TECNOLOGICO DE MONTERREY

Instituto Tecnoldgico y de Estudios Superiores de Monterrey
Maestria en Ciencias de la Ingenieria
Tesis

Multiple-Robot Motion Planning in an Unknown
Environment

Rolando Bautista Montesano

Asesor:
Victor de la Cueva Hernandez

Biblioteca

Campus Chudad de Mixdco

Abstract

This Thesis proposes an implementation of a Multiple Robot
System that handles a heavy object from an initial point to a
final one. The System does not know where it is locatied inside a
workspace, so it needs to find out its location to compute a path
that connects the desired point. -

The System is compound by three main elements: a Planner, a
Transmitter, and the Robots. Each one of them executes differ-
ent tasks. The Robots and the Transmitter are heavily bounded,
they are in charge of controlling the robot as well as retrieving
environment information. They are not in charge of any heavy
computing operations because it is all done in the Planner. The
Planner uses several Artificial Intelligence algorithins such as
the Particle Filter, Kalman Filter and A* (A star) search. The
environment is decomposed using an Approximate Cell Decom-
position.

This work’s main contribution is the usage of low-cost robots
that work together using high complexity algorithms. All the
employed sensors have a certain degree of uncertainty which is
handled with non-parametric and Gaussian filters. The Follower
Robots’ task is reduced to track where the Transport platform
goes, a low cost solution is proposed.

Throughout this book all of the mentioned concepts, implemen-
tations and problems will be explained.

Contents

Nomenclature
List of Figures
List of Algorithms
1 Introduction

2 State of the Art
21 PathPlanning
211 BasicProblem
212 Roadmap enne...
2.1.3 Cell Decomposition.
2.14 Potential Field
2.2 Artificial Vision Lo oL,
2.3 Formations and communication

3 Theoretical framework
31 MotionPlanning
311 Task e
3.12 PropertiesoftheRobot
3.1.3 Properties of the Algorithm
3.2 Approximate Cell Decomposition
33 A¥(Astar) i e e
34 KalmanFilter
35 ParticleFilter,

4 Employed Hardware
41 Boe-BotRobot
42 BASICStamp2 ittt

CONTENTS

43 BluetoothModule
44 GPS e e
45 Compass. v ittt it e e e e e e e e
46 LaserRangeFinder.
4.7 Infrared Line Follower
4.8 Robot Design and Implementation
48.1 LeaderRobot
482 TransmitterBoard
483 FollowerRobots
484 Transportplatform.
4.8.5 Multiple Robot System

Software: Design and Implementation

51 RobotPrograms
51.1 LeaderRobot
5.1.2 Transmitter Board
513 FollowerRobots

52 Planner Programs
5.2.1 Data Acquisition
5.2.2 Cell Decomposition implementation
523 A*implementation
5.2.4 Particle Filter implementation
5.2.5 Kalman Filter implementation

53 Global Algorithm

Results

6.1 Implementation Runs
611 Robots P;isPr
6.1.2 Robot’s P,isoutsideofthe W

613 Pathplanning.
6.2 FacedProblems 00w erneno.

Future Work and Conclusions

Basic STAMP Programs

A.1 Boe-Bot Leader Source Code
A2 Transmitter Board Source Code
A.3 Boe-Bot Follower Source Code

CONTENTS

B MATLAB Programs

B.1 Main Source Code
B.2 Robot Creation Function . .

B.3 Particle Filter Movement Function
B.4 Particle Filter Measurement Error Function
B.5 Particle Filter Get Position Function
B.6 GPS Data Acquisition Function
B.7 GPS Data Conversion Function
B.8 Compass Data Acquisition Function
B.9 LRF Data Acquisition Function

B.10 A* Search Function.

B.11 A* Search Heuristic Function

B.12 Kalman Filter Measurement Function
B.13 Kalman Filter Prediction Function

B.14 Boe-Bot Movement Function

Bibliography

105
105
112
112
113
113
114
115
116
117
118
119
120
120
120

126

CONTENTS

Nomenclature

f(n)
g(n)
h(n)

r(q)

An obstaclein Wor in Q

The configuration space of a robot is the space of all the configura-
tions of the robot.

