A Transformation Method for Solving Conservative Nonlinear Two-Degree-of-Freedom Systems

Alex Elías-Zúñiga, Daniel Olvera Trejo, Inés Ferrer Real, and Oscar Martínez-Romero
Departamento de Ingeniería Mecánica, Tecnológico de Monterrey, Campus Monterrey, E. Garza Sada 2501 Sur, 64849 Monterrey, N.L., Mexico
Correspondence should be addressed to Alex Elías-Zúñiga; aelias@itesm.mx

Received 9 October 2013; Revised 30 January 2014; Accepted 16 March 2014; Published 7 May 2014
Academic Editor: Michael J. Brennan
Copyright © 2014 Alex Elías-Zúñiga et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A nonlinear transformation approach based on a cubication method is developed to obtain the equivalent representation form of conservative two-degree-of-freedom nonlinear oscillators. It is shown that this procedure leads to equivalent nonlinear equations that describe well the numerical integration solutions of the original equations of motion.

1. Introduction

Recently, we have introduced in $[1,2]$ a procedure that transforms the original equation of motion of single degree of freedom systems, having nonlinear restoring forces, into nonlinear ordinary differential equations of the Duffing type. Furthermore, this procedure has been used in conjunction with the Chebyshev polynomials to derive the equivalent representation form of nonlinear system with dissipative and sinusoidal driving forces [2] in which the numerical comparisons between the equivalent and the original equations of motion demonstrate the effectiveness of this method in predicting the corresponding system dynamics response. Motivated by these results, we herein expand the application of this technique to obtain the equivalent representation form of two-degree-of-freedom homogeneous, undamped, and ordinary differential equations of the form

$$
\left\{\begin{array}{cc}
m_{1} & 0 \tag{1}\\
0 & m_{2}
\end{array}\right\}\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left\{\begin{array}{ll}
k_{11} & k_{12} \\
k_{21} & k_{22}
\end{array}\right\}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left\{\begin{array}{l}
f_{1}\left(x_{1}, x_{2}\right) \\
f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right\}=0
$$

that models the dynamics response of systems that arise in physics and engineering applications [3-6], where m_{1} and m_{2} are the masses of the system, k_{11}, k_{12}, k_{21}, and k_{22} are stiffness
parameters, $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$ are nonlinear restoring forces, and $x_{1}(0)=x_{10}, \dot{x}_{1}(0)=\dot{x}_{10}, x_{2}(0)=x_{20}$, and $\dot{x}_{2}(0)=$ \dot{x}_{20} are the system initial conditions.

The method is based on replacing first the system restoring forces by polynomial expressions and, then, we use a transformation technique to replace the resulting equations by two uncoupled nonlinear differential equations of the Duffing type whose solutions are based on Jacobi elliptic functions. It is shown that the appropriate derivation of one of these solutions can improve the numerical estimates of the equivalent equations of motion even at larger and feasible nonlinear parameter
values.

2. A Nonlinear Transformation Approach

The equivalent representation form of (1) is obtained by replacing it by two uncoupled, nonlinear ordinary differential equations of the Duffing type by following an approach similar to the one described in [1], This procedure yields

$$
\begin{equation*}
\ddot{x}_{1}+a_{1} x_{1}+a_{2} x_{1}^{3}=0 ; \quad \ddot{x}_{2}+a_{3} x_{2}+a_{4} x_{2}^{3}=0 . \tag{2}
\end{equation*}
$$

Here we assume that the coefficients a_{i} are determined by the following expressions:

$$
\begin{array}{ll}
\frac{\partial F_{1}\left(a_{1}, a_{2}\right)}{\partial a_{1}}=0, & \frac{\partial F_{1}\left(a_{1}, a_{2}\right)}{\partial a_{2}}=0 \\
\frac{\partial F_{2}\left(a_{3}, a_{4}\right)}{\partial a_{3}}=0, & \frac{\partial F_{2}\left(a_{3}, a_{4}\right)}{\partial a_{4}}=0 \tag{3}
\end{array}
$$

where

$$
\begin{align*}
& F_{1}\left(a_{1}, a_{2}\right) \\
& \qquad \begin{array}{r}
=\int_{0}^{u_{2}} \int_{0}^{u_{1}}\left(\frac{k_{11} x_{1}+k_{12} x_{2}+f_{1}\left(x_{1}, x_{2}\right)}{m_{1}}\right. \\
\\
\left.-a_{1} x_{1}-a_{2} x_{1}^{3}\right)^{2} d x_{1} d x_{2} \rightarrow \mathrm{~min} \\
F_{2}\left(a_{3}, a_{4}\right) \\
=\int_{0}^{u_{4}} \int_{0}^{u_{3}}\left(\frac{k_{21} x_{1}+k_{22} x_{2}+f_{2}\left(x_{1}, x_{2}\right)}{m_{2}}\right. \\
\left.-a_{3} x_{2}-a_{4} x_{2}^{3}\right)^{2} d x_{2} d x_{1} \longrightarrow \min
\end{array} \tag{4}
\end{align*}
$$

and the values of u_{i} are fitted to satisfy (4) and (5) [7]. Notice, in this case, that the system (2) can be solved in closed form by using Jacobi elliptic functions. This yields [8]

$$
\begin{gather*}
x_{1}=x_{10} c n\left(\omega_{1} t, \kappa_{1}^{2}\right), \quad \omega_{1}=\sqrt{a_{1}+a_{2} x_{10}^{2}} \\
\kappa_{1}^{2}=\frac{a_{2} x_{10}^{2}}{2 \omega_{1}^{2}} \\
x_{2}=x_{20} c n\left(\omega_{2} t, \kappa_{2}^{2}\right), \quad \omega_{2}=\sqrt{a_{3}+a_{4} x_{20}^{2}} \tag{6}\\
\kappa_{2}^{2}=\frac{a_{3} x_{20}^{2}}{2 \omega_{2}^{2}}
\end{gather*}
$$

However, an alternative approach to find the equivalent representation form of (1) can be derived if we use the form (2) $)_{1}$ or $(2)_{2}$ and then substitute its exact solution into the remaining equation in (1). In this case, the influence of the nonlinear effects of x_{1} or x_{2} into the system dynamics response will be taken into account by the resulting coupled equation of motion whose approximate solution could be based on the usage of Jacobi elliptic functions.

Other equivalent representation forms of (1) are possible since these depend on the polynomial order use to write the equivalent form of the system restoring forces [9-11]. For instance, let us suppose that the nonlinear conservative forces of (1) are of the cubic type and rewrite (1) in its canonical representation form [12]:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\ddot{u}_{1} \\
\ddot{u}_{2}
\end{array}\right\}+ \\
& +\left\{\begin{array}{cc}
\omega_{n 1}^{2} & 0 \\
0 & \omega_{n 2}^{2}
\end{array}\right\}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \\
& \quad+\varepsilon\left\{\begin{array}{l}
\varphi_{1} u_{1}^{3}+\varphi_{2} u_{1}^{2} u_{2}+\varphi_{3} u_{1} u_{2}^{2}+\varphi_{4} u_{2}^{3} \\
\varphi_{5} u_{1}^{3}+\varphi_{6} u_{1}^{2} u_{2}+\varphi_{7} u_{1} u_{2}^{2}+\varphi_{8} u_{2}^{3}
\end{array}\right\}=0
\end{aligned}
$$

with initial conditions given as $u_{1}(0)=u_{10}, \dot{u}_{1}(0)=\dot{u}_{10}$, $u_{2}(0)=u_{20}$, and $\dot{u}_{2}(0)=\dot{u}_{20}$. Here the dots denote the time derivative, u_{1} and u_{2} are known as the system normal coordinates, ε is a nonlinear parameter, and $\omega_{n 1}, \omega_{n 2}$, and φ_{1} through φ_{8} are corresponding system parameters that are defined in accordance with the physics of the system. Now, let us replace (7) by their corresponding equivalent equations of motion of the Duffing type which are valid for the complete range of oscillation amplitudes [1], by using the relations

$$
\begin{align*}
& F_{1}\left(b_{1}, b_{2}\right) \\
& \qquad=\int_{0}^{v_{2}} \int_{0}^{v_{1}}\left(\omega_{n 1}^{2} u_{1}+\varepsilon\left(\varphi_{1} u_{1}^{3}+\varphi_{2} u_{1}^{2} u_{2}+\varphi_{3} u_{1} u_{2}^{2}+\varphi_{4} u_{2}^{3}\right)\right. \\
& \left.-b_{1} u_{1}-b_{2} u_{1}^{3}\right)^{2} d u_{1} d u_{2} \longrightarrow \min , \\
& F_{2}\left(b_{3}, b_{4}\right) \\
& =\int_{0}^{v_{11}} \int_{0}^{v_{22}}\left(\omega_{n 2}^{2} u_{2}+\varepsilon\left(\varphi_{5} u_{1}^{3}+\varphi_{6} u_{1}^{2} u_{2}+\varphi_{7} u_{1} u_{2}^{2}+\varphi_{8} u_{2}^{3}\right)\right. \\
& \left.-b_{3} u_{2}-b_{4} u_{2}^{3}\right)^{2} d u_{2} d u_{1} \longrightarrow \min , \tag{8}
\end{align*}
$$

where v_{1}, v_{2}, v_{11}, and v_{22} are fitted constants that satisfy (8), and the parameters b_{i} are determined by solving the equations

$$
\begin{array}{ll}
\frac{\partial F_{1}\left(b_{1}, b_{2}\right)}{\partial b_{1}}=0, & \frac{\partial F_{1}\left(b_{1}, b_{2}\right)}{\partial b_{2}}=0 \\
\frac{\partial F_{2}\left(b_{3}, b_{4}\right)}{\partial b_{3}}=0, & \frac{\partial F_{2}\left(b_{3}, b_{4}\right)}{\partial b_{4}}=0 \tag{9}
\end{array}
$$

