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A nonlinear transformation approach based on a cubication method is developed to obtain the equivalent representation form of
conservative two-degree-of-freedom nonlinear oscillators. It is shown that this procedure leads to equivalent nonlinear equations
that describe well the numerical integration solutions of the original equations of motion.

1. Introduction

Recently, we have introduced in [1, 2] a procedure that
transforms the original equation of motion of single degree
of freedom systems, having nonlinear restoring forces, into
nonlinear ordinary differential equations of the Duffing type.
Furthermore, this procedure has been used in conjunction
with the Chebyshev polynomials to derive the equivalent
representation form of nonlinear system with dissipative
and sinusoidal driving forces [2] in which the numerical
comparisons between the equivalent and the original equa-
tions of motion demonstrate the effectiveness of this method
in predicting the corresponding system dynamics response.
Motivated by these results, we herein expand the application
of this technique to obtain the equivalent representation
form of two-degree-of-freedom homogeneous, undamped,
and ordinary differential equations of the form
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that models the dynamics response of systems that arise in
physics and engineering applications [3–6], where𝑚
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are the system initial conditions.
The method is based on replacing first the system

restoring forces by polynomial expressions and, then, we use
a transformation technique to replace the resulting equations
by two uncoupled nonlinear differential equations of the
Duffing type whose solutions are based on Jacobi elliptic
functions. It is shown that the appropriate derivation of one
of these solutions can improve the numerical estimates of the
equivalent equations of motion even at larger and feasible
nonlinear parameter
values.

2. A Nonlinear Transformation Approach

The equivalent representation form of (1) is obtained by
replacing it by two uncoupled, nonlinear ordinary differential
equations of the Duffing type by following an approach
similar to the one described in [1], This procedure yields
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Here we assume that the coefficients 𝑎
𝑖
are determined by the

following expressions:
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and the values of 𝑢
𝑖
are fitted to satisfy (4) and (5) [7]. Notice,

in this case, that the system (2) can be solved in closed form
by using Jacobi elliptic functions. This yields [8]
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However, an alternative approach to find the equivalent
representation form of (1) can be derived if we use the
form (2)

1
or (2)

2
and then substitute its exact solution into

the remaining equation in (1). In this case, the influence of
the nonlinear effects of 𝑥

1
or 𝑥
2
into the system dynamics

response will be taken into account by the resulting coupled
equation of motion whose approximate solution could be
based on the usage of Jacobi elliptic functions.

Other equivalent representation forms of (1) are possible
since these depend on the polynomial order use to write the
equivalent form of the system restoring forces [9–11]. For
instance, let us suppose that the nonlinear conservative forces
of (1) are of the cubic type and rewrite (1) in its canonical
representation form [12]:
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with initial conditions given as 𝑢
1
(0) = 𝑢
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. Here the dots denote the

time derivative, 𝑢
1
and 𝑢

2
are known as the system normal

coordinates, 𝜀 is a nonlinear parameter, and 𝜔
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, 𝜔
𝑛2
, and

𝜑
1
through 𝜑

8
are corresponding system parameters that are

defined in accordance with the physics of the system. Now, let
us replace (7) by their corresponding equivalent equations of
motion of the Duffing type which are valid for the complete
range of oscillation amplitudes [1], by using the relations
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where ]
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are fitted constants that satisfy (8),

and the parameters 𝑏
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Then, (7) can be rewritten in equivalent form as
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whose exact solutions are similar to those given by (6).
We shall next explore the applicability of the nonlinear

transformation method in obtaining the equivalent rep-
resentation form of (1) and, then, we will compare the
numerical integration solutions of five dynamics systems,
having nonlinear restoring forces with rational or irrational
terms, with respect to their equivalent representation forms
[13–20]. First, let us consider the case for which the restoring
forces are of the cubic type.
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Table 1: RMSE values computed from the equivalent representation forms of (13) with 𝑢
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𝑦
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𝑦
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RMSE
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RMSE
𝑦
2
(x)

0.01 0.2992 0.9138 0.2992 0.3062 1.1924 0.9138
0.25 0.3248 0.8863 0.3248 0.4004 0.1797 0.8863
0.75 0.1511 0.8222 0.1511 0.2873 0.2167 0.8222
1.50 0.0398 0.8373 0.0398 0.1989 0.1902 0.8373
5 0.1488 0.9068 0.1488 0.0818 0.0930 0.9068
20 0.1179 0.9490 0.1179 0.0233 0.0082 0.9490
100 0.0697 0.9635 0.0697 0.0047 0.0011 0.9635

2.1. Example 1: A Cubic Nonlinear System. Let us consider the
conservative system built with a nonlinear spring of the cubic
type.The corresponding equations ofmotion are given as [13]
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If we use our proposed nonlinear transformation approach
then the equivalent representation form of (13) is given as
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To apply our nonlinear transformation approach to the
canonical representation form of (13), we first use the follow-
ing linear coordinate transformation [12]:
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Thus, the approximate solutions of (13), by considering
their canonical representation form, are given by expressions
similar to those of (6).

Tables 1 and 2 show the root-mean-square error (RMSE)
values computed by comparing the numerical integration
solutions of the original equations of motion (13), with
respect to numerical results computed from their derived
equivalent representation forms by considering the initial
conditions values of 𝑥
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Figure 1: Amplitude-time response curves computed from the numerical integration solutions of (13) and those provided by substituting
(14)
1
into (13)

2
. The parameter values used to obtain these plots were 𝑚

1
= 𝑚
2
= 1, 𝑘

1
= 3, 𝑘
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= 1, and 𝜀 = 20, with 𝑥
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𝑥
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= 1.55, 𝑢

2
= 1.5, 𝑢

3
= 1.25, and 𝑢

4
= 1.6. Here, the gray solid lines describe the numerical integration

solutions of (13), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of
motion.

