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We introduce a nonlinearization procedure that replaces the system potential energy by an equivalent representation form that is
used to derive analytical solutions of strongly nonlinear conservative oscillators. We illustrate the applicability of this method by
finding the approximate solutions of two strongly nonlinear oscillators and show that this procedure provides solutions that follow
well the numerical integration solutions of the corresponding equations of motion.

1. Introduction

This paper focuses on introducing a nonlinearization proce-
dure to derive approximate solutions of strongly conservative
nonlinear oscillators by replacing the system potential energy
by equivalent representation forms that are based on cubic-
or quartic-like polynomial expressions.The main motivation
for finding an equivalent representation form of the potential
energy terms is based on the different approaches that use
equivalent restoring forces to derive approximate solutions of
nonlinear oscillators. For instance, Yuste and Sánchez in [1, 2]
used a cubication approach to replace the restoring forces
by equivalent cubic polynomial expressions by applying the
weighted mean-square and the harmonic balance methods.
By using Chebyshev polynomial expansions, Beléndez and
coworkers replaced the restoring forces by an equivalent
cubic-like representation form that transformed the original
equation ofmotion into a Duffing equation [3–5].Then, Elas-
Zúñiga and coworkers used this idea and considered addi-
tional Chebyshev polynomial expansion terms to transform
the restoring forces into cubic-quintic polynomial represen-
tation forms that improved the accuracy of the approximate
solutions of different types of strongly nonlinear oscillators
[6, 7]. Here in this paper, instead of finding equivalent
representation forms of the system restoring forces, we focus
our attention on replacing the system potential energy by

an equivalent energy expression that will be used to derive the
corresponding approximate solutions. The accuracy of our
proposed procedure will be illustrated by finding the approx-
imate solutions of two nonlinear oscillators: (a) the cubic-
quintic Duffing and (b) the finite extensibility nonlinear
oscillator (FENO). We will show that our proposed approach
provides solutions that follow well the numerical integration
solution of the corresponding equations ofmotion. In fact, we
have found that, for the case of the cubic-quintic oscillator,
the nonlinear transformation form that is based on a quartic
polynomial provides approximate angular frequency values
whosemaximumerrors, when compared to the exact ones, do
not exceed 0.004%. Similarly, we found for the FENO oscilla-
tor that when the initial oscillation amplitude 𝐴 approaches
to one, the errors achieved do not exceed the percentage value
of 0.3787%.

2. A Nonlinearization Energy Procedure

Conservative nonlinear oscillators are commonly modelled
by equations of the form

𝑥̈ + 𝐹 (𝑥) = 0; 𝑥 (0) = 𝑥
10
, 𝑥̇ (0) = 0, (1)

where 𝐹(𝑥) is the conservative system restoring force and
𝑥
10
is the initial oscillation amplitude. Integration of (1) with
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respect to the displacement 𝑥 leads to its energy equation of
motion

𝑥̇
2
+ 𝑉 (𝑥) + 𝑐

0
= 0. (2)

Here, 𝑥̇ and𝑉(𝑥) represent the velocity and the system poten-
tial energy terms, respectively, and 𝑐

0
is an integration con-

stant whose value is determined from the given initial condi-
tions.Nowwe assume that the potential energy term𝑉(𝑥) can
be replaced by an equivalent representation form which can
be obtained by applying available techniques such as the non-
linearization approach [8], the Chebyshev polynomials of the
first kind [3–5], the weighted mean-square method [2, 9], or
other techniques available in the literature. In this paper, we
adopt Chebyshev polynomial and used its general definition
to write in equivalent form the potential energy terms [10]

𝑉 (𝑥) =

𝑁

∑

𝑛=0

𝑏
𝑛
(𝑥
10
) 𝑇
𝑛
(𝑥) =

𝑏
0

2
+

𝑁

∑

𝑛=1

𝑏
𝑛
(𝑥) 𝑇
𝑛
(𝑥) ,

− 1 ≤ 𝑥 ≤ 1,

(3)

where

𝑏
𝑛
=

2

𝜋
∫

+1

−1

1

√1 − 𝑥2
𝑉 (𝑥) 𝑇

𝑛
(𝑥) 𝑑𝑥, (4)

and the first four𝑇
𝑛
(𝑥) polynomials of the first kind are given

by

𝑇
1
(𝑥) = 𝑥; 𝑇

2
(𝑥) = 2𝑥

2
− 1;

𝑇
3
(𝑥) = 4𝑥

3
− 3𝑥; 𝑇

4
(𝑥) = 8𝑥

4
− 8𝑥
2
+ 1.