Workspace is an Euclidean space represented as R with N = 2 or
3

Estimated cost of the cheapest solution through n.
Cost function of moving from node n to node m.

Estimated cost of the cheapest path from the state at node n to a
goal state.

Final point in a Path Planning Algorithm
Initial point in a Path Planning Algorithm
An element of Q

The region of the workspace occupied by the robot 7

Azimuth Angular measurement in a spherical coordinate system. The vec-

BS2

tor from an observer to a point of interest is projected perpendicularly
onto a reference plane: the angle between the projected vector and
a reference vector on the reference plane

BASIC Stamp 2 Microcontroller

Configuration It is a specification of the position of every point in an object

relative to a fixed reference frame

x CONTENTS

Degrees of Freedom The dimension of the configuration space is equal to the
number of independent variables in the representation of the config-
uration

GPS Global Positioning System

Latitude Geographic coordinate that specifies the north-south position of a
point on the Earth’s surface. Lines of constant latitude.

Longitude Geographic coordinate that specifies the east-west position of a
point on the Earth’s surface.

LRF Laser Range Finder

Simultaneous Localization and Mapping Algorithm employed by robots and
autonomous vehicles to create maps in an unknown environment
while it keeps track of its localization

List of Figures

1.1 Autonomous Robotsexamples. 2
1.2 Robotic applications used for Research 3
2.1 Robot representations 8
2.2 SpaceRepresentation. 9
2.3 Visibility Graph Method, 10
24 Probabilistic Roadmap 11
25 VoronoiDiagram 12
26 CellDecomposition 13
27 Potential Field 14
2.8 Artificial Vision Strategies for Path Planning 14
2.9 Leader - Follower Vision Tracking 15
210 Campus Walkway 16
2.11 Leader - Follower Scheme 17
2.12 Object Enclosure Algorithm 19
2.13 Nonprehensile Pulling by Multiple Robots 20
2.14 Strategy for Coordinating Multiple Robots Within Roadmaps 20
3.1 Car-like Robot Model 25
41 BoeBotRobot, 4
4.2 BASIC Stamp 2 Microcontroller 45
43 EmbeddedBlue500 46
4.4 PMB-648 GPS SiRF Internal Antenna 47
4.5 Compass Module 3-Axis HMC5883L 48
46 LaserRangeFinder. 49
4.7 Infrared Line Follower C e e e e e 49
48 LeaderRobot C e e e e e 50
4.9 Leader Robot Schematic C e e e e e 51
4.10 Transmitter Board 52

LIST OF FIGURES

4.11 Transmitter Board Schematic 52
412 Follower Robots 53
4.13 Follower Robot Schematic 54
4.14 Transport platform 54
4.15 Multiple Robot System 55
5.1 Overall Algorithm Block Diagram 58
5.2 Leader Robot Memory Maps 59
5.3 Transmitter Board Memory Maps. 62
5.4 Follower Robots Memory Maps 64
55 Real Workspace 66
5.6 Laser Range FinderData 67
5.7 Measured angles from the landmarks 69
58 Computed Angles. 70
5.9 Cell Decomposition Implementation 71
5.10 Employed Heuristic 72
5.11 A¥implementation, 73
5.12 Particle Filter implementation. 75
5.13 Kalman Filter implementation 77
6.1 Static RobotExample 83
6.2 Out of bounds Robot Example 84
6.3 Path Planning Examplepart 1 86
6.4 Path Planning Examplepart 2 87
6.5 Path Planning Examplepart3 88
71 PioneerRobot 92