Table 2: RMSE values computed by considering the canonical representation form of (13) with ]
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0.01 0.06010 0.0277 0.0044 0.0109 0.0606 0.0248
0.25 1.5351 0.6069 0.3611 0.2661 1.5824 0.4956
0.75 2.0910 0.8049 1.3988 0.6512 2.2351 0.7348
1.50 2.1222 0.8349 2.1151 0.8220 2.5577 1.1983
5 1.9552 0.8733 1.8608 0.8739 3.1331 8.8874
20 1.9116 0.9044 1.9889 0.9090 3.1549 8.7513
100 1.9495 0.9136 1.9704 0.9191 3.4887 8.1949

columns of Table 1 are tabulated the RMSE values computed
by using the equivalent representation forms of (13) given
by (14), while the fourth and the fifth columns provide the
RMSE values obtained by substituting (14)

1
into (13)

2
. The

sixth and the seventh columns of Table 1 contain the RMSE
values computed by substituting (14)

2
into (13)

1
. As we can

see from Table 1, the lowest RMSE values are tabulated in
the fifth and the sixth columns which implies that the most
accurate solutions of (13) are obtained when the equivalent
representation form (14)

1
is used to derive the approximate

solution of 𝑥
2
. Also notice from Table 1, that the computed

values of the RMSE become smaller for increasing values
of the nonlinear parameter 𝜀 which shows that our solution
procedure can be used to obtain solutions that follow the
numerical integration solutions of the original equations of
motion even at larger values of 𝜀. For illustrative purposes, we
have plotted in Figure 1 the amplitude-time response curves
obtained from (13), and those provided by substituting (14)

1

into (13)
2
.Wehave selected the value of 𝜀 = 20which provides

a highly nonlinear dynamic system response. Notice from
Figure 1 that both solutions are almost the same. In fact, the
RMSE values do not exceed 0.1179, for 𝑥

1
, and 0.0233, for

𝑥
2
. In Figure 1, the gray solid lines describe the numerical

integration solutions of (13), while the blue dashed lines
represent the numerical solutions obtained from our derived
equivalent nonlinear equations of motion.

Table 2 shows the RMSE values obtained by using the
canonical representation form of (13). One can notice from
Table 2 that the smallest RMSE values were computed at
decreasing values of the nonlinear parameter 𝜀 when the
equivalent form (11)

1
was substituted into (7)

2
(the fifth and

the sixth columns). Also, one can notice that when 𝜀 = 0,
(7) describes the oscillatory behavior of the resulting linear
dynamics system; however, this is not the case when we
use the equivalent representation form of (13) given by (14)
because the terms 𝑎

2
and 𝑎

4
are different from zero. This

situation increases the RMSE errors as listed in Table 1. In
an attempt to further quantify the accuracy of our proposed
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Figure 2: Global error behavior.

procedure, we next introduce the global error estimation
based on a technique similar to the ones developed in [14–
16] in which the system global error, GE, can be determined
from the following expression:

GE = (𝑦
1
(𝑡) − 𝑝

1
(𝑡)) + (𝑦

2
(𝑡) − 𝑝

2
(𝑡)) , (18)

where 𝑦
1
and 𝑦
2
represent the values obtained by numerically

integrating the equivalent equations of motion and 𝑝
1
and

𝑝
2
are the numerical values computed by using the original

system equations of motion. Figure 2 displays the global
error curve plotted versus time by considering the numerical
integration solutions of both, the resulting equation obtained
by substituting (14)

1
into (13)

2
and the original equations of

motion (13). One can notice from Figure 2, that the global
error tends to grow linearly at increasing time values, as
predicted by Calvo and Hairer in [14].

To further assess the accuracy of our proposed nonlin-
earization method, we will next examine a hyperelastic shear
suspension system.

2.2. Example 2: Hyperelastic Shear Suspension System. Here
the equations of motion of a linear absorber attached to a
rigid body that is supported symmetrically by incompressible,
homogeneous, and isotropic hyperelastic shear blocks are
given as

{1 00 𝛽} [
�̈̈�
𝑧] + {

1 −𝛼2
2−𝛼2

2
𝛼2
2

}[𝜎𝑧] − {
𝜀𝑏
1
𝜎3
0 } = 0, (19)

with initial conditions given as 𝜎(0) = 𝜎
10
, �̇�(0) = 0, 𝑧(0) =

𝑧
10
, and �̇�(0) = 0. Here 𝜎 and 𝑧 denote, respectively, the

simple shear deformation of the load and the motion of the
linear absorber system, 𝜀 describes the nonlinear material
response effects, 𝑟

2
is a tuning system parameter, and 𝛽, 𝛼

2
,

and 𝑏
1
are defined as

𝛽 = 𝑚𝑀, 𝑏
1
= 𝛼2
2
− 1, 𝛼2

2
= 𝛽𝑟2

2

𝛽𝑟2
2
+ 1 . (20)

The details of the derivation of the equations of motion given
by (19) are provided in [2]. Next, we set 𝑦

1
= 𝜎/𝜎

10
and 𝑦

2
=

𝑧/𝑧
10
and rewrite (12) in its normalized form

{1 00 1} [
̈𝑦
1̈𝑦
2

] +
{{{{
{{{{{

1 −𝛼
2

2
𝑧
10

𝜎
10

− 𝛼
2

2
𝜎
10

(𝛽𝑧
10
)

𝛼2
2

𝛽

}}}}
}}}}}
[𝑦1𝑦
2

]

− {𝜀𝜎210𝑦310 } = 0

(21)

with 𝑦
1
(0) = 1, ̇𝑦

1
(0) = 0, 𝑦

2
(0) = 1, and ̇𝑦

2
(0) = 0.

Notice that the canonical representation form of (21) can be
obtained by using the transformation (16); this yields exactly
(7), where the system parameters are given by the following
relations:

𝜔2
𝑛1
= 12

[[
[
(𝛼
2

2

𝛽 + 1) − √(
𝛼2
2

𝛽 + 1)
2

+ 4𝛼
2

2
𝑏
1

𝛽
]]
]
,

𝜔2
𝑛2
= 12

[[
[
(𝛼
2

2

𝛽 + 1) + √(
𝛼2
2

𝛽 + 1)
2

+ 4𝛼
2

2
𝑏
1

𝛽
]]
]
,

𝜑
1
≡ −𝑏
1
𝜀𝑅4
1
𝜎2
10
, 𝜑

2
≡ −3𝑏

1
𝜀𝑅3
1
𝑅
2
𝜎
10
𝑧
20
,

𝜑
3
≡ −3𝑏

1
𝜀𝑅2
1
𝑅2
2
𝑧2
20
, 𝜑

4
≡ −𝑏1𝜀𝑅1𝑅

3

2
𝑧3
20

𝜎
10

,

𝜑
5
≡ −𝑏1𝜀𝑅

3

1
𝑅
2
𝜎3
10

𝑧
20

, 𝜑
6
≡ −3𝑏

1
𝜀𝑅2
1
𝑅2
2
𝜎2
10
,

𝜑
7
≡ −3𝑏

1
𝜀𝑅
1
𝑅3
2
𝜎
10
𝑧
20
, 𝜑

8
≡ −𝑏
1
𝜀𝑅4
2
𝑧2
20
,

𝑓
1
≡ 1 − 𝜔

2

𝑛1

𝛼2
2

, 𝑓
2
≡ 1 − 𝜔

2

𝑛2

𝛼2
2

,

𝑅2
1
≡ 1
(1 + 𝑓2

1
𝛽) , 𝑅2

2
≡ 1
(1 + 𝑓2

2
𝛽) .

