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Hilbert-Huang Transform based Methodology for
Bearing Fault Detection

By
Rubén Campos Garcı́a

Abstract
Rotating machinery is of great importance for manufacturing industry, and therefore huge in-

vestments for their acquisition are made every year. Machine preservation plays an important role
in the exploitation of this resource. Rotating machines are more susceptible to certain types of
faults, investigations report that at least 42 % of the root causes of failure in rotating machinery are
related with bearings.

To detect the bearing condition many techniques have been developed. One of the most reliable
is vibration analysis. The Hilbert-Huang transform (HHT) has been used for vibration analysis and
has gained attention in recent years, a topic of controversy in this method is the selection of the
Intrinsic Mode Functions (IMFs) with fault information.

Statistical parameters can be used to describe the characteristics of vibration signals, this at-
tribute can be exploited to select the IMFs. There are many time domain features used for signal
analysis. In this research, a study of 17 statistical parameters was made to determine which one is
the best to represent IMFs with fault information. As a result of this analysis a new methodology
based on HHT is proposed. This methodology deals with the IMF selection with the use of KR
(Kurtosis x RMS) to detect the IMFs with fault information, and can be used to detect incipient
bearing faults.

The proposed methodology was validated with 18 signals from the Case Western Reserve
University (CWRU), Tian-Yau Wu, and the society for Machinery Failure Prevention Technology
(MFPT Society) databases. For the 18 analyzed signals, only one IMF was wrongly selected. The
cause of this error was the end defect produced in the EMD, this caused the KR amplitude to
increase even tough the IMF did not have fault information. The results on the Envelope spec-
trum from 14 signals were clear with fault components with large amplitude. For the remaining
four signals the results on the Envelope spectrum was noisy, but the fault fault components were
distinguishable.
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Chapter 1

Introduction

1.1 Motivation

Rotating machines are widely used in manufacturing industry. This type of machines includes
pump systems, turbines, conveyor belts, rotating cutting machines, and so on. Some of these
machines are key for product manufacturing, and usually, they are very expensive.

Companies make huge investments for the acquisition of these machinery and expect to re-
cuperate the initial investment and to make profits, avoiding faults in the equipment is essential
to achieve their goal. Unexpected faults can cause work accidents, downtimes in some processes
or stop the production and result in financial losses for the companies, and even sometimes the
machine can break down. For these reasons, the preservation of the machine has great importance.

1.1.1 Maintenance for machine preservation

Maintenance is the key to preserve the machine, there are three strategies: run-to-failure, pre-
ventive, and predictive maintenance [Scheffer and Girdha, 2004]. They are applied taking into
consideration the cost and importance of the machine, and the maintenance cost.

Run-to-failure Maintenance: this strategy consists in repairing the machine when a fault is
presented (when it breaks), and is focused to make the machine back to operation. This type of
maintenance is applied to low cost general purpose machinery with low level of importance on
production.

Preventive Maintenance: this strategy consists in scheduling a series of maintenance activities
to preserve the machine, these activities are performed at predetermined time intervals that can
be weeks or months or runtime hours of the machine. The goal of this strategy, contrary to the
run-to-failure, is to avoid downtimes and keep the machine in normal operation. This is applied to
machines with high costs and essential for the production.

1
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Condition-based Maintenance (CBM)1: this strategy, also known as predictive maintenance,
consists in the supervision of the most important components within the machine to detect how
these components are deteriorating and when are close to fault. The goal is to anticipate the fault,
programming and performing the maintenance activities when specific components of the machine
requires it. This strategy implies an initial investment for specialized condition monitoring systems
which often are expensive. CBM is applied to most expensive machines which are critical for
production, often if this type of machine breaks the losses are much greater than the investment of
the monitoring system.

Both, run-to-failure and preventive maintenance are the most common maintenance strategies
in industry, the necessity of high skilled personnel makes difficult to apply CBM; nevertheless, it
should be applied to the most important machines.

1.2 Problem Description

Rotating machinery is of great importance for manufacturing industry and by default preventive
maintenance is applied to them, but in cases where rotating machines play a key role in production,
the application CBM totally is justified. The first step to implement the CBM is to identify the
most important components of the machine. One of the main components of motors from rotating
machines is the shaft, which is a movile structure supported on bearings. These movile parts are
vulnerable to faults during runtime, the friction, load forces, and the vibrations they experience
can produce fatigue in their components, producing the machine to break. Rotating machinery are
prone to some specific faults, their most frequent causes of fault are: unbalance, misalignment,
bent shaft, and bearing faults [Randall, 2011].

The importance of rotating machinery has lead to investigations of the most frequent root
causes of failures to pay an extra attention to these issues. Some examples of these investiga-
tions are: a study made by Motor Reliability Working Group in which 1,141 motors of 75 plants
of 33 companies were analyzed, the survey revealed that around 43% faults in motors are bearing
related, another study performed by General Electric of 4,797 motors of 132 plants of 56 compa-
nies, showed that almost 42% of faults are bearing related [Bell et al., 1985]. Thorsen and Dalva
study showed that 51% of motor faults are bearing related [Thorsen and Dalva, 1995], and Zhang
et al. cites a fourth survey made by Allianz, which result showed that bearings were the second
root cause of failures in motors [Zhang et al., 2011], this is consistent with Immovilli et al. that
mentions that depending of the type and size of the machine, bearing faults vary from about 40%

to about 90% from large to small machines [Immovilli et al., 2010].
The previous surveys lead to the conclusion that CBM is important for rotating machines and

can be focused in bearing fault detection.

1All acronyms are defined in Appendix A
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Condition monitoring systems use different techniques to detect the condition of components
within the machine, they are based on the measurement of physical parameters. Some of them are
vibration monitoring, acoustic emission, oil analysis, particle analysis, corrosion monitoring, and
thermography.

According to Scheffer and Girdha vibration analysis is the most effective and the most applied
technique to detect defects in rotating machinery since vibration analysis can identify problems
while they are in early stages allowing to prevent unscheduled downtimes [Scheffer and Girdha,
2004]. For these reasons, the research is focused in the vibration analysis techniques for bearing
fault detection.

1.3 Research Question

Vibration analysis has three main approaches: time domain, frequency domain and time-frequency
domain. Standards are based on time domain, but these techniques are still limited in bearing fault
detection, while frequency and time-frequency domain analysis are more powerful and have a
wider variety of techniques, these techniques are called transforms, the most known are Fourier
transform, Envelope Spectrum, Wavelet transform, Wigner-Ville distribution, Hilbert-Huang trans-
form, and so on.

A technique that has caught the attention of scientific community is the Hilbert-Huang Trans-
form (HHT) which introduces a new method called Empirical Mode Decomposition (EMD) that
allows to decompose signals into Intrinsic Mode Functions (IMFs) which are functions with dif-
ferent frequency band information. The decomposition of signals is relevant because it helps to
isolate target information from other components that can be seen as noise that affects the diag-
nosis. The EMD is based in the local properties of the signal allowing a decomposition without
losing relevant information; this method has the advantage of decomposing signals without having
a background mathematical knowledge of the components embedded in the signal.

HHT traditional methodology has two steps: first, the selection of the component (IMF) with
the target information, and second, the interpretation of the final results. First step can be tedious
and time consuming since the decomposition can produce up to 20 or more IMFs (determined by
the frequency content of the signal), and they are analyzed one by one. The second step consists
in the identification of fault components in the spectrum.

1.4 Solution Overview

HHT methodology for bearing fault detection requires trained personnel that can identify the
proper IMF with relevant information and then calculate the spectrum. With the aim of reducing
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human intervention and save time, the IMF selection was automated by using statistical parameters
that can distinguish faulty signals.

An analysis of 17 time domain features were explored to determine the proper statistical pa-
rameter for the methodology. The selection was made based in the change of amplitude of these
parameters from a normal condition signal to a faulty condition signals. First, the EMD was ap-
plied to the normal condition signals, and the faulty signals. Then, the statistical parameter were
computed for each IMF. An Envelope spectrum analysis was made for each IMF to identify the
component with faulty information. After the identification of the IMF was made, the largest
change in amplitude was expected for that IMF. From the 17 statistical parameters only Kurtosis
and KR (Kurtosis x RMS) were able to identify the IMF with fault information in all of the cases.
From these two parameters, the KR showed a higher amplitude variation and was selected for the
method.

1.5 Main Contribution

The main contribution of this thesis is the development of a methodology based on HHT to detect
incipient bearing faults. This methodology deals with the tedious and time consuming process of
IMF selection. This selection can be made in seconds with the exploitation of statistical parame-
ters, and to determine the best statistical parameter, an exhaustive analysis was made for 17 time
domain features exploring their capacity to represent faulty signals. It was determined that KR is
the best parameter to identify IMFs with faulty information.

The methodology was validated with three different data sets. As a result, from the 18 sig-
nals used in the validation of the methodology only one IMF was wrongly selected (94.4% of
effectiveness). Also, in 14 cases the spectrum result was clear and the faulty components were
predominant. For the remaining four signals other peaks appeared in the spectrum (noise); but, the
fault diagnosis was also possible.

1.6 Organization

This research work is organized as follows:

• Chapter 2 presents the state of the art of different approaches for signal analysis in bear-
ing fault detection. Also, this chapter includes theoretical background of the HHT and the
bearing faults.

• Chapter 3 describes the proposed methodology, and the bearing fault signal databases used
to test the performance of the proposed methodology.
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• Chapter 4 presents the results of the evaluation of the methodology.

• In Chapter 5 the contributions, conclusions, and future work of this research are presented.



Chapter 2

State of the Art

2.1 Introduction

This chapter is divided in two sections, the first section includes the most relevant investigations in
different approaches for bearing fault detection.

The second section is focused on giving a stronger theoretical foundation of the key concepts
that are used in the development of the proposed methodology for bearing fault detection.

2.2 Literature Review

Machines or any mechanism in spite of working in good conditions generate vibrations, they are
generated by movile parts working within the machine. The constant movement and interaction
between them produces the components wear and the vibrations tend to increase. Vibrations can
be used to evaluate the machine condition, since they offer direct information of the structure and
components of the machine.

The challenge in vibration analysis is how to extract signature information embedded in the
vibration signals and associate it with specific faults in the machines. The answer to overcome this
problem is the use of specialized techniques to process the signals in vibration analysis. Vibrations
signals can be analyzed in three main approaches: time domain, frequency domain, and time-
frequency domain. Figure 2.1 shows the classification of signal processing techniques and gives
some of the most known and relevant techniques used, e.g. Fourier Transform (FT), Short-Time
Fourier Transform (STFT), Wigner-Ville Distribution (WVD), Hilbert-Huang Transform (HHT),
and Wavelet Transform (WT).

7
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Figure 2.1: Signal processing and feature extraction [Lei, 2016]

2.2.1 Time domain analysis

Time domain analysis is the simplest and most common manner to analyze a signals. Signals from
the sensors are captured in time domain and this type of analysis consists in the measurement of
parameters (often statistical) directly related to the form of the signal. The existing guides for
condition based maintenance are based on this approach.

The International Organization for Standardization (ISO), is an organization that collaborates
with specialized scientists and engineers in their areas to create detailed guides that help to improve
the processes applied in industry by answering the question: what is the best way of doing this?.
This organization has published some guides for rotating machinery.

ISO 17243-1: Evaluation of machine tool spindle vibrations by measurements on spindle hous-
ing. This standard provides information on how to assess the severity of machine tool spindle vi-
brations measured on the spindle housing. The part 1 of the standard corresponds to machine tools
with nominal operating speeds between 600 and 30,000 RPM. The document describes the prelim-
inary operations such as process load and spindle conditions besides of the measurement and the
evaluation in the results. This norm emphasizes the use of RMS vibration velocity as assessment
of long term spindle condition and the use of RMS vibration acceleration for short term spindle
condition [ISO, 2014].

ISO 10816-1: Evaluation of machine vibration by measurements on non-rotating parts. The
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standard establishes general conditions and procedures for the evaluation of vibration using mea-
surements made on non-rotating parts. The part 1 presents the evaluation criteria related to the
vibration and the part 3 gives criteria for assessing vibration levels when measurements are made
in situ and applied to machine sets having a power above 15 kW and operating speeds between 120
and 15,000 RPM, the units for the vibration levels are in RMS [ISO, 1995] [ISO, 2009].

ISO 2954: Requirements for instruments for measuring vibration severity. This international
standard specifies the measurement instrument requirements for vibration severity of machines,
particularly when making repeated measurements for trend monitoring of a certain machine. The
instruments covered by this international standard give direct indication of recording of Root-
Mean-Square (RMS) vibration velocity that is defined as a general measurement unit, and RMS
vibration acceleration is recommended for high-speed machines and for rolling element bearings
[ISO, 2012].

2.2.2 Frequency domain analysis

Vibrations can be defined as periodic back-and-forth motions about an equilibrium point, pro-
duced as response after an external force disturbed the system steady conditions. The term peri-
odic implies that these movements are repeated through time and have a corresponding frequency.
Frequency domain analysis is focused on taking advantage of these characteristics of vibration
signals and complement it with the force magnitude that is already used in time domain analysis.
Frequency domain analysis is conducted with the assertion that individual components produce
specific vibrations with their frequencies.

This new domain introduces frequency as a new parameter and requires a new form to display
the information, in time domain the amplitude of the signal is plotted through the time, but in
frequency domain data is visually represented by plotting the spectrum. Spectrum is defined as
the arrangement of amplitude components of a set of waves of a vibration signal according their
frequencies, for this reason the time axis is now replaced by the frequency axis.

For a simple periodic signal, the frequency can be easily calculated by plotting the signal in
time domain, calculate the period (time that takes the system to move from the equilibrium point
to an extreme, pass through the equilibrium point to the other extreme and return to equilibrium
point), and then calculate the frequency f = 1/τ , in the equation f is the frequency cycles/second
or Hz and τ is the period in seconds.

The simplicity of this equation is deceiving, because in real application machine vibration
signals are the result of the combination of multiple signature signals, and it is hard to calculate
the frequencies embedded using the method described before. To calculate the frequencies of real
application signals, integral transforms are used to convert a signal from one domain to another, it
can be from time to frequency domain or from frequency to time domain.

A characteristic of integral transforms is the kernel function, also known as mapping function
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[Arfken and Weber, 2005], which is a bivariate (t for time and i for frequency) function that
converts a continuous function from one domain to another [Courant and Hilbert, 1953], in this
case, time and frequency, the difference between transforms is this kernel function, which has the
waveform of the components to be converted from one domain to another. If the function that
is being converted does not match the kernel, it will result in an incorrect transformation and the
result will have no physical sense.

Basic frequency domain techniques for vibration analysis are Fourier Transform (FT), Power
Spectral Density (PSD), Cepstrum, and Envelope spectrum. They perform well in simple applica-
tions, but they are limited when analyzing complex signals as in the case of bearing fault signals.

Fourier Transform in Bearing Fault Detection

FT is the most known and applied frequency domain tool, is used with the assumption that the
signal only has periodic components. FT can be computed as:

F (t) =
1

2π

∫ ∞
−∞

X(t)e−iωt dt (2.1)

where F (t) is the FT of the signal, X(t) is the signal, and e−jωt is the kernel function used for
mapping sines and cosines from one domain to another; but, if a signal is a non-periodic function
it will be interpreted as a periodic one, where the period tends to infinity and consequently the
fundamental frequency tends to zero [James, 2011] producing elevated amplitude components that
will be observed as peaks at low frequencies in the spectrum.

Equation (2.1) is used to convert signals expressed as mathematical functions, which is not the
case when vibrations are recorded, to compute the FT using digital data there is an approach that
is called Fast Fourier Transform (FFT) and introduces parameters as: the number of data points
of the signal, window selection and sample frequency that affect the frequency resolution in the
spectrum, further information can be found in [Sinha, 2014] and [Goldman, 1999]. The FFT has
the same disadvantages as the FT of only mapping sines and cosines, and it adds the disadvantage
of the selection of a proper signal data-length and sampling frequency to obtain good resolution in
the spectrum and be able to make correct conclusions.

2.2.3 Envelope Spectrum

Vibration signals are the sum of multiple waves that vary in amplitude and frequency, a phenom-
ena that occurs in many applications is that low-frequency and low-amplitude vibrations often
excites the natural frequency of the system producing high-frequency and high-amplitude vibra-
tions. The high frequency is called carrier frequency and when this occurs the low-frequency
and low-amplitude vibrations are modulated by the carrier frequency causing the component being
modulated to disappear from the spectrum when the FT is applied. This phenomena can cause a
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misinterpretation of the spectrum and lead to wrong decisions, to determine the characteristics of
the components being modulated the removal of such carrier frequency from the signal is essential
[Sinha, 2014]. The technique to overcome this problem is called Envelope spectrum.

Envelope spectrum consists in two steps: first construct the envelope of the signal, this process
is called demodulation and second apply the FT to the envelope.

An envelope is a new signal that covers the carrier signal and often has the form of the signal
being modulated. It is known, that there are three methods to construct the envelope of signal:
filter-demodulation, high-pass absolute demodulation, and the Hilbert Transform (HT) [Tsao et
al., 2010]. HT method is the most known and used.

2.2.4 Time-Frequency domain analysis

Time-frequency domain analysis allows to analyze the frequency components of the signal through
time, for this type of analysis the representation of the data is in a 3D plot called spectrogram (x-
axis = time , y-axis = frequency , and z-axis = amplitude). This representation allows to observe
changes in frequency contents or changes in amplitude in a lapse of time to make inferences about
the signals being analyzed. For such analysis techniques like STFT, WVD, WT and HHT are used.

Wavelets Transform (WT)

WT is a kernel based method, which implies that a previous knowledge of the waveform produced
by the fault being investigated is needed, and the performance is directly affected by the kernel
function used in the transform. WT can use more than one kernel or mapping function, in this
technique kernels are called mother wavelets or wavelet functions. WT allows to decompose the
signal into frequency bands called scales, where their characteristic information is represented as
a series of coefficients. The mathematical form of WT is:

Cn = (X(t), ψn) =

∫ ∞
−∞

X(t)ψ∗n(t) dt (2.2)

where X(t) is the signal being decomposed, and ∗ represents the complex conjugate of the map-
ping function ψn, the more similar X(t) to ψn(t), the larger the value of the coefficient Cn will be
[Gao and Yan, 2010]. Compared against STFT where the window size is fixed, WT uses variable
window sizes to extract different frequency components, this can be achieved by scaling (dila-
tion and contraction) and shift (translation on time axis) of the mother wavelet. Creating a new
mathematical form:

wt(s, τ) = (X(t), ψs,τ ) =
1√
s

∫ ∞
−∞

X(t)ψ∗
(
t− τ
s

)
dt (2.3)

where s > 0 represent the scaling parameter which determines the time and frequency resolution
of the scaled mother wavelet ψ∗(t− τ/s), and τ represents the shifting parameter. Equation (2.3)
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is known as Continuous Wavelet Transform (CWT). Compared against the FT that is plotted in
2D plot, the scaling and shifting parameters enables the WT to be represented in a 3D plot that is
called scalogram which represent time, scales or pseudo-frequency, and coefficients that represent
the similarity between the signal and the mother wavelet.

A variation of the CWT is the Discrete Wavelet Transform (DWT) which reduces the computa-
tional time by implementing pairs of low-pass and high-pass wavelet filters, producing two main
frequency bands, this process can applied to the resulting scales producing 2n frequency bands
where n is called the level of decomposition.

Other types of WT algorithms are the Wavelet Packet Transform (WPT) which focuses in pro-
vide detailed information from high frequencies, and the Second Generation Wavelet Transform
(SGWT) that is an alternative implementation of the DWT [Yan et al., 2014].

HHT in Bearing Fault Detection

HHT is an adaptive method that allows to decompose the signal into frequency bands similar to
the WT, with the big difference of not being a kernel based method and eliminating the necessity
of knowing the behaviour of the fault signal for a good performance in the decomposition and
reducing the risk of a bad kernel selection. This is achieved by a method called Empirical Mode
Decomposition (EMD), which decomposes the signal based on local properties and not global
properties (kernel based).

The research and contributions in HHT can be divided in two main areas: (a) advances in
the performance of the EMD and (b) in hybrid methodologies, the advances in performance in-
clude pre-filtering techniques to enhance the EMD performance, Fig. 2.2. Norden E. Huang
worked in the Ensemble Empirical Mode Decomposition (EEMD) and others researchers made
similar numeric algorithms EMD as they are Local Mean Decomposition (LMD) [Smith, 2005],
and Hilbert Vibration Decomposition (HVD) [Feldman, 2006]. In the area of hybrid methodolo-
gies some works to improve the IMF selection, which is an important step to obtain a good result
in the analysis, combination of EMD with other techniques (transforms), and works focused on
fault classification with help of Artificial Neural Networks (ANN) and other intelligent models.
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Figure 2.2: Research areas in HHT

An important research work that highlights the performance of the HHT over STFT and WT
was made by Yan and Gao [Yan and Gao, 2006] where they applied HHT for machine health mon-
itoring. In this research they made a comparative study of the performance of STFT, WT, and HHT
on a synthetic signal with defect-induced transient components with time varying frequencies,
these defect-induced were modelled as a series of exponentially decaying oscillations simulating a
bearing fault. This comparative study showed that for having an acceptable performance the STFT
depends of the window size selection while applying the technique. For WT, three different mother
wavelets were used (Db2, Meyer, and Morlet) where Morlet gave the best result between them, but
not as good as expected, and in the third case HHT got the best result over STFT and WT revealing
that the constrain of window size selection for STFT and the proper selection of mother wavelet
function for WT are overcomed by the HHT. After this analysis, they applied HHT for they seeded
an outer race defect in a bearing mounted on an experimental test bed developed. They made a
successful detection by plotting the Hilbert Spectrum and performing a visual inspection.