This yields

$$
\begin{gather*}
b_{1}=-\frac{-30 \varphi_{2} \nu_{1} \nu_{2}-64 \varphi_{3} \nu_{1} \nu_{2}^{2}-135 \varphi_{4} v_{2}^{3}-192 \nu_{1} \omega_{n 1}^{2}}{192 v_{1}}, \\
b_{2}=-\frac{-192 \varphi_{1} \nu_{1}^{3}-70 \varphi_{2} v_{1}^{2} \nu_{2}+105 \varphi_{4} v_{2}^{3}}{192 \nu_{1}^{3}}, \\
b_{3}=-\frac{-135 \varphi_{5} \nu_{11}^{3}-64 \varphi_{6} v_{11}^{2} v_{22}-30 \varphi_{7} \nu_{11} v_{22}^{2}-192 v_{22} \omega_{n 2}^{2}}{192 v_{22}}, \\
b_{4}=-\frac{-105 \varphi_{5} \nu_{11}^{3}-70 \varphi_{7} \nu_{11} v_{22}^{2}-192 \varphi_{8} \nu_{22}^{3}}{192 v_{22}^{3}} . \tag{10}
\end{gather*}
$$

Then, (7) can be rewritten in equivalent form as

$$
\begin{equation*}
\ddot{u}_{1}+b_{1} u_{1}+b_{2} u_{1}^{3}=0, \quad \ddot{u}_{2}+b_{3} u_{2}+b_{4} u_{2}^{3}=0 \tag{11}
\end{equation*}
$$

whose exact solutions are similar to those given by (6).
We shall next explore the applicability of the nonlinear transformation method in obtaining the equivalent representation form of (1) and, then, we will compare the numerical integration solutions of five dynamics systems, having nonlinear restoring forces with rational or irrational terms, with respect to their equivalent representation forms [13-20]. First, let us consider the case for which the restoring forces are of the cubic type.

Table 1: RMSE values computed from the equivalent representation forms of (13) with $u_{1}=1.55, u_{2}=1.5, u_{3}=1.25$, and $u_{4}=1.6$. Here $b_{11}=\left(k_{1}+k_{2}\right) / m_{1}, b_{12}=b_{21}=-k_{2} x_{20} /\left(m_{1} x_{10}\right), b_{22}=2 k_{2} / m_{2}$, and $d_{1}=\varepsilon x_{10}^{2} / m_{1}$.

ε	$\begin{aligned} & \ddot{y}_{1}+a_{1} y_{1}+a_{2} y_{1}^{3}=0, \\ & \ddot{y}_{2}+a_{3} y_{2}+a_{4} y_{2}^{3}=0 . \end{aligned}$		$\begin{aligned} & \ddot{y}_{1}+a_{1} y_{1}+a_{2} y_{1}^{3}=0, \\ & \ddot{y}_{2}+b_{21} y_{1}+b_{22} y_{2}=0 . \end{aligned}$		$\begin{aligned} & \ddot{y}_{2}+a_{3} y_{2}+a_{4} y_{2}^{3}=0, \\ & \ddot{y}_{1}+b_{11} y_{1}+b_{12} y_{2}+d_{1} y_{1}^{3}=0 . \end{aligned}$	
	$\begin{gathered} \text { RMSE } \\ y_{1}(x) \\ \hline \end{gathered}$	$\begin{gathered} \text { RMSE } \\ y_{2}(x) \\ \hline \end{gathered}$	$\begin{gathered} \text { RMSE } \\ y_{1}(x) \\ \hline \end{gathered}$	$\begin{gathered} \text { RMSE } \\ y_{2}(x) \\ \hline \end{gathered}$	$\begin{gathered} \text { RMSE } \\ y_{1}(x) \\ \hline \end{gathered}$	RMSE $y_{2}(x)$
0.01	0.2992	0.9138	0.2992	0.3062	1.1924	0.9138
0.25	0.3248	0.8863	0.3248	0.4004	0.1797	0.8863
0.75	0.1511	0.8222	0.1511	0.2873	0.2167	0.8222
1.50	0.0398	0.8373	0.0398	0.1989	0.1902	0.8373
5	0.1488	0.9068	0.1488	0.0818	0.0930	0.9068
20	0.1179	0.9490	0.1179	0.0233	0.0082	0.9490
100	0.0697	0.9635	0.0697	0.0047	0.0011	0.9635

2.1. Example 1: A Cubic Nonlinear System. Let us consider the conservative system built with a nonlinear spring of the cubic type. The corresponding equations of motion are given as [13]

$$
\left\{\begin{array}{cc}
m_{1} & 0 \tag{12}\\
0 & m_{2}
\end{array}\right\}\left[\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & 2 k_{2}
\end{array}\right\}\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]+\left\{\begin{array}{c}
\varepsilon x_{1}^{3} \\
0
\end{array}\right\}=0,
$$

with initial conditions $x_{1}(0)=x_{10}, \dot{x}_{1}(0)=0, x_{2}(0)=x_{20}$, and $\dot{x}_{2}(0)=0$. If we introduce the transformations $y_{1}=$ x_{1} / x_{10} and $y_{2}=x_{2} / x_{20}$ so that $y_{1}(0)=1, \dot{y}_{1}(0)=0$, $y_{2}(0)=1, \dot{y}_{2}(0)=0$, thus (12) can be written in normalized form as

$$
\begin{align*}
& \left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\} \tag{13}\\
& \left.\quad+\begin{array}{l}
\ddot{y}_{1} \\
\ddot{y}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
\frac{\left(k_{1}+k_{2}\right)}{m_{1}} & -\frac{k_{2} x_{20}}{\left(m_{1} x_{10}\right)} \\
-\frac{k_{2} x_{10}}{\left(m_{2} x_{20}\right)} & \frac{2 k_{2}}{m_{2}}
\end{array}\right\}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& \\
& \quad+\left\{\begin{array}{c}
\frac{\varepsilon x_{10}^{2} y_{1}^{3}}{m_{1}} \\
0
\end{array}\right\}=0 .
\end{align*}
$$

If we use our proposed nonlinear transformation approach then the equivalent representation form of (13) is given as

$$
\begin{equation*}
\ddot{y}_{1}+a_{1} y_{1}+a_{2} y_{1}^{3}=0 ; \quad \ddot{y}_{2}+a_{3} y_{2}+a_{4} y_{2}^{3}=0 \tag{14}
\end{equation*}
$$

where the a_{i}, determined from (4) and (5), are given as

$$
\begin{gather*}
a_{1}=-\frac{-32 k_{1} u_{1} x_{10}-32 k_{2} u_{1} x_{10}+45 k_{2} u_{2} x_{20}}{32 m_{1} u_{1} x_{10}}, \\
a_{2}=-\frac{-32 \varepsilon u_{1}^{3} x_{10}^{3}-35 k_{2} u_{2} x_{20}}{32 m_{1} u_{1}^{3} x_{10}} \tag{15}\\
a_{3}=-\frac{45 k_{2} u_{11} x_{10}-32 k_{2} u_{22} x_{20}}{32 m_{2} u_{22} x_{20}} \\
a_{4}=\frac{35 k_{2} u_{11} x_{10}}{32 m_{2} u_{22}^{3} x_{20}}
\end{gather*}
$$

and u_{1}, u_{2}, u_{11}, and u_{22} are the corresponding fitting parameters described earlier.

To apply our nonlinear transformation approach to the canonical representation form of (13), we first use the following linear coordinate transformation [12]:

$$
\left[\begin{array}{l}
x_{1} \tag{16}\\
x_{2}
\end{array}\right]=\left\{\begin{array}{cc}
R_{1} & R_{2} \\
R_{1} f_{1} & R_{2} f_{2}
\end{array}\right\}\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

which yields the canonical form (7). Here, the system parameters of (7) are described by the relations

$$
\begin{gather*}
\omega_{n 1}^{2}=\frac{1}{2 m_{1}}\left[\left(k_{1}+3 k_{2}\right)-\sqrt{k_{1}^{2}-2 k_{1} k_{2}+5 k_{2}^{2}}\right] \\
\omega_{n 2}^{2}=\frac{1}{2 m_{1}}\left[\left(k_{1}+3 k_{2}\right)+\sqrt{k_{1}^{2}-2 k_{1} k_{2}+5 k_{2}^{2}}\right] \\
\varphi_{1} \equiv-\varepsilon R_{1}^{4} x_{10}^{2}, \quad \varphi_{2} \equiv-3 \varepsilon R_{1}^{3} R_{2} x_{10} x_{20}, \\
\varphi_{3} \equiv-3 \varepsilon R_{1}^{2} R_{2}^{2} x_{20}^{2}, \quad \varphi_{4} \equiv-\frac{\varepsilon R_{1} R_{2}^{3} x_{20}^{3}}{x_{10}}, \\
\varphi_{5} \equiv-\frac{\varepsilon R_{1}^{3} R_{2} x_{10}^{3}}{x_{20}}, \quad \varphi_{6} \equiv-3 \varepsilon R_{1}^{2} R_{2}^{2} x_{10}^{2}, \tag{17}\\
\varphi_{7} \equiv-3 \varepsilon R_{1} R_{2}^{3} x_{10} x_{20}, \quad \varphi_{8} \equiv-\varepsilon R_{2}^{4} x_{20}^{2} \\
f_{1} \equiv \frac{k_{1}+k_{2}-m_{1} \omega_{n 1}^{2}}{k_{2}}, \quad f_{2} \equiv \frac{k_{1}+k_{2}-m_{1} \omega_{n 2}^{2}}{k_{2}}, \\
R_{1}^{2} \equiv \frac{1}{m_{1}\left(1+f_{1}^{2}\right)}, \quad R_{2}^{2} \equiv \frac{1}{m_{1}\left(1+f_{2}^{2}\right)} .
\end{gather*}
$$

Thus, the approximate solutions of (13), by considering their canonical representation form, are given by expressions similar to those of (6).

