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Wavelets for Spindle Fault Diagnosis in High Speed
Machining

By
George Francisco Batallas Moncayo

Abstract
The spindle of machining centers must provide high rotational speed, transfer torque and power
to the cutting tool during continuous periods of time. The constant forces generate faults in its
components where the most important are the shaft and bearings. As the fault increases, it affects
other components and may lead to a catastrophic damage and a production stoppage.

The maintenance strategies have been evolving in order to prevent irreversible damages. Over
the last years, great progress has been made in the condition-based maintenance, particularly in the
vibration analysis, where the vibration signature can be associated with the fault.

In recent years, several signal processing techniques have been introduced to extract the fea-
tures from vibration signals. The WT has caught the attention of the scientific community by its
characteristics and its limitless number of wavelets. In this thesis a methodology based on the WT
is proposed to detect faults in spindle. The approach is capable of extracting the bearing char-
acteristic frequencies related to the fault from the resonance frequency and the low frequencies
information associated with shaft faults.

The implemented method contemplates the latest advances in the literature to detect robustly
the type of the fault, it is focused on industrial environment were the faults are usually tainted by
noise from other machines or by errors in the acquisition. The method is applied to different types
of bearing faults to demonstrate its effectiveness and robustness when detecting faults at early
stages.

In the three studied cases the proposed methodology got several properties; for the CWRU
signals the characteristic fault frequency peak got an increase from 6 to 32% compared with the
traditional methods; when the signal is tainted by Gaussian noise, the method works more ef-
fectively, since in these cases the increase percentage reaches up to 57%. Similarly, in the IMS
database the characteristic frequency peak increases from 6 to 70%. Finally, in the machining cen-
ter database there was not an increment but the method acts as filter which eliminates the undesired
frequencies.

Experimental results indicate the proposed approach is reliable to detect bearing and shaft
faults. It also has a superior diagnosis performance compared to traditional methods in extract-
ing fault features. The method removes most of the noise and can be used in future works as
preprocessor.
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Chapter 1

Introduction

Industrial development and customers demands have increased the need to pursue high-quality
products at low cost while ensuring safety during manufacturing. For this reason, machine main-
tenance strategies have evolved from corrective over preventive to condition-based maintenance,
for which real-time fault diagnosis and prognosis are needed [Yan et al., 2014]. Therefore, all
efforts must be focused in preventing breakdowns in machines; thus, spindles must be monitored.
A failure in the spindle can be catastrophic, leading to costly machine downtime, affecting the
productivity in the company.

Rolling element bearings are one of the foremost cause of faults in a machine tool spindle,
they are the most critical and vulnerable components in the mechanical transmission. Accord-
ing to statistics, approximately 30% of mechanical failures in rotating machinery are due to the
fault of rolling bearings, [Cui et al., 2016]. Hence, the bearing faults diagnosis has been gaining
importance due to its detrimental effect on machines reliability.

During bearing operation, localized faults or wear produce successive periodic impacts when
rollers pass over the defect and causes wideband impulses. The strength and period of these im-
pulses depend on the shaft speed, the type of fault (location) and the bearing geometry. Vibration
signal analysis is one of the most effective techniques for analyzing impulses to detect and diag-
nostic faults for a successful maintenance program.

Nevertheless, there are several difficulties in signal analysis for fault detection. The foremost
problem to deal with are the characteristics of the damage bearing signals, they are nonlinear
and non-stationary. Another issue to solve is that the signature of a defective bearing can be
undercovered by noise, and low frequency effects; also, as defect frequency is typically small it is
not easily noticed. It also needs to be consider that, in an initial stage of wear, the vibration signal
shows up distinct peaks in the frequency domain, but after wear develops along the surface, the
signal becomes more like random noise and can not be easily detected [Chancey et al., 2002]. A
bearing is composed by four components: inner race, outer race, rolling elements and a cage, a
fault may occur in any of these components; among other difficulties, the outer race defects are
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4 CHAPTER 1. INTRODUCTION

clear in the spectra, but the inner race and are not easily detected.
To cope with these problems many research have been developed, and a wide variety of tech-

niques have been introduced. Traditional approaches (conventional time domain and frequency
domain analysis) are not useful as they tend to average out transient effects. Some defects such as
unbalance, eccentricity and bent shaft or bowed rotor can display similar time traces with impulses
of similar amplitude and frequency; therefore, defects can not be isolated. Also, the complex-
ity and non-stationary characteristics of signals carrying out with a large amount of noise make
bearing faults very difficult to detect with these traditional methods.

Signals have a vast information, but they are often tainted by noise. The ability that signal pro-
cessing techniques should have is to split close frequencies in real data. Due to the high frequency
nature of defect bearings impulses, it is required to handle bearing damage with a high frequency
signal analysis.

1.1 Motivation

The automated machining centers work at a constant, uniform and continuous production 24/7
while maintaining the good finish of the piece. The implementation of this type of machines leads
to raise the production with the lowest material waste and the higher efficiency.

Among the principal components in a machining center, the spindle is one of the most impor-
tant, it supports the tools and transmit the rotary motion from the motor to the shaft, as conse-
quence, during the machining process the spindle is exposed to different loads which may produce
long-time faults in any of its components. The unexpected breakdown can lead to severe part
damage and costly machine downtime, as result the overall production logistic and productivity
is affected. Therefore, increasing the useful life of the spindle is one of the principal goals in the
manufacturing industry.

There are several logistic solutions to increase the life of a component, the traditional main-
tenance strategies such as the run-to-break and preventive maintenance are being replaced by the
Condition Based Monitoring (CBM). In the run-to-break, the machines work until a fault occurs,
this fault can have catastrophic results in the machined part or even in the rest of the components.
Preventive maintenance presents a time variable, in which the maintenance of the equipment is
carried out at regular intervals, can be handled correctly and the catastrophic failure is reduced, but
there are many repairs and there is much component replacement which brings to new equipment
costs. The CBM also called predictive maintance does not have the problems of the previous ones,
but it needs monitoring techniques to predict and calculate the level of damage in the equipment.

The condition monitoring must be online without stopping the production, thus it means the
information must be extracted from the exterior avoiding dismantling the machine. There are
several methods to achieve this goal, some of them are the oil and vibration analysis. The oil
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analysis need some days to obtain results; but with the vibration analysis, it is possible to detect
immediately the characteristics of the signal. Additionally, many processing techniques can be
applied to extract the desire fault characteristic.

When determining the type of fault that exists inside the spindle, it will be possible to make a
particular maintenance to the damaged part, and even it will be possible to know the estimated life
time.

1.2 Problem Description

The signal gathered externally in the condition monitoring is often submerged in structural vibra-
tions of the entire machine system, these interfering signals and the background noise make it
difficult to detect the faults in spindle. The noise taints the signal and they might have a higher
magnitude than the vibration from the faulty component studied. Therefore, the noise can affect
the information and can lead to incorrect conclusions.

The problem increases when the detection is desired in early stages of the fault, the amplitude
is low and could be weaker than the noise. The signal processing method must be capable of
detecting faults in noisy signals; therefore, a proper signal processing method is needed.

Traditional methods have several limitations and new methods evolved in the last decade have
presented acceptable results; these new signal processing tecniques include: Short Time Fourier
Transform (STFT), Wavelet Transform (WT), Hilbert-Huang Transform (HHT), Wigner-Ville Dis-
tribution (WVD) and Statistical Signal Analysis (SSA).

In the literature, there are several research studies in the detection field which applies these new
methods, most of them are only designed to identify some of the defects occurring in the spindle,
as a consequence, despite the arduous investigations, the perfect method for detecting the entire
set of faults in the machining center with a 100% of efficiency still does not exist. The research in
the topic indicates the condition monitoring must detect where the fault occurs and the magnitude
of the problem.

As the principal element which fail is the bearing, a crack on any of its components: inner race,
outer race, rolling element and cage could decrease the useful life of the spindle. In the case of
the shaft, if exist an unbalance or a misalignment not only could cause damage in the rest of the
components, but also in the machined piece.
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1.3 Research Question

Based on a brief State-of-the-Art review, the following hypothesis are proposed:

i Defects in bearings can be diagnosed using only vibration analysis.

ii Unbalance and misalignment in the shaft can be diagnosed using only vibration analysis.

iii Wavelet Transform analysis leads to an efficient transient detection because of its diverse
characteristics.

iv Faults can be diagnosed at early stages despite having a lot of noise.

v Shaft and bearing faults diagnosis can be implemented in a same methodology.

1.4 Solution Overview

The WT has been applied to industrial vibration analysis, it has the benefits of both time and fre-
quency analysis because its window is changeable. In the processing of non-stationary signals,
it presents better performance than the traditional Fourier analysis, [Kankar et al., 2011]. Addi-
tionally, unlike the Fourier transform, WT has an infinite set of possible basis functions and it is
more efficient dealing with time-frequency analysis even when compared with the Fast Fourier
Transform (FFT), [Lauro et al., 2014].

The WT decomposes the signal in terms of wavelets, they have some characteristics that differ
from a traditional wave. The wavelet is a mathematical oscillation that begins at zero and moves
between positive and negative polarity until it returns back to zero, as a consequence it has a finite
energy, comparable to the behavior expected in a real shock.

Wavelets are additionally used in denoising, they have the characteristic of denoise a signal in
both time and frequency domains simultaneously through the use of certain threshold values called
hard and soft thresholding, [Randall, 2011].

There are several types of WT, the most used in literature are: the Continuous Wavelet Trans-
form (CWT), the Discrete Wavelet Transform (DWT), the Wavelet Packet Transform (WPT) and
the Second Generation Wavelet Transform (SGWT), each one of them has been used widely for
fault diagnosis of rotary machines; but, there is still no evidence which a method is better than the
others.

It is possible to observe the potential advantages of this signal processing method. In this thesis
will be used the WT to identify the different types of spindle faults at diverse case studies including
High Speed Machining (HSM).
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1.5 Main Contribution

The proposed technique in this thesis has the following contributions:

i New methodology for fault diagnosis with a satisfactory effectiveness.

ii This new method identifies in one single step bearing and shaft defects.

iii Unbalance, Misalignment, Mechanical Looseness, Outer Race, Inner Race and Rolling Ele-
ment faults are detected.

iv The method distinguishes among different levels of unbalance conditions.

v It detects early stage bearings faults.

vi The method has good results by reducing environmental noise.

1.6 Disertation

This thesis document is structured as follows:

Chapter 2 presents the State of the Art from the first investigations in vibration analysis until the
development of the WT for machine health diagnosis, while it is presented the evolution of
the signal processing methods for condition monitoring. Additionally, an overview for the
WT theory is also presented, so that the unfamiliar readers gets used to this concept.

Chapter 3 describes the main contribution of this work, it introduces the proposed methodology
with a detailed description of each part.

Chapter 4 introduces three case studies used for validate the methodology: the IMS database,
the bearing dataset recovered from the CWRU and the machining center database for HSM
vibration analysis.

Chapter 5 shows the results by the proposed methodology and compare them with the results
obtained by traditional methods.

Chapter 6 presents the conclusions, highlights the obtained contributions, shows published arti-
cles during this research work and introduces future works.





Chapter 2

State of the Art

Since 1939, the relation between vibration signals and machine condition has been investigated
[Rathbone, 1939]. By 1960 it was recognized that periodic monitoring avoids machine failures,
in the next decade FFT analyzers were applied on machine vibration; from 1980s the technol-
ogy of the accelerometers and digital computers improved, obtaining a better performance in the
efficiency and effectiveness of the results, [Randall, 2011].

The recent improvements in this field include: small acquisition systems with higher perfor-
mance, different monitoring techniques, and new processing methods. As the literature indicates
a trend in the use of WT for detecting machinery faults, the present review of State of the Art
introduces the diverse investigations in wavelets for both: bearing and shaft faults.

2.1 Research on bearings faults using wavelets

As bearings are the principal reason for rotary machine breakdowns, there are numerous investiga-
tions about the vibration signal on its elements. From recent works, there is a trend to improve the
effectiveness in fault detection, in the case of the WT for bearing fault detection this factor is influ-
enced by some characteristics such as: the mother wavelet, the type of faults and the classifiers.

Most typical faults in bearings are produced by local faults, they may appear in the following
elements: Inner Race (IR), Outer Race (OR), Rolling Element (RE), Cage (C).

As the amplitude of the shock depends on the element where occurs the fault, the order for
detection stays as follows: OR, IR and RE where the first is the easiest to identify and RE fault is
the more difficult because of the lower amplitude generated by the fault. [Zhang and Gao, 2004]

proved that the WT could identify the OR and IR fault unlike the Fourier transform, which only
could identify OR faults, later it was expanded to UB in the shaft [Zhang et al., 2005]. Finally,
[Zhang et al., 2006] got improvements for their method using envelope and analytic wavelet, as
result, it was possible to detect RE faults.

9
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The effective Mother Wavelet (MW) is still unknown, the investigations are divided in computa-
tional efficiency and relation between the wavelet and the real vibration. [Rafiee et al., 2010] made
a research about the ideal wavelet for gear and bearing diagnosis, this research group examined
324 MW concluding that the Daubechies 44 (db44) has the most similar shape for bearings and
gears; but it is not the proper function for all process because this type of wavelet demands a lot of
computational resources.