(5)

Thus, the equivalent representation formof the systempoten-
tial energy can be written as

𝑉 (𝑥) ≡
𝑏
0

2
+ 𝑏
1
𝑇
1
(𝑥) + 𝑏

2
𝑇
2
(𝑥) + 𝑏

3
𝑇
3
(𝑥) + ⋅ ⋅ ⋅ + 𝑏

𝑛
𝑇
𝑛
(𝑥)

≈ 𝑐 + 𝑎
1
𝑥 + 𝑎
2
𝑥
2
+ 𝑎
3
𝑥
3
+ 𝑎
4
𝑥
4
+ 𝑎
5
𝑥
5
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥
𝑛
,

(6)

where the forms of the parameters 𝑐, 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, depend

on the Chebyshev coefficient terms. Therefore, the energy
equation (2) can be equivalently represented by the following
expression:

𝑥̇
2
+ 𝑎
0
+ 𝑎
1
𝑥 + 𝑎
2
𝑥
2
+ 𝑎
3
𝑥
3
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥
𝑛
≈ 0, (7)

where 𝑎
0

≡ 𝑐
0
+ 𝑐. However, this representation form (7)

needs to be further transformed to a more tractable expres-
sion. To achieve this transformation, we can use the nonlin-
earization processes discussed in [6, 7]. Before we perform
this transformation, we need to identify which polynomial
order has to be used during the application of the nonlin-
earization processes, that is, a cubic-like or a quartic-like
form. To better understand the implication of the choice of
the polynomial order, we recall that the Duffing equation

𝑑
2
𝑥

𝑑𝑡2
+ 𝛼𝑥 + 𝛽𝑥

3
= 0 (8)

has an energy equation representation given as

𝑥̇
2
+ 𝛼𝑥
2
+

𝛽

2
𝑥
4
+ 2𝑐
0
= 0, (9)

where 𝛼, 𝛽, and 𝑐
0
are known parameter values. Therefore,

it could be obvious that a quartic-like polynomial form has
to be chosen to replace the potential energy terms of (7).
However, we explore here two different options to replace the
potential energy terms: (a) a cubic-like polynomial and (b)
a quartic-like polynomial expression. If we use option (a),
the nonlinearization processes will lead us to the following
expression:

𝐹
𝑐
(Δ, 𝛿, 𝜖) = ∫

𝜎

0

(𝑎
0
+ 𝑎
1
𝑥 + 𝑎
2
𝑥
2
+ 𝑎
3
𝑥
3
+ 𝑎
4
𝑥
4

+ 𝑎
5
𝑥
5
+ 𝑎
6
𝑥
6
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥
𝑛

−𝛿𝑥 − 𝜖𝑥
3
− Δ)
2

𝑑𝑥 󳨀→ min,

(10)

where the parameters 𝛿, 𝜖, and Δ can be found from
𝜕𝐹
𝑐
(Δ, 𝛿, 𝜖)

𝜕𝛿
= 0,

𝜕𝐹
𝑐
(Δ, 𝛿, 𝜖)

𝜕𝜖
= 0,

𝜕𝐹
𝑐
(Δ, 𝛿, 𝜖)

𝜕Δ
= 0.

(11)

Thus, the equivalent representation of (2) has the form

𝑥̇
2
+ 𝑉 (𝑥) ≡ 𝑥̇

2
+ 𝛿𝑥 + 𝜖𝑥

3
+ Δ ≈ 0. (12)

However, if we adopt the quartic-like polynomial form, (2)
can be transformed to

𝑥̇
2
+ 𝑉 (𝑥) ≡ 𝑥̇

2
+ 𝛿𝑥
2
+

𝜖𝑥
4

2
+ 2Δ ≈ 0, (13)

where

𝐹
𝑞
(Δ, 𝛿, 𝜖) = ∫
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1

2
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4
− 2Δ)

2

𝑑𝑥 󳨀→ min,

(14)

with
𝜕𝐹
𝑞
(Δ, 𝛿, 𝜖)

𝜕𝛿
= 0,

𝜕𝐹
𝑞
(Δ, 𝛿, 𝜖)

𝜕𝜖
= 0,

𝜕𝐹
𝑞
(Δ, 𝛿, 𝜖)

𝜕Δ
= 0.