Tables 1 and 2 show the root-mean-square error (RMSE) values computed by comparing the numerical integration solutions of the original equations of motion (13), with respect to numerical results computed from their derived equivalent representation forms by considering the initial conditions values of $x_{1}(0)=2, \dot{x}_{1}(0)=0, x_{2}(0)=-1$, and $\dot{x}_{2}(0)=0$, the parameter values of $m_{1}=m_{2}=1, k_{1}=3$, and $k_{2}=1$, and different values of ε. In the second and third

Figure 1: Amplitude-time response curves computed from the numerical integration solutions of (13) and those provided by substituting $(14)_{1}$ into (13) $)_{2}$. The parameter values used to obtain these plots were $m_{1}=m_{2}=1, k_{1}=3, k_{2}=1$, and $\varepsilon=20$, with $x_{1}(0)=2, \dot{x}_{1}(0)=0$, $x_{2}(0)=-1$, and $\dot{x}_{2}(0)=0$, and $u_{1}=1.55, u_{2}=1.5, u_{3}=1.25$, and $u_{4}=1.6$. Here, the gray solid lines describe the numerical integration solutions of (13), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion.

TAble 2: RMSE values computed by considering the canonical representation form of (13) with $\nu_{1}=-9, \nu_{2}=-0.215, v_{11}=-2.325$, and $v_{22}=-8.5$.

	$\ddot{u}_{1}+b_{1} u_{1}+b_{2} u_{1}^{3}=0$,	$\ddot{u}_{1}+b_{1} u_{1}+b_{2} u_{1}^{3}=0$,		$\ddot{u}_{2}+b_{3} u_{2}+b_{4} u_{2}^{3}=0$,
ε	$\ddot{u}_{2}+b_{3} u_{2}+b_{4} u_{2}^{3}=0$.	$\ddot{u}_{2}+\omega_{n 2}^{2} u_{2}+\varepsilon\left\{\varphi_{5} u_{1}^{3}+\varphi_{6} u_{1}^{2} u_{2}+\varphi_{7} u_{1} u_{2}^{2}+\varphi_{8} u_{2}^{3}\right\}=0$.	$\ddot{u}_{1}+\omega_{n 1}^{2} u_{1}+\varepsilon\left\{\varphi_{1} u_{1}^{3}+\varphi_{2} u_{1}^{2} u_{2}+\varphi_{3} u_{1} u_{2}^{2}+\varphi_{4} u_{2}^{3}\right\}=0$.	
	RMSE	RMSE	RMSE	RMSE
	$u_{1}(x)$	$u_{2}(x)$	$u_{1}(x)$	$u_{2}(x)$
$u_{2}(x)$				
0.01	0.06010	0.0277	0.0044	0.0109
0.25	1.5351	0.6069	0.3611	0.2661
0.75	2.0910	0.8049	1.3988	0.6512
1.50	2.1222	0.8349	2.1151	0.8220
5	1.9552	0.8733	1.8608	0.8739
20	1.9116	0.9044	1.9889	0.9090
100	1.9495	0.9136	1.9704	0.9191

columns of Table 1 are tabulated the RMSE values computed by using the equivalent representation forms of (13) given by (14), while the fourth and the fifth columns provide the RMSE values obtained by substituting (14) ${ }_{1}$ into (13) ${ }_{2}$. The sixth and the seventh columns of Table 1 contain the RMSE values computed by substituting $(14)_{2}$ into (13) ${ }_{1}$. As we can see from Table 1, the lowest RMSE values are tabulated in the fifth and the sixth columns which implies that the most accurate solutions of (13) are obtained when the equivalent representation form $(14)_{1}$ is used to derive the approximate solution of x_{2}. Also notice from Table 1, that the computed values of the RMSE become smaller for increasing values of the nonlinear parameter ε which shows that our solution procedure can be used to obtain solutions that follow the numerical integration solutions of the original equations of motion even at larger values of ε. For illustrative purposes, we have plotted in Figure 1 the amplitude-time response curves obtained from (13), and those provided by substituting (14) ${ }_{1}$ into $(13)_{2}$. We have selected the value of $\varepsilon=20$ which provides
a highly nonlinear dynamic system response. Notice from Figure 1 that both solutions are almost the same. In fact, the RMSE values do not exceed 0.1179 , for x_{1}, and 0.0233 , for x_{2}. In Figure 1, the gray solid lines describe the numerical integration solutions of (13), while the blue dashed lines represent the numerical solutions obtained from our derived equivalent nonlinear equations of motion.

Table 2 shows the RMSE values obtained by using the canonical representation form of (13). One can notice from Table 2 that the smallest RMSE values were computed at decreasing values of the nonlinear parameter ε when the equivalent form (11) $)_{1}$ was substituted into $(7)_{2}$ (the fifth and the sixth columns). Also, one can notice that when $\varepsilon=0$, (7) describes the oscillatory behavior of the resulting linear dynamics system; however, this is not the case when we use the equivalent representation form of (13) given by (14) because the terms a_{2} and a_{4} are different from zero. This situation increases the RMSE errors as listed in Table 1. In an attempt to further quantify the accuracy of our proposed

Figure 2: Global error behavior.
procedure, we next introduce the global error estimation based on a technique similar to the ones developed in [1416] in which the system global error, GE, can be determined from the following expression:

$$
\begin{equation*}
\mathrm{GE}=\left(y_{1}(t)-p_{1}(t)\right)+\left(y_{2}(t)-p_{2}(t)\right), \tag{18}
\end{equation*}
$$

where y_{1} and y_{2} represent the values obtained by numerically integrating the equivalent equations of motion and p_{1} and p_{2} are the numerical values computed by using the original system equations of motion. Figure 2 displays the global error curve plotted versus time by considering the numerical integration solutions of both, the resulting equation obtained by substituting $(14)_{1}$ into $(13)_{2}$ and the original equations of motion (13). One can notice from Figure 2, that the global error tends to grow linearly at increasing time values, as predicted by Calvo and Hairer in [14].

To further assess the accuracy of our proposed nonlinearization method, we will next examine a hyperelastic shear suspension system.
2.2. Example 2: Hyperelastic Shear Suspension System. Here the equations of motion of a linear absorber attached to a rigid body that is supported symmetrically by incompressible, homogeneous, and isotropic hyperelastic shear blocks are given as

$$
\left\{\begin{array}{ll}
1 & 0 \tag{19}\\
0 & \beta
\end{array}\right\}\left[\begin{array}{c}
\ddot{\sigma} \\
\ddot{z}
\end{array}\right]+\left\{\begin{array}{cc}
1 & -\alpha_{2}^{2} \\
-\alpha_{2}^{2} & \alpha_{2}^{2}
\end{array}\right\}\left[\begin{array}{l}
\sigma \\
z
\end{array}\right]-\left\{\begin{array}{c}
\varepsilon b_{1} \sigma^{3} \\
0
\end{array}\right\}=0,
$$

with initial conditions given as $\sigma(0)=\sigma_{10}, \dot{\sigma}(0)=0, z(0)=$ z_{10}, and $\dot{z}(0)=0$. Here σ and z denote, respectively, the simple shear deformation of the load and the motion of the linear absorber system, ε describes the nonlinear material response effects, r_{2} is a tuning system parameter, and β, α_{2}, and b_{1} are defined as

$$
\begin{equation*}
\beta=\frac{m}{M}, \quad b_{1}=\alpha_{2}^{2}-1, \quad \alpha_{2}^{2}=\frac{\beta r_{2}^{2}}{\beta r_{2}^{2}+1} . \tag{20}
\end{equation*}
$$

