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Abstract. Control of entanglement is fundamental in Quantum Information and Quantum
Computation towards scalable spin-based quantum devices. For magnetic systems, Ising
interaction with driven magnetic fields modifies entanglement properties of matter based
quantum systems. This work presents a procedure for dynamics reduction on SU(2) subsystems
using a non-local description. Some applications for Quantum Information are discussed.

1. Introduction

Quantum control exploits the fine management of physical variables to improve the capacity and
speed of the information processing [1,2]. The magnetic driven Ising interaction [3] generates that
control [4] for bipartite qubits, chains and lattices [5–7], involving temperature, field strengths
and geometry in the analysis [8–10]. Control for a single or a couple of spin elements is still at
the heart of a scalable spin-based quantum computer because the controlled state exchange lets
to obtain universal quantum operations [11,12] in terms of DiVincenzo criteria [13] for quantum
states reliability. This paper discusses how the bipartite dynamics of Ising model in SU(4) is
reduced in two SU(2) subsystems on a non-local basis. Section 2 sets the Hamiltonian, notation
and SU(2) reduction. Section 3 discusses some applications: Quantum Error Correction,
Evolution Loops, Exchange Operations, SU(2) optimal control and gate design based on Unitary
Factorization. Section 4 states the conclusions and future work.

2. SU(2) decomposition for the anisotropic Ising Hamiltonian in a non local basis

Ising interaction has been analyzed for several systems and configurations (XX,XY,XY Z,
etc.) [14–16] with structured control effects [17,18] due to the geometry or the physical properties
[19–21]. We use a Hamiltonian with a driven magnetic field in h = 1, 2, 3 (x, y, z) direction:

Hh =
3∑

k=1

Jkσ1kσ2k −B1hσ1h −B2hσ2h (1)

including the previous models. Due to the Bell basis is privileged and to comprise the three field
cases, we adopt the notation [22]: |βµν〉 ≡ |βAB〉 ;µ, ν ∈ {−,+};A,B ∈ {0, 1};A = 1+µ

2 , B =
1+ν

2 . Capital scripts A,B, ... are 0, 1 for the computational basis; greek scripts for ± or ±1,
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because they evolve to ±1 in algebraic expressions; latin scripts h, i, j, ... for coordinates. Thus

Ehµν = µJh + νRh−µ (2)

are the eigenvalues for the states
∣∣∣φhµν〉 [22]. U(t) ∈ SU(4) because they add zero. There

Rh± ≡
√
B2
h±

+ J2
{h}∓

, J{h}± ≡ Ji ± Jj , Bh± ≡ B1h ±B2h , (3)

h, i, j is a cyclic permutation of 1, 2, 3; then {h} is equivalent to the pair i, j. The parameters

bh± =
Bh±
Rh±

, jh± =
J{h}∓
Rh±

∈ [−1, 1], ∆h
ν
µ =

t

2
(Ehµ+ + νEhµ−), (4)

eh
β
α = cos ∆h

−
α + iβjh−α sin ∆h

−
α , dhα = bh−α sin ∆h

−
α ,

reduce the evolution matrix expressions for the time independent Hamiltonian. Reader should
be aware about double scripts to avoid misconceptions. As instance, Rh−µ in 2 is R3+ for µ = −1
when driven field is in the z direction. While, B1h ,B2h are the driven fields in h direction on
particles 1,2 respectively. Then, in the Bell basis, evolution operators and bipartite states are

Uh(t) =
∑
µ,ν,γ,δ

Uhµν,γδ |βµν〉 〈βγδ| , |ψ〉 =
∑

µ,ν∈{−,+}
Bµν |βµν〉 , (5)

and Uh(t) becomes split on the direct-sum of subspaces H⊗2
h = Hh,1⊕Hh,2 as function of h [23]:

Hh,1 ≡ span({|β−−〉 , |βs0,as0,b〉}), Hh,2 ≡ span({|βs1,ash,b〉 ,
∣∣β+s1,h

〉
}), (6)

with a = 1
2(h − 2)(h − 3), b = 1

2(h − 1)(h − 2), sc,d = (−1)(c+d)mod2. Then, Uh(t) becomes the
direct sum Uh(t) = sh1 ⊕ sh2 with shj as a U(1) × SU(2) ⊂ U(2) block on each Hh,j , j = 1, 2.
|ψ〉 =