The use of Artificial Neural Network (ANN) has been propagated to automatically detect the
type of fault; [Paya et al., 1997] reports results of 96% in detecting IR faults using the CWT and
ANN with back propagation.

[Yan and Gao, 2011] also used ANN in two study cases, the achieved effectiveness were 96.6
% and 91%. According to the author, the best suited wavelet is the Biorthogonal 5.5, but they did
not present experimental results for this statement. [Pandya et al., 2012] also used rbio5.5 in his
method, which includes energy Kurtosis and ANN, with these considerations, the results show an
efficacy of 93% in the classification of the IR, OR and RE fault damage.

By the other hand, [Chandel and Patel, 2013] concluded that combining the ANN and the
WT with Daubechies 10 (db10), the classifier is capable to obtain results of up to 100%. The study
establishes that the Daubechies MW have great benefits on accuracy for detecting faults in bearings,
and among them, with the db10 the computational cost can be reduced. In other investigations, the
use of the Markov models as classifier had made it possible to catalog the IR, OR and RE faults
with a 99% of performance [Purushotham et al., 2005].

[Kankar et al., 2011] presented a procedure for bearing fault diagnosis to detect: IR, OR, RE
and combined faults using machine learning techniques. The authors analyse different methods to
detect which one is better for bearing diagnosis. They concluded that the Complex Morlet is the
best suited for bearing diagnosis followed by the Daubechies 44 (db44). The use of the Complex
Morlet and Support Vector Machine (SVM) correctly classifies the faults with a 100% performance.

Wavelets have other applications in the field of signal processing one of them is in denoising.
Applying a threshold in the decomposed signal eliminates noise. [Cui et al., 2016] proposed a
method which first reduces the noise and afterwards processes the signal. The steps are: denoising
the vibration signal using wavelet, extract the characteristics in both time and frequency domain;
finally it is detected the fault using the Grey Correlation Method (GCM). The results are close to
100% for IR, OR and RE faults.

The WT is a reversible transform, which means, after the decomposition, the original signal can
be recovered. This property could be applied to all the WT such as the CWT, DWT and WPT. Addi-
tionally, the same characteristic allows to recovered a signal with the selected wavelet coefficients
which allows to remove the not desired peaks on the signal. [Zhu et al., 2009] used this property in
their method, the CWT is selected to decomposed the original signal into the corresponding scale-
space coefficients. Later, the coefficients are processed with a non-parameter test of Gaussianity
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which detects the transcients; finally, the coefficients without important information are removed
and the signal is reconstructed, this methodology eliminates the Gaussian noise.

[Tse and Leung, 2010] applied the same principle, the signal was decomposed with a Reas-
signment Wavelet Transform (RWT), an improved method to the traditional CWT. Then, in each
frequency it is calculated the Kurtosis and RMS. The coefficients with the highest Kurtosis x RMS
value are selected to reconstruct a signal with only the bearing faults.

To achieve a better performance, the scientific community has combined different processing
methods in the same signal. [He et al., 2009] fused wavelet filters and sparse shrinkage , the authors
explain this method allows to have a better signal with a considerably reduced noise. [Kedadouche
et al., 2016a] presented a method that combines Empirical Wavelet Transform (EWT) and Opera-
tional Modal Analysis (OMA) to extract the frequency related to the fault. According to the study,
the obtained envelope spectrum from the scheme ( EWT- OMA) has superior performance than
applying only EWT.

[Li et al., 2017] analysed a method for bearing fault detection on early stages of failure using Q
Factor Wavelet Transform (QFWT) and the Intrinsic Characteristic-scale Decomposition (ICD).
According to the authors, in both studied cases were obtained good results for detecting OR and
IR faults. Also, they presented the computational time of the method and established that the used
WT has better and faster results than EMD .

[Liu, 2012] shows a method for fault detection in bearings using Exponential Moving Average
(EMA) filtering for eliminating the noise in the signal, and consequently it is used the Shannon
Wavelet Spectrum (SWS) to detect the frequency of the fault. The EMA generates a threshold, from
this point it is selected the upper values and later the denoised signal is processed with a SWS.

[Kedadouche et al., 2016b] presented a comparison between the Ensemble Empirical Mode
Decomposition (EEMD), the Empirical Mode Decomposition (EMD) and the EWT. Additionally,
it is presented a selection method of the Intrinsic Mode Function (IMF) in the WT, using the index
selection variable. According to the authors, EWT can reduce the computational time by 95.96 %
as compared with the EMD method and 98.91 % compared with the EEMD method. Additionaly,
the EWT has shown a better efficacy to decomposed a signal unlike the EEMD which overestimates
the number of components.

[Law et al., 2012] showed a technique for detecting important information of the signal with
the use of WPT and HT. The method was applied to vibration signals to detect changes depending
on the applied force. With the obtained information in the signal analysis, [Khanam et al., 2014]

presented a methodology for estimating the size in the OR fault using the Sym5 wavelet. It is pre-
sented that the Sym5 is the best suited for detecting size faults due its wavelet form, that represents
the begin and ending of the ball when pass through the fault.
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2.2 Research on unbalance using wavelets

Another important component of the spindle is the shaft, this element has the function of trans-
mitting torque and rotation from the rotor to the cutting tool. It is subjected to constant loads and
continuous movement, which affect the life of the shaft; Additionally, the wrong use of the ma-
chining center, such as an incorrect programming may generate cracks on it. The waviness caused
by shaft misalignment or knocking in the process cause damage in the cutting process, in the qual-
ity of the machining and originates faults in the rest of the components, such as, bearing damage,
wear of the holders and errors in the rotor and stator.

The critical faults which may occur in the shaft are: UnBalance (UB), MisAlignment (MA), Oil
Whipping (OW), Shaft Crack (SC), Mechanical Looseness (ML), Rotor Stator Friction (RSF) and
Rub Impact (RI).

Over several decades, faults in high speed machining has been studied, the importance lies in
distinguish a normal signal from a faulty one even when exist small changes in the amplitudes.
The technique used by [Peng et al., 2007], combines the Wavelet Transform Modulus Maxima
(WTMM) (a variance in the CWT which detects local maxima in the wavelet coefficients) and the
Lipschitz exponent also known as Holder exponent. The method is implemented for detecting UB,
OW, MA, RI and classifies them according to the singularity of the signal.

In [YanPing et al., 2006], the authors proposed a method to characterize the shaft status using
parameters extracted from wavelet coefficients of the CWT, which are obtained with the Wavelet
Grey Moment (WGM) and first-order Wavelet Grey Moment Vector (WGMV) where the second one
is implemented when the WGM shows overlapped results. The studied faults were normal signal
(NS), UB, MA, OW, SC, ML and RSF. The results of the method were compared with the FFT and
suggest the presented method by the authors can detect all the studied faults unlike FFT which
only detected NS, UB, OW and ML.

[Chen et al., 2013] also reaffirmed that WT have better results than FFT. The DWT and the
Power Spectral density (PSD) were implemented to determine the UB in a vertical simulated spin-
dle. According to the study, the method can achieve a greater identification accuracy than FFT, by
using lower sampling frequency and additionally, the storage space gets reduced and the processing
speed is improved.
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Table 2.1: Comparison between some machining researches using WT approach

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[Mori et al., 1996] OR Test rig
660 RPM

DWT
MW: Daubechies

Does not apply Maximum Value of coefficients

[Paya et al., 1997] IR Test rig
470-4230 RPM

CWT
MW: Db4

Does not apply ANN & Back-Propagation
96%

[Tse et al., 2001] IR, OR, RE Test rig
1200 RPM

CWT
MW: Gaussian

Does not apply Visual

[Nikolaou and Antoniadis, 2002] IR, OR Simulation /
Test Rig
1500 RPM

WPT
MW: Db12

Energy of coefficients Visual

[Prabhakar et al., 2002] IR, OR Vibration Tester
1800 RPM

DWT
MW: Db4

RMS and Kurtosis, FFT Visual

[Tse et al., 2004] IR, OR Simulation /
Test Rig
1398 RPM

EWA
MW: Multiple

Does not apply Visual

[Shi et al., 2004] IR, OR, RE Test Rig
1020 RPM

CWT
MW: Gaussian

Shannon Entropy Visual

[Purushotham et al., 2005] IR, OR, RE, CO Test rig
1300 RPM

DWT
MW: Db2

MFCC HMM
99%

[Yan and Gao, 2005] OR Test rig
1200 RPM

WPT
MW: Harmonic

FDC MLP, RBF
99%, 100%

[Zhang et al., 2006] IR, OR, UB, CO Test Rig
1200-8400 RPM

AWT
MW: C. Morlet

Envelope Spectrum Visual

[Zhu et al., 2009] IR, OR, RE Simulation /
Test Rig
1430 RPM

CWT
MW: Morlet

K-S Does not apply

[He et al., 2009] IR, OR Simulation /
Test Rig
1500 RPM

CWT
MW: Morlet

SCS Does not apply
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Table 2.1: Comparison between some machining researches using wavelet approach (Continued)

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[Rafiee et al., 2010] IR, RE, C Test Rig
1420 RPM

CWT
MW: Analyzed: 324, Best:
Db44

Variance, Standard Deviation,
Kurtosis and 4th Central
Moment

Does not apply

[Tse and Leung, 2010] IR, OR, RE Test Rig
1400 RPM

CWT
MW:Morlet

Kurtosis and RMS Does not apply

[Kankar et al., 2011] IR, OR, RE, CO Test Rig
250-2000 RPM

CWT
MW: Analyzed: 7, Best:
Complex Morlet

MSEC, Kurtosis, Skewness,
Standard Deviation.

SVM
100%

[Wang et al., 2011] IR, OR, RE Simulation /
CWRU Web Data
1796 RPM/
Test Rig
1496 RPM

Transient Modeling
MW: Laplace, HW,
Single-Side

Correlation Filtering Automatic Estimation

[Yan and Gao, 2011] OR Test Rig
900-1500 RPM /
2000 RPM

WPT
MW: Biorthogonal 5.5.

Kurtosis, Energy and PFA ANN
93%

[Liu, 2012] IR, OR, RE CWRU Web Data
1796 RPM/
Test Rig
1500-1920 RPM

Shannon Wavelet Spectrum. EMA Visual

[Pandya et al., 2012] IR, OR, RE Test Rig
1000-6000 RPM

WPT
MW: Rbio5.5

Kurtosis, Energy, MSEC ANN
93%

[Chandel and Patel, 2013] IR, OR, RE CWRU Web Data
1796 RPM

DWT
MW: db10

Variance, Variance of
autocorrelation

ANN
100%

[Cui et al., 2016] IR, OR, RE CWRU Web Data
1796 RPM

Adaptive Wavelet
Decomposition

Time-frequency features, ITD Grey relational analysis
100%

[Kedadouche et al., 2016b] OR Test Rig
600 RPM

EWT Does not apply Visual

[Li et al., 2017] OR, IR Test Rig
1800 RPM

Q-factor WT Does not apply Visual
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Table 2.1: Comparison between some machining researches using wavelet approach (Continued)

References Defects Case Study Technique Additional Analysis Classifier and efficiency

[YanPing et al., 2006] UB, MA, ML Test rig
0-10000 RPM

CWT
MW: Morlet

WGM and WGMV Numerical

[Chen et al., 2013] UB Simulation
110 RPM

DWT
MW: Db10

PSD Visual

[Peng et al., 2007] UB,MA Test rig
3000 RPM

CWT WTMM and the Lipschitz
exponent

Numerical
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The investigation indicates the fault detection in HSM is an area of opportunity because most
analyzes are focused on detecting faults at low speeds. Furthermore, the researchers have different
points of view when choosing the type of MW and WT, for that reason there is no tendency to say
which one is the optimal for the problem.

2.3 Theoretical Background

2.3.1 Wavelet Transform

The WT is mathematical tool that converts a signal in time domain into a series of wavelets located
in a time-frequency domain.

The wavelets have finite energy with zero mean value and its oscillation is brief, so they differ
from the sinusoidal waves used in the FT. When the wavelet can be dilated and shifted keeping
its shape is called MW, this property allows the WT generates a desire response in both time and
frequency domain.

Continuous Wavelet Transform
The CWT of a signal x(t) can be performed through a convolution operation between the signal

x(t) and complex conjugate of a family of wavelets, [Yan et al., 2014]. Mathematically, it is similar
to the FT, except the Fourier analysis uses sines and cosines as base functions and the WT replace
them with wavelets. One of the main disadvantages that the continuous transform presents is the
redundant information, because of the change of the scale and translation parameters.

The scale can be approximated to frequency by the following relation:

Fa =
Fc

a ·∆
(2.1)

where a is a scale, ∆ is the sampling period, Fc is the center frequency of a wavelet in Hz, Fa is
the pseudo-frequency corresponding to the scale a, in Hz.

