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Abstract 

This Thesis propases an implementation of a Multiple Robot 
System that handles a heavy object from an initial point to a 
final one. The System does not know where it is located inside a 
workspace, so it needs to find out its location to compute a path 
that connects the desired point. · 

The System is compound by three main elements: a Planner, a 
'fransmitter, and the Robots. Each one of them executes differ­
ent tasks. The Robots and the 'fransm.itter are heavil:y bounded, 
they are in charge of controlling the robot as well as retrieving 
environment information. They are not in charge of any heavy 
computing operations because it is all done in the Planner. The 
Planner uses severa! Artificial Intelligence algorithms such as 
the Particle Filter, Kalman Filter and A* (A star) sc:lal'Ch. The 
environment is decomposed using an Approximate Cell Decom­
position. 

This work's main contribution is the usage of low-c:ost robots 
that work together using high comple::x:ity algorithms. Ali the 
employed sensors have a certain degree of uncertaint;y which is 
handled with non-parametric and Gaussian filters. The Follower 
Robots' task is reduced to track where the 'fransport platform 
goes, a low cost solution is proposed. 

Throughout this book all of the mentioned concepts, implemen­
tations and problems will be explained. 

üi 



Contents 

Nomenclature ix 

List of Figures :xü 

List of Algorithlns :xüi 

1 Introduction 1 

2 State of the Art 7 
2.1 Path Planning . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

2.1.1 Basic Problem . . . . . . . . . . . . . . . . . . . . . . 7 
2.1.2 R.oadmap . . . . . . . . . . . . . . . . . . . . . . . . . 10 
2.1.3 Cell Decomposition. . . . . . . . . . . . . . . . . . . . 12 
2.1.4 Potential Field . . . . . . . . . . . . . . . . . . . . . . 12 

2.2 Artificial Vision . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
2.3 Formations and communication . • . . . . . . . . . . . . . . . 15 

3 Theoretical framework 23 
3.1 Motion PJaooiog . . . . . . . . . . . . . . . . . . . . . . . . . 23 

3.1.1 Task . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 23 
3.1.2 Properties of the Robot . . . . . . . . . . . . . . . . . 23 
3.1.3 Properties of the Algorithm . . . . . . . . . . . . . . . 27 

3.2 Approximate Cell Decomposition . . . . . . . . . . . . . . . . 28 
3.3 A* (A star) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 
3.4 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 
3.5 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

4 Employed Hardware 43 
4.1 Boe-Bot Robot . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
4.2 BASIC Stamp 2 . . . . . . . . . . . . . . . . . . . . . . . . . 43 

V 



vi CONTENTS 

4.3 Bluetooth Module . . . . . . . . . . . . . . . . . . . . . . . . 45 
4.4 GPS ................................ 46 
4.5 Compasa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
4.6 Laser Range Finder . . . . . . . . . . . . . . . . . . . . . . . . 48 
4. 7 Infrared Line Fbllower . . . . . . . . . . . . . . . . . . . . . . 48 
4.8 Robot Design and Implementation . . . . . . . . . . . . . . . 49 

4.8.1 Leader Robot . . . . . . . . . . . . . . . . . . . . . . . 49 
4.8.2 Transmitter Board . . . . . . . . . . . . . . . . . . . . 51 
4.8.3 Follower Robots . . . . . . . . . . . . . . . . . . . . . 53 
4.8.4 Transport platform . . . . . . . . . . . . . . . . . . . . 54 
4.8.5 Multiple Robot System . . . . . . . . . . . . . . . . . 55 

5 Software: Design and Implementation 57 
5.1 Robot Programs . . . . . . . . . . . . . . . . . . . . . . . . . 58 

5.1.1 Leader Robot . . . . . . . . . . . . . . . . . . . . . . . 59 
5.1.2 Transmitter Board . . . . . . . . . . . . . . . . . . . . 60 
5.1.3 Follower Robots . . . . . . . . . . . . . . . . . . . . . 64 

5.2 Planner Programs . . . . . . . . . . . . . . . . . . . . . . . . 64 
5.2.1 Data Acquisition . . . . . . . . . . . . . . . . . . . . . 65 
5.2.2 Cell Decomposition i.mplementation . . . . . . . . . . 70 
5.2.3 A* i.mplementation . . . . . . . . . . . . . . . . . . . . 71 
5.2.4 Particle Filter i.mplementation . . . . . . . . . . . . . 7 4 
5.2.5 Kalman Filter i.mplementation . . . . . . . . . . . . . 75 

5.3 Global Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 76 

6 Resulta 81 
6.1 lmplementation Runs . . . . . . . . . . . . . . . . . . . . . . 81 

6.1.1 Robot's P¡ is P¡ . . . . . . . . . . . . . . . . . . . . . 81 
6.1.2 Robot's P¡ is outside of the W . . . . . . . . . . . . . 82 
6.1.3 Path planniug. . . . . . . . . . . . . . . . . . . . . . . 82 

6.2 Faced Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

7 Future Work and Conclusions 91 

A Basic STAMP Programs 95 
A.1 Boe-Bot Leader Source Code .................. 95 
A.2 Transmitter Board Source Code . . . . . . . . . . . . . . . . . 98 
A.3 Boe-Bot Fbllower Source Code ................. 103 



CONTENTS vil 

B MATLAB Programs 
B.1 Main Source Code ..................... . 

105 
. . 105 

112 B.2 Robot Creation Ftmction . . . . . . . . . . . . . . . . . . 
B.3 Particle Filter Movement Ftmction . . . . . . . . . . . . . . . 
B.4 Particle Filter Measurement Error Ftmction . . . . . . . . . . 
B.5 Particle Filter Get Position Ftmction . . . . . . . . . . . . . . 
B.6 GPS Data Acquisition Ftmction . . . . . . . . . . . . . . . . . 
B. 7 GPS Data Conversion Ftmction . . . . . . . . . . . . . . . . . 
B.8 Compass Data Acquisition Ftmction . . . . . . . . . . . . . . 
B.9 LRF Data Acquisition Ftmction . . . . . . . . . . . . 
B.10 A* Search Ftmction . . . . . . . . . . . . . . . . . . . . . . . . 
B.11 A* Search Heuristic Ftmction ................. . 
B.12 Kalman Filter Measurement Ftmction . . . . . . . . . . 
B.13 Kalman Filter Prediction Ftmction . . . . . . . . . . . . . . 
B.14 ~Bot Movement Ftmction 

Bibliography 

112 
113 
113 
114 
115 
116 
117 
118 
119 
120 
120 
120 

126 



vili CONTENTS 



Nomenclature 

O An obstacle in W or in Q 

Q The configuration space of a robot is the space of all the configura­
tions of the robot. 

W Workspace is an Euclidean space represented es 'R/'1 with N = 2 or 
3 

f(n) Estimated cost of the cheapest solution through n. 

g( n) Cost function of moving from node n to node m. 

h( n) Estimated cost of the cheapest path from the state at node n to a 
goal state. 

P¡ Final point in a Path Planning Algorithm 

P¡ Initial point in a Path Planning Algorithm 

q An element of Q 

r(q) The region of the workspace occupied by the robot r 

Azimuth Angular measurement in a spherical coordinate system. The vec­
tor from an observer to a point of interest is projectecl perpendicularly 
onto a reference plane: the angle between the projected vector and 
a reference vector on the reference plane 

BS2 BASIC Stamp 2 Microcontroller 

Configuration It is a specification of the position of every point in an object 
relative to a fixed reference frame 
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Degrees of Freedom The dimension of the configuration space is equal to the 
number of independent variables in the representation of the config­
uration 

GPS Global Positioning System 

Latitude Geographic coordinate that specifies the north-south position of a 
point on the Earth's surface. Lines of constant latitude. 

Longitude Geographic coordinate that specifies the east-west position of a 
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LRF Laser Range Finder 

Simultaneous Localization and Mapping Algorithm employed by robots and 
autonomous vehicles to create maps in an unknown environment 
while it keeps track of its localization 
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Chapter 1 

Introduction 

One ordinary day at all of 1997 a hoy and bis parents went. to the cinema to 
see the Star Wars saga. After the films were over he realized how fascinating 
it could be to live day by day with robots such as C9PO a.nd R2D2 [21). It 
seems that decades before many people had the same drean1. They irnag:ined 
and dreamed about it. What they did one day became what we know as 
Robotics. Creating machines that can perform several tasks has produced a 
technological revolution. The word robot comes from the Slavic Languages. 
It was used for the first time in R. U. M., (Rossum's Universal Robots) 
, a book written by Karel Capek [7). The exact term was robotnik. lt 
described a breed of workers that were created from biolo.gical parts. They 
were capable of doing many chores that human beings coulcl not. The word 's 
meaning is "slave" or "worker". lt perfectly describes wb.at a robot is: an 
electromechanical or virtual device in charge of fulfilling certain activities. 
Robotics as a science was bom in the Foundation Series from the legendary 
Isaac Asimov [6). 

Far from Literature, Robotics is the combination of several areas such 
as Physics, Mathematics, Electronics, Mechanics and Computer Science. 
Robots are classified in severa! categories depending on its characteristics. 
Motion is one of the most important for this work. They can be fixed, mobile 
or hybrid. A fue robot h88 a part of it ti~ to a b88e and its movement is 
always bounded to that point. The mobile robot can move loosely through 
space. Finally the hybrid is a mixture of the first two. In a fixed robot, the 
task is performed by an end effector that will follow a path. For the rnobile 
case, the entire robot performs the task after a path planni11g algorithm took 
place. A robot can also be classified by the type of motion and the number 
of Degrees of Freedom it has. It can be omnidirectional or holonomic when 
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(a) DARPA Challenge Stanford Uni­
versity's Stanley 

CHAPTER l. INTRODUCTION 

(b) Deutsches Museum Bonn's 
RHINO 

Figure 1.1: Autonomous Robots examples 

it can move at any direction, so a non holonomic one can only perform 
restrained movements, ergo just in one direction. Depending its DOF it 
can be non-redundant when it has as much as DOF as dimensions and 
redundant when there are more DOF than dimensions. Due its autonomy 
it can be directed, supervised or autonomous. It is directed when the user 
specifies movement by movement what the robot shall do. Supervised when 
a motion planning has been done given an environment for being executed 
later. Finally it is autonomous when it can take severa! decisions by itself 
under certain circumstances. There are lots of examples of robots with 
severa! movements characteristics and different degrees of autonomy. 

One of the biggest challenges that Robotics faces is in autonomous path 
plaooiog. The goal is to demand for a task in a high level programroiog 
language and the robot must transform the received instructions into a set 
of low level commands. While executing the task a path must be found so 
the mobile or fixed robot can follow it. This area's development has come 
through with applicatioos such as digital animation, industrial processes 
verifi.cation and pharmaceutical design. Sorne well known examples can be: 

• 'fransportation - An example of a transport for one or two persons 
is a Segway or the CyCab. They are a good environment-friendly 
alternative that use small space, are oot noisy and its ecologic footprint 
is quite smaller than the car's one. A bigger scale example can be 
Stanford University's Stanley. Stanley can move freely in a highway 
by p]aooiog its own movements (Figure l.la). 

• Museum Tour Guides - In 1997, a mobile robot named RlllNO servved 
as a fully autonomous tour-guide at the Deutsches Museaum Bonn 
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( a) The Mars Rover (b) The Da Vlnci Surgical System 

Figure 1.2: Robotic applications used for Research 

(Figure l.lb). RJilNO was able to lead museum visitors from one 
exhibit to the next by calculating a path using a stored map of the 
museum. Because the perfect execution model of the piano mover's 
problem is unrealistic in this setting RJilNO had to be able to localize 
itself by comparing its sensor readings to its stored map. 

• Planetary Exploration - The Mars Rover (Figure 1.2a) is a robot whose 
main task is to explore the Martian surface. lt must take several 
samples from the ground and analyse them, it also has to take sorne 
photographs of the environment that will supply the scientists with 
valuable information about the Red Planet. As the robot does not 
know where it is, the SLAM algorithm is used. 

• Medicine - The Da Vinci Surgical System (Figure 1.2b) is capable of 
performing surgeries with high precision actions and with the bonus 
that the Doctor can be in a remote location. Robots are u.sed in 
invasive procedures. They enhance the surgeon's ability to perform 
technically precise maneuvers. 

• lndustry - Several robotic arms are employed for assembling, painting, 
welding or separating products. The complexity of their utilization 
is that in the workspace there is a great amount of movement and 
robots must have enough coordination to avoid collisions among them, 
the users or the product. Industrial robot installations are driven 
by economic factors, so there is a high priority on minimizing task 
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execution time. This motivates motion pla.nners that return time­
optimal motion plans. Other kinds of tasks may benefit from other 
kinds of optimality, such as energy or fuel optimality for mobile robots. 
[9] 

Robot path plaoning calculation is critical for all applicatioDB. The em­
ployed algorithm must be capable of finding a collision-free path, compute 
the required movements and assuring they are physically performed. 

A path planner must coDBider the task, the robot and the algorithm. The 
task can be either navigation, localization or coverage. Navigation refers to 
the calculation of an obstacle free trajectory from an initial point ( P¡) to 
a final point ( P¡) . When the robot needs to explore all the points in the 
workspace the task is a coverage task whereas iI1 a localization task the 
robot needs to use information provided by some aeDBOrs. The robot must 
also be coDBidered along with the environment. Together they determine 
the number of DOF of the system, the workspace and the configuration 
space. Finally the chosen algorithm must satisfy certain restraints such 
as the computational complexity and the solution it returDB. Complexity 
deals with memory limitatioDB and the required time for computing the 
calculatioDB. The returned solution shows how com:plete the algorithm is. A 
complete algorithm guarantees to find a free path whenever one exits and to 
return failure otherwise. Approximate methods may not be complete; but, 
for most of them, the precision of the approximation can be tuned and made 
arbitrarily small, so that the methods are said to be Resolution-complete. [10] 

This Thesis' objectives are: 

• To develop a Jow cost Multiple. Robot System capable of moving an 
object from an initial point P¡ to a goal location P¡. 

• Employ a Resolution Complete Path PJauning algorithm to represent 
the chosen workspace. 

• Implement an online centrali7.ed planner that uses seDBOr-based infor­
mation. 

• Deal with uncertainty using software solution.11. 

• Identify :fixed and mobile obstacles. 

• Obtain an optimal path. 

• Overcome non-holonomic robot restraints. 
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In chapter 2 the State of the Art is presented. The most innovative, 
different and recent proposals are explained. Having special attention in 
topics such as Path Planning, Artificial Vision, Formations, Communica­
tions and Self-Localization. Chapter 3 explains all the algorithms that were 
used for developing this project: Motion Planning, Appraximate Cell De­
composition, A*, Particle Filter and Kalman Filter. Chapter 4 gives a quick 
overview of the employed hardware used while developing the Robot Sys­
tem: the Boe-Bot Robot, Bluetooth Module, GPS, Compass, Laser Range 
Finder, lnfrared Line Follower and structure modifications. After it, Chap­
ter 5 describes how the algorith.ms explained in Chapter 3 were implemented 
in the Planner, 88 well 88 an example of how they work a.nd what they take 
88 inputs and return 88 outputs. The robot programa are also explained 
here. Chapter 6 shows the results of combining all the pr,)grams and some 
examples of the runs that were made. Finally in Chapter '7 the future work 
and modifications are presented as growth areas for the project. 
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Chapter 2 

State of the Art 

This chapter will explain the most i.mportant techniques and algorithms that 
are used in recent work. The covered topics will be: 

• Path Plauuiug 

• Artificial Vision 

• Formations and Communication 

• Localization 

2.1 Path Planning 

2.1.1 Basic Problem 

The goal of defining a basic path planning problem is to isolate sorne central 
issues and investigate them in depth before considering additional difficul­
ties. 

The basic problem defines that in W the robot is the only moving object, 
all its dynamic properties are ignored. Computed motions a:re contact-free so 
mechanical interaction between two objects is ignored. This way a physical 
path planning problem turns into a geometrical path pla.nni.ng problem. To 
si.mplify the problem even more, the robot will be a single iigid body whose 
movements is restrained by obstacles. 

The basic motion planning problem resulting from these simplifica­
tions is the following (Figure 2.lc): 

• The robot is a single point. 

7 



8 CHAPTER 2. STATE OF THE ART 

• The robot is the only object that moves in W. 

• No mechanical problems are considered. 

J. C. Latombe defines the problem as: 

Given an initial position and orientation and a goal position 
and orientation of the robot r in W, generate a path specifying 
a continuous sequence of positions and orientations of the robot 
avoiding contact with the obstacles, starting at the initial posi­
tion and orientation, and terminating at the goal position and 
orientation. Report failure if no such path exists . 

• ~ 
~ 
(a) Real Robot 

• 
(b) 2D Model (e) Final Model 

Figure 2.1: Robot representations 

The following notation is consistent with the one proposed by Tomás 
Lozano Pérez. in [20], Jean Claude Latombe in [17] and Choset et. al in [9]. 
For more details it is recommended to consult the bibliography. 

A Workspace (W) is a R.2 or R.3 environment in which robots work. lt 
can be decomposed in WO) and W¡ree· The i-th obstacle can be represented 
as the first one, while the remaining free space that is not occupied by an 
obstacle is the second one. 

W¡ree = w-UWO¡ (2.1) 

Path Planning algorithms are executed in the configuration space Q 
(Figure 2.2b) not in W (Figure 2.2a). Q can be defined as the set of all 
the possible robotic configurations. To the set of points in W occupied by 
the robot nin the configuration q will be denoted as Rq. An obstacle in 
Q corresponds to the robot configurations that intersect an obstacle in W 
such that: 
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QO¡ = { qlR.q n WO¡ -=I- O} (2.2) 

A path is a continuous curve in Q expressed by a continuous function 
defined in [0-1] for: 

Qfree = Q - u Q¡ (2.3) 

A continuous function C can be a solution to the Path Planning problem 
such that C[O - 1) -t Q. The initial configuration is q¡ = C(O) and the final 
one q¡ = C(l). This can be generalized as: 

C(s) E Qfree V s E [O, 1) (2.4) 

A Robotic System Configuration is a specification of each point of a 
system. Q of a system is the space of all possible system configurations. 

z 

y -- • 

X y 

X 

(a) Workspace {b) Configuration Space 

Figure 2.2: Space Representation 

Lots of methods and solutions have been proposed an implemented to 
solve the basic path planning problem. Not all of them solve it completely. 
Some of the require that W is R2 and that the objects are represented as 
polygons. Most of the approaches can be generalized into: roadmap, cell 
decomposition, and potential fields. 



10 CHAPTER 2. STATE OF THE ART 

2.1.2 Roadmap 

Roadmaps are a network of 10 curves which represent the connectivity in 
W¡ree or Q¡ree· After it the connectivity has been constructed it represents 
a set of standard paths that connect P¡ with P¡ via N point that bind them. 
The calculated path is the result of concatenating a subpath that connects 
P¡ with the roadmap, a subpath that contains the roadmap and fi.nally the 
one that connects the roadmap with P¡. [17} 

Visibility Graph Method 

This is one of the first path planning methods that were developed. It is 
applied in 2D Q with polygonal QO . lt is a non-directed graph whose nodes 
are qi and q¡ and all obstacle region. The links of the subgraph connect 
the obstacle vertices confi.gurations and they determine the roadmap. The 
other links of the graph connect the initial and goal confi.gurations with the 
roadmap. [17) (Figure 2.3) 

Figure 2.3: Visibility Graph Method 

Probabilistic Roadmaps 

A Probabilistic Roadmap algorithm constructs a map in a probabilistic way 
in W. It divides planning into a learning and a query phase. During the 
first one a roadmap in Q free is build, in the second one the configurations 
are connected in the roadmap. The roadmap is represented in an undirected 
graph G = (V, E). Where the nodes V are a set of q chosen from Q¡ree· The 
edges in E are paths¡ an edge q1, q2 is a collision-free path that connects 
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them. These paths are known as local paths, which are computed by a local 
planner. 