(15)

Of course, other possible polynomial representation forms
could be assumed, however, we focus here on the usage of
the cubic-like and the quartic-like polynomial forms to deter-
mine the angular frequency expressions of nonlinear oscil-
lators under consideration. Notice that in (10) and (14), the
value of 𝜎 must be appropriately chosen to ensure that the
equivalent potential energy terms are qualitatively and quan-
titatively similar to those of the original equations of motion.
In this sense, we have followed the approach developed by
Cai and coworkers in [8].

We will next study the feasibility of our proposed nonlin-
earization energy approach to derive the equivalent energy
equations of the cubic-quintic Duffing equation and then we
will explore the solution of the finite extensibility nonlinear
oscillator (FENO).
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3. The Cubic-Quintic Duffing Oscillator

Although the exact solution of this nonlinear oscillator is well
known [11], we choose its equation of motion to illustrate
the applicability of our proposed mathematical technique to
learnmore about some possible issues that could arise during
its implementation to solve nonlinear systems.This oscillator
has an equation of motion given as

̈𝑦 + 𝛼𝑦 + 𝛽𝑦
3
+ 𝛾𝑦
5
= 0, with 𝑦 (0) = 𝑦

10
, ̇𝑦 (0) = 0,

(16)

where 𝑦 denotes the displacement of the system and 𝛼, 𝛽, and
𝛾 are system constant parameters. If we set 𝑥 = 𝑦/𝑦

10
, then

(16) can be written as

𝑥̈ + 𝐴𝑥 + 𝐵𝑥
3
+ 𝐺𝑥
5
= 0, with 𝑥 (0) = 1, 𝑥̇ (0) = 0.

(17)

Here 𝐴 = 𝛼, 𝐵 = 𝛽𝑦
2

10
, and 𝐺 = 𝛾𝑦

4

10
. To apply our nonlinear

energy approach, we first integrate (17) with respect to 𝑥.This
step provides the following energy equation:

𝑥̇
2
+ 𝐴𝑥
2
+

𝐵

2
𝑥
4
+

𝐺

3
𝑥
6
+ 2𝑐
0
= 0, (18)

where the integration constant 𝑐
0
has the value of

𝑐
0
= −

1

2
(𝐴 +

𝐵

2
+

𝐺

3
) . (19)

First, we follow option (a) and transform the potential energy
terms of (18) into a cubic polynomial by following our pro-
posed energy nonlinearizationmethod.Then, we use (10) and
(11) to write the potential energy in equivalent form as

𝑉 (𝑥) = 𝐴𝑥
2
+

𝐵

2
𝑥
4
+

𝐺

3
𝑥
6
+ 2𝑐
0
≡ 𝛿𝑥 + 𝜖𝑥

3
+ Δ, (20)

where

𝛿 =
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−

𝜎
3
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(7𝐵 + 9𝐺𝜎

2
) ,
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1
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3
) ,

Δ = 2𝑐
0
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2
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+

𝐵𝜎
4

60
+

𝐺𝜎
6
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,

(21)

where 𝜎 is a parameter whose value satisfies (10). Thus, the
equivalent energy transformation form of (18) is given as:

𝑥̇
2
+ 𝛿𝑥 + 𝜖𝑥

3
+ Δ ≈ 0. (22)

To find the angular frequency of (22), we next proceed with
its integration and find that

𝑡
𝑐
= ∫

𝑥

𝑥0

(
1

√− (𝛿𝑥 + 𝜖𝑥3 + Δ)
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1
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1
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1
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2
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3
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(23)

where

𝑥
1
=

2(3)
1/3

𝛿𝜖 − 2
1/3

(9𝜖
2
Δ + √3𝜖3 (4𝛿3 + 27𝜖Δ2))

2/3

62/3𝜖(9𝜖2Δ + √3𝜖3(4𝛿3 + 27𝜖Δ2))
1/3

,

𝑥
2
= ( − 2𝛿𝜖 (−3𝑖 + √3) + 2

1/3
3
1/6

(1 + √3𝑖)

× (9𝜖
2
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)

× (2 (2
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) 3
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2
Δ + √3𝜖3 (4𝛿3 + 27𝜖Δ2))

1/3

)

−1

,

𝑥
3
= ( − 2𝛿𝜖 (3𝑖 + √3) + 2

1/3
3
1/6

(1 − √3𝑖)