∑
j αj |ψj〉 and |ψj〉 ∈ Hhj evolving in each subspace. For the time independent case

shj = ei∆h
+
α

(
eh
β
α
∗ −qihdhα

qi∗hdhα eh
β
α

)
= ei∆h

+
α

(
cos ∆h

−
α Ihj − i sin ∆h

−
αn · Shj

)
, (7)

where n = (qbh−α sin hπ
2 , qbh−α cos hπ2 , βjh−α), α = (−1)h+j+1, β = (−1)j(h+lj−kj+1), q =

β(−1)h+1, h is the direction of magnetic field and j = 1, 2 a position label for each block in the
whole evolution matrix. kj , lj are the labels for its rows. As instance, k2 = 3, l2 = 4 are the
rows of the second block s21, with j = 2 in Uh=1(t). Pauli matrices Shj = (Xhj ,Yhj ,Zhj ) and
2× 2 identity Ihj are straight forms in the matrix block to avoid confusion with the traditional
operators in the computational basis. Uh(t) forms abelian subgroups for fix jh±, bh± [22]. Thus,

inverses U †h(t) are obtained as another Uh(t′) for the same jh±, bh± in the system, so Ihj can be
achieved in finite time with the same fields. Properties and applications of the decomposition
arise from those known for SU(2) systems. A direct calculation gives the dynamics of the
concurrence for the Bell states |βµν〉 evolution

Chµν = 1− 4jh
2
−fhµν

bh
2
−fhµν

sin4 ∆−h fhµν
, fhµν = µδ1h + µνδ2h + νδ3h, (8)

showing a simple behavior on only one Rabi frequency (contrasting with separable states [18]),
an inherited feature from the separation of H⊗2 in two subspaces. There are not a maximal
entangled evolution path with finite constant fields, more than trivial jhfhµν = 0 or bhfhµν = 0.

Intermediate separable states are possible only for the tuning 4jh
2
fhµν
bh

2
fhµν

= 1.
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3. Properties and potential applications of SU(2) block reduction
3.1. Quantum error correction

Expression for a desired shj in terms of Shj on each subspace sets a discrete language for
quantum errors on it and their related syndromes. As instance, for s12, the subspace is span by
|β+−〉 , |β++〉, then, X12 is a bit flip in the second qubit; Z12 is a phase flip on both qubits; and
Y12 = −iZ12X12 is the combination of both errors. Traditional quantum error correction codes
can be applied on each sector [24] and addressed on a specific evolution noting if D ≡ δp · ∇p,
then, a tiny imprecision in the prescription parameters δp (t,∆h

±
α , jh±, bh±) to reproduce sh

0
j ,

induces an error δshj ≈ Dsh0
j + 1

2D
2sh

0
j , thus, for a desired final state

∣∣∣ψf j〉 and its fidelity F :

δ
∣∣∣ψf j〉 ≈ δshjsh0

j
†
∣∣∣ψf j〉 , 1−F2 ≈

〈
sh

0
jDsh0

j
†Dsh0

jsh
0
j
†〉− ∣∣∣〈Dsh0

jsh
0
j
†〉∣∣∣2 , (9)

where shj unitary properties are used. The quadratic dependence on δp shows a mild impact.

Figure 1. Bell states transformations through Evolution Loops and Exchange Operations.

3.2. Diagonal and antidiagonal basic forms

If the dynamics in t = T reduces to the forms (diagonal and antidiagonal cases) [22]:

shj = ±Ihj (10)

shj = ±Xhj or : shj = ±iYhj (11)

we could achieve evolution loops [25–27] and exchange operations [18] in H⊗2 combining them,
recovering or switching Bell states. Last operations let manipulate the Bell states in a planned
way by applying a sequence of magnetic field pulses in adequate directions. Figure 1 summarizes
the achievable loops and transitions. There are several ways to shj fulfills (10) or (11). Using
only one field pulse, a direct analysis shows shj = (−1)mαIhj at t = T if nα,mα ∈ Z:

T =
mα − nα
αJh

π > 0 , Bh
2
−α = (

Jhnα
mα − nα

)2 − J{h}α
2. (12)
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To get the evolution loop Uh(T ) = (−1)mαI4, (12) should be fulfilled in both blocks ±α. It is
possible if mα − nα = n−α − m−α and m±α have the same parity. If (11) is required in one
block and (10) in another, Uh(T ) becomes an exchange operation transforming two Bell states
between them, while the remaining become unchanged. Nevertheless, there are not solutions
for block antidiagonalization (11) in one pulse compatible with (12) without restrict Jh and use
non finite fields. But a two blocks product (7) for consecutive pulses s′hjshj fulfill it (α, β, q are

the same). Complementary diagonalization prescriptions (10) in two pulses for block α are [23]:

∆h
−
α + sign(J{h}αJ

′
{h}α

)∆′h
−
α = nαπ,

Bh−α
J{h}α

=
B′h−α
J ′{h}α

, ∆h
+
α + ∆′h

+
α = (mα + nα)π, (13)

mα, nα ∈ Z, giving: s′hjshj = (−1)mαIhj . Antidiagonalization (11) for block −α gives [23]:

∆h
−
−α = 2n−α+1

2 π, ∆′h
−
−α =

2n′−α+1

2 π, Bhα
J{h}−α

= −
J ′{h}−α
B′
hα

(14)

∆h
+
−α + ∆′h

+
−α = π

2Mh,q,−α,β,n−α,n′−α,s−α

≡ −π
2 (h+ sign(qβb′hαjhα) + 2(n−α + n′−α − s−α + 1)),

with: s−α, n−α, n
′
−α ∈ Z, then s′hjshj = (−1)s−αihmod2Sh

1+hmod2
j (1+hmod2 component of Shj)

as (11). s−α and h introduce a phase when the Bell states are exchanged, while s−α is not an
integer for all h values due to it depends on the restrictions for ∆h

+
−α + ∆′h

+
−α in another sector.

3.3. Evolution loops and exchange operations

Evolution loops and exchange operations are involved in quantum characterization,
teleportation, state discrimination and repreparation [18]. As it was stated, evolution loops
are reached in one field pulse using (12) for both blocks ±α: Uh(T ) = (−1)mαI4. Exchange
operations are possible in two pulses depending on: Bh±α, B

′
h±α, t, t

′. Due to (14), the
antidiagonal-antidiagonal case implies an extra condition that (13), limiting Ji. Thus, we analyze
only the diagonal-antidiagonal case where only two Bell states are exchanged while other remain
unchanged. Combining (13) and (14), solutions are reached as a program to get Bh−α, B

′
h±α, t, t

′

in terms of Bhα. We set ±α for the diagonal/antidiagonal block. Decoupling Bhα:

|ξ| = −AB ±
√
A2 +B2 − 1

B2 − 1
, A =

(2n−α + 1)Jh
2(mα + nα)|J{h}−α|

, B =
(2n′−α + 1)J ′h

2(mα + nα)|J ′{h}−α|
, (15)

where ξ ≡ Bhα
J{h}−α

. It has solutions if A2 + B2 ≥ 1 and positivity is fulfilled. It is possible

for finite and anisotropic strengths selecting n−α, n
′
−α, nα,mα properly. Solutions are mainly

around of opposite signs for A and B, limiting physical cases. n−α, n
′
−α ≥ 0 and mα+nα, Jh, J

′
h

determine the selection of A,B. Figure 2 shows the regions with solutions for |ξ| in the plane
AB. Note there are solutions in the four quadrants for finite Jh, J

′
h with an adequate selection

of n−α, n
′
−α, nα,mα. Dashed regions have not solutions for (15). Remaining prescriptions are

Bh
2
−α

J{h}
2
α

≡ χ2 =

(
2nα
√
ξ2+1

Sα(2n−α+1)+PαS′α(2n′−α+1)|ξ|

)2

− 1,
B′hα

J ′{h}−α
= −ξ−1,

B′h−α
J ′{h}α

= χ, (16)

|J{h}−α|t
(2n−α+1) =

|J ′{h}−α|t
′

(2n′−α+1)|ξ| = π

2
√
ξ2+1

, Pα = sign(J ′{h}α
J{h}α), Sα = | J{h}αJ{h}−α

|, S′α = |
J ′{h}α
J ′{h}−α

|,

in addition, block phases should be synchronized: 2(mα + nα) = −Mh,q,−α,β,n−α,n′−α,s−α . Then,

mα + nα fixes s−α value in s′hjshj . Note our analysis has preserved the non decisive possibility
of the strengths could change during each pulse, a few common, but not impossible situation.
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(a) (b)

Figure 2. Solution for |ξ| values in gray scale for a) Negative and b) Positive signs.