During the query phase, the roadmap solves individual path-planning 
problems, where given q¡ and q¡, it tries to connect them to the closest 
nodes </ and </', respectively, in V. H it succeeds it reaches the graphs G for 
a set of edges E that connect </ to </'. lt finally transforms the set of nodes 
into a path for the robot by recomputing each local path and concatenating 
them. These paths are stored in a global roadmap, but it implies more 
storage memory. The roadmap can be reused and augmented to capture 
connectivity in Q free· Usually the learning phase runs before the query, but 
they can be interwoven. Sometimes it is feasible to spend lots of time during 
the learning phase if the roadmap will solve many queries. [9] (Figure 2.4) 

Figure 2.4: Probabilistic Roadmap 

Voronoi Diagram 

Another roadmap method is retraction. lt defines a continuous function 
in Q free to a lD subset of itself such that the restriction of this function 
to this subset is the identity map. In a 2D Q¡ree the retraction is called 
Voronoi Diagram. It can be defined as the set of ali Q¡ree whose minimal 
distance to a QO is achieved with at leas two points in the boundary of it. 
lts main advantage is the creation of free paths which usually maximize the 
gap between the robot and the surrounding obstacles. A free path between 
q¡ and q¡ is composed by three main subpaths: the first one is a straight 
line from q¡ to q¡, a path from q¡ to q¡ and finally a line from <I¡ to q¡. [17] 
(Figure 2.5) 
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Figure 2.5: Voronoi Diagram 

2.1.3 Cell Decomposition 

One of the most popular p]anoiog methods is Cell Decomposition, it has 
been widely used and studied. It decomposes Q¡ree into small regions (cells) 
to generate a path from any q¡ to q¡. A connectivity graph is used to search 
in the adjacency between the cells. Each node is a cell that belongs to 
W¡ree or Q¡ree· Two nodes are linked if and only if they are adjacent. The 
resulting output of the search is called a channe~ a continuous sequence of 
cells or path. [17) 

Cell decomposition methods can be broken down further into exact and 
approximate methods: 

• Exact cell decomposition methods decompose the free space into cells 
whose union is exactly the free space. The boundary of a cell corre­
sponds to a criticality of some sort. (Figure 2.6a) 

• Approximate cell decomposition methods produce cells of predefined 
shape whose union is strictly included in the free space. THe boundary 
of a cell does not characterize a discontinuity of some sort and has no 
physical meaning. (Figure 2.6b) 

2.1.4 Potential Field 

A straightforward approach for path plaooiog is to discretize Q into a very 
small grid of q in which ao informed search algorithm is employed to find 
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Figure 2.7: Potential Field 

holonomic robot into a desired configuration. [12](Figure 2.8b) The robot 

is equipped with a camera that acquires an image Oc = [x yf which is 
compared wit a reference i.mage, which was previously acquired in the desired 
configuration. The current position is analysed such that the robot moves 
to a configuration in which it only will need to perform aplanar movement. 
This way it moves from 'Pi to 'P ¡. 
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(a) Actual and desired configuration (b) Moving to a configuration and 
comparison planar adjustment 

Figure 2.8: Artificial Vision Strategies for Path Planning 

Another approach proposes to equip robots with panoramic cameras 
that provide its exact location and distance from the other robots. These 
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(a) Exact cell decomposition (b) Approximate cell decomposition 

Figure 2.6: Cell Decomposition 

a path. As in any search algorithm, a good heuristic is required to avoid 
getting stuck in a certain q. Sorne heuristics can be described as functions 
known as potential fields. 

Usually this metaphor is used to explain this approach: a robot (particle) 
moves influenced by an artificial potential produced by the goal P¡ and the 
obstacles. The goal "attracts" the particle to it while any obstacle repulses 
it. The negated gradient of the potential is analogous to an artificial force 
that control the robot. At any q, the direction of the force is considered the 
direction of the motion. [17] (Figure 2. 7) 

This method can be very efficient but they have a main drawback, they 
can get stuck in a local minima of the potential function rather than the 
goal configuration.A way to salve it is to use potential functions that have 
only one local minima in the connected subset of Q free which contains q¡. 
Another approach seeks to escape from the local minima using several mech­
anisms. 

2.2 Artificial Vision 

Pinhole cameras have been used for creating models in which the relationship 
between a 30 point an a image projection is found. This is achieved by 
using epipolar geometry. This type of geometry, a1so known as stereo vision 
geometry, relates the 30 points to 20 images. (Figure 2.8a) It uses the 
IBVS (Image Based Visual Servoing) algorithm for directing a mobile non-
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cameras can cover the complete workspace. The leader-robot follows a path 
while the trackers follow it. (Figure 2.9) The trackers have to keep a certain 
distance and orientation from the leader. This approach uses the Luenberger 
non-lineal observer as well as the Jacobian. [13] 

Figure 2.9: Leader - Follower Vision Tracking 

After nmning a path planning algorithm the robot usually follows a 
route, but when the only information available is the intersections the robot 
shall pass it results necessary to check the actual location by Artificial Vision. 
Several works accomplished that a robot could follow the pavement's white 
line, so using this achievement as a basis a work was proposed for a Campus 
Walkway. An image is captured, the initial color attributes of the walkway 
must be acquired. (Figure 2.lOa) The part corresponding to the trail shall 
be differenced from the extra elemeots. After it a line is drawn from the 
trail's horizon to the lower center part of the image. The generalization of it 
can be explained as follows: the path's form can be considered as a triangle, 
so the next step is to draw a line from the upper-most vertex of a triangle to 
the center of its base. The robot follows the computed line. (Figure 2.lOb) 
While more environment samples are talcen the robot moves faster and there 
are less possibilities of moving into a restricted area. (16] 

2.3 Formations and communication 

Control 

There are two main approaches for controlling a multiple-robot. The cen­
tralized control takes all the decisions and assigns all actions in a single 
computer, the environment information is in it. Its main advantage is the 
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(b) Walkway Center Line 

Figure 2.10: Campus Walkway 

task high execution efficiency, whereas its low failure tolerance represents its 
disadvantage. H the main computer fails, everyth.iing fails. In a decentral­
ized control each robot is capable of taking its own decisions and processing 
information. When this type of control is impleniented local information 
builds upa global behaviour. The information comes from the robot's sen­
sors and the communication among them. Even if individual actions are 
taken, each of them follows a cooperation strategy; Both approaches have 
the sam.e problems: explicit communication and the, behaviour in a dynamic 
environment. 

Leader-follower 

The leader-follower scheme can be implemented when the number of robots 
goes from to ton. A robot must be the leader. It rect,ives precise instructions 
from a path planner of how to move. The followers' only task is to track 
and follow the leader's movements. Not all the robots' skills and abilities 
are employed which can be seen as a disadvantage. In the other hand the 
minimum communication between the robots is an. advantage. When the 
number of followers is greater than two, it is almost impossible for the i-th 
follower to esteem the desired path because there is an accumulated error 
generated by all the other robots. Because of that the virtual leader concept 
was im.plemented. In it the i-th follower esteems the path of the i-th leader. 
(Figure 2.11) 

Communication 

For big teams in big, dynamic and unknown envi:ronments where classic 
communication mechanisms are not liable it is necessary to reduce the load 



2.3. FORMATIONS AND COMMUNICATION 17 

Figure 2.11: Leader - Follower Scheme 

in data transmission. Severa! formations can be implemen1;ed as restrictions 
between each robot position respect to another team member to maintain 
a certain shape in the formation. A formation can be represented 88 a 
set of nodes and edges in a connectivity graph. Each node represents the 
localization of each agent and the edges represent the conimunication links 
among them. The information flows in a separate way in slow and fast 
time-scale. The fast one is used in critical decision taking which handle time 
constraints situations such 88 collisions or formation adjustments. It controla 
movements and paths. The slow one just takes place among non-adjacent 
robots. Short term information occurs between neighbours, this reduces a 
communication in complex formations. When the desired :P&th is computed 
the communication is weakly connected because individual decisions are 
propagated to all the agents. [8] 

Kinematic Model 

In teams that employ formations the main problem resides in controlling 
position and orientation of a group of robots 88 a whole. Severe.l kinematic 
modela have been used for the leader where x and y describe position and (J 

orientation. 

[ • (J • • (J (J. ]T x=vcos y=vsm =w (2.5) 

Multiple-Robot Systems 

In some circumstances it is necessary to work with a set of robots where each 
one of them is part of a global task. lt is necessary to take care interaction 
among them and the environment to prevent collisions, look after all the 
agents, the environment and the task. The biggest challenge that a robot 
group faces is the wheel's steering error or communication breakdowns. The 
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first works that were made sought to reduce the computing load of mobile 
decentralized non-holonomic robots. It used a leader-follower scheme, where 
the leader knew the movement instruction and the followers esteemed the 
path depending of the object's movement in a coordinated way. [15) 

Restraints 

When a team is deployed with a specific task such as cleaning, environ­
ment recognition, survivor rescue or just following a path it is necessary 
to know the robot's limitations and restraints of energy and time. Some­
times the number of robots for a certain task must be minimum and the 
result maximum. It results quite important to find a balance between per­
formance while executing the task and handling energy. While robots move 
and work faster the goal is achieved in less time but the power consumption 
is higb. In the other hand if the task is done while taking extreme care of 
the energy consumption the due time may be surpassed. That is why a ve­
locity variation plan must be done so energy consumption can be optimized. 
Multiple-robot systems are deployed in these situations so the load can be 
divided thougb it is important to maintain communication among them so 
there are no repeated actions. (31) 

Object Manipulation 

A problem that has been greatly investigated is object manipulation by 
multiple-robots. Certain tasks cannot be performed by just one robot be­
cause of its size, weight or the lack of sensor information. It is quite impor­
tant to consider that any action will affect the other members of the team, 
that is why coordination is critical. H the robots are equipped with a gripper 
or a robotic arm other factors as manipulation speed or movement delay the 
problem grows bigger. (22) 

Lots of approaches have been presented for a group of agents manipu­
lating an object. One of them proposes to displace an object with multiple­
robots wielding contact forces. These are modelled like non-linear potential 
gradients that describe the load deformation. They also work as an im­
plicit communication way: physical interaction between the load and the 
agents feedbacks the agent with information of what the other robots are 
doing. (14]. 

There is another approach called Object Enclosure in which the trans­
ported object is caged by a team. (Figure 2.12) It creates a bounded and 
mobile area for transporting the object as well as manipulating it. lts great 
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advantage is that there is no need for continuous contact so path planning 
is simpler a.nd more robust. The algorithm works this way: The robots a¡r 
proach the object independently using the Potential Field Algorithm. An 
optimal formation is computed. In this formation the object will not esoope 
from them while tra.nsporting it. A robot is designed 88 a leader a.nd the 
other members change their position in the formation. (32] 

(a~ 

'º*Ot,¡«s 

Figure 2.12: Object Enclosure Algorithm. 

Using intelligent agents is also a.nother alternative. The agents could be 
able to leam from a complex a.nd unknown environment using Q-Leaming. 
When the agent moves the object, it identifies the environment's state and 
autonomously it computes the optima] form to move to the goal. lts pushing 
points are predefined to ease the robot's computation. [30J 

Algorithm development for the problem has retumed like SBS (Situated 
Behaviour Set), where some behaviours were developed. for certain situations 
in which a robot can find itself. The task complexity is evaluated, as well as 
look:ing for a partner, checking the object a.nd determinir1g if it is possible 
to move it. Depending on its parameters the outputs are: change direction, 
push the object, rotate the object or look for help. [24] 

Until now handling an object has just been done by pushing it, the 
following solution pulls the object with a flexible tool. A rope allows to 
simplify the computing process 88 well 88 having more options for moving 
the object. When the object is surrounded by a rope, tht:, contact surface, 
mass centre, a.nd rotation are changed. (Figure 2.13) Tbe geometry does 
not matter so it is easier to move because there is more stability a.nd the 
controllability grows, so the number of robots decreases. (28] 

Coupled or decoupled path planning algorithms for multiple robots are 
also a solution. The coupled ones create paths for all the robots by combining 
the states of the robots in a space-state. lt uses a centralized architecture. 
Its complexity augments exponentially with the number of robots so it is 
not handy to implement. Decoupled algorithms compute the paths for each 
robot and its main appeal is the decentralized architecture. It simplifies 
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Figure 2.13: Nonprehensile Pulling by Multiple Robots 

the i.mplementation because it is all computed in severa! phases. Before the 
movement is performed a decision tree must be done with all the possible 
robot configurations. (Figure 2.14a) During the first phase the robots move 
to determined leafs of the tree, where a robot r moves to a leaf C. In the 
second step a collision-free path for the robots is computed. H there is a 
robot without a path then it is computed. (Figure 2.14b) Finally, only one 
robot moves at the time, this way there wil1 be no collisions. (23) 
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(a) Plaoning Problem (b) Grapb-based map 

Figure 2.14: Strategy for Coordinating Multiple Robots Within Roaclmaps 

Finally a hunting system was developed. A group of mobile robots have 
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the main task of capturing a mobile object. Reinforcement Learning was 
used for providing the hunters certain intelligence. Each of them has a 
visibility of 21r. Using the available information it can take its own decisions. 
The hunting algorithm is composed by several states. During the tracking 
state the robot moves around randomly to explore the e10.vironment. The 
prosecution state activates when the robot sees the pray and immediately 
it begins the chase. During the capture state the hunter asks if any other 
robot is chasing it, else it hunts it. The last state is prediction, this states 
appears when the target is lost and an estimation shall be: done. (33] 

Communication 

lt results quite important to have a liable and adaptable co:mmunication sys­
tem in a navigation system. The LOCISS (Locally Communicable lnfrarred 
Sensory System) is used for ínter-robot identification and. IDC (Intelligent 
Data Carrier) for localization. LOCISS was developed to identify if a mo­
bile object is an obstacle or another team member. With ordinary sensors 
it turns to be almost impossible to differentiate one from another, so an 
ID, location and speed information are transmitted. If received data is the 
same as the one sent then the object is an obstacle. IDC is a mobile device 
composed by writer and a reader where environment infon:nation is stored. 
The combination of both algorithms outcomes in a local path planning prob­
lem. (29] 
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Chapter 3 

Theoretical framework 

Robot motion planoíog, as it has been explained, uses lots of areaa. This 
work employs N avigation concepts, Artificial Intelligence and Path Plan­
ning algorithins 88 well Gaussian and Nonparametric Filt131'8. The previous 
chapter gave a general overview of some of the concepta that will now be 
explained deeply. All the algorithins employed for devek>ping this Thesis 
will be explained in this chapter. 

3.1 Motion Planning 

3.1.1 Task 

A motion planner most important characteristic is according to the problem 
it is designed to be solved. There are four tasks it must accomplish, they are: 
navigation, coverage, localization and mapping. In Navigation a collision­
free motion is calculated between two q or states for the robot. Coveruge has 
to do with using a sensor or an actuator interact with the space. Localization 
deals with the problem of interpreting and using a map t.:> interpret sensor 
data to determine the current q. Finally, Mapping hBB to do exploring and 
sensing an unlmown environment to construct a good enough representation 
for using it in in navigation, coverage and localization. (17) 

3.1.2 Properties of the Robot 

A motion planner is strongly bounded to the robot properties while solving 
the task. This is, the robot and the environment determine the number 
of DOF and the form of Q. Once it is defined, the robo1G motion must be 
known, if it can move instantaneously into any direction in Q it is considered 

23 
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to be omnidirectional, else if it has velocity constraints, such as a car, it 
is called nonholonomic. Another way to model a robot is by employing 
kynematic equations with velocities as control, or by the employment of 
dynamic motion equations controlled by forces. [9) 

Kinematic Constraints 

In the basic problem we assumed that the robot was a free-flying object, 
the only constraints on its motions were due to the obstacles. In sorne 
problems we may want to impose additional kinematic constraints to the 
robot's motions. 

Holonomic Constraints Let us assume that a configuration is repre­
sented by a list of parameters of minimal cardinality. A holonomic equality 
constraint relates these parameters and can be solved for one of them, this 
way, the relation reduces the dimension of the current Q by one. 

Suppose a 30 object A translates freely but it is constrained to rotate in 
a fixed axis. A's orientation can be represented by three angles, but it can be 
expressed as two independent equations. W's dimension is of 6 while Q's is 
of 4. The particular case when A can translate freely at its current location 
is considered a holonomic constraint problem, however as this problem is 
totally equivalent to a motion problem for a point in IRN it is a particular 
case of the basic motion planning problem. 

Holonomic constraints certainly affect the defi.nition of the robot's con­
figuration space and may even change its global connectedness. Nonetheless, 
holonomic constraints do not raise new fundamental issues. [17) 

Nonholonomic Constraints A non holonomic equality constraint is a 
non-integrable equation involving the configuration parameters and their 
derivatives (velocity parameters). Such a constraint does not reduce the 
dimension of the space of configurations attainable by the robot, but reduces 
the dimension of the space of possible d.ifferential motions at any given 
configuration. [17] 

Considera car-like robot A rolling on a flat ground as in Figure 3.1. The 
car can be modelled as a rectangular object that moves in W = R.2 . In an 
empty space the robot can be driven at any position with any orientation, 
its Q is 30, two of translation and one of rotation such that q = [x y O]. 
x and y are Cartesian coordinates in a axis Fw, they represent the midpoint 
R just in the middle R of the robot. O E [0,21r) is the angle between the x 
axis and the robot A's orientation. Assuming that there is no slipping and 
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all movements are deterministic, the velocity of R points along A's axis. Its 
motion constraint is given by: 

- sin (Jdx + cos (Jdy = o (3.1) 

AB equation 3.1 is non-integrable it represents a nonholonomic equality 
constraint. Dueto it, the differential motions [5x óy5 O] of the robot at 
any q is a 2D space. H the robot was a free-flying object the space would be 
3D. The car's instantaneous motion is determined by two parameters: the 
linear velocity along its main axis and the steering angle .. However, when 
the steering angle different from zero it affects its orientation, therefore its 
linear velocity, so the robots's q span in a 3D space. 

\ 
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Figure 3.1: Car-lilre Robot Model 

Nonholonomic constraints restrict the geometry of the foasible free paths 
between two configurations. They are much harder to deal with a planner 
than holonomic constraints. (17] 

U ncertainty The basic problem assumes that the robot can follow exactly 
paths generated by the planner. It also assumes that the geometry of the 
robot, the geometry of the obstacles, and the location of the obstacles are 
accurately known. Currently there are no robot settings that satisfies these 
assumptions, and both robot control and geometric modela are imperfect. In 
many cases these imperfections can be ignored because the task may allow 
certain tolerance, but that is not always the case. 

In the other hand, the robot may have a small or no knowledge of W, 
so it would have to trust completely in its sensors at execution time to get 
enough information of the environment so the task can be accomplished. In 
this particular case, the robot needs to explore W and usually this approach 
is outside motion planuiug, although it is possible to inte.rweave planuiug, 
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execution and monitoring activities, but if there is no a priori knowledge 
path planning has almost no releva.nce. (18) 

A middlepoint situation can be where there is a small error in robot 
control and in all geometric models but the errors are just found in certain 
bounded regions: an obstacle is expected to be in a certain location but it 
is displaced, a robot moves in a different direction than the commanded one 
but it displaces in a narrow cone centered along the desired direction. To 
deal with that kind of error the robot shall be equipped with sensors that 
it can employ during execution so it can acquire additional information. 
However, sensors are not deterministic either, a position sensor does not 
always return the exact q in which the robot is. It results that sensot8 also 
contain certain error in uncertainty region. H that error can be controlled a 
motion plan can be generated so it can be tolerant to the overall error. (25) 

The motion planning problem with bounded uncertainty can be stated 
as follows: 

Given an initial region I anda goal region gin the robot's 
con.figuration space, generate a motion plan whose execution 
guarantees the robot to reach a configuration in g if it starts 
from any (unknown) configuration in I, despite bounded uncer­
tainty in control, sensing and model. A solution to this problem 
is a plan that combine motion com.mands and sensor readings 
that interact at execution time in order to reduce uncertainty 
and guide the robot toward the goal. [17] 

Planning in bounded uncertainty comes up with new issues that are 
not covered in the basic problem or in its extensions. Due to uncertainty in 
control a motion command may produce any path among the infinitely many 
ones which are consistent with both the command and the uncertainty, all 
paths must reach the goal so the planner can guarantee success. The plan 
must also finish in the goal, but due to uncertainty in sensing, it may be 
a big problem to know if the goal has been reached. The planner must 
also retrieve enough information that will allow the controller to choose the 
correct actions. 

Uncertainty leads to the usage of sensor-based motion commands whose 
behaviour is less sensitive to errors than purely position-controlled motion 
com.mands. Force-compliant motion commands are one example of such 
com.mands. When used, the robot may touch obstacle surfaces and slide on 
them, rather than just stop. Planning such sensory-based motion com.mands 
may require the physics of the workspace to be taken into consideration. [17] 
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3.1.3 Properties of the Algorithm 

Once the robot and its task have been defined, the algorithms to be used shall 
be chosen according how they will solve the problem. This is, the planner 
may come with optima! solutions in a certain criteria such as length, exe­
cution time or energy consumption, or just satisfy the colllStraints. Besides 
that, computational complexity, memory requirements, running time ( con­
stant, polynomial or exponential) must a1so be considerecl. The size of the 
problem description could be the number of DOF of the robot system, the 
amount of memory needed to describe the robot and the obstacles in the 
environment, etc., and the complexity can be defined in terms of the works 
case or the average case. (9] 

Sorne planners are complete, they will always find a solution to the prob­
lem if one exists or return failure. This last property is really desirable. In a 
motion planning problem, as the number of DOF grows, complete solutions 
require lots of computational resources and may not be fea.!'lible to use them. 
That is why sorne wea.ker forms of completeness a.re sought. One form of 
that is resolution completeness, if a solution exists in certain discretization 
resolution, the planner will find a solution. Another form, but weaker, is 
probabilistic completeness, the probability of finding a solution converges to 
1 in an infinite time. 

Optimality, completeness and computational complexi~y naturally trade 
off with each other. We must be willing to accept increased computational 
complexity if we demand optima.l motion plans or completeness from our 
planner. 