Li et al. used the Hilbert Marginal Spectrum [Li et al., 2009]. The usual manner of identify-
ing a fault on HHT is by plotting the Hilbert Spectrum which is a time-instantaneous frequency-
amplitude distribution, instead they used the Marginal Spectrum proposed by Huang et al. [Huang
et al., 1998], which is the spectrum plot of every IMF, but the frequency is replaced by the instan-
taneous frequency of the HHT instead of using FT. This spectrum has a different meaning than the
traditional spectrum, since the instantaneous frequency is based on the local properties of the signal
it gives a measurement of probability of that frequency existing in the IMF, while the traditional
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spectrum is based on the global properties of the signal and if a frequency appears means that is
in the whole signal. They summarized their methodology as follows: (1) compute the envelope of
the signal, (2) apply the EMD, (3) calculate the Marginal Spectrum of every IMF and (4) search
for the IMF with the objective fault frequency, (5) analyze and (6) draw a conclusion.

Gao et al. [Gao et al., 2008] made numerical experiments to the EMD to demonstrate that
EMD performance is affected by the noise and therefore the resulting IMFs are also affected. They
believe that the noise possibly introduces some ”false local extrema” to the signal causing an
over-decomposition of the signal while applying EMD. To reduce these effects, they propose the
Combined Mode Function (CMF) that consists in combining two or more IMFs. There are two
procedures to determine if CMF should be applied: the first is inspecting the waveform of every
IMF, and if two neighbor IMFs waveforms vary abruptly simultaneously in a lapse of time the
CMF should be applied. The second procedure is computing the instantaneous frequency of every
IMF, if the instantaneous frequency of two neighbor IMFs change suddenly during a lapse of time,
CMF should be applied. They applied the method to a power generator, with plain bearings, from
a thermal-electric plant in China that had high levels of vibration, they applied FT and WT with
Db8 as mother wavelet and they could not identify the problem, when the generator was stopped
they realized that the plain bearings were broken, they used the EMD with the CMF method and
then applied Fourier to the resulting IMFs and they did identify that there were not oil circulation
and it was not lubricating the plain bearing causing impacts and friction in the surface leading the
bearing to break. The root cause of the problem was only identified by using CMF.

As well as Gao et al. [Gao et al., 2008], Huang and Wu realized that the EMD performance was
affected by the noise and worked in the EEMD a Noise-Assisted Data Analysis (NADA) method
[Huang and Wu, 2009]. This new method is focused in solving the mode mixing caused by the
noise, because a bad decomposition can lead to misinterpretations of the physical meaning of
the IMFs; also, this method was designed to reduce the end effect of the IMFs as result of the
decomposition.

This new method is inspired in the dyadic filter bank properties of the EMD, when EMD is
applied to white noise it works as a dyadic filter bank. A dyadic filter bank is a collection of band-
pass filters that have constant band pass shape (e.g. a Gaussian distribution), but with neighboring
filters covering half or double of the frequency range of any single filter in the bank. The frequency
filters can be overlapped. For example a dyadic filter bank can include filters covering 50-120 Hz,
100-240 Hz, 200-480Hz, and so on [Huang and Wu, 2009]. Intermittent signals can affect this
properties, and to overcome this problem EEMD is performed with help of noise.

The method consists in applying series of Gaussian noise. the process of extraction of IMFs
from the signal change and can be described as follows:

1. Add a white noise series to the signal.
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2. Decompose the signal with added white noise into IMFs using the traditional EMD.

3. Return to step 1 and add a different white noise series. This is repeated a predefined number
of iterations, but with different white noise series each time.

4. Compute the ensemble by calculating the mean value of every IMF among the different
results of the decomposition.

As it can be observed EEMD defines the true IMFs components as the mean of an ensemble
of trials, where each trial consists in the decomposition of the original signal plus a white noise
of finite amplitude, by doing this, the different possible variations are considered increasing the
physical sense of the IMFs. The problem of this method is that there are no equations to choose
the white noise and its amplitude for every trial, and there is no rule to select the number of
iterations to compute the ensembles, and the performance is affected by the selection of these
values. The choice of the optimal parameters is still a research topic [Osman and Wang, 2016a],
another disadvantage is that the time to perform the EEMD is ”n” times longer than the EMD,
since EMD is repeated in every trial, where n is the number of trials.

[Li et al., 2010] worked in bearing fault diagnosis using HHT and replaced the traditional
EMD by applying the EEMD instead. They detected Inner Race (IR) and Outer Race (OR) defects
successfully in a visual manner proving that EEMD works for bearing fault detection; but, they did
not compare the HHT with EEMD against the traditional method or any other method.

Another effort to improve the performance of HHT in bearing fault detection was made by Wu
[Wu et al., 2016], they worked on eliminate the effect of rotating speed fluctuations during the
diagnostic process, which modifies the bearing fault frequencies, their solution was using instanta-
neous frequency normalization, this normalization is made by computing an envelope of the IMF
by using a cubic spline curve (cubic interpolation) and dividing the original IMF over the envelope,
this normalization of IMFs reduces frequency fluctuations within the IMFs; then, instead of apply-
ing the HT to construct the analytic signal and compute the instantaneous frequency, they used
the Generalized Zero-Crossing (GZC) and Direct Quadrature (DQ) methods. GZC is computed
by dividing the period in quarters and giving them different weighting factors to every one; and
the DQ is calculated by differentiation of the normalized IMFs. They also normalized the fault
frequencies to detect bearing faults to compute the spectrum, and used Support Vector Machine
(SVM) to classify the faults.

In the area of pre-filtering techniques to improve the performance of HHT, [Osman and Wang,
2013] proposed an improved technique for bearing condition monitoring called enhanced HHT
(eHHT), this technique consists in two steps: (1) eliminate the noise of the signal to highlight
the defect-related impulses for a better identification of the bearing faults, and (2) the eHHT. For
the denoising of the signal they used a Minimum Entropy Deconvolution (MED) filter, which was
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firstly proposed by Wiggins [Wiggins, 1978]; it helps to reduce the impedance effect of the trans-
mission path of the signal acquisition, Entropy minimization is achieved by maximizing the signal
Kurtosis. The selection of the parameters for the filter design are determined by trial and error
for a specific level of noise, if the conditions of application change a new filter is needed to be
designed complicating the application in different working conditions. The second part consists in
applying the EMD and to obtain the most distinguished IMF that are related to a signature fault
they propose a correlation measurement, Normalized Correlation Measure (NCM) and Deficiency
Mutual Information (DMI). NCM is an indicator for linear similarity between two distributions,
while DMI provides a nonlinear similarity measure to characterize the uniqueness of the extracted
IMFs. The NCM/DMI is calculated to every IMF by the sum of both measurements. The IMF with
the highest NCM/DMI indicator value is selected, the selected IMF will have minimum Entropy
and maximum correlation information, this procedure of IMF selection is called eHHT technique.

[Osman and Wang, 2016b] made another investigation and they proposed the method called
Normalized Hilbert-Huang Transform (NHHT), this method includes a Maximum Kurtosis Decon-
volution (MKD) filter to demodulate the effect of the impedance in the signal transmission path by
reducing the Entropy and maximizing Kurtosis, MKD filter is similar to the MED filter of [Osman
and Wang, 2013] and it was also proposed by Wiggins. The second step is to apply the EMD
and decompose the signal into IMFs. To choose the IMFs a D’Agostino-Pearson normality test
is applied to determine their contribution to the information in the signal, then the IMFs with the
highest values are selected and analyzed applying the HT. To validate this methodology they com-
pared the results of the Normalized HHT method using MKD filter against the Normalized HHT
without filter, and concluded that using MKD with NHHT gives a better result in the detection of
faults in RE, IR and OR defects. They conclude that MKD is effective for denoising the signal,
but the filter parameters must be selected by trials and errors so further research is being made for
developing an adaptive method for the filter.

[Osman and Wang, 2016a] proposed the Morphological HHT (MHHT) technique , this method
consists in the design of a mathematical morphological filter to reduce the noise of the signal
produced by the impedance of the transmission path to highlight the impulses produced by the
faults in the bearing, Morphological filters work to extract different types of information from the
signal [Maragos and Schafer, 1987] by the convolution of the signal and a structuring element
which is a function, the problem with the filter design is choosing a value of structuring element
length, the proper value is calculated by trial and error and depends of the application. Once the
filter is designed and applied to every IMF the NHHT is applied. This technique was applied and
compared to the WT, HHT, and EEMD without filter and achieved a visual improvement for the
fault detection.

In the area of hybrid methodologies, Yu et al. combined WPT with HHT, the WPT was used
to decompose the signal into low and high frequency bands, then the high frequency signal is
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reconstructed using the Wavelet coefficients and its envelope is computed by using the HT. This
new signal was decomposed by the EMD and then the Hilbert Marginal Spectrum is applied to
detect IR, and OR faults [Yu et al., 2005]. This effort was made to improve the efficiency of the
Hilbert Marginal Spectrum.

Djebala and Babouri proposed an hybrid method based on EMD and Wavelet Multi-Resolution
Analysis (WMRA) also called Discrete Wavelet for bearing fault detection [Djebala et al., 2015],
they applied the EMD to the raw signal to decompose it into IMFs, then the FFT spectrum and
the Kurtosis for every IMF was calculated, the selection of the IMF was made by searching the
IMF with the highest Kurtosis and with important frequency components in the spectrum. The
Kurtosis is used to guide the selection of the IMF with bearing fault because it is a sensitive shock
indicator, once the IMF is selected an envelope is constructed by applying the HT and the WMRA
is applied to decompose the signal, the frequency band with the highest Kurtosis is reconstructed
with the wavelet coefficients and then the Envelope spectrum is performed. This method improved
the visualization of the fault compared against the EMD or WMRA alone.

Another example of a hybrid methodology, but with different approach was made by Yu et al.,
they proposed the EMD energy Entropy combined with an Artificial Neural Network (ANN) for
bearing fault diagnosis [Yu et al., 2006], this method consists in the decomposition of the signal
into IMFs using the EMD. Contrary to Wavelet decomposition, EMD does not suffer of energy
leakage for this reason the sum of the energy of each IMF is equal to the energy of the original
signal, then the energy Entropy is calculated to every IMF and normalized using the energy of all
IMFs. The energy Entropy distribution between the IMFs of a healthy bearing is used as baseline,
when a fault occurs components will appear in some IMFs end they energy will decrease changing
the baseline distribution. The vector of energy Entropy values is used as input for an ANN that is
trained by using Back Propagation algorithm. This method was compared against WPT using a
Db10 mother wavelet obtaining a total of 8 frequency bands, the classification rate of the by using
the EMD is superior to that WPD.

Yang et al. worked in a bearing fault diagnosis technique based on the IMF Envelope spectrum
and SVM [Yang et al., 2007]. It is known that bearing faults often are modulated in high frequen-
cies and envelope analysis method provides an important and effective approach to analysis fault
signals of high frequency impact vibrations, for this reason the signal was decomposed by using
the EMD and the Envelope spectrum was computed for every IMF, then they made two charac-
teristic amplitude ratios based on the bearing fault frequencies peak amplitudes, the first ratio was
the OR over fault in IR frequency amplitudes and was a ratio of fault in Rolling Element (RE) over
fault in IR, these two ratios were used as input for the SVM for a proper fault classification.

Dubey and Agrawal proposed a method for bearing fault classification using ANN in combi-
nation with Hilbert footprint analysis [Dubey and Agrawal, 2015]. They proposed to apply the
EMD to decompose the vibration signals into IMFs, then the HT was applied to create the enve-
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lope of the two first IMFs with the assumption that they contain the fundamental fault information
of the signal, the next step is to create the footprint of the first and second IMF the footprint1
and footprint2 respectively, which are vectors with the peak to peak-value of every envelope, the
energy Entropy and the Kurtosis. These vectors work as input for an ANN classifier. They used the
data set from Case Western Reserve University (CWRU) and achieved 100% on accuracy classifi-
cation, they compared using Extreme Learning Machine (ELM) and SVM, but the performance of
the ANN was superior.

Junsheng et. al. proposed a fault extraction approach based on EMD and an Auto-Regressive
(AR) model for roller bearings [Junsheng et al., 2006]. AR models can not be applied to non-
stationary signals like the produced by bearing faults, to overcome this problem they applied the
EMD to decompose these non-stationary signals into IMFs which are stationary and simpler than
the original signal, they applied the AR model to detect fault in IR and OR faults. This work was
not based on the spectrum, but it highlights the advantages of the EMD to reduce the complexity
of signals. This method does not need a mathematical knowledge of the bearing, but the signals
with different bearing faults are needed to create the AR.

Tsao et al. worked on the methodology to select the proper IMF to perform the envelope
analysis and is based on the resonant-frequency of the system. The first step is to calculate the
spectrogram of the signal using FFT and identify the resonant frequency, then the EMD is ap-
plied to the original signal and the FFT is plotted for every IMF, then the resonant frequency is
searched in the IMFs to select the one with those frequencies, after the IMF is selected the Enve-
lope spectrum is plotted to search for bearing fault characteristic frequencies. This process is the
most simple but it requires human intervention to perform that comparison analysis to select the
proper IMF [Tsao et al., 2010][Tsao et al., 2012]. In Table 2.1 further information of the case of
study and the type of faults detected with these methodologies can be found.



2.2.
L

IT
E

R
A

T
U

R
E

R
E

V
IE

W
19

Table 2.1: Comparison of research projects using HHT.

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[Yu et al., 2005] OR Test Rig
1,500 RPM

WPT and EMD +
HMS

Does not apply Visual

[Yan and Gao, 2006] OR Test Rig
Not specified

HTT Does not apply Visual

[Yu et al., 2006] IR, OR Test Rig
1,500 RPM

EMD Energy
Entropy

Does not apply ANN 93 %

[Junsheng et al., 2006] IR, OR Test Rig
1,500 RPM

EMD and
AR Model

Does not apply AR Model 93.33 %

[Yang et al., 2007] IR, OR Test Rig
1,500 RPM

EMD and
Envelope Spectrum

Does not apply SVM 100 %

[Li et al., 2009] IR, OR Test Rig
1,500 RPM

HHT Spectrum
Marginal Hilbert

Does not apply Visual

[Li et al., 2010] IR, OR Test Rig
1,500 RPM

EEMD and HHT Does not apply Visual

[Tsao et al., 2010] IR, OR Test Rig
1,500 RPM

EMD and
Envelope Spectrum

Does not apply Visual

[Osman and Wang, 2013] IR, OR and RE Test Rig
1,800 RPM
CWRU web data
1,735 RPM

eHHT Minimum Entropy
Deconvolution (MED)

Visual

[Djebala et al., 2015] IR, OR and RE Test Rig
3,000 RPM and 1,800 RPM

EMD and DWT Kurtosis and Envelope
Spectrum

Visual

[Dubey and Agrawal, 2015] IR, OR and RE CWRU web data
1,736 RPM

EMD and Hilbert Footprint
Analysis

Entropy
Kurtosis
pk-pk value

SVM 97.5 %
ELM 98.5 %
ANN 100 %
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Table 2.1: Comparison of research projects using HHT. (Continued).

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[Osman and Wang, 2016b] IR, OR and RE Test Rig
900, 1200, 1500,..., 2100
RPM
CWRU web data
1,735 RPM

NHHT MKD Visual

[Osman and Wang, 2016a] IR, OR and RE Test Rig
600, 1200, 1500,..., 2400
RPM

Morphological HHT Does not apply Visual

[Wu et al., 2016] IR, OR and RE Test Rig
Variable 300 - 750 RPM
aprox.

EMD and Frequency
Normalization

Does not apply SVM 94.33 %
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2.3 Theoretical Background

This section presents the concepts within HHT, which are needed for the development and imple-
mentation of the proposed methodology for bearing fault detection.

2.3.1 Hilbert-Huang Transform (HHT)

This HHT for signal processing consists in two steps:

1. The Empirical Mode Decomposition (EMD) (main contribution made by Huang).

2. The application of the Hilbert Transform (HT) to the result of step 1.

Empirical Mode Decomposition

EMD is a method that was designed to enhance and facilitate the decomposition and analysis of
non-linear, and non-stationary oscillatory signals, this method compared against others methods as
WT does not need a kernel that describes the characteristic behavior of the signals that want to be
extracted, EMD is totally empirical and is based on the local characteristics of the signal instead
of global characteristics (kernel based methods), allowing a better decomposition of the signal. A
good signal decomposition gives the opportunity to select a signal with less noise and particularly
including signature information of the phenomena being investigated.

The result of the EMD are signals or components called IMFs and a Residual (r). These IMFs
have information that belong to many frequencies bands, and the residual represents the trend of
the signal.

The EMD is based in the concept of trigonometric polynomials. This concept establish that a
signal can be expressed as a combination of sines and cosines functions as in Fourier series. This
can be expressed as:

X(t) = a0 +
N∑
n=1

an cos(nt) +
N∑
n=1

bn sin(nt) (2.4)

The eqn. (2.4) can be adapted to the EMD as it follows:

X(t) = r +
N∑
n=1

Cn (2.5)

where X(t) is the original signal, res represents the residual from the EMD and Cn represents the
nth IMF obtained from the decomposition. The IMFs as they are extracted contain information
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from the highest to the lowest frequencies.

To start the description of the EMD method it is necessary to introduce to key concepts, the
concept of IMF and monotonic signal. An Intrinsic Mode Function (IMF) represents an oscillation
mode embedded in the signal and it must satisfy two conditions:

1. The number of extremes and zero crossing in the whole signal must be equal or different at
most by one.

2. At any point the mean envelope defined by the local maximum and the local minimum is
zero.

These IMFs are often both amplitude and frequency modulated, and the two previous condi-
tions allow to obtain a signal centered in zero with all the maximums in the positive side of the
”x” axis and all minimums of the signal in the negative side of the ”x” axis, and therefore we can
say that the EMD works as a signal preprocessing method which removes the mean trend, and also
filters the signal into frequency bands, all of this resulting in signals (IMFs) easier to analyze.

Monotonic Function: is a signal where the sifting process can not be applied because it does
not have local maximums and minimums, in the EMD these signals are the residual of the decom-
position and represent a trend of the original data.

The EMD, flow chart can be found in Fig. 2.3, it is an iterative method consisting in a series of
steps:

1. Let hj,k = X(t), and r = X(t), where X(t) is the original signal, j is the number of IMF
starting by 1, and k is the number of iteration starting by 0.

2. Localize all the local maxima of h1,0 and construct an upper envelope Eupper interpolating
all local maxima, for this process a cubic interpolation is used.

3. Localize all the local minima of h1,0 and construct a lower envelope Elower interpolating all
local minima, for this process a cubic interpolation is used.

4. Construct a curve using the mean value of both envelopes (Eupper and Elower) created in step
2 and 3, this curve will be named m.

m = Eupper − Elower

5. Subtract the curve m to the signal h1,k, this operation is represented as:

h1,k = h1,k −m
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6. Verify if h1,k is an IMF evaluating the stopping criterion for IMFs. SD must be between
0.2− 0.3. SD is set as default to 1 when k = 0.

SD =
T∑
t=0

|h1,k−1 − h1,k|2

h21,k−1

If the stopping criterion of SD is not accomplished, it is necessary to return to step 2 using
h1,k+1, otherwise go to step 7.

7. Set h1,k as the first component (IMF) cj , and subtract cj from r.

cj = h1,k

r = r − cj

8. Verify if r is monotonic.

• If r is monotonic the process is finished.

• If r is not monotonic, then hj+1,0(t) is set as r and then and go to step 2 using hj+1,0(t).

hj+1,0(t) = r

The iterations of steps 2 to 6 is called sifting and it has two effects on the construction of the
IMF:

• Eliminate riding waves in the signal

• To smooth uneven amplitudes from the IMF being constructed.

The SD criteria is used to guarantee that the IMFs components conserve enough physical sense
of both amplitude and frequency modulations.

For the construction of the envelope besides cubic interpolation, many complex curve fitting
functions were investigated and the improvement achieved does not compensate the increasing in
computational load [Huang et al., 1998] for this reason cubic interpolation is commonly used.