Discrete Wavelet Transform
The DWT acts as a pair of wavelet filters after the decomposition; it is obtained the approxima-
tion coefficients, which represents the low frequency of the signal and the detail coefficients that
correspond to the high frequency. For next level analysis the new decomposition starts from the
approximation coefficients found previously, as result this only allows decompose the low frequen-
cies as the level increases, an illustration of its behavior is seen in the Fig. 2.1 where A and D are
the Approximation and Detail coefficients and the next coefficients are the decomposition of the
previous ones, but the detail coefficients (D) are not longer decomposed.
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Signal

A1 D1

AA2 DA2

AAA3 DAA3

Figure 2.1: Third level decomposition using DWT.

Wavelet Packet Transform
The WPT can be seen as an extension of the DWT, where the detail coefficients are also analyzed
and decomposed, which gives a same resolution in both low and high frequencies. The Fig. 2.2
demonstrate even the detailed coefficients are decomposed for each level, consequently each coef-
ficient acts as a pass band filter with the same frequency range as the rest of the coefficients located
in the same level. The computational cost increases in comparison to the DWT, but it is lower than
the CWT.

Signal

A1 D1

AA2 DA2

AAA3 DAA3 ADA3 DDA3

AD2 DD2

AAD3 DAD3 ADD3 DDD3

Figure 2.2: Third level decomposition using WPT.
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Additional variations of WT

There are others WT, among them are the Second Generation Wavelet Transform (SGWT),
Wavelet Transform Modulus Maxima (WTMM), Q factor Wavelet Transform (QFWT) and Em-
pirical Wavelet Transform (EWT) in which the transform builds adaptive wavelets and it is not
necessary a MW selection.

2.3.2 Rolling element bearings

As bearings wear out, several faults may unleash. The principal faults affecting bearings are clas-
sified as distributed and local flaw. Distributed faults are divided in: surface roughness, waviness,
misaligned races and off-size rolling elements. On the other hand, local faults are splitted into:
cracks, pits and spalls on the rolling surface, [Prabhakar et al., 2002]. The theoretical fault fre-
quencies can be computed based on the geometry of the bearing [Randall, 2011]:

BPFO =
nfr
2

(1− d

D
cosα)

BPFI =
nfr
2

(1 +
d

D
cosα)

BSF =
Dfr
2d

(1− [
d

D
cosα]2)

FTF =
fr
2

(1− d

D
cosα)

where n is the number of balls or rollers, fr is the rotational speed, d is the ball or roller diameter,
D is the average diameter between OR and IR, and α is the contact angle. The BPFO is the Ball
Pass Frequency of Outer ring, BPFI is the Ball Pass Frequency of Inner ring, BSF is the Ball Spin
Frequency and the FTF is the Fundamental Train Frequency.

There are four stages for bearing deterioration: (1) during the initial stage, the finish of the
components in the bearing begin to deteriorate and produces ultrasonic frequency responses ap-
proximately in 20-60 kHz, [Scheffer and Girdhar, 2004], (2) in the second stage, the pits generate
the ringing of the bearing at its frequency resonance and the harmonics appear in frequencies lower
than 20 kHz, (3) in the third stage the pits spread along the raceway, emerge new peaks in the bear-
ing fault frequencies and some harmonics, as the fault is considerable dangerous to the bearing it
is recommended to replace the bearing because the remaining bearing life can be 1 h to 1% of its
average life and (4) the fourth stage corresponds to a severe bearing condition. The amplitudes of
the generated frequencies in the previous stages, the component 1x RPM and the random noise in
high frequencies increase. By this time, the bearing is heated and produces a lot of noise, by its
erratic behavior the coupling elements as the shaft could be damaged.
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In this thesis are analyzed faults located in the IR, OR and RE. Defects in the cage are obviated
because there are not recorded signals with cage faults in any of the data set studied.

2.3.3 Shaft

The shaft faults be detected by looking at the frequency spectrum and evaluating the speed har-
monics. For this thesis, the focus will be limited to UB, MA and ML because they are the most
common faults among the previously mentioned.

UB also called imbalance is the most common problem for rotating machines. It is said, the
shaft is out of balance when its center of mass (inertia axis) does not match to its center of rotation
(geometric axis), it causes a moment that affect the machine, [Mais, 2002].

There are three types of UB: static, couple and dynamic UB; any of them can be diagnosed
by evaluating the speed frequency. Usually, the UB will not cause much damage to machines, but
when the UB becomes serious, it will lead other destructive faults [Peng et al., 2007].

MA occurs when the components are not aligned along their centerline, it can appear as angular
and parallel or a combination of both. Its appearance causes the bearing to carry a higher load than
the allowed in its design specification, which may cause bearing faults due to early fatigue.

The ML or pedestal looseness as the name implies is caused by the near components looseness
or by a cracked frame structural.

To observe the behavior in a visual way for each one of the faults presented previously, please
revise the Chapter 3 in the shaft faul section.





Chapter 3

Theoretical Proposal

A proposal for fault detection in the bearing system(IR, RE, OR) and shaft(UB, MA, ML) of a
spindle is presented.

3.1 Proposed Methodology

The proposed method detects bearing and shaft faults by combining the benefits of the WT and
some statistical techniques, Fig 3.1. To process the signal, MATLAB software was used with the
Wavelet Toolbox version 2017a. The steps are the following:

Initial Signal Preprocessing

1. Acquire Signal
The signal comes from an accelerometer located on one side of the spindle, this signal
must have a sampling frequency high enough so the desired fault frequencies can be
detected.

2. Preprocess the signal
The signal might be embedded in heavy background noise; therefore, the signal should
be preprocessed to reduce the background noise and errors of the measurement systems,
[Lei, 2016]. It must be removed the trend and the mean of the signal, because the
characteristic frequencies are tainted.

An illustration is presented in the Fig. 3.2, when the signal has an offset (also named
mean) the direct component causes a fluctuation of a signal around x = 5 rather than
x = 0, Fig. 3.2a. The undesired component produces a peak at 0 Hz, which does
not carry any favorable information. Similarly, the trend (function associated with
time t) influences the signal, Fig. 3.2e and 3.2f by generating an impulse at 0 Hz which
opaques the other frequency and make it difficult to detect the important frequency. The

21
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Acquire 

Signal x(t) 

Decompose the signal 

and recover Best tree

Start

Reconstruct signal with 

low frequencies nodes

Apply FFT to the 

reconstructed signal

End

Compute Kurtosis and RMS

 for each node

Calculate:

KR=Kurtosis x RMS and normalize it.

Amplify to the maximum the 

values of KR  above a threshold 

Reconstruct the signal 

with the weighting of KR

Envelope the reconstrud signal

using Hilbert and remove its 

continous component

Perform FFT

Differentiate the faults according

to: UB, MA and ML

Differentiate the faults according

to: BPFO,BPFI and BPF
Diagnosis

 1: Shaft defects:
2: bearing faults:

Preprocess the signal

0.1

0.2

0.3

1.1

1.2

1.3

1.4

2.1

2.2

2.3

2.4

2.5

Analyze the Harmonics and 

Sub-Harmonics of the Shaft speed

2.6

2.7

0: Initial Signal Processing

Figure 3.1: Methodology flowchart

trend and the mean can easily be eliminated without affecting the useful information as
seen in the Fig. 3.2c and 3.2g.

3. Decomposition the signal and recover best tree
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Figure 3.2: Signal pre-processing

The signal is decomposed with the WPT by its benefits, section C.1 Appendix C, it
returns the wavelet coefficients organized in an energy-time-frequency array. There are
2level coefficients with the same frequency range. For the bearing fault detection it is
used the best tree which is computed based in the calculation of the entropy to detect
which node from all the levels have the coefficients with more information. Figure 3.3
indicates the best tree of a signal decomposed until a third level.

The decomposition depends on the type of studied fault, the Discrete Meyer wavelet is used
for detecting OR, the Daubechies 45 for RE faults and the Daubechies 41 for IR faults. These
MW were selected based on a criterion named Shannon Entropy.



24 CHAPTER 3. THEORETICAL PROPOSAL

a) Original Tree b) Best tree after applying entropy criterion

Signal Signal

Figure 3.3: Best Tree

Shaft defects:

1. Reconstruct signal with low frequencies nodes
The corresponding nodes to the range from the first five harmonics are separate for
shaft faults analysis, [Scheffer and Girdhar, 2004]. Reconstructing the signal using the
low frequency nodes, generates a low pass filter effect, where the generated peaks by
the faults in the bearings are eliminated, leaving behind only the information of the
speed and its harmonics.

2. Apply FFT to the reconstructed signal
The FFT is a high-efficient algorithm for computing the signal in frequency domain, it
is capable of executing the Discrete Fourier Transform (DFT) quickly. The transform
returns a frequency-domain graph, which shows how much of the signal changes over
a range of frequencies, Fig. 3.4.
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Figure 3.4: Time domain and FFT of the signal
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3. Analize the harmonics, subharmonics of the shaft speed
All the peaks which appear in the frequency spectrum are analyzed by taking into
consideration their amplitude and the number of harmonics and subharmonics of the
shaft speed (1X RPM).

4. Differentiate faults
The peaks are compare with the following criterion, [Mais, 2002]:

– When the 1X amplitude is higher than normal amplitude means UB is present
in the system; the footprint is obtained by running the acquisition system with
balanced components.

– To diagnose MA is necessary to compare the 1X and 2X speed amplitude. Nor-
mally, when the 2X amplitude is below 50% of 1X, the couplings are in an accept-
able state of MA , if the 2X amplitude is located at a range of 50% to 150% of 1X,
it is probable that coupling damage will occur. When the 2X amplitude is greater
than 150% indicates a severe MA.

– If the 1
2
X and its multiples have magnitudes greater than 20% the ML is present

Fig.3.5 .
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Figure 3.5: Shaft faults

For all the cases, an initial signal is required, with no fault and all spindle components
must be working correctly.

Bearing faults:

1. Compute Kurtosis and RMS
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The bearing fault excites low and high frequencies; therefore, for the analysis are con-
sidered all the generated nodes in the best tree. The Kurtosis and RMS are computed
for each node separately, because of its characteristics section C.2 (Appendix C).

Kurtosis gave a measure of the impulsiveness of a signal as a function of frequency
[Randall, 2011]. However, the Kurtosis value could wrongly increase due the random
impacts caused by noises.

RMS is commonly used as a destructive indicator, so in terms of machinery, it can be
used as a health indicator of the machine. In the same way, it can be applied to each
frequency band, it can return the intensity of a signal according to the frequency.

2. Compute KR
For each resulting node from the tree, the KR (Kurtosis×RMS) is obtained with the
product of the Kurtosis by the RMS, Fig. 3.6.

The result generates an amplitude arrangement of the KR amplitude versus the number
of nodes, where nodes with high values have more information of the fault.

3. Amplify KR values above a threshold
Having the right indicator, the reconstruction will be based on these results, where
it will depend on the weighting of the KR values. The problem lies on the fact the
reconstruction of the maximum harms its surroundings since only one has weighting of
1; but, as shown in the Fig. C.5 Appendix C, a single node may not contain the entire
information of the fault, and that is why it is proposed the KR values that surpass a
threshold are increased to the maximum value and the values below remain unchanged.
The procedure is shown in the Fig 3.7, the selection of the threshold is presented in the
section C.3, Appendix C.

4. Signal reconstruction
The signal reconstrucction is based on a ponderation given by the KR; the nodes with
the maximum value of KR are entirely reconstructed, meanwhile the nodes based on
low values are reconstructed with the percentage of the KR value against the maximum.

The WT allows to reconstruct the signal from its coefficients by applying an inverse
procedure. The input for the Inverse Wavelet Transform (IWT), are the coefficients in
each node, the result gives n signals with different ranges of frequency that posteriorly
are added to have a modified signal where the noise is reduced.

5. Hilbert envelope
By using the Hilbert envelope, the high frequencies disappear and the defect frequency
becomes more visible. As example, the signal in the Fig. 3.8 is composed by two
frequencies: at 50 Hz and 1,000 Hz. The new signal (dotted line) envelopes the original,
which eliminates the high frequency component without the use of a filter. In most
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Figure 3.6: Generation of the KR employing wavelet coefficients

cases the generated envelope has a continuous component, which appears as a peak at
0 Hz in the frequency spectrum, to over come this problem, the signal is adjusted to
zero.

6. FFT
The FT is applied to know the frequency spectrum of the enveloped signal and to
distinguish, if the presented peaks match with some of the values of the eqn. (2.2).

7. Differenciate the faults
The frequency spectrum has peaks if a fault is present. The values are evaluated to
know if they correspond to the BPFO, BPFI or BSF. If there is not peak, there is not
fault.

The peaks in the frequency spectrum are accompanied by harmonics and sidebands,
the BPFO has a peak in the fault frequency as well as harmonics that become small as
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the frequency increases. If the signal has an IR fault, there will be peaks in the BPFI
frequency and its respective harmonics, besides both of them have sidebands spaced
the shaft speed that in certain cases have higher amplitude than the fault frequency.
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Something similar happens with the BSF with the difference that the sidebands are
spaced FTF frequency, Fig. 3.9.
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Chapter 4

Experimental System

4.1 Case studies

It has been considered 2 datasets provided by the Case Western Research University (CWRU) and
the center of Intelligent Maintenance Systems (IMS). Additionally, a set of data was generated
through a set od experiment tests using a GROB 550 machining center.