The details of the derivation of the equations of motion given by (19) are provided in [2]. Next, we set $y_{1}=\sigma / \sigma_{10}$ and $y_{2}=$ z / z_{10} and rewrite (12) in its normalized form

$$
\begin{align*}
&\left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\}\left[\begin{array}{l}
\ddot{y}_{1} \\
\ddot{y}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
1 & -\frac{\alpha_{2}^{2} z_{10}}{\sigma_{10}} \\
-\frac{\alpha_{2}^{2} \sigma_{10}}{\left(\beta z_{10}\right)} & \frac{\alpha_{2}^{2}}{\beta}
\end{array}\right\}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \tag{21}\\
&-\left\{\begin{array}{c}
\varepsilon \sigma_{10}^{2} y_{1}^{3} \\
0
\end{array}\right\}=0
\end{align*}
$$

with $y_{1}(0)=1, \dot{y}_{1}(0)=0, y_{2}(0)=1$, and $\dot{y}_{2}(0)=0$. Notice that the canonical representation form of (21) can be obtained by using the transformation (16); this yields exactly (7), where the system parameters are given by the following relations:

$$
\begin{gather*}
\omega_{n 1}^{2}=\frac{1}{2}\left[\left(\frac{\alpha_{2}^{2}}{\beta}+1\right)-\sqrt{\left(\frac{\alpha_{2}^{2}}{\beta}+1\right)^{2}+\frac{4 \alpha_{2}^{2} b_{1}}{\beta}}\right], \\
\omega_{n 2}^{2}=\frac{1}{2}\left[\left(\frac{\alpha_{2}^{2}}{\beta}+1\right)+\sqrt{\left(\frac{\alpha_{2}^{2}}{\beta}+1\right)^{2}+\frac{4 \alpha_{2}^{2} b_{1}}{\beta}}\right], \\
\varphi_{1} \equiv-b_{1} \varepsilon R_{1}^{4} \sigma_{10}^{2}, \quad \varphi_{2} \equiv-3 b_{1} \varepsilon R_{1}^{3} R_{2} \sigma_{10} z_{20} \\
\varphi_{3} \equiv-3 b_{1} \varepsilon R_{1}^{2} R_{2}^{2} z_{20}^{2}, \quad \varphi_{4} \equiv-\frac{b_{1} \varepsilon R_{1} R_{2}^{3} z_{20}^{3}}{\sigma_{10}}, \tag{22}\\
\varphi_{5} \equiv-\frac{b_{1} \varepsilon R_{1}^{3} R_{2} \sigma_{10}^{3}}{z_{20}}, \quad \varphi_{6} \equiv-3 b_{1} \varepsilon R_{1}^{2} R_{2}^{2} \sigma_{10}^{2} \\
\varphi_{7} \equiv-3 b_{1} \varepsilon R_{1} R_{2}^{3} \sigma_{10} z_{20}, \quad \varphi_{8} \equiv-b_{1} \varepsilon R_{2}^{4} z_{20}^{2} \\
f_{1} \equiv \frac{1-\omega_{n 1}^{2}}{\alpha_{2}^{2}}, \quad f_{2} \equiv \frac{1-\omega_{n 2}^{2}}{\alpha_{2}^{2}} \\
R_{1}^{2} \equiv \frac{1}{\left(1+f_{1}^{2} \beta\right)}, \quad R_{2}^{2} \equiv \frac{1}{\left(1+f_{2}^{2} \beta\right)} .
\end{gather*}
$$

Since $(21)_{2}$ is only coupled with y_{1} through the linear term $-\alpha_{2}^{2} \sigma_{10} /\left(\beta z_{10}\right) y_{1}$, we slightly modify our procedure and assume that the equivalent representation form of (21) is given as

$$
\begin{equation*}
\ddot{y}_{1}+a_{1} y_{1}+a_{2} y_{1}^{3}=0 ; \quad \ddot{y}_{2}+a_{3} y_{2}=0 \tag{23}
\end{equation*}
$$

TABLE 3: RMSE values computed from the equivalent representation forms of (21) with $u_{1}=-0.4, u_{2}=0.1, u_{3}=-0.01$, and $u_{4}=-0.315$. Here $b_{11}=1, b_{12}=b_{21}=-\alpha_{2}^{2} \sigma_{10} /\left(\beta z_{10}\right), b_{22}=\alpha_{2}^{2} / \beta$, and $d_{1}=-\varepsilon \sigma_{10}^{2}$.

ε	$\begin{aligned} & \ddot{y}_{1}+a_{1} y_{1}+a_{2} y_{1}^{3}=0, \\ & \ddot{y}_{2}+a_{3} y_{2}=0 . \end{aligned}$		$\begin{aligned} & \ddot{y}_{1}+a_{1} y_{1}+a_{2} y_{1}^{3}=0 \\ & \ddot{y}_{2}+b_{21} y_{1}+b_{22} y_{2}=0 . \end{aligned}$		$\begin{aligned} & \ddot{y}_{2}+a_{3} y_{2}=0 \\ & \ddot{y}_{1}+b_{11} y_{1}+b_{12} y_{2}+d_{1} y_{1}^{3}=0 \end{aligned}$	
	RMSE \qquad	$\begin{gathered} \text { RMSE } \\ y_{2}(x) \\ \hline \end{gathered}$	$\begin{gathered} \text { RMSE } \\ y_{1}(x) \\ \hline \end{gathered}$	RMSE $y_{2}(x)$	RMSE $y_{1}(x)$	RMSE $y_{2}(x)$
0.01	0.9448	1.3409	0.9448	2.3366	1.7724	1.3409
0.25	0.5880	1.2351	0.5880	1.1768	0.7684	1.2351
0.75	0.1609	1.0394	0.1609	0.1774	0.3309	1.0394
1.5	0.2402	0.7685	0.2402	0.2079	0.3157	0.7685
5	0.3637	0.4461	0.3637	0.1376	0.0910	0.4461
20	0.2489	0.3267	0.2489	0.0414	0.0125	0.3267
100	0.1226	0.2995	0.1226	0.0083	0.0011	0.2995

TAbLE 4: RMSE values computed by considering the canonical representation form of (21) with $\nu_{1}=0.85, \nu_{2}=0.45, \nu_{11}=-0.01$, and $v_{22}=0.1$.

	$\ddot{u}_{1}+b_{1} u_{1}+b_{2} u_{1}^{3}=0$,	$\ddot{u}_{1}+b_{1} u_{1}+b_{2} u_{1}^{3}=0$,	$\ddot{u}_{2}+b_{3} u_{2}+b_{4} u_{2}^{3}=0$,	
ε	$\ddot{u}_{2}+b_{3} u_{2}+b_{4} u_{2}^{3}=0$.	$\ddot{u}_{2}+\omega_{n 2}^{2} u_{2}+\varepsilon\left\{\varphi_{5} u_{1}^{3}+\varphi_{6} u_{1}^{2} u_{2}+\varphi_{7} u_{1} u_{2}^{2}+\varphi_{8} u_{2}^{3}\right\}=0$.	$\ddot{u}_{1}+\omega_{n 1}^{2} u_{1}+\varepsilon\left\{\varphi_{1} u_{1}^{3}+\varphi_{2} u_{1}^{2} u_{2}+\varphi_{3} u_{1} u_{2}^{2}+\varphi_{4} u_{2}^{3}\right\}=0$.	
	RMSE	RMSE	RMSE	RMSE
	$u_{1}(x)$	$u_{2}(x)$	$u_{1}(x)$	$u_{2}(x)$
0.01	0.0077	0.0168	0.0066	0.0174
0.25	0.1953	0.3769	0.1325	0.3596
0.75	0.8844	1.2761	0.7365	1.1609
1	1.0156	1.3704	0.9953	1.4230
1.5	0.8727	1.1634	0.9922	1.3683
5	0.9301	1.2149	0.9678	1.4201

where the parameters a_{i}, computed from (4), are given as

$$
\begin{gather*}
a_{1}=-\frac{-32 u_{1} \sigma_{10}+45 \alpha_{2}^{2} u_{2} z_{10}}{32 u_{1} \sigma_{10}} \\
a_{2}=-\frac{-32 b_{1} \varepsilon u_{1}^{3} \sigma_{10}^{3}-35 \alpha_{2}^{2} u_{2} z_{10}}{32 u_{1}^{3} \sigma_{10}} \tag{24}\\
a_{3}=\frac{-\alpha_{2}^{2} u_{11} \sigma_{10}+\alpha_{2}^{2} u_{22} z_{10}}{\beta u_{22} z_{10}}
\end{gather*}
$$

and u_{1}, u_{2}, u_{11}, and u_{22} are the corresponding fitting parameters. The assumption that $(21)_{2}$ can be transformed into a linear equation of the form $(23)_{2}$ is based on the fact that in $(21)_{2}$, there is not $y_{2}(t)$ terms of the cubic type.

Next, if the canonical representation form of (21) is considered, their approximate solutions, that can be obtained from (7), are given by (6). Tables 3 and 4 show the RMSE values computed from the numerical integration solutions of (21) and from the derived equivalent representation forms. Here, we have used as initial conditions the values of $\sigma_{10}(0)=1, \dot{\sigma}(0)=0, z_{10}(0)=-1$, and $\dot{z}(0)=$ 0 , with $\beta=1 / 5$ and $r_{2}=1$. One can notice from Table 3 that the lowest RMSE values are tabulated in the fifth
and the sixth columns at values of $\varepsilon>0.25$. In fact, as the value of ε tends to increase, the RMSE values tend to decrease. Figure 3 shows the amplitude-time response curves computed by substituting (23) ${ }_{1}$ into $(21)_{2}$. In this case, we have considered that the nonlinear parameter ε has the value of 50 . Notice that the numerical integration solutions of (21) are almost indistinguishable from those computed by using the equivalent transformation forms. Here the gray solid lines represent the numerical integration solutions of (21), while the blue dashed lines described the numerical integration solutions obtained from the equivalent equations of motion. Therefore, we can conclude that our equivalent transformation approach provides accurate solutions to (21) if the form $(23)_{1}$ is used to derive the approximate solution of y_{2}.