———————-
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Start

Input signal X(t)

hj,k = X(t), and r = X(t)

Localize all maxima and minima of hj,k

Construct Eupper and Elower

m = Eupper − Elower

h1,k = h1,k −m

Is h1,k
an IMF?

h1,k+1

cj = h1,k

r = r − cj

Is r
monotonic?

hj+1,0(t) = r

Output c and r

End

yes

yes

no

no

Figure 2.3: EMD algorithm
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Hilbert Transform and the Analytic Signal

HT was developed by the mathematician David Hilbert in 1905 [Feldman, 2011a]. The HT has
being used for Single Side Band (SSB) Modulation for data transfer in telecommunications and
band pass systems [Briceno, 2012] and for the construction of the analytic signal, also known as
quadrature of the signal, for the envelope of the signals. The HHT uses the second application
(construction of the analytic signal), this transform is expressed mathematically as follows:

H[X(t)] = x̃(t) =
1

π
P

∫ ∞
−∞

X(τ)

t− τ
dτ (2.6)

where P is the Cauchy Principal Value, that has to be considered since the possibility of the
singularity when t = τ . According to [Feldman, 2011b], the mathematical integral does not give
much information of the properties, anyway the HT is a lineal operator that works as a phase shift
of π/2 to the signal being processed, this phase shift allows to create the conjugate of the signal
and create the analytic signal that is represented as it follows:

X(t) = x(t) + i x̃(t) (2.7)

where x̃(t) represents the HT of x(t). The amplitude of the analytic signal X(t), also known as
envelope, can be calculated using the next equation:

A(t) =
√
x(t)2 + x̃(t)2 (2.8)

The phase Φ(t) and therefore the frequency ω can both be calculated using these equations:

Φ(t) = ArcTan

(
x̃(t)

x(t)

)
(2.9)

ω =
dΦ(t)

dt
(2.10)

where ω is also known as instantaneous frequency and represents the frequency in local char-
acteristics (dφ(t)

dt
) and not global as in kernel functions. The computation of the amplitude and

instantaneous frequency of the analytic signal allows to create the Hilbert Spectrum. The Hilbert
Spectrum H(ω, t) is a distribution of time-frequency-energy that can be represented in a 3D plot
for the signal analysis, and it is the equivalent to the Fourier spectrogram; but, because the Hilbert
Spectrum is constructed after the EMD and the properties of the analytic signal that are based in
local properties, there is no restriction in time resolution and frequency resolution, this resolution
varies only with the sampling frequency used in the data acquisition.
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2.3.2 Bearing Fault Frequencies

Bearings are one of the most important components in rotary machinery, in previous section tech-
niques used to extract bearing fault features were introduced.

One of the oldest records of investigations to model the bearing fault frequencies was made by
McFadden and Smith, they presented their work ”model for vibrations produced by single point
defects in rolling element bearings” where based on the geometry of the bearing and the rotation
frequency of the shaft they developed and proposed the most known and accepted equations for
bearing fault detection [McFadden and Smith, 1984].

Figure 2.4: Bearing parts [SKF, 2017]

As it can be observed in Fig. 2.4 bearings
are composed of four main parts: outer race,
inner race, rolling elements and the cage. The
interaction forces between these parts can pro-
duce wear and defects in any of these parts, the
four possible defects in bearings are Inner Race
(IR) defect, Outer Race (OR) defect, Rolling
Element (RE) or Ball defect, and Cage defect.

McFadden and Smith proposed equations
to calculate bearing fault frequencies are:

BPFO =
nfr
2

(
1− d

D
cos(φ)

)
(2.11)

BPFI =
nfr
2

(
1 +

d

D
cos(φ)

)
(2.12)

FTF =
fr
2

(
1− d

D
cos(φ)

)
(2.13)

BSF/RSF =
D

2d

[
1−

(
d

D
cos(φ)

)2
]

(2.14)

whereBPFO is Ball Pass Frequency of Outer Race, BPFI is Ball Pass Frequency of Inner Race,
FTF is Fundamental Train Frequency, and BSF/RSF is Ball/Roller Spin Frequency, n is the
number of rolling elements, fr is the rotating frequency of the shaft, d is the ball diameter, D the
pitch diameter and φ is the contact angle of the bearing, Fig. 2.5.
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Figure 2.5: Pitch (D) and rolling element diameter (d), and contact angle (φ) [SKF, 2017]

When bearing faults are being diagnosed, previous knowledge of the bearing characteristics
as observed in the previous formulas is crucial, this can be a serious problem when trying to
implement a bearing monitoring system in rotating machines, because sometimes there is not easy
access to the bearings, and some manufacturing companies treat this information as confidential
because they are part of the design of the machine.

Between the four type of bearing faults, the cage fault is not as common as IR, OR and RE
faults, it can be observed that in Table 2.1 no one implemented the methodology for cage fault. In
the remaining three type of faults, RE fault is the most difficult to detect when the rolling element
is a ball because each ball has 6 degrees of freedom and factors like contact angle, friction and
centrifugal forces lead the ball to have complex motions as rolling and sliding motions at the same
time [Niu et al., 2017]. This complex dynamic of the ball modifies the frequency of the ball defect,
because when this effect occurs, produces that the defect may or may not make contact with both
races of the bearing when rotating. Also, it is known that rotation speed can fluctuate, increasing
the variation of the frequencies not only for RE fault, but for all types fault, this is an important
consideration when performing a spectrum inspection is a variation of 1−2 % [Randall and Antoni,
2011].

Bearing deterioration is progressive, spectrum can be divided in four zones that help to identify
the bearing condition:

• Zone A: in this zone rotating frequency and some harmonics can be found.

• Zone B: belongs to the frequencies calculated for bearing faults.

• Zone C: natural frequencies of the system.

• Zone D: High Frequency Detection (HFD) zone.
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Bearing deterioration can be divided in four stages, the first stage is when a bearing begin to
show the minimum wear, when this occurs in zone D, which correspond to ultrasonic frequencies
(superior to 20 kHz), components begin to slightly increase in amplitude. When bearings are in
stage 2 and begin to develop minimum pits, sidebands in zone C appear, and amplitudes in zone
D may double form previous condition. When bearings are in stage 3 pits become bigger and
components in zone B appear for the first time while components from previous stages increase,
and finally in stage 4 the bearing pits combine creating rough tracks, and in the spectrum frequency
components merge with the defect frequencies producing noise in that zone, and even in zone A
rotation frequency component increases. Some studies indicate that by the end of the third stage
the remaining bearing life is about 1 hour or 1 % of its average life [Scheffer and Girdha, 2004],
this indicates that if a bearing component is found in zone B the machine must be stopped. For
this reason it is recommended to detect bearing faults when they appear in zones C or D, while in
zone D different phenomena can increase the amplitude of the components and complicates fault
identifications, zone C allows to detect faults when they are incipient. In zone C defect signals are
modulated in the natural frequency zone of the system and Envelope spectrum is essential to detect
faults in this zone.

Figure 2.6: This figure shows the components that can be found in Stage 1: first wear indicator,
Stage 2: incipient fault, Stage 3: fault condition, and Stage 4: broken condition [Scheffer and

Girdha, 2004]



Chapter 3

Proposal

A methodology based on the HHT was developed to detect IR, OR, and RE faults in bearings. The
HHT has been used for bearing fault detection in many occasions and there have always been a
discussion of which IMF is the best to make a prognosis. The proposed methodology uses statistic
techniques to select the best two IMFs to be analyzed.

3.1 Proposed Methodology

The methodology can be implemented by following the steps in the methodology flowchart, Fig.
3.1.

3.1. Signal Acquisition

The signal must be acquired following the recommendations of sensor specifications, sensor loca-
tion, sampling frequency, and so on, Appendix D.

Two of the requirements for bearing fault monitoring systems are low computational time and
good visualization to identify the bearing fault components. While increasing the window size of
the analyzed signal increases the spectrum resolution, it also increases the computational time of
the EMD. To achieve a balance in computational time and good spectrum resolution, an analysis
for each problem was made in Appendix B. The analysis of computational time was made based
on the mean computational time of the EMD applied to different window sizes of one, five, and
ten revolutions. This analysis was made for 16 signals from CWRU, and 9 signals of MFPT so-
ciety with different fault conditions (Normal, OR, IR, and RE). The mean computational time of
five revolutions reached up to 10.6 times the mean computational of one revolution, and the mean
computational of ten revolutions reached up to 30 times the mean computational of one revolution,
where the expected was five and ten times the mean computational time of one revolution respec-
tively. No direct relation was found between window size and computational time; however, the

29
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Figure 3.1: Proposed methodology for bearing faults detection
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computational time increases more than the expected and suggest to reduce the window size as
possible.

The analysis of resolution was made based on different window sizes, the frequency factors
for the expected fault frequencies, and the sample frequency of the CWRU and MFPT society
databases. The objective of this analysis was to avoid that one harmonic of the shaft speed and the
frequency of any fault was represented for the same peak in the spectrum. It was determined that
a minimum five revolutions of the signal produce good resolution in the spectrum.

Based on the analysis of computational time and spectrum resolution, it was determined that
five revolutions of the shaft are the optimum for the analysis. However, if greater spectrum res-
olution is needed, the equations to calculate the optimum window size are provided in Appendix
B.

3.2. Signal Decomposition

When vibration signals are recorded, noise from the transmission path and information produced
by other components are embedded in the signal. The EMD uses the sifting process to compute the
IMFs with different frequency bands information and isolate bearing fault information. At the same
time, the sifting uses the standard deviation as a criterion to stop the process and guarantee that
the IMFs retain enough physical sense of both amplitude and frequency modulations. However,
in literature from the EMD the end effect phenomena produced by the spline (cubic interpolation)
used in the sifting has been reported. This end effect introduces slight errors in the extremes of
the IMFs that increase as the level of decomposition increases, causing loss of information and
physical sense in the IMFs that is not detected with the SD criterion in the sifting process. This
phenomena is deceiving for the method, because it can cause an increase in the computed statistics
even though the IMFs do not have fault information.

Nevertheless, it was observed that most of the times the fault information can be found within
the first three IMFs, and in the fourth in rare events. To avoid the components with end defects and
still keep the most meaningful components, the EMD is stopped after the fourth IMF is obtained,
Step 2.1 in Fig. 3.1.

3.3. Intrinsic Mode Function Selection and Signal Reconstruction

At this point the most reliable IMFs are saved; but, the IMFs with bearing fault information have
not been identified. Two important characteristics of fault signals are impulsiveness and amplitude,
these features can be measured using statistical parameters. For this reason, this research studied
a total of 17 statistical parameters where 6 of them are amplitude measurements, 8 are distribution
measurements and 3 are the combinations of amplitude and distribution measurements, Appendix
C.
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The objective of this analysis was to identify which parameters can represent the characteristics
of faulty components to use them as an indicator for the selection of the IMFs with fault informa-
tion. The analysis consisted in the comparison of the amplitude of the 17 statistical parameters
for the IMFs obtained from the EMD from a Normal condition signal, against the amplitude of
the statistical parameters for the IMFs produced for faulty signals, both with window size of five
revolutions. A previous Envelope spectrum analysis was made for every component to determine
which had the fault information, and changes in amplitude were expected for those IMFs. A sec-
ond requirement for statistical parameters was their stability to window size changes, for this test
the statistical parameters were computed for every IMF as well for the 90%, 80%, and 70% of
the IMFs. To achieve this, symmetric cuts were made in the extremes, e.g. for 90% of the IMF
5% of each extreme was cut. After an extensive analysis it was determined that the KR (Kurtosis
x RMS) is the best parameter to represent the amplitude and impulsiveness of faulty signals from
bearings. Also, as a result of this analysis it was identified that the end effect can trigger the values
of statistical parameters, and helped to limit the EMD to four IMFs to avoid errors.

The KR can be directly computed by the use of one equation; however, the RMS and Kurtosis
can be useful on their own. In this methodology, first the Kurtosis and RMS are computed individ-
ually for each IMF using eqns. (3.1) and (3.2) respectively, (Step 3.1 in Fig. 3.1), and then the KR
can be calculated with eqn. (3.3), (Step 3.2).

X(t)RMS =

√√√√ 1

N

N∑
n=1

y2n (3.1)

X(t)Kurtosis =
1

N

N∑
n=1

(
yn − µ
σ

)4

(3.2)

X(t)KR = X(t)Kurtosis X(t)RMS (3.3)

whereN is the number of data points of the signal, yn is the amplitude of the nth data point, µ is the
mean of the signal, σ is the standard deviation of the signal, X(t)RMS is the intensity of the signal,
X(t)Kurtosis is the deviation of the signal’s amplitude distribution from Gaussian (Kurtosis = 3

for Gaussian distribution), and X(t)KR represent the intensity and distribution of the signal.
The fault information might be spread in more than one component, the reconstruction of one

signal using all the components with fault information is possible, but not recommendable. Some
IMFs have fault information, but they also have high level of noise, a reconstruction using these
components can introduce a lot of noise that can make difficult the diagnosis. For this reason in
this methodology the reconstruction of the signal is limited to only two components.

To determine which components have the most useful information the two IMFs with the
largest KR amplitude are selected and used to reconstruct the signal, (Step 3.3). This selection
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is made automatically by programming the methodology. In Appendix F the codes for the imple-
mentation of the methodology are given.

The EMD is based on trigonometric polynomials, and the original signal can be reconstructed
by summing all the IMFs. To reconstruct the signal without noise, the two selected components
are summed, (Step 3.4).

3.4. Envelope spectrum

Faults can be identified in the different zones of the spectrum, 2.6. Incipient faults signals are
modulated in resonance frequencies of the system, to demodulate the bearing faults the Envelope
spectrum is used. For this reason, the envelope of the reconstructed signal is computed as described
in subsection 2.3.1.

When the IMFs satisfy the SD condition in the sifting process they do not need any prepro-
cessing, but when the signal is reconstructed and the envelope is computed a trend (Mean trend)
or Direct Current Component (DCC) is introduced in the signal. This causes the FT to interpret
it as a component with infinite period which is reflected as a peak in frequency of 0 Hz that make
difficult a diagnosis. Since the DCC is present, the next step is to remove it, Step 4.1. The DCC
can be removed with the eqn. (3.4) by removing the Mean value of the signal [Lei, 2016]:

X(t) = X(t)−X(t)Mean (3.4)

where X(t) is the signal, and X(t)Mean is the Mean of the signal computed with equation C.7
(Appendix C). After the DCC is removed the FFT is computed and plotted to make the diagnosis,
Step 4.2.

3.5. Diagnosis

In previous steps, noise and other useless frequencies were removed to facilitate the analysis. With
the use of the KR the components more likely to present fault frequencies were selected. Now,
based on the fault frequency values OR (BPFO), IR (BPFI), Cage (FTF), and RE (BSF/RSF), a
visual inspection of the Envelope spectrum of the reconstructed signal is made. The analysis of
the Envelope spectrum for bearing fault detection consists on the identification of bearing fault
frequencies, their harmonics, and sometimes sidebands for some fault types (Table 3.1, and Fig.
3.2), Step 5.1. When searching for fault components, a possible variation of 1−2% in the computed
fault frequencies can be expected as product of speed fluctuations [Smith and Randall, 2015].
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Table 3.1: Fault type and expected components in Envelope spectrum

Outer Race BPFO and harmonics, no sidebands

Inner Race BPFI and harmonics, sidebands spaced at fr. Harmonics of fr

Rolling Element BSF and harmonics, sidebands spaced at FTF. Harmonics of FTF

Figure 3.2: Expected components in Envelope spectrum for IR, RE, and OR faults

Finally, the diagnosis is made based on the presence of fault components in the spectrum, if
fault components are visible, it can be determined that there is a bearing fault, Step 5.2. When a
fault is identified it is recommended to confirm the result running at least other test because the
machine disassembly to replace the bearings requires specialized personnel.

3.2 Experimental Systems

The description of three different experimental systems is presented. These cases of study are
used to test the robustness of the proposed methodology as they present signals with localized
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induced defects in bearings. The first experimental system is one of the most known database
in the scientific community, it was obtained from Case Western Reserve University (CWRU), and
allows to compare new methodologies against previous investigations [CWRU, 1999] [Smith and
Randall, 2015]. The second experimental system allows access to signals of bearing faults defects
with different dimensions and speeds, the data was provided by T.Y. Wu from National Chung
Hsing University, Taiwan [Wu et al., 2016]. In the third database, provided by the Society for
Machinery Failure Prevention Technology (MFPT Society) [Society, 2013], different axial loads
were applied to the shaft, while in CWRU database they used torsional loads.

3.2.1 Case Western Reserve University (CWRU)

The experimental setup utilized by CWRU consists of a 2 HP electric motor, a torque transducer
and an encoder. The electric motor was coupled to a dynamometer to apply loads of 0, 1, 2, and 3
HP, Fig. 3.3.

Figure 3.3: Test Rig used by CWRU

Faults of 0.007, 0.014, 0.021, and 0.028 inches were seeded in RE, IR, and OR (one case per
faulty bearing) by Electro-Discharge Machining (EDM) in drive end and fan end bearings. Model
of bearings and their frequency factors can be found in Table 3.2.

Every test consisted on a faulty bearing (drive end or fan end), the motor running at speeds be-
tween 1,720 - 1,797 RPM with a load applied of 0-3 HP. Signals are recorded using accelerometers
placed in vertical position on drive and fan end locations, Fig. 3.3, with sampling frequencies of
12,000 samples/second and at 48,000 samples/second in other cases.
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Table 3.2: Frequency factors of CWRU bearings (multiple of shaft speed Hz)

Location on Test Rig Model BPFI BPFO BSF/RSF FTF

Drive End SKF6205-2RSJEM 5.4152 3.5848 4.7135 0.3983

Fan End SKF6203-2RSJEM 4.9469 3.0530 3.9874 0.3817

3.2.2 Tian-Yau Wu Experimental Setup

Experimental setup consists of an electric motor with a motor driver, the motor is coupled to a
shaft with two bearings and one encoder NA-MES-600 (800 indices/rev). The accelerometer is
connected to National Instruments Data Acquisition device (NI-DAQ) NI 9234, the rotary encoder
is connected to NI 9402, and the circuit for motor speed control is connected to NI 9401, and they
communicate with the computer using NI 9172 module, Fig. 3.4.

Figure 3.4: Connection diagram [Wu et al., 2016]

Bearing defects are produced by EDM in the RE, IR, and OR. Examples of defects are shown
in Fig. 3.5. There are two levels of defects for IR and OR: 1) slight defect with dimensions of 0.4
mm x 0.3 mm, and 2) severe defect with dimensions of 0.8 mm x 0.3 mm. The three locations
(RE, OR, IR), two levels for IR and OR, and normal condition create six classes of bearing signals.
Experiments are recorded with motor running at four speed profiles (constant speed, speed-up, and
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speed-down) between 300 - 750 RPM, and the vibration signals are recorded using a sampling
frequency of 6,400 samples/second and a total length of 5 seconds.

Figure 3.5: IR (left), RE (center), and OR (right) seeded defects [Wu et al., 2016]

Table 3.3: Frequency factors of bearing (multiple of shaft speed in Hz)

BPFI BPFO BSF/RSF FTF

6.14 3.86 4.17 0.39

3.2.3 MFPT Society Experimental Setup

The experimental system from the society for Machinery Failure Prevention Technology (MFPT)
consists in of an electric motor of 1 HP coupled to a shaft with 3 bearings (2 of them in fixed
position and other in one device that applies axial load), Fig. 3.6. The data acquisition systems
uses an analog ADXL001 accelerometer and analog-to-digital converter ADS1271 ADC. This
database includes 3 signals in normal condition and 3 OR fault condition signals with 270 lbs of
load and sampling frequency of 97,656 samples/second and a total length of 6 seconds, there are
also 7 OR and 7 IR fault condition signals with different loads applied (0 - 300 lbs) with sampling
frequency of 48,828 samples/second and a total length of 3 seconds.

Bearing faults can be observed in Fig. 3.7, and the bearing frequency factors can be found in
Table 3.4.

Table 3.4: Frequency factors of bearing (multiple of shaft speed in Hz)

BPFI BPFO BSF/RSF FTF

4.755 3.245 2.555 0.406
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Figure 3.6: MFPT Society experimental setup (top view)

Figure 3.7: IR (left) and OR (right) bearing defects [Society, 2013]

3.3 Application of the Proposed Methodology

As demonstrative examples of the implementation of the methodology, one signal of each database
is processed step by step. Finally, a comparison of the result of the proposed methodology against
the traditional Envelope spectrum, and FT is presented.

3.3.1 CWRU database

For CWRU a signal with RE defect of 21 mils and a load of 0 HP is analyzed. The signal is
classified as partially diagnosable (P).

1. Signal
The methodology suggest a total of five revolutions for the analysis. As the signal was recorded

at 1,796 RPM (29.93 Hz), the five revolutions correspond to 0.16705 seconds (T = r/fr), where
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T is the window size in seconds, r is the number of revolutions, and fr is the shaft frequency, Fig.
3.8 .
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Figure 3.8: Analyzed signal with RE fault classified as partially diagnosable (CWRU database)

2. Signal Decomposition
The signal is decomposed using the EMD to separate the fault information from noise and other

components. The EMD procedure is stopped when the fourth IMF is obtained. The corresponding
components for the analyzed signal are shown in Fig. 3.9. It can be observed that the amplitude
of the first IMF is greater than the others (around 4 times bigger for the second IMF, and up to 20
times bigger than the third IMF).
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Figure 3.9: First four components (IMFs) of RE-P (CWRU database)

3. IMF Selection and Signal Reconstruction
The next step is to compute the Kurtosis and RMS for the IMFS, Fig. 3.10. It can be observed

that the largest RMS value correspond to the first IMF, but the largest Kurtosis correspond to the
second IMF. Then, the KR for each IMF computed, and based on the KR amplitudes, the two IMFs
with largest values are selected to reconstruct the signal. For the analyzed signal, the 1st and 2nd
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components have the largest KR with values of 0.3719 and 0.1076 respectively, Fig. 3.11. It is
important to remind that the process of the selection of the two IMFs with largest KR is made
automatically in real applications by programming the methodology.

