and (28) with 𝛼2 = 3.0954, 𝛽 = 21.2256, 𝛾 = −36.7078, Δ = 35.2187, 𝜀 = −12.8501, 𝛿 = 3.5311, 𝜖 = 3.6588, ]1 = 0.1155,
𝜐 = −50, and 𝜎 = −1.22.
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Figure 5: Amplitude-time response curves of (21) and (28) for the
system parameter values of𝑚 = 8/5, 𝐴 = 1, 𝜔𝑛 = 0, ℎ = 10, 𝑄 = 10,
] = 0.1, and 𝜔𝑓 = 3 with 𝑥(0) = 1 and 𝑥̇(0) = 0. Here, the red
solid and black dashed lines represent, respectively, the numerical
integration solution of (21) and (28), while the purple triangles
represent the approximate solution of (21) derived in [5] with 𝛼2 =

3.0954, 𝛽 = 21.2256, 𝛾 = −36.7078, Δ = 35.2187, 𝜀 = −12.8501,
𝛿 = 3.5311, 𝜖 = 3.6588, ]1 = 0.1155, 𝜐 = −50, and 𝜎 = −1.22.

RMSE value is about 0.0219 for which the parameter values
are 𝛼2 = 4.3426, 𝛽 = −1.3704, 𝛾 = 3.289, Δ = −3.508, 𝜀 =

1.3493, 𝛿 = 4.2695, 𝜖 = −0.2956, ]1 = 0.2537, 𝜐 = −10, and
𝜎 = 0.75. For illustrative purposes, we show in Table 2 some
values of the exponent 𝑚 with their fitting parameter values
of 𝜎 and 𝜐 that can be used to study the dynamical behavior of
some nonlinear oscillator with a rational or irrational power
restoring forces.

Wenext develop the equivalent representation formof the
Duffing equation with linear and cubic damped terms.
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Figure 6: Amplitude-time response curves of (21) and (28) for the
system parameter values of𝑚 = 1/3,𝐴 = 1,𝜔𝑛 = 2, ℎ = 0.1,𝑄 = 0.1,
] = 0.025, and 𝜔𝑓 = 2 with 𝑥(0) = 1 and 𝑥̇(0) = 0. Here, the red
solid and black dashed lines represent, respectively, the numerical
integration solution of (21) and (28) with 𝛼2 = 4.3426, 𝛽 = −1.3704,
𝛾 = 3.289, Δ = −3.508, 𝜀 = 1.3493, 𝛿 = 4.2695, 𝜖 = −0.2956,
]1 = 0.2537, 𝜐 = −10, and 𝜎 = 0.75.

5. The Forced Duffing Equation with
Linear and Cubic Damped Terms

We now explore the applicability of our method to derive the
equivalent representation form of the following equation of
motion

𝑑

2
𝑦

𝑑𝑡

2
+ ] ̇𝑦 + 𝐴𝑦 + 𝐵0𝑦

3
+ 𝜅0 ̇𝑦

3
= 𝑄0 cos𝜔𝑓𝑡,

𝑦 (0) = 𝑦10, ̇𝑦 (0) = ̇𝑦10,

(33)
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Table 2: Estimated values of the fitting parameter𝜎 and 𝜐 at different
exponent values of 𝑚. Here, we assume that 𝜔𝑛 = 2, ℎ = 0.1,
] = 0.025, 𝑄 = 0.1 and consider the following interval values of the
initial oscillation amplitude 0.1 ≤ 𝐴 ≤ 10, with driving frequency
values on 0.1 ≤ 𝜔𝑓 ≤ 3 to best fit the values of 𝜎 and 𝜐.

Exponent
value

Fitting Parameter
value

Fitting Parameter
value

𝑚 𝜎 𝜐

3/5 −1.1 50
2/3 −0.95 50
4/3 −1.177 −50
5/3 −0.95 5
7/5 −0.95 5
10/7 0.9 1

which has a linear damped term, ], and a cubic one, 𝜅0 [12, 13].
Let 𝑥 = 𝑦/𝑦10; then, (33) can be written as

𝑑

2
𝑥

𝑑𝑡

2
+ ]𝑥̇ + 𝐴𝑥 + 𝐵𝑥

3
+ 𝜅𝑥̇

3
= 𝑄 cos𝜔𝑓𝑡,

𝑥 (0) = 1, 𝑥̇ (0) = 𝑥̇10,

(34)

where 𝐵 = 𝐵0𝑦
2
10, 𝜅 = 𝜅0𝑦

2
10, and 𝑄 = 𝑄0/𝑦10.