We say a planner is offline if it constructs the plan in ad.vanee, basecl 
on a known model of the environment, and then hands the plan of to an 
executor. The planner is online if it incrementally constructs the plan while 
the robot is executing. In this case, the planner can be sensor-based, mean­
ing that it interleaves sensing, computation and action. The distinction 
between offline algorithms and online sensor-based algoritb.ms can be some­
what murky; if an offline planner runs quickly enough, for example, then it 
can be used in a feedback look to continually replan when new sensor data 
updates the environment model. The primary distinction is computation 
time, and practica.lly speaking, algorithms a.re often designed and discussed 
with this distinction in mind. A similar issue arises in control theory when 
attempting to distinguish between feedforward control and feedback control, 
as techniques like model predictive control essentially use fast feedforwa.rd 
control generation in a closed loop. (17] 



28 CHAPTER 3. THEORETICAL FRAMEWORK 

3.2 Approximate Cell Decomposition 

This path planning approach consists of representing the robot's free space 
Q¡ree as a collection of cells. Cells are required to have a simple prespecified 
shape, like a rectangular shape. Cells do not represent exactly the free space, 
instead they approximate in a conservative way, that is why the name it 
receives. A connectivity gra.ph representing the a.djacency rela.tion among 
the cells is built and searched for a pa.th. The rules for using a. cell shape 
are: 

l. Achieve space decomposition by iterating the same simple computa.­
tion. 

2. To be rela.tively insensitive to numerically a.pproximate computations. 

In this p]a.nning method the amount of free space can be controlled for the 
generated pa.th by establishing a minimal size for the cells. This is importa.nt 
when the error in geometric models and/or robot control is not despica.ble. 

The boundaries of the generated cell are kind of arbitrary, they do not 
characterize discontinuities in motion constraints. AB they conservatively 
represent the free space they may fail to find a free path, even if one exists. 
This drawback can be attacked by augmenting the time it can employ to 
find a solution. [18] 

Most approxi.mate cell decomposition methods allow the size of the cells 
to be locally a.dapted to the geometry of the obsta.ele region. Presetting 
the size of the cells could result in significant difficulties: a large cell size 
would prevent free paths from being found, while a small size would require 
increased computation times. So most methods opera.te in a hierarchical 
way, they generate an initial coarse decomposition and then loca1ly refining 
this decomposition until a free path is found or the decomposition becomes 
too small. 

The principle of the approximate cell decomposition approach can be 
applied to the basic motion planning problem in its full generality, as well 
to most of its extensions. However, the time and space complexity of the 
methods based on this approach grows quickly with the dimension m of the 
configuration space. These methods are applied only when this dimension 
is small enough. 
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Description 

A rectangle is defined as a closed region of the following form in a Cartesian 
space R": 

The differences x'/ - r¡, i = 1, ... , n are called the dimensions of the 
rectangle. None of this is zero. Let R be a robot whose cmúiguration space 
Q is RN with N = 2 or 3. A configuration q is represented by the coordinates 
of R's reference point 1'x in the frame :Fw attached to the workspace. 

We assume that the set of possible positions of R h: contained in a 
rectangle D e RN. We represent Qfree as: 

'R 
Q¡ree = QO (3.3) 

Where 'R = int(D) if Q = RN 
Let n = cl(R). It is a rectangle of Rm, where mis the dimension of the 

configuration space Q,. 
A rectangle decomposition 1' of n is a finite collection of rectangles 

{ ,t.¡ h=l, ... ,r such that: 

• nis equal to the union of ,t.¡: 

(3.4) 

• The interiors of the ,t.¡ 's do not intersect 

'v'i1,i2 E [l,r],i1 =f' i2: int(,t.¡1 ) n int(,t.¡2 ) = I~ (3.5) 

Each rectangle lti is called a cell of the decomposition 1' of n. 
Two cella are adjacent if and only if their intersection is a. set of non-zero 

measure in Rm-l. The intersection is computed by taking into account that 
Q = R2 x 8 1, (x, y, 21r) is identified with (x, y, O). 

A cell ,t.¡ is classified as: 

• EMPTY - if and only if its interior does not intersect an obstacle 
region. ,t.¡) n O = 0. 
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• FULL - if and only if K¡), is entirely contained in the obstacle region, 
Ki) s; o. 

• MIXED - otherwise. 

The connectivity graph associated with a decomposition 'P of nis the 
non-directed graph G defined as follows: 

• The nodes of G are the EMPTY and MDCED cells of 'P. 

• Two nodes of G are connected by a link if and only if the corresponding 
cells are adjacent. 

Given a rectangle decomposition 'P of n, a channel is defined as a se­
quence ( Ka; );=1, ... ,JJ of EMPTY and/or MDCED cells such that any two con­
secutive cells Ka; and Ka;+1, j E [1,p - 1), are adjacent. A channel that 
only contains EMPTY Cells is called an E-channel. A channel that con­
tains at least one MIXED cell is called an M channel. If (Ka;)i=l, ... ,p is 
an E-channel, then any path connecting any configuration in ( Ka1) to any 
configuration (Kap) and lying in int(~=¡Ka;) is a free path. H (Ka;)i=l, ... JJ 

is an M-channel, there may exist a free path connecting two con.figurations 
(Ka1) and (Kap), and lying in int(~=¡Ka;), but there is no guarantee that 
this is the case. [18] 

Given an initial configuration q¡ E Q¡ree and a goal con.figuration q¡ E 

Q¡ree, the problem is to generate an E-channel (Ka;)i=l,. .. ,p, such that q¡ E 
Ka1, and q¡ E Kap. If such a channel is generated, let /3; = 8Ka; n Ka;+1, j = 
1, ... ,P - 1, be the intersection of the boundaries of two successive cells. 
A free path joining the initial to the goal configuration can be extracted 
from the E-channel by Hnkiog q¡ to q¡ by a polygonal line whose vertices 
are points QJ E int(/3;). For every j such that /3;-1 and /3; are subsets 
of the same face of Ka, an additional point Q.i-l located in the interior of 
Ka; should be included among the path's vertices, since in this case the line 
segment Q;-1Q; is not guaranteed to lie entirely in the robot's free space. 
If necessary, the polygonal path can be smoothed. (17] 

Hierarchical path planning consists of generating an E-channel by con­
structing successive rectangle decompositions of {l and searching the as­

sociated connectivity graphs. Let 'Pi, i = 1, 2, ... , denote the successive 
decompositions of n. Each decomposition 'P¡ is obtained from the previous 
one, 'Pi-1 (with 'Po= {O}), by decomposing one or severa! MDCED cells, the 
other cells being unchanged. Whenever a decomposition 'P¡, is computed, 
the associated connectivity graph, denoted by G¡, is searched for a channel 
connecting q¡ to q¡. 



3.2. APPROXIMATE CELL DECOMPOSITION 

input : Connectivity graph G, 
1 K.: MDCED cell; 
2 II,: M-cha.nnel; 

3 Compute a rectangle decomposition 'P of íl; 
4 i +-- O; 

5 repeat 
a channel +-- SearchForChannel(G¡); 

7 ü channel == E-channel then 
8 1 return Success; 
e else if channel == M-channel then 

10 

11 

12 

13 

14 

'PHI f- 'P¡; 
foreach " in 11¡ do 

I 
RectangleDecomposi tion(K); 
'PHI f- ['Pi+l \ { K. }] U 'P"; 

end 
15 end 
18 until Success ; 

Algorithm 1: pproximate 11 Decomposition 
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The search of G, can be guided by an heuristic. In particular, one could 
search for an E-channel before searching for an M-cha.nnel. But, although the 
heuristic function should put an extra cost on MDCED cells ii1 order to gener­
ate an E-channel quicker, it may also be appropriate to prefer short channels 
over long ones. Thus, although an E-channel may exist in a graph G¡, it 
may nevertheless be preferable to generate a significantly shorter M-channel 
instead, and refine G¡ accord.ingly. Notice that any E-channel existing in G¡ 
will continue to exists in all the graphs G;, j > l. (18] 

Let us assume that the region cl(Q/ree) is a manifold with boundary. 
Then the algorithm can be made complete - guaranteed to terminate and 
retum an E-channel whenever q¡ and q¡ Iie in the sa.me connected component 
of Q free - by working out some details appropriately, for inatance: 

• The search of the connectivity graph should be complete and it should 
output an E-channel whenever one exits. 

• AD the dimensions of every MDCED cell in 'P¡ should. tend toward O 
when i---+ oo. 
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However, for an unknown region of Q¡ree, there is no upper bound on 
the worst-case computation time. 

The computing time can be bounded at the expense of completeness by 
imposing constraints on the minimal dimensions of the cell. For example, one 
possible constraint is that the total volume of the EMPTY and FULL Cells 
in the decomposition P,.. of ¡,;, be greater than a predefined ratio .X E (O, 1) of 
the volume of ¡,;,; in addition, every MDCED cell whose volume is smaller than 
a prespecified value f is re-labelled as FULL. H such a constraint is imposed, 
the algorithm is no longer guaranteed to output an E-channel whenever one 
exists. However, if one exists, the algorithm will find one provided that both 
.X and t are selected small enough. For this reason, the planning method is 
said to be resolution-complete. [17) 

3.3 A*(Astar) 

Informed search algorithms employ problem-specific knowledge beyond the 
definition of itself. It finds solutions in a more effi.cient way than uninformed 
search algorithms. The general form of A* is called best-first search, which 
is a generalization of the Tree or Graph Search algorithm. In it, a node 
is selected for expanding it based on an evaluation function f ( n). That 
function is calculated as a cost estimated, so the node with the lowest eval­
uation is expanded first. The choice made by J will determine the whole 
strategy. Best-first algorithms use an heuristic function h( n) to be included 
as a component of J. Heuristic functions are a way of providing additional 
knowledge of the problem to the search algorithm. 

The most popular variation of the Best-first Search is A* search. lts 
nodes evaluation system consists of the combination of the cost to reach the 
node g(n) and h(n), the cost to get from the node to the goal: 

J(n) = g(n) + h(n) (3.6) 

g( n) gives is the cost function of moving from the start node a node 
n, in the other hand, h( n) gives the estimated cost of the path with the 
lowest combined heuristic. By combining them the estimated cost J(n) is 
calculated. 

If the cheapest solution is being searched, what is usually done is to 
try the lowest value node of g(n) + h(n). Using this strategy, it can be 
demonstrated that A* search is both complete and optimal. 



3.3. A* (A STAR) 

input : problem 
output: A solution, or failure 

1 node: a node with STATE = problem. INITIAL-STATE, PATH-COST = 
O; 

2 frontier: a priority queue ordered by PATH-COST, with node as the 
only element; 

s explored: an empty set 

4 repeat 
I if Em.pty?(frontier} then return failure; 
e node: Pop ( frontier}; 
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T if problem.Goa1Test(node.STA7E} then return Solution(node}; 
B add node.STATE to explored; 
e foreach action in problem.Actions(node.STA7E} do 

10 child +- ChildNode(problem, node, action}; 
11 if child.STA7E is not in explored or frontier the11 
12 1 frontier +- Insert(child, frontier} 
13 else if child.STA7E is in frontier with higher PA;rH-COST then 
14 1 replace that frontier node with child 
11 end 
10 end 
1 T until Solution or failure ; 

Algorith.m 2: A* Search 
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Conditions for optimality: Adm.issibility and consistency 

h( n) rnust be an admisc¡ible heuristic so optimality can be reached. To be 
admissible it must not overestimate the cost to reach the goal. AB g( n) 
represente the actual cost to reach n through the path, and /(n) = g(n) + 
h(n), it will never overestimate the true cost of a solution in the current 
path through n. 

Admissible heuristics are usually optimistic, this is, they estimate the 
cost of solving the problem is srnaller than it really is. Monotocity or con­
sistency is another required condition for using A* in a graph search. A 
heuristic h( n) is consistent if, for every node n and every successor n' of n 
generated by any action a, the estimated cost of reaching the goal frorn n 
is no greater than the step cost of getting to n' plus the estimated cost of 
reaching the goal from n': 

h(n) ::;; c(n, a, n') + h(n') (3.7) 

The previous equation is a form of the general triangle inequality, it 
stipulates that each triangle's edge cannot be longer than the sum of the 
other two. The triangle is formed by n, n' and the goal Gn closest ton. 
In an admissible heuristic, the inequality can be interpreted this way: if a 
route frorn n to Gn exists via n' and it is cheaper than h(n}, it will violate 
the property that h( n) is a lower bound on the cost to reach the goal node. 

A* is complete, optimal and optirnally eflicient, but it is not always the 
best solution for ali search needs. This is, in sorne problems the number of 
states that surround the goal is exponential in the length of the solution. 
The complexity of A* can provoke that it is not feasible to find an optima! 
solution. To solve it, A* modifications have been proposed, they find sulr 
optimal solutions more rapidly, or a good search heuristics can be designed, 
still it will give enormous savings cornpared to an uninformed search .. 

Its main drawback is computational time, it saves all generated nodes in 
mernory. lt is not rare that it runs out of rnernory before a timeout occurs. 
That is why A* is not used in large-scale problems, yet sorne algorithms 
overcome the space problem while taking care of not sacrificing optimality 
or completeness, however execution time is slightly affected. [27] 

3.4 Kalman Filter 

Gaussian techniques all share the basic idea that beliefs are represented by 
rnultivariate normal distributions: 
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p(x) = det(27rE)-! exp{-~(x - µfE- 1(x - µ)} (3.8) 

The density over x is characterized by the mean µ and the covariance 
E. µisa vector that has the same dimensionality as x. E is a quadratic 
matrix that is symmetric and positive-semidefinite. The dimension is the 
dimensionality of the state x squared. 

The commitment to represent the posterior by a Gaussia.n has important 
ramifications. This is, Gaussians are unimodal: they have a single maxi­
mum, this characteristic is widely used for tracking problems in robotics: 
the posterior is focused around the true state with a small margin of uncer­
tainty. Gaussians posteriors are a poor match for global estimation problems 
where many hypotheses exists because each of them forms its own mode in 
the posterior. [18] 

Linear Gaussian Systems 

The moments of parametrization is the parametrization of a Gaussian by its 
mean and covariance. Each of them are the first and second moments of a 
probability distribution; the rest of them are zero for a normal distribution. 
The Kalman filter is the best studied technique for implementing Bayes 
filters. lt was invented by Swerling and Kalman as a way for filtering and 
predicting the behaviour of a Linear Gaussian System. It implements a 
belief computation for continuous states, so it cannot be applied in discrete 
or hybrid space states. It represents beliefs by the moments :parametrization. 
At time t, the current belief is represented by the mean JLt and covariance Et. 
Posteriors are Gaussian if the following three properties hold, in addition to 
the Markov assumptions of the Bayes filter. [27] 

l. The state transition probability p(xtlut, Xt-1) must be a linear function 
in its arguments with added Gaussian noise. This is ·~ressed as: 

(3.9) 

Here Xt and Xt-l are state vectors, and ut is the control vector at time 
t. Both of these vectors are vertical vectors. They 8['13 of the form: 

(

Xl,t) X2,t 
Xt= • 

Xn,t 

(3.10) 
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and 

ut = r~::1 
Un,t 

(3.11) 

At and Bt are matrices. At is a square matrix of size n x n, where n 
is the dimension of the state vector x,. Bt is of size n x m, with m 
being the dimension of the control vector ut- By multiplying the state 
and control vector with the matrices At and Bt, respectively, the state 
transition function becomes linear in its arguments. Thus, Kalroan 
filters assume linear system dynamics. 

The random variable ft is a Gaussian random vector that models the 
uncertainty introduced by the state transition. It is of the same di­
mension as the state vector. lts mean is zero, and its cova.riance will 
be denoted Rt. A state transition probability as seen in (3.9) is called 
linear Gaussian, to reflect the fact that it is linear in its arguments 
with additive Gaussian noise. [18) 

Equation (3.9) defines the state transition probability p(xtlut,xt -1). 
This probability is obtained by plugging (3.9) into the definition of the 
multiva.riate normal distribution. The mean of the posterior state is 
given by AtXt-1 + Btut and the cova.riance by Rt. 

1 
p(xtlut,Xt-i) = det(211-Rt)-i 

exp{-~(Xt - AtXt-1 - Btutf Ri-1(xt - AtXt-1 - Btut)} (3.12) 

2. The measurement probability p(ztlxt) must also be linear in its argu­
ments, with added Gaussian noise: 

(3.13) 

Here Ct is a matrix of size k x n, where k is the dimension of the mea­
surement vector zt. The vector ót describes the measurement noise. 
The distribution of ót is a multiva.riate Gaussian with zero mean and 
cova.riance Q,. The measurement probability is thus given by the fol­
lowing multiva.riate normal distribution: 
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3. Finally, the initial belief bel(xo) must be normally distributed. This 
belief will have mean µo and covariance by Eo. 

bel(xo) = p(xo) = det(21rEo)-i exp{-!(xo - µ,of}:::01(xo - µo)} 
(3.15) 

These three assumptions are sufficient to ensure that the posterior 
bel(xt is always a Gaussian, for any point in time t. 

Algorithm 

Kalman filters represent the belief bel(xt) at time t by the mean JLt and the 
covariance Et. The input of the Kalman filter is the belief at time t - 1, 
represented by JLt-1 and Et-1· To update these parameter, Kalman filters 
require the control ut and the measurement Zt· The outpu1; is the belief at 
time t represented by JLt and Et. 

In lines 1 and 2, the predicted belief µ and E is calculated representing 
the belief bel(xt) one step later, but before incorporating tbe measurement 
Zt· This belief is obtained by incorporating the control 'Ut· The mean is up­
dated using the deterministic version of the state transitioIL function (3.9), 
with the mean JJ,t-1 substituted for the state Xt-1 · The update of the co­
variance considers the fact that states depend on previous states through 
the linear matrix At. This matrix is multiplied twice into the cove.riance, 
since the covariance is quadratic matrix. 

input: JLt-1, Et-1, Ut, Zt 

1 lI,i = Atµt-1 + Btut; 
- T :, Et = AtEt-1~ + Re; 

s Kt = Etcf{(CtEtcff + Qt)-1; 

4 JLt = lI,i + Kt(Zt - Ctll,i); 
& Et = (I - ktCt)Ec; 
e retW'D JJ,t-1, Et-1 

Algoritbm 3: The Kalman Filter Algorithm 

The belief bel(xt) is subsequently transformed into thEi desired belief 
bel(xt) in lines 3 through 5, by incorporating the measurement Zt· The vari­
able Kt, computed in line 3 is called Kalman gain. It specifies the degree to 
which the measurement is incorporated into the new state estimate. Line 
4 manipulates the mean, by adjusting it in proportion to the Kalman gain 



38 CHAPTER 3. THEORETICAL FRAMEWORK 

Kt and the deviation of the actual measurement, zt, and the measurement 
predicted according to the measurement probability (3.13). The key concept 
here is the innovation, which is the difference between the actual measure­
ment zt and the expected measurement Ct74 in line 4. Finally, the new 
covariance of the posterior belief is calculated in line 5, adjusting for the 
infonnation gain resulting from the measurement. [25) 

The Kalman filter is computationally quite efficient. Each iteration of 
the Kalman filter is lower bounded by O(k2•4), where k, where k is the 
dimension of the measurement vector zt. This approximate cubic complexity 
stems from the matrix inversion in line 3. [18) 

3.5 Particle Filter 

Nonparametric filters are an altemative to Gaussian techniques. The pos­
terior they use is represented by a finite number of values which correspond 
to a region in the space state. Sorne nonparametric Bayes filters decompose 
the state space, each of the correspond to a probability of the posterior den­
sity in a region of the space state. Some others approximate the space state 
by sampling the posterior distribution. The nu.mber of parameters can be 
varied such that the quality of the approximation depends on it. H that 
number goes to infinity, nonparametric techniques converge uniformly to a 
correct posterior under smoothness a&<Ju.mptions. (18) 

Basic Algorithm 

The particle filter is a nonparametric implementation of the Bayes filter. It 
approximates the posterior using a finite number of parameters. It repre­
sents the posterior bel(xt) by a set of random state samples taken from the 
posterior. Rather than representing the distribution in a parametric fonn -
like a normal distribution - particle filters represent a distribution by a set 
of samples drawn from this distribution. This distribution is approximate 
and nonparametric so it can represent much better a space of distributions. 
Another advantage is that it can model nonlinear transfonnations of random 
variables. (25) 

In particle filters, the samples of a posterior distribution are called par­
ticles and are denoted 

V ·- (l) (2) [M] (3 16) 
"'"t ·- Xt I Xt , • • ·, Xt • 

Each particle xlml ( with 1 s m s M) is a concrete instantiation of the 
state at time t. Put differently, a particle is hypothesis as to what the true 
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world state may be at ti.me t. Here M denotes the nu.mber of particles in 
the particle set Xt. In practice, the number of particles Mis often a large 
nu.mber. In some i.m.plementations M is a function of t or other quantities 
related to the belief bel(xt)· 

The intuition behind particle filters is to approximate the belief bel(xt) 
by the set of particles Xu. Ideally, the likehood for a state hypothesis Xt 

to be included in the particle set Xt shall be proportional to its Bayes filter 
posterior bel(xt): 

(3.17) 

As a consequence of it, the denser a subregion of the state space is 
populated by samples, the more likely it is that the true stat;e falls into this 
region. As it will discussed, the property (3.17) holds only asymptotically 
for M t oo for the standard particle fil ter algorithm. For finite M, particles 
are drawn from a slightly di.fferent distribution. In practice,., this difference 
is negligible as long as the nu.mber of particles is not too small. 