(22)

Since (21)
2
is only coupled with 𝑦

1
through the linear

term −𝛼2
2
𝜎
10
/(𝛽𝑧
10
)𝑦
1
, we slightly modify our procedure and

assume that the equivalent representation form of (21) is
given as

̈𝑦
1
+ 𝑎
1
𝑦
1
+ 𝑎
2
𝑦3
1
= 0; ̈𝑦

2
+ 𝑎
3
𝑦
2
= 0, (23)
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Table 3: RMSE values computed from the equivalent representation forms of (21) with 𝑢
1
= −0.4, 𝑢

2
= 0.1, 𝑢

3
= −0.01, and 𝑢

4
= −0.315.

Here 𝑏
11
= 1, 𝑏

12
= 𝑏
21
= −𝛼2
2
𝜎
10
/(𝛽𝑧
10
), 𝑏
22
= 𝛼2
2
/𝛽, and 𝑑

1
= −𝜀𝜎2

10
.

𝜀
̈𝑦
1
+ 𝑎
1
𝑦
1
+ 𝑎
2
𝑦3
1
= 0,

̈𝑦
2
+ 𝑎
3
𝑦
2
= 0.

̈𝑦
1
+ 𝑎
1
𝑦
1
+ 𝑎
2
𝑦3
1
= 0,

̈𝑦
2
+ 𝑏
21
𝑦
1
+ 𝑏
22
𝑦
2
= 0.

̈𝑦
2
+ 𝑎
3
𝑦
2
= 0,

̈𝑦
1
+ 𝑏
11
𝑦
1
+ 𝑏
12
𝑦
2
+ 𝑑
1
𝑦3
1
= 0.

RMSE
𝑦
1
(x)

RMSE
𝑦
2
(x)

RMSE
𝑦
1
(x)

RMSE
𝑦
2
(x)

RMSE
𝑦
1
(x)

RMSE
𝑦
2
(x)

0.01 0.9448 1.3409 0.9448 2.3366 1.7724 1.3409
0.25 0.5880 1.2351 0.5880 1.1768 0.7684 1.2351
0.75 0.1609 1.0394 0.1609 0.1774 0.3309 1.0394
1.5 0.2402 0.7685 0.2402 0.2079 0.3157 0.7685
5 0.3637 0.4461 0.3637 0.1376 0.0910 0.4461
20 0.2489 0.3267 0.2489 0.0414 0.0125 0.3267
100 0.1226 0.2995 0.1226 0.0083 0.0011 0.2995

Table 4: RMSE values computed by considering the canonical representation form of (21) with ]
1
= 0.85, ]

2
= 0.45, ]

11
= −0.01, and

]
22
= 0.1.

𝜀
�̈�
1
+ 𝑏
1
𝑢
1
+ 𝑏
2
𝑢3
1
= 0,

�̈�
2
+ 𝑏
3
𝑢
2
+ 𝑏
4
𝑢3
2
= 0.

�̈�
1
+ 𝑏
1
𝑢
1
+ 𝑏
2
𝑢3
1
= 0,

�̈�
2
+ 𝜔2
𝑛2
𝑢
2
+ 𝜀{𝜑
5
𝑢3
1
+ 𝜑
6
𝑢2
1
𝑢
2
+ 𝜑
7
𝑢
1
𝑢2
2
+ 𝜑
8
𝑢3
2
} = 0.

�̈�
2
+ 𝑏
3
𝑢
2
+ 𝑏
4
𝑢3
2
= 0,

�̈�
1
+𝜔2
𝑛1
𝑢
1
+𝜀{𝜑
1
𝑢3
1
+𝜑
2
𝑢2
1
𝑢
2
+𝜑
3
𝑢
1
𝑢2
2
+𝜑
4
𝑢3
2
} = 0.

RMSE
𝑢
1
(x)

RMSE
𝑢
2
(x)

RMSE
𝑢
1
(x)

RMSE
𝑢
2
(x)

RMSE
𝑢
1
(x)

RMSE
𝑢
2
(x)

0.01 0.0077 0.0168 0.0066 0.0174 0.0028 0.0050
0.25 0.1953 0.3769 0.1325 0.3596 0.1516 0.2393
0.75 0.8844 1.2761 0.7365 1.1609 0.9850 0.9016
1 1.0156 1.3704 0.9953 1.4230 1.4544 3.8230
1.5 0.8727 1.1634 0.9922 1.3683 1.5028 4.3001
5 0.9301 1.2149 0.9678 1.4201 0.8801 4.0894
20 0.9010 1.2577 0.9729 1.5285 1.2238 3.8974
100 0.9282 1.270 1.0162 1.5621 1.2479 3.8438

where the parameters 𝑎
𝑖
, computed from (4), are given as

𝑎
1
= −−32𝑢1𝜎10 + 45𝛼

2

2
𝑢
2
𝑧
10

32𝑢
1
𝜎
10

,

𝑎
2
= −−32𝑏1𝜀𝑢

3

1
𝜎3
10
− 35𝛼2

2
𝑢
2
𝑧
10

32𝑢3
1
𝜎
10

,

𝑎
3
= −𝛼
2

2
𝑢
11
𝜎
10
+ 𝛼2
2
𝑢
22
𝑧
10

𝛽𝑢
22
𝑧
10

,

(24)

and 𝑢
1
, 𝑢
2
, 𝑢
11
, and 𝑢

22
are the corresponding fitting param-

eters. The assumption that (21)
2
can be transformed into a

linear equation of the form (23)
2
is based on the fact that in

(21)
2
, there is not 𝑦

2
(𝑡) terms of the cubic type.

Next, if the canonical representation form of (21) is
considered, their approximate solutions, that can be obtained
from (7), are given by (6). Tables 3 and 4 show the RMSE
values computed from the numerical integration solutions
of (21) and from the derived equivalent representation
forms. Here, we have used as initial conditions the values
of 𝜎
10
(0) = 1, �̇�(0) = 0, 𝑧

10
(0) = −1, and �̇�(0) =

0, with 𝛽 = 1/5 and 𝑟
2
= 1. One can notice from

Table 3 that the lowest RMSE values are tabulated in the fifth

and the sixth columns at values of 𝜀 > 0.25. In fact, as
the value of 𝜀 tends to increase, the RMSE values tend to
decrease. Figure 3 shows the amplitude-time response curves
computed by substituting (23)

1
into (21)

2
. In this case, we

have considered that the nonlinear parameter 𝜀 has the value
of 50. Notice that the numerical integration solutions of
(21) are almost indistinguishable from those computed by
using the equivalent transformation forms. Here the gray
solid lines represent the numerical integration solutions of
(21), while the blue dashed lines described the numerical
integration solutions obtained from the equivalent equations
of motion. Therefore, we can conclude that our equivalent
transformation approach provides accurate solutions to (21)
if the form (23)

1
is used to derive the approximate solution of

𝑦
2
.
Also notice from Table 4 that the smallest RMSE values,

computed when the canonical form (7) of (19) is used to
derive its equivalent representation form, are on 0 < 𝜀 ≤ 0.25,
that is, when the equivalent form (11)

1
is substituted into (7)

2
.