Since (34) has a damped nonlinear termof the cubic-type,
we need tomodify our nonlinearmethod to take into account
its effects on the solution response of (34).Therefore, we now
assume that (7) and (8) can be re-written as

𝐹1 (𝛿, 𝜖, ]1)

= ∫

𝜎

0
(]𝑥̇ + 𝐴𝑥 + 𝐵𝑥

3
+ 𝜅𝑥̇

3
+ 𝑄 cos (𝜔𝑓𝑡)

− (𝜅

󵄨

󵄨

󵄨

󵄨

]1
󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ − 𝛿𝑥

− 𝜖𝑥

3
− 𝑄 cos (𝜔𝑓𝑡))

2
𝑑𝑥 󳨀→ min

(35)

𝐹2 (𝛿, 𝜖, ]1)

= ∫

𝜐

0
(]𝑥̇ + 𝐴𝑥 + 𝐵𝑥

3
+ 𝜅𝑥̇

3
+ 𝑄 cos (𝜔𝑓𝑡)

− (𝜅

󵄨

󵄨

󵄨

󵄨

]1
󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ − 𝛿𝑥 − 𝜖𝑥

3

−𝑄 cos (𝜔𝑓𝑡))
2
𝑑𝑥̇ 󳨀→ min,

(36)

which yield the equivalent representation form of (34) as

𝑑

2
𝑥

𝑑𝑡

2
+ (𝜅

󵄨

󵄨

󵄨

󵄨

]1
󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝛿𝑥 + 𝜖𝑥

3
= 𝑄 cos (𝜔𝑓𝑡) , (37)

where

𝛿 =

18𝜅𝜐

3
+ 𝐴𝜎

𝜎

, 𝜖 =

𝐵𝜎

3
− 14𝜅𝜐

3

𝜎

3
, ]1 =

27𝜐

2

5

.

(38)

Before we evaluate the accuracy achieved by our derived
expression (37), we first recall that Trueba and coworkers

in [13], by using Melnikov analysis, found an equivalent
equation of motion for (34) given as

𝑑

2
𝑥

𝑑𝑡

2
+ 𝜇𝑥̇ + 𝐴𝑥 + 𝐵𝑥

3
= 𝑄 cos𝜔𝑓𝑡, (39)

where 𝜇 is defined as

𝜇 = ] +

12

35

𝜅. (40)

In what follows, we will use (37) and (39) to compare their
numerical predictions with those provided by (34). First, let
us consider the parameter values of ] = 0.1, 𝐴 = −1,
𝐵 = 1, 𝜅 = 0.01, 𝜔𝑓 = 1, and 𝑄 = 0.075 with 𝑥10 =

1, and 𝑥̇10 = −1.1463 and use our derived expressions to
compute the values of 𝛿, 𝜖, ]1, 𝜎, and 𝜐 which are given
as −0.9906, 0.9858, 0.6060, 0.72, and 0.335, respectively.
Figure 7 shows a comparison of the amplitude-time curves,
the phase portrait plots, and the Morlet CWT diagram
obtained from the numerical integrations of (34), (37), and
(39). Notice from Figure 7, that our equivalent equation of
motion (37) closely follows the numerical integration curve
of (34). Here, the RMSE value is close to 0.082, while
the numerical predictions obtained from (39) show some
discrepancies in the amplitude-time curve at the time interval
of 30 ≤ 𝑡 ≤ 60. In this solution, the computed RMSE value is
0.199.