The particle filter algorithm constructs the belief bel(xt) recursively from 
the belief bel(xt-i) one time step earlier. Since beliefs are represented by 
sets of particles, this means that particle filters construct the particle set Xt 
recursively from the set Xt-1 · 

input: Xt,ut,Zt 

1 Xt = Xt = 0; 
2 form=ltoMdo 

3 sample xr "'p(xtlut, xtl); 
4 w!ml = p(ztlx!ml)¡ 

5 Xt = Xt + (x{ml, wJml)¡ 
e end 
1form=ltoMdo 

8 draw i with probability ex: wjiJ; 

9 add x{'l to Xti 

10 end 
11 return Xt 

Algorithm 4: The Particle Filter Algorithm 

The input of this algorithm is the particle set Xt-1, along with the most 
recent control ut and the most recent measurement Zt· The algorithm then 
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first constructs a temporary particle set X that represented the belief bel(xt)· 
It does this by systematically processing each particle xtl in the input 
particle set Xu-oo· Subsequently, it transforma these particles into the set 
Xt, which approximates the posterior distribution bel(xt)· In detall: 

l. Line 3 generates a hypothetica.l state x{ml for time t based on the 

particle xtl and the control Ut· The resulting sample is indexed by m, 
indicating that it is generated from the m-th particle in Xt-1· This step 
involves sa.mpling from the state transition distribution p(xt!Ut, Xt-1). 

To implement this step, one needs to be able to sample from this 
distribution. The set of particles obtained after M iterations is the 
filter's representation of bel(xt)· 

2. Line 4 ca.lculates for each particle x{ml the S<rCalled i.mportance factor, 

denoted w!ml. Importance factors are used to incorporate the measure­
ment zt into the particle set. The importance, thus, is the probability 
of the measurement zt under particle xr, given by w!ml = p(ztlx{ml). 
lf we interpret w!ml as the weight of a particle, the set of weighted par­
ticles represents (in approximation) the Bayes filter posterior bel(xt)· 

3. During the second for, resampling or i.mportance sa.mpling is imple­
mented. The algorithm draws with replacement M particles from the 
temporary set X t· The probability of drawing each particle is given by 
its importance weight. Resampling transforma a particle set of M par­
ticles into another particle set of the same size. By incorporating the 
importance weights into the resampling process, the distribution of the 
particles change: Whereas before the resampling step, they were dis­
tributed according to bel(xt), after the resampling they are distributed 

(approximately according to the posterior bel(xt) = 71p(ztlx{ml)bel(xt)· 
In fact, the resulting sample set usually possesses many duplicates, 
since particles are drawn with replacement. More important are the 
particles not contained in Xt: Those tend to be the particles with lower 
importance weights. 

The resampling step has the important function to force particles baclc 
to the posterior bel(xt)· In fact, an alternative (and usually inferior) version 
of the particle filter would never resample, but instead would maintain for 
each particle an importance weight that is initialized by 1 and updated 
multiplicatively: 
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(3.18) 

Such a particle filter algorithm would still approximate the posterior, but 
many of its particles would end up in regions of low postEirior probability. 
As a result, it would require many more particles; how many dependa on the 
shape of the posterior. The resampling step is a probabilistic implementation 
of the Darwinian idea of survival of the fittest: lt refocuses the particle set 
to regions in state space with high posterior probability. By doing so, it 
focuses the computational resources of the fiilter algorithm w regions in the 
state space where they matter the most. [25] 
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Chapter 4 

Employed Hardware 

This chapter includes a description of the employed and developed hardware 
for this Thesis. This work's main goal is to implement several algorithms and 
malee them interact so the task of transporting a heavy object is achieved, 
but it would not be accomplished without the correct hardware. 

4.1 Boe-Bot Robot 

The Parallax Boe-Bot robot (Figure 4.1) is the focus of the activities and 
projects for various type of students, from a beginner student toan advanced 
designer. Its popularity comes from how versatile it is for being modified. 
It can be used as an standard mobile robot with wheels that uses servo 
motors. [3) Another possibility is using those motors to turn it into a crawler 
robot that can interact in other type of environments. [4] A final modification 
provided by the manufacturer is adding the capability of carrying objects by 
using a gripper that can handle up to 14 pounds. [5) Its chassis can accept 
severa! modifications into it so its functionality can only grow. 

4.2 BASIC Stamp 2 

A Microcontroller is a programm.able device that is designed into watches, 
cellphones, calculator, etc. In robot applications, the microcontroller is 
programm.ed to sense when a button has been pressed, to communicate, 
read sensors or move. [19) The BASIC Stamp is widely used in educational, 
hobby, and industrial applications. (Figure 4.2) Its main capabilities are: 

l. Processor Speed: 20 MHz. 

43 
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Figure 4.1: Boe-Bot Robot 

2. Program Execution Speed: ,...., 4000 PBASIC instructions/sec. 

3. RAM Size: 32 Bytes. 

4. EEPROM Size: 2 KBytes ,...., 500 PBASIC instructions. 

5. 1/0 pins: 16 + 2 dedicated serial. 

6. Current Draw: @5 VDC: 3 mA Run, 50 µA Sleep. 

7. Source/Sink Current per 1/0: 20 mA / 25 mA 

8. Source/Sink Current per unit: 40 mA / 50 mA per 7 1/0. 

9. PBASIC Commands: 42. 

10. Package: 24-pin DIP 

11. lndustrial-Rated since Rev J 

This microcontroller is designed to interact in a friendly way with the 
Boe-Bot robot and with most of the sensors that will be described in this 
Chapter, that is why it was chosen. lt is a low cost high capability micro­
controller which 1/0 ports can perform the typical functions of a pin, but its 
main advantage is that they can work as PWM outputs, Serial TX/RX pins 
and with some software modifi.cations as an 12C. Most of the products in the 
market have one or two serial ports and limited PWM dedicated pins so if 
several sensors need serial communications those microcontrollers would not 
be a good choice. lt was also included with the Boe-Bots that were used, 
that was an extra reason of why to use it. 
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Figure 4.2: BASIC Stamp 2 Microcontroller 

4.3 Bluetooth Module 

A Robot needs to communicate with other agents or with a computer de­
pending if it works in a centralized or decentralized way. When working in a 
prototype, usually wired communication is used, usually serial or USB. But 
when a robot needs to work in a remote location, wireless communication 
becomes quite important. The Embedded Blue 500 module will be used, it 
is shown in Figure 4.3. 

Bluetooth is a technology standard for electronic devices to communicate 
with each other using a short-range radio. lt is ofter referred to as a "cable 
replacement" technology, because it is commonly used to connect things 
that have traditionally been connected by wires. lt is based on a frequency 
hopping spread spectrum modulation (FHSS) technique. The term spread 
spectrum describes a number of methods for spreading a radio signa} over 
multiple frequencies, either simultaneously or in series. Bluetooth utilizes 
FHSS to reduce interference and increase security. The signal is rapidly 
switched from channel to channel many times per second in a pseudo-random 
pattern that is known by the sender and the receiver. This provides robust 
recovery of packet errors caused by interference from another radio source 
at a particular frequency. Also, data is generally more secure because it is 
not possible to receive more than a fraction of the data unless the hopping 
patter is known. Bluetooth utilizes frequency hopping in the 2.4 GHz radio 
band and hops at a relatively fast pace with a raw data rate of about 1 
Mbps. This translates to about 700 kbps of actual useful data transfer. 
The eb500 module supports a maximum sustained bidirectional data rate of 
230.4 kbps. 



~ -- .. 
1~ 
"' •• . ,. 
~-., ¿ 

-4 ..... 

. ·' 

.i ' ;•,: . 
:_;..-: : 
.. J 

-¡;. 

: ... 
·I 
~\ . 

46 CHAPTER 4. EMPLOYED HARDWARE 

Figure 4.3: EmbeddedBlue 500 

The eb500 supports two main operating modes: command mode and 
data mode. Upon power up, the eb500 enters command mode and is ready 
to accept serial commands. In this mode baudrate can be changed, also 
locate other devices and check firmware version. Once the eb500 radio is 
connected to another Bluetooth device, the eb500 automatically switches 
into data mode. A1l data transmitted while in this mode wilI be sent to the 
remote the remote device and no further commands can be sent until the 
eb500 radio is disconnected or switched baclc to command mode. [11) 

4.4 GPS 

A Global Positioning System is a space-based navigation system that can 
provides severa! information such as time, location, speed, course, date, 
satellites in view, elevation, azimuth, signal strength, and local zone time 
among others. lt is a program of the U.S. Department of Defence. lt was 
developed to overcome limitations of previous systems. The receiver uses 
the messages it receives to determine the transit time of each message and 
computes the distance to each satellite using the speed of light. Each of 
these distances and satellites' locations define a sphere. The receiver is on 
the surface of each of these spheres when the distances and the satellites' 
locations are correct. Many GPS units show derived information such as 
direction and speed, calculated from position changes. In typical GPS op­
eration, four or more satellites must be visible to obtain an accurate result. 

The PMB-648 GPS (Figure 4.4) has severa! operation modes where dif­
ferent data is returned. The selected mode is the Recommended Minimum 
Specific GNSS Data (RMC). [26) The output message has the fonn of: 

$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598,, *10 
(4.1) 
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Figure 4.4: PMB-648 GPS SiRF Internal Antenna 

The data contained in the messages is separated by a comma, the values 
are: 

l. Message ID - RMC protocol header. 

2. UTC Time - Coordinated Universal Time in the hhmmss.sss format. 

3. Status - Valid or non valid data. 

4. Latitude - Latitude location in the ddmm.mmmm format. 

5. N /S Indicator - Indicates if the location is at the North or at the South. 

6. Longitude - Longitude location in the dddmm.. mmmm format. 

7. E/W lndicator - lndicates if the location is at the East or at the West. 

8. Speed Over Ground - Speed in knots. 

9. Course Over Ground - Course in degrees. 

10. Date - Date in the ddmm.yy format. 

11. Magnetic Variation - lt can be East or West. 

4.5 Compass 

The Compass Module 3-Axis HMC5883L (Figure 4.5) is a low-field magnetic 
sensing device with a digital interface. The compass module converts any 
magnetic field to a differential voltage output on 3 axes. This voltage shift is 
the raw digital output value, which can then be used to calculate headings 
or sense magnetic fields coming from different directions. The module is 
designed for use with a large variety of microcontrollers with different voltage 
requirements. 

1 
' l 
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Figure 4.5: Compass Module 3-Axis HMC5883L 

The compass module communicates via a two-wire I2C bus system as a 
slave device. It supports standard and fast modes, 100 kHz and 400 kllz, 
but does not support a high-speed mode. No external pull-up resistors are 
required to support these standard and fast speed modes. The compass 
returns the value of three magnetic fields in a Cartesian environment, so to 
turn it into degrees or radians a Cartesian to Spherical conversion must be 
performed. [1] 

4.6 Laser Range Finder 

The Parallax Laser Range Finder (LRF) Module is a distance-measuring 
instrument that uses laser technology to calculate the distance to a targeted 
object. The design uses a Propeller processor, CMOS camera, and laser 
diode to create a low-cost laser range finder as shown in Figure 4.6. Dis­
tance to a targeted object is calculated by optical triangulation using simple 
trigonometry between the centroid of laser light, camera, and object. 

lts optimal measurement range of 15 - 122 cm with an accuracy error 
¡5%, average 3%. The maximum object detection distance is 2.4 meters. lt is 
communicated with asynchronous serial 300 - 115,200 baud with automatic 
baud rate detection. 

4. 7 Infrared Line Follower 

The Infrared Line Follower Kit from Parallax provides eight infrared emitter 
and receiver pairs for high- precision line-following applications (Figure 4. 7). 
Upon connecting power, the onboard ICM7555 chip begins sending a 38 -
43 kHz signal through all 8 IR LEDs. H the IR LED is over a white surface, 
light is reflected to the IR receiver, and its output is low. When the IR 
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FRONT 

Figure 4.6: Laser Range Finder 

LED is overa black surface, no light is reflected to the IR receiver, and its 
output is high. Red LEDs located on the top of the board are wired to 
the output of each IR receiver, and the anode of each LED is connected to 
power. When the IR LED is overa white surface, the low signal completes 
the LED circuit and turns the LED on. Conversely, when the IR LED is 
overa black surface, the LED receives dual high signals and the LED is off. 
This allows for easy visual feedback of the Infrared Line Follower's output 
states. An onboard potentiometer also allows for the easy adjustment of the 
infrared frequency between 38 and 43 kllz. This allows the sensor to detect 
different coloured lines, and also allows for the easy adjustment of the sensor 
to different lighting conditions ar mounting positions. [2] 
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Figure 4. 7: Infrared Line Follower 

4.8 Robot Design and lmplementation 

4.8.1 Leader Robot 

The leader robot needed to be equipped with the Laser Range Finder to 
measure the distance between itself and an obstacle in the environment. 
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However, if the LRF kept just one position the information that could be 
retrieved from the surroundings would be minimum. That is why it was 
mounted over a standard servo motor so it could cover the environment in 
an interval [0-1r). Now it is capable of acquiring more valuable information. 

Another sensor with which it was equipped is the PMB-648 GPS. AB 
it is working in the RMC mode, only the TTL serial output, power and 
ground wires shall be connected. The GPS is located at the top of the 
Transport Platform so it has a clear "view" to the satellites to assure liable 
information. As this robot leads the other ones, it needs far much more 
"force" to move. Usually, Boe-Bots are equipped with continuous rotation 
servos with a torque of 2.5 kg-cm. With this torque it could not move freely, 
that is why those servos were replaced with high torque servo motors that 
have a 13 kg-cm torque. Finally, as the Thesis' main goal is to transportan 
object from one place to another, a mechanical structure was added at its 
back so it could carry part of the platform. The complete implementation 
is shown in Figure 4.8. 

Figure 4.8: Leader Robot 

Electronic Schematic 

The Leader Robot circuit looks as in Figure 4.9. The Basic STAMP mi­
crocontroller is the Robot's core. lt is in charge of receiving commands, 
retrieving data from sensors and performing motion actions. The integrated 
continuous rotation servo motors the robot has are wired to pins 12 and 13. 
In the figure they are not represented, nonetheless they are used. The GPS 
is wired into pin 1, and supplied by 8.4 V. The LRF serial input goes to pin 
9 while the output to pin 15, this sensor is quite more complex than any 
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other, that is why it has specific communication ports. The standard servo 
motor that is in charge of moving the LRF is controlled by an output signal 
generated in pin 14. The serial communication lines that are used between 
the Leader and the 'Iransmitter are pins 10 (input) and 11 (output). This 
wires are not represented in the figure. 

L. 
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Figure 4.9: Leader Robot Schematic 

Mechanic Design 

The mechanical structure it has on its baclc is quite simple, it just provides 
the robot with a toehold that pulls the 'Iransport platform. lt had to be 
symmetrical so the handled weight could be evenly distributed through both 
sides of the robot, Another reason was far not affecting any of the motors 
performance because the desired movement will be affected because of the 
weight. A wooden stick is used far coupling the structure with the platform. 

4.8.2 Transmitter Board 

During the initial plans, the leader robot was equipped with all the sensors 
and communication devices: GPS, LRF, Comp~ and Bluetooth module, 
but while implementing it a RAM capacity problem carne through: it was 
not enough. The memory problem will be explained in a deeper way in the 
next chapter. That is why an extra board was needed to handle the Comp~ 
and the Bluetooth module. The hardware split carne up with a new need, 
somehow the leader and the transmitter should communicate. To salve it, 
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serial TX and RX wires were used among them, that way data could flow 
between them. 

Figure 4.10: Transmitter Board 

Electronic Schematic 

This schematic is quite simple, there are not much elements in Figure 4.11. 
The Transmitter collects data from the Compass, semls commands to the 
Leader, receives information from it to be resent to the Planner. The Com­
pass is an 12C sensor so it only has four pins: supply, ground, SDA and 
SCL. SDA stands for Serial Data Line, in it the information flows from the 
master to the slave and backwards. SCL is a synchronization signal. SDA is 
connected to pin 9 and SCL to pin 10. The serial communication lines are 
pin 15 for output and pin 14 for input. The BT module is connected to pin 
O for input and pin 1 for output. Pin 5 is used as an enable pin for starting 
transmission capabilities to the module. 
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Figure 4.11: Transmitter Board Schematic 
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4.8.3 Follower Robots 

First of all, these robots were equipped with mechanical structures similar 
to the ones of the leader. But as the followers are the carriers they needed a 
more robust structure with which the weight will be handled. lt goes from 
the front part, through both sides and it stops at the back. Ali the structure 
has the same height a.nd its symmetrical so the object's weight will be evenly 
distributed among it. The way the followers will pursue the leader is with 
the Line Followers. Usually they are located at the lower front part, but 
now they were put at the upper front part. This way the Robot will follow 
the line's path wherever it goes, in case it does not see any line it will stay 
still until there is a movement. 

(a) Follower 1 (b) Follower 2 

Figure 4.12: Follower Robots 

Electronic Schematic 

This schematic is the most simple of them all. AB in the Leader Robot, the 
Robots' wheels are not included in this schematic but that does not mean 
they are not wired or used. The Line Follower Sensor has a pin for each of 
the m detector. Those outputs are sent to pins O to 7, and depending the 
IR LEDs that are activated the Robot performs a correction action that can 
be moving frontwards, or adjusting right or left. (Figure 4.13) 
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Figure 4.13: Follower Robot Schematic 

Mechanic Design 

The structure distributes the handled weight all over the Robot's chassis. 
The whole structure links all the toeholds just for stability purposes. This 
guarantees that if any joint or screw goes out of place, the robot will still be 
capable of performing its task. lts main drawback is the sensor location, as 

it has continuous contact with the platform's surface it might get damaged 
and malfunction at a certain point. 

4.8.4 Transport platform 

A platform was needed so the robots could handle the object. At the bottom 
of it, two lines are placed where the followers are meant to be. They go from 
the middle to the back of the platform so if they get delayed or one of them 
moves faster than the other one, they still can follow the leader. At the top 
of it some Velero straps were placed where the power circuit, the battery 
and the Transmitter Board wil1 be located. 

B 
(a) Lower view (b) Upper view 

Figure 4.14: Transport platform 
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4.8.5 Multiple Robot System 

The system integrates both Follower Robots, the Leader, the 'Iransmitter 
Board, the 'Iransport Platform and the supply system. The Leader goes at 
the front of the team, it pulls the 'lransport Platform. When the platform 
moves, it guides the way for the followers, which immediately start tracking 
the leader. The supply system and the 'Iransmitter Board are located at the 
top, where they are fixed. The Figure 4.15 shows how the Multiple Robot 
System is mounted during execution time. 

Figure 4.15: Multiple Robot System 

As the implemented robot is a prototype it has several drawbacks but 
lots of virtues. Among the virtues are the usage of low cost robots working 
together to perform a task, Ali the employed sensors and actuators are not 
that expensive and can be found with ease. Ali the components are user­
friendly and they can be easily used, nonetheless it is important to know 
how they work so ali of their capabilities can be exploited. An object (not 
quite heavy) can be moved between two points, for now just a uniformly 
distributed weight one. The communications and ali of the hardware were 
carefully selected so they could be robust and quite liable while facing several 
situations. Durability is a main requirement, robots must be able of working 
for a long time during different conditions. Almost all devices wear out 
with usage but the employed ones demonstrated to last long enough while 
doing lots of tests. There are three main drawbacks, the firs one is the 
uncertainty that the sensors and actuators have, for many applications high 
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precision data is required, but the employed hardware does not provide it 
continuously, this is, motion is not always performed as desired, and sensors' 
measurements may have a large error. 



Chapter 5 

Software: Design and 
lmplementation 

Tbroughout this chapter the developed software programs will be listed and 
explained. lt will be divided in two main sections: the Robot Programs and 
the Planner Programs. In both of them it will be explained how data is ac­
quired or sent, communication protocols, movement commands computation 
and execution, 88 well 88 localization, mapping and obstacle avoidance. The 
computer used for nmning the Planner Programs is a D:ELL XPS L502X 
with an Intel Core 17 @2.20GHz, 8GB RAM and its OS is Windows 7 Home 
Premium x64. The most important work of this Thesis was implemented 
bere that is wby this chapter has a great importance. Actual code is not 
included bere but pseudo-code is. This is for making it comprehensible to 
almost anyone, 88 well as if this work is used as a referenCE1 it can be e88ier 
to understand tbe implemented algorithms. 

The algorithm can be represented as a flowchart. lt represents the con­
nections and links that exist between each of the hardW&.re and software 
elements in the System. All the computing load is performed in the Planner 
wbich retrieves information from the Transmitter. It can access all the sen­
sors and elements in the System in a direct or indirect way. The sensors can 
be accessed by all the elements that have a superior bierarchy, this is, the 
Planner cannot access directly any element contained in the system, but it 
can ask for the data. The lower level elements of the System are in charge 
of providing the Planner all tbe information it requires. The planner and 
the Leader robot are indirectly linked, another indirect relationsbip is the 
one between the Leader and the Follower Robots. 