3.4. Remarkable natural quantum gates

An analysis for exchange operations shows the evolution (for T = t+ t′) as one of the gates

U1(T ) : A1,1 ≡ iY11 ⊕ I12 = X1C
1(iY2)X1, A1,2 ≡ I11 ⊕ iY12 = C1(iY2)

U2(T ) : A2,1 ≡ iX21 ⊕ I22 = X1C
1|2(iX1X2)X1, A2,2 ≡ I21 ⊕ iX22 = C1|2(iX1X2)

U3(T ) : A3,1 ≡ I31 ⊕ iY32 = X2C
2(iY1)X2, A3,2 ≡ iY31 ⊕ I32 = C2(iY1)

(17)

remembering CaNOTb gates on the |βαβ〉 scripts (extending our notation under: 0↔ −, 1↔ +).
Realizing A1,2 is C1(iY2) gate (understood for the Bell basis), an analysis shows the second

expressions in (17) with the traditional Xi, Yi in the 4×4 matrices. C1|2(G) is a controlled gate G
where 1|2 means (A+B)mod2 (using the equivalence with computational scripts |βAB〉 = |βαβ〉).
These operations give alternative gates to those used with computational basis in the circuit
model of quantum computation, being an adaptation to the Bell basis and deserving the same
treatment (by example, gate A1,2 was used to implement a Teleportation algorithm [28]).

3.5. Optimal cost quantum control and gate design by Unitary Factorization

Compatible trends of the reduction are devised. Optimal control for two level quantum systems
is developed for energy cost [29] and minimal time [30] and the Hamiltonian is fully compatible
with the current: (1) can be decomposed as Hh =

∑
j Hj,h, with each Hj,h acting on each Hhj ,

Hj,h = −s0JhI2,hj + s1J{h}s0
Zhj + s2Bh−s0S

q
hj , (18)

where s0 = (−1)h+j+1, s1 = sp0, s2 = (−1)psp+q0 , p = 1 + 1
2(h− 1)(h− 2) and q = hmod2 ∈ {1, 2}.

Another application is the Unitary Factorization gate design [31]. Diagonal-antidiagonal

forms on (5) can reproduce unitary matrices M (i,j)† as factors [32]. Then, a unitary gate
U ∈ SU(4) can be written as (→ states a forward product stacking factors from left to right):

U =
→∏

1≤j<n
n>i≥j

M (i,j)† (19)
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4. Conclusions

Spin-based quantum computing (superconducting integrated systems, superconducting flux
qubits, straight nuclear magnetic resonance or quantum dots) exploits Ising interactions [33]
where several technological issues have been solved around of stability and decoherence to set
stable isolated qubits. There, contemporary control physics reports times and magnetic fields
achievable in the experimental setup around of t ∼ 10−9 − 10−6s and B ∼ 1 − 10T operating
in regions around of r � 5nm [34]. Despite, in nowadays, deep control of physical parameters
in quantum magnetic systems is still limited to set a programmable artificial spin network
under full control [33]. Current work develops control models including several freedom degrees.
Operations constructed under SU(2) decomposition state elementary physical operations to
reproduce a planned evolution on a Bell states based grammar, able to be scaled to simulate
complex computational problems on them. Moreover, combining these operations (5) for
magnetic fields in different directions, we can increase the control possibilities. Creation of
universal procedures by factorization as arbitrary gates is an alternative design based completely
on SU(2) reduction. Future work should be addressed considering finite temperature effects
and deeper error correction procedures for the contemporary experimental limitations. The
extension of this formalism to multiqubit case only requires to group arbitrarily the Hamiltonian
eigenstates by pairs, but the search of universal basis (as Bell basis was here) is still open.
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