As a second case, we now explore the accuracy of our
equivalent representation form (37) by assuming that ] = 0.2,
𝐴 = 2, 𝐵 = 5, 𝜅 = 0.15, 𝜔𝑓 = 1/2, and 𝑄 = 5 with
𝑥10 = 1 and 𝑥̇10 = 1. As we can see from Figure 8, the
numerical integration solutions of (37) and (39) agree well
with the solution of (34). Furthermore, the Morlet CWT of
(39) shown in Figure 8, exhibits the subharmonic effects that
the original system (34) experiences at the frequencies values
of 1/2𝜔𝑓, 1/4𝜔𝑓, and 1/8𝜔𝑓 which correspond to the Morlet
continuous wavelet transform scale values of 3, 4, and 5,
respectively. In this case, the estimated RMSE values are 0.009
for (37) and 0.0166 for (39).The values of 𝛿, 𝜖, ]1, 𝜎, and 𝜐 are
found to be 2.1409, 4.7884, 0.6060, −0.72, and 0.335. Notice
that in both examples the values of ]1 = 0.6060, 𝜎 = 0.72,
and 𝜐 = 0.335 remain unchanged. In Figures 7 and 8, the
black and the red dashed lines describe the amplitude-time
and phase portrait curves of (34) and (39), respectively.

As a final example, we now derive the equivalent equation
of the forced pendulum equation with a cubic damped term

𝑑

2
𝑥

𝑑𝑡

2
+ ]𝑥̇ + 𝜅𝑥̇

3
+ 𝑎 sin (𝑥𝐴)

= 𝑄 cos (𝜔𝑓𝑡) , 𝑥 (0) = 1, 𝑥̇ (0) = 𝑥̇10,

(41)

where 𝐴 is the initial oscillation amplitude, 𝑎 = 𝑎0/𝐴, 𝜅 =

𝜅0𝐴
2, with 𝑄 = 𝑄0/𝐴. We first use Chebyshev polynomial

expansion and then (35) and (36) to get that

𝑑

2
𝑥

𝑑𝑡

2
+ (𝜅

󵄨

󵄨

󵄨

󵄨

]1
󵄨

󵄨

󵄨

󵄨

+ ]) 𝑥̇ + 𝛿𝑥 + 𝜖𝑥

3
= 𝑄 cos (𝜔𝑓𝑡) , (42)
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Figure 7: Amplitude-time, phase plane, and Morlet CWT diagrams for the system parameter values of ] = 0.1, 𝐴 = −1, 𝐵 = 1, 𝜅 = 0.01,
𝜔𝑓 = 1, and 𝑄 = 0.075 with 𝑥10 = 1 and 𝑥̇10 = −1.1463. Here, the dashed black and red lines represent the numerical integration solutions of
(34) and (39), while the blue solid line describes the numerical integration solution of (37). Similarly, in (b) the black solid line and the red
dots represent the numerical integration solutions computed respectively, from (34) and (37).

where

𝛼 =

6𝑎

𝐴

3
(𝐴 (𝐴

2
− 80) 𝐽1 (𝐴) − 16 (𝐴

2
− 20) 𝐽2 (𝐴)) − 𝑏,

𝛽 =

32𝑎

𝐴

3
(−𝐴 (𝐴

2
− 60) 𝐽1 (𝐴) + 2 (7𝐴

2
− 120) 𝐽2 (𝐴)) ,

𝛾 =

32𝑎

𝐴

3
(𝐴 (𝐴

2
− 48) 𝐽1 (𝐴) − 12 (𝐴

2
− 16) 𝐽2 (𝐴)) ,

(43)

and 𝛿, 𝜖, and ]1 are determined from

𝛿 = 𝛼 +

18𝜅𝜐

3

𝜎

−

185𝛾𝜎

4

21

,

𝜖 = 𝛽 −

14𝜅𝜐

3

𝜎

3
+

70𝛾𝜎

2

9

,

]1 =
567𝜅𝜐

3
− 320𝛾𝜎

5

105𝜅𝜐

.

(44)

By using Melnikov analysis, Trueba and coworkers [13]
developed the equivalent representation form of (41) which
is given as

𝑑

2
𝑥

𝑑𝑡

2
+ 𝜇𝑥̇ + 𝑎 sin (𝑥𝐴) = 𝑄 cos (𝜔𝑓𝑡) , 𝜇 = ] +

8

3

𝜅.