The use of data from CWRU will provide an understanding of the robustness of the proposed
method, since some of the signals have noise that makes difficult the fault detection with the
traditional methods. The data from the IMS will help to identify, if the algorithm detects faults at
early stages (incipient faults).

4.1.1 CWRU Bearing Data Center

The data with bearing defects was provided from the website of the CWRU, in the tests are included
data from normal and faulty bearings. the data was recorded at different loads: 0-3 Hp and the
rotation speed was kept constant (1,797 - 1,720 RPM). Fig 4.1 shows the components of the test
rig which include: a 2 Hp motor, dynamometer, accelerometers located on the drive end, fan end
and base (some experiments), encoder and two types of bearings (drive end bearing: 6205-2RS
JEM SKF, fan end bearing: 6203-2RS JEM SKF).

The bearings were seeded with defects using Electro-Discharge Machining (EDM). The diam-
eter of the fault goes from 0.007 to 0.040 inches located on the IR, OR and/or RE.

The values showed in Table 4.1 allows to detect the bearing fault frequencies by multiplying
them by the rotational speed in Hertz. The values were proportionated by the CWRU .

The data was collected at 12,000 and 48,000 samples/second for drive end bearing experiments.
All fan end bearing data was collected at 12,000 samples/second.

Each file contains fan and drive end vibration data as well as motor rotational speed. For all
files, the following item in the variable name indicates: DE - Drive End accelerometer data, FE -

31
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Figure 4.1: CWRU Bearing test rig.

Table 4.1: CWRU Bearing Defect frequencies (multiple of running speed in Hz)

Bearing Inner Ring Outer Ring Cage Train Rolling Element

6205-2RS 5.4152 3.5848 0.39828 4.7135

6203-2RS 4.9469 3.0530 0.3817 3.9874

Fan End accelerometer data, BA - Base Accelerometer data, Time - Time series data and the RPM
during testing [CWRU, 1999].

4.1.2 IMS Bearing Data

This data was obtained from the IMS with support from Rexnord Corporation Milwaukee, WI.
There are three tests in the data, but only two were chosen for the analysis because the third one
presents the same failure conditions as the second. In all of them, the rotational speed was kept
constant at 2,000 RPM by an AC motor coupled to the shaft via rub belts and a 6,000 lbs radial
load was applied on the shaft. As seen in Fig. 4.2, the test rig consists of: AC motor, PCB 353B33
High Sensitivity Quartz ICP accelerometers, Rexnord ZA-2115 double row bearings, NI DAQ
Card 6062E, [CWRU, 1999].

Each data set describes a test-to-failure experiment, it consists of individual files that are 1-
second vibration signal snapshots recorded at specific intervals. Each file consists of 20,480 points
with the sampling rate set at 20 kHz. The Table B.1 (Appendix B) shows the data structure for
each experiment and the cause of damage in the corresponding bearing. The defect frequencies are
presented in the Table 4.2. The selection of the stages an the rest of information of the data set is
located in the Appendix B.
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Figure 4.2: IMS bearing test rig.

Table 4.2: IMS Bearing defect frequencies (multiple of running speed in Hz)

Inner Ring Outer Ring Cage Train Rolling Element

8.8078088 7.1921912 0.55048805 3.88353658

4.1.3 GROB 550 recorded data

The GROB 550 machining center has its own data acquisition system which includes the VSA004
accelerometer located in the housing of the spindle and a diagnostic electronic VSE100 with FFT,
and the Envelope Fast Fourier Transform analysis integrated.

The time domain signal was recorded with an additional equipment. The coupled system has
the VSA004 accelerometer connected to a 5134B Kistler amplifier and a DAQ 9234 as seen in Fig.
4.1. The bearing information for this spindle is showed in Table 4.3.

VSA004

VSE100

Spindle

5134B Kistler DAQ 9234

Figure 4.3: GROB 550 acquisition system

The data was recorded at different speeds ranging from 1,000 to 12,000 RPM and several levels
of UB tool. For the analysis, signals with UB equal to 1.1, 10.5 and 26.1 were chosen, each one
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Table 4.3: GROB 550 Bearing defect frequencies (multiple of running speed in Hz)

Inner Ring Outer Ring Cage Train

12.95 10.55 8.83

of this signals has a duration of 2 seconds recorded at 12,000 RPM; the frequency sample was
fs = 51200



Chapter 5

Results

5.1 Introduction

The methodology was validated by using several case studies were analyzed for detecting UB, MA,
ML, IR, OR and RE faults. It was established that there are no signals with all the spindle faults,
that is why, for the case of UB, MA and ML, the signals obtained from the GROB 550 machining
center were taken. For the other cases (bearing faults), both IMS and CWRU data signals were
used.

Firstly, the original signals are presented to emphasize the difficulty of detecting faults in the
time domain, then the results of the method are presented and some discussions are included.
Finally, a comparison with other methods is included to know the advantages or disadvantages of
the method.

5.2 Method Results

5.2.1 Shaft faults: GROB 550 data set

The signals collected from the machining center were recorded with several levels of UB and
diverse speeds. To test the proposed method, three signals were selected each one with a different
level of UB: 1.1, 10.5 and 26.1 and the shaft speed was kept constant: 12,000 RPM.

When the method is evaluated for the shaft defects, it returns a reconstructed signal with nodes
beyond 500 Hz, as result, the signal is modified, Fig. 5.1.

5.2.2 Bearing Faults case 1: IMS dataset

For the IMS database 9 signals were studied considering each type of bearing fault (IR, OR and
RE) at three categorized levels depending on the stage of the fault: early, when the Kurtosis level

35
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Figure 5.1: GROB signals after the application of the proposed methodology

begins to rise; medium, an intermediate point between the first appearance of the fault and the end
of the tests and critical, when the bearing stopped working, Fig B.5, (Appendix B).

For bearing faults, the method returns the FFT of a reconstructed signal. From this graph the
diagnosis can be performed in a visual way by knowing the frequency behavior of the different
faults. The Figure 5.2 presents the results for the IMS signals, the sidebands and shaft speed
harmonics are still present; the light blue lines are the expected frequency fault and its harmonics.
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The shaft speed harmonics and the faults sidebands are hidden to make it easier to observe the
faults, Fig. 5.3. The reader can analyze in detail the 9 signals by going to the Appendix D, where
the results for each signal are presented with and without harmonics and sidebands.
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Figure 5.2: IMS signals after the application of the proposed methodology showing sidebands and
shaft speed harmonics



38 CHAPTER 5. RESULTS

IR Signals

OR Signals

RE Signals

0 200 400 600
0

2

4

6

8

a)  Category: Early - test: 1820

0 200 400 600
0

0.005

0.01

b) Category: Medium - test: 1990

0 200 400 600
0

0.005

0.01

0.015

0.02

0.025

0.03

c) Category: Critical-test: 2140

0 200 400

× 10
-3

0

2

4

6

d)   Category: Early - test: 533

0 200 400
0

0.01

0.02

0.03

0.04

0.05

e) Category: Medium - test: 758

0 200 400
0

0.05

0.1

0.15

f) Category: Critical - test: 979

0 100 200 300
0

0.005

0.01

0.015

g)  Category: Early - test: 1500

0 100 200 300
0

0.01

0.02

0.03

0.04

h) Category: Medium - test: 1820

0 100 200 300
0

0.005

0.01

0.015

0.02

0.025

0.03

i) Category: Critical - test: 2140

ML
ML

× 10
-3

1 x BSF
1 x BSF

2 x BSF

1 x BSF

1 x BPFO

2 x BPFO

1 x BPFO

2 x BPFO

1 x BPFO

2 x BPFO

1 x BPFI

2 x BPFI

1 x BPFI

2 x BPFI

1 x BPFI

2 x BPFI

ML

ML
ML

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

A
m

p
lit

ud
e 

(g
)

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Frequency (Hz) Frequency (Hz) Frequency (Hz)

Figure 5.3: IMS signals after the application of the proposed methodology

5.2.3 Bearing Faults case 2: CWRU database

From the CWRU database 3 signals were selected for each type of fault, there were contemplated
3 categories: N, P, Y, which states the difficulty of fault detection according to [Smith and Randall,
2015]: the signals belonging to the Y group are the signals with and easy detection, in P are
the signals with are partially diagnosed and the N signals are not diagnosable using traditional
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methods.
Figure 5.4 shows the results of the applied method to the 9 signals with the shaft speed har-

monics and sidebands removal.
In Appendix D can be found the results for each signal with and without harmonics and side-

bands.
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Figure 5.4: CWRU signals after the application of the proposed methodology
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5.3 Discussions

5.3.1 Shaft faults: GROB 550 data set

In the Fig. 5.1(a,b,c) can not be distinguished the UB and at first sight because the signals have
similar amplitudes. The method reconstruct a signal where the amplitude increases proportionally
with the UB level and the difference is observed in more detail in the FFT of the reconstructed
signals. The peak at the shaft speed (200 Hz) increases as the level of UB grows, this demonstrate
the UB detection.

The second shaft speed harmonic is small relative to the first harmonic in all the cases, this
establish there is no MA. ML is not present either because there are not peaks at the half of the
shaft speed. There are peaks at 60 Hz, but it is assumed that they are electric noise, possibly
coming from the motor.

The results indicate the method acts as filter because it reconstructed the nodes beyond the
firsts shaft harmonics, Fig. 5.1(g,h,i) show peaks only in peaks within that range the peaks above
are reduced to values close to zero.

5.3.2 Bearing Faults (case 1: IMS database)

The results after the signal processing are observed in the Fig.5.2. After the reconstruction stage,
the new signal has a change on its offset and some peaks are attenuated. In the IMS signals the first
statement is the most notorious, particularly for the IR and RE signals. In the Fig. 5.5 is shown a
signal with offset removal using the proposed method. The results are as follows:

• OR Signals
The frequency graph generated by the proposed method in a signal with OR fault Fig. 5.3d,
indicates the method detected the fault at early stages. There is a fault in the OR because
some peaks match the frequency fault BPFO not only in the carry frequency, but also in its
harmonics. However, the method does not remove all the white noise because it is similar
to the noise found at the signal baseline in the test 1, Fig 5.3 (Appendix B), there is a lot of
randomness of the data in the range below 0.003 and the unknown peak at 500 Hz it is still
presented. For the consecutive tests where the crack gets bigger, the method does not have
any inconvenience in detecting the fault because the peaks in the BPFO increase, Fig. 5.3
(e,f), the amplitude of the BPFO went up from 0.0062 to 0.18, almost 30 times the original
value. Additionally, the peak at 500 Hz is completely attenuated and the noise remains low.
• IR Signals

At an early stage fault Fig. 5.3a, there is a peak that matches with the expected frequency
fault BPFI; However, the peak is opaqued by the background noise and others peaks at low
frequencies, their values are mostly ML, the others peaks are the peak in 7 Hz and 197 Hz,
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Figure 5.5: RE signal with offset removal

they do not belong to the frequency and their origin are unknown. In the next test, Fig.
5.3b, where the category is medium and the fault is bigger, some peaks stand out among
others: the first two correspond to ML, the peaks at 290 and 590 Hz are the frequency fault
and its first harmonic. When the faults become critical and the bearing is ready to fail Fig.
5.3c, an increase in amplitude of the frequency fault BPFI is presented, the ML is not longer
displayed and the second harmonic also increases, this evidences the clear detection of the
fault. Therefore, the method is capable of detect faults from the medium category onward
although it is not efficient in removing the shaft frequency fault nor the entire background
noise.
• RE Signals

Figure 5.3g, shows the method proposed to a signal with an early stage RE fault, the white
noise was not completely removed because it present the same behavior as the noise in the
RE baseline. Furthermore, there are peaks in the ML, this leads to an opacity of the BSF peak
at 131 Hz and the second harmonic is not presented either, for those reasons it is considered
the method do not distinguish RE faults at early stages.
The ML and the BSF peaks increase when the fault grows Fig.5.3h, although the second
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harmonic of the BSF is not observable, the peak at 131 Hz confirms the presence of RE
fault;the peak at 102 Hz is a sideband of the BSF = 131Hz and has higher amplitude
than the carry frequency because this frequency matches with a harmonic of the ML which
increases its amplitude.
At the end of the bearing useful life, the failure in the RE is more evidenced by the presence
of peaks in the fault frequency and its harmonics Fig.5.3i. However, their amplitude varies
with a not proportional relation because instead of increasing the first fault peak as the later
harmonics do, it decreases. The same happens with the peaks in the low frequencies belong-
ing to ML and the shaft speed. The incident is not a fact of a single partition. Tests above
and below 1,800 and 2,140 had similar behaviors. The fact could be due to a poor location
of the applied force, its movement could cause a decrease of the load towards the bearing
and therefore the reduction of its vibration.