Therefore, if onewants to have solutions that describewell the
numerical integration solutions of (21), we need to use their
canonical representation form at values of 𝜀 on the interval
0 < 𝜀 ≤ 0.25. For larger nonlinear system parameter values,
good predictions of the original equation of motion are
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Figure 3: Amplitude-time response curves computed from the numerical integration solutions of (21) and those provided by substituting
(23)
1
into (21)

2
. The parameter values used to obtain these plots were 𝛽 = 1/5 and 𝑟

2
= 1, 𝜀 = 50, with 𝜎

10
(0) = 1, �̇�(0) = 0, 𝑧

10
(0) = −1,

�̇�(0) = 0, and 𝑢
1
= −0.4, 𝑢

2
= 0.1, 𝑢

3
= −0.01, and 𝑢

4
= −0.315. Here, the gray solid lines describe the numerical integration solutions of

(21), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion. In
this case, the computed RMSE values were 0.1006, for 𝑦

1
, and 0.0102, for 𝑦

2
.

obtained when the equivalent form (23)
1
is substituted into

(21)
2
.

2.3. Example 3: A System with Three Nonlinear Springs. We
now derive the equivalent representation form of two-mass
system with three nonlinear springs introduced in [17] and
whose differential equation of motion is given by

{𝑚 0
0 𝑚}[

�̈�
1�̈�
2

] + {𝑘1 + 𝑘2 −𝑘
2−𝑘

2
𝑘
1
+ 𝑘
2

}[𝑥1𝑥
2

]

+ {𝑘3(𝑥1 − 𝑥2)
3 + 𝜀𝑘

4
𝑥3
1

𝑘
3
(𝑥
2
− 𝑥
1
)3 + 𝜀𝑘

4
𝑥3
2

} = 0,
(25)

with initial conditions 𝑥
1
(0) = 𝑥

10
, �̇�
1
(0) = 0, 𝑥

2
(0) = 𝑥

20
,

and �̇�
2
(0) = 0. If we introduce the transformations 𝑥

1
= (𝑦
1
+

𝑦
0
)/2 and 𝑥

2
= (𝑦
0
− 𝑦
1
)/2, thus (25) can be written as

{ ̈𝑦
0̈𝑦
1

} + {𝜔2𝑛1 0
0 𝜔2
𝑛2

}[𝑦0𝑦
1

]

+
{{{{
{{{{{

𝜀𝑘
4

(4𝑚) 𝑦3
0

+ 𝜀𝑘
4

(4𝑚) 𝑦
0
𝑦2
1

𝜀𝑘
4

(4𝑚) 𝑦2
0
𝑦
1

+ (𝛽 + 𝜀𝑘4(4𝑚) )𝑦
3

1

}}}}
}}}}}
= 0,

(26)

with initial conditions given as 𝑦
0
(0) = 𝑦

00
, ̇𝑦
0
(0) = ̇𝑦

00
,

𝑦
1
(0) = 𝑦

10
, and ̇𝑦

1
(0) = ̇𝑦

10
. Notice that (26) has the same

form of (7) with system parameters given as

𝜔2
𝑛1
= 𝑘1𝑚 , 𝜔2

𝑛2
= 𝑘1 + 2𝑘2𝑚 , 𝜑

1
= 𝜑
3
= 𝜀𝑘
4

(4𝑚) ,

𝜑
2
= 𝜑
4
= 0, 𝜑

6
= 𝜀𝑘
4

(4𝑚) ,

𝜑
8
= 𝛽 + 𝜀𝑘44𝑚 , 𝜑

5
= 𝜑
7
= 0, 𝛽 = 2𝑘3𝑚 .

(27)

Therefore and in accordance with our transformation
approach, (26) are transformed into (11) in which

𝑏
1
= 𝜑3]

2

2
+ 3𝜔2
𝑛1

3 ; 𝑏
2
= 𝜑
1
;

𝑏
3
= 𝜑6]

2

11
+ 3𝜔2
𝑛2

3 ; 𝑏
4
= 𝜑
8
.

(28)

To assess the accuracy of the equivalent equations of motion
when compared to the original ones (25), let us consider the
parameter values of 𝑘

1
= 𝑘
2
= 𝑘
3
= 𝑘
4
= 1, 𝑚 = 1, and

𝜀 = −2.9 and initial conditions 𝑦
0
(0) = 0.5, ̇𝑦

0
(0) = 0, 𝑦

1
(0) =

1.5, and ̇𝑦
1
(0) = 0. Figure 4 shows the amplitude-time

response curves obtained by numerical integration of the
corresponding equations ofmotion by using the Runge-Kutta
method. One can notice from Figure 4 that the amplitude-
time response curves obtained from (11) provide periodic
solutions that cannot capture the high frequency components
exhibited by the numerical amplitude-time curves plotted
from (25). However, if we substitute the exact solution of (11)

1

into (7)
2
and plot its corresponding numerical integration

solution, the high frequency components are captured as
illustrated in Figure 5. Therefore, we can conclude that if
during the dynamic analysis processes the motion of the
coordinate 𝑦

1
exhibits harmonic behavior at lower angular

frequency values, then the dynamics response behavior of this
coordinate solution can be used to obtain the high frequency
components exhibited by the remaining coordinate. In fact
and for the nonlinear parameter value of 𝜀 = −2.9, the RMSE
values, for the time interval shown in Figure 5, do not exceed
0.3159 and 0.1792 for 𝑦

0
and 𝑦

1
, respectively.