The reconstructed signal is composed by the two IMFs with most useful information for the
analysis and with less noise than the original signal, Fig. 3.12. The reconstruction is computed
using eqn. (2.5) X(t) = r +

∑N
n=1Cn, where r is the residual of the EMD, and Cn are the

IMFs. For the reconstruction, only the two selected IMFs are used. At this point noise from low
frequencies was removed to proceed with the Envelope spectrum.

# of IMF

1 2 3 4

A
m

p
lit

u
d

e

0

0.5

1

1.5

2

2.5

3

3.5

Kurtosis

0.1079
0.02934

RMS

0.02382 0.01056

3.446

2.871

2.47

3.669

Figure 3.10: Kurtosis and RMS values, where the largest RMS and Kurtosis correspond to IMF 1,
and IMF 2 respectively
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Figure 3.12: FFT spectrum of the (a) original signal and (b) the reconstructed signal with the
RE-P fault (CWRU database). The reconstructed signal removed the noise from low frequencies

to isolate the resonance frequency for the analysis

4. Envelope spectrum
The fault components are modulated in the resonance frequency, to visualize them in the spec-

trum, the Envelope spectrum is applied. First, the envelope is computed using the HT. Then, the
mean trend or DCC is removed with eqn. (3.4) X(t) = X(t) − X(t)Mean to avoid the undesired
peak in 0 Hz in the spectrum. The reconstructed signal, the envelope signal, and envelope signal
with removed DCC are shown in Figs. 3.13 and 3.14.
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Figure 3.13: Envelope of the reconstructed signal using IMFs 1 & 2 (CWRU database)
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Figure 3.14: Envelope of the first 0.02 seconds from the reconstructed signal

After the envelope of the reconstructed signal is computed and the DCC is removed; The FFT
is applied and the Envelope spectrum is plotted to make a diagnosis. To facilitate the diagnosis is
recommended to include the fault frequencies and harmonics in the Envelope spectrum, because
unlike controlled experiments, the expected fault is unpredictable.

Using the shaft speed of 29.93 Hz and the frequency factors, Table 3.2, the fault frequencies
are obtained: BPFO = 107.3050 Hz, BPFI = 162.0950 Hz, BSF/RSF = 141.0908 Hz, and FTF =
11.9224 Hz, Fig. 3.15.

5. Diagnosis
The analysis of the Envelope spectrum for the diagnosis of bearing condition consist in the

visual inspection of the spectrum and the identification of peaks in the computed fault frequencies,
their harmonics, and in some cases sidebands, Fig. 3.2. For RE faults, peaks in the BSF/RSF and in
the harmonics are expected, also sidebands spaced at Cage frequency can appear in the spectrum.
In the Envelope spectrum of the reconstructed signal, Fig. 3.15, the BSF/RSF components can
not be found; however, the BPFI and sidebands are clearly identified. The presence of these
components confirm the presence of the IR fault.

In Fig. 3.16, the results for the comparison of the proposed methodology against the traditional
Envelope spectrum and the FFT are shown. In this case, BSF/RSF components are not found in the
spectrum, but there are components from IR fault, thus, the comparison is made in between these
components. It can be observed that for the proposed methodology the BPFI and sidebands have
higher magnitude than in the results form the traditional Envelope spectrum and the FFT. Another
advantage of the methodology over the traditional Envelope spectrum and the FFT is the removal
of the DCC that appears in 0 Hz for the other results.

The difference in amplitude and the presence of other components between each other are in
terms of the effectiveness of the EMD, the use of statistical parameters (KR) for the selection of
IMFs with fault information is intended to avoid the visual inspection of the IMFs, [Tsao et al.,
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Figure 3.15: Envelope spectrum of reconstructed signal RE-P (CWRU database), the BPFI and
sidebands are predominant in the spectrum

2010] [Tsao et al., 2012]. The selection of the most significant IMFs is guarantee.
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Figure 3.16: (a) results of the proposed methodology, (b) Envelope spectrum of the original
signal, and (c) the FFT of the original signal for RE-P (CWRU database), the proposed

methodology removes the DCC (circled), and the magnitude of the IR fault components are
greater for the proposed methodology

3.3.2 Tian-Yau Wu database

For Tian-Yau Wu database, a signal with IR slight defect (0.4 x 0.3 mm) is analyzed, Fig. 3.17.

1. Signal
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First, the sample of five revolutions is made for the analysis. This signal was recorded at 7.45
Hz, the five revolutions correspond to 0.6711 seconds (T = r/fr), where T is the window size in
seconds, r is the number of revolutions, and fr is the shaft frequency.
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Figure 3.17: Analyzed signal with IR fault slight defect (Tian-Yau Wu database)

2. Signal Decomposition
The EMD is applied to decompose the signal in fault information and noise components. The

EMD procedure is stopped when the fourth IMF is obtained to avoid IMFs with the end defect.
The corresponding components for the analyzed signal are shown in Fig. 3.18. It can be observed
that the amplitude of first IMF is twice the amplitude of the second and third IMF. In the first IMF
the impulses are clearer, and there is less noise than in the others.
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Figure 3.18: First four components (IMFs) of IR slight defect signal (Tian-Yau Wu database)

3. IMF Selection and Signal Reconstruction
The next step is to compute the Kurtosis, RMS for each IMF, Fig. 3.19. It can be observed

that the first component produce the highest values of RMS and Kurtosis. The next step is to
compute the KR for each IMF. The selection of the two components with faulty information for
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the reconstruction of the signal is made based on the KR amplitudes, the 1st and 2nd components
have the largest KR with values of 2.464 and 1.125 respectively and are selected, Fig. 3.20. This
selection is made automatically by the code of the methodology, the presented images are only for
illustrative purposes.

The reconstruction is computed using eqn. (2.5). The new signal is now with the most useful
information from the original signal, Fig. 3.21. It can be observed that the noise from low fre-
quencies was removed with the methodology. This new signal is now ready to apply the Envelope
spectrum.
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Figure 3.19: Kurtosis and RMS values of the IMFs from signal with IR slight defect (Tian-Yau Wu
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Figure 3.21: FFT spectrum of the (a) original signal and (b) the reconstructed signal with the IR
slight defect (Tian-Yau Wu database). In the reconstructed signal, noise from low frequencies was

removed to isolate the resonance frequency for the analysis

4. Envelope spectrum
First, the envelope is computed using the HT to demodulate the faults. Then, the mean trend

or DCC is removed with eqn. (3.4) to avoid the undesired peak in 0 Hz in the spectrum. The
reconstructed signal, the envelope signal, and envelope signal with removed DCC are shown in
Figs. 3.22 and 3.23.
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Figure 3.22: Envelope of the reconstructed signal using IMFs 1 & 2 (Tian-Yau Wu database)
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Figure 3.23: Envelope for seconds 0.07 to 0.15 of the IR slight defect reconstructed signal
(Tian-Yau Wu database)

The next step is to apply FFT to the envelope signal with the removed DCC to make the diag-
nosis. Using the shaft speed of 7.45 Hz and the frequency factors, Table 3.3, the fault frequencies
are obtained: BPFO = 28.757 Hz, BPFI = 45.743 Hz, BSF/RSF = 31.0665 Hz, and FTF = 2.9055
Hz, Fig. 3.24

5. Diagnosis
The Envelope spectrum analysis consist in the visual inspection of the spectrum and the identi-

fication of peaks in the computed fault frequencies, their harmonics, and in some cases sidebands,
Fig. 3.2. For IR faults, peaks in the BPFI and in the harmonics are expected, also some sidebands
spaced at shaft frequency can appear in the spectrum. In Fig. 3.24, the BPFI, one harmonic and
two sidebands are visible in the spectrum, Fig. 3.24. Also, the BSF/RSF with one sideband can be
identified, which confirm that there are two faults in the bearing instead of one.

In Fig. 3.25, the comparison of the proposed methodology against the traditional Envelope
spectrum and the FFT is shown. In this case, the FFT does not detect BPFI components; the
proposed methodology and the traditional Envelope spectrum show the fault frequency and the
two sidebands. In the comparison of these two methods, it can be observed that the proposed
methodology deals correctly with the DCC. Other important peak is the shaft frequency, for the
proposed methodology this peak reduces its amplitude. For the BPFI and the first sideband there
are increases in amplitude of 12 % and 21 % respectively compared with the traditional Envelope
spectrum.
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Figure 3.24: Envelope spectrum of reconstructed signal IR slight defect (Tian-Yau Wu database),
the BPFI, BSF/RSF and sidebands are identified, this suggest multiple faults in the bearing
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Figure 3.25: (a) results of the proposed methodology, (b) Envelope spectrum of the original
signal, and (c) the FFT of the original signal for IR slight defect (Tian-Yau Wu database), the

proposed methodology increases the amplitude of the BPFI and the sidebands

3.3.3 MFPT database

For MFPT database a signal with OR defect with a load of 250 lbs is analyzed, Fig. 3.26.
1. Signal Decomposition
To compute the five revolutions for the analysis the shaft frequency is used. The signal was

recorded at 1,500 RPM (25 Hz), the five revolutions correspond to 0.2 seconds (T = r/fr), where
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T is the window size in seconds, r is the number of revolutions, and fr is the shaft frequency.
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Figure 3.26: Analyzed signal with OR fault and load of 250 lbs (MFPT database)

2. Signal Decomposition
The next step is to apply the EMD to separate the fault information from noise, and the first

four IMFs are obtained, Fig. 3.27. It can be observed that the amplitude of the first IMF is greater
than the others, but the IMF with more impulses can not be identified.
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Figure 3.27: First four components (IMFs) of OR fault 250 lbs of load (MFPT database)

3. IMF Selection and Signal Reconstruction
The next step is to compute the Kurtosis and RMS for each IMF, Fig. 3.28. The highest RMS is

0.6363 and correspond to the first IMF, the highest Kurtosis is 8.599 and correspond to the second
IMF, this suggest that the second IMF is the component with more impulses. The next step is to
compute the KR for each IMF. Then components with largest KR are selected to reconstruct the
signal, in this case the 1st and 2nd with KR values of 4.683 and 4.311 respectively are selected,
Fig. 3.29. The identification of the two IMFs with highest KR is automated by programming the
proposed methodology.
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Figure 3.29: KR values of first four components (IMFs) of OR fault and 250 lbs of load (MFPT
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The reconstructed signal is composed by the two IMFs with most useful information for the
analysis and with less noise than the original signal, Fig. 3.30. The reconstruction is computed
using eqn. (2.5). The next step is to proceed with the Envelope spectrum.

4. Envelope spectrum
To compute the Envelope spectrum, first, the envelope is computed using the HT. Then, the

mean trend or DCC is removed with eqn. (3.4) to avoid the undesired peak in 0 Hz in the spec-
trum. This step with the reconstructed signal, the envelope signal, and envelope signal with DCC
removed is shown in Figs. 3.31 and 3.32.
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Figure 3.30: FFT spectrum of the (a) original signal and (b) the reconstructed signal with the OR
fault and 250 lbs of load (MFPT database). The reconstructed signal removed the noise from low
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Figure 3.31: Envelope of the reconstructed signal using IMFs 1 & 2 (MFPT database), the DCC
removal does not affect the waveform and improves the diagnosis
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Figure 3.32: Envelope of the reconstructed signal using IMFs 1 & 2 (MFPT database), the DCC
removal does not affect the waveform and improves the diagnosis
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After the envelope of the reconstructed signal is computed and the DCC is removed; the FFT
is applied and the Envelope spectrum is plotted to make a diagnosis.

Using the shaft speed of 25 Hz and the frequency factors, Table 3.4, the fault frequencies are
obtained: BPFO = 81.125 Hz, BPFI = 118.875 Hz, BSF/RSF = 63.875 Hz, and FTF = 10.15 Hz,
Fig. 3.33.

5. Diagnosis
Finally, a visual inspection of the Envelope spectrum is made for the diagnosis. It consist in

the identification of peaks in the computed fault frequencies, their harmonics, and in some cases
sidebands, Table 3.1. For OR faults peaks in the BPFO and in the harmonics are expected. In Fig.
E.13 peaks in the BPFO and first harmonic can be identified for the analyzed signal and confirm
the presence of the OR fault in the signal.

In Fig. 3.34 the comparison of the proposed methodology against the traditional Envelope
spectrum and the FFT is shown. In this case the amplitude in the BPFO is smaller than in the
Envelope spectrum. This type of result is caused because of the EMD, when the fault information
is more than two IMFs the reconstruction does not include it completely. The fault information in
multiple in more than two IMFs can occur when there are multiple resonance frequencies of the
system, e.g. in this case there are resonance frequencies around 2,500 Hz, 6,000 Hz, 12,000 Hz,
and 15,000 Hz Fig.3.30 (a).
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Figure 3.33: Envelope spectrum of reconstructed signal from OR fault and 250 lbs of load (MFPT
database), the BPFO and one harmonic are predominant in the spectrum
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Chapter 4

Results

4.1 Introduction

This chapter is divided in three sections for each database. In each section, first, the used signals
for the validation of the methodology are presented. Finally, the methodology and results are
discussed.

4.2 CWRU database

For the validation of the proposed methodology a total of 9 signals from CWRU database were
analyzed covering the 3 types of fault, and 3 groups of signals based on the difficulty for their
diagnosis: (Y) for diagnosable signals, (P) for partially diagnosable, and (N) for no diagnosable
[Smith and Randall, 2015]. For the Y signals the fault waveform is clearly visible, Fig. 4.1 (a),
(d) and (g), for P signals the components reduced their amplitude and the waveform is hard to
distinguish, Fig. 4.1 (b), (e) and (h), and for N signal of IR the amplitude of the signal is similar to
the Y classified but is overwhelmed by noise, Fig. 4.1 (c), and for OR and RE the fault components
are as small in amplitude as the noise, Fig. 4.1 (f) and (i).
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Figure 4.1: Analyzed signals to validate the proposed methodology (CWRU database)

4.2.1 CWRU Results

To validate the use of the KR as indicator of fault information, each IMF was analyzed individually
to determine if the selection was correct. Also, the Envelope spectrum of the reconstructed signal
was analyzed to make a diagnosis. In this section only some Envelope spectrum are presented, the
remaining results can be found in Appendix E.

• IR Signals. First, for the diagnosable signal (Y) the two selected IMFs were the 1st and 2nd

components, the analysis of the four IMFs indicate that the selection was correct, for the
analysis of Envelope spectrum the fundamental frequency and harmonics are identified con-
firming that the fault is present. In the partially diagnosable signal the BPFI and harmonics
were found, but also other peaks were identified in the spectrum, Fig. 4.2. These peaks can
be interpreted as noise that makes difficult the diagnosis, but close analysis show that these
peaks correspond to sidebands spaced at shaft frequency for the BPFI. In the non diagnos-
able signal the identification of the IMFs with fault information was successful, Table 4.1.
Nevertheless, the peak in the BPFI was not identified nor the harmonics. On the other hand,
the BPFO was clearly found instead and the OR fault can be confirmed, Fig. 4.3.
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Figure 4.2: Envelope spectrum of reconstructed signal IR-P (CWRU database), sidebands of the
BPFI appear in the spectrum
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Figure 4.3: Envelope spectrum of reconstructed signal IR-N (CWRU database), the BPFI is not
identified and the BPFO has the largest amplitude in the spectrum

• OR Signals. The result of the OR fault signal classified as diagnosable can be found in Ap-
pendix E. This signal was analyzed step by step, and the BPFO and harmonics can be clearly
identified in the spectrum, which confirm the presence of fault. For the partially diagnos-
able case the BPFO was not identified neither the first harmonic, Fig. 4.4. In the Envelope
spectrum of this signal, the BPFI and three sidebands can be noticed. Also, two sidebands
spaced at +/- FTF are identified for the shaft speed frequency, the sidebands appear as an
indicator of the modulation and in this case the shaft speed impulses are being modulated by
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FTF impulses; The individual analysis of the IMFs showed that the selection of the first two
components was made correctly. However, it was observed in this analysis that the BPFO
can be identified in the second and third components. In Fig. 4.5 the Envelope spectrum
of the third IMF is presented, the BPFO, BPFI, and BSF/RSF are identified which confirm
multiple faults in the bearing. It is important to observe the amplitude of the peaks in this
spectrum (×10−3). These peaks can not be identified in the spectrum of the reconstructed
signal because the amplitude of the first IMF is much greater than the amplitude of the sec-
ond and third component.
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Figure 4.4: Envelope spectrum of reconstructed signal OR-P (CWRU database), the BPFO is not
shown and the BPFI is identified instead, and two sidebands appear for the shaft speed
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Figure 4.5: Envelope spectrum of third IMF of OR-P signal (CWRU database), the BPFO, BPFI,
and BSF/RSF can be identified, but the magnitude is small

For the non diagnosable signal the BPFO can not be identified, individual analysis of the
Envelope spectrum of each component produce the same result. In the Envelope spectrum of
the reconstructed signal only one small peak of the BPFI and two harmonics of IR fault can
be identified. The presence of these components confirm the IR fault in the bearing, but the
diagnosis is not clear because there are other peaks with greater amplitude, Fig. 4.6.
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Figure 4.6: Envelope spectrum of reconstructed signal OR-N (CWRU database), the BPFO is not
shown and the BPFI and BSF/RSF are identified instead

• RE Signals. The analysis of individual components for the diagnosable signal revealed that
the IMF selection was not made correctly for this case, the largest KR values correspond to
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the 1st and 4th IMFs. The first IMF is in fact the most reliable component, but the fourth
IMF has the end defect, which made the KR to increase and cause the wrong selection, Fig.
4.7. For the Envelope spectrum of the reconstructed signal one peak can be found in the fault
frequency, as well as the FTF and two harmonics that represent the largest components in
the spectrum. Also, a small peak in the BPFO was found, which suggest multiple fault in
the bearing, the result can be found in Appendix E. For the RE partially diagnosable signal,
the result was presented in Chapter 3. Finally, for the non diagnosable signal the BPFI is
identified again, but this time with more harmonics and sidebands, Fig. 4.8.
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which caused a wrong selection
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Contrary to expectations, in some signals labeled with one type of fault, the Envelope spectrum
of the proposed methodology revealed the presence of other types of fault. The analysis performed
to individual IMFs revealed the presence of other faults that were not visible in the spectrum of the
reconstructed signal; however, this does not mean that the reconstruction of the signal was made
incorrectly. The absence of this components is caused by the amplitude difference of the impulses
produced by the types of fault. Only one error in the IMF selection was made, this was caused by
the presence of the end defect.

4.3 Tian-Yau Wu database

For Tian-Yau Wu database 5 signals were studied considering slight and severe fault sizes for IR
and OR faults and 1 signal for RE with slight defect, Fig. 4.9 . This database disposes of recorded
signals with speed fluctuations, but as the assessment of rotating machines must be made at steady
state condition (ISO 10816-1 and ISO 17243-1) the profile of constant speed at 447 RPM was
selected [ISO, 1995] [ISO, 2014]. Fig. 4.9 also shows the expected wave-forms produced by
each type of the fault, for IR faults exponential decaying impulses are produced and are often
modulated by the shaft speed because as the IR spins the force between the defect and the rolling
element varies. The OR defect produces the same type of impulses as IR fault; but, they are not
modulated by the shaft speed because the OR is in a fixed position and the force of contact with the
RE does not vary, as a result more impulses are visible in OR fault signals; finally, the RE defect
produces softer impulses caused by the combination of the forces and dynamic of the RE.

The methodology indicates that only 5 revolutions are needed for the analysis, in Fig. 4.9 (b)
there are two unexpected peaks or sudden increases where there should be only five as in Fig.
4.9 (a) , these peaks are produced between seconds 0.38 and 0.43 and the cause will be discussed
later. In Fig. 4.9 (e) there are some impulses between seconds 0.3 and 0.4 and not correspond to
the period of the shaft speed, this phenomena also has a cause and the Envelope spectrum of the
signals will help to explain it, Fig. 4.10 and 4.12.
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Figure 4.9: Analyzed signals to validate the proposed methodology (Tian-Yau Wu database)

4.3.1 Tian-Yau Wu Results

In this section, the findings of the analyzed signals are presented. In addition to the Envelope
spectrum of the proposed methodology, an analysis of each individual IMF was made to confirm
that the selection was made correctly.

• IR Signals.

In the signal of severe fault on IR the BPFI and BSF/RSF have similar amplitude as in
slight defect, but in this case the FTF and the harmonics have the largest amplitudes in the
spectrum, Fig. 4.10. These amplitudes overwhelm other fault peaks in the spectrum, this
suggest that there is a severe fault in the Cage. When the fault is introduced in the bearing
by EDM the disassembly and reassembly of bearings is needed, this processes can introduce
the defect in the Cage. The Cage defect explain the two unexpected impulses in the signal,
Fig. 4.9 (b), as the FTF is a third of the shaft speed one impulse overlaps with the shaft
impulses and the remaining two are visible.