The results demonstrate the method can be used to detect nearing early stage faults for the case
of the OR and intermediate stages for the case of IR and RE with a 1 second recording.

The method does not remove the ML neither shaft speed peaks, those values interfere with the
detection because they opaque the frequency fault.

5.3.3 Bearing Faults (case 2: CWRU database)

• OR Signals
When the fault signal belongs to the not diagnosable group, the fault is detectable by eval-
uating harmonics of the fault frequency , in this case Fig. 5.4d, the 3th peak confirms the
presence of the fault. There are several peaks that have greater amplitude than any fault
harmonic, this makes difficult their detection. A similar behavior occurs with the group P
where the frequency peak is not the highest. However, the frequency peak and its harmonics
are clearly visible. The signals in the category Y are easy to diagnose, there is not present
any white noise.

• IR Signals
The results obtained for IR signals indicate: the BPFI peak does not match with the first
harmonic despite the proximity to this value, as result it is establish the method do not detect
de fault for this case Fig. 5.4a. In the other signals, the method can diagnose clearly the fault,
the fault peaks match not only in the 1×BPFI but also in the second harmonic (2×BPFI).

• RE Signals
The RE signals are diagnosable by examinating the first or second BSF harmonic, in the Fig.
5.4 (h,j), the fault is detectable for the first harmonic and for the category P Fig. 5.4i, the
fault is detectable in the second harmonic.
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For the CWRU database signals, the method can be used for detecting faults in signals with
noise because it detects the peaks in its corresponding frequency fault ; however, in some cases
the method does not reduce all the noise, this is caused because the high frequencies are not only
excited by the frequency faults, but also by other faults in the elements coupled to the bearing.

5.4 Comparison

5.4.1 Shaft faults: GROB 550 data set

The method is compared with the FFT of the original signal. Figure 5.6a shows the filter effect
occurring with the reconstructed signal, the frequencies above the selected nodes are totally re-
moved. It can be observed more precisely in the Fig. 5.6 (c,d). The same graphs indicates the
method keeps the same amplitude in all the peaks in the range of 0-500 Hz, this establishes the
method does not improve or worsen these peaks and only acts as a low-pass filter.

5.4.2 Bearing Faults case 1: IMS Dataset

The method will be compared with: FFT and the enveloped-FFT by checking the amplitude at the
frequency fault, Fig 5.7; all of them were compared by normalizing the time domain signals. The
comparison is made in the range of 0 - 1,200 Hz, where it can be seen clearly the frequency fault
and some of its harmonics.

At first glance the proposed method and the enveloped-FFT have a similar behavior; however,
in all cases, the peak in the fault frequency is higher with the proposed method than with the other
methods (enveloped-FFT, FFT), the amplification value varies depending on the type and stage of
the fault. Figure 5.7 shows a signal with OR fault applied the three studied method, in the FFT the
fault is present; but, its value is low. In the enveloped-FFT the fault and its harmonics are clearly
detectable the same way proposed method does with the advantage that this method magnifies all
the important frequencies. In the graphs can also be notice the peak at 0 Hz which appears in the
enveloped-FFT, and it disappears when it is compared with the proposed method. This is of great
advantage because the maximum value is not longer the peak at 0 Hz but the peak at the frequency
fault.

In most cases, the method eliminates the peaks of 500 and 1,000 Hz. These frequencies do
not belong to any of the contemplated faults and possibly are electric noise. These components
are present in the FFT and in some of the enveloped-FFT, their appearance makes it difficult to
distinguish the fault because of its high amplitude opaque the rest of the frequencies. Figure 5.8
shows a case where the unknown peaks considered as noise were not eliminated neither by the
enveloped-FFT nor FFT only by the proposed method.
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Figure 5.6: Signal with UB=26.1

In all the cases the FFT had the worst performance when are analyzed the first frequency fault
harmonics, the peaks are only distinguished for cases of OR fault and even so, their value is low.
In the cases where are presented IR and RE faults, the FFT do not detect them and can only be
observed the peaks at 500 and 1,000 Hz.

The enveloped-FFT has proven to be a good method for bearing fault detection; its behavior is
similar to the proposed method nonetheless it does not remove entirely the peaks at 500 and 1,000
Hz and the value of the frequency fault is less than the one obtained by the proposed methodology,
Fig. 5.9.

Despite being proven the proposed method is the best among the other studied, it can not detect
IR and RE at early stage faults, the white noise and the non-important frequencies such as: ML
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Figure 5.8: IR fault signal (IMS database)

and shaft rotation are not completely eliminated.
The IMS data set was used in [Li et al., 2017], the authors applied the tunable QFWT to a

signal with OR fault to identify early stage faults. The authors were able to detect the OR fault at
the 643th test. The proposed method and the enveloped-FFT are capable of detect the fault in the
test 533 which means they detect faults earlier than the QFWT.
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Figure 5.9: IR fault signal (IMS database)

5.4.3 Bearing Faults case 2: CWRU Database

The comparison indicates again, the FFT does not diagnose the fault in all the signal only when the
fault belongs to the easy diagnosable group. The proposed method and the enveloped-FFT present
a similar behavior over the frequency range with difference in the amplitudes. When the method is
performed with the CWRU, it amplifies the peaks shown in the enveloped-FFT in all the analyzed
signals, as example the Fig. 5.10 presents the behavior described. The observed gain depends on
the signal and the noise level.
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Figure 5.10: OR fault signal (CWRU database)

In the same way as in the IMS database, the method removes the offset and eliminates the 0 Hz
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peak, this allows the detection of the maximum peaks. Figure 5.11 shows the offset removal in the
frequency spectrum and its equivalent in the enveloped-FFT.
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Figure 5.11: IR fault signal (CWRU database)

An additional analysis was performed adding Gaussian noise to the signal, aiming to have noise
throughout the frequency range and not only in the resonance range of the studied components. It
was added noise with a Signal to Noise Ratio (SNR) of 1.

In the Fig. 5.13a is shown an OR signal with added noise in the time domain, It can be seen
the fault can not be distinguished because the noise taints the original signal. When the method is
applied, the reconstructed signal has a clearly noise reduction, Fig.5.12.
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Figure 5.12: OR fault signal with SNR (CWRU database)
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The effectiveness of the proposed method is observed in more detail: the method keep the same
results shown in the Fig. 5.10a and Fig. 5.12a; however, when the noise is added, the amplitude
of the frequency fault is reduced, Fig. 5.12b, because the method reduces the magnitude of these
noise frequencies.

The method modifies the signal, it reconstructed the signal with a ponderation in the frequen-
cies to the presented case, when the signal has noise Fig. 5.13a, the fault is difficult to detect but
the method returns a new signal with some improvements, because the frequency peaks are more
visible Fig. 5.13b. The frequency domain also brings great information to the results, as seen in the
Fig. 5.13d, the range from 2,500 - 4,500 Hz remains the same and the rest of the frequency range
gets modified: the frequencies beyond 500 Hz reach zero and, from 500 - 200 Hz and 4,500-6,000
Hz the noise is reduced.
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Chapter 6

Conclusions

6.1 Summary

Vibration-based condition monitoring has proved to be an efficient way to detect faults in ma-
chining centers, the vibration signature changes in a way related to a fault and it is avoided the
component disassemble. In this work, a methodology for spindle faults detection has been pro-
posed, the method evaluates the vibration signal with the WT, Hilbert envelope and the FT to
diagnose: UB, MA, ML, IR, OR and RE faults. The proposed methodology provides better results
compared to common methods for fault detection because, it gives more weight to high energy
frequencies.

The results indicate the fault can be detected accurately even at early stages(when the ele-
ment starts to crack) which allows to perform proper maintenance before the fault can affect the
other components and damage them. Additionally, the method is able to deal with noise at low
frequencies by removing it or reducing its amplitude. Therefore, the presented method may be
used to identify the health status of the spindle in noisy industrial environments. When the signal
present other types of faults at high frequencies the method can not eliminated them because the
reconstructed signals also have this parasitic signals.

Figure 6.1 shows the comparison between the frequency fault frequency resulting from the
proposed methodology and the obtained by the Enveloped-FFT. The results indicate an going from
6-69 %. For the CWRU case, the average increase percentage is 16%, and for the IMS database is
33%.

CWRU signals with added Gaussian noise showed, had an higher increase, the value reached
up to 57 percent.

49
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6.2 Contributions

The main contribution of this thesis resides in the method proposed, the selection of the best
parameters, it offers a robust analysis for spindle faults detection.

There are three complementary studies to clarifying which are the best parameters among those
presented in the literature: in this thesis was analyzed which statistical indicator detects the fre-
quencies where the bearing fault is located, the KR had the better results even when the signal has
Gaussian noise and low frequency peaks; moreover, the optimal threshold for the reconstruction
and the best type of WT were also evaluated. The combination of the three parameters allows the
method to detect the frequency range excited by the bearing fault vibration and reduce the weight
of the frequencies outside this range.

6.3 Publications

Two publications were presented during the research.

• ”Diagnóstico de Fallas en Husillos de Mecanizado de Alta Velocidad usando Onduletas -
Estado del Arte”. Presented in the XXIII Annual International Congress of SOMIM (20-22
september 2017, Cuernavaca, Morelos, México)



6.4. FUTURE WORK 51

• ”Monitoreo de Husillos usando la Transformada de Onduletas”. Presented in the National
Congress of Automatic Control 2017 (04-06 october 2017, Monterrey, Nuevo León, México)

6.4 Future Work

The present thesis has made a contribution towards the development of a methodology for online
spindle fault detection. In reference to the obtained results, some interesting points have been
identified:

• As a starting point, the method can be used in conjunction with a classifier, it will automat-
ically detect the type of fault and can be used for an online system. Moreover, A hybrid
method could be developed by using the proposed methodology as signal preprocessing for
new techniques such as: HHT and WVD.

• The obtained results can be evaluated to detect a pattern of the amplitude of the FFT and
related them with the fault size. The cut frequency for the shaft reconstruction must be
studied in deep, it has to be adaptive to content at least two speed harmonics.

• As a further extension of this work, the method can be applied to a bearing fault in HSM
database. Additionally, other faults can be investigated as cage and rotor faults. The method
is not limited to signals obtained by accelerometers, acoustic emissions can be used as input
to the method.

• Finally, the performed wavelet analysis in this thesis would be easily expanded by attaching
the wavelet denoising and try to eliminate the remaining noise in the reconstructed nodes.
It would be compelling to design a wavelet with similar behavior to the vibration signal
generated by a fault.
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Appendix A

Acronyms Definition

Table A.1: Acronyms Definitions

Acronyms Definition Acronyms Definition

ANN Artificial Neural Network AWT Analytic Wavelet Transform

BPFI Ball-Passing Frequency Inner-Race BPFO Ball-Passing Frequency Outer-Race

BPFR Ball-Passing Frequency Roller BS Bent Shaft

BSF Ball Spin Frequency C Cage

CO Combined Defects CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform EEMD Ensemble Empirical Mode Decomposition

EMA Exponential Moving Average ESER Energy to Shanon Entropy Ratio

EWA Exact Wavelet Analysis EWT Empirical Wavelet Transform

FDC Fisher Discriminant Criterion FEM Finite Element Model

FFT Fast Fourier Transform FTF Fundamental Train Frequency

HHT Hilbert Huang Transform HMM Hidden Markov Models

HSM High Speed Machining HW Harmonic Wavelet

ICD Intrinsic Characteristic-scale Decomposition IFFT Inverse Fast Fourier Transform

IMF Intrinsic Mode Function IR Inner Race

ITD Intrinsic Time Decomposition K-S Kolmogorov-Smirnev

MA MisAlignment MEC Maximum Energy Criterion

MFCC Mel Frequency Complex Ceptrum ML Mechanical Looseness

MLP Multiplayer Perception MSEC Minimum Shannon Entropy Criterion

OMA Operational Modal Analysis OR Outer Race

PFA Principal Feature Analysis PSD Power Spectral Density
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Table A.1: Acronyms Definitions (Continued)

Acronyms Definition Acronyms Definition

QFWT Q Factor Wavelet Transform RBF Radial Basis Functions

RE Rolling Element SCS Sparse Code Shrinkage

SGWT Second Generation Wavelet Transform SSA Statistical Signal Analysis

STFT Short Time Fourier Transform SVM Suport Vector Machine

UB UnBalance WGM Wavelet Grey Moment

WGMV Wavelet Grey Moment Vector WPT Wavelet Packet Transform

WT Wavelet Transform WTMM Wavelet Transform Modulus Maxima

WVD Wigner-Ville Distribution fs Sampling Frequency

SNR Signal to Noise Ratio KR Kurtosis × RMS

IMS Intelligent Maintenance System CWRU Case Western Reserve University

RI Rub Impact System OW Oil Whipping



Appendix B

IMS Data selection

IMS dataset is studied to differentiate in which test begins to appear the faults and the acquisition
channel with more information about them.

Table B.1: IMS bearing bata structure

Set number 1

Recording Duration: October 22, 2003 12:06:24 to November 25, 2003 23:39:56

No. of Files: 2,156

No. of Channels: 8

Channel Arrangement: Bearing 1 Ch 1&2; Bearing 2 Ch 3&4; Bearing 3 Ch 5&6; Bearing 4
Ch 7&8.