× (9𝜖
2
Δ + √3𝜖3 (4𝛿3 + 27𝜖Δ2))

2/3

)

× (2 (2
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) 3
5/6
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2
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1/3

)
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,

(24)

with 𝑖 = √−1. The integration of (23) provides the following
time expression:

𝑡
𝑐
= −2√−

1

𝜖 (𝑥
1
− 𝑥
2
)

× {𝐹[sin−1(√
𝑥
1
− 𝑥
2

𝑥 − 𝑥
2

) ,
𝑥
3
− 𝑥
2

𝑥
1
− 𝑥
2

]

− 𝐹[sin−1(√
𝑥
1
− 𝑥
2

𝑥
0
− 𝑥
2

) ,
𝑥
3
− 𝑥
2

𝑥
1
− 𝑥
2

]} .

(25)

Here 𝐹 represents the incomplete elliptic integral of the first
kind withmodulus (𝑥

3
−𝑥
2
)/(𝑥
1
−𝑥
2
).Thus, the approximate

angular frequency value of the cubic-quintic oscillator is
given as

𝜔
𝑛𝑐

=
2𝜋

𝑇
𝑐

, (26)

where 𝑇
𝑐
= 4𝑡
𝑐
on 𝑥 ∈ [0, 1]. Before we assess the accuracy of

our derived angular frequency expression (26), we next follow
option (b) and write the potential energy as a function of a
quartic polynomial expression

𝑉 (𝑥) = 𝐴𝑥
2
+

𝐵

2
𝑥
4
+

𝐺

3
𝑥
6
+ 2𝑐
0
≡ 𝛿
1
𝑥
2
+

𝜖
1
𝑥
4

2
+ 2Δ
1
.

(27)
Notice that the parameters 𝛿

1
, 𝜖
1
, and Δ

1
can be determined

by using (14) and (15) which yields

𝛿
1
=
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(33𝐴 − 5𝐺𝜎
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1
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𝜖
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1
) ,

Δ
1
=

1386𝑐
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1
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where the value of 𝜎
1
must satisfy (14). Now the solution of

𝑥̇
2
+ 𝛿
1
𝑥
2
+

𝜖
1
𝑥
4

2
+ 2Δ
1
≈ 0 (29)

yields

𝑡
𝑞
= ∫
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𝑥0

(
1

√− (𝛿
1
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1
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1
)

)𝑑𝑥

≡ ∫

𝑥

𝑥0

(
1

√− (𝑥2 − 𝑥
1
) (𝑥2 − 𝑥

2
) 𝜖/2

)𝑑𝑥

= √−
2

𝐵𝑥
2

{𝐹[sin−1 ( 𝑥

√𝑥
1

) ,
𝑥
1

𝑥
2

]

−𝐹[sin−1 (
𝑥
0

√𝑥
1

) ,
𝑥
1

𝑥
2

]} ,

(30)

where

𝑥
1
=

−𝛿
1
− √𝛿
2

1
− 4𝜖
1
Δ
1

𝜖
1

,
(31)

𝑥
2
=

−𝛿
1
+ √𝛿
2

1
− 4𝜖
1
Δ
1

𝜖
1

.
(32)

Thus, the approximate angular frequency expression is given
as𝜔
𝑛𝑞

= 2𝜋/𝑇
𝑞
, where𝑇

𝑞
= 4𝑡
𝑞
. Also notice that (25) and (30)

can be rewritten in different forms by putting 𝑥 as a function
of time and by using the elliptic function identities. However,
we will not elaborate on these solutions here.

We next compare our derived solutions with respect to
the exact one of (17) found in [11]. Figure 1 illustrates the
percentage error attained by comparing the exact angular
frequency values of (17) with those obtained by using (26)
plotted against the initial oscillation amplitude values. In this
case, we use the parameter values of 𝐴 = 1, 𝐵 = 10, and
𝐺 = 1 with 𝜎 = 1.0854. We can see from Figure 1 that the
maximum error values do not exceed 1.194%. We next use
the quartic nonlinearization approximate angular frequency
value given by (30) and compute the corresponding error
values. One can notice from Figure 2, for the same system
parameter values of 𝐴, 𝐵, and 𝐺, with 𝜎

1
= 1.13731, that

now the maximum error values do not exceed 0.004%.
This represents a great improvement when compared to the
estimated values of 𝜔