Also notice from Table 4 that the smallest RMSE values, computed when the canonical form (7) of (19) is used to derive its equivalent representation form, are on $0<\varepsilon \leq 0.25$, that is, when the equivalent form $(11)_{1}$ is substituted into $(7)_{2}$. Therefore, if one wants to have solutions that describe well the numerical integration solutions of (21), we need to use their canonical representation form at values of ε on the interval $0<\varepsilon \leq 0.25$. For larger nonlinear system parameter values, good predictions of the original equation of motion are

FIGURE 3: Amplitude-time response curves computed from the numerical integration solutions of (21) and those provided by substituting $(23)_{1}$ into $(21)_{2}$. The parameter values used to obtain these plots were $\beta=1 / 5$ and $r_{2}=1, \varepsilon=50$, with $\sigma_{10}(0)=1, \dot{\sigma}(0)=0, z_{10}(0)=-1$, $\dot{z}(0)=0$, and $u_{1}=-0.4, u_{2}=0.1, u_{3}=-0.01$, and $u_{4}=-0.315$. Here, the gray solid lines describe the numerical integration solutions of (21), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion. In this case, the computed RMSE values were 0.1006 , for y_{1}, and 0.0102 , for y_{2}.
obtained when the equivalent form $(23)_{1}$ is substituted into $(21)_{2}$.
2.3. Example 3: A System with Three Nonlinear Springs. We now derive the equivalent representation form of two-mass system with three nonlinear springs introduced in [17] and whose differential equation of motion is given by

$$
\begin{gather*}
\left\{\begin{array}{cc}
m & 0 \\
0 & m
\end{array}\right\}\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{1}+k_{2}
\end{array}\right\}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
+\left\{\begin{array}{l}
k_{3}\left(x_{1}-x_{2}\right)^{3}+\varepsilon k_{4} x_{1}^{3} \\
k_{3}\left(x_{2}-x_{1}\right)^{3}+\varepsilon k_{4} x_{2}^{3}
\end{array}\right\}=0 \tag{25}
\end{gather*}
$$

with initial conditions $x_{1}(0)=x_{10}, \dot{x}_{1}(0)=0, x_{2}(0)=x_{20}$, and $\dot{x}_{2}(0)=0$. If we introduce the transformations $x_{1}=\left(y_{1}+\right.$ $\left.y_{0}\right) / 2$ and $x_{2}=\left(y_{0}-y_{1}\right) / 2$, thus (25) can be written as

$$
\begin{align*}
\left\{\begin{array}{l}
\ddot{y}_{0} \\
\ddot{y}_{1}
\end{array}\right\} & +\left\{\begin{array}{cc}
\omega_{n 1}^{2} & 0 \\
0 & \omega_{n 2}^{2}
\end{array}\right\}\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right] \\
& +\left\{\begin{array}{c}
\frac{\varepsilon k_{4}}{(4 m) y_{0}^{3}}+\frac{\varepsilon k_{4}}{(4 m) y_{0} y_{1}^{2}} \\
\frac{\varepsilon k_{4}}{(4 m) y_{0}^{2} y_{1}}+\left(\frac{\beta+\varepsilon k_{4}}{(4 m)}\right) y_{1}^{3}
\end{array}\right\}=0, \tag{26}
\end{align*}
$$

with initial conditions given as $y_{0}(0)=y_{00}, \dot{y}_{0}(0)=\dot{y}_{00}$, $y_{1}(0)=y_{10}$, and $\dot{y}_{1}(0)=\dot{y}_{10}$. Notice that (26) has the same form of (7) with system parameters given as

$$
\begin{gathered}
\omega_{n 1}^{2}=\frac{k_{1}}{m}, \quad \omega_{n 2}^{2}=\frac{k_{1}+2 k_{2}}{m}, \quad \varphi_{1}=\varphi_{3}=\frac{\varepsilon k_{4}}{(4 m)}, \\
\varphi_{2}=\varphi_{4}=0, \quad \varphi_{6}=\frac{\varepsilon k_{4}}{(4 m)}, \\
\varphi_{8}=\beta+\frac{\varepsilon k_{4}}{4 m}, \quad \varphi_{5}=\varphi_{7}=0, \quad \beta=\frac{2 k_{3}}{m} .
\end{gathered}
$$

Therefore and in accordance with our transformation approach, (26) are transformed into (11) in which

$$
\begin{array}{ll}
b_{1}=\frac{\varphi_{3} v_{2}^{2}+3 \omega_{n 1}^{2}}{3} ; & b_{2}=\varphi_{1} \\
b_{3}=\frac{\varphi_{6} v_{11}^{2}+3 \omega_{n 2}^{2}}{3} ; & b_{4}=\varphi_{8} \tag{28}
\end{array}
$$

To assess the accuracy of the equivalent equations of motion when compared to the original ones (25), let us consider the parameter values of $k_{1}=k_{2}=k_{3}=k_{4}=1, m=1$, and $\varepsilon=-2.9$ and initial conditions $y_{0}(0)=0.5, \dot{y}_{0}(0)=0, y_{1}(0)=$ 1.5 , and $\dot{y}_{1}(0)=0$. Figure 4 shows the amplitude-time response curves obtained by numerical integration of the corresponding equations of motion by using the Runge-Kutta method. One can notice from Figure 4 that the amplitudetime response curves obtained from (11) provide periodic solutions that cannot capture the high frequency components exhibited by the numerical amplitude-time curves plotted from (25). However, if we substitute the exact solution of (11) 1_{1} into $(7)_{2}$ and plot its corresponding numerical integration solution, the high frequency components are captured as illustrated in Figure 5. Therefore, we can conclude that if during the dynamic analysis processes the motion of the coordinate y_{1} exhibits harmonic behavior at lower angular frequency values, then the dynamics response behavior of this coordinate solution can be used to obtain the high frequency components exhibited by the remaining coordinate. In fact and for the nonlinear parameter value of $\varepsilon=-2.9$, the RMSE values, for the time interval shown in Figure 5, do not exceed 0.3159 and 0.1792 for y_{0} and y_{1}, respectively.

We next increase the system nonlinearity at the value of $\varepsilon=-3.1$ and plot the corresponding amplitude versus time response curves. Notice from Figure 6 that when $t \geq 4$, the numerical integration solution of the equations of motion (25) obtained by using the Runge-Kutta numerical method fails in spite of using the several solver options provided by

Figure 4: Amplitude-time response curves computed from the numerical integration solutions of (26) and those provided by (11). The parameter values used to obtain these plots were $m=1, k_{1}=k_{2}=k_{3}=k_{4}=1$, and $\varepsilon=-2.9$, with $y_{0}(0)=0.5, \dot{y}_{0}(0)=0, y_{1}(0)=1, \dot{y}_{1}(0)=0$, $\nu_{11}=1.1935$, and $\nu_{2}=1.1935$. Here, the gray solid lines describe the numerical integration solutions of (26), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion. In this case, the computed RMSE values were 0.3159 , for y_{0}, and 0.0358 , for y_{1}.

Figure 5: Amplitude-time response curves computed from the numerical integration solutions of (26) and those provided by substituting $(11)_{1}$ into $(7)_{2}$. The parameter values used to obtain these plots were $m=1, k_{1}=k_{2}=k_{3}=k_{4}=1$, and $\varepsilon=-2.9$, with $y_{0}(0)=0.5, \dot{y}_{0}(0)=0$, $y_{1}(0)=1, \dot{y}_{1}(0)=0, v_{11}=1.1935$, and $v_{2}=1.1935$. Here, the gray solid lines describe the numerical integration solutions of (26), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion. In this case, the computed RMSE values were 0.3159 , for y_{0}, and 0.1792 , for y_{1}.

Mathematica 9.0 or the MATLAB V.2012a computer packages. In an attempt to capture the dynamics system response with this nonlinear value, we have numerically solved (25) by using the Enhanced Multistage homotopy perturbation method (EMHPM) introduced in [18]. This technique also fails at values of $t \geq 4$, as illustrated in Figure 6 by the black and the purple dots. However, the predicted amplitude versus time response curves computed by substituting (11) ${ }_{2}$ into $(7)_{1}$ exhibits periodic behavior for the time interval shown in Figure 6. We can conclude that this transformation approach can help to obtain the numerical integration solutions of nonlinear dynamics systems in which the numerical integrations of the original equations of motion could fail because of the convergence of the corresponding numerical method.
2.4. Example 4: Finite Extensibility Nonlinear Elastic Absorber. We now focus our attention on finding the approximate solution of a finite extensibility nonlinear elastic (FENE) absorber attached to a nonlinear primary system [19], whose equations of motions are of the form

$$
\left\{\begin{array}{cc}
m_{1} & 0 \tag{29}\\
0 & m_{2}
\end{array}\right\}\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
k_{1} & 0 \\
0 & 0
\end{array}\right\}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left\{\begin{array}{l}
F_{1}\left(x_{1}, x_{2}\right) \\
F_{2}\left(x_{1}, x_{2}\right)
\end{array}\right\}=0,
$$

and the nonlinear restoring forces are given by

$$
\begin{gather*}
F_{1}\left(x_{1}, x_{2}\right)=\varepsilon x_{1}^{3}-k_{f} \frac{\left(x_{2}-x_{1}\right)}{1-\left(\left(x_{2}-x_{1}\right) / x_{0}\right)^{2}} \\
F_{2}\left(x_{1}, x_{2}\right)=k_{f} \frac{\left(x_{2}-x_{1}\right)}{1-\left(\left(x_{2}-x_{1}\right) / x_{0}\right)^{2}} \tag{30}
\end{gather*}
$$