• OR Signals. The methodology was applied to the OR signal with slight defect and the two
first IMFs were selected. In the spectrum the BPFO does not match the peak because of the
Envelope spectrum resolution; but, the difference is less than the 2% allowed. The magnitude
of the OR peaks confirm the presence of the fault, Fig. 4.11. On the other hand, the result
of the signal with OR severe can be found in Appendix E with the implementation of the
methodology step by step.
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Figure 4.10: Envelope spectrum of reconstructed signal IR severe defect (Tian-Yau Wu database),
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is a severe Cage defect
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Figure 4.11: Envelope spectrum of reconstructed signal OR slight defect (Tian-Yau Wu database),
the BPFO does not match the peak but is between the 2% allowed

• RE Signal. After the analysis of individual IMFs from this signal, it was determined that
the selection of the first two IMFs is correct. In the Envelope spectrum the BSF/RSF appears
with two sidebands spaced at FTF as can be expected, Fig. 4.12. In the spectrum the shaft
frequency is the biggest peak, but the second is the FTF, this type of peaks on Cage frequency
appeared in the signal of IR with severe defect. As in the case of the severe IR defect signal,
the Cage impacts explain the sudden impulses in the RE signal, Fig. 4.9 (e).



64 CHAPTER 4. RESULTS

Frequency (Hz)

0 50 100 150

M
a

g
n

it
u

d
e

 (
g

)

0

0.02

0.04

0.06

0.08

BPFI BPFO
BSF/RSF

Sidebands at FTF
BSF/RSFFTF

Shaft

Speed f
r

Figure 4.12: Envelope spectrum of reconstructed signal RE slight defect (Tian-Yau Wu database),
the BSF/RSF is identified with two sidebands, and there is a large component in FTF

4.4 MFPT Society database

To validate the proposed methodology a total of 4 signals were selected from this database, two
signals with OR defect and two signals with IR fault and loads of 250 and 300 lbs in each type
of fault. Their respective waveforms can be observed in Fig. 4.13. Compared with Tian-Yau Wu
signals, the waveforms of the IR fault change and there are some small impulses, this can be caused
by the fact that there is a load applied to the shaft and perhaps the contact between the RE and the
IR are stronger than without a load.
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Figure 4.13: Analyzed signals to validate the proposed methodology (MFPT database)
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4.4.1 MFPT Society Results

The results of the proposed methodology for the analyzed signals are presented. Also, the Envelope
spectrum of the first four IMFs was made to determine if the selection of the IMFs to reconstruct
the signal was correct.

• IR Signals. The analysis of individual IMFs for both IR defect signals revealed that there
is fault information in all of the IMFs. However, the 2nd and 4th are the most optimum
for the reconstruction of the signal, and the selection was made correctly. For both Envelope
spectrum, the BPFI with sidebands and harmonics were identified, the amplitude of the BPFI
does not present a substantial increase when the load is increased from 250 to 300 lbs. These
results can be found in Appedix E. In Fig. 4.14, the comparison of the methodology against
the traditional Envelope spectrum, and the FFT is shown. It can be observed that when the
fault information is divided in more than two IMFs and the reconstruction of the signal is
made only with two IMFs there is leakage of information.
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Figure 4.14: (a) results of the proposed methodology, (b) Envelope spectrum of the original
signal, and (c) the FFT of the original signal for OR 300 lbs of load (MFPT database), the

amplitude in the proposed methodology decreased because the fault information is divided in
more than two IMFs

• OR Signals. The result of the proposed methodology applied step by step to the OR defect
signal with load of 250 lbs can be found in Chapter 3. For the OR defect signal with load of
300 lbs, the Envelope spectrum show the BPFO and one harmonic. Also, unusual sidebands
spaced at fr for the BPFO were identified, somehow the impulses of the OR fault are being
modulated and therefore the sidebands appeared in the spectrum, Fig. 4.15. For this case
the fault information was divided in the four IMFs; however, the most significant IMFs were
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selected correctly. As in the IR fault case, there is leakage of information and the amplitude
of the proposed methodology is smaller than in the traditional Envelope spectrum.
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Figure 4.15: Envelope spectrum of reconstructed signal OR-300 lbs (MFPT database), small
sidebands spaced at fr are presents for BPFO

There are two important features that can be evaluated in the proposed methodology: (1) the
effectiveness of the KR for the IMF selection, and (2) the identification of fault components in
the analyzed signals. For the evaluation of the effectiveness of the IMF selection, a table was
constructed with the information of the selected IMFs, the KR values, the percentage of increase
of KR in the selected IMF, and if the IMFsselectedcorrectly. were , Table 4.1

On the other hand, for the evaluation of the identification of fault components a table that
summarizes the amplitude of the expected faults in the signal was constructed. Also, this table
includes if fault components different to the expected were found. The analyzed signals were
labelled according the difficulty of the diagnosis:

• Easy: The largest peaks coincide with the bearing fault frequencies. This does not consider
the shaft speed frequency.

• Medium: High peaks coincide with the bearing fault frequencies, but there are too many
components with similar amplitude that are associated to the shaft frequency and their har-
monics, or there are other components with high amplitude considered as noise.

• Hard: No peaks coincide with the bearing fault frequencies.

In Appendix E, the remaining results are presented1 as well as the information of the signals
necessary to reproduce these results.

1All figures and relevant information can also be found in http://bit.ly/ThesisRCG



4.4.
M

FPT
SO

C
IE

T
Y

D
A

TA
B

A
SE

67

Table 4.1: IMF selection results using KR

Database Signal
Selected

IMFs
Largest KR

2nd

Largest KR

KR Baselinea % of KR

increase

Right

IMF selectionIMF 1 IMF 2 IMF 3 IMF 4

CWRU

IR (Y) 1 and 2 3.3458 0.487 0.19 0.10 0.05 0.08 17.61 Yes

IR (P) 1 and 2 3.2232 0.2381 0.19 0.10 0.05 0.08 16.96 Yes

IR (N) 1 and 2 2.1971 1.0851 0.19 0.10 0.05 0.08 11.56 Yes

OR (Y) 1 and 2 4.6961 0.7457 0.19 0.10 0.05 0.08 24.72 Yes

OR (P) 1 and 2 0.2312 0.0851 0.19 0.10 0.05 0.08 1.22 Yes

OR (N) 1 and 2 0.1951 0.0957 0.19 0.10 0.05 0.08 1.03 Yes

RE (Y) 1 and 4 9.2034 0.7347 0.19 0.10 0.05 0.08 48.44 No

RE (P) 1 and 2 0.3719 0.1076 0.19 0.10 0.05 0.08 1.96 Yes

RE (N) 1 and 2 0.3136 0.1551 0.19 0.10 0.05 0.08 1.65 Yes

Tian-Yau

Wu

IR SL 1 and 2 2.4681 1.053 0.13 0.16 0.14 0.08 18.99 Yes

IR SE 1 and 2 3.6676 2.8158 0.13 0.16 0.14 0.08 28.21 Yes

OR SL 1 and 2 1.2209 0.6578 0.13 0.16 0.14 0.08 9.39 Yes

OR SE 1 and 2 1.2166 0.8275 0.13 0.16 0.14 0.08 9.36 Yes

RE SL 1 and 2 1.1913 0.632 0.13 0.16 0.14 0.08 9.16 Yes

MFPT

IR 250 Lbs 2 and 4 46.1927 36.15 1.05 1.38 1.47 0.97 33.47 Yes

IR 300 Lbs 2 and 4 34.2469 33.955 1.05 1.38 1.47 0.97 24.82 Yes

OR 250 Lbs 1 and 2 4.6825 4.3109 1.05 1.38 1.47 0.97 4.46 Yes

OR 300 Lbs 1 and 2 33.7207 9.04989 1.05 1.38 1.47 0.97 32.11 Yes

aKR values for normal condition signal
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Table 4.2: Bearing fault results

Database Signal Difficulty
Fault amplitude

Maximum amplitude Additional significant peaks a

Fault freq. Harmonic

CWRU

IR (Y) Easy 0.3061 0.1606 0.3107 Shaft BPFI H & SB / Shaft

IR (P) Easy 0.07886 0.03071 0.07886 (fault) BPFI H & SB / Shaft / FTF

IR (N) Easy NA NA 0.22182 BPFO BPFO / FTF

OR (Y) Easy 0.6736 0.3811 0.6736 (fault) Negligible

OR (P) Easy NA NA 0.01724 Shaft SB BPFI with H & SB / Shaft SB

OR (N) Medium NA NA 0.015 noise BPFI & H / BSF/RSF H

RE (Y) Easy 0.5461 NA 0.7393 3xFTF FTF & H / BPFO

RE (P) Easy NA 0.008 0.0323 IRSB BPFI & SB / Shaft & Shaft SB

RE (N) Easy NA 0.004 0.0237 Shaft BPFI with SB & H / Shaft

Tian-Yau Wu

IR SL Easy 0.05406 0.01995 0.133 Shaft BPFI SB / BSF/RSF & SB

IR SE Medium 0.04758 NA 0.216 FTF FTF / BSF/RSF,

OR SL Easy 0.1307 0.04285 0.1307 (fault) Negligible

OR SE Easy 0.1371 0.0824 0.1371 (fault) FTF

RE SL Easy 0.032 NA 0.082314 Shaft BSF/RSF SB / FTF

MFPT Society

IR250 Lbs Medium 0.6244 0.5279 1.236 Shaft BPFI H & SB / Shaft & H

IR 300 Lbs Medium 0.6347 0.515 1.009 Shaft BPFI H & SB / Shaft

OR 250 Lbs Easy 0.3616 0.1837 4.6825 (fault) BPFO H / BPFI

OR 300 Lbs Easy 0.7733 0.5258 33.7207 (fault) BPFO H & SB at Shaft freq.

aSB = Sidebands, H = Harmonics, SL = Slight, SE = Severe
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4.5 Statistical Parameters for IMF selection

Statistical parameters can represent the characteristics of time series like vibrations. This charac-
teristic can be exploited to identify IMFs with fault information. In this research, an analysis of 17
time domain features was made to determine which one can represent faulty signals the best.

The test consisted in analyzing the the change on amplitude of these statistical parameters from
a normal condition signal to a faulty signal. First, the normal condition signal was decomposed
using the EMD, then the 17 statistical parameters were computed for each IMF to make the com-
parison of these values against the obtained from the faulty signal. Then, the EMD was applied
to the faulty signal, and the statistical features were computed for each IMF. The next step was to
perform an Envelope spectrum analysis of the IMFs of the faulty signal to identify the component
with faulty information. After the best IMF was identified, the comparison between the values of
normal condition and fault condition was made for each statistical parameter. If the highest change
of amplitude the statistical parameter corresponded to the IMF with fault information, this change
was saved to summarize the results.

This test was applied to five signals from CWRU and MFPT databases. In Table 4.3, the result
of this analysis is presented. In the first column the 17 statistical parameters can be found, the
remaining columns correspond to the analyzed signals; for each signal the most significant IMF
can be observed. If the highest change of amplitude of the statistical parameter corresponded to
the most significant IMF, that value is included in the table. On the other hand, a NA was given
if the largest change of amplitude for the statistical parameters that did not correspond to the IMF
with faulty information.

From the 17 parameters, only the Kurtosis, and KR identified the most significant IMF in the
five cases. It can be observed that the KR produces higher changes of amplitude in the comparison
with normal condition, for this reason KR was selected to automate the IMF selection. Another
reason to choose the KR over the Kurtosis is that Kurtosis only represents the impulsiveness from
signals, while KR represents impulsiveness and the signal amplitude related to the resonance fre-
quency of the system.



70 CHAPTER 4. RESULTS

Table 4.3: Statistical parameters and their variation based on normal condition signals. Only
Kurtosis and RMS identified the most significant IMF in each signal.

Parameter

CWRU MFPT

IR 0 HP IR 3 HP OR 270 Lbs IR 0 Lbs IR 100 Lbs

IMF 1 a IMF 1 IMF 4 IMF 1 IMF 1

RMS 4.4 4.56 1.1 3.2 NA

Kurtosis 1.63 1.67 2.1 20.79 11.05

KR 7.16 7.6 2.31 66.57 22.33

Shannon Entropy NA NA NA -17 NA

Peak 7.1 6.82 NA 12.1 NA

Pk-Pk 6.73 6.55 NA 11.99 NA

CF 1.59 1.49 NA 3.78 2.69

Skewness NA NA NA NA NA

Variance 19.29 20.84 1.2 10.25 NA

SD 4.39 4.57 1.1 3.2 NA

Mean NA NA NA 4.6 NA

Root 4.27 4.34 NA 1.43 -11.46

Clearance 1.64 NA NA 8.44 1.22

Shape 1.04 NA 1.13 1.75 NA

Impulse 1.65 NA NA 6.6 NA

RMSxVariance 84.7 95.11 1.32 32.85 NA

RMSxSD 19.28 20.83 1.2 10.25 NA

aThese are the most significant IMFs of the signal



Chapter 5

Conclusions

Vibration analysis is of great importance for Condition Based Maintenance, it allows to capture
information from components that are not easy to access. The challenge in vibration analysis
resides in the extraction of bearings signature information from the signal.

In this work, a methodology based on HHT for bearing fault detection is proposed, this method-
ology allows to detect faults in incipient stages. First, the vibration signal is decomposed using the
EMD, after the first four IMFs are generated, the two IMFs with most fault information are used
to reconstruct the signal without noise. To identify the most useful IMFs the KR is computed
for the four IMFs and the two with highest amplitudes are used to reconstruct the signal. After
the signal is reconstructed, the Envelope spectrum is used to extract the bearing fault information
from the resonance frequency of the system and make a diagnosis. The Envelope spectrum allows
to identify bearing faults in incipient stages since vibration produced by these types of faults are
modulated in the resonance frequencies.

For the 18 analyzed signals good results were obtained, in 14 signals the identification of fault
components can be easily made, for these signals the fault components were the largest in the
spectrum. For the remaining four signals, the fault identification was possible; but, there were
peaks with similar amplitude of the fault components. A disadvantage was found when the EMD
produces more than two IMFs with fault information. As the signal reconstruction is limited to
only two IMFs, the reconstructed signal produces a spectrum with smaller amplitude than the
traditional Envelope spectrum.

It is important to mention that the effectiveness of the Empirical Mode Decomposition is not
improved with this methodology, the key element of the proposed methodology is the automation
of the IMF selection. For the 18 presented cases where two IMFs were selected for each signal,
only one IMF was wrongly selected. This IMF had the end defect produced in the sifting pro-
cess of the EMD. Unfortunately, statistical parameters are sensitive to these defects, causing their
amplitudes to increase leading to a wrong selection.
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5.1 Contributions

With the creation of the Hilbert-Huang Transform and the EMD, the controversy of the selection
of useful Intrinsic Mode Functions emerged. Some authors have proposed to perform visual in-
spection of the spectrum of the IMFs to detect the component with information from the resonance
frequency of the system [Tsao et al., 2010] [Tsao et al., 2010]; but, this approach can be time
consuming, while other authors limit the analysis to one or two IMFs [Dubey and Agrawal, 2015],
and they do not necessarily present the fault information.

In this research, a methodology is proposed to automate the IMF selection. The selection
is based on the KR that can identify faulty IMFs from the resonance frequency of the system;
therefore this methodology is useful to detect bearing faults in incipient stages. The KR values for
the most useful IMFs are higher than for the others, and the identification of these IMFs can be
programmed to avoid the visual inspection and obtain results in seconds.

5.2 Future work

This investigation made a contribution for the automation of bearing fault detection. In addition to
this work some opportunities have been found:

• EMD has proven to be a reliable tool for signal analysis; however further research is neces-
sary to determine a parameter to measure end defects and improve the methodology.

• This methodology can be used to create a hybrid methodology by its combination with
Wavelet Transform. The EMD and statistical features can be used to filter the information
from the resonance frequency band of the system and the WT can be used to eliminate noise
from the reconstructed signal.

• The addition and implementation of intelligent methods as Neural Networks, Support Vector
Machine, and Deep Learning can be made to classify the type of fault without a visual
inspection.
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Appendix A

Acronyms and Variables Descriptions

Table A.1: Acronyms Definitions

Acronyms Description Acronyms Description

ANN Artificial Neural Network BPFI Ball Pass Frequency of Inner Race

BPFO Ball Pass Frequency of Outer Race BSF Ball Spin Frequency

CF Crest Factor CBM Condition Based Maintenance

CMF Combined Mode Function CWT Continuous Wavelet Transform

CWRU Case Western Reserve University DCC Direct Current Component

DQ Direct Quadrature DMI Deficiency Mutual Information

DWT Discrete Wavelet Transform EEMD Ensemble Empirical Mode Decomposition

eHHT enhanced Hilbert-Huang Transform EDM Electro-discharge Machining

ELM Extreme Learning Machine EMD Empirical Mode Decomposition

FFT Fast Fourier Transform FTF Fundamental Train Frequency

HT Hilbert Transform HHT Hilbert Huang Transform

IMF Intrinsic Mode Function IR Inner Race

MKD Maximum Kurtosis Deconvolution MED Minimum Entropy Deconvolution

MFPT Machinery Fault Prevention Technology NADA Noise Assisted Data Analysis

NCM Normalized Correlation Measure NHHT Normalized Hilbert-Huang Transform

OR Outer Race PSD Power Spectral Density

RE Rolling Element RSF Roller Spin Frequency

SD Standard Deviation SGWT Second Generation Wavelet Transform

STFT Short Time Fourier Transform SVM Support Vector Machine

WMRA Wavelet Multi-Resolution Analysis WPT Wavelet Packet Transform
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Table A.1: Acronyms Definitions (Continued)

Acronyms Description Acronyms Description

WT Wavelet Transform WVD Wigner-Ville Distribution

Table A.2: Variables Definitions

Variables Description Variables Description

A(t) Signal envelope Cn Scales of WT/ IMFs of HHT

d RE diameter D Pitch diameter

Fq Nyquist frequency fr Shaft frequency

Fs Sampling frequency F (t) FT of the signal

µ Mean value N # of data points

P Cauchy Principal Value Pn Probability of one event to occur

r Revolutions / residual in EMD s Scaling parameter of WT

t Time T Window size in seconds

τ Period X(t) Signal

x̃(t) HT of the signal yn Amplitude of nth data point

e−iωt Kernel function of FT ω frequency

φ Angle of contact in bearings Φ(t) Phase of the signal

ψ Mother Wavelet σ Standard Deviation



Appendix B

Window Size Selection

Some of the monitoring system requirements for bearing fault detection are low computational time and good spec-
trum visualization (spectrum resolution) to identify bearing fault components. The proposed methodology includes
two methods, the Hilbert-Huang transform (HHT) and the Envelope spectrum. The HHT is known by its adaptive
method Empirical Mode Decomposition (EMD), an iterative process that can demand elevated computational time if
the analyzed window size or signal length is inappropriate (too large or too many data points) because of an over-
sampling frequency selection, on the other hand, the Envelope spectrum resolution is affected by the signal length
(the larger the better spectrum resolution), and the sampling frequency that defines the maximum frequency in the
spectrum. The solution for one problem worsen the other problem, e.g. if a small sampling frequency is selected
the computational time will be reduced, but the spectrum may not include fault frequencies or the resolution in the
spectrum may not be appropriate to distinguish fault frequencies. This section is dedicated to analyze this problem
and find an optimum window size and sampling frequency for the methodology.

Tests for EMD computational time and Envelope spectrum resolution are based on revolutions of the spindle, and
the optimum window selection is given in revolutions.

B.1 CWRU Test
This data base includes signals with speed fluctuations from 1,720 - 1,797 RPM or 28.66 - 29.95 Hz. As tests are
based on revolutions and the signals are recorded in time units, to guarantee that 1 revolution is covered in all signals,
the period of the minimum speed was used as 1 revolution (T = 1/f = 1/28.66 = 0.0349 seconds). The signals
length used in these tests is about 10 seconds with sampling frequency Fs = 12, 000 samples/second, this makes
Fs/fr = 12, 000/28.66 = 418 data points/revolution.

B.1.1 EMD Computational Time
In this analysis, a total of 16 signals corresponding to 4 bearing conditions (Normal, IR, OR, and RE Fault) under 4
conditions of load (0, 1, 2, 3 HP) are analyzed. For this test, the mean computational time of 20 samples of 1 revolution
(418 data points) of each signal is compared against mean computational times of 20 samples of 5 revolutions (2,090
data points) and 20 samples of 10 revolutions (4,180 data points) to determine the proper window. The samples of the
signal are selected every 5 seconds starting in second 0.001, i.e. sample 2 begins on second 0.501.

In Tables B.1, B.2, B.3, and B.4 can be found the name of the file, load for the specific test, the mean time of the
EMD for the test Time r (where r is the number of revolutions), and the SD of the mean times of the 20 samples.
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It is observed in Table B.1 for Normal condition that computation time of the EMD increases as the number
of revolutions (data points) increase, and not only the time but their variability. An interesting comparison is the
mean time of 1 revolution against 5 and 10 revolutions, even though 5 revolutions means 5 times the window size of
1 revolution the time does not increase 5 times, it only increases around 2.5 times, and 4.8 times for 10 revolutions,
which means that 418 data points are processed in approximately half of the time. The same behaviour can be observed
for IR and RE faults condition times (Tables B.2 and B.4), but there is an exception in Table B.3 for OR fault condition
times. This does not allow to determine a direct relation between window size and expected time.