We next increase the system nonlinearity at the value of
𝜀 = −3.1 and plot the corresponding amplitude versus time
response curves. Notice from Figure 6 that when 𝑡 ≥ 4, the
numerical integration solution of the equations of motion
(25) obtained by using the Runge-Kutta numerical method
fails in spite of using the several solver options provided by
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Figure 4: Amplitude-time response curves computed from the numerical integration solutions of (26) and those provided by (11). The
parameter values used to obtain these plots were𝑚 = 1, 𝑘

1
= 𝑘
2
= 𝑘
3
= 𝑘
4
= 1, and 𝜀 = −2.9, with 𝑦

0
(0) = 0.5, ̇𝑦

0
(0) = 0, 𝑦

1
(0) = 1, ̇𝑦

1
(0) = 0,

]
11
= 1.1935, and ]

2
= 1.1935. Here, the gray solid lines describe the numerical integration solutions of (26), while the blue dashed lines

represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion. In this case, the computed RMSE
values were 0.3159, for 𝑦

0
, and 0.0358, for 𝑦

1
.
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Figure 5: Amplitude-time response curves computed from the numerical integration solutions of (26) and those provided by substituting
(11)
1
into (7)

2
. The parameter values used to obtain these plots were𝑚 = 1, 𝑘

1
= 𝑘
2
= 𝑘
3
= 𝑘
4
= 1, and 𝜀 = −2.9, with 𝑦

0
(0) = 0.5, ̇𝑦

0
(0) = 0,

𝑦
1
(0) = 1, ̇𝑦

1
(0) = 0, ]

11
= 1.1935, and ]

2
= 1.1935. Here, the gray solid lines describe the numerical integration solutions of (26), while

the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion. In this case, the
computed RMSE values were 0.3159, for 𝑦

0
, and 0.1792, for 𝑦

1
.

Mathematica 9.0 or the MATLAB V.2012a computer pack-
ages. In an attempt to capture the dynamics system response
with this nonlinear value, we have numerically solved (25)
by using the Enhanced Multistage homotopy perturbation
method (EMHPM) introduced in [18]. This technique also
fails at values of 𝑡 ≥ 4, as illustrated in Figure 6 by the
black and the purple dots. However, the predicted amplitude
versus time response curves computed by substituting (11)

2

into (7)
1
exhibits periodic behavior for the time interval

shown in Figure 6. We can conclude that this transformation
approach can help to obtain the numerical integration solu-
tions of nonlinear dynamics systems in which the numerical
integrations of the original equations of motion could fail
because of the convergence of the corresponding numerical
method.

2.4. Example 4: Finite Extensibility Nonlinear Elastic
Absorber. Wenow focus our attention on finding the approx-
imate solution of a finite extensibility nonlinear elastic
(FENE) absorber attached to a nonlinear primary system [19],
whose equations of motions are of the form

{𝑚1 0
0 𝑚
2

}[�̈�1�̈�
2

] + {𝑘1 00 0} [
𝑥
1𝑥
2

] + {𝐹1 (𝑥1, 𝑥2)𝐹
2
(𝑥
1
, 𝑥
2
)} = 0,

(29)
and the nonlinear restoring forces are given by

𝐹
1
(𝑥
1
, 𝑥
2
) = 𝜀𝑥3

1
− 𝑘
𝑓

(𝑥
2
− 𝑥
1
)

1 − ((𝑥
2
− 𝑥
1
) /𝑥
0
)2 ,

𝐹
2
(𝑥
1
, 𝑥
2
) = 𝑘
𝑓

(𝑥
2
− 𝑥
1
)

1 − ((𝑥
2
− 𝑥
1
) /𝑥
0
)2 ,

(30)
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Figure 6: Amplitude-time response curves computed from the numerical integration solutions of (26) and those provided by substituting
(11)
1
into (7)

2
. The parameter values used to obtain these plots were𝑚 = 1, 𝑘

1
= 𝑘
2
= 𝑘
3
= 𝑘
4
= 1, and 𝜀 = −3.1, with 𝑦

0
(0) = 0.5, ̇𝑦

0
(0) = 0,

𝑦
1
(0) = 1, ̇𝑦

1
(0) = 0, ]

11
= 1.1935, and ]

2
= 1.1935. Here, the gray solid lines and the black and the purple dots describe the numerical

integration solutions of (26) by using, respectively, the Runge-Kutta and the EMHPMmethods, while the blue dashed lines representing the
numerical solutions obtained from the derived equivalent nonlinear equations of motion.

with initial conditions 𝑥
1
(0) = 𝑥

10
, �̇�
1
(0) = 0, 𝑥

2
(0) =

𝑥
20
, and �̇�

2
(0) = 0. Here, 𝑚

1
is the mass of the primary

system,𝑚
2
represents the mass of the FENO system, 𝑘

1
and 𝜀

are, respectively, the linear and nonlinear stiffness parameters
of the main system, and 𝑘

𝑓
and 𝑥

0
represent the coupling

stiffness and the maximum possible extension of the FENO
system, respectively. By introducing the transformations 𝑦

1
=

𝑥
1
/𝑥
10
and 𝑦

2
= 𝑥
2
/𝑥
20
into (29), we get that

{ ̈𝑦
1̈𝑦
2

} + {𝜔2𝑛1 00 0} [
𝑦
1𝑦
2

]

+
{{{{{
{{{{{{

𝜑
1
𝑥3
1
− 𝜑
2

𝐴 (𝑦
2
− 𝑦
1
𝑥
10
/𝑥
20
)

1 − 𝐴2(𝑦
2
− 𝑦
1
𝑥
10
/𝑥
20
)2

𝜑
3

𝐴 (𝑦
2
− 𝑦
1
𝑥
10
/𝑥
20
)

1 − 𝐴2(𝑦
2
− 𝑦
1
𝑥
10
/𝑥
20
)2

}}}}}
}}}}}}
= 0,

(31)

with initial conditions given as 𝑦
1
(0) = 1, ̇𝑦

1
(0) = 0,

𝑦
2
(0) = 1, and ̇𝑦

2
(0) = 0, and 𝐴 = 𝑥

20
/𝑥
0
, 𝜑
1
= 𝜀𝑥2
10
/𝑚
1
,

𝜑
2
= 𝑘
𝑓
𝑥
0
/(𝑚
1
𝑥
10
𝑥
0
), and 𝜑

3
= 𝑘
𝑓
𝑥
0
/(𝑚
2
𝑥
20
). We next use

the Chebyshev polynomials of the first kind [9, 11] to derive
the cubic-like representation form of the nonlinear rational
restoring force of (31). This procedure yields

𝐹 (𝑦) = 𝐴 (𝑦
2
− 𝑦
1
𝑥
10
/𝑥
20
)

1 − 𝐴2(𝑦
2
− 𝑦
1
𝑥
10
/𝑥
20
)2 =

𝐴𝑦
1 − 𝐴2𝑦2

= (𝑏
1
− 3𝑏
3
) 𝑦 + 4𝑏

3
𝑦3,

(32)

where 𝑦 = (𝑦
2
− 𝑦
1
𝑥
10
/𝑥
20
), and by definition

𝑏
2𝑛+1

(𝐴) = 2𝜋 ∫
1

−1

(1 − 𝑦2)−1/2𝐹 (𝑦) 𝑇
2𝑛+1

(𝑦) 𝑑𝑦, (33)

and 𝑇
2𝑛−1

are the Chebyshev polynomials of the first kind
defined as

𝑇
2𝑛+1

(𝑥) = cos [(2𝑛 + 1) cos−1 (𝑥)] ,
𝑥 ∈ [−1, 1] , 𝑛 = 0, 1, 2, . . . .