𝑛𝑐
. We believe that the improvement

achieved by using (30) could be due to the usage of a fourth-
order polynomial to approximate the potential energy expres-
sion which is closer to the order of the sextic polynomial
that is used to derive, through the energy equation, the
exact solution of (16). To further assess the precision of our
proposed approach, we shall next explore the solution of a
finite extensibility nonlinear oscillator (FENO).
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4. A Finite Extensibility Nonlinear Oscillator

This oscillator is used to describe chain dynamics of polymer-
like materials subjected to high extensibility values [12]. Its
equation of motion has the form

𝑑
2
𝑥

𝑑𝑡2
+

𝑥

(1 − 𝑥2)
= 0, 𝑥 (0) = 𝐴, 𝑥̇ (0) = 0, (33)

where 𝐴 is the initial oscillation amplitude with 𝐴 ∈ (0, 1). If
we introduce the transformation 𝑦 = 𝑥/𝐴, then (33) can be
written as

𝑑
2
𝑦

𝑑𝑡2
+

𝑦

(1 − 𝐴2𝑦2)
= 0, 𝑦 (0) = 1, ̇𝑦 (0) = 0. (34)

It is well known that when 𝐴 → 1, this oscillator tends to
behave as an anharmonic one and thus, depending on the
methods used, its approximate solutions to predict its dynam-
ical response could diverge from the numerical one. See, for
instance, [7–13]. The aim of this section focuses on exploring
the applicability of our proposed nonlinearization energy
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approach to develop an approximate solution to (34) valid for
the whole interval value of 𝐴.

First, we derive the energy expression of (34) by perform-
ing its integration with respect to 𝑦. This step leads to the
following equation:

̇𝑦
2
−

Log [1 − 𝐴
2
𝑦
2
]

𝐴2
+ 2𝑐
0
= 0, (35)

where

𝑐
0
=

Log [1 − 𝐴
2
]

2𝐴2
. (36)

Sinceweneed towrite (34) in a polynomial-like form, thenwe
follow our proposed approach and use the Chebyshev poly-
nomial expansion (3) to get that

̇𝑦
2
+ 𝛼
1
𝑦
2
+ 𝛽
1
𝑦
4
+ 𝑐
1
= 0, 𝑐

1
= 𝑐 + 𝑐

0
, (37)

where

𝑐 =
1

𝐴6
(8 + 3𝐴

4
− 8√1 − 𝐴2 + 4𝐴

2
(2√1 − 𝐴2 − 3)

−2𝐴
4Log [1/2 (1 − √1 − 𝐴2)]) ,

𝛼
1
=

−12𝐴
4
+ 8𝐴
2
(9 − 5√1 − 𝐴2) + 64 (√1 − 𝐴2 − 1)

𝐴6
,

𝛽
1
=

8 (8 + 𝐴
4
− 8√1 − 𝐴2 + 4𝐴

2
(√1 − 𝐴2 − 2))

𝐴6
.

(38)

We now adopt options (a) and (b) and determine the equiva-
lent system potential energy. By using the cubic transforma-
tion form, we obtain that

𝑉 (𝑦) = 𝛼
1
𝑦
2
+ 𝛽
1
𝑦
4
+ 𝑐
1
≡ 𝛿𝑦 + 𝜖𝑦

3
+ Δ, (39)

where

𝛿 = −
𝜎

12
(3𝛽
1
𝜎
2
− 5𝛼
1
) ,

𝜖 =
7

54𝜎
(5𝛼
1
+ 9𝛽
1
𝜎
2
) ,

Δ =
1

270
(270𝑐
1
− 10𝛼

1
𝜎
2
+ 9𝛽
1
𝜎
4
) .

(40)

If we now follow option (b), the equivalent system potential
energy is given as

𝑉 (𝑦) = 𝛼
1
𝑦
2
+ 𝛽
1
𝑦
4
+ 𝑐
1
≡ 𝛿
1
𝑦
2
+

𝜖
1
𝑦
4

2
+ 2Δ
1
, (41)

for which 𝛿
1
= 𝛼
1
, 𝜖
1
= 2𝛽
1
, and Δ

1
= 𝑐
1
/2.