FIgure 6: Amplitude-time response curves computed from the numerical integration solutions of (26) and those provided by substituting $(11)_{1}$ into $(7)_{2}$. The parameter values used to obtain these plots were $m=1, k_{1}=k_{2}=k_{3}=k_{4}=1$, and $\varepsilon=-3.1$, with $y_{0}(0)=0.5, \dot{y}_{0}(0)=0$, $y_{1}(0)=1, \dot{y}_{1}(0)=0, v_{11}=1.1935$, and $\nu_{2}=1.1935$. Here, the gray solid lines and the black and the purple dots describe the numerical integration solutions of (26) by using, respectively, the Runge-Kutta and the EMHPM methods, while the blue dashed lines representing the numerical solutions obtained from the derived equivalent nonlinear equations of motion.
with initial conditions $x_{1}(0)=x_{10}, \dot{x}_{1}(0)=0, x_{2}(0)=$ x_{20}, and $\dot{x}_{2}(0)=0$. Here, m_{1} is the mass of the primary system, m_{2} represents the mass of the FENO system, k_{1} and ε are, respectively, the linear and nonlinear stiffness parameters of the main system, and k_{f} and x_{0} represent the coupling stiffness and the maximum possible extension of the FENO system, respectively. By introducing the transformations $y_{1}=$ x_{1} / x_{10} and $y_{2}=x_{2} / x_{20}$ into (29), we get that

$$
\begin{align*}
\left\{\begin{array}{l}
\ddot{y}_{1} \\
\ddot{y}_{2}
\end{array}\right\} & +\left\{\begin{array}{cc}
\omega_{n 1}^{2} & 0 \\
0 & 0
\end{array}\right\}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& +\left\{\begin{array}{c}
\varphi_{1} x_{1}^{3}-\varphi_{2} \frac{A\left(y_{2}-y_{1} x_{10} / x_{20}\right)}{1-A^{2}\left(y_{2}-y_{1} x_{10} / x_{20}\right)^{2}} \\
\varphi_{3} \frac{A\left(y_{2}-y_{1} x_{10} / x_{20}\right)}{1-A^{2}\left(y_{2}-y_{1} x_{10} / x_{20}\right)^{2}}
\end{array}\right\}=0 \tag{31}
\end{align*}
$$

with initial conditions given as $y_{1}(0)=1, \dot{y}_{1}(0)=0$, $y_{2}(0)=1$, and $\dot{y}_{2}(0)=0$, and $A=x_{20} / x_{0}, \varphi_{1}=\varepsilon x_{10}^{2} / m_{1}$, $\varphi_{2}=k_{f} x_{0} /\left(m_{1} x_{10} x_{0}\right)$, and $\varphi_{3}=k_{f} x_{0} /\left(m_{2} x_{20}\right)$. We next use the Chebyshev polynomials of the first kind $[9,11]$ to derive the cubic-like representation form of the nonlinear rational restoring force of (31). This procedure yields

$$
\begin{align*}
F(y) & =\frac{A\left(y_{2}-y_{1} x_{10} / x_{20}\right)}{1-A^{2}\left(y_{2}-y_{1} x_{10} / x_{20}\right)^{2}}=\frac{A y}{1-A^{2} y^{2}} \tag{32}\\
& =\left(b_{1}-3 b_{3}\right) y+4 b_{3} y^{3}
\end{align*}
$$

where $y=\left(y_{2}-y_{1} x_{10} / x_{20}\right)$, and by definition

$$
\begin{equation*}
b_{2 n+1}(A)=\frac{2}{\pi} \int_{-1}^{1}\left(1-y^{2}\right)^{-1 / 2} F(y) T_{2 n+1}(y) d y \tag{33}
\end{equation*}
$$

and $T_{2 n-1}$ are the Chebyshev polynomials of the first kind defined as

$$
\begin{align*}
T_{2 n+1}(x) & =\cos \left[(2 n+1) \cos ^{-1}(x)\right] \tag{34}\\
& x \in[-1,1], \quad n=0,1,2, \ldots
\end{align*}
$$

By using (33), we obtain that

$$
\begin{gather*}
b_{1}=\frac{2}{A}\left(\frac{1}{\sqrt{1-A^{2}}}-1\right) \\
b_{3}=\frac{2}{A^{3}}\left(\frac{4}{\sqrt{1-A^{2}}}+A^{2}\left(1-\frac{3}{\sqrt{1-A^{2}}}\right)-4\right) \tag{35}
\end{gather*}
$$

Thus, the FENO nonlinear restoring force $F(y)$ can be written in equivalent form as

$$
\begin{equation*}
F(y) \equiv \alpha y+\beta y^{3} \tag{36}
\end{equation*}
$$

in which

$$
\begin{align*}
& \alpha=\frac{1}{A}\left\{2\left(\frac{1}{\sqrt{1-A^{2}}}-1\right)\right. \\
&\left.-\frac{6}{A^{2}}\left(\frac{4}{\sqrt{1-A^{2}}}+A^{2}\left(1-\frac{3}{\sqrt{1-A^{2}}}\right)-4\right)\right\}, \\
& \beta= \frac{8}{A^{3}}\left\{\frac{4}{\sqrt{1-A^{2}}}+A^{2}\left(1-\frac{3}{\sqrt{1-A^{2}}}\right)-4\right\} . \tag{37}
\end{align*}
$$

Based on (37), it is clear that the equivalent representation form (36) of the restoring force (32) holds if and only if $x_{20}<$ x_{0}. Thus, (31) can be written as

$$
\begin{align*}
& \left\{\begin{array}{l}
\ddot{y}_{1} \\
\ddot{y}_{2}
\end{array}\right\}+\left\{\begin{array}{cc}
\omega_{n 1}^{2} & 0 \\
0 & 0
\end{array}\right\}\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
& +\left\{\begin{array}{c}
\varphi_{1} x_{1}^{3}-\varphi_{2}\left\{\alpha\left(y_{2}-\frac{y_{1} x_{10}}{x_{20}}\right)+\beta\left(y_{2}-\frac{y_{1} x_{10}}{x_{20}}\right)^{3}\right\} \\
\varphi_{3}\left\{\alpha\left(y_{2}-\frac{y_{1} x_{10}}{x_{20}}\right)+\beta\left(y_{2}-\frac{y_{1} x_{10}}{x_{20}}\right)^{3}\right\}
\end{array}\right\}=0 . \tag{38}
\end{align*}
$$

We next apply the aforementioned nonlinear transformation approach to (38), to obtain that

$$
\begin{equation*}
\ddot{y}_{1}+a_{1} y_{1}+a_{2} y_{1}^{3}=0 ; \quad \ddot{y}_{2}+a_{3} y_{2}+a_{4} y_{2}^{3}=0 \tag{39}
\end{equation*}
$$

where the a_{i} are given as

$$
\begin{align*}
\begin{aligned}
a_{1}= & \omega_{n 1}^{2}+\varphi_{2}\left(2 \alpha x_{20}\left(32 x_{10} u_{1}-45 x_{20} u_{2}\right)\right. \\
& +\beta \sigma_{2}\left\{64 x_{10} x_{20} u_{1} u_{2}-30 x_{10}^{2} u_{1}^{2}\right. \\
a_{2}= & \varphi_{1}+ \\
& \left.\left.+45 \varphi_{20}^{2} u_{2}^{2}\right\}\right) \frac{1}{64 x_{20}^{2} u_{1}}, \\
& \times\left(70 \alpha x_{20}^{3} u_{2}\right. \\
& \left.+\beta\left(64 x_{10}^{3} u_{1}^{3}-70 x_{10}^{2} x_{20} u_{1}^{2} u_{2}+35 x_{20}^{3} u_{2}^{3}\right)\right) \\
& \times \frac{1}{64 x_{20}^{3} u_{1}^{3}}, \\
a_{3}= & \frac{\varphi_{3}}{64 x_{20}^{3} u_{22}} \\
& \times\left(\alpha\left(-90 x_{10} x_{20} u_{11}+64 x_{20}^{3} u_{22}\right)+\beta x_{10} u_{11}\right. \\
& \left.\times\left(-45 x_{10}^{2} u_{11}^{2}+64 x_{10} x_{20} u_{11} u_{22}-30 x_{20}^{2} u_{22}^{2}\right)\right), \\
a_{4}= & \frac{\varphi_{3}}{64} \\
& \times\left(64 \beta+\frac{35\left(2 \alpha x_{10} x_{20} u_{11}+\beta x_{10}^{3} u_{11}^{3}\right)}{x_{20}^{3} u_{22}^{3}}\right. \\
& \left.\quad-\frac{70 \beta x_{10} u_{11}}{x_{20} u_{22}}\right) .
\end{aligned}
\end{align*}
$$