(34)

By using (33), we obtain that

𝑏
1
= 2𝐴 (

1
√1 − 𝐴2 − 1) ,

𝑏
3
= 2
𝐴3 (

4
√1 − 𝐴2 + 𝐴

2 (1 − 3
√1 − 𝐴2) − 4) .

(35)

Thus, the FENOnonlinear restoring force𝐹(𝑦) can bewritten
in equivalent form as

𝐹 (𝑦) ≡ 𝛼𝑦 + 𝛽𝑦3, (36)

in which

𝛼 = 1𝐴 {2(
1

√1 − 𝐴2 − 1)

− 6𝐴2 (
4

√1 − 𝐴2 + 𝐴
2 (1 − 3

√1 − 𝐴2) − 4)} ,

𝛽 = 8
𝐴3 {

4
√1 − 𝐴2 + 𝐴

2 (1 − 3
√1 − 𝐴2) − 4} .

(37)
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Based on (37), it is clear that the equivalent representation
form (36) of the restoring force (32) holds if and only if 𝑥

20
<

𝑥
0
. Thus, (31) can be written as

{ ̈𝑦
1̈𝑦
2

} + {𝜔2𝑛1 00 0} [
𝑦
1𝑦
2

]

+
{{{{{{
{{{{{{{

𝜑
1
𝑥3
1
− 𝜑
2
{𝛼(𝑦

2
− 𝑦1𝑥10𝑥
20

) + 𝛽(𝑦
2
− 𝑦1𝑥10𝑥
20

)
3

}

𝜑
3
{𝛼(𝑦

2
− 𝑦1𝑥10𝑥
20

) + 𝛽(𝑦
2
− 𝑦1𝑥10𝑥
20

)
3

}

}}}}}}
}}}}}}}

= 0.

(38)

We next apply the aforementioned nonlinear transformation
approach to (38), to obtain that

̈𝑦
1
+ 𝑎
1
𝑦
1
+ 𝑎
2
𝑦3
1
= 0; ̈𝑦

2
+ 𝑎
3
𝑦
2
+ 𝑎
4
𝑦3
2
= 0, (39)

where the 𝑎
𝑖
are given as

𝑎
1
= 𝜔2
𝑛1
+ 𝜑
2
(2𝛼𝑥
20
(32𝑥
10
𝑢
1
− 45𝑥

20
𝑢
2
)

+ 𝛽𝜎
2
{64𝑥
10
𝑥
20
𝑢
1
𝑢
2
− 30𝑥2

10
𝑢2
1

−45𝑥2
20
𝑢2
2
}) 1
64𝑥2
20
𝑢
1

,
𝑎
2
= 𝜑
1
+ 𝜑
2

× (70𝛼𝑥3
20
𝑢
2

+ 𝛽 (64𝑥3
10
𝑢3
1
− 70𝑥2

10
𝑥
20
𝑢2
1
𝑢
2
+ 35𝑥3

20
𝑢3
2
))

× 1
64𝑥3
20
𝑢3
1

,

𝑎
3
= 𝜑

3

64𝑥3
20
𝑢
22

× (𝛼 (−90𝑥
10
𝑥
20
𝑢
11
+ 64𝑥3

20
𝑢
22
) + 𝛽𝑥

10
𝑢
11

× (−45𝑥2
10
𝑢2
11
+ 64𝑥

10
𝑥
20
𝑢
11
𝑢
22
− 30𝑥2

20
𝑢2
22
)) ,

𝑎
4
= 𝜑364
× (64𝛽 + 35 (2𝛼𝑥10𝑥20𝑢11 + 𝛽𝑥

3

10
𝑢3
11
)

𝑥3
20
𝑢3
22

−70𝛽𝑥10𝑢11𝑥
20
𝑢
22

) .
(40)

To assess the degree of accuracy attaining by (39), let us
consider the parameter values of 𝑚

1
= 1, 𝑚

2
= 1/2, 𝑘

1
= 1,

𝑘
𝑓
= 1, 𝑥

0
= 1, and 𝜀 = 1, with 𝑥

0
(0) = 1/2, �̇�

0
(0) = 0,

𝑥
1
(0) = 0.99, and �̇�

1
(0) = 0. Figure 7 shows the amplitude-

time response curves of (31) compared to those obtained by
substituting (39)

1
into (38)

2
. Here, the computed parameter

values are 𝛼 = −15.4771, 𝛽 = 37.0369, 𝑎
1
= 0.3305, 𝑎

2
=

0.5512, 𝑎
3
= −107.549, and 𝑎

4
= 96.7734, with 𝑢

1
= −1.991,

𝑢
2
= −1.115, 𝑢

11
= −0.7, and 𝑢

22
= −4.6. In this case,

the computed RMSE values for 𝑦
1
and 𝑦

2
were, respectively,

0.1965 and 0.2443. Table 5 shows the RMSE computed at
different values of 𝑥

20
. Notice that when 𝑥

20
tends to 𝑥

0
, the

RMSE values tend in general, to decrease, while the global
error exhibits a linear increasing behavior, as illustrated in
Figure 8.

2.5. Example 5: A Two-Degree-of-Freedom System with
Irrational Restoring Force. As a final example, let us consider
the system shown in Figure 9 having two masses, 𝑚

1
and

𝑚
2
which are connected by four elastic springs of stiffness

𝑘
1
and 𝑘

2
having an undeformed length, 𝑙

0
. Furthermore,

the element with mass 𝑚
1
is moving on a smooth horizontal

bearing surface whosemotion is restricted by an elastic linear
spring of stiffness 𝑘

3
. By using Newton second law, it is easy

to show that the equations of motion are

{1 00 1} [
�̈�
1�̈�
2

] +
{{{
{{{{

𝑘
3

𝑚
1

0

0 0

}}}
}}}}
[𝑥1𝑥
2

]

+
{{{
{{{{

−2𝑘1𝑚
1

+ 𝐵 0
0 2𝑘

1

𝑚
2

+ 𝐵
1

}}}
}}}}
[(𝑥2 − 𝑥1)(𝑥
2
− 𝑥
1
)] + {

𝐹
1
(𝑥
1
, 𝑥
2
)

𝐹
2
(𝑥
1
, 𝑥
2
)} = 0,

(41)

where the irrational restoring forces are given by

𝐹
1
(𝑥
1
, 𝑥
2
) = 𝐶 (𝑥

2
− 𝑥
1
)

√1 + 𝐴2(𝑥
2
− 𝑥
1
)2
,

𝐹
2
(𝑥
1
, 𝑥
2
) = 𝐶

1
(𝑥
2
− 𝑥
1
)

√1 + 𝐴2(𝑥
2
− 𝑥
1
)2
.