Table B.1: Mean computational times (s) for 1, 5, and 10 revolutions of CWRU Normal condition
signals

Normal Condition

File Load Time 1 SD 1 Time 5 SD 5 Time 10 SD 10

X097 0 0.0562 0.0111 0.1722 0.0423 0.3508 0.1068

X098 1 0.0697 0.0157 0.165 0.0365 0.3153 0.0888

X099 2 0.0656 0.0137 0.1575 0.0435 0.2644 0.0585

X100 3 0.0563 0.0085 0.1315 0.0298 0.2652 0.0606

Mean 0.06195 0.012546 0.15655 0.038412 0.298925 0.081219

Increasing in computational time

compared with 1 revolution
2.52704 4.82526

Table B.2: Mean computational times (s) for 1, 5, and 10 revolutions of CWRU IR fault condition
signals

Inner Race Fault 0.007 in

File Load Time 1 SD 1 Time 5 SD 5 Time 10 SD 10

X105 0 0.0704 0.0138 0.1698 0.0489 0.4403 0.3048

X106 1 0.0718 0.0119 0.2078 0.1466 0.4342 0.1811

X107 2 0.0766 0.0148 0.2163 0.0995 0.3319 0.102

X108 3 0.0705 0.0136 0.1719 0.0268 0.3736 0.1135

Mean 0.072325 0.013565 0.19145 0.092873 0.395 0.192994

Increasing in computational time

compared with 1 revolution
2.64708 5.46150
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Table B.3: Mean computational times (s) for 1, 5, and 10 revolutions of CWRU OR fault condition
signals

Outer Race Fault 0.007 in

File Load Time 1 SD 1 Time 5 SD 5 Time 10 SD 10

X130 0 0.0694 0.0152 0.3064 0.4384 1.5099 1.5832

X131 1 0.0683 0.0179 0.2645 0.1795 1.3393 1.7028

X132 2 0.0883 0.0566 0.2846 0.113 1.363 2.2271

X133 3 0.0711 0.0185 0.2291 0.1086 0.4721 0.18

Mean 0.074275 0.032005 0.27115 0.249488 1.171075 1.612329

Increasing in computational time

compared with 1 revolution
3.65062 15.76675

Table B.4: Mean computational times (s) for 1, 5, and 10 revolutions of CWRU RE fault condition
signals

Rolling Element Fault 0.007 in

File Load Time 1 SD 1 Time 5 SD 5 Time 10 SD 10

X048 0 0.0745 0.0231 0.1486 0.039 0.3317 0.0975

X049 1 0.0779 0.0241 0.1585 0.0463 0.3007 0.0748

X050 2 0.0682 0.0134 0.1632 0.038 0.3027 0.1206

X051 3 0.0759 0.0349 0.1788 0.0446 0.2826 0.0783

Mean 0.074125 0.02506 0.162275 0.042124 0.304425 0.094573

Increasing in computational time

compared with 1 revolution
2.18921 4.10691

B.1.2 Envelope Spectrum Resolution
Envelope spectrum resolution is crucial to identify fault frequency components. The expected frequency resolution
is affected by the sample frequency and the length of the processed signal (Sinha p. 151) [Sinha, 2014]. Based on
Sinha’s example a new table (Table B.5) for CWRU data is constructed to explore the expected maximum frequency
and the Envelope spectrum resolution when different window sizes are processed.
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Table B.5: CWRU Envelope spectrum resolution based on shaft revolutions r and Fs = 12, 000

samples/second

r N dt = 1/Fs T = Ndt df = 1/T Fq = Fs/2 nf = N/2

1 418 8.33333E-05 0.03483333 28.708134 6,000 209

2 836 8.33333E-05 0.06966667 14.354067 6,000 418

3 1,254 8.33333E-05 0.1045 9.56937799 6,000 627

4 1,672 8.33333E-05 0.13933333 7.17703349 6,000 836

5 2,090 8.33333E-05 0.17416667 5.74162679 6,000 1045

6 2,508 8.33333E-05 0.209 4.784689 6,000 1254

7 2,926 8.33333E-05 0.24383333 4.101162 6,000 1463

8 3,344 8.33333E-05 0.27866667 3.58851675 6,000 1672

9 3,762 8.33333E-05 0.3135 3.18979266 6,000 1881

10 4,180 8.33333E-05 0.34833333 2.8708134 6,000 2090

Where r is the window size in revolutions, N is the number of data points, dt the time between two samples,
T is the window size in seconds, df is the expected Envelope spectrum resolution, Fq is maximum frequency in the
spectrum based on Nyquist frequency, and nf is the number of lines in the spectrum plot.

Table B.6: CWRU expected fault frequencies (Hz) using fr = 28.66 Hz

FTF/CAGE BSF/RSF/RE BPFO/OR BPFI/IR

11.415278 67.55162 102.7461 155.1939

Based on tables 3.2, 3.3, and 3.4 it is observed that frequency factors are not integer multiples of the shaft speed,
and the identification of the fundamental fault frequencies in the spectrum should not be affected by the shaft frequency,
however its first harmonic might be close to a harmonic of the speed. i.e. BPFO frequency (Table B.6) is 102.7461
Hz and its first harmonic is 205.4922 Hz, and the 6th harmonic of the shaft speed is 28.66Hz x 7 = 200.62 Hz with a
difference of 4.8722 Hz that could lead to one peak in the spectrum to represent both one harmonic of the shaft speed
and one harmonic of the BPFO if the resolution is not adequate to avoid that problem the resolution should be at least
the half (2.4361 Hz). Using the formulas in the frequency resolution table (Table B.5) based on the revolutions and
data points of CWRU we can select a minimum of 12 revolutions (df = 2.3923 Hz) for the analysis. On the other
hand, if the identification of the first harmonic is not relevant for the analysis a window size of 5 revolutions is the
optimum to reduce the EMD computational time and obtain good Envelope spectrum resolution.

It can be observed in figure B.1 that fault can not be detected and the fault component can be misinterpreted when
the window size for the analysis is not chosen properly (1 revolution in this case), and in figure B.2 the OR fault
frequency can be clearly identified in 107.3 Hz because the proper window selection.
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Figure B.1: The upper plot shows 1 revolution (0.0349 s) of the OR fault signal and the inferior
plot shows the corresponding Envelope spectrum from CWRU data
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Figure B.2: The plot on the top shows 5 revolutions (0.1745 s) of the OR fault signal and the
bottom plot shows the corresponding Envelope spectrum from CWRU data

Since CWRU signals were acquired on a controlled environment and are easy to analyze. The previous analysis is
repeated for MFPT database, which has noisy signals as in real applications and to confirm the previous observations.

B.2 MFPT Test
This data base includes signals with speed of 1,500 RPM or 25 Hz. As tests are based on revolutions and the signals
are recorded in time units, the period of 1 revolution (T = 1/f = 1/25 = 0.04 seconds). The signals length used in
these tests is about 6 seconds or Normal and OR fault condition at Fs = 97, 656 samples/second, and 3 seconds for
IR fault condition at Fs = 48, 828 samples/second. This makes Fs/fr = 97, 656/25 = 3, 906 data points/revolution
for Normal and OR fault condition, and Fs/fr = 48, 828/25 = 1, 953 data points/revolution for IR fault condition.
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B.2.1 EMD Computational Time
In this analysis, a total of 9 signals corresponding to 3 bearing conditions (Normal, IR, and OR Fault). For this test, the
mean computational time of 10 samples of 1 revolution (3,906 data points) of each signal is compared against mean
computational times of 10 samples of 5 revolutions (19,530 data points) and 10 samples of 10 revolutions (39,060
data points) for Normal and OR fault condition signals to determine the proper window. * IR fault signals are only 3
seconds, for this reason 6 samples are used in this case. The samples of the signal are selected every 5 seconds starting
in second 0.001, i.e. sample 2 begins on second 0.501.

In tables B.7, B.8, and B.9 can be found the name of the file, load for the specific test, the mean time of the EMD
for the test Time r (where r is the number of revolutions), and the SD of the mean times of the 10 samples or 6 samples
for IR signals.

It is observed in table B.7 for Normal condition that computation time of the EMD increases as the number of
revolutions (data points) increase. The increase from the mean time of 1 revolution to 5 revolutions is between 6.5 to
10.6 times (Tables B.7, B.8, and B.9), and the increase from 1 to 10 revolutions is up to 30 times larger, this result
differ from the results from CWRU data and rejects any direct relation between number of revolutions and expected
processing time. This suggest that the window size must be as small as possible and meet the requirements for
spectrum frequency.

Table B.7: Mean computational times (s) for 1, 5, and 10 revolutions of MFPT Normal condition
signals

Normal Condition

File Load Time 1 SD 1 Time 5 SD 5 Time 10 SD 10

Base 1 270 lb 0.4353 0.159 3.4707 0.5928 10.6683 2.5588

Base 2 270 lb 0.4351 0.1514 3.2161 0.9817 10.454 1.5718

Base 3 270 lb 0.3869 0.2164 3.1869 0.6659 11.22 2.0743

Mean 0.4191 0.1779812 3.29123333 0.76563036 10.7807667 2.10718874

Increasing in computational time

compared with 1 revolution
7.85311 25.72361
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Table B.8: Mean computational times (s) for 1, 5, and 10 revolutions of MFPT OR fault condition
signals

Outer Race Fault

File Load Time 1 SD 1 Time 5 SD 5 Time 10 SD 10

OR 1 270 lb 0.345 0.0575 4.2508 3.2074 9.3577 1.1246

OR 2 270 lb 0.3622 0.0485 3.3075 0.7526 9.992 1.9971

OR 3 270 lb 0.3351 0.0581 3.5464 1.2015 12.3515 2.9393

Mean 0.34743333 0.05487595 3.70156667 2.02463361 10.5670667 2.15194626

Increasing in computational time

compared with 1 revolution
10.65403 30.41466

Table B.9: Mean computational times (s) for 1, 5, and 10 revolutions of MFPT IR fault condition
signals

Inner Race Fault

File Load Time 1 SD 1 Time 5 SD 5 Time 10 SD 10

IR 1 0 lb 0.181 0.0381 1.1627 0.2787 3.0197 0.5341

IR 2 50 lb 0.1965 0.043 1.1982 0.35 3.8365 0.7579

IR 3 100 lb 0.1734 0.0325 1.2657 0.2002 3.3479 0.5769

Mean 0.18363333 0.03810888 1.20886667 0.28299218 3.40136667 0.63047306

Increasing in computational time

compared with 1 revolution
6.58305 18.52260

B.2.2 Envelope Spectrum Resolution
The expected Envelope spectrum resolution for MFPT signals can be found in tables B.10 and B.11. Although the
sampling frequency is reduced by half and the Nyquist frequency is reduced by half too, it is observed that the expected
frequency resolution (df ) does not change. This indicates that a proper selection of the sample frequency can reduce
the number of data points on the selected window size (revolutions) and indeed reduce the computational time.
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Table B.10: MFPT Envelope spectrum resolution based on shaft revolutions r and Fs = 97, 656

samples/second

r N dt = 1/Fs T = Ndt df = 1/T Fq = Fs/2 nf = N/2

1 3,906 1.024E-05 0.03999754 25.0015361 48,828 1953

2 7,812 1.024E-05 0.07999508 12.500768 48,828 3906

3 11,718 1.024E-05 0.11999263 8.33384537 48,828 5859

4 15,624 1.024E-05 0.15999017 6.25038402 48,828 7812

5 19,530 1.024E-05 0.19998771 5.00030722 48,828 9765

6 23,436 1.024E-05 0.23998525 4.16692268 48,828 11718

7 27,342 1.024E-05 0.2799828 3.57164801 48,828 13671

8 31,248 1.024E-05 0.31998034 3.12519201 48,828 15624

9 35,154 1.024E-05 0.35997788 2.77794846 48,828 17577

10 39,060 1.024E-05 0.39997542 2.50015361 48,828 19530

Table B.11: MFPT Envelope spectrum resolution based on shaft revolutions r and Fs = 48, 828

samples/second

r N dt = 1/Fs T = Ndt df = 1/T Fq = Fs/2 nf = N/2

1 1,953 2.04801E-05 0.03999754 25.0015361 24,414 976.5

2 3,906 2.04801E-05 0.07999508 12.500768 24,414 1953

3 5,859 2.04801E-05 0.11999263 8.33384537 24,414 2929.5

4 7,812 2.04801E-05 0.15999017 6.25038402 24,414 3906

5 9,765 2.04801E-05 0.19998771 5.00030722 24,414 4882.5

6 11,718 2.04801E-05 0.23998525 4.16692268 24,414 5859

7 13,671 2.04801E-05 0.2799828 3.57164801 24,414 6835.5

8 15,624 2.04801E-05 0.31998034 3.12519201 24,414 7812

9 17,577 2.04801E-05 0.35997788 2.77794846 24,414 8788.5

10 19,530 2.04801E-05 0.39997542 2.50015361 24,414 9765
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Table B.12: MFPT expected fault frequencies (Hz) using fr = 25 Hz

FTF/CAGE BSF/RSF/RE BPFO/OR BPFI/IR

10.15 63.875 81.125 118.875

In agreement with the analysis of CWRU Envelope spectrum resolution, there is a consideration for the selection
of the resolution and is based on the importance of the analysis of the first harmonic of the fault frequency. i.e. BPFO
frequency (Table B.12 is 63.875 Hz and its first harmonic is 127.75 Hz, and the 5th harmonic of the shaft speed is
25 Hz x 5 = 125 Hz with a difference of 2.75 Hz that could lead to one peak in the spectrum to represent both one
harmonic of the shaft speed and the harmonic of the BPFO if the resolution is not adequate, to avoid that problem the
resolution should be at least the half (1.375 Hz). Based on formulas and data of the tables B.10 and B.11, we should
select a minimum of 19 revolutions (df = 1.31587 Hz) for the analysis. On the other hand, if the identification of the
first harmonic is not relevant for the analysis a window size of 5 revolutions is the optimum for the analysis.

It can be observed in figure B.3 that fault can not be detected and the fault component can be misinterpreted when
the window size for the analysis is not chosen properly (1 revolution in this case), and in figure B.4 the OR fault
frequency can be clearly identified in 81.125 Hz as table B.12 indicate because the proper window selection.
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Figure B.3: The upper plot shows 1 revolution (0.04 s) of the OR fault signal and the inferior plot
shows the corresponding Envelope spectrum from MFPT data
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Figure B.4: The plot on the top shows 5 revolutions (0.2 s) of the OR fault signal and the bottom
plot shows the corresponding Envelope spectrum from MFPT data

B.3 Window Size Selection Conclusions
The EMD computational time is important for online applications, nevertheless, the window selection should not be
made based on computational times because these are not constant and there is not direct relation between window
size (revolutions) and the expected time. i.e. if a window size is doubled the computational time is not necessarily
doubled, it might take less of the expected (double) computational time or the triple or more. Despite there is no
relation between number of revolutions and computational time, there is a trend of increasing of the computational
time as the number of data points increase.

As consequence, the priority for window size selection should be based in the spectrum resolution required for the
analysis, and as we observed in the Envelope spectrum resolution analysis, the number of revolutions of the window
size is the key to guarantee the desired resolution. Another observation was that a proper sampling frequency allows
to optimize the computational time.

The resolution in the spectrum can be computed by:

df =
Fs

Nr
=

Fs
Fs
fr
r

=
Fsfr
Fsr

=
fr
r

(B.1)

where Fs is the sampling frequency, N are the data points in 1 revolution, r is the number of revolutions, and fr
is the shaft frequency. Equation B.1 allows to obtain the desired resolution, yet two conclusions can be made for the
methodology:

1. Equation B.1 suggest that a reduction on the shaft frequency used in the diagnosis allows achieve good resolu-
tion using a smaller window size. To acquire reliable information the shaft frequency should not be excessively
reduced, it is recommended to use normal working speeds for the analysis.

2. Sampling frequency Fs has an impact in the maximum frequency of the spectrum (Fq = Fs/2) and the
number of data points that will be processed. The larger the number of data points the larger computation
time. It can be concluded that Fs should be as small as possible and it must be large enough to include the
information of the resonance frequency of the system.
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Bearing frequency factors are often not integer multiples of the shaft speed and do not cause problems to misin-
terpret the fundamental fault frequencies with shaft harmonics. For CWRU and MFPT a window size of 5 revolutions
was an optimum selection for the analysis and therefore recommended. If the application requires to analyze the first
harmonic of fault frequencies, the window must be adapted to the required resolution using equation B.1.





Appendix C

Statistical Parameters Selection

C.1 Statistical Parameters Selection
In Chapter 2 was shown that the IMF selection for fault diagnosis has been made in different ways. In this section, the
selection of the IMF based on several statistical parameters is proposed.

One of the objectives of the proposed methodology is to automate the selection of the Intrinsic Mode Function
(IMF) with bearing signature information. A premise is that the automation can be accomplished with the use of
statistical parameters that can reveal fault information. In this section 15 statistical parameters are compared: RMS,
Kurtosis, KR, Shannon Entropy, peak value, peak to peak value, Crest Factor, Skewness, Mean, Variance, Standard
Deviation, Root, Clearance Factor, Shape Factor, and Impulse Factor. They can be computed using the next equations:

• Root-Mean-Square (RMS) is the most common vibration indicator used as a health indicator of the machines.
RMS is a measurement of amplitude, it represents the intensity of the signal:

X(t)RMS =

√√√√ 1

N

N∑
n=1

y2n (C.1)

where N is the number of data points of the signal, yn is the amplitude of the nth data point, and X(t)RMS is
the intensity of the signal. RMS can be represented in units of acceleration, velocity or displacement, it depends
of the units of the signal being analyzed. RMS values are associated with the condition of the machine. The
standard recommends initiate the condition monitoring with the measurement of the machine working in good
condition and then periodic measurements must be recorded and saved to create historic files. The vibration
signals can be analyzed in a visual manner, identifying increasing trends that can be sudden or progressive.
For each vibration signal, the RMS value must be computed and used as parameter for condition monitoring in
agreement with the ISO standards, which include the description of the condition of the machine when taking
measurements, sensors, machine condition zones, and so on.

• Peak-value (pk) and peak to peak-value (pk-pk). Also called 0 to peak-value, is an alternative to quantify the
amplitude of signals, peak-value represents the highest amplitude value in the whole signal and is calculated
by finding the maximum. Another similar parameter is peak to peak value (pk-pk) that represents the total
amplitude of the signal and is calculated measuring the distance from the minimum value to the maximum
value.

Compared to RMS, pk and pk-pk value allows to identify the maximum forces that are occurring in the machine.
It is possible that the machine is exposed to random large amplitude vibrations; but, they are not being identified

93
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by the RMS value because these vibrations are high force but short length and they are minimized. Pk and pk-pk
values are perfect to identify collisions of the components within the machine.

• Crest Factor (CF) or peak-to-RMS-ratio is a non-dimensional parameter for any signal and it defines the
ratio of the peak value of the signal to the RMS value.

CF =
Ypeak
YRMS

(C.2)

where Ypeak represents the peak value of the signal and YRMS represents the RMS value of the signal. Crest
factor is used to analyze the maximum vibration amplitude that the machine is being subject and compare it
with RMS, since peaks values tend to be minimized in RMS.

• Kurtosis is called 4th moment and it defines the deviation of a signal’s amplitude distribution from Gaussian,
this is also a non-dimensional value and can be calculated by using the equation:

Kurtosis =
1

N

N∑
n=1

(
yn − µ
σ

)4

(C.3)

where N is number of data points, yn is the amplitude of the nth data point, µ is the mean of the signal, and σ
is the standard deviation of the signal. Kurtosis can be used to identify small impacts occurring in the machine,
a value of Kurtosis = 3 represents a normal distribution, for a machine this would indicate a machine in good
condition, when this value tend to increase means that something could be occurring.

• Skewness represents the symmetry of the data from normal distribution, Skewness con be positive or negative,
if Skewness is negative the mass of the distribution is concentrated on the right of the mean, and if Skewness is
positive the mass of the distribution is concentrated on the left of the mean. Skewness can be computed as:

X(t)Skewness =

√√√√ 1

N

N∑
n=1

y2n (C.4)

where X(t)Skewness is the Skewness of the signal X(t), N is the data length, and yn is the amplitude of the
nth value of the signal.

• KR (Kurtosis x RMS) was proposed by Peter Tse [Tse and Leung, 2010]. This parameter was used in Wavelet
transform to identify frequency bands with fault information, it combines Kurtosis as a measurement of impul-
siveness and RMS as a measurement of amplitude. KR can be computed with the equation:

X(t)KR = X(t)Kurtosis X(t)RMS (C.5)

• Shannon Entropy or Entropy is a measurement of gain of information and a measurement of disorder and
uncertainty. It was proposed by C. E. Shannon in 1948 [Shannon, 1948]. Shannon Entropy can be computed
using the equation:

X(t)Shannon = −
N∑

n=1

Pn log(Pn) (C.6)

where X(t)Shannon is the Shannon Entropy of the signal X(t), and Pn is the probability of an event to occur.
Shannon Entropy is based on the assumption that an event can take k values, and the probability for one event
to occur is the same as any other (P = 1/k). E.g. Suppose a constant signal of 1, it means that amplitude only
can take 1value (k = 1), if equation C.6 is applied the Entropy is 0 which means that the signal is simple. If
the complexity of the signal increases, the Entropy does it too.
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• Mean

X(t)Mean = µ =
1

N

N∑
n=1

yn (C.7)

where µ represents the mean value of the signal X(t).