The diagram in 5.1 shows the overall implementation. The arrows show 

57 
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Particl.eFilter 
····"" 

··· ' 
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CellDecomposition-<······················>- Planner -<········ ·············>- KalmanFilter 
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Computer Bluetooth 
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EB500M odule 

t 
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GPS Laser RangeFinde,· Follower Robot 

Figure 5.1: Overall Algorithin BlOC'..k Diagram 

the way the information fl.ows through the various elements of the software 
i.mplementation. Algorithin interactions are marked with a dotted line, in­
direct interactions with a discontinuous line and finally direct interactions 
with a continuous line. Hierarchy is 88 shown in the Figure. The diagram 
shows a general interaction diagram, each module will be explained in the 
following pages. 

5.1 Robot Programs 

All the Robot programs run in a BASIC Stamp 2.. lt is a handy but limited 
microcontrol.ler, specially when developing a large and complex i.mplemen­
tation. As in any other microcontroller, it has internal auxiliary elements, 
it is economic, it can handle several peripherals such 88 sensors and actu­
ators, uses several communication protocols, but most i.mportant of all, it 
can work in an standalone mode, but despite of 1those adva.ntages, it has a 
li.mited program memory and RAM, that is why the code it executes shall 
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be very eflicient. As mentioned in the previous chapter, the BS2 has 2 KB 
EEPROM and 32 bytes RAM, which are quite limited resources for devel­
oping a complex program. Knowing that, the BS2 will only be in charge of 
acquiring data from the sensors and executing movements, no processing is 
performed in it. Firstly because most of the needed instructions are quite 
complex for such a microcontroller and valuable information could be lost, 
lastly because such instructions consume lots of program memory. 

5.1.1 Leader Robot 

Figure 4.8 shows the actual implementation of the Leader Robot. This 
Robot is in charge of moving, the GPS and the LRF, but as it has no wireless 
transmitting capabilities, it must sent the data it has just retrieved to the 
Transmitter Board. The Leader shows the way to the followers and it plays 
the Master role, but as it has no decision-making capabilities, it must be a 
Slave of the Planner. It waits for an indication coming from the Transmitter 
Board to execute an action. Meanwhile, it waits for an instruction. The 
general pseudo-code of the Leader is presented in Algorithm 5. 
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Figure 5.2: Leader Robot Memory Maps 

This code might look quite simple but the amount of memory it uses is 
significant (Figure 5.2) . RAM is used completely by pin definitions, Byte and 
Word variables used in it. Most of it is consumed while reading the GPS. 
The EEPROM is occupied in a 53% . No complex functions are used in 
the code. Mainly just basic instructions like serial transmission/reception, 
PWM generation and a switch structure were used. Nonetheless a great 
amount of program memory is occupied. The data transmission between the 
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Leader and the 'Iransmission is done by the Serial protocol. lt is configured 
to transmit/receive 8 bits, no parity, no end bit a.nd a BaudRate of 9600. 

The LRF samples are took by using the laser dfflrice as well as a Standard 
Servo Motor. the [O -1r) interval is divided in 44 parts. So when a sample 
is taken, the servo motor rotates ~ radians until the whole environment 
is covered. Each of them represente ,...., 0.07 radia.ns. With that number of 
samples, a good resolution is reach so if there is a near obstacle it ca.n be 
perfectly mapped. In case that the Kalman filter is used, the samples are 
liable for being used in the algorithm. For transmitting the LRF samples, 
each time one is took, it is sent to the 'Iransmitter Board. This is because 
it is not affordable to save a set of samples because of memory constraints. 
Something similar happens when reading the GPS. As seen in (4.1) the 
output message sent by the device is too long. Some segmente must be 
selectecl among the whole String. The interest chaI"acters are the Latitude, 
Longitude, a.nd the N/S, E/W indicators. Combine:l all of them, a set of 18 
characters are sent to the transmitter. 

The robot uses the non-holonomic model in F~'lll'e 3.1. For moving, it 
just waits the indication. In the case of going front, it moves appraximately 
55 cm in the same direction it is heading. When going right or left, it 
executes a ± 90°turn while moving appraximately 150 cm. As it can be ex­
pected, movements and sensor readings have a certaln degree of uncertainty, 
the particle filter deals with it. 

5.1.2 Transmitter Board 

The board can be located in Figure 4.10. The Board mainly plays the role 
of a semaphore, but it also is in charge off obtaining data from the compass. 
When started, it waits for a Bluetooth connection cc,ming from the Planner. 
After it has successfully connected, it waits for an action. The selected 
action can be: measure the environment, read the GPS or the Compass, or 
to perform a movement. As it has no direct access ,to the GPS or the LRF 
it must request for the data to the Leader. The communication protocol 

is consistent with the one that was explained just before. The Board and 
the Planner communicate with each other via Blu.etooth, the serial port 
configuration goes as follows: the BaudRate is of 9600, 8 Data Bits, no 
parity, anda "CR/LF" terminator. The BS2 has no I2C communication 
ports, so they had to be implemented by software using General Purpose 
1/0 Pins. Parallax provides this software implementation. 

In this case the RAM was used in a.n 85% , essentially it was employed in 
pin definitions, Boolean, Word and Byte variables. The EEPROM was used 
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Ini tialize (Robot); 
Initialize(LRF); 
Initialize(GPS); 
Initialize(Serial); 

VaitFor(Synchronization signal)¡ 

VaitFor(Action from '.lransmitter Board) 

switch Action do 
case Mea.sure 

MeasureEnvironment(); 
WaitFor(Samples); 
Serial.Send (Samples); 

case Location 
Read(GPS); 
WaitFor(Location); 
Serial.Send (Location); 

case Ji1ront 
I Move(Jiront) 

case Right 
I Turn(Right) 

case Left 
I Turn (Left > 

otherwise 
I Do nothing 

end 
end 

Algorit 5: Leader Robot Program 
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in a 70% mainly because of the software i.mplementation of :12C. The code 
is quite similar to the one used in the Leader. The main activity performed 
by the Board is the continuous data transmiasion. The most importa.nt part 
of it is the coordination of comma.nd/data reception/transmission between 
the three entities: Leader, Board a.nd Pla.nner. 

Transmitter Board 

~~ 
LeaderRobot~ - - - - - - - - - - - - - .,.. Planner 

As the diagram shows, there is a d.irect connection between the Leader 





5.1. ROBOT PROGRAMS 

Ini tialize ( Bluetooth); 
Initialize(Compass); 
Ini tialize (Serial); 

WaitFor(Connection with Planner); 
Serial.Send(Synchronization signal to the Leader) 

WaitFor(Action from the Planner) 

switch Action do 
case Measure 

Serial.Send(Request to the Leader); 
WaitFor(Acknowledge); 
foreach sample do 

I 
Serial.Receive(Sample from the Leader); 
Serial.Send(Sample to the Planner); 

end 
case Location 

Serial.Send(Request to the Leader); 
WaitFor(Acknowledge); 
Serial.Receive(Location from the Leader); 
Serial.Send(Location to the Planner); 

case Orientation 

I 
Read(Compass); 
Serial.Send(X, Y and Z values to the Planner); 

case F'ront 

I 
Serial.Send(Command to the Leader); 
WaitFor(Acknowledge); 

case Right 

I 
Serial.Send ( Command to the Leader); 
WaitFor(Acknowledge); 

case Left 

I 
Serial.Send(Command to the Leader); 
Wai tFor ( Acknowledge); 

otherwise 
I Do nothing 

end 
end 

orithm 6: Transmitter Board Program 

63 
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5.1.3 Follower Robots 

Follower robots are just equipped with the ffi Line Follower as seen in Figure 
4.12. Their main and only task is to pursue the Transport platform wherever 
it goes. From the hardware employed for tracking paths, no big algorithm 
is needed to implement this kind of Slave behaviour. An ordinary Line 
Follower code can be a good reference of how the Followers work. Their 
memory (RAM and EEPROM) usage is mínimum, that way the will only 
be focused on always tracking any movement at all. 
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Figure 5 .4: Follower Robots Memory Maps 

The only big modification that had to be made was the sensor's threshold 
of when to detect that a line is present. This is, with different illumination 
sources the sensor can behave differently that is why it had to be calibrated 
so it could work properly in several locations with diverse luminous intensity. 

5.2 Planner Programs 

The Planner runs in a remate computer. Its task is to compute the employed 
algorithms: A*, Particle Fil ter, Kalman Fil ter, and Cell Decomposition, It 
requires additional information from the environment, such as the robot 's 
location, orientation and obstacle presence. That information comes from 
the Leader Robot's and Transmitter Board's sensors. After the algorithm's 
output is computed, it must translate it to a primitive command for the 
Robot to execute. All the planner runs in MATLAB 2012a. The commu­
nication protocol is Bluetooth with the BaudRate of 9600, 8 Data Bits, no 
parity, and a "CR/LF" terminator. The system's intelligence is contained 
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here, most of the calculations are done in quite large loops, which are not 
recommended to implement in an autonomous system with small memory. 
Sorne other calculations require a more powerful processor, examples can be 
an arctangent, float point operations, array manipulation, linear algebra or 
random number generation. 

5.2.1 Data Acquisition 

Ali the algorithms used in this Thesis require environment information. The 
Kalrnan filter needs to sample to know if there is any moving object, so it 
can estimate where it will be at the time t + l. A* requires to know where 
the robot is located and if there are obstacles in W so they can be evaded. 
The Particle Filter requires a location and orientation to estimate the real 
robot 's position. 

GPS Data 

The PMB-648 GPS returns the data it retrieves in a format as shown in 
Equation 4.1. Not ali the information is useful, so only a part of it is 
retrieved for usage. From the entire message, only 19 characters are received 
from the Leader. The string looks like: 37232475N121583416W. The first 
part contains the latitude information. The first two characters are the 
hours, the next two the minutes, and the last four the seconds, the last 
letter describes if the location is at the North or the South. Similarly, the 
latitude is expressed in the same way, but the hours are contained in three 
characters and the final letter represents East or West. This format is only 
useful for navigation and people with an expertise in it can easily interpret 
them. Usually they are read in the degree representation, such format is 
used in different types of applications such as Google Maps, Foursquare, 
and Google Places. 

To transform the data from degrees to the decimal representation the 
following operation must be done: 

{ 
Hours +Minutes+ Seconds H North or East 

Decimal - 60 3600 (5 1) 
- 1 x Hours +Minutes+ Seconds H South or West . 

60 3600 

With data being transformed to this representation. it can be manipu­
lated as if in a planar (x, y) coordinate system. Now that the concept has 
been mentioned and taking advantage that the GPS Location theme is be­
ing treated. The environment in which the Robots will work is located at 
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"Explanada CEDETEC". lt is usually used for di.fferent type of events such 
as cultural, medical and sports. This place has the great advantage that its 
fonn is like two contiguous rectangles. They can be used as a semi-ideal W. 
Each of them will be used separately, just to keep its ideal shape. 

Figure 5.5: Real Workspace 

Just for now, another theme will be treated but it has to be mentioned 
in this section. Landmarks are needed for implementing the Particle Filter. 
They are used as a reference for the robot to know where it is located. In 
environments with no regular shape, landmarks are set by the experience of 
the designer, but when it can be approximated to a regular one the design.er 
must tak.e advantage of it. 

Each of the comers of the rectangles will be used as a landmark. The 
landmarks will be stored in an a 4 x 2 matrix. The order of the comers used 
as landmarks is: Upper right, Lower right, Lower left and Upper left. 

They will look this way for the upper rectangle: 

[

19.283587 -99.135622] 
19.283265 -99.135668 

Li = 19.283301 -99.135947 
19.283622 -99.135788 

And for the lower one: 

(5.2) 
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LRF Data 

[

19.283201 -99.135535] 
19.282911 -99.135567 
19.282953 -99.135838 
19.283276 -99.135788 
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(5.3) 

The LRF retums data in a [O - 99]cm interval. As mentioned before, it 
samples the environment each ~ radians. H the sampling takes place in an 
empty W then all the samples will have a magnitude of 99 in all the angles. 
H this data is plotted it resembles the form of a semicircle. 
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Figure 5.6: Laser Range Finder Data 

100 

Whenever an obstacle is located, a di.fferent value rather than 99 is re­
turned. That way it can be mapped so A* can use it so it can be avoided. 
The retrieved data is also employed while using the Kalman Filter, its func­
tion will be explained later. 

Compass Data 

The Compass Module 3-Axis HMC5883L retums X, Y and Z values corre­
sponding to Earth's magnetic fields. These data comes in a three dimen­
sional Cartesian form. Assuming that our planet has a spherical shape, the 
information can be transformed into a spherical coordinate system. This is, 
in a Cartesian system a point is specified by its coordinates in each plane 
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while in a spherical system by r(radius), 8(inclination) and cp (Azimuth). 
They can be calculated by: 

< e= arctan (;) (5.4) 

cp = arctan (~) 

All the information can be handy at certain point, but the most impor­
tant component of it is the Azimuth. lt tell us t;he inclination it has from 
the north. After calculating the Robot's current orientation it must be ma­
nipulated so it can be used in a more natural way. In the planar coordinate 
system used as W the 00 marks is located exactly at the East, so 900 had 
to be summed to the original computed orientation. The obtained angle 
by itself gives information of where the Robot is facing, but if used with 
other information it can provide further knowledge of where certain places 
are located, specifically, the landmarks' location. 

That information is used by the Particle Filt.er. To compute the land­
marks' angles, latitude and longitude must be obtained from the GPS. After 
obtaining it the following operations must be done: 

dlat¡ = Li,lat - lataps 

dlo14 = Li,lon - loncps (5.5) 

() . _ ( dlon¡) 
1 - arctan AJ 

u at¡ 

In the previous lines, i is the i-th landmark used in W. The differences 
calculated for the latitude and longitude are used for knowing in which 
quadrant is the landmark located. Lets remember that when using the 
arctan trigonometrical function the sign of that difference determines the 
quadrant it will be mapped. Conventional arctan just work in the first and 
second quadrant, that is why the arctan 2 function was developed, with it, 
the angle can be spotted correctly in the corresponding quadrant. In the 
Particle Filter, all the angles are in radians, bu.t for explaining what was 
done, degrees will be used. 
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Lets suppose that an angle of 168° was calculated using the Azimuth 
formula. The GPS returned a latitude of 19.283529 and a longitude of -
99.135783. The first row of L1 will be used: 

L\lat1 = 19.283587 - 19.283529 = 0.000058 

L\lon1 = -99.135622 - (-99.135783) = 0.000160 
(5.6) 

(
0.000160) (Ji= arctan 
0

_
000058 

= 70 

This way the angles for all the landmarks are computed. H the angles 
are plotted, the can be seen as: 

-5 4 

-5 

Figure 5.7: Measured angles from the landmarks 

The next step is to subtract the original angle, the data is in the (0-360] 
range, so what the Particle receives looks li.ke: 
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Figure 5.8: Computed Angles 

5.2.2 Cell Decomposition implementation 

The Approximate Cell Decomposition Algorithm will be used to represent 
the location shown in 5.5. The algorithm that was explained in Chapter 
3 subdivided M-cells until a path was found from A to 'P ¡. In this case, 
as there is no clue if there are obstacles in W, the cell size must be set 
to a very small value t:, this way it can be semi-warranted to find a path. 
A relationship must be obtained to have an equivalence between the cell 
size and a decimal degree, that is why using experience from Mobile Device 
prograroroiog, the GPS decimal degree coordinates will be multiplied by 106 • 

So for example from L1 the first row will go from [19.283587 - 99.135622] 
to [19283587 - 99135622]. 

Now, this data is too ambiguous for representing it in a m x n matrix, 
specially because in almost all programroiog languages memory usage is an 
important criteria for its efliciency. Because of that, an adaptation of the 
decimal degree representation must be done. First of all, the minimum lat-
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itude and longitude are computed from the landmarks L1 or L2, depending 
which W is currently used. After that, miniat and minion are subtracted 
from L¡, so the new landmarks are: 

[

326 

L1 = 280 
1 

52 

323] 1 
37 

358 

(5.7) 

The set of values can be seen as the comers of a rectangle so assuming 
Explanada Cedetec is a perfect rectangle, this is a valid and functional 
representation of W. Everything outside the rectangle's borders will be 
considered as an obstacle. 

50 100 200 250 300 

Figure 5.9: Cell Decomposition lmplementation 

5.2.3 A* i.mplementation 

Having explained how W is represented, A* will now get into action. Let 
us remember that an Informed Search Algorithm requires knowledge that 
will aid it to find an optimal solution to certain problem. To find an o~ 
timal path we want to get from ~ to P¡ in the minimum number of steps 
possible, so our heuristic shall penalize the number of steps taken. So, it 
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will find a way to reach the goal quicker. lt must be said that the robot's 
environment is defined if Manhattan Distance, and it can only move in a 
vertical or horizontal way, no direct diagonals are allowed. With that said, 
the implemented heuristic shall conduce all movements to goal. While the 
robot is far from the goal it will greedily try to find a way to reach it. A 
paraboloid was used to generate it. lts mathematical expression is: 

z = (x - 9:,:)2 + (y - gy)2 
a b 

(5.8) 

Where 9x,y is the goal's coordinate, a and b are set to l. This way the 
center of the paraboloid will be located at the goal, so it will always converge 
if a path exists, else it will return failure. In a grid of 50 x 50, with the goal 
located at (25, 25) the paraboloid will look as follows: 
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Figure 5.10: Employed Heuristic 

Now, as mentioned in the previous section, W is defined in a m x n 
cell matrix, W free has a va.lue of 'O', in the other case if an obstacle is 
located at that point OW contains a '1 '. In an hypothetical environment 
like the one showed in Figure 5.11 (a) the blue cells are empty, the other 
ones are obstacles. A* will only look for an optima! path through W. After 
it has performed the search, it will return pri.mitive instructions such as the 
following: 

(5.9) 

Each arrow describes the direction of where there robot shall move. As 
it can be inferred, the actions are up (t), down (..!..), right (---+) and left (+--). 
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When goal is reached, a * is returned. 

(a) W with obstacles 

(b) Computed Path 

Figure 5.11: A* implementation 
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A run of the algorithm is shown in Figure 5.11 (b), the paraboloid's 
center (heuristic) is located at the goal, the computed path is shown as a 
white line. 

5.2.4 Particle Filter implementation 

The Particle Filter shows the general scheme described in Algorithm 4 but it 
suffers sorne little modifications so it can be coupled to the current problem. 
First of ali some noise constants must be defined: bearing, steering and dis­
tance. Robot motion usualiy is not as exact as one could wish, that is why 
these parameters shali be set according to observed uncertainty. PF deals 
with Gaussian noise in sensor readings and motion, so the noise constants 
can be seen as u2 for a reading µ. Next, the number of particles shall be 
specified. This number shali be proportional to the difference of the max­
imum and minimum data in which the algorithm will run. High precision 
is reached by using a large number of particles, but the disadvantage is the 
time consumption. For our case N = 500 particles worked nice enough. 
A random initial population of N particles is thrown to the environment. 
They have a random location and orientation: 

[

random (max(L;,lat) - min(L;,lat))] T 

Pi = random (max(L;,ton) - min(L;,lon)) 
random (21r)) 

(5.10) 

The big next step is to perform a movement according to the robot 's 
motion. Each of the particles moves and rotates from their own location. 
At this point, distance and steering noise are critica! values because they 
define how much does each particle really moved. Then, sensor data is 
acquired from the GPS and the Compass. Data is returned in the format 
that has been explained previously. The measurement error stage takes 
place. Here, the error is calculating by obtaining the difference between the 
physical measurement and ali the particles computed measurement. Finally 
a resampling takes place, only particles with a very small error survive, the 
ones that have a big error are relocated near the real robot location following 
a Gaussian distribution. 

A brief example will be given. Using Explanada Cedetec's upper rectan­
gle as W, the robot will locate itself. lt will perform no movements at ali, nei­
ther planar nor rotational. The robot's real location is [19.283529, -99.135783] 
with an orientation of 168.19°. The previously explained steps are taken. 
After 5 iterations the particle population has dramaticaliy reduced into a 
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radios surrounding the real location: [19.283533 - 99.135780) with an ori­
entation of 167.17°. As fi.ve more iterations are done, the Gaussian estimate 
of the robot's location is narrowly closed to the real one, asan estimate of 
[19.283527 - 99.135791) and 167.47° is computed . 

.... ·•' .. · 
... ' ,.. . . 

• 1 ' .. \. . ·. \ \.' . . ' 

.. _ ....... _ -- ........ . .•. 
( a) Initial Random Particles (b) Particles after 5 iterations .. · 

-111• -111• _.IUII -11.. ·Hl:9 _.1'1311 
rit' 

(e) Particles after 10 iterations 

Figure 5.12: Particle Filter implementation 

5.2.5 Kalman Filter implementation 

Kalman Filter is tightly related to LRF samples. At first, the environment 
is completely sampled. H there is an object detected, there will be 5 more 
environment samples taken. The centroid of the detected object will be 
computed so just one x and y value per sample is used. After that, the data 
is set into the KF to esteem where will the moving object will be located at 
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t + l. The Employed matrices look as follows: 

[

-4.6236] 
_ 13.7416 

J.Lt-1 - o 
o 

[

o o 
o o 

Et-1 = O O 

o o 

o 
o 

1000 
o 

~= [~] 

1] 

A = [~ ~ 207 2~7] 
t O O 1 O 

O O O 1 

Rt = [º01 0~1] 
Ilt = [~ ~ ~ ~] 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 

For example, the Robot will track a moving object that is moving away 
from it. It takes an initial sample that will be used as µ. The samples zt 
are taken each 2. 7 seconds, which is the time the LRF scans completely the 
environment. After sampling 5 times the environment, the result is really 
impressive, it computes the estimated output with great precision, such as 
Figure 5.13 (b). 