(42)

Here 𝐵 = −2𝑘
2
/𝑚
1
, 𝐵
1
= 2𝑘
2
/𝑚
2
, 𝐶 = 2𝑘

2
/𝑚
1
, and 𝐶

1
=

−2𝑘
2
/𝑚
2
. The system (41) can be cast in different form by

setting 𝑥
1
= (𝑤
1
− 𝑤
2
)/2 and 𝑥

2
= (𝑤
2
+ 𝑤
1
)/2, and after

some algebraic manipulations, we get that

{1 00 1} [
�̈�
1�̈�
2

] +
{{{
{{{{

𝑘
3

(2𝑚
1
) 𝑘

11

𝑘
22

− 𝑘
3

(2𝑚
1
)

}}}
}}}}
[𝑤1𝑤
2

]

+
{{{{{{
{{{{{{{

𝑤
2
(𝐶 + 𝐶

1
)

2√1 + 𝐴2𝑤2
2

− 𝑤2 (𝐶1 − 𝐶)
2√1 + 𝐴2𝑤2

2

}}}}}}
}}}}}}}

= 0,

(43)
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Figure 7: Amplitude-time response curves computed from the numerical integration solutions of (31) and those provided by substituting
(39)
1
into (38)

2
. The parameter values used to obtain these plots were𝑚

1
= 1,𝑚

2
= 1/2, 𝑘

1
= 1, 𝑘

𝑓
= 1, 𝑥

0
= 1, and 𝜀 = 1, with 𝑥

0
(0) = 1/2,

�̇�
0
(0) = 0, 𝑥

1
(0) = 0.99, �̇�

1
(0) = 0, 𝑢

1
= −1.991, 𝑢

2
= −1.115, 𝑢

11
= −0.7, and 𝑢

22
= −4.6. Here, the gray solid lines describe the numerical

integration solutions of (31), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear
equations of motion.
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Figure 8: Global error behavior plotted versus time.

with initial conditions 𝑤
1
(0) = 𝑤

10
, �̇�
1
(0) = 0, 𝑤

2
(0) = 𝑤

20
,

and �̇�
2
(0) = 0. If we set 𝑧

1
= 𝑤
1
/𝑤
10
and 𝑧
2
= 𝑤
2
/𝑤
20
, then

(43) becomes

{1 00 1} [
�̈�
1�̈�
2

] +
{{{{{
{{{{{{

𝑘
3

(2𝑚
1
)

𝑘
11
𝑤
20

𝑤
10

𝑘
22

− 𝑘
3
𝑤
10

(2𝑚
1
𝑤
20
)

}}}}}
}}}}}}
[𝑧1𝑧
2

]

+

{{{{{{{{
{{{{{{{{{

𝑧
1
(𝐶 + 𝐶

1
) 𝑤
20

𝑤
10
√1 + 𝐴2𝑤2

2
𝑤2
20

− 𝑧
1
(𝐶
1
− 𝐶)𝑤

20

𝑤
10
√1 + 𝐴2𝑤2

2
𝑤2
20

}}}}}}}}
}}}}}}}}}

= 0,

(44)

Fixed support

Fixed support

l0
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Figure 9: Schematic of a two-degree-of-freedom system with
irrational restoring force.

where

𝑘
11
= 12 (−

𝑘
3
/2 + 2𝑘

1

𝑚
1

+ 2𝑘1𝑚
2

+ 𝐵 + 𝐵
1
) ,

𝑘
22
= 12 (

𝑘
3
/2 + 2𝑘

1

𝑚
1

+ 2𝑘1𝑚
2

+ 𝐵
1
− 𝐵) ,

(45)

with 𝑧
1
(0) = 1, �̇�

1
(0) = 0, �̇�

2
(0) = 1, and 𝑧

2
(0) = 0. By using

the Chebyshev polynomials of the first kind, the cubic-like
representation form of the irrational restoring force becomes

𝑧
1

√1 + 𝐴2
1
𝑤2
2
𝑤2
20

≡ 𝛼𝑧
1
+ 𝛽𝑧3
1
, (46)
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where

𝛼 = 4
𝜋𝐴2 {𝐸 (−𝐴

2) − 𝐾 (−𝐴2) − 1
𝐴2

× ((8 + 5𝐴2)𝐾 (−𝐴2) − (8 + 𝐴2) 𝐸 (−𝐴2)) } ,

𝛽 = 16
3𝜋𝐴4
× {(8 + 5𝐴2)𝐾 (−𝐴2) − (8 + 𝐴2) 𝐸 (−𝐴2)} .

(47)

Here 𝐾(−𝐴2) and 𝐸(−𝐴2) are the complete elliptic integral
of the first and second kind for the modulus 𝐴, respectively.
Thus, (44) can be rewritten as

{1 00 1} [
�̈�
1�̈�
2

] +
{{{{{
{{{{{{

𝑘
3

(2𝑚
1
)

𝑘
11
𝑤
20

𝑤
10

𝑘
22

− 𝑘
3
𝑤
10

(2𝑚
1
𝑤
20
)

}}}}}
}}}}}}
[𝑧1𝑧
2

]

+ {{{{{

(𝐶 + 𝐶
1
) 𝑤
20
{𝛼𝑧
1
+ 𝛽𝑧3
1
}

𝑤
10− (𝐶

1
− 𝐶) {𝛼𝑧

1
+ 𝛽𝑧3
1
}𝑤
20
/𝑤
10

}}
}}}
= 0.