File Recording Interval: Every 10 min(except the first 43 files were taken every 5 min)

Description: At the end of the test-to-failure experiment, inner race defect occurred
in bearing 3 and roller element defect in bearing 4.

Set number 2

Recording Duration: February 12, 2004 10:32:39 to February 19, 2004 06:22:39

No. of Files: 984

No. of Channels: 4

Channel Arrangement: Bearing 1 Ch 1; Bearing 2 Ch 2; Bearing 3 Ch3; Bearing 4 Ch 4.

File Recording Interval: Every 10 min

Description: At the end of the test-to-failure experiment, outer race failure occurred
in bearing 1.
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B.1 Identification and categorization of the bearing faults

According to [Li et al., 2017], the Kurtosis index is employed to reflect the degradation process
over its whole life, when it is present an abruptly increase in the index the bearing has a defect.
The results are presented in the Fig B.1 - B.3 where can be seen that the early stage faults are
present approximately since the test 1800, 700 and 1,400 for the IR, OR and RE respectively, (for
this thesis will be select tests close to these points).
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Figure B.1: Kurtosis values for the bearing with IR at the end of its useful life. a) Channel 5, b)
Channel 6
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Figure B.2: Kurtosis values for the bearing with OR fault at the end of its useful life
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Figure B.3: Kurtosis values for the bearing with RE fault at the end of its useful life. a) Channel
7, b) Channel 8

By examinating the Kurtosis, a signal in which the value of Kurtosis starts to rise will be
selected as an early stage fault, the critical fault signal is selected as the last signal before the test
stoppage; and the medium fault signal is an intermediate signal between the early and the critical
signal. The selected tests are summarized in the Table B.2. For the selection were considered the
signals that were recorded with a shaft speed of 2, 000 RPM; although the information collected
from the IMS states that all the recordings were performed at the same speed, it was observed that
many of the speeds in certain recordings oscillated between 1,800-2,000 RPM.

Table B.2: Number of the selected tests

Fault Test for early stage fault Test for medium stage fault Test for critical stage fault

IR 1,820 1,990 2,140

OR 533 758 979

RE 1,500 1,820 2,100

B.2 Initial considerations

The signals from the IMS dataset have a lot of white noise and unknown peaks that are possibly
caused by other types of faults. These peaks are best evidenced in the stages where the fault is
critical. To corroborate that the mentioned peaks and the noise do not belong to the fault or any of
its harmonics, signals before the appearance of the fault were analyzed, when the bearings were in
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the best conditions Fig, B.4.

Frequency (Hz)

0 500 1000 1500

A
m

p
lit

u
d

e

0

0.005

0.01

0.015

a) IR baseline - test: 1

Frequency (Hz)

0 500 1000 1500
0

0.005

0.01

0.015

b) OR baseline - test: 1

Frequency (Hz)

0 500 1000 1500
0

0.005

0.01

0.015

c) RE baseline - test: 1

Unknown peaks

Unknown peaks

Unknown 

peaks

A
m

p
lit

u
d

e

A
m

p
lit

u
d

e

Figure B.4: Frequency spectrum of the signal envelope of a signal at the beginning of the tests

The unknowns peaks are present in the three baselines, they are not in function of any of the
frequencies of failure or of the speed, they are two peaks in the frequencies of 500 and 1,000 Hz,
that can be due to an electrical noise. For the moment as it does not belong to any harmonic of the
fault frequencies will be considered as noise. Furthermore, in all the signals there is white noise
(random peaks at different frequencies).

There are several remarkable points that can be observed in the behavior of the original IMS
signals. As the category of the fault increases, the vibration peaks also increase, this statement is
observed more clearly in the signals with OR faults. In addition, the 9 signals are immersed in a
noise especially the signals of the IR and RE faults, in which the peaks are not distanced the fault
frequency, and finally all the signals have an offset that affects the signal processing (if it is not
removed).
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Figure B.5: Considered signals from IMS database





Appendix C

Parameters Selection

The parameters for the proposed methodology were analyzed, they include the ideal wavelet, the
statistical method and the threshold for the reconstruction. The MW was selected taking into
consideration computing time and frequency resolution, for the case of the statistical indicator,
the most used were compare to know which one correctly detects the desired frequencies and its
robustness in the presence of noise. Finally, different thresholds were based on a relation between
the energy and nodes to magnify the important nodes.

C.1 Wavelet Transform

There are different types of the WT such as: CWT, DWT, WPT, EWA, AWT and SGWT [Yan et al.,
2014], in the reviewed articles it can be observed that each transform has its advantages; but, it is
not yet known which predominates among the others for the detection of this type of faults. Same
applies to MW, the use of them goes from fix wavelets such as Symlets or Morlets until adaptives
wavelets [Kedadouche et al., 2016a], [Cui et al., 2016]. Among the diverse transforms CWT, DWT
and WPT were selected to find out which one has better performance for the problem. They were
based in computing time and time-frequency resolution.

As the condition monitoring demands real-time results, the computing time is important for
the choice of the kind of transformation, for that reason, the transform with the lowest computing
time it is considered as the most adept for the method where the computing time is the time it takes
for the signal to be decomposed. As the bearing fault excites high frequencies and the UB low
frequencies, it is said the transform that contains a good frequency accuracy in all range is best
suited for the problem. It should be noted that the resolution in frequency of a WT is not equal to
the one generated by the FFT, where the latter causes its resolution to go from 1 Hz to fs/2 with a
1 Hz interval. The WT has an interval that depends on the MW, so in most cases it is greater than 1
Hz and it may contain a whole frequency range, which can be very large and important information
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will be lost.

C.1.1 Computing time

The time is calculated by measuring the duration it takes the signal to be decomposed to a same
level, to perform it was used the tic-toc function in MATLAB which only evaluates the time of the
selected code. The runtime results are presented in the Table C.1, where it is showed that the DWT
is fastest among the others followed by the WPT considering CWT as reference which consumes
many computational resources and makes it the less useful for our purpose.

Table C.1: Decomposition time of each WT

Wavelet Transform % Time respect to CWT

DWT 31.12%

WPT 52.3%

CWT 100 %

C.1.2 Frequency Resolution

To evaluate the time-frequency resolution of each transform, it was a selected a bearing signal with
OR fault from the CWRU dataset where the frequency sampling is 12,000 Hz. It was analyzed with
the wavelet db44 and decomposed until the 32 scale for the case of the CWT and level 5 for the
DWT and the WPT, Fig C.4. Taking into consideration the frequency sampling and the Nyquist
theorem, the maximum frequency that can be reconstructed is fs/2 for all the transforms including
the FT. The frequency resolution for each WT states as follows:

The CWT decomposes the signal according to the scales; for the case of the db44, its scale-
pseudo frequency behavior is presented in the Fig. C.1 where the frequency range varies with
scale. At lower scales the delta frequency is high and in higher scales the delta frequency is low,
this means the resolution is low at high frequencies, but good at low frequencies. It was previously
mentioned, it is important a good resolution in high frequencies for the case of bearing faults.

At the level n, the DWT returns n+ 1 coefficients, for the studied case, when the level is n = 5

the number of coefficients reach up to 6, each one of them acts as a filter, where the first range
starts at Fc = fs/(2× 2n) and the subsequent ones contain a greater frequency, Fig C.2.

The frequency resolution rises as the level increases, but only at low frequencies, in the case of
bearings faults where the high frequencies are important [Tse and Leung, 2010], the information
is lost, if it is desired to analyze the range from 1.5 to 6 KHz the values will be uncertain, Fig C.4.
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Figure C.1: Scale-Frequency relation of the MW db44
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Figure C.2: Frequency range for each DWT coefficient of a signal sampled at 12,000 Hz

With n = 5, the WPT has the same frequency resolution of 187.5 Hz, not only in low fre-
quencies; but, also in high frequencies, Fig C.3. The decomposition occurs in both detail and
approximation coefficients which gives 32 frequency divisions in the scalogram, Fig. C.4.
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Figure C.3: Frequency range for each WPT coefficient of a signal sampled at 12,000 Hz
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Figure C.4: OR fault decomposition

The CWT delays more than the others and does not have good resolution at high frequencies,
the DWT is faster than the others, but it has a poor resolution in high frequencies; and the WPT
has a balance between computing time and frequency resolution, by using it, the method is capable
of detect faults at low and high frequencies. For this reason, WPT was the chosen transform for
the methodology.
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C.2 Statistical method

Several methods were reviewed to distinguish which coefficients belong to a fault and which are
noise. There are several methods to select and detect faults in the bearings, the statistical methods
presented are based on a change in the signal caused by the shock of the fault on the track, where
the distribution is modified.

To evaluate the performance of the proposed method, it is necessary to know that frequency
ranges correspond to the failures of a bearing. The most common methods for detecting faults
applied to the coefficients from the WT were studied: RMS, Kurtosis Spectral, Skewness and KR.
Additionally, it was considered to analyze the crest factor and the standard deviation to have a more
global view about its behavior to a signal with faults in the bearing.

• Kurtosis and Spectral Kurtosis are mathematical tools used for fault detection, the Kurtosis
does not need a trend over time which makes it a reliable for bearing health indicator:

Kurtosis =
1

n

n∑
i=1

(
xi − µ
σ

)4

(C.1)

where µ represents the average, σ the standard deviation and n the number of sample. When
the Kurtosis is applied in each frequency band is called Spectral Kurtosis. It was based in
the STFT and it is used in the WPT to determine which frequency bands contain a signal of
maximum impulsivity.

• Root Mean Square (RMS) is one of the most common vibration indicators, it characterizes
the intensity of a signal:

RMS =

√√√√ 1

n

n∑
i=1

x2i (C.2)

where n is the number of samples.
• Skewness is a measure of the asymmetry of the probability distribution of a signal about its

mean. The value can be positive, negative or undefined:

Skewness =
1

n

n∑
i=1

(
xi − µ
σ

)3

(C.3)

If the computed value of Skewness is negative the curve is shifted to the left and if that value
is positive the curve is shifted for the right. If it is null, the curve is perfectly symmetric.

• Standard deviation (σ) quantifies the amount of variation or dispersion of a set of data
values:
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σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (C.4)

• Peak Value is the maximum value in a signal, usually when the peak value is large, it means
there is a fault and as its amplitude increases, the fault becomes larger. It can be said that if
the signal is immersed in noise, this value can be affected and generate errors in the detection

Peak value = max(x) (C.5)

• Crest factor is defined as the ratio of Peak Value and RMS. As a localized fault develops,
the resulting short burst increases the peak level, but it has little influence on the RMS value.

Crestfactor =
Peak value

RMS
(C.6)

A negative aspect that presents the crest factor, in the same way as Kurtosis lies in the fact
that it is very sensitive to noise.

• KR=(Kurtosis × RMS) is an indicator proposed by [Tse and Leung, 2010], as the fault
increases the kurtosis is amplified:

KR = Kurtosis×RMS (C.7)

Kurtosis is a measure of impulsiveness in the context of fault detection for rotating compo-
nents; however, with the presence of noise, this value get modified and may lead to incorrect
diagnosis, in consequence, it is used together with RMS which detect the energy of the co-
efficients and therefore the maximum values of this multiplication indicates the frequency
range where the fault is located .

• Energy coefficient is the amplitude of a value, in the case of wanting to know the energy of
a set, each value is summed:

Energy =
n∑

i=1

x2i (C.8)

To know which indicator works for the method, all of them were studied in cases with a clear
defect and were compared with the FT to know the bands where the fault of the bearing resounds.
The high frequencies are those that have information of the fault since it excites the resonances of
the bearing. As the decomposition works like a filter bank, the indicator will show which frequency
ranges are the most important for the posterior reconstruction of the signal. The used signal for this
test corresponds to an easily detectable external fault with low noise [Smith and Randall, 2015].
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Firstly, the frequency spectrum is computed by the FT to verify that the high frequencies are
the ones with the highest energy and have it as an indicator where this energy is presented Fig.
C.5.
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Figure C.5: Frequency spectrum for a noise-free signal with an outer race fault

A decomposition was performed using WPT with a MW dmey at a level 4. The result throws
coefficients with a length in frequency of 16, each one of these new frequencies group contem-
plates the information of a whole range, for the studied case as the original signal has a frequency
sampling of 12,000 Hz each one of the coefficients covers 375 Hz.

The 16 ranges were analysed using the statistical methods previously mentioned. The results
were normalized to detect easily which indicator exalts the main frequency range and at the same
time discriminates to the frequencies with little information about the fault, Fig. C.6. An additional
test is performed to determine the robustness of the indicators. Gaussian noise is added to the
signal and sine waves with high amplitudes at low frequencies Fig. C.7.