5.3 Global Algorithm 

The whole algorithm implementation required a coupling strategy so all of 
them could employ the same ( or very similar) data. Througb. the previous 
chapter all algorithms outputs were shown individually, now the final results 
are presented. The final implementation will be explained in detail. 
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Figure 5.13: Kalman Filter implementation 
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The program starts by asking which W of Explanada Cedetec will be 
used (Figure 5.5) , if the upper or the lower one, each one of them has different 
landmarks coordinates. Whichever was chosen, it will be conditioned to be 
used by ali the algorithms, so it is multiplied by 106 and rounded to the 
nearest integer. With those digits the resolution is quite good enough. The 
step is to calculate the mínimum and maximum values of the latitude and 
longitude that define each W. 

The next big step is to define all of the constants that will be used, t hese 
are: 

l. Particle Filter - Particle number definition (500) , t he robot 's length 
(1), bearing noise (1), steering noise (0.1) and distance noise (1). The 
measurements is initialized to an empty array, the initial motion is set 
to stay still. 

2. Kalman Filter - Sampling time (2.7 seconds), µt - I , Lt- 1, ut, Zt, At, 

Ct and Qt. Also the angles in which the LRF will point are set. 

3. Cell Decomposition - Set the corners to a parametrized W represen­
tation, this is, it will not have the conventional GPS decimal degree 
representation, but a smaller number not bigger than 350. Everything 
outside W will be set asan obstacle. (Figure 5.9) 

4. A* Search - The goal location is defined if and only if it is a valid one 
inside W. 

5. Serial Port - 9600 Baudrate, 8 Data bits, no parity, CR/LF terminator 
and a time out of l. 
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The initial set of particles is thrown an plotted (Figure 5.12 (a)). A while 
loop starts just at this point, it will only stop if 1;he robot is located at the 
goal. Particles move according to their location aud orientation. After it, the 
GPS and Compasa are read for obtaining the erirors between the expected 
and the actual measurement. Particles with small error will survive, the rest 
of them will be re-sampled until they are located near the actual location 
Gaussian. 

Now the Kalroau Filter is used to map any obstacle present in the sur­
roundings of the robot, in case it is a mobile object, its trajectory is esti­
mated. The previously computed position is used as the initial location of 
the robot to start the A* search for an optimal path. After it, the movement 
is performed and the while loop repeats until the robot completes the task. 
Algorithm 7 shows the pseudo code of what has just been described. 
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input: Goal 

1 Ini tialize ( Constants); 
2 Ini tialize ( Bluetooth); 
a Create (Environment) ¡ 
, Create(Particles); 

& repeat 
o ParticleFilter .Move (Particles) ¡ 
T Read(GPS); 
a Read. ( Compau) ¡ 
e ParticleFilter.Com.pute (Angles) ¡ 

10 ParticleFilter.Compute(Error); 
11 ParticleFilter.Resaaple (Particles); 
12 ParticleFilter.Get (Location) 

1a if Location == Goal then 
1, 1 return Success 
1& end 

10 KalmanFilter .Sample (Environment); 
1 T if Mofling Object then 
18 1 KalmanFilter.TrackO; 
1e else 
20 1 KalmanFilter.Map() ¡ 
21 end 

22 A* .Compute (Path); 
:,a lf Path exits then 
24 1 Move (Robot); 
2& else 
20 1 return Failure 
2T end 
28 until Success or Failure ; 

A)gorithm 7: Final Program lmplementation 
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Chapter 6 

Results 

In this chapter results will be presented throughout the most representative 
cases. All the problems that were faced are also mentioned here. Lots 
of images will be used so the understanding process can be done easily. 
Due to workspace awilability, all the tests were done at Explanada Cedetec 
secondary ares, but they could have been easily done in auother location. 

6.1 Implementation Runs 

Four cases will be presented in this section. Each of th13m shows the al­
gorithms functionality in various situations. They were carefully chosen so 
they could represent all the cases that the robot can face .. It must be said 
that the robot executes the Particle Filter first of all so it can locate itself 
at W before any motion action is performed, this way collisions are avoided 
as well as creating more uncertainty. Once the robot's location is identified 
a Path is computed using A* and it is translated to a primitive action so 
the robot can perform it. 

6.1.1 Robot's /'¡ is P¡ 

The first situation is one of the most simple of them all. The robot is 
a.lready located at the goal, so when the robot initializes and determines its 
own location it will know that it is already located at the final point so it will 
return Success immediately. In Figure 6. la it can be seen. the initial robot 
location in a Google Maps View. The initial particle gufflS shows that all 
were thrown at random locations, Figure 6.lb. After 10 iterations (Figure 
6. lc) there is no good guess of where the robot is located so the Particle 
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Filter must continue working to i.mprove it. Figuri::l 6.ld shows similar resulta 
as in 10 iterations, but there is a signi.ficant particle cluster formed. Ten 
iterations later (Figure 6. le) a good approximat«i is computed, but if there 
is a considerable amount of noise while reading sellSOrs this believe may have 
several peales. Forty iterations returns a fairly good approximate that shows 
the robot 's current location. 

After the robot finishes the self-localization stage, it checks out if it 
is locatecl at the goal. In this particular case that condition is true, so 
immediately it returns Succ.ess. 

6.1.2 Robot's P¡ is outside of the W 

This case is a particularity of the previous one. The Particle Filter finds the 
robot location given the sensor's data. In Figure 6.2a there are two pointing 
arrows. The leftmost one shows the robot's location, the one at the bottom 
right is the goal location. AB the particles converge to the robot location, 
it can be seen that from Figure 6.2c to Figure 6.2f the particle's centroid 
is locatecl outaide the W. So when the localization stage finishes, the A* 
search returns Failure, and immediately the prog:ram stops. 

6.1.3 Path planning 

Now, the previous examples have shown how the self-location stage works. 
The particle filter executes with a movement vector of [O O]. The first 
element representa the travelled distance, the second one the rotation angle. 
In other words, it stays still. Now that that the robot location has been 
found no more images from this stage will be shown except for the initial 
belief and the located robot in the 40th iteratio,n. The next step consista 
in finding a path from the current location to the goal state. Each time a 
movement is performed all the particles move in the same direction as the 
robot does. The A* path is also refreshed so it fits the actual location and 
orientation. AB movementa go by, the path geta reduced and the particles 
approach the goal state. 

The next three figures show some snapshots from an algorithm run. They 
illustrate how the robot moves. The left column shows the robot orientation 
at a Google Mapa location while in the right one the estimated location the 
Particle Filter retums and the computed path that A* retums. The initial 
location (Figure 6.3a and ??) shows where the robot is at a ti.me t = O. 
AB the robot performs some movementa, it can be seen that it <loes not 
perform as exactly as planned due to severa! causes such as loose earth and 
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Figure 6.1: Static Robot Example 
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(b) Initial particle population 
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Figure 6.2: Out of bounds Robot Example 
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irregular ground. So each time the robot executes a movement the path 
is recalculated dynamically. When the robot reaches the goal location it 
returns success and the run is aborted. 

6.2 Faced Problems 

Throughout the development of the final implementation lots of problems, 
hardware and software, emerged. Some of them will be listed now. Hard­
ware design was the first obstacle that was faced, some modifications had to 
be done to the Boe-Bot Robots so each one of them could pedorm. its role 
in a better way. Several designs were done tcying to give enough capabili­
ties to the Follower Robots. Initially their task was to push the object in 
the direction the Leader indicated, but 88 there could be some movements 
that over exploited a Follower, that idea was replaced with the final one. 
As Figure 4.12 shows, the robots were equipped with a certaiD. 'exoskeleton' 
that distributes the carried weight all over the structure. lt suffered several 
modifications due to the resources that were available at the time. At the 
beginning. four metal tubes held a small platform.. That design was thrown 
away because of the huge overall weight of the Robots. The structure de­
sign came from considering how could the weight be distributed evenly into 
the robot's chassis while having enough sudace contact with the Transport 
Platform. Another problem with this robots was to figure out lttow will they 
follow the Leader. What people usually do is to "feel" where the Leader 
is going, but as it is quite too mainstream something different could be a 
big brea.kthrough. While watching how light-follower car-like robots worked, 
the idea came: there could be a form in which the robot can lo:iep following 
a signal. In this case, following a light was not a good choice because in 
different environments, the light-source intensity is variable and it could not 
always work. So, if a platform. was used above the robots, it shall help and 
indicate them where it is moving. The low cost solution was to, place a line 
follower sensor over the Followers and a line under the Platfonn. It results 
easier to calibrate a line than a light follower. As under the Platform. a 
shadow is projected, the illwnination changes would not affect that much 
the Follower. That is why the Follower Robots are always waiting for a 
Leader's movement, wherever it goes they will follow him. 

Sensor data gave lots of trouble. Each of them had its own degree of 
uncertainty. For example, the employed. Compass is not 88 precise as one 
could wish. As it measures magnetic fi.eld's strength, any electronic device 
or electric object interfered with the sensor's readiugs. Most of the times it 
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Figure 6.3: Path Planning Example part 1 
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Figure 6.4: Path Planning Example part 2 
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gave a very large mistake from the current orientation to the measured one. 
Fortunately, the particle filter leads with this mistake, so it did not affect a 
lot the System's peñonnance. The range sensor gave almost no error at all, 
so it represented no big deal. In the other hand, the GPS ge.ve lots of trouble. 
First of all because it depends on how good its connectio11 is to any of the 
satellites, During rainy or clouded days its measurements were not liable 
at all. It returned an error from 2 to 10 meters, which 11ras not desirable. 
Another problem with it was that as it was embedded in the Leader Robot, 
during certain movements the high-torque servo motors demanded quite too 
much current from the power source which provoked that the GPS loosed 
connection with the satellites, increasing the measured eriror. The solution 
to this problem was to implement a local power source for the GPS so it 
could have a constant current feed. With this modification, the readings it 
returned were quite a.ccurate. 

The Leader had some common problema with the Followers. At first, it 
was going to pull the object. After the Slave Robots were given an Exoskel~ 
ton, it needed one too. It only wes equipped with a small contact suñace 
what enable it to carry part of the platform's weight whilEi leading the way. 
During the first tests the Leader had many problems to pull the platform, the 
Servo Motors it had did not give it the necessary torque. They were changed 
for some more powerful motors, but now another probleu:t emerged. As all 
the weight wes distributed in the robot 's back, the wheels. could not create 
enough friction to start the movement. A counterweight was placed at the 
robot's front part. Now there were no motion problems. 

Communication was critical among the Planner, the Board and the 
Leader. The Leader and the Board use the Serial protocol. Parallax shows 
off with its hardware because every 1/0 pin is capable of generating a PWM 
signal and communicating via Serial. In its datasheet it Bpecifies that any 
pin can be used as a serial input and output port. In predice, it does not 
work as the manufacturer assumes. So separate input/output pins were 
used for communication. The BT communication between the Board and 
the Planner presented almost no problems. Except for thu Time out MAT­
LAB requires for waiting data. 

Algorithm coupling was not that complex as it sounds. Almost all of 
them are very flexible and can manipulate data with almost no problem. 
The real challenge was to parametrize data. This is, the Particle Filter 
had no problem while using Decimal Degree coordinates, but for A *'s W 
the landmark's location was too broad, so they had to be set from 1 to a 
maximum of 400. 
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Chapter 7 

Future Work and 
Conclusions 

The obtained results were quite satisfactory, all the proposed objectives were 
accomplished. An online centrali7.ed low~ non-holonomic object carrier 
Multiple Robot System was developed. AD the algorithms employed worked 
as expected, plus they were ali integrated and modified so they could coexist 
and work together. This project can grow 88 much 88 it cau be wanted. The 
robots can be changed for more complex ones just like a Pioneer Robot. 
These type of robots are capable of moving any distance that it is specified, 
88 well 88 rotating in any d.irection. Obviously their motion actions can be 
represented 88 Gaussian, not always they will perform e::cactly what they 
were commanded but they are much more liable. They have really big 
motors capable of handling large weights. And most important of all, they 
can be structurally modified with certain ease. The only disadvantage they 
can face is the presence of a computer that manipulates them, but due to 
wireless communications 88 XBee that is a minor problem. 

Another improvement that the System can have is tbe employment of 
better sensors. LRF is not that liable for measuring large distances. Ob­
stacle detection is critical for robot navigation so a faster and more precise 
sensor is required. Ultrasonic sensors are a good choice but they are not 
punctual, so noise can interfere into measurements, laser looks like a great 
choice but its limitations are the sampling time. The employed compass 
is quite accurate but it sometimes malfunctions because of the presence of 
some magnetic field, there shall be no problem is a shield is built for pro­
tecting it. A better and more accurate GPS can be used. The current one 
has not a good functioning while being indoors, so if an ex:temal antenna is 

91 
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Figure 7.1: Pioneer Robot 

connected that problem can be considered as solved. 

An extension to the problem that was solved here can be the implemen­
tation of a Multiple Robot-Team System where severa! teams work together 
to deal with objects in the environment. With this extension a decentralized 
schema can be used. Each team will know the global goal and will plan its 
actions individually. Each team can have N robots depending of what it 
is going to transport, thus, sorne team members can be equipped with a 
robot-arm so the object is mounted and dismounted from the platform. An 
option for the robot's processor can be the employment of a mobile device 
such as a tablet. Currently, these devices are capable of doing lots of cal­
culations at the time, have a nice user interface, Bluetooth, can access a 
remote server via Wi-Fi, and most important of all, they got the mínimum 
required sensors used for navigation: GPS, magnetic field sensor and altime­
ter. Extended Reality as well as human interaction are the most attractive 
capabilities it has. 

While talking about software improvements, the path can be computed 
while using Dynamic programmiog, this way a faster online algorithm can 
be used, and there will be less impact of motion uncertainty. The only 
disadvantage is that all actions are computed at the time so there is a large 
computing-load. The localization and mapping done here by the Particle 
Filter, can be replaced with a modified-SLAM algorithm, that is quite more 
efficient than SLAM and it maps all the enviromnent. Reducing computing 
load is important if a decentralized architecture is used. 

The job done to develop this project was demanding but at the same 
time satisfying. Hardware and Software resources were exploited to almost 
its maximum capabilities. The selected workspace helped a lot due to its 
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Figure 7.2: Samsung Galaxy SIII 

rectangular shape and because it was in an open space so GPS could have 
a direct access to the satellites. It also aided that there are no big magnetic 
sources near there to interfere with the Compass readings. There were also 
lots of learnings. The author has a Biomedical Engineer background so 
much of the themes that where developed in this Thesis resulted new and 
abstract, so there was the need to check lots of bibliography to get up to 
date. Robotics is a field that is not the future, but the present of human 
race. Much of the risky activities that were made by humans are now done 
by robots. They are also capable of exploring certain areas that have been 
affected by a natural disaster or automating processes. What will come 
tomorrow may be autonomous robots just as the ones that only exist in 
films, but who knows, maybe one day The Jetsons world will be real. 
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Appendix A 

Basic STAMP Progran1s 

A.1 Boe-Bot Leader Source Code 

• {$STAMP BS2} 

2 • {$PBASIC 2.5} 
3 

4 LrfServo PD 14 • Servo que aueve el PiDg))) 
5 LRF_TI PD 9 • Serial output to LRF ( cmmeC1;11 to SD) 
8 LRF_RI PD 15 • Serial input froa LRF (connec:ts to SOUT) 
7 

8 IIIÍD.illlO COH 280 • Ancho de pulso para Oº 
9 mu:imo CON 1140 'Ancho de pulso para 180° 

10 salto CON 20 • Ancho de pulso para 0° 
11 

12 accion Vil Byte 
13 i V.IR Byte 
14 iteraciones Y.IR Byte 
15 LatGrad V.IR Byte (2) 
18 LatMi.D Vil Byte (2) 
17 LatM:iDD Vil Byte (4) 
18 RS Vil Byte 
19 Lcm.Grad Vil Byte (3) 

20 LoDMin Vil Byte (2) 
21 LoDM:iJID Vil Byte (4) 
22 EW Vil Byte 
23 pulso Vil Vord 
24 ruge Vil Vord 
25 

26 Inicializacion: 
27 DEBUG "Iniciando al robot líder ... •, CR 
28 GOSU8 Init_lrf 
29 DEBUG "Moviendo servo del LRF a posici6n inicial", CR 
30 GOSUB MotorPinglnicial 

95 
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31 DEBUG "Esperando señal de sincronización ... " , CR 
32 SER.IN 11, 84, [V.&IT("start•)] 
33 PAlJSE 10 
34 SEROUT 10 1 84 1 [•ac1t•] 
311 DEBUG "Seftal recibida! ! • • ca, ca 
38 

37 Poll_accion: 
38 DEBUG ca, •Esperando accion•, ca 
39 SERlH 11 1 84 1 [accion] 
40 P.I.USE 100 
41 

42 IF (accion • 11m•) TBEN 
43 DEBUG •Medir -biente•, ca 
44 SERDUT 10, 84 1 [•ac1t11

] 

411 GOSUB Mide_-biente 
48 ELSEIF (accion • •g•) TBEN 
47 DEBUG "Leer GPS", ca 
48 SERDUT 10, 84, [•acJt•] 
49 GOSUB lee_GPS 
liO ELSEIF (accion • •f•) TBEN 
111 DEBUG "Mueve al frente• , ca 
112 SERDOT 10, 84, [•ac1t•] 
113 GOSUB Frente 
M ELSEIF (accion • 11 i •) TBEN 
1111 DEBUG "Gira izquierda• , ca 
116 SERDOT 10, 84, [•ac1t•] 
111 GOSUB Izquierda 
118 ELSEIF (accion • "d11

) TBEN 
119 DEBUG •aira derecha•, ca 
so SERDOT 10, 84, [•aa•] 
01 GOSUB Derecha 
02 ENDIF 
83 GOTO Poll_accion 
84 

85 Frente: 
oo FOR i • O TO 150 
01 PULSOUT 13, 620 
68 PULSOUT 12, 860 
89 PAUSE 20 
70 'NE1T 
n PAUSE 500 
72 RE'l'URR 
73 

74 Izquierda: 
111 FOR i • O TO 146 

16 POLSDUT 12, 960 
11 POLSOUT 13, 660 
1s P.I.USE 20 
79 'NE1T 

'izquierdo quieto 720 
'derecho quieto 740 
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80 PAUSE 600 
81 BEl'IJU 
82 

83 Derecha: 
M F(Jl i • 0 m 106 
86 PULSOU'1' 12, 810 
118 PULSOU'1' 13, 110 
87 PAUSE 20 
88 IElT 
89 PAUSE 600 
90 IIE1'VRI 
111 

112 Mide_aabiat•: 
113 GDSOB NotorPiDginicial 
IM pulso • aiDi8o 
1111 Fm1·1m44 
1NI S!RDU'l' U1F _n. 396. c•a•J 
97 SF.llD UIF_ll, 396, 3000, lo_Reepoue, [Vl.lT(•D • •), DEX:4 ruge] 
III ruge • ruge Nll 990 MD 160 
1111 SEROUT 10, 84, [))BC range/10) 

100 PULSOU'1' LrfServo, pulso 
101 pulso • pulso + salto 
102 PAUSE 20 
103 IElT 
UM RE'l'UJII 
lOII 

108 Init_lrf: 
107 DDOG •1D1ciudo LIF. . . • 
10& PAUSE 600 
100 S!RDU'l' UIF_n, 396, c•u•J 
110 SER.IR LRF Jll, 396. [Vl.lT( • : •)] 
111 DEBUC •Li•tot •. Cll 
112 RE1'UU 
113 

114 lo_llespcmee: 
1111 PAUSE 1000 
118 SEIDUT LRF_TI, 396, [•u•] 
117 9ER.II LIFJII, 396, [Vl.lT(•:•)] 
118 RE1'UU 
1111 

120 NotorPiDglDicial: 
121 FDll 1 • 1 m &0 
122 PULSOU'1' LrfSeno. aiDi8o 
123 PAUSE 20 
124 l!lT 
121i REl'URll 
128 

127 lee_GPS: 
121 SEllD 1,188,[Vl.lT(•RlfC,•),SKIP 9,STR LatGrad.\2, S'1B Latlfin\2, SXIP 1, 
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1211 STR LatMiDD\4, SKIP 1, STR NS\1, SKIP 1, STR LonGrad\3, STR LoDMin\2, 
130 SKIP 1, STR LonMiDD\4, SKIP 1, STR m,\1] 
131 