• Standard Deviation (σ) quantifies the amount of variation or dispersion of a set of data values.

σ =

√√√√ 1

N − 1

N∑
n=1

(yn − µ)2 (C.8)

• Variance (σ2) is another measurement of dispersion of the data from its Mean value.

σ2 =
1

N − 1

N∑
n=1

(yn − µ)2 (C.9)

• Root is an alternative measurement of amplitude and energy of the signal.

X(t)Root =

(
1

N

N∑
n=1

√
|yn|

)2

(C.10)

• Clearance Factor is a measurement of data distribution similar to CF.

X(t)Clearance =
X(t)peak
X(t)Root

(C.11)

• Shape Factor is also a measurement of data distribution similar to CF.

X(t)Shape =
X(t)RMS

1
N

∑N
n=1 |yn|

(C.12)

• Impulse Factor is a measurement of data distribution similar to CF.

X(t)Impulse =
X(t)peak

1
N

∑N
n=1 |yn|

(C.13)

Clearance, Shape, and Impulse Factors are good indicators for spikiness of the sharp impulses generated in faulty
bearings [Lei, 2016].

To determine which indicator can be used to detect the IMF with fault condition, all of the statistical parameters
were applied to signals from the CWRU and MFPT data bases. The analysis consists in the computation of the 15
statistical parameters of the 12 first IMFs of the decomposition of one Normal condition signal (5 revolutions) and
their comparison against the statistical values produced in the decomposition of two faulty signals (5 revolutions). A
reported problem for the Empirical Mode Decomposition method is the end effect phenomena that introduces a slight
error in the extreme of the Intrinsic Mode Functions that increases as the number of IMFs increase [Huang et al.,
1998], for his reason the statistical parameters were computed to 100%, 90%, 80%, and 70% of the IMFs, e.g. for
90% of the IMF 5% of each extreme was cut to avoid the end effect error.

To determine if a parameter is useful, a change in their value is expected for faulty signals compared to Normal
condition signals, and the result of these parameters must not be susceptible to changes produced by end effect errors
(value produced by 100% of IMF must be equal or similar as the produced by 90% of the IMF).
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The result of the first test for the CWRU data can be observed in Figures C.1 and C.2 1. After Envelope Spectrum
analysis of the IMFs, it was determined that the fault information is found in the first IMF, as consequence the largest
change in the statistical parameters must be in the first IMF. The statistical parameters that do not present difference in
the first IMF are: Mean, Shape Factor, and Skewness, thus these parameters are discarded (Fig. C.1b, C.2c C.2h). The
remaining parameters that present changes in the first IMF but major changes in the rest of the IMFs are: Clearance
Factor, Impulse Factor, and Crest Factor and hence are discarded (Fig. C.2b, C.2d C.2g). Another discarded parameter
is Shannon Entropy because despite a change between normal and fault condition, it is affected by the end effects and
the distinction between faulty signals with different loads is not possible (Fig. C.1d). The Peak and Peak to Peak
values allow to detect spikiness in the signal but does not allow to differentiate between a fault with different loads and
are discarded. The remaining useful parameters are RMS and Root as amplitude measurements, Kurtosis, Standard
Deviation, and Variance as measurements of signal distribution, and KR as combination of amplitude and spikiness
measurement. The objective is determine which combination of parameters is the best to identify the IMF with fault
information.

1All figures can be found in http://bit.ly/ThesisRCG
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Figure C.1: Statistical parameters used to measure amplitude in signals, test of CWRU data
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Figure C.2: Statistical parameters used to detect spikiness produced by bearing faults, test of
CWRU data

The CWRU data set is composed of low noise signals, to confirm if the 6 remaining parameters are reliable for
the method, the same test is applied using more challenging signals from MFPT data base. For this test 5 revolutions
from 1 Normal condition signal with load of 270 lbs, one IR fault condition signal with no load (0 lbs), and one IR
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fault condition signal with load of 100 lbs were analyzed.
First, a visual inspection of the Envelope spectrum of the IMFs of the two faulty signals was made to detect which

IMFs contains fault information. For the IR fault signal with 0 lbs of load, fault information can be found in the first
4 IMFs (see Fig. C.3). It can be observed that the first 2 IMFs present the largest amplitude of BPFI (Fig. C.3a and
C.3b), as result the largest variation is expected in these IMFs.
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Figure C.3: Envelope spectrum of the first 4 IMFs of IR fault signal with load of 0 lbs from MFPT
data, the 1st and 2nd IMFs have the most significant fault information

On the other hand, the analysis of the IR fault signal with 100 lbs of load presents BPFI information in the first
5 IMFs (see Fig. C.4), where the second IMF presents the largest amplitude, and therefore the largest change in the
statistical parameters must be in the second IMF.

After the Envelope spectrum analysis, the computation and analysis of the 6 remaining statistical parameters was
made. It is important to remind that two parameters are focused in amplitude measurement (RMS and Root), three
are for distribution measurement (Kurtosis, SD, and Variance), and the last parameter combines both measurements
(Kurtosis and RMS). First, in the analysis of amplitude Root fails to detect the IMF with BPFI information because
it only presents changes from the Normal condition to fault condition in the first IMF (Fig. C.5b) , thus, Root is
discarded for the method. On the contrary, RMS does represent the Envelope spectrum results. There are changes (in
blue) in the first two IMFs for the IR with no load, and changes in the first 5 IMFs being the second the largest (Fig.
C.5a). Another observation for the RMS values is that after the 8th IMF they start to increase and could lead to a
wrong detection. As summary, RMS is the best parameter for amplitude measurement.

In the analysis of distribution measurement parameters or spikiness, Kurtosis increases in the first 4 IMFs for IR
fault with no load, this in agreement with Envelope spectrum analysis of figure C.3. But there is variation in their
values in IMFs 8 to 11 (Fig. C.5c). For SD is observed that the largest changes in values are in first 5 IMFs as in figure
C.4. The largest changes in blue correspond to the first two IMFs for the signal with 0 lbs of load, and the changes
in red for the first 5 IMFs of the IR fault signal with 100 lbs of load, being the second the largest as in the Envelope
spectrum analysis. Finally, an increase in values of the last IMFs is found. The Variance describes the same pattern
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Figure C.4: Envelope spectrum of the first 5 IMFs of IR fault signal with load of 100 lbs from
MFPT data
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of change as in SD but the changes are larger, and the variation of the last IMFs is smaller than Kurtosis and SD.
This results suggest that Variance represents better faulty signals, therefore a new parameter based on Variance and
RMS could have better performance than the parameter KR (Fig. C.5f). To prove this hypothesis, two new parameters
were included in the analysis: RMSxSD (Fig. C.5g) and RMSxVariance (Fig. C.5h). The comparison of the results of
the KR, RMSxSD, and RMSxVariance demonstrate that in fact RMSxVariance performs better than KR and RMSxSD
because the detection for IR fault with no load can be clearly detected in the first IMF (Fig. C.3a and for IR fault with
100 lbs of load can be clearly detected in the second IMF (Fig. C.3a, and these are the largest changes found in figure
C.5h (IMF 1 for blue and IMF 2 for red respectively).
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Figure C.5: Statistical parameters used in IR fault test of MFPT data, the most significant
components are 1st and 2nd IMFs

An extra test was performed to KR and RMSxVariance to assure that RMSxVariance is the best parameter for the
method. This time an OR fault signal with 270 lbs of load was chosen because is more challenging than IR fault
signals. The Envelope spectrum analysis of the IMFs showed that the fault information is found in IMF 4, but the use
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of both indicators failed in the correct detection, while RMSxVariance suggested that the correct IMF was the first, the
KR chose the IMF 9. In figure C.6b the correct and the 9th IMF can be observed,it is clear that the incorrect IMF has
an end defect that might influenced the selection with Kurtosis.
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Figure C.6: Envelope spectrum of the 4th (correct) and 9th (selected) IMFs of the OR fault test
from MFPT data

The resonance frequency of the system is found in the first IMFs, as a result the change in the parameter values is
expected in the first IMFs. It was observed that at some point the end effect of the EMD plays an important role in the
use of the statistical parameters to detect the IMF with fault information. This problem can be overcome by the stop of
the decomposition when this error (End defect) becomes significant. Another advantage of a limit for the EMD is that
computational resources can be saved, and the computational time can be enhanced. It was observed that Skewness
can be used as parameter to select the grade of decomposition in the EMD, in the CWRU test (Fig. C.2h) the Skewness
started to change from 0 in the 7th IMF, the same IMF where Kurtosis starts to increase in unexplained manner (Fig.
C.2a). In figure C.7a can be observed that the Skewness values start to change from 0 in the 6th and 7th IMFs, if we
analyze the Kurtosis in these IMFs we observe that in the 7th the Kurtosis has a sudden change, and in the next IMFs
these values have large variation. For this case, if the Skewness criteria is applied the selection and the only the first
6 IMFs are used, the KR could successfully identify the correct IMF (Fig. C.7e). On the other hand, RMSxVariance
would still choose the first (incorrect) IMF (Fig. C.7f).
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C.1.1 Statistical Parameters Selection Conclusions
This analysis allowed to demonstrate that Kurtosis x RMS or KR is the best indicator for faulty signals, it combines
measurements of both amplitude and signal distribution that allows to identify the resonance frequencies of the system
and spikiness in the signal that reflects fault information. The higher is the KR the better the quality of information
of the IMF to make a prognosis. It was found that the end effect phenomena is a relevant factor that can mislead
the detection, unfortunately the statistical measurements are sensitive to the end defects and increase the difficulty of
their application to the analysis, either way good results can be made by limiting the Empirical Mode Decomposition
to four IMFs. The use of four IMFs is made based on the observed on the analysis of several signals, most of cases
the IMFs with fault information are within the first three and in rare occasions in the fourth IMFs. Also, these tests
demonstrated that the idea of the analysis of only the first two IMFs is wrong because they not necessarily have the
fault information.
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In next section the initial results for a possible solution to detect IMFs with end defects is presented.

C.2 Skewness as End Defect detector (Future Work)
The end effect error produced in the Empirical Mode Decomposition can affect the diagnosis and the effectiveness
of the statistical parameters to identify faulty signals (IMFs), in this section an analysis of the use of Skewness as a
parameter to identify end defects is presented.

In figure C.8a we can observe the Skewness values of the IMFs from two signals (Normal and OR fault condition)
and a zone from -0.1 to 0.1 that represents a region where the IMF has no end defect. On the right side (Fig. C.8b) the
Kurtosis values are plotted and a line on 3 which represents a normal distribution. In Skewness plot can be identify the
first IMF that exceeds the limit or both cases, being the 6th and 7th IMF for Normal and OR fault condition signals
respectively. When we study the Kurtosis plot, it can be identified that the values in the 6th and 7th are larger than the
produced in their respective previous IMFs (circled). To verify that this increase is caused by the end defect a plot of
the IMFs was necessary. In figures C.8c and C.8d the 5th and 6th IMFs of Normal condition can be observed, in the
fifth function no end defects are found in agreement with its Skewness value, but in the sixth function with Skewness
value out of the proposed zone the end defect can be clearly identified. The same comparison can be made for the OR
fault condition IMFs using figures C.8e and C.8f.
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Figure C.8: Skewness as End Defect detection

Unfortunately the proposed limits for the Skewness does not work to detect the end defect in all signals. Further
investigations will be made in the future to solve this problem, the goal is to detect which IMFs have end defects to
exclude them from the reconstruction of the signal, or to use the Skewness as a stopping criteria for the EMD to save
computational resources and improve the performance of the methodology.



Appendix D

Recommendations

• Tests performed for Condition Based Monitoring (CBM) requires that operating conditions during the machine
evaluation can be recreated. The first step is to define the speed of the shaft that will be used for tests, it must be
a speed within nominal speed and the spindle must reach steady-state operating conditions [ISO, 1995] [ISO,
2014].

• Sensors must satisfy the frequency range requirements of 10 - 10,000 Hz from ISO 2954 [ISO, 2012]. For
sensors with these characteristics a sample frequency of 20,000 samples/second is recommended based on
Nyquist frequency; Nowadays there is access to sensors with larger frequency ranges, since methodology is
based in demodulation, to guarantee good performance of the methodology it is necessary a sensor that covers
the system resonance frequencies.

To determine the resonance frequency of the system a spectrum plot from an over-sampled signal is recom-
mended and based on that spectrum an optimum sample frequency can be selected.

• Measurements should be taken in the spindle housing (at front end and back end) in a minimum of two radial
directions for rotating cutting machines ISO 17243-1 [ISO, 2014].
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Appendix E

Additional Results

E.1 CWRU additional results
For CWRU a signal with OR defect of 7 mils and a load of 0 HP is analyzed step by step. The signal is classified as
diagnosable (Y), Fig. 4.1 (d).

1. Signal
The methodology suggest a total of five revolutions for the analysis. As the signal was recorded at 1,796 RPM

(29.93 Hz), the five revolutions correspond to 0.16705 seconds (T = r/fr), where T is the window size in seconds, r
is the number of revolutions, and fr is the shaft frequency.

2. Signal Decomposition
The signal is decomposed using the EMD to separate the fault information from noise and other components. The

EMD procedure is stopped when the fourth IMF is obtained. The corresponding components for the analyzed signal
are shown in Fig. E.1. It can be observed that in the first and second IMFs there are more impulses than in the third
and fourth, and the amplitude of the first IMF is greater than the others (around 10 times bigger).
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Figure E.1: First four components (IMFs) of OR-Y (CWRU database)
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3. IMF Selection and Signal Reconstruction
The next step is to compute the Kurtosis, RMS, and KR for each IMF, and based on the KR amplitudes, the two

IMFs with largest values are selected to reconstruct the signal. For the analyzed signal the 1st and 2nd components
have the largest KR with values of 4.606 and 0.7457 respectively, Fig. E.2.

The reconstructed signal is composed by the two IMFs with most useful information for the analysis and with less
noise than the original signal, Fig. E.3. The reconstruction is computed using Eq. 2.5. At this point the resonance
frequency information is isolated to proceed with the Envelope spectrum.
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Figure E.3: FFT spectrum of the (a) original signal and (b) the reconstructed signal with the
OR-Y fault (CWRU database). The reconstructed signal removed the noise from low frequencies

to isolate the resonance frequency for the analysis

4. Envelope spectrum
The fault components are modulated in the resonance frequency, to visualize them in the spectrum, the Envelope

spectrum is applied. First, the envelope is computed using the HT. Then, the mean trend or DCC is removed with eqn.
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(3.4) to avoid the undesired peak in 0 Hz in the spectrum. The reconstructed signal, the envelope signal, and envelope
signal with removed DCC are shown in Fig. E.4.
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Figure E.4: Envelope of the reconstructed signal using IMFs 1 & 2 (CWRU database), the DCC
removal does not affect the waveform and improves the diagnosis

After the envelope of the reconstructed signal is computed and the DCC is removed; The FFT is applied and
the Envelope spectrum is plotted to make a diagnosis. To facilitate the diagnosis is recommended to include the fault
frequencies and harmonics in the Envelope spectrum, because unlike controlled experiments, the expected fault is
unpredictable.

Using the shaft speed of 29.93 Hz and the frequency factors, Table 3.2, the fault frequencies are obtained: BPFO
= 107.3050 Hz, BPFI = 162.0950 Hz, BSF/RSF = 141.0908 Hz, and FTF = 11.9224 Hz.

5. Diagnosis
The analysis of the Envelope spectrum for the diagnosis of bearing condition consist in the visual inspection of

the spectrum and the identification of peaks in the computed fault frequencies, their harmonics, and in some cases
sidebands, Table 3.1. For OR faults peaks in the BPFO and in the harmonics are expected. In Fig. E.5, peaks in the
BPFO and three harmonics can be identified for the analyzed signal. As its classification is diagnosable these peaks
can be clearly identified. The identification of these peaks confirm the presence of the OR fault in the signal.

In Fig. E.6 the comparison of the proposed methodology against the traditional Envelope spectrum and the FFT
are shown. In this case, the analyzed signal is classified as diagnosable, there are no other components that make
difficult the diagnosis, and the amplitude of the Envelope spectrum and the proposed methodology are similar. The
difference in amplitude and the presence of other components between each other are in terms of the effectiveness of
the EMD, the use of statistical parameters (KR) for the selection of IMFs with fault information is intended to avoid
the visual inspection of the IMFs, [Tsao et al., 2010] [Tsao et al., 2012]. The selection of the most significant IMFs is
guarantee.



112 APPENDIX E. ADDITIONAL RESULTS

Frequency (Hz)

0 50 100 150 200 250 300 350 400 450 500

M
a

g
n

it
u

d
e

 (
g

)

0

0.2

0.4

0.6

FTF
Shaft

Speed f
r

BPFO BPFI BSF/RSF

Figure E.5: Envelope spectrum of reconstructed signal OR-Y (CWRU database), the BPFO and
harmonics are predominant in the spectrum
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Figure E.6: (a) results of the proposed methodology, (b) Envelope spectrum of the original signal,
and (c) the FFT of the original signal for OR-Y (CWRU database), the proposed methodology

removes the DCC, and the FFT does not detect the fault
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Figure E.7: Envelope spectrum of reconstructed signal IR-Y (CWRU database), the BPFI, their
harmonics and sidebands can be observed
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Figure E.8: Envelope spectrum of reconstructed signal RE-Y (CWRU database), the BSF/RSF can
be clearly identified, and the FTF components are the largest in the spectrum

E.2 Tian-Yau Wu database
For Tian-Yau Wu database, a signal with OR and severe defect is analyzed step by step, Fig. 4.9 (d).

1. Signal
First, the sample of five revolutions is made for the analysis. This signal was recorded at 8.49 Hz, the five revolu-

tions correspond to 0.5889 seconds (T = r/fr), where T is the window size in seconds, r is the number of revolutions,
and fr is the shaft frequency.

2. Signal Decomposition
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The EMD is applied to divide the signal in fault information and noise components. The EMD procedure is
stopped when the fourth IMF is obtained. The corresponding components for the analyzed signal are shown in Fig.
E.9. It can be observed that the first two IMFs are greater in amplitude than the others. In the first IMF the impulses
are clearer.
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Figure E.9: First four components (IMFs) of OR severe fault (Tian-Yau Wu database)

3. IMF Selection and Signal Reconstruction
The next step is to compute the Kurtosis, RMS, and KR for each IMF. Based on the KR amplitudes, the 1st and

2nd components have the largest KR with values of 1.217 and 0.8175 respectively, Fig. E.10. These two components
are used to reconstruct the signal with fault information.

The reconstructed signal is composed by the two IMFs with most useful information for the analysis and with less
noise than the original signal, Fig. E.11. The reconstruction is computed using eqn. (2.5). At this point the resonance
frequency information is isolated to proceed with the Envelope spectrum.
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Figure E.11: FFT spectrum of the (a) original signal and (b) the reconstructed signal with the OR
severe fault (Tian-Yau Wu database). The reconstructed signal removed the noise from low

frequencies

4. Envelope spectrum
First, the envelope is computed using the HT to demodulate the faults. Then, the mean trend or DCC is removed

with eqn. (3.4) to avoid the undesired peak in 0 Hz in the spectrum. The reconstructed signal, the envelope signal, and
envelope signal with removed DCC are shown in Fig. E.12.
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Figure E.12: Envelope of the reconstructed signal using IMFs 1 & 2 (Tian-Yau Wu database), the
DCC removal does not affect the waveform and improves the diagnosis

The next step is to apply FFT to the envelope signal with the DCC removed to make the diagnosis. Using the
shaft speed of 8.49 Hz and the frequency factors, Table 3.3, the fault frequencies are obtained: BPFO = 32.7714 Hz,
BPFI = 52.1286 Hz, BSF/RSF = 35.4033 Hz, and FTF = 3.3111 Hz.
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5. Diagnosis
The Envelope spectrum is analysis consist in the visual inspection of the spectrum and the identification of peaks

in the computed fault frequencies, their harmonics, and in some cases sidebands, Table 3.1. For OR faults peaks in the
BPFO and in the harmonics are expected. In Fig. E.13 peaks in the BPFO and two harmonics can be identified for the
analyzed signal. These peaks can be clearly identified and confirm the presence of the OR fault in the signal.

In Fig. E.14 the comparison of the proposed methodology against the traditional Envelope spectrum and the FFT
is shown. In this case there are no other components that make difficult the diagnosis, the amplitude of the fault
component in the proposed methodology is greater than the amplitude of the fault in the Envelope spectrum. In the
Envelope spectrum the largest pea correspond to the DCC.