Reviewing the results provided by the statistical indicators, it is determined that Skewness is
the method less indicated to detect the faults, since in both tests it does not choose the range of
the fault. The Crest Factor behaves similarly to Kurtosis in the original signal but when there
is noise, Kurtosis outperforms because it has high values in the frequency range of the bearing
fault. The RMS value, KR, Peak Value, Standard deviation and Energy have a similar behavior
when the signal has no noise and all of them detect the range fault. In contrast, when there is
noise, especially at low frequencies (specifically sinusoidal signals), KR behaves better because it
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Figure C.6: Statistical parameter applied to an OR fault signal
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Figure C.7: Statistical parameter applied to an OR fault signal with a SNR = 1 and two sinusoidal
signals of 300 Hz and 50 Hz
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decreases the peak that does not belong to a bearing fault, this effect can be observed in the first
frequency range. Additionally, it must be remarked the noise modifies the results making it more
difficult to know the expected ranges.

It is concluded that using RMS value, KR, Peak Value, Standard deviation and Energy as indi-
cator is plausible when the signal does not have any type of noise. If there is noise and the signal
is present to another type of fault, KR is the best indicator.

As the tests were only for evaluated for OR faults, it was performed an additional analy-
sis amplifying the noise at low frequencies and adding 4 new indicators: Kurtosis × Energy,
Shannon Entropy, Kurtosis×RMS × Shannon and Kurtosis× Peak V alue.

To evaluated them was selected the following criterion: which indicator shows a high value at
the important frequency range ( the 7th to 10th node for the CWRU database ) and at the same time
has a low value in the rest frequency range, the relation stays as follows:

Relation =
mean value of the important nodes

mean value of the rest of nodes
(C.9)

The calculation was made for each of the methods presented, the results are shown in the
Fig.C.8 and more visually in the Fig. C.9-C.13.

By reviewing the results, specifically the bar chart, it can be seen the new added parameters
have good relation for detecting the main frequency range. However, the best parameter depends
on the fault and the noise conditions. When the signal is not tainted by any type of fault, those
which behave better are: Kurtosis× Energy,Skewness and Kurtosis× Shannon× Energy.
Nonetheless, the rest of indicator except for the kurtosis and Shannon Entropy give acceptable
results, Fig. C.9-C.11. The suitable among the two depend on the type of the fault: for this studied
case, when the fault belongs to an OR or RE fault, the most effective is the proposed indicator
Kurtosis × Energy. For the signal with IR fault, the one that best suits is the combination
Kurtosis× Shannon× Energy.

The noisy signals have a different behaviour, there is not any indicator that surpass the others
and the results depend of the type of fault. In the signal with OR fault, the simplest have the same
result as the KR and the indicators that predominated when there was no noise are opaque. For the
rest of the cases (IR and RE), the results are different which indicates there is not a single indicator
that works in the best way for all cases. But the results shows the presented methods have the
best results. This means the use of this new indicators may be useful for future work, and the best
combination among them could generate an indicator that works in all cases with or without noise.
As there was not a one indicator that surpass the others in all the cases for future analysis it was
use the KR as the optimum indicator because of the results gathered before and the results present
in the State of the Art using this indicator.

Additionally it was observed the Shannon Entropy had similar results as the Kurtosis, in future
research may be considered the possibility to replace the Kurtosis for Shannon Entropy, because
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Figure C.8: Comparison of the different indicators

its computing time is faster Fig. C.15.
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Figure C.9: Parameters applied to an OR fault signal

C.3 Threshold

To calculate the best threshold, there are different parameters such as: standard deviation (σ),
quartiles and average (µ), Fig. C.16 :
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Figure C.10: Parameters applied to an IR fault signal
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Figure C.11: Parameters applied to an RE fault signal

The thresholds were analysed taking into consideration the number of nodes above the cor-
respond threshold and the contained energy of each of these nodes. The two parameters were
compare in a two dimension graph Fig. C.17. At this point it must be chosen the threshold which
is closest to maximum energy using the least percentage of nodes. This is obtained by the Pythago-
ras Theorem with a modification taking into consideration the energy must be close to 1, eqn (C.10)
The result of this equation would be named (x).
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Figure C.12: Statistical parameter applied to an OR fault signal with a SNR = 1 and two
sinusoidal signals of 300 Hz and 50 Hz

x =
√
n2 + (1− e)2 (C.10)

where n represents the nodes above the threshold and e the sum of the energy of the nodes. The
results are shown in the Table C.2.
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Figure C.13: Statistical parameter applied to an IR fault signal with a SNR = 1 and two sinusoidal
signals of 300 Hz and 50 Hz

When x reaches lowest values, it indicates the threshold has more energy in the smaller number
of nodes and thereby is considered as the optimum.

The criterion of energy-nodes indicates for all the presented cases, by using the average (µ)

as a threshold generates the best results: it distinguishes the vital nodes from the trivial ones, as a
matter of fact the relation generated when it is used the (µ) in the CWRU database (easiest data to
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Figure C.14: Statistical parameter applied to an IR fault signal with a SNR = 1 and two sinusoidal
signals of 300 Hz and 50 Hz

distinguish) follows the rule 80 20, where the 80% of the signal information is contained in the
20% of nodes, Table C.3:
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Figure C.15: Execution time of the different indicators
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Figure C.16: Different thresholds applied to OR signal decomposition at 6th level
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Table C.2: Index (x) results for several thresholds and different signals

OR-IMS IR-IMS RE-IMS OR-CWRU IR-CWRU RE-CWRU

max 0.960 0.964 0.969 0.910 0.894 0.895

µ+ 2σ 0.886 0.878 0.890 0.766 0.518 0.441

µ+ σ 0.630 0.830 0.752 0.379 0.389 0.317

µ+ 0.5σ 0.548 0.712 0.672 0.345 0.363 0.295

µ 0.526 0.609 0.619 0.339 0.330 0.286

µ− 0.5σ 0.657 0.693 0.707 0.523 0.703 0.688

µ− σ 0.891 0.862 0.877 1.000 1.000 1.000

µ− 2σ 1.000 1.000 1.000 1.000 1.000 1.000

min 1.000 1.000 1.000 1.000 1.000 1.000

0.25-quantile 0.755 0.765 0.766 0.750 0.750 0.750

0.5-quantile / median 0.561 0.618 0.625 0.509 0.507 0.504

0.75-quantile 0.570 0.675 0.683 0.338 0.333 0.303

BEST µ µ µ Q3 = 3
4 µ µ

Table C.3: Pareto principle check for the CWRU database with the threshold average.

Signal Nodes % Energy %

OR-CWRU fault 0.265 0.788

IR-CWRU fault 0.218 0.751

RE-CWRU fault 0.1875 0.783





Appendix D

Additional Results

The purpose of this section is to show the results of all the analyzed signals, they are presented in
two ways: in the first image the processed signal is shown with all the harmonics of the fault, the
harmonics of the frequency of rotation and the fault sidebands, in the second image the signal will
be presented with all these hidden values so it is easiest to appreciate only the analyzed fault.

In the Fig D.1 is observe a signal with RE fault, it was added lines in the expected shaft speed
harmonics and sidebands of the fault. The light blue line correspond to the frequency fault, the
green lines coincide with the shaft speed harmonics, the yellow lines fit with the sidebands and the
sidebands of the RE spaced the cage frequency FTF are located under the red lines. As can be seen
these values can affect the diagnose and therefore they are hidden, Fig D.2, only remains visible
the frequency fault and its harmonics.
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Figure D.1: Harmonics and sidebands location in anIMS signal with RE fault
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Figure D.2: Harmonics and sidebands hidden in an IMS signal with RE fault
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R E S U M E N 

La detección y diagnóstico de fallas es una estrategia muy eficiente para dar mantenimiento y servicio en muchas 
industrias. Particularmente, en sistemas de mecanizado de alta de velocidad, la calidad de las piezas depende en buena 
parte del desempeño del husillo, donde los rodamientos representan los componentes mecánicos más vulnerables, 
estadísticamente el 30% de los paros de operación se debe a una falla en los rodamientos. Un sistema de detección y 
diagnóstico de fallas en rodamientos es una herramienta de competitividad industrial, no solo por evitar productos fuera 
de especificación, sino por evitar daños extremos. Se presenta una revisión bibliográfica de la investigación del uso de la 
Transformada de Onduletas para el análisis de vibraciones mecánicas que permitan la detección y diagnóstico confiables 
de fallas en rodamientos de husillos.   
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A B S T R A C T 

 Detection and fault diagnosis is a very efficient strategy for maintenance and service in many industries. Particularly in 
high speed machining systems, the quality of the parts is highly dependent on the performance of the spindle where the 
bearings represent the most vulnerable mechanical components; statistically, the 30% of breakdowns are due to bearing 
failures. A detection and fault diagnosis system in bearings is a tool of industrial competitiveness not only to avoid products 
out of specification; but to avoid extreme damages. A full review of the research about the use of Wavelet Transform for 
the analysis of mechanical vibrations that allow a reliable fault detection and diagnosis in spindle bearings is presented. 
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1. Introducción  

El monitoreo de la condición de una máquina, sistema o 
proceso es la manera más eficiente de administrar el 
mantenimiento en muchas industrias, ya que los ahorros 
económicos pueden ser excepcionales en muchos casos, sin 
considerar los daños materiales (y humanos) que se pueden 
evitar. El mantenimiento basado en la condición de una 
máquina o proceso que requiere operar continuamente, 
demanda de aplicaciones (algoritmos computacionales) que 
determinen o estimen la condición interna de la maquina 
mientras ésta se encuentre en operación.  
En el caso de los sistemas de mecanizado de alta velocidad 
existen dos grandes alternativas para realizar esta tarea, el 
análisis de vibraciones y el análisis de lubricantes; siendo el 
estudio de las vibraciones el de mayor interés práctico. 
Un centro de maquinado aun en condiciones normales tiene 
un cierto nivel de vibraciones, cuando se presenta una falla, 

estas vibraciones cambian de tal manera, que pueden 
asociarse a dicha falla.  
En este trabajo se presentarán algoritmos de detección y 
diagnóstico de fallas para husillos en centros de mecanizado 
de alta velocidad; aunque existen muchos enfoques y 
herramientas matemáticas, el estudio se limita al uso de la 
Transformada de Onduletas (WT, Wavelets Transform). Se 
conservan los términos en inglés para evitar confusiones. La 
Tabla 1 resume los acrónimos utilizados. 
 
Este artículo está organizado como se indica. La Sección 2 
describe el problema, mientras que la Sección 3 presenta una 
revisión bibliográfica de los trabajos más importantes que se 
han publicado utilizando WT. La Sección 4 ejemplifica este 
tipo de enfoque utilizando datos experimentales. 
Finalmente, la Sección 5 concluye la investigación.  
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Abstract: El diagnóstico y prevención de fallas ha permitido evolucionar las estrategias
de mantenimiento en las industrias, mejorando la eficiencia y optimizando los paros en la
producción. En el caso de los sistemas de mecanizado, el diagnóstico oportuno de fallas evita
productos fuera de especificación y/o daños extremos. Un maquinado óptimo es altamente
dependiente del desempeño y condición del husillo, dentro del cual los rodamientos representan
los componentes mecánicos con más probabilidad de falla. A partir de una revisión bibliográfica
exhaustiva, se presentan los avances en el uso de la Transformada de Onduletas para al
análisis de vibraciones mecánicas de rodamientos en husillos. Adicionalmente, se propone una
metodoloǵıa para detectar y diagnosticar fallas en este tipo de aplicaciones.

Keywords: Diagnóstico fallas, Vibraciones, Husillos, Rodamientos, Onduletas

1. INTRODUCCIÓN

El monitoreo de la condición de una máquina, sistema
o proceso es la manera más eficiente de administrar
el mantenimiento. La economı́a del proceso puede ser
excepcional. Para llevar a cabo un mantenimiento basado
en la condición de una máquina en operación continua, se
requieren algoritmos eficientes que determinen el estado
interno en ĺınea, mientras está operando.

Un centro de maquinado aún en condiciones normales
presenta un cierto nivel de vibraciones. Cuando ocurre
una falla, estas vibraciones se modifican y en ellas
se puede encontrar el motivo del desperfecto. Este
análisis puede realizarse utilizando diferentes herramien-
tas matemáticas, una de las más usadas por su capacidad
de manejar señales complejas gracias a su multiresolución
es la Transformada de Onduletas (WT, Wavelet Trans-
form). En la Tabla 1 se muestra un resúmen todos los
acrónimos utilizados en este art́ıculo, se conservarán los
términos en inglés por ser muy familiares y para evitar
confusiones en su traducción.

La WT se asemeja a la Transformada de Fourier (FT,
Fourier Transform) al descomponer una función con base
a otras preestablecidas, mientras la FT utiliza senos y
cosenos; la WT maneja como funciones base distintas
onduletas. La WT está definida como:

F (a, b) =

∞∫
−∞

f(x)ψ∗
(a,b)(x)dx (1)

⋆ Los autores le agradecen al Tecnológico de Monterrey y al
CONACyT por sus apoyos parciales.

donde el * representa el conjugado complejo y la función
ψ(·,·) se selecciona de acuerdo a ciertas reglas de diseño.