Figure 3 illustrates the percentage error attained by com-
paring the angular frequency values of 𝜔

𝑛𝑐
and 𝜔

𝑛𝑞
with

respect to the numerical integration ones plotted versus the
initial oscillation amplitude 𝐴. It is interesting to note that
when 𝐴 approaches to one, that is, 𝐴 = 0.9999999,
the percentage error curves tend to the values of 0.3787%
and 0.2040%, respectively. Figure 4 shows a comparison
among our derived solutions and the angular frequency value
obtained by Beléndez et al. [13] in which

𝜔Bel =
2

√4 − 3𝐴2 − 5𝐴𝑐
1
− 30𝑐
2

1
𝐴

, (42)

𝑐
1
=

8192𝐴
3
− 12288𝐴

5
+ 6512𝐴

7
− 1217𝐴

9

8 (32768 − 65536𝐴2 + 52096𝐴4 − 19383𝐴6 + 2811𝐴8)
.

(43)

It is clear from Figure 4 that when 𝐴 approaches to one, the
highest percentage error is obtained from (42).Therefore, we
can conclude that our derived angular frequency solutions
provide error values that are remarkably lower than those
previously reported in [7–13]. Furthermore, the maximum
error values of both curves do not exceed 3.2%. Here the
fitting parameter 𝜎 has the value of 1.01195.
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Figure 4: Comparison of the percentage relative angular frequency
error value curves versus the initial oscillation amplitude 𝐴.

We next focus on the qualitative behavior of our derived
solution by plotting its amplitude-time response curve and
compare this with its numerical integration solution. In
this case, we have used (25) and (30) and considered half
periods to ensure that our FENO system satisfies the initial
conditions. In fact, we found that, for given values of 𝑦 bigger
than one, the estimated values of 𝑡

𝑐
and 𝑡
𝑞
computed from (25)

and (30), respectively, become imaginary. Therefore and in
order to plot the amplitude-time response curves, the values
of 𝑦 must satisfy the condition 0 ≤ 𝑦 ≤ |1|. Figure 5 shows
the amplitude-time response curves obtained from (25) and
the numerical integration solution of (35). Notice that both
solutions have the same qualitative behavior even though the
assumed initial system oscillation amplitude 𝐴 has a value
close to one; that is, 𝐴 = 0.999.

5. Conclusions

We have introduced a nonlinearization energy method to
predict the qualitative and quantitative behavior of strongly
nonlinear oscillators that is based on the nonlinear transfor-
mation of the system energy equation. We have assumed that
the original system potential energy can be equivalently writ-
ten as a cubic or quartic polynomial representation by using
Chebyshev polynomials and the nonlinearization method.
We have shown that this procedure leads to equations that
can be exactly integrated by using elliptic functions.Then, we
have used these equations to study the dynamical response
of two nonlinear oscillators: one related to the cubic-quintic
Duffing equation and the other related to a finite extensibility
nonlinear oscillator (FENO). We have found that our pro-
posed approach follows well the numerical integration solu-
tion of the corresponding equations ofmotion. In fact and for
the case of the cubic-quintic oscillator, the nonlinear trans-
formation approach based on a quartic polynomial provides
approximate angular frequency values whose maximum
errors do not exceed 0.004%. We believe that the improve-
ment achieved by replacing the system potential energy of
(18) by an equivalent potential energy form could be due to
the usage of a fourth-order polynomial expression which is

0 2 4 6 8 10

0.0

0.5

1.0

−1.0

−0.5

Time, t

O
sc

ill
at

io
n 

am
pl

itu
de

,y

Figure 5: Computed amplitude-time response curves of (34) and
(25). Here the solid line represents the numerical integration
solution of (34) while the black dashed line represents our derived
energy approximate solution (25), by considering an initial oscilla-
tion amplitude value of 𝐴 = 0.999.

closer to the order of the sextic polynomial that is needed
to derive, through the energy equation, the exact solution of
(17).

Similarly, we found, for the FENO oscillator, that when
the initial oscillation amplitude 𝐴 approaches to one, that
is, when 𝐴 = 0.9999999, the errors achieved do not exceed
the percentage value of 0.3787%. Furthermore, we have
proved that the qualitative behavior of our derived solutions
follows well that of the corresponding numerical integration
solutions. Therefore, we can conclude that our nonlineariza-
tion energy approach provides results that describe well the
dynamical response of these strongly nonlinear oscillators.

It is evident that our proposed approach could be used to
study the dynamical response of other dynamical oscillators
and that it can be expanded to obtain approximate solutions
of dynamical system with two or more degrees of freedom.
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