(45)
We next consider the parameter values of 𝐴 = 1, 𝑎0 = 1,
] = 0.05, 𝜅0 = 0.1, 𝑄0 = 0.41, 𝑥̇10 = 1, and 𝜔𝑓 = 2.5,
and plot the numerical integration solutions of (41), (42),
and (45). The corresponding amplitude-time, phase portrait,
and Morlet CWT plots are shown in Figure 9 for which the
computed parameter values are 𝛿 = 0.9531, 𝜖 = −0.1048,
]1 = 0.615, 𝛼 = 0.999, 𝛽 = −0.1664, 𝛾 = 0.0079, 𝜇 = 0.3166,
with 𝜎 = 0.8, and 𝜐 = −0.2. We can see from Figure 9 that
our solution closely follows the numerical simulations of (41).
In this case, the computed RMSE values from (42) and (45)
are 0.0893 and 0.2556, respectively. In Figure 9, the black,
the purple, and the red solid lines represent, respectively, the
numerical integration solutions of (41), (42), and (45).

This confirms the usefulness of our proposed nonlinear
method to obtain equivalent equations of motion of nonlin-
ear oscillators.



Mathematical Problems in Engineering 9

0 10 20 30 40 50
−1.0

−0.5

0.0

0.5

1.0

Time, t

O
sc

ill
at

io
n 

am
pl

itu
de

,x

(a)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

x

ẋ
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Figure 8: Amplitude-time, phase plane, and Morlet CWT diagrams for the system parameter values of ] = 0.2, 𝐴 = 2, 𝐵 = 5, 𝜅 = 0.15,
𝜔𝑓 = 0.5, and 𝑄 = 5 with 𝑥10 = 1 and 𝑥̇10 = 1. Here, the dashed black and red lines represent the numerical integration solutions of (34) and
(39), while the blue dots describe the numerical integration solution of (37). Similarly, in (b) the black solid line and the red dots represent
the numerical integration solutions computed respectively, from (34) and (37).

6. Conclusions

In this paper, we have obtained the equivalent represen-
tation form of some driven, damped nonlinear oscillators
by using a nonlinearization approach. We have found that
in all cases, the numerical predictions obtained from the
corresponding equivalent representation form of the cubic-
quintic, the general pendulum, the power-form elastic term,
and the cubic damped nonlinear oscillators describe well
the qualitative and quantitative behavior of their original
equations of motion.

During the solution processes of the forced Duffing
equation with a cubic damped term, we have found that our
equivalent solution (37) provides numerical estimates that are
similar to those obtained from (39) which was derived from
Melnikov analysis in [13]. Besides, the numerical predictions
of (37) are closer to the numerical integration values of (34)
than those obtained from (39). In this oscillator, we have
found that the values of ]1 = 0.6060, 𝜎 = 0.72, and
𝜐 = 0.335 could remain unchanged even at larger values
of ], 𝐴, 𝐵, 𝜅, and 𝑄. To further evaluate the accuracy of
our proposed method, we have developed the solution of a
pendulum equationwith a cubic damped term and compared
its numerical estimated values with those obtained from the

original equation of motion and with respect to those of its
equivalent representation form derived by Melnikov analysis
[13]. We found that our derived equation (42) describes well
the numerical estimated values of (41). Moreover, and based
on the numerical simulations performed on the last example
of this work, it is clear that the derived equivalent equation
of motion, when compared to other solutions such as the
one derived by using the well-established Melnikov analysis,
exhibits good accuracy for a wide range of system parameter
values [13]. Of course, one must be careful when using the
equivalent transformation forms previously derived, since
their degree of accuracy depends not only on the system
parameter values but also on the method used to replace
the corresponding restoring forces for equivalent ones of the
cubic type.

Finally, it is evident that our proposed nonlinearization
method can be used to derive equivalent representation forms
of other nonlinear oscillators such as the ones examined by
the authors in [14, 15] and references cited therein, in which
rational or irrational restoring forces, as well as damping
terms, are used to model the dynamics behavior of common
problems that arise in the physical sciences and engineering
fields.
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Figure 9: Amplitude-time, phase plane, and Morlet CWT diagrams for system parameter values of 𝐴 = 1, 𝑎0 = 1, ] = 0.05, 𝜅0 = 0.1,
𝑄0 = 0.41, 𝑥̇10 = 1, and 𝜔𝑓 = 2.5. Here, the black, the purple, and the red lines represent, respectively, the numerical integration solutions of
(41), (42), and (45). Similarly, in (b) the black solid line and the red dots represent the numerical integration solutions computed respectively,
from (41) and (42).
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