La WT tiene beneficios en tiempo y frecuencia debido
a su ventana modificable, seleccionando el tiempo medi-
ante traslaciones y los rangos de frecuencia por medio
de dilataciones. En el procesamiento de señales no esta-
cionarias presenta un mejor rendimiento que los análisis
tradicionales, Kankar et al. (2011) y Lauro et al. (2014).
Además, a diferencia de la FT, tiene un conjunto infinito
de funciones base, lo que hace que la WT sea muy
versátil. Entre los beneficios intŕınsecos de esta trans-
formada están la reducción de ruido, la compresión de
datos, filtrado, entre otros.

Este art́ıculo está organizado en 5 secciones. En la Sección
2 se describe el problema y en la Sección 3 se presenta
una revisión bibliográfica de los trabajos más importantes
usando WT. La Sección 4 ejemplifica la metodoloǵıa
desarrollada para la detección de fallas, y finalmente, la
Sección 5 concluye el trabajo.

2. DESCRIPCIÓN DEL PROBLEMA

La relación entre las señales de vibración y el estado
de una máquina fueron inicialmente identificadas por
Rathbone (1939), concluyendo que el efecto negativo era
proporcional a la amplitud de la señal de vibración. Más
tarde, en 1960 se vió que el monitoreo y análisis de la
vibración pod́ıa prevenir dichos daños. Posteriormente, se
empezaron a analizar las señales de vibración con técnicas
como la Transformada Rápida de Fourier (FFT, Fast
Fourier Transform) para buscar relaciones más claras o
expĺıcitas en problemas más complejos. Con el desarrollo
de la era digital se mejoró la velocidad y capacidad de
procesamiento en el area de detección, Randall (2011).

Congreso Nacional de Control Automático 2017
Monterrey, Nuevo León, Mexico, Octubre 4-6, 2017
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Appendix F

Developed Programs

For the developed methodology four Matlab functions were developed, two for plotting the scalo-
grams, the first one in two dimensions and the second one in three dimensions; and two for process-
ing the signals, one for bearing faults diagnosis and the other for shaft faults diagnosis. Parameters
are shown in the following code:

1 % Loading s i g n a l
2 l o a d DE12k 0 007 OR C ; S i g n a l =X130 DE time ;
3

4 % P a r a m e t e r s
5 Leve l =6; % Leve l f o r WPT
6 MW= ’dmey ’ ; % Mother Wavele t
7 f s =12000; % Sampl ing Frequency
8 RPM=2000; % S p i n d l e Speed
9

10 % Decompos i t ion : WPT ( Mat lab Toolbox )
11 Tree =wpdec ( S i g n a l , Level ,MW) ;
12

13 % Scalogram P l o t s 2D y 3D
14 f i g u r e ( 1 )
15 ScalogramWPT2D ( Tree , f s )
16 f i g u r e ( 2 )
17 ScalogramWPT3D ( Tree , f s )
18

19 % F i n a l s i g n a l a f t e r p r o c e s s i n g f o r b e a r i n g f a u l t d i a g n o s i s
20 F s i g n a l =MetodologiaGBCV ( S i g n a l 1 , f s , ’OR’ ) ;
21

22 % F i n a l s i g n a l a f t e r p r o c e s s i n g f o r s h a f t f a u l t d i a g n o s i s
23 F s i g n a l 2 =MetodologiaGBCV 2 ( S i g n a l 1 , f s ,RPM) ;
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An scalogram can be plotted for any signal, the parameters needed are: the tree of the WPT
and the sampling frequency. The tree is easily obtained with the Matlab Toolbox function: wpdec
selecting the level of decomposition and the MW. An example is shown in Fig. F.1, for the 2D
scalogram and in Fig. F.2 for the 3D scalogram.

Figure F.1: WPT 2D scalogram function

Figure F.2: WPT 3D scalogram function

The full development of the scalogram functions is shown below.
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1 f u n c t i o n ScalogramWPT2D ( Tree , f s )
2 % −Tree : TreeWPT − f s : Sampl ing f r e q u e n c y
3 l e v e l = g e t ( Tree , ’ Depth ’ ) ;
4 [ SPEC , TIMES , FREQ, TNFO] = wpspectrum ( Tree , f s ) ;
5 SPEC= f l i p u d ( SPEC ) ;
6 FREQ1=0; SPEC1 = [ ] ;
7

8 f o r i =1 : l e n g t h (FREQ)
9 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;

10 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;
11 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
12 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
13 end
14 FREQ1=FREQ1 ( 1 : l e n g t h (FREQ) ∗2) ’ ;
15

16 p c o l o r ( TIMES , FREQ1 , SPEC1 ) ; s h a d i n g ( ’ i n t e r p ’ ) ; c o l o r b a r
17 x l a b e l ( ’ Time [ s ] ’ ) ; y l a b e l ( ’ Pseudo−Frequency [ Hz ] ’ ) ; z l a b e l ( ’ C o e f f i c i e n t s [ g ] ’ )
18 t i t l e ({ ’ Sca logram WPT’ ; [ ’ Leve l : ’ , num2s t r ( l e v e l ) ] } )
19 a x i s t i g h t

1 f u n c t i o n ScalogramWPT3D ( Tree , f s )
2 % −Tree : TreeWPT − f s : Sampl ing f r e q u e n c y
3 l e v e l = g e t ( Tree , ’ Depth ’ ) ;
4 [ SPEC , TIMES , FREQ, TNFO] = wpspectrum ( Tree , f s ) ;
5 SPEC= f l i p u d ( SPEC ) ;
6 FREQ1=0; SPEC1 = [ ] ;
7

8 f o r i =1 : l e n g t h (FREQ)
9 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;

10 FREQ1= v e r t c a t (FREQ1 , FREQ( i ) ) ;
11 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
12 SPEC1= v e r t c a t ( SPEC1 , SPEC ( i , : ) ) ;
13 end
14 FREQ1=FREQ1 ( 1 : l e n g t h (FREQ) ∗2) ’ ;
15

16 s u r f ( TIMES , FREQ1 , SPEC1 ) ; s h a d i n g ( ’ i n t e r p ’ ) ; c o l o r b a r
17 x l a b e l ( ’ Time [ s ] ’ ) ; y l a b e l ( ’ Pseudo−Frequency [ Hz ] ’ ) ; z l a b e l ( ’ C o e f f i c i e n t s [ g ] ’ )
18 t i t l e ({ ’ Sca logram WPT’ ; [ ’ Leve l : ’ , num2s t r ( l e v e l ) ] } )
19 a x i s t i g h t

The functions developed for processing the signal based on the proposed methodology are
presented below.

1 %% METHODOLOGY FOR BEARING FAULT DIAGNOSIS USING WPT
2 % By GEORGE BATALLAS & CRISTINA VILLAGOMEZ
3
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4 f u n c t i o n F i l t e r e d S i g n a l = MetodologiaGBCV ( S i g n a l , f s , f a u l t )
5 %\\\\\\\\\\\\\\\\\\\\\
6 % Wavele t P a r a m e t e r s
7 %\\\\\\\\\\\\\\\\\\\\\
8 WaveIR= ’ db41 ’ ;
9 WaveOR= ’dmey ’ ;

10 WaveRE= ’ db45 ’ ;
11 N l e v e l =6;
12

13 %\\\\\\\\\\\\\\\\\\\\
14 % S i g n a l P a r a m e t e r s
15 %\\\\\\\\\\\\\\\\\\\\
16 s w i t c h f a u l t
17 c a s e ’ IR ’
18 w a v e l e t =WaveIR ;
19 c a s e ’OR’
20 w a v e l e t =WaveOR ;
21 c a s e ’RE ’
22 w a v e l e t =WaveRE ;
23 end
24

25 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
26 % S i g n a l P r e p r o c e s i n g Trend Removal
27 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
28 t ime = 0 : 1 / f s : ( l e n g t h ( S i g n a l )−1) / f s ;
29 f i t t n e s s = f i t ( t ime ’ , S i g n a l , ’ po ly1 ’ ) ;
30 t r e n d = f i t t n e s s . p1∗ t ime + f i t t n e s s . p2 ;
31 S i g n a l = S i g n a l−t r e n d ’ ;
32

33 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
34 % Wavele t P a c k e t Decompos i t ion and Bes t Tree
35 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
36 dwtmode ( ’mode ’ ) ;
37 T=wpdec ( S i g n a l , Nleve l , w a v e l e t ) ;
38 [ SPEC , TIMES , FREQ] = wpspectrum ( T , f s ) ;
39 % B e s t T r e e
40 BT= b e s t t r e e ( T ) ;
41 BTnodesN = l e a v e s (BT) ; BTnodesL = l e a v e s (BT , ’ dp ’ ) ;
42 f o r i =1 : l e n g t h ( BTnodesN )
43 FREQS( i ) =BTnodesL ( i , 2 ) ∗ ( f s / 2 ) / ( 2 ˆ BTnodesL ( i , 1 ) ) ;
44 end
45 FREQS= h o r z c a t (FREQS ( 2 : end ) , 6 0 0 0 ) ;
46

47 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
48 % Bes t Nodes S e l e c t i o n [ K u r t o s i s x RMS ]
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49 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
50 f o r m=1: l e n g t h ( BTnodesN )
51 COEFS=wpcoef (BT , BTnodesN (m) ) ;
52 K(m) = k u r t o s i s (COEFS ( 1 0 0 : end−100) ) ;
53 RMS(m) = rms (COEFS ( 1 0 0 : end−100) ) ;
54 end
55 K=sum (K, 1 , ’ omi tnan ’ ) ;
56 KR=K. ∗RMS;
57

58 %\\\\\\\\\\\\\\\\\\\\\\\\\\
59 % T h r e s h o l d KR Bes t Nodes
60 %\\\\\\\\\\\\\\\\\\\\\\\\\\
61 limm=mean (KR) ;
62

63 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
64 % T h r e s h o l d Normal ized Weigh t ing
65 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
66 f o r i =1 : l e n g t h (KR)
67 i f (KR( i )>=limm )
68 KRW( i ) =1 ;
69 e l s e
70 KRW( i ) =KR( i ) / max (KR) ;
71 end
72 end
73

74 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
75 % R e c o n s t r u c t e d S i g n a l With Weigh t ing Values
76 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
77 BSigna l =0;
78 f o r i =1 : l e n g t h ( BTnodesN )
79 BSigna l = BSigna l +KRW( i ) . ∗ wprcoef ( T , BTnodesN ( i ) ) ;
80 end
81

82 F i l t e r e d S i g n a l = BSigna l ;

1 %% METHODOLOGY FOR SHAFT FAULT DIAGNOSIS USING WPT
2 % By GEORGE BATALLAS & CRISTINA VILLAGOMEZ
3

4 f u n c t i o n F i l t e r e d S i g n a l = MetodologiaGBCV 2 ( S i g n a l , f s ,RPM)
5 %\\\\\\\\\\\\\\\\\\\\\
6 % Wavele t P a r a m e t e r s
7 %\\\\\\\\\\\\\\\\\\\\\
8 Wave= ’ db44 ’ ;
9 N l e v e l =6;

10
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11 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
12 % S h a f t Speed and 5 SSHz ha rmon ic s
13 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
14 SSHz=RPM/ 6 0 ;
15 f c o r t e = c e i l ( SSHz∗5) ;
16

17 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
18 % S i g n a l P r e p r o c e s i n g Trend Removal
19 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
20 t ime = 0 : 1 / f s : ( l e n g t h ( S i g n a l )−1) / f s ;
21 f i t t n e s s = f i t ( t ime ’ , S i g n a l , ’ po ly1 ’ ) ;
22 t r e n d = f i t t n e s s . p1∗ t ime + f i t t n e s s . p2 ;
23 S i g n a l = S i g n a l−t r e n d ’ ;
24

25 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
26 % Wavele t P a c k e t Decompos i t ion and C u t o f f Frequency
27 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
28 T=wpdec ( S i g n a l , Nleve l , w a v e l e t ) ;
29 [ SPEC , TIMES , FREQ, TNFO] = wpspectrum ( T , f s ) ;
30 % S e l e c t i n g f i r s t nodes 5 SSHz ha rmon ic s
31 i f f c o r t e >FREQ ( 1 )
32 cu tF = f i n d (FREQ<=f c o r t e , 1 , ’ l a s t ’ ) ;
33 e l s e
34 cu tF =1;
35 end
36

37 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
38 % R e c o n s t r u c t e d S i g n a l on ly Low F r e q u e n c i e s
39 %\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
40 BSigna l =0;
41 f o r i =1 : cu tF
42 BSigna l = BSigna l + wprcoef ( T , TNFO( i ) ) ;
43 end
44

45 %\\\\\\\\\\\\\
46 % DC REMOVAL
47 %\\\\\\\\\\\\\
48 f i t t n e s s = f i t ( t ’ , BSignal , ’ po ly1 ’ ) ;
49 t r e n d = f i t t n e s s . p1∗ t + f i t t n e s s . p2 ;
50 BSigna l = BSignal−t r e n d ’ ;
51 BSigna l = BSignal−mean ( BSigna l ) ;
52

53 F i l t e r e d S i g n a l = BSigna l ;
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