The difference in amplitude and the presence of other components between each other are in terms of the effec-
tiveness of the EMD, the use of statistical parameters (KR) for the selection of IMFs with fault information is intended
to avoid the visual inspection of the IMFs, [Tsao et al., 2010] [Tsao et al., 2012]. The selection of the most significant
IMFs is guarantee.
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Figure E.13: Envelope spectrum of reconstructed signal from OR severe fault (Tian-Yau Wu
database), the BPFO and harmonics are predominant in the spectrum

Frequency (Hz)

0 500

M
a

g
n

it
u

d
e

 (
g

)

0

0.1

0.2

0.3

b) Envelope spectrum

Frequency (Hz)

0 500

M
a

g
n

it
u

d
e

 (
g

)

0

0.1

0.2

0.3

c) FFT

Frequency (Hz)

0 500

M
a

g
n

it
u

d
e

 (
g

)

0

0.1

0.2

0.3

a) Proposed Methodology

DCC component

Figure E.14: (a) results of the proposed methodology, (b) Envelope spectrum of the original
signal, and (c) the FFT of the original signal for OR severe fault (Tian-Yau Wu database), the

proposed methodology removes the DCC, and the FFT does not detect the fault
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Figure E.15: Envelope spectrum of reconstructed signal OR severe defect (Tian-Yau Wu
database), the BPFO and the two harmonics look sharper than in slight defect

E.3 MFPT Society additional results
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Figure E.16: Envelope spectrum of reconstructed signal IR-250 lbs (MFPT database), the BPFI,
two harmonics and sidebands can be distinguished
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Figure E.17: Envelope spectrum of reconstructed signal IR-300 lbs (MFPT database), the same
components as in IR-250 lbs are found but the amplitude is reduced

Frequency (Hz)

0 50 100 150 200 250 300 350 400 450 500

M
a

g
n

it
u

d
e

 (
g

)

0

0.1

0.2

0.3

FTF
Shaft

Speed f
r

BPFO BPFI BSF/RSF

Figure E.18: Envelope spectrum of reconstructed signal OR-250 lbs (MFPT database), the BPFO
and their harmonics are prominent, and a small peak is found at BPFI
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Table E.1: Information of analyzed signals, the windows of the analyzed signals started from
second 1

Database File Signal Difficulty

CWRU

X209 IR (Y) Clear

X171 IR (P) Clear

X056 IR (N) Clear

X130 OR (Y) Clear

X198 OR (P) Clear

X200 OR (N) Noisy

X048 RE (Y) Clear

X222 RE (P) Clear

X225 RE (N) Clear

Tian-Yau Wu

DFin04A18 IR SL Clear

DFin08A18 IR SE Noisy

DFout04A25 OR SL Clear

DFout08A25 OR SE Clear

DFroll04A24 RE SL Clear

MFPT

InnerRaceFault vload 6 IR 250 Lbs Noisy

InnerRaceFault vload 7 IR 300 Lbs Noisy

OuterRaceFault vload 6 OR 250 Lbs Clear

OuterRaceFault vload 7 OR 300 Lbs Clear





Appendix F

Developed Programs

For the developed methodology the Empirical Mode Decomposition function was obtained from Alan Tan1. To im-
plement the methodology three basic Matlab functions were developed, one function to take a sample of the signal
based on a given window size in (s), one function to compute the statistical features of the IMFs, and one function for
plotting the Envelope spectrum and perform the diagnosis. The code used to analyze the faults in the three databases
is:

1 %% Methodology
2 % Ruben Campos G. rubencamposg@gmail . com
3 %
4 % Th is s c r i p t i s d e s i g n e d t o a n a l y z e t h e s i g n a l s from t h e 3 c a s e s o f s t u d y
5 %
6 %%
7 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8 % Load t h e s i g n a l t o a n a l y z e
9 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

10 l o a d ( ’ f i l e n a m e ’ )
11

12 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
13 % S e l e c t t h e l a n g u a g e f o r t h e a x i s 1= S p a n i s h 2= E n g l i s h
14 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
15 Langua je = 2 ;
16

17 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
18 % S e l e c t t h e t y p e o f f a u l t t o a n a l y z e 1=IR 2=OR 3= B a l l 4=Cage
19 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
20 t F a u l t = 1 ;
21

22 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
23 % S e l e c t t h e d a t a b a s e o f t h e s i g n a l 1=MPFT 2=CWRU 3=TY WU
24 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

1http://bit.ly/AlanTan

121
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25 D a t a b a s e = 2 ;
26 s w i t c h ( D a t a b a s e )
27 c a s e 1
28 s i g n a l = b e a r i n g . gs ; %V i b r a t i o n s i g n a l
29 Fs= 48828 ; %E n t e r s a m p l i ng f e q u e n c y
30 rpm = 1500 ; %E n t e r s h a f t speed i n RPM
31 RPM = rpm / 6 0 ; %S h a f t speed i n ( Hz )
32 OR = RPM ∗ 3 . 2 ; %BPFO
33 IR = RPM ∗ 4 . 7 ; %BPFI
34 BALL = RPM ∗ 2 . 5 5 5 ; %BSF / RSF
35 CAGE = RPM ∗ 0 . 4 0 6 ; %FTF
36 r e v = 0 . 0 4 ; %Time of 1 r e v o l u t i o n i n ( s )
37

38 c a s e 2
39 s i g n a l = X198 DE time ’ ; %E n t e r v i b r a t i o n s i g n a l
40 Fs = 12000 ; %E n t e r s a m p l i ng f e q u e n c y
41 rpm = 1772 ; %E n t e r s h a f t speed i n RPM
42 RPM = rpm / 6 0 ; %S h a f t speed i n ( Hz )
43 OR = RPM ∗ 3 . 5 8 4 8 ; %BPFO
44 IR = RPM ∗ 5 . 4 1 5 2 ; %BPFI
45 BALL = RPM ∗ 4 . 7 1 3 5 ; %BSF / RSF
46 CAGE = RPM ∗ 0 . 3 9 8 3 ; %FTF
47 r e v = 1 /RPM; %Time of 1 r e v o l u t i o n i n ( s )
48

49 c a s e 3
50 s i g n a l = Y; %V i b r a t i o n s i g n a l
51 Fs = 6400 ; %Sampl ing f e q u e n c y
52 RPM = 8 . 4 9 ; %E n t e r speed i n ( Hz )
53 OR = RPM ∗ 3 . 8 6 ; %BPFO
54 IR = RPM ∗ 6 . 1 4 ; %BPFI
55 BALL = RPM ∗ 4 . 1 7 ; %BSF / RSF
56 CAGE = RPM ∗ 0 . 3 9 ; %FTF
57 r e v = 1 /RPM; %Time of 1 r e v o l u t i o n i n ( s )
58

59 end
60

61 % Automat i c s e l e c t i o n o f t h e f a u l t f r e q u e n c y
62 s w i t c h t F a u l t
63 c a s e 1
64 AnalyzedF = IR ; %BPFI
65 c a s e 2
66 AnalyzedF = OR; %BPFO
67 c a s e 3
68 AnalyzedF = BALL; %BSF / RSF
69 c a s e 4
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70 AnalyzedF = CAGE; %FTF
71 end
72

73 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
74 % The s i g n a l i s t r immed based on t h e d e s i r e d # o f r e v o l u t i o n s
75 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
76 T1 = 1 ; %I n i t i a l t ime of t h e sample
77 T2 = T1 +( r e v ∗5) ; %F i n a l t i m e o f t h e sample
78 % 5 i n d i c a t e t h e number o f r e v o l u t i o n s
79

80 % The f u n c t i o n r e t u r n s t h e tr immed s i g n a l ( x ) and t im e v e c t o r ( t )
81 [ x , t ] = t r i m S i g n a l ( s i g n a l , T1 , T2 , Fs ) ;
82

83 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
84 % E m p i r i c a l Mode Decompos i t ion
85 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
86

87 imf = emd ( x ) ; % The EMD f u n c t i o n , i t r e t u r n s t h e IMFs i n a c e l l a r r a y
88

89 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
90 % Time domain f e a t u r e s
91 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
92

93 %C o n v e r s i o n o f t h e c e l l a r r a y o f IMFs t o a m a t r i x t o compute t ime domain
94 %f e a t u r e s
95 N= s i z e ( imf , 2 ) ; % D e t e r m i n e s t h e # of IMFs from t h e EMD
96 IMF= z e r o s (N, s i z e ( t , 2 ) ) ; % V a r i a b l e t o c o n v e r t t h e IMFs t o a m a t r i x
97 f o r i = 1 : 1 :N
98 IMF ( i , : ) = imf {1 , i } ; % Copy of t h e IMFs t o t h e m a t r i x
99 end

100

101 % F u n c t i o n t o compute 17 t ime domain f e a t u r e s f o r each IMF
102 [ s t a t V a l ] = s t a t F e a t u r e s ( IMF ) ;
103

104

105 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
106 % IMF s e l e c t i o n u s i n g t h e KR
107 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
108 % I d e n t i f i c a t i o n o f t h e l a r g e s t KR, #4 l i m i t t h e s e a r c h t o t h e f i r s t 4 IMFs
109 HighestKR = max ( s t a t V a l ( 1 : 4 , 3 ) ) ;
110 % Find t h e # of IMF wi th l a r g e s t KR
111 IndexKR = f i n d ( s t a t V a l ( : , 3 ) == HighestKR ) ;
112

113 % I d e n t i f i c a t i o n o f t h e second l a r g e s t KR
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114 Sta tAux = s t a t V a l ( 1 : 4 , 3 ) ; % A u x i l i a r v e c t o r wi th t h e KR
v a l u e s o f f i r s t 4 IMFs

115

116 Sta tAux ( IndexKR ) =0; % R e p l a c e s t h e l a r g e s t KR t o 0
117 HighestKR2 = max ( Sta tAux ) ; % Find t h e second l a r g e s t KR
118 IndexKR2 = f i n d ( S ta tAux == HighestKR2 ) ; % Find t h e # o f IMF wi th l a r g e s t

KR
119

120 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
121 % S i g n a l r e c o n s t r u c t i o n w i th t h e s e l e c t e d IMFs
122 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
123 r e c o n S i g n a l = imf {1 , IndexKR} + imf {1 , IndexKR2 } ; % Sum of t h e two IMFs
124

125 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
126 % Envelope s p e c t r u m of t h e r e c o n s t r u c t e d s i g n a l f o r t h e a n a l y s i s
127 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
128

129 EnvSpect1 ( r e c o n S i g n a l , t , Fs ,RPM, AnalyzedF , t F a u l t , 2 ) ; % F u n c t i o n t o p l o t t h e
r e c o n s t r u c t e d s i g n a l and t h e e n v e l o p e s p e c t r u m .

The functions used in the code are:

1 f u n c t i o n [ x , t ] = t r i m S i g n a l ( S i g n a l , iTime , fTime , Fs )
2 % R u b n Campos G. A00821271 rubencamposg@gmail . com
3 % This program t r i m t h e s i g n a l f o r a g i v e n window s i z e ( s )
4 % t = Time v e c t o r
5 % S i g n a l = O r i g i n a l s i g n a l
6 % iTime = I n i t i a l t ime ( s )
7 % fTime = F i n a l t ime ( s )
8 % Fs = Sampl ing f r e q u e n c y of t h e o r i g i n a l s i g n a l
9 %%

10

11 L = fTime−iTime ; % Window s i z e i n ( s )
12 n d a t o s = abs ( c e i l ( L∗Fs ) ) ; % Window s i z e i n samples
13 d a t o I n i c i a l = c e i l ( iTime ∗ ( Fs ) ) ; % I n i t i a l d a t a
14 x = S i g n a l ( d a t o I n i c i a l : ( d a t o I n i c i a l + nda to s −1) ) ’ ; %Trimms t h e s i g n a l
15 t = 0 : ( 1 / Fs ) : ( nda to s −1) / Fs ; % Time v e c t o r o f t h e new s i g n a l

1 f u n c t i o n [ s t a t V a l ] = s t a t F e a t u r e s ( imf )
2 % R u b n Campos G. A00821271 rubencamposg@gmail . com
3 %
4 % Th is f u n c t i o n computes t ime domain f e a t u r e s f o r t h e IMFs
5 % imf = M a t r i x wi th t h e IMFs
6 % Rows = #IMF
7 % Columns : RMS, k u r t o s i s , KR, Entropy , Peak va lue , PK−PK , C r e s t f a c t o r ,
8 % skewness , v a r i a n c e , SD , promedio , r o o t , c l e a r a n c e , shape , impulse , RMSxVar ,

RMSxSD .
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9

10 %%
11 N= s i z e ( imf , 1 ) ; % # of IMFs
12 s t a t V a l = z e r o s (N, 1 7 ) ; % C r e a t e s a m a t r i x t o save t h e t imedomain f e a t u r e s
13

14

15 f o r i = 1 : 1 :N
16

17 s t a t V a l ( i , 1 ) = rms ( imf ( i , : ) ) ; % RMS
18 s t a t V a l ( i , 2 ) = k u r t o s i s ( imf ( i , : ) ) ; % K u r t o s i s
19 s t a t V a l ( i , 3 ) = s t a t V a l ( i , 1 ) ∗ s t a t V a l ( i , 2 ) ; % KR
20 s t a t V a l ( i , 4 ) = went ropy ( imf ( i , : ) , ’ shannon ’ ) ; % Shannon En t ropy
21 s t a t V a l ( i , 5 ) = max ( abs ( imf ( i , : ) ) ) ; % Peak
22 s t a t V a l ( i , 6 ) = peak2peak ( imf ( i , : ) ) ; % Peak−Peak
23 s t a t V a l ( i , 7 ) = peak2rms ( imf ( i , : ) ) ; % C r e s t F a c t o r
24 s t a t V a l ( i , 8 ) = skewness ( imf ( i , : ) ) ; % Skewness
25 s t a t V a l ( i , 9 ) = v a r ( imf ( i , : ) ) ; % V a r i a n c e
26 s t a t V a l ( i , 1 0 ) = s t d ( imf ( i , : ) ) ; % S t a n d a r d D e v i a t i o n
27 s t a t V a l ( i , 1 1 ) = mean ( imf ( i , : ) ) ; % Mean
28 s t a t V a l ( i , 1 2 ) = ( mean ( s q r t ( abs ( imf ( i , : ) ) ) ) ) ˆ 2 ; % Root
29 s t a t V a l ( i , 1 3 ) = s t a t V a l ( i , 5 ) / s t a t V a l ( i , 1 2 ) ; % C l e a r a n c e
30 s t a t V a l ( i , 1 4 ) = s t a t V a l ( i , 1 ) / mean ( abs ( imf ( i , : ) ) ) ; % Shape
31 s t a t V a l ( i , 1 5 ) = s t a t V a l ( i , 5 ) / mean ( abs ( imf ( i , : ) ) ) ; % Impu l se
32 s t a t V a l ( i , 1 6 ) = s t a t V a l ( i , 1 ) ∗ s t a t V a l ( i , 9 ) ; % RMSxVar
33 s t a t V a l ( i , 1 7 ) = s t a t V a l ( i , 1 ) ∗ s t a t V a l ( i , 1 0 ) ; % RMSxSD
34

35 end

1 f u n c t i o n EnvSpect ( S i g n a l , t , Fs ,RPM, AnalyzedF , t F a u l t , Langua je )
2 % Ruben Campos G. A00821271 rubencamposg@gmail . com
3 %
4 % F u n c t i o n t o p l o t t h e r e c o n s t r u c t e d s i g n a l and t h e s p e c t r u m
5 %
6 % S i g n a l = S i g n a l t o be p l o t t e d
7 % t = Time v e c t o r
8 % Fs = Sampl ing f r e q u e n c y
9 % RPM = S h a f t speed i n ( Hz )

10 % AnalyzedF = Frequency of t h e f a u l t i n v e s t i g a t e d
11 % t F a u l t = 1 f o r IR , 2 f o r OR, 3 f o r B a l l , 4 f o r Cage
12 % Langua je = 1 f o r Span ish , Othe r f o r E n g l i s h
13 %%
14 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
15 % Labe l s e l e c t i o n based on s e l e c t e d l a n g u a g e
16 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
17 i f Langua je ==1
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18 xFreq = ’ F r e c u e n c i a ( Hz ) ’ ;
19 xTime = ’ Tiempo ( s ) ’ ;
20 yMag = ’ Magnitud ( g ) ’ ;
21 yAccel = ’ A c e l e r a c i n ( g ) ’ ;
22 t i t u l o = ’ SE AL S i g n a l ’ ;
23 e l s e
24 xFreq = ’ Frequency ( Hz ) ’ ;
25 xTime = ’ Time ( s ) ’ ;
26 yMag = ’ Magni tude ( g ) ’ ;
27 yAccel = ’ A c c e l e r a t i o n ( g ) ’ ;
28 t i t u l o = ’ S i g n a l SIGNAL ’ ;
29 end
30

31 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
32 % D e f i n e e l i n e c o l o r s f o r t h e p l o t
33 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
34 co = [ . . .
35 0 . 000 0 . 000 0 . 0 0 0 ; % 1 Black
36 1 . 000 0 . 141 0 . 4 2 0 ; % 2 Pink
37 0 . 180 0 . 333 0 . 7 4 5 ; % 3 Blue
38 0 . 950 0 . 425 0 . 0 9 8 ; % 4 Orange
39 0 . 466 0 . 674 0 . 1 8 8 ; % 5 Green
40 0 . 929 0 . 694 0 . 1 2 5 ; % 6 Yellow
41 0 . 301 0 . 745 0 . 9 3 3 ; % 7 Sky b l u e
42 0 . 494 0 . 184 0 . 5 5 6 ; % 8 P u r p u r e
43 ] ;
44 s e t ( g r o o t , ’ d e f a u l t A x e s C o l o r O r d e r ’ , co )
45

46 % D ef i n e l i n e wid th
47 t h 1 = 1 . 2 ; % Used f o r f a u l t s
48 t h 2 = 1 . 5 ; % Used f o r s i g n a l
49

50 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
51 % D e f i n e s l i n e t y p e f o r f a u l t s
52 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
53 s w i t c h t F a u l t
54 c a s e 1
55 f a u l t = ’ BPFI ’ ;
56 l i n e = ’−. ’ ;
57 c o l o r = co ( 2 , : ) ;
58 c a s e 2
59 f a u l t = ’BPFO ’ ;
60 l i n e = ’−− ’ ;
61 c o l o r = co ( 1 , : ) ;
62 c a s e 3
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63 f a u l t = ’BSF ’ ;
64 l i n e = ’− ’ ;
65 c o l o r = co ( 6 , : ) ;
66 c a s e 4
67 f a u l t = ’FTF ’ ;
68 l i n e = ’− ’ ;
69 c o l o r = co ( 1 , : ) ;
70 end
71

72

73

74 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
75 % S i g n a l Enve lope
76 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
77 r e c o v e r = abs ( h i l b e r t ( S i g n a l ) ) ;
78

79 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
80 % Trend Removal (DCC)
81 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
82 r e c o v e r = r e c o v e r − mean ( r e c o v e r ) ;
83

84 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
85 % Envelope s p e c t r u m
86 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
87

88 L= l e n g t h ( S i g n a l ) ; % Length o f t h e s i g n a l
89 f reqFFT =Fs ∗ ( 0 : f l o o r ( L / 2 ) ) / L ; % C r e a t e b i n s f o r Enve lope s p e c t r u m
90

91 aux = abs ( f f t ( r e c o v e r ) / L ) ; % computes t h e doub led s i d e d FFT
92 FFT = aux ( 1 : f l o o r ( L / 2 ) +1) ; FFT ( 2 : end−1) = 2∗FFT ( 2 : end−1) ; % Saves t h e one

s i d e o f t h e s p e c t r u m
93 MAX = max ( FFT ) ; % I d e n t i f i e s t h e maximum magni tude
94

95 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
96 % S i g n a l p l o t
97 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
98 f i g u r e
99 s u b p l o t ( 2 , 1 , 1 )

100 p l o t ( t , S i g n a l , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 1 )
101 a x i s t i g h t
102 s e t ( gca , ’ f o n t s i z e ’ , 20)
103 x l a b e l ( xTime , ’ F o n t S i z e ’ , 2 5 )
104 y l a b e l ( yAccel , ’ F o n t S i z e ’ , 2 5 )
105 t i t l e ( t i t u l o )
106 l e g e n d ( ’ S i g n a l ’ )
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107

108

109 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
110 % Envelope s p e c t r u m p l o t
111 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
112 s u b p l o t ( 2 , 1 , 2 )
113 p l o t ( freqFFT , FFT , ’ Co lo r ’ , co ( 1 , : ) , ’ LineWidth ’ , t h 2 ) ; ho ld on ;
114 a x i s ( [ 0 1000 0 i n f ] )
115 s e t ( gca , ’ f o n t s i z e ’ , 20)
116

117 % L i n e s t o i d e n t i f y t h e f a u l t component and s h a f t speed component
118 f o r k =1:35
119 l i n e ( [ k∗RPM k∗RPM] , [ 0 MAX∗ 1 . 1 ] , ’ L i n e s t y l e ’ , ’ : ’ , ’ Co lo r ’ , co ( 7 , : ) , ’ LineWidth ’

, t h 1 )
120 l i n e ( [ k∗AnalyzedF k∗AnalyzedF ] , [ 0 MAX∗ 1 . 1 ] , ’ L i n e s t y l e ’ , l i n e , ’ Co lo r ’ , c o l o r ,

’ LineWidth ’ , t h 1 )
121 end
122 x l a b e l ( xFreq , ’ F o n t S i z e ’ , 2 5 )
123 y l a b e l ( yMag , ’ F o n t S i z e ’ , 2 5 )
124 l e g e n d ( ’ Enve lope s p e c t r u m S i g n a l ’ , ’SS−RPM’ , f a u l t )
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