132 SEROUT 10, 84, [STR LatGrad\2] 
133 SElllN 11, 84, CVAIT(•ack•)] 
134 SERDUT 10, 84, [STR LatMill\2] 
135 SERIN 11, 84, CVAIT(•ack•)] 
136 SEROOT 10, 84, [STR LatMiDD\4] 
137 SERIN 11, 84, [VAIT(•aa•)] 
138 SERDOT 10, 84, [STR NS\1] 
139 SERIN 11, 84, [VAIT(•ack•)] 
140 SEIUJOT 10, 84, [STR LonGrad\3] 
141 SERIN 11, 84, CVAIT(•ack•)] 
142 SERDUT 10, 84, [STR LoDMill\2] 
143 SERIN 11, 84, [VAIT(•ack•)] 
144 SERDOT 10, 84, [STR LonMiDD\4] 
145 SERIN 11, 84, CVAIT(•aa•)] 
148 SERDUT 10, 84, [STR m,\1] 
147 SERIN 11, 84, [VAIT(•aa•)] 
148 

149 RETUIUI 

A.2 Transmitter Board Source Code 

'{$STAMP BS2} 
2 '{SPBASIC 2.6} 
3 

4 SDA PIN 9 • SDA of compasa to pin PO 
5 SCL PIN 10 'SCL of COllpa88 to pin Pl 
8 

7 WRITE_Data CON $3C • Requeata Write operation 
8 READ_Data CON $3D • Requeata Raad operation 
9 MDDE CON $02 • Mode aetting register 

10 I_MSB CON $03 • 1 MSB data output regiater 
11 

12 l2C_LSB V.&R Bit 
13 accion V.&R Byte 
14 i V.&R Byte 
lli iteraciones V.&R Byte 
18 ranga V.&R Byte 
17 opcion V.&R Byte 
18 l2C_DATA V.&R Byte 
19 I2C_REG V.&R Byte 
20 12C_YIL Y.&R Byte 
21 datoaGPS V.&R Byte (4) 
22 1 V.&R Word 
23 y V.&R Word 
24 z V.&R Word 
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2a rawl 
2e ravh 
27 

28 IDicializaciOD: 
:1e PAUSE 1000 

Vil 
Vil 

Vord 
Vord 

:,o SERllUT 1, 84, [•coa 88:53:2e:70:16:88•, CRJ 
31 SF.RD o, 84, CV.llTC•.tae• .ca>l 
32 

33 VaitForConnectiOD: 
M IF Il6 • o TBEI 
36 DEBUG IIIJIIE, •wcimuio BT ••• •, ca. •esperando CODanOD ••• • .ca 
38 GOTO VaitForConnection 
3T EIDIP 
38 DEIIUG •s. conecto 11 •, ca, ca 
39 

'° DEIIUG •Iniciando IIMC6883L ••• • 
(1 I2C_Rm • IIJDE 
u I2C_VlL • to 
.s OOSOB I2C_Vrite_leg 
" DEBUG •Li•to ! • , ca 
(11 

'8 PAUSE 1000 
,T DEBUG •s1ncron1 zendo llicroe ••• •, ca 
" S!RDUT 16, 84, [•etart•] 
,9 SF.RD 14, 84, [VAIT(•aa•)] 
IIO DEBUG •Micro• •incroni zadoe ! ! ! • • ca. ca 
111 PAUSE 100 
112 

113 Poll_accion: 
M 

1111 DO 
118 DEBUG •&1perando accion", ca 
IIT SERll 0, 84, [accion.] 
118 

119 IP (accion • •N•) TBEI 
80 IJl!BUG •Medir ambiente .•. • , CR 
91 SERDUT 16, SI, [•a•] 
92 SP.llD 14, SI, [V.llT(•acJt•)] 
83 GOSU8 Beeupera_lrf 
M S!IIDUT 1, SI, (J)F.C 265] 
811 EIJIEIP (acciOD • •e•) TBEI 
ee DBBUG •J:Aer GPS ••• • , ca 
8T SERDUT 16, 84, [•g•] 
88 SEBD 14, SI, [V.llT(•acJt•)] 
89 GOSUB Recupera_gpe 
TO SERD0T 1, SI, [l>F.C 266] 
Tl EIJIEIP (accion • •e•) 1BEI 
n DEBUG "IAer BNC6883L ••• " , ca 
T3 G0SUB GetRadeadillg 

99 
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1, SERDUT 1, 84, ["JC•, SBEl JC] 
75 SERDUT 1, 84, [•y• , SBEl y] 
76 SERDUT 1, 84, [•z•, SBEl z] 
11 SEIUJUT 1, 84, [•v•, DEC 266,Cll] 
78 ELSEIF (accion • •p•) TREN 
19 DEBUG •Mover al frente• , ca 
so SERDUT 15, 84, ["P] 
81 SER.IR 14, 84, [WAIT(•ack")] 
82 ELSEIF (accion • •1 11

) TREN 
83 DEBUG •Gira izquierda", ca 
84 SERDUT 15, 84, [•i•] 
85 SEI\Ilf 14, 84, [WAIT(•ac1t•)] 
ee ELSEIF (accion • •o•) TBEN 
e1 DEBUG •Gira derecha•, ca 
ee SERDUT 15, 84, [•d•] 
89 SER.IR 14, 84, [WAIT(•ac1t•)] 
90 ENDIF 
91 LOOP 
92 

93 Recupera..lrf: 
94 FORi•1T044 
96 SERIII 14, 84, [STR range\2] 
96 SERDUT 1, 84, [STR range\2, ca] 
97 lfEl1' 
98 RETURH 
99 

100 Recupera..gps: 
101 

102 ' LATITUD GR.IDOS 
103 SEllIJI 14, 84, [STR datosGPS\2] 
104 SERDUT 1, 84, [STR datosGPS\2, ca] 
1or; SERDUT 15, 84, ["ack•] 

1oe ' LATITUD MDIOTOS 
101 SERIN 14, 84, [STR datosGPS\2] 
1oe SERDUT 1, 84, [STR datosGPS\2,Cll] 
109 SERDUT 15, 84, [•ac1t•] 
110 ' LATITUD DECIMAS DE MIRUTO 
m SERIN 14, 84, [STR datosGPS\4] 
112 SERDUT 1, 84, [STR datosGPS\4,Cll] 
113 SERDUT 16, 84, ["ack•] 
114 ' IIORTE/SUR 
115 SERIH 14, 84, [STR datosGPS\1] 
116 SERDUT 1, 84, [DEC datosGPS, ca] 
111 SEROOT 16, 84, [•aa•] 
118 ' LONGITUD GRADOS 
119 SERIN 14, 84, [STR datosGPS\3] 
120 SERDOT 1, 84, [STR datosGPS\3,CR] 
121 SERDUT 16, 84, ["ac:k•] 
122 ' LOIIGITUD MIHtTl'OS 
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123 SEIIII 14, 84, [STI datoeGPS\2] 
1:u SERDUT 1, 84, [S'Ill datoeGPS\2,ca] 
1211 SERDUT 16, 84, [•aa•] 
1211 ' LOIGITUD DBCINlS DE MIIUl'O 
127 SERD 14, 84, [SD datoeGPS\4] 
12a SERDUT 1, 84, [SD datoeGPS\4,CRJ 
129 SEIUJOT 15, 84, [•ac:k•] 

130 ' ESTE/OESTE 
131 SEIIII 14, 84, [8111. datoeGPS\1] 
1~ SEROUT 1, 84, [DEC datoeGPS,CB.] 
133 SEROUT 15, 84, [•aa•] 
13' IIE'l'UIIII 
138 

138 GetRadeading: 
1S1 PAUSE 400 ' Vait for nn data 
138 • Sud requeat to I MSB regieter 
139 GOSUB I2C_Stut 
140 I2C.J)AT.l • VIITE.J)ata 
u.1 GOSUB I2C_Vrite 
1a I2C.J)AT.l • LMSB 
143 OOSUB I2C_Vrite 
144 GOSUB I2C_Stop 
1411 

148 'Get data fr• register (6 bytu total, 2 bJt•• per arle) 
u.1 GOSOB I2C_Start 
1411 I2C.J)ATA • WD.J)ata 
1411 GOSU8 I2C_Vrite 
150 

1151 1 Get I 
m GOSUB I2C.Jlead 
163 ravll • I2CJ)ata 
1114 GOSUB I2C_ACK 
1511 GOSOB I2C.Jleed 
158 ruL • I2C.J)ata 
151 GOSUB I2C_ACX 
151 1 • (ravll « 8) 1 ravL 
158 

180 1 Get Z 
101 GOSU8 I2CJINd 
102 rmdl • I2C.J)ata 
103 GOSU8 I2C_ACK 
104 GOSU8 I2C.Jlead 
11111 ravL • I2CJ)ata 
100 GOSUB I2C_ACX 
101 Z • (ravll « 8) 1 ruL 
108 

UIII 'GetT 
110 GOSUB I2C..)1Nd. 
111 rmdl • I2CJ)ata 
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112 GOSUB I2C_.lCIC 
173 COSUB I2C_Read 
114 ravL • I2C_Data 
1111 GOSUB I2C_N.lCIC 
176 Y • (ravll « 8) 1 ravL 
177 

118 GOSUB I2C_Stop 
179 RETORN 
180 

181 

182 •---------I2C functions------------
183 • Set I2CJIEG t I2C_V.lL before calli.Dg this 
184 I2C_Vrite_Reg: 
1811 GOSOB I2C_Start 
186 I2C_D.lT.l • VRITE_D.lT.l 
187 GOSUB I2C_Vri te 
188 I2C_D.lT.l • I2C_REG 
189 GOSUB I2C_Vrite 
100 I2C_D.lT.l • I2C_ V.lL 
191 GOSUB I2C_Vrite 
11r.1 GOSOB I2C_Stop 
193 RETORN 
194 

195 ' Set I2C_REG before calli.Dg this, I2C_D.lT.l vill have reault 
196 I2C_Read_Reg: 
197 GOSOB I2C_Start 
196 I2C_D.lT.l • VRITE_D.lT.l 
199 GOSUB I2C_Vrite 
200 I2C_D.lT.l • I2C_REG 
201 GOSUB I2C_Vrite 
202 GOSOB I2C_Stop 
203 GOSOB I2C_Start 
204 I2C_D.lT.l • READ_D.lTA 
205 GOSOB I2C_Vrite 
206 GOSUB I2C_Read 
201 GOSUB I2C_N.lCIC 
208 COSUB I2C_Stop 
209 RE'l'UIIR 
210 

211 I2C_Start: 
212 LOV SD.l 
213 LOV SCL 
214 RETORN 
215 

216 I2C_Stop: 
211 LOV SD.l 
218 INPUT SCL 
219 INPUT SD.l 
220 RETORN 
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221 

222 I2C_ACK: 
223 LDV SDA 
22' DPOT SCL 
2211 LDV SCL 
228 DPOT SDA 
227 RE'1'UIUI 
228 

2211 I2C_UCK: 
230 IIPUT SDA 
231 IIPOT SCL 
232 LDV SCL 
233 BE'l'tJJUI 
23' 

2M I2C_llead: 
236 SBD"tü SDA, SCL, MSBPIE, [I2C_DAT.t.] 
237 RETURI 
238 

239 I2C_Vrite: 
240 I2C_LSB • I:ZCJ)ATA.BITO 
241 I:zc_DATA • I:ZCJ)ATA / 2 
242 SBIF1'DUT SDA, SCL, NSBFIIIST, [I2CJ>ATA\7] 
243 IF I2C_LSB TBEI üPUT SDA ELSE LDV SDA 
244 IIPUT SCL 
2411 LDV SCL 
248 IIPOT SDA 
241 IIPUT SCL 
248 LDV SCL 
249 RE'1'UIUI 

A.3 Boe-Bot Follower Source Code 

• {$STAIIP 882} 
2 • {.PBASIC 2.6} 
3 

' DO 

103 

II SELECT DL • Select line follonr lltatea 
e CASE l00011000, I00001100, %00110000 
7 

8 

9 

10 

11 

12 

13 

14 

111 

16 

DEBUG BIIIE, • .ADEUffE 
PIJLSOUT 13, 1000 
PIJLSOUT 12, 600 

• 

CASE 100000011, 100000111, 100000001, 100000110, 100111000 
DEBUG Bmm, •AJUSTA IZQUIERDA • 
PIJLSOUT 12, 460 

PIJLSOUT 12, 760 
CASE 111000000, 111100000, 110000000, 101100000, l00011100 

DDUG IIDME, •AJUSTA DERECIIA • 
PIJLSOUT 13, 750 
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17 PULSOU'l' 13, 1060 
18 ENDSELECT 
1s LOOP 



Appendix B 

MATLAB Programs 

B.1 Main Source Code 

1 elose ali ; elear ali ; ele 
2 format longEng 
3 ~ SELECCIÓN DEL ESPACIO DE TRABAJO 
4 espacio = O; 

e whlle 1 
1 ele 
s disp ( 'Selecciona-un-espacio-de-trabajo: '); 
9 diap( 'L--Rectángulo-superior '); 

10 diap( '2---Rectángulo-inferior '); 
11 diap( '3---Dentro~' ); 
12 diap( '4---Ca.ncha.s-Prepa.') 
13 espacio = input ( 'Tu-opción-es : _'); 
u lf espacio = 1 11 espacio = 2 11 espacio = 3 11 espacio = 4 
111 break 
1e end 
17 end 
1s dlap( strcat ( 'Se-ca.rgará-eLespacio-de_tra.ba.jo: - ', num2atr( espacio))); 
19 

20 switch espacio 
21 case 1 
22 % CEDFJIEC 1 
23 landmarksGPS = [19.283587845330565 -99.13562268018722; 

% Arriba Derecha 
u 19.283265050042573 -99.13566827774048; % Abajo Derecha 
211 19.283301760127006 -99.13594722747803; % Abajo Izquierda 
26 19.283622023617926 -99.13589626550674); % Arriba Izquierda 
21 goal = (19.283537, -99.135785); 
28 case 2 
29 % CEDETE)C 8 

105 
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30 landmarksGPS = [19.283201756774254 -99.13553550839424; 
% Arriba Derecha 

31 19.282911873292704 -99.13556769490242; % Abajo Derecha 
32 19.282953646926493 -99.13583859801292; % Abajo Izquierda 
33 19.28327644282828 -99.13578897714615]; % Arriba Izquierda 
34 goal = [19.283011876822485, -99.1356173157692]; 
35 case 3 
38 % DENTRíJ CEDEIFJC 
37 landmarksGPS = (19.283651138449677, -99.1348448395729; 
38 19.283035928295213, -99.13514792919159; 
39 19.283208086102178, -99.13551270961761; 
40 19.28382076388827, -99.13519889116287); 
u goal = (19.28329669666758, -99.13522034883499); 
42 case 4 
43 % CAl\UfA PREPA 
" landmarksGPS = (19.285181558622586, -99.13645818829536; 
46 19.285029656515284, -99.13656547665596¡ 
46 19.285163836717327, -99.13684576749801; 
47 19.285320802097164, -99.13675993680954)¡ 
48 goal = (19.2852195341274, -99.13674920797348)¡ 
49 end 

51 disp( 'Cargando-constantes-de-W ... ') 
52 landmarks = fliplr(floor(10"6 * landmarksGPS))¡ 
53 goal= fliplr(floor(10"6 * goal))¡ 
M goal2 = goal ; 
55 

56 minLat = min( landmarks (: , 2)) ¡ 
57 maxLat = max( landmarks (: , 2)) ¡ 
58 minLon = mln( landmarks (: , 1)) ¡ 
59 maxLon = max( landmarks (: , 1)) ¡ 
80 

61 

62 ~ CTFS FILTRO PARTÍCULAS 
63 disp ( 'Cargando-constantes-deLFiltro _de-Partículas ... ') 

65 N = 500; 
66 lengtb = 1; 
67 motions = (O O)¡ 
68 measurements = [] ¡ 
69 bearing.noise = 1; 
10 steering.noise = 0.1¡ 
71 distance.noise = 1; 
72 

74 

75 disp ( 'Creando-mundo_para-usar-en..A*- ... ') 
76 mundo.land (: , 1) = 1 + landmarks (: , 1) - minLon; 
77 mundo.land(: ,2) = 1 + landmarks(: ,2) - minLat; 
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19 goal(l) = goal(l) 
19 goal (2) = goal (2) 
80 

minLon; 
minLat; 

81 mundo = zeros (max( mundo_land (: , 1)) , max( mundo_land (: , 2))); 

u for i = 1: sise (mundo, 1) 
84 for j = 1: slze(mundo,2) 
86 lf -inpolygon(i, j, mundo_land(: ,1), mundcdand(: ,2)) 
ae mundo( i , j ) = 1; 
87 end 
88 end 
89 end 
90 

91 subplot(l ,2 ,1) 
9:11 lmagesc (mundo) 
93 

tM !ai KAlMAN FILTER 
911 dlsp ( 'Matrices _para-Filtro _de-Kalman ') 
96 

97 dt = 2. 7; 
98 P = (O O O O; O O O O; O O 1000 O; O O O 1000); 
99 u = [O; O; O; O); 

100 F = (1 O dt O; O 1 O dt; O O 1 O; O O O 1]; 
101 H = (1 O O O; O 1 O O); 
102 R = [O. 1 O; O O. l] ; 
103 

104 ancho= 280:20:1140; 
10& angulo= 0:180/(slze(ancho,2)-1):180; 
1oe angulo = deg2rad ( angulo ' ) ; 
107 

1oa !ai SERIAL 
109 

110 dlsp( 'Iniciando-el-puerto-serial ... ') 
111 sl = serial ( 'CDM4'); 
112 set ( sl , 'Baudrate ' , 9600); 
11a set ( sl , 'DataBits ' , 8); 
1u set (sl, 'Parity', 'none'); 
1111 set ( sl , 'Terminator ' , 'CR./LF' ) ; 
111 set(sl, 'OutputBufferSize', 2); 
111 set(sl, 'lnputBufferSize', 1000); 
118 set(sl, 'Timeout', 1); 
119 fopen(sl) 
120 disp( 'Conexión-exitosa_a_eb50011 ') 
121 

122 9'i1J6 CREACIÓN DE PARTÍCULAS 
123 dlsp( 'Creando-Partículas ... ') 
124 

1211 for i = 1 :N 

107 

1311 p(i ,:) = robot(minLat + (maxLat-minLat)•rand{), minLon + (max:Lon-minLon)•rand{), r1 



108 

121 end 
128 

12e % VID PARTICULAS ALEATORIAS 
130 subplot(l,2,2) 
131 scatter(p(: ,2), p(: ,1)) 
132 

APPENDIX B. MATLAB PROGRAMS 

133 saveas (gcf, strcat ( 'C: \ Users\Rolix\Dropbox\ Tesis \Programas_ fina les \MAnAB\prueb1 
134 oum2str( 1) , '. jpg ')) 
135 

1ae dlsp ( 'Pausa ... -Presiona_ "ENim" -para-continuar') 
137 % pause 
138 

139 9166 ALGORJTMO PRINCIPAL 
140 

141 disp ( 'Ubicando-robot ' ) 
142 for iteracion = 1:100 
143 disp ( st rcat ( 'lter ación ... _' ,oum2str( i teracion))) 
144 disp( 'Moviendo-partículas ... ') 
145 for i = l:N 
146 p2(i ,:) = move(p(i ,:) , motions(eod,:), distance_noise, steering_noise, 
147 eod 
148 p = p2¡ 
149 

150 % LFXJIVRA DE GPS 
un dlsp ( 'Leyendo-GPS') 
152 gps = leeGPS ( sl) ¡ 
153 [lat Ion]= convierteGPS(gps); 
154 

1M lat = floor(lat * 10"6); 
156 Ion = floor(lon * 10"6)¡ 
157 gpsDatos{ iteracion} = [ lat Ion J; 
158 

159 disp( 'Leyendo-Brújula') 
160 % LFXJIVRA DE BRÚJULA 
161 [x y z] = leeCompass(sl )¡ 
1e2 [azimuth elev rJ = cart2sph(x, y, z); 
163 azimuth = mod( azimuth + pi/2, 2•pi); 
164 compassDatos{ iteracion} = azimuth; 
165 

166 disp ( 'Obteniendo-ángulos ... ') 
167 % OBTENCIÓN DE ÁNGULOS 
168 Z = [] j 
169 for i = 1: size ( landmarks , 1) 
170 deltax = landmarks(i ,2) - lat ¡ 
111 deltay = landmarks ( i , 1) - Ion; 
112 temp = atao2( deltay , deltax) azimuth; 
113 temp = mod(temp, (2•pi)) ¡ 
114 Z = (Z temp); 
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1111 end 
178 

177 % CALCUW ERROR 
179 measurements ( end + 1, : ) = Z; 
179 

180 dlsp ( 'Encontrando-error ... ') 
181 for i = l:N 
18:1 w{i ,:) = measuremenLprob(p(i ,:) , landmark11, measurements{end,:), bearing_nois, 
183 end 
184 

185 dlsp ( 'Re-sampling ... ') 
1se i ndex = floor ( rand () • N) + 1; 
187 beta = O; 
188 mw = nmx(w); 
189 for i = l:N 
1so beta = beta + rand () • 2 • mw; 
191 whlle beta > w( index) 
1n beta = beta - w( index ) ; 
193 index = mod( index , N) + 1; 
194 end 
195 p3{i ,:) = p{index ,:); 
186 end 
197 p = p3; 
198 

199 [ lat-minLat lon-minLon] 
:ioo 

:io1 subplot{l,2,2) 
:io:i scatter{p{: ,2), p(: ,1)) 
:I03 axis ( [ minLon maxLon minLat maxLat] ) 
:1(14, 