(48)

Application of the proposed nonlinear transformation
approach to (48) yields

�̈�
1
+ 𝑎
1
𝑧
1
+ 𝑎
2
𝑧3
1
= 0; �̈�

2
+ 𝑎
3
𝑧
2
+ 𝑎
4
𝑧3
2
= 0, (49)

where the 𝑎
𝑖
are given as

𝑎
1
= 1
64𝑚
1
𝑤
10
𝑢
1

(32𝑘
3
𝑤
10
𝑢
1
+ 90𝛼𝑚

1
𝑤
10
𝑢
2

+90𝑘
11
𝑚
1
𝑤
20
𝑢
2
+ 45𝛽𝑚

1
𝑤
10
𝑢3
2
) ,

𝑎
2
= − 35

64𝑚
1
𝑤
10
𝑢3
1

(2𝛼𝑤
10
𝑢
2
+ 2𝑘
11
𝑤
20
𝑢
2
+ 𝛽𝑤
10
𝑢3
2
) ,

𝑎
3
= −45𝑘3𝑤10𝑢11 − 64𝛼𝑚1𝑤20𝑢22 − 64𝑘22𝑚1𝑤20𝑢2264𝑚

1
𝑤
20
𝑢3
22

,

𝑎
4
= −−35𝑘3𝑤10𝑢11 − 64𝛽𝑚1𝑤20𝑢

3

22

64𝑚
1
𝑤
20
𝑢3
22

.
(50)

Figure 10 illustrates the numerical predictions obtained
by substituting (49)

1
into (48)

2
, as well as those computed

from the numerical integration solution of (48). In Example
5, we have used the following system parameter values:𝑚

1
=

1, 𝑚
2
= 1/2, 𝑘

1
= 1, 𝑘

2
= 1, 𝑘

3
= 1, and 𝐴 = 1,

with initial conditions given as 𝑤
1
(0) = 4, �̇�

1
(0) = 0,

𝑤
2
(0) = 2, and �̇�

2
(0) = 0. The predicted parameter values

are 𝛼 = 4.7082, 𝛽 = −2.1374, 𝑎
1
= −0.5442, 𝑎

2
= 1.7564,

𝑎
3
= 8.5590, and 𝑎

4
= 0.1652, with 𝑢

1
= −0.68, 𝑢

2
= 0.5,

𝑢
11
= −0.3, and 𝑢

22
= 0.55. Notice from Figure 10 that our

numerical integration predictions computed from (49)
1
and

Table 5: RMSE values computed by using the equivalent represen-
tation form of (31) with 𝑢

1
= −1.991, 𝑢

2
= −1.115, 𝑢

11
= −0.7, and

𝑢
22
= −4.6.

𝑥
20

RMSE 𝑦
1
(x) RMSE 𝑦

2
(x)

0.75 0.9981 1.1200
0.80 1.0245 1.0467
0.85 1.0330 0.9560
0.90 0.5851 0.5029
0.95 1.0122 0.8019
0.99 0.1965 0.2443

(48)
2
follow the amplitude-time response curves computed

from (48)withRMSEvalues of 0.2095 for 𝑧
1
and 0.1318 for 𝑧

2
,

respectively.The system global error as illustrated in Figure 11
tends to linearly grow as time increases. Of course, other
values of the system initial conditions can be used to study
the quantitative and qualitative system dynamics response;
however, when the system parameter changes, it could be
necessary to adjust the values of 𝑢

𝑖
and 𝑢

𝑖𝑖
in order to satisfy

(8).

3. Conclusions

We have introduced a nonlinear transformation approach to
determine the equivalent representation form of two degree-
of-freedom oscillatory systems with nonlinear restoring
forces. It has been shown that this nonlinear transformation
approach decoupled the system equation into two Duffing
equations. It has been found that the numerical integration
of the equivalent equations of motion, of the five dynamic
systems examined here, follows well the computed numerical
values obtained from the original equations of motion.
Furthermore, it has been shown that by substituting the
decouple equation related to the 𝑥

1
(𝑦
1
) coordinate system

into the original equation of motion described by 𝑥
2
(𝑦
2
),

it provides the lower RMSE values. However, when the
canonical representation form of the original equations of
motion is used to decouple the corresponding equations,
the smallest RMSE values were found at small values of the
nonlinear parameter 𝜀.

We also have found in Example 3 that our equivalent
representation form can capture high frequency system com-
ponents if the exact solution of the cubic-like representation
form of the coordinate 𝑦

1
is used to find the dynamics

response of the 𝑦
0
coordinate. Besides, the corresponding

equivalent equations ofmotion can be numerically integrated
at the value of 𝜀 = −3.1 while the numerical integration
solution of the original equations of motion (25), by using the
Runge-Kutta, fails in spite of using the several solver options
provided by Mathematica 9.0 or the MATLAB V.2012a com-
puter packages. We next applied the EMHPM to find the
numerical solution of (25) but it was found that this technique
provides numerical results that diverge when 𝑡 ≥ 4. However,
the numerical integration of our equivalent representation
form provides solutions that describe the system dynamics
periodic behavior.
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Figure 10: Amplitude-time response curves computed from the numerical integration solutions of (48) and those provided by substituting
(49)
1
into (48)

2
. The parameter values used to obtain these plots were 𝑚

1
= 1, 𝑚

2
= 1/2, 𝑘

1
= 1, 𝑘

2
= 1, 𝑘

3
= 1, 𝐴 = 1, 𝑤

1
(0) = 4,

�̇�
1
(0) = 0, 𝑤

2
(0) = 2, �̇�

2
(0) = 0, 𝛼 = 4.7082, 𝛽 = −2.1374, 𝑎

1
= −0.5442, 𝑎

2
= 1.7564, 𝑎

3
= 8.5590, and 𝑎

4
= 0.1652, with 𝑢

1
= −0.68,

𝑢
2
= 0.5, 𝑢

11
= −0.3, and 𝑢

22
= 0.55. Here, the gray solid lines describe the numerical integration solutions of (31), while the blue dashed

lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion.
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In the case of Examples 4 and 5, we believe that the
RMSE and the global error magnitudes are mainly due to two
factors: (a) the Chebyshev polynomial representation of the
system restoring forces and (b) the equivalent representation
form of the original equations of motion that are based on
cubic-like Duffing’s equations. These two factors affect the
accuracy achieved during the solution process; however, the
quantitative and qualitative system response are captured
with good degree of accuracy.

Therefore, it can be concluded, in accordance with some
of the systems studied here, that if one wants to have the
smallest RMSE values when using the proposed nonlinear
transformation approach, the canonical representation form
has to be used for weak nonlinear system; however, for larger
values of 𝜀, the accurate results are obtainedwhen the original
equations of motion were decoupled. Based on the numerical
simulation results, it is clear that our method is a promising
technique that could provide equivalent representation forms
of dynamic systems with two ormore degrees of freedom that

can follow the numerical integration solutions of the original
equations of motion, at larger nonlinear parameter values.
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