To assess the degree of accuracy attaining by (39), let us consider the parameter values of $m_{1}=1, m_{2}=1 / 2, k_{1}=1$, $k_{f}=1, x_{0}=1$, and $\varepsilon=1$, with $x_{0}(0)=1 / 2, \dot{x}_{0}(0)=0$, $x_{1}(0)=0.99$, and $\dot{x}_{1}(0)=0$. Figure 7 shows the amplitudetime response curves of (31) compared to those obtained by substituting (39) into (38) $)_{2}$. Here, the computed parameter
values are $\alpha=-15.4771, \beta=37.0369, a_{1}=0.3305, a_{2}=$ $0.5512, a_{3}=-107.549$, and $a_{4}=96.7734$, with $u_{1}=-1.991$, $u_{2}=-1.115, u_{11}=-0.7$, and $u_{22}=-4.6$. In this case, the computed RMSE values for y_{1} and y_{2} were, respectively, 0.1965 and 0.2443 . Table 5 shows the RMSE computed at different values of x_{20}. Notice that when x_{20} tends to x_{0}, the RMSE values tend in general, to decrease, while the global error exhibits a linear increasing behavior, as illustrated in Figure 8.
2.5. Example 5: A Two-Degree-of-Freedom System with Irrational Restoring Force. As a final example, let us consider the system shown in Figure 9 having two masses, m_{1} and m_{2} which are connected by four elastic springs of stiffness k_{1} and k_{2} having an undeformed length, l_{0}. Furthermore, the element with mass m_{1} is moving on a smooth horizontal bearing surface whose motion is restricted by an elastic linear spring of stiffness k_{3}. By using Newton second law, it is easy to show that the equations of motion are

$$
\begin{align*}
& \left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\}\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
\frac{k_{3}}{m_{1}} & 0 \\
0 & 0
\end{array}\right\}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& +\left\{\begin{array}{cc}
-\frac{2 k_{1}}{m_{1}}+B & 0 \\
0 & \frac{2 k_{1}}{m_{2}}+B_{1}
\end{array}\right\}\left[\begin{array}{l}
\left(x_{2}-x_{1}\right) \\
\left(x_{2}-x_{1}\right)
\end{array}\right]+\left\{\begin{array}{l}
F_{1}\left(x_{1}, x_{2}\right) \\
F_{2}\left(x_{1}, x_{2}\right)
\end{array}\right\}=0 \tag{41}
\end{align*}
$$

where the irrational restoring forces are given by

$$
\begin{align*}
& F_{1}\left(x_{1}, x_{2}\right)=\frac{C\left(x_{2}-x_{1}\right)}{\sqrt{1+A^{2}\left(x_{2}-x_{1}\right)^{2}}} \tag{42}\\
& F_{2}\left(x_{1}, x_{2}\right)=\frac{C_{1}\left(x_{2}-x_{1}\right)}{\sqrt{1+A^{2}\left(x_{2}-x_{1}\right)^{2}}}
\end{align*}
$$

Here $B=-2 k_{2} / m_{1}, B_{1}=2 k_{2} / m_{2}, C=2 k_{2} / m_{1}$, and $C_{1}=$ $-2 k_{2} / m_{2}$. The system (41) can be cast in different form by setting $x_{1}=\left(w_{1}-w_{2}\right) / 2$ and $x_{2}=\left(w_{2}+w_{1}\right) / 2$, and after some algebraic manipulations, we get that

$$
\begin{gather*}
\left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\}\left[\begin{array}{l}
\ddot{w}_{1} \\
\ddot{w}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
\frac{k_{3}}{\left(2 m_{1}\right)} & k_{11} \\
k_{22} & -\frac{k_{3}}{\left(2 m_{1}\right)}
\end{array}\right\}\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \\
+\left\{\begin{array}{c}
\frac{w_{2}\left(C+C_{1}\right)}{2 \sqrt{1+A^{2} w_{2}^{2}}} \\
-\frac{w_{2}\left(C_{1}-C\right)}{2 \sqrt{1+A^{2} w_{2}^{2}}}
\end{array}\right\}=0, \tag{43}
\end{gather*}
$$

FIGURE 7: Amplitude-time response curves computed from the numerical integration solutions of (31) and those provided by substituting $(39)_{1}$ into $(38)_{2}$. The parameter values used to obtain these plots were $m_{1}=1, m_{2}=1 / 2, k_{1}=1, k_{f}=1, x_{0}=1$, and $\varepsilon=1$, with $x_{0}(0)=1 / 2$, $\dot{x}_{0}(0)=0, x_{1}(0)=0.99, \dot{x}_{1}(0)=0, u_{1}=-1.991, u_{2}=-1.115, u_{11}=-0.7$, and $u_{22}=-4.6$. Here, the gray solid lines describe the numerical integration solutions of (31), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion.

Figure 8: Global error behavior plotted versus time.
with initial conditions $w_{1}(0)=w_{10}, \dot{w}_{1}(0)=0, w_{2}(0)=w_{20}$, and $\dot{w}_{2}(0)=0$. If we set $z_{1}=w_{1} / w_{10}$ and $z_{2}=w_{2} / w_{20}$, then (43) becomes

$$
\begin{aligned}
&\left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\}\left[\begin{array}{l}
\ddot{z}_{1} \\
\ddot{z}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
\frac{k_{3}}{\left(2 m_{1}\right)} & \frac{k_{11} w_{20}}{w_{10}} \\
k_{22} & -\frac{k_{3} w_{10}}{\left(2 m_{1} w_{20}\right)}
\end{array}\right\}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \\
&+\left\{\begin{array}{l}
\frac{z_{1}\left(C+C_{1}\right) w_{20}}{w_{10} \sqrt{1+A^{2} w_{2}^{2} w_{20}^{2}}} \\
-\frac{z_{1}\left(C_{1}-C\right) w_{20}}{w_{10} \sqrt{1+A^{2} w_{2}^{2} w_{20}^{2}}}
\end{array}\right\}=0
\end{aligned}
$$

Figure 9: Schematic of a two-degree-of-freedom system with irrational restoring force.
where

$$
\begin{align*}
& k_{11}=\frac{1}{2}\left(-\frac{k_{3} / 2+2 k_{1}}{m_{1}}+\frac{2 k_{1}}{m_{2}}+B+B_{1}\right) \\
& k_{22}=\frac{1}{2}\left(\frac{k_{3} / 2+2 k_{1}}{m_{1}}+\frac{2 k_{1}}{m_{2}}+B_{1}-B\right) \tag{45}
\end{align*}
$$

with $z_{1}(0)=1, \dot{z}_{1}(0)=0, \dot{z}_{2}(0)=1$, and $z_{2}(0)=0$. By using the Chebyshev polynomials of the first kind, the cubic-like representation form of the irrational restoring force becomes

$$
\begin{equation*}
\frac{z_{1}}{\sqrt{1+A_{1}^{2} w_{2}^{2} w_{20}^{2}}} \equiv \alpha z_{1}+\beta z_{1}^{3} \tag{46}
\end{equation*}
$$

where

$$
\begin{align*}
\begin{aligned}
\alpha= & \frac{4}{\pi A^{2}}\{
\end{aligned} & E\left(-A^{2}\right)-K\left(-A^{2}\right)-\frac{1}{A^{2}} \\
& \left.\times\left(\left(8+5 A^{2}\right) K\left(-A^{2}\right)-\left(8+A^{2}\right) E\left(-A^{2}\right)\right)\right\}, \\
\beta= & \frac{16}{3 \pi A^{4}} \\
& \times\left\{\left(8+5 A^{2}\right) K\left(-A^{2}\right)-\left(8+A^{2}\right) E\left(-A^{2}\right)\right\} . \tag{47}
\end{align*}
$$

Here $K\left(-A^{2}\right)$ and $E\left(-A^{2}\right)$ are the complete elliptic integral of the first and second kind for the modulus A, respectively. Thus, (44) can be rewritten as

$$
\begin{align*}
& \left\{\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right\}\left[\begin{array}{l}
\ddot{z}_{1} \\
\ddot{z}_{2}
\end{array}\right]+\left\{\begin{array}{cc}
\frac{k_{3}}{\left(2 m_{1}\right)} & \frac{k_{11} w_{20}}{w_{10}} \\
k_{22} & -\frac{k_{3} w_{10}}{\left(2 m_{1} w_{20}\right)}
\end{array}\right\}\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right] \tag{48}\\
& \quad+\left\{\begin{array}{c}
\frac{\left(C+C_{1}\right) w_{20}\left\{\alpha z_{1}+\beta z_{1}^{3}\right\}}{w_{10}} \\
-\left(C_{1}-C\right)\left\{\alpha z_{1}+\beta z_{1}^{3}\right\} w_{20} / w_{10}
\end{array}\right\}=0 .
\end{align*}
$$

Application of the proposed nonlinear transformation approach to (48) yields

$$
\begin{equation*}
\ddot{z}_{1}+a_{1} z_{1}+a_{2} z_{1}^{3}=0 ; \quad \ddot{z}_{2}+a_{3} z_{2}+a_{4} z_{2}^{3}=0 \tag{49}
\end{equation*}
$$

where the a_{i} are given as

$$
\begin{align*}
& \begin{array}{r}
a_{1}=\frac{1}{64 m_{1} w_{10} u_{1}}\left(32 k_{3} w_{10} u_{1}+90 \alpha m_{1} w_{10} u_{2}\right. \\
\\
\left.+90 k_{11} m_{1} w_{20} u_{2}+45 \beta m_{1} w_{10} u_{2}^{3}\right), \\
a_{2}=
\end{array} \\
& a_{3}=-\frac{35}{64 m_{1} w_{10} u_{1}^{3}}\left(2 \alpha w_{10} u_{2}+2 k_{11} w_{20} u_{2}+\beta w_{10} u_{2}^{3}\right), \\
& a_{4}=-
\end{align*}
$$