:I06 saveas(gcf, strcat ( 'C:\ Users\Rolix\Dropbox\ Tesis\Programas-finales \MA'ILAB\prueba4\c 
:ioe num2str{ iteracion+l), '.jpg ')) 

:ios dlsp( 'Pausa ... -Presiona-"ENim" _para-continuar') 
209 

:110 particulas { i teracion} = p; 
:111 

:11:i end 
:113 

:114 dlsp( 'Iniciando-algoritmo-principal ... ') 
:1111 iteracion = iteracion + l; 
:iu1 while 1 
:117 dlsp ( strcat ( 'Iteración ... - ',num2str( iteracion))) 
:118 

:119 for k = 1:2 
:i:io disp( 'Moviendo-partículas ... ') 
:1:11 for i = 1 :N 
:i:i:i p2(i ,:) = move(p(i ,:) , motions{end,:), ciistance_noise, steering_noise, len 
:1:13 end 
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p = p2; 

% LECIVRA DE GPS 
disp ( 'Leyendo-GPS') 
gps = leeGPS(sl ); 

APPENDIX B. MATLAB PROGRAMS 

(lat lon) = convierteGPS(gps); 

lat = floor(lat * 10"6); 
lon floor(lon * 10"6); 

disp ('Leyendo-Brújula') 
% LECIVRA DE BRÚJULA 
[x y z) = leeCompass(sl ); 
[azimuth elev r) = cart2sph(x, y, z); 
azimuth = mod(azimuth + pi/2, 2•pi); 

disp ('Obteniendo-ángulos ... ') 
% OBTENCIÓN DE ÁNGULOS 
z = [); 
for i = 1: size ( landmarks , 1) 

end 

deltax = landmarks(i ,2) - lat; 
deltay = landmarks ( i , 1) - lon; 
temp = atan2( deltay, deltax) azimuth; 
temp = mocl(temp, (2•pl)); 
Z = [Z temp); 

% CALCULO ERROR 
measurements ( end + 1 , : ) = Z; 

disp( 'Encontrando-error ... ') 
for i = 1:N 

w(i ,:) = measurement_prob(p(i ,:) , landmarks, measurements(end,:), 1 

end 

dlsp ( 'Re-sampling ... ') 
index = floor(rand() * N) + l; 
beta= O; 
mw = 11111X(w); 
for i = 1:N 

end 

beta = beta + rand() * 2 * mw; 
while beta > w( index) 

end 

beta = beta - w( index); 
index = mocl( index , N) + 1; 

p3(i ,:) = p(index ,:); 

p = p3; 
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272 

273 subplot(l ,2 ,2) 
214 scatter(p(: ,2), p(: ,1)) 
2111 axis ( [ minLon maxLon minLat maxLat] ) 
276 end 
277 

278 [x y theta] = geLposition(p)¡ 
279 init = floor([y xi); 
280 

281 init(l) = aba(init(l) - minLon)¡ 
212 i ni t ( 2) = aba ( in i t ( 2) - minLat ) ¡ 

284 dlap( 'Verificando-se-se-11eg6_a_la-meta ... ') 
2811 lf ((init(2) < (goal(2) * 1.2)) &&: (init(2) > (goal(2) * .8))) 
286 && (( in i t ( 1) < ( goal ( 1) * l. 2)) &&: ( in i t ( 1) > ( goal ( 1) * . 8))) 
287 disp ( '¡Meta-alcanzada! ') 
288 break 
289 end 

291 dlap( '¡Meta-aún-Do-alcanzada! ') 
292 dlap( 'Continúa-algoritmo ... ') 
293 

294 dlsp( 'Detectando-obstáculos ... ') 

298 [mundomov] =mappea(sl, mundo, round(x- minLe.t), round(y - minLon), theta); 
297 

298 disp( 'Calculando-trayectoria ... ') 
299 [path path_inst linea] = astar2 (mundo, init , goal); 
300 

301 accion = movBoeBot(mov, path_inst ( 1)); 

303 subplot(l ,2 ,1) 
SO& lmagesc (mundo) 
305 llne(linea(:,2),linea(:,1), 'Color','white') 
308 

307 % ma11or a 915º o menor a 45º 
308 lf theta <= deg2rad(45) 11 theta > deg2rad{315) 
309 temp = 'v ' ¡ 
310 % ma11or a 45º o menor a 195° 
311 elself theta <= deg2rad{135) && theta > deg2rad(45) 
312 temp = '<'; 
313 % mayor a 195º o menor a 885º 
314 elaelf theta <= deg2rad(225) &&: theta > deg2rad(135) 
3111 temp = ' • ' ; 
318 % mayor a 255º o menor a 885º 
317 elself theta <= deg2rad{315) &&: theta > deg2rad(225) 
311 temp = '>' ; 
319 end 
320 
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321 disp ( 'Moviendo-robot ' ) 
322 policy_actions(l:2) = (temp path_inst(l)]; 
323 temp = policy_actions (2); 
324 mov = trad_mov(policy_actions(l:2)); 
3211 

326 if strcmp(mov(l), 'F') 
327 motions(end+l ,:) = (12 O]; 
328 elseif strcmp(mov( 1), 'D') 
329 motions(end+l ,:) [12 3•pi/4]; 
330 else 
331 motions(end+l ,:) = (12 pi/4]; 
332 end 
333 

334 for gg=l:size(mov,2) 
335 fwrlte(sl ,mov(gg)); 
338 pause(5) 
331 end 
338 

339 iteracion = iteracion + 1; 
340 saveas (gcf, strcat ( 'C: \ Users\ Rolix\Dropbox\ Tesis \Programas-finales \MA'ILAB\p1 
341 num2str( iteracion), '.jpg ')) 
342 

343 disp ( 'Pausa ... -Presiona-"ENim." _para-continuar') 
344 % pause 
345 end 
346 

347 • FIN 
348 disp( 'Terminando-conexión ... ') 
349 fclose(sl),delete(sl),clear sl; 
350 dlsp ('Fin-de-conexión') 

B.2 Robot Creation Function 

1 function r = robot (x, y, z) 
2 

3 r=(xyzJ; 
.. 
5 end 

B.3 Particle Filter Movement Function 

1 function result = move(r, motion, distance_noise, steering_noise, length) 
2 

3 alfa = motion(l) + randn() * steering_noise; 
4 d = motion(2) + randn() * distance_noise; 
5 

e x=r(l); 
1 y=r(2); 
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a theta = r (3)¡ 
11 

10 beta = (d / length) * tan( alfa)¡ 
11 if beta= O 
12 beta = 0.001; 
13 end 

111 R = d / beta; 
10 ex = x - (R * sln(theta)); 
11 ey =y+ (R * cos(theta))¡ 
18 

111 x =ex+ (R * sln(theta + beta))¡ 
20 y= ey - (R * cos(theta + beta)); 
21 theta = mod( theta + beta, 2•pl); 

23 resnlt = robot(x, y, theta)¡ 

26 end 

B.4 Particle Filter Measurement Error Function 

1 function error = measurement_prob(r, landmarks, mE•asurements, bearing_noise) 

3 predicted_measurements = sense ( r, landmarks) ¡ 
4 

II error = 1; 
e for i = 1: sise (measurements ,2) 
1 error_bearing = abs(measurements(i) - predictedLmeasurements(i )); 
a error_bearing = mod((error_bearing + pi}, 2•pl) - pi¡ 
11 

10 error = error * (exp(-( error _bearing -2) / ( bearing_noise ·2) / 2) / ... 
11 sqrt(2 * pi * (bearing_noise ·2))); 
12 end 
13 

14 end. 

B.5 Particle Filter Get Position Function 

1 functlon [x y orientation) = get_position (p) 

3 X= O; 
" y= O; 
a orientation = O; 
8 

1 for i = 1:size(p,l) 
8 X= X+ p(i ,l)¡ 
II y=y+p(i,2); 

10 orientation = orientation + mod((p(i ,3) - p(l ,;3} + pi), (2•pl)) + p(l ,3) - pi¡ 



114 

11 end 
12 

~ x = x / size(p,1); 
14 y = y / size (p, 1); 

APPENDIX B. MATLAB PROGRAMS 

15 orientation = orientation / size (p, 1); 
16 

11 end 

B.6 GPS Data Acquisition Function 

1 function gps2 = leeGPS ( sl) 
2 

3 pause(2) 
4 gps = [); 
s fwrite(sl,'G'); 
6 

7 whlle (true) 
8 lf sl. BytesAvailable -= O 
e a = fscanf( sl , 'o/o3u'); 

10 gps = (gps ,a); 
11 a= [); 
12 if size(find(gps = 255),1)==1 
13 break 
14 

111 

16 

17 

18 

19 

20 

21 

end 
end 

gps '; 

gps2 = 

end 

. , . 
• 

22 for i = l:size(gps,1)-1 
23 if i = 2 11 i = 7 
24 if slze(num2str(gps(i)),2) = 1 
25 gps2 = strcat (gps2, 'O' ,num2str(gps( i))); 
26 else 
21 gps2 = strcat(gps2, num2str(gps(i ))); 
28 end 
29 elseif i = 3 11 i = 8 
so lf slze(num2str(gps(i)),2) = 1 
31 gps2 = strcat (gps2, '00' ,num2str(gps( i))); 
32 elself slze (num2str(gps( i)) ,2) = 2 
33 gps2 = strcat (gps2, 'O' ,num2str(gps ( i))); 
34 else 
36 gps2 = strcat (gps2, num2str( gps ( i))); 
36 end 
37 elseif i = 5 
38 i f gps ( i ) = 78 
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39 gps2 = strcat (gps2, 'N'); 

'° elself gps(i) == 83 
41 gps2 = strcat (gps2, 'S' ); 
42 eod 
43 elself i == 6 
44 lf slze(num2str(gps(i)),2) == 2 
46 gps2 = strcat (gps2, 'O ' , num2str( gps ( i ) )) ; 
46 else 
47 gps2 = strcat (gps2, num2str(gps(i))); 
48 end 
49 elseif i == 10 
50 if gps(i) == 87 
lil gps2 = strcat (gps2, W'); 
52 elself gps( i) == 69 
53 gps2 = strcat (gps2, 'E'); 
54 eod 
65 else 
58 gps2 = strcat(gps2, num2str(gps(i))); 
57 end 
58 

59 end 
80 

61 end 

B.7 GPS Data Conversion Function 

1 function (latitud longitud) = convierteGPS(cadena) 
2 

a latDeg = cadena ( 1: 2); 
4 latMin = str2double(cadena(3:4)); 
5 latMinD = str2double(cadena(5:8)); 
6 NS = cadena (9); 
7 

e lonDeg = cadena(l0:12); 
9 lonMin = str2dou ble ( cadena ( 13: 14)); 

10 lonMinD = str2double ( cadena ( 15: 18)); 
u &V= cadena(19); 
12 

1s wl = (latMin•l000/6) + latMinD/60; 
14 wls = num2str(wl); 
15 

16 w2 = (lonMin•l000/6) + lonMinD/60; 
11 w2s = num2str(w2); 
18 

19 for i = 1:slze(wls,2) 
20 lf strcmp(wls( i), '. ') 
21 wls(i) = [); 
22 wls = strcat ( '. ',wls); 

115 
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23 break; 
2, end 
2& end 
28 wls = strcat ( latDeg, wls) ¡ 
27 

21 latitud = str2double(wls)¡ 
29 if strcmp(NS, 'S ') 
30 latitud = -1 * latitud; 
31 end 
32 

33 for i = 1: size (w2s ,2) 
34. lf strcmp(w2s( i), '. ') 
36 w2s(i) = [); 
38 w2s = strcat ( '. ',w2s)¡ 
37 break; 
38 end 
39 end 
4.0 w2s = strcat(lonDeg,w2s)¡ 

,2 longitud = str2double(w2s); 
4.3 i f strcmp (EW, W' ) 
4.4. longitud = -1 * longitud; 
4,5 end 
4.8 

u end 

B.8 Compass Data Acquisition Function 

function [ x y z) = leeCompass ( s 1) 
2 

3 pause(2) 
, valores = []; 
6 fwrite(sl 1 ·e·) j 
8 

7 while (true) 
a if sl. BytesAvailable - O 
9 a = fscanf( sl , 'o/o3u'); 

10 valores = [valores¡ a J; 
u a= [); 
12 if size(find(valores = 255),1)==1 
13 break 
14. end 
15 end 
18 end 
17 

18 cy = find ( valores - 'y 1) i 
19 cz = find ( valores - 'z') ¡ 
20 cw = find ( valores 'w' )¡ 
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21 

22 xh = valores (2:cy-1); 
23 yh = valores(cy+l:cz-1); 
24 zh = valores ( cz+l:cw-1); 

211 lf 11trcmp(xh ( 1), '- •) 
27 X= -1 * hex2dec(xh(2:end)); 
28 el11e 
211 X = hex2dec ( xh) ; 
30 end 
31 

32 if strcmp(yh ( 1), '-') 
33 y= -1 • hex2dec(yh(2:end)); 
34 el11e 
36 y = hex2dec(yh); 
38 end 
37 

38 lf atrcmp(zh(l), '-') 
39 z = -1 • hex2dec(zh(2:end)); 
40 elae 
41 z = hex2dec(zh); 
42 end 

44 end 

B.9 LRF Data Acquisition Function 

1 functlon valores= lrf(sl) 
2 

3 pause(2) 
4 valores = []; 
II fwrite(sl,'M'); 
8 

7 while (true) 
a lf sl. BytesAvailable -= O 
e a = facanf(sl, 'o/o3u'); 

10 valores = [valores; a]; 
u a= (]; 
12 alze (valores) 
13 lf aize(find(valores = 255) ,1) = 1 
14 break 
111 end 
18 end 
11 end 
18 

19 valores = valores (1:end-1) 
20 

21 end 

117 
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B.10 A* Search Function 

functlon (policy policy_actions puntos)= astar2(grid, init, goal) 

3 puntos = [); 
4 

5 cost = 1; 
e delta = [-1 O; O -1; 1 O; O 1); 
1 delta_name = [ '· '; '<'; 'v'; '>') ¡ 
8 

9 closed = zeros(size(grid)); 
10 closed(init(l),init(2)) = 1; 
11 action = -1 * ones(size(grid)); 
12 expand = action; 
13 

u heuristica = gridFire(size(grid,1), size(grid,2), goal); 
115 

16 X = i n i t ( 1 ) ; 
11 y = init (2); 
18 h = heuristica(x,y); 
19 g = O; 
20 f = g-th; 
21 %open =fg z 11]; 
22 open = [ f g h x y) ¡ 

24 found = O; 
:115 resign = O; 
:116 count=O; 
27 

28 while found = O &&: resigo = O 
29 if size (open, 1) = O 
30 resigo = 1 ¡ 
31 disp ( ' fa i 1 ' ) 
32 else 
33 open = flipud ( sortrows (open))¡ 
34 next = open(end,:); 
35 open ( end, : ) = [ ) ; 
36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

x = next (4); 
y = next (5); 
g = next (2); 

expand(x,y)=count; 
count=count+l; 

if x = goal (1) &&: y = goal (2) 
found = 1; 

else 
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for i = l:aize(delta ,1) 
x2 = x + delta(i ,l); 
y2 =y+ delta(i ,2); 

119 

47 

48 

49 

liO 

lil 

62 

113 

54 

lili 

if (x2>=1) &r.& (x2<=aize(grid ,1)) &&: (y2 >=l) &r.& (y2<=aize(grid ,2)) 
if closed(x2,y2) = O &r.& grld(x2,y2) = O 

g2 = g + cost; 
h2=beuristica (x2, y2); 
f2=g2+h2; 

116 open = [ open ; [ f2 g2 h2 x2 y2 ]] ; 
117 closed(x2,y2) = l; 
118 action(x2,y2) = i; 
69 end 
80 end 
81 end 
82 end 
83 end 
84 end 
811 policy ( alze (grid)}= ' - '; 
68 x=goal ( 1 ) ; 
87 y=goal (2); 
88 

89 policy(x,y)='•'; 
ro policy_actions = '•'; 
71 

72 grid2 = zeroa ( size ( grld)); 
73 whlle x -=init (1) 11 y-=init (2) 
74 x2 = x - delta(action(x,y),l); 
75 y2 = y - delta(action(x,y) ,2); 
78 puntos = [puntos; x2 y2) ; 
77 policy (x2, y2) = delta_name ( action (x, y)); 
78 policy_actions = (policy_actions, delta_name(act.ion(x,y))); 
79 x=x:2; 
80 y=y2; 
81 eud 
82 

83 policy _actions fllplr ( policy _actions); 
84 

811 eud 

B.11 A* Search Heuristic Function 

1 functlon [ beuristica)=gridFire (m,n, centro) 
2 %genera una matriz con valorea creciente• alrededor del punto centro 
3 heuristica = zeroa(m,n); 
4 fin = centro; 
li 

8 for i = 1: slze ( beuristica , 1) 
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7 for j = l:size(heuristica ,2) 
8 heuristica(i,j) = ((i-fin(l)))-2 + ((j-fin{2)))-2; 
9 eod 

10 eod 
11 

12 eod 

B.12 Kalman Filter Measurement Function 

1 fuoctioo (x P) = KalmanFilterMeasurement(x, P, Z, H, R) 
2 

a y = Z' - H•x; 
, S = H•P•H' + R; 
II K = P•H' * piov ( S ) ; 
6 X = X + K•y; 
7 P = (eye(size(P)) - (K•H))•P; 
8 

9 eod 

B.13 Kalman Filter Prediction Function 

1 fuoctioo [x P) = KalmanFilterPrediction(x, P, F, u) 
2 x = F•x + u; 
a P = F•P•F'; 

' II eod 

B.14 Boe-Bot Movement Function 

1 fuoctioo (mov)=trad_mov ( poli e y) 
2 %Esta funcion recibe una policy de la fonna string lineal 
3 % 
4 % 
11 % 

polic11='>v>>>>t1t1t1• '; 

e %y regresa los moviemientos para el robot 
7 % 
8 % 
9 % 

10 % 
11 % 
12 % 

s -
l -
r-

/-

seguir derecho 
girar 90° izquierda 
girar 90° derecha 
dar vueltas de Felicidad, porque llegaste al final 

13 % el resultado lo regresa en mov como string 
14 % 
15 % 
16 

17 

/mov/=trad_mov ( policy) 

11 %estado =0; 



B.14. BOE-BOT MOVEMENT FUNCTION 

19 %mov= 'a '; 
30 switch policy ( 1) 
:111 case '>' 
22 estado=O; 
23 mov= 'F' ; 
24 case '<' 
26 estado=l; 
20 mov='F'; 
21 case 'v' 
28 estado=2; 
211 mov='F'; 
30 case 'A' 
31 estado=3; 
3:1 mov='F'; 
33 case '*' 
3' estado =4; 
311 mov='F'; 
36 eml 
37 

38 for i =2: sise ( policy , 2) 
39 switch policy ( i) 
40 case '>' 
41 estadon=O; 
42 case '<' 
43 estadon=l; 
.u 
46 

48 

47 

48 

49 

IIO eml 

case 'v' 
estadon=2; 

case 'A' 
estadon=3; 

case '*' 
estadon=4; 

11 l f estado-=estadon 
1:1 %Si eataba viendo a la derecha 
li3 lf estado==() &k estadon==2 
M % ~11trcat(mov, 'r11 '); 
11 

li8 

17 

118 

19 

60 

81 

8:1 

83 

84 

8li 

88 

87 

mov='ID'; 
elaeif estado==() &rk estadon----3 

% ~11trcat{mov, 'la'),· 
mov='II,; 

elself estado==() &rk estadon=l 
% ~11trcat(mov, '1111 '); 
mov=' 111 '; 
%Si eataba viendo a la izquierda 

elseif estado 1 &k estadon==2 
% moo=atrcat {mov, 'la '); 
mov=' 11.; 

elseif estado=l &&; estadon----3 
% ~a.vcat{mov, 'ra '); 

121 



68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

122 

else 

APPENDIX B. MATLAB PROGRAMS 

mov='DD'; 
elaeif estado=! && estadon==O 

% mov=strcat(mov, 'rrs '); 
mov='IID'; 
%Si estaba viendo hacia arriba 

elaeif estado---3 && estadon 2 
% mov=strcat(ffl011, 'rrs '); 
mov='IID'; 

elseif estado---3 && estadon=l 
% mov=strcat (mov, 'ls '); 
mov==' 11 '¡ 

elseif estado==3 && estadon==O 
% mov=strcat {ffl011, 'rs '); 
mov=='DD' ¡ 
%Si estaba viendo hacia abajo 

el11eif estado 2 && estadon==3 
% mov=strcat(ffl011, 'rrs '); 
mov='IID' ¡ 

elseif estado 2 && estadon=l 
% mov=strcat(mov, 'rs '); 
mov='DD'; 

elseif estado 2 && estadon==O 
% mov=strcat{mov, 'ls '); 
mov=' 11 '¡ 

elseif estadon 4 
% mov=strcat{ffl011, 'f '); 
mov='F'; 

end 

% mov=strcat{ffl011, 's '); 
98 mov='F' ¡ 
gg end 

100 estado=estadon; 
101 end 
102 end 
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