Figure 10 illustrates the numerical predictions obtained by substituting (49) $)_{1}$ into $(48)_{2}$, as well as those computed from the numerical integration solution of (48). In Example 5, we have used the following system parameter values: $m_{1}=$ $1, m_{2}=1 / 2, k_{1}=1, k_{2}=1, k_{3}=1$, and $A=1$, with initial conditions given as $w_{1}(0)=4, \dot{w}_{1}(0)=0$, $w_{2}(0)=2$, and $\dot{w}_{2}(0)=0$. The predicted parameter values are $\alpha=4.7082, \beta=-2.1374, a_{1}=-0.5442, a_{2}=1.7564$, $a_{3}=8.5590$, and $a_{4}=0.1652$, with $u_{1}=-0.68, u_{2}=0.5$, $u_{11}=-0.3$, and $u_{22}=0.55$. Notice from Figure 10 that our numerical integration predictions computed from (49) $)_{1}$ and

Table 5: RMSE values computed by using the equivalent representation form of (31) with $u_{1}=-1.991, u_{2}=-1.115, u_{11}=-0.7$, and $u_{22}=-4.6$.

x_{20}	RMSE $y_{1}(x)$	RMSE $y_{2}(x)$
0.75	0.9981	1.1200
0.80	1.0245	1.0467
0.85	1.0330	0.9560
0.90	0.5851	0.5029
0.95	1.0122	0.8019
0.99	0.1965	0.2443

$(48)_{2}$ follow the amplitude-time response curves computed from (48) with RMSE values of 0.2095 for z_{1} and 0.1318 for z_{2}, respectively. The system global error as illustrated in Figure 11 tends to linearly grow as time increases. Of course, other values of the system initial conditions can be used to study the quantitative and qualitative system dynamics response; however, when the system parameter changes, it could be necessary to adjust the values of u_{i} and $u_{i i}$ in order to satisfy (8).

3. Conclusions

We have introduced a nonlinear transformation approach to determine the equivalent representation form of two degree-of-freedom oscillatory systems with nonlinear restoring forces. It has been shown that this nonlinear transformation approach decoupled the system equation into two Duffing equations. It has been found that the numerical integration of the equivalent equations of motion, of the five dynamic systems examined here, follows well the computed numerical values obtained from the original equations of motion. Furthermore, it has been shown that by substituting the decouple equation related to the $x_{1}\left(y_{1}\right)$ coordinate system into the original equation of motion described by $x_{2}\left(y_{2}\right)$, it provides the lower RMSE values. However, when the canonical representation form of the original equations of motion is used to decouple the corresponding equations, the smallest RMSE values were found at small values of the nonlinear parameter ε.

We also have found in Example 3 that our equivalent representation form can capture high frequency system components if the exact solution of the cubic-like representation form of the coordinate y_{1} is used to find the dynamics response of the y_{0} coordinate. Besides, the corresponding equivalent equations of motion can be numerically integrated at the value of $\varepsilon=-3.1$ while the numerical integration solution of the original equations of motion (25), by using the Runge-Kutta, fails in spite of using the several solver options provided by Mathematica 9.0 or the MATLAB V.2012a computer packages. We next applied the EMHPM to find the numerical solution of (25) but it was found that this technique provides numerical results that diverge when $t \geq 4$. However, the numerical integration of our equivalent representation form provides solutions that describe the system dynamics periodic behavior.

Figure 10: Amplitude-time response curves computed from the numerical integration solutions of (48) and those provided by substituting $(49)_{1}$ into $(48)_{2}$. The parameter values used to obtain these plots were $m_{1}=1, m_{2}=1 / 2, k_{1}=1, k_{2}=1, k_{3}=1, A=1, w_{1}(0)=4$, $\dot{w}_{1}(0)=0, w_{2}(0)=2, \dot{w}_{2}(0)=0, \alpha=4.7082, \beta=-2.1374, a_{1}=-0.5442, a_{2}=1.7564, a_{3}=8.5590$, and $a_{4}=0.1652$, with $u_{1}=-0.68$, $u_{2}=0.5, u_{11}=-0.3$, and $u_{22}=0.55$. Here, the gray solid lines describe the numerical integration solutions of (31), while the blue dashed lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of motion.

Figure 11

In the case of Examples 4 and 5, we believe that the RMSE and the global error magnitudes are mainly due to two factors: (a) the Chebyshev polynomial representation of the system restoring forces and (b) the equivalent representation form of the original equations of motion that are based on cubic-like Duffing's equations. These two factors affect the accuracy achieved during the solution process; however, the quantitative and qualitative system response are captured with good degree of accuracy.

Therefore, it can be concluded, in accordance with some of the systems studied here, that if one wants to have the smallest RMSE values when using the proposed nonlinear transformation approach, the canonical representation form has to be used for weak nonlinear system; however, for larger values of ε, the accurate results are obtained when the original equations of motion were decoupled. Based on the numerical simulation results, it is clear that our method is a promising technique that could provide equivalent representation forms of dynamic systems with two or more degrees of freedom that
can follow the numerical integration solutions of the original equations of motion, at larger nonlinear parameter values.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was funded by Tecnológico de Monterrey-Campus Monterrey, through the Research Chair in Nanomaterials for Medical Devices and the Research Chair in Intelligent Machines. Additional support was provided from the European Commission Project, IREBID (FP7-PEOPLE-2009-IRSES-247476), and from Consejo Nacional de Ciencia y Tecnología (Conacyt), México.

References

[1] A. Elías-Zúñiga and O. Martínez-Romero, "Accurate solutions of conservative nonlinear oscillators by the enhanced cubication method," Mathematical Problems in Engineering, vol. 2013, Article ID 842423, 9 pages, 2013.
[2] A. Elías-Zúñiga and O. Martínez-Romero, "Investigation of the equivalent representation form of damped strongly nonlinear oscillators by a nonlinear transformation approach," Journal of Applied Mathematics, vol. 2013, Article ID 245092, 7 pages, 2013.
[3] R. Bhattacharyya, P. Jain, and A. Nair, "Normal mode localization for a two degrees-of-freedom system with quadratic and cubic non-linearities," Journal of Sound and Vibration, vol. 249, no. 5, pp. 909-919, 2002.
[4] C. Touzé, O. Thomas, and A. Chaigne, "Hardening/softening behaviour in non-linear oscillations of structural systems using non-linear normal modes," Journal of Sound and Vibration, vol. 273, no. 1-2, pp. 77-101, 2004.
[5] N. A. Alexander and F. Schilder, "Exploring the performance of a nonlinear tuned mass damper," Journal of Sound and Vibration, vol. 319, no. 1-2, pp. 445-462, 2009.
[6] T. Pirbodaghi and S. Hoseini, "Nonlinear free vibration of a symmetrically conservative two-mass system with cubic nonlinearity," Journal of Computational and Nonlinear Dynamics, vol. 5, no. 1, Article ID 011006, 6 pages, 2010.
[7] J. Cai, X. Wu, and Y. P. Li, "An equivalent nonlinearization method for strongly nonlinear oscillations," Mechanics Research Communications, vol. 32, no. 5, pp. 553-560, 2005.
[8] A. F. Vakakis and R. H. Rand, "Normal modes and global dynamics of a two-degree-of-freedom non-linear system-II. High energies," International Journal of Non-Linear Mechanics, vol. 27, no. 5, pp. 875-888, 1992.
[9] A. Beléndez, M. L. Alvarez, E. Fernández, and I. Pascual, "Cubication of conservative nonlinear oscillators," European Journal of Physics, vol. 30, pp. 973-981, 2009.
[10] A. Beléndez, D. I. Méndez, E. Fernández, S. Marini, and I. Pascual, "An explicit approximate solution to the Duffingharmonic oscillator by a cubication method," Physics Letters A, vol. 373, no. 32, pp. 2805-2809, 2009.
[11] A. Beléndez, G. Bernabeu, J. Francés, D. I. Méndez, and S. Marini, "An accurate closed-form approximate solution for the quintic Duffing oscillator equation," Mathematical and Computer Modelling, vol. 52, no. 3-4, pp. 637-641, 2010.
[12] L. Meirovitch, Elements of Vibration Analysis, McGraw-Hill, New York, NY, USA, 1986.
[13] A. Elías-Zúñiga, "On the elliptic balance method," Mathematics and Mechanics of Solids, vol. 8, no. 3, pp. 263-279, 2003.
[14] M. P. Calvo and E. Hairer, "Accurate long-term integration of dynamical systems," Applied Numerical Mathematics, vol. 18, no. 1-3, pp. 95-105, 1995.
[15] M. Calvo, S. González-Pinto, and J. I. Montijano, "Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes," Journal of Computational and Applied Mathematics, vol. 218, no. 2, pp. 329-341, 2008.
[16] R. Weiner and G. Yu. Kulikov, "Local and global error estimation and control within explicit two-step peer triples," Journal of Computational and Applied Mathematics, vol. 262, pp. 261-270, 2013.
[17] L. Cveticanin, "Vibrations of a coupled two-degree-of-freedom system," Journal of Sound and Vibration, vol. 247, no. 2, pp. 279292, 2001.
[18] D. Olvera, A. Elías-Zúñiga, H. Martínez-Alfaro, L. N. López de Lacalle, C. A. Rodríguez, and F. J. Campa, "Determination of the stability lobes in milling operations based on homotopy and simulated annealing techniques," Mechatronics, vol. 24, no. 3, pp. 177-185, 2014.
[19] M. Febbo and S. P. Machado, "Nonlinear dynamic vibration absorbers with a saturation," Journal of Sound and Vibration, vol. 332, pp. 1465-1483, 2013.
[20] Q. Cao and Y. Xiong, "Dynamic analysis of a two degree of freedom system with irrational nonlinearity," in Proceedings of the European Nonlinear Oscillations Conference (ENOC '11), Rome, Italy, July 2011.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