72 Samsung Galaxy SITI. 93

List of Algorithms

1 Approximate Cell Decomposition 31
2 A*Search. e, 33
3 The Kalman Filter Algorithm 37
4 The Particle Filter Algorithm 39
5 Leader Robot Program 61
6 Transmitter Board Program 63
7 Final Program Implementation 79

xiv

LIST OF ALGORITHMS

Chapter 1

Introduction

One ordinary day at all of 1997 a boy and his parents went to the cinema to
see the Star Wars saga. After the films were over he realized how fascinating
it could be to live day by day with robots such as C3PO and R2D2 [21]. It
seems that decades before many people had the same dream. They imagined
and dreamed about it. What they did one day became what we know as
Robotics. Creating machines that can perform several tasks has produced a
technological revolution. The word robot comes from the Slavic Languages.
It was used for the first time in R. U. M., (Rossum’s Universal Robots)
, & book written by Karel Capek [7]. The exact term was robotnik. It
described a breed of workers that were created from biological parts. They
were capable of doing many chores that human beings could not. The word’s
meaning is "slave” or "worker”. It perfectly describes what a robot is: an
electromechanical or virtual device in charge of fulfilling certain activities.
Robotics as a science was born in the Foundation Series from the legendary
Isaac Asimov [6].

Far from Literature, Robotics is the combination of several areas such
as Physics, Mathematics, Electronics, Mechanics and Computer Science.
Robots are classified in several categories depending on its characteristics.
Motion is one of the most important for this work. They can be fixed, mobile
or hybrid. A fix robot has a part of it tied to a base and its movement is
always bounded to that point. The mobile robot can move loosely through
space. Finally the hybrid is a mixture of the first two. In a fixed robot, the
task is performed by an end effector that will follow a path. For the mobile
case, the entire robot performs the task after a path planning algorithm took
place. A robot can also be classified by the type of motion and the number
of Degrees of Freedom it has. It can be omnidirectional or holonomic when

1

2 CHAPTER 1. INTRODUCTION

(a) DARPA Challenge Stanford Uni- (b) Deutsches Museum Bonn’s
versity’s Stanley RHINO

Figure 1.1: Autonomous Robots examples

it can move at any direction, so a non holonomic one can only perform
restrained movements, ergo just in one direction. Depending its DOF it
can be non-redundant when it has as much as DOF as dimensions and
redundant when there are more DOF than dimensions. Due its autonomy
it can be directed, supervised or autonomous. It is directed when the user
specifies movement by movement what the robot shall do. Supervised when
a motion planning has been done given an environment for being executed
later. Finally it is autonomous when it can take several decisions by itself
under certain circumstances. There are lots of examples of robots with
several movements characteristics and different degrees of autonomy.

One of the biggest challenges that Robotics faces is in autonomous path
planning. The goal is to demand for a task in a high level programming
language and the robot must transform the received instructions into a set
of low level commands. While executing the task a path must be found so
the mobile or fixed robot can follow it. This area’s development has come
through with applications such as digital animation, industrial processes
verification and pharmaceutical design. Some well known examples can be:

o Transportation - An example of a transport for one or two persons
is a Segway or the CyCab. They are a good environment-friendly
alternative that use small space, are not noisy and its ecologic footprint
is quite smaller than the car’s one. A bigger scale example can be
Stanford University’s Stanley. Stanley can move freely in a highway
by planning its own movements (Figure 1.1a).

e Museum Tour Guides - In 1997, a mobile robot named RHINO servved
as a fully autonomous tour-guide at the Deutsches Museaum Bonn

(a) The Mars Rover (b) The Da VInci Surgical System

Figure 1.2: Robotic applications used for Research

(Figure 1.1b). RHINO was able to lead museum visitors from one
exhibit to the next by calculating a path using a stored map of the
museum. Because the perfect execution model of the piano mover’s
problem is unrealistic in this setting RHINO had to be able to localize
itself by comparing its sensor readings to its stored map.

Planetary Exploration - The Mars Rover (Figure 1.2a) is a robot whose
main task is to explore the Martian surface. It must take several
samples from the ground and analyse them, it also has to take some
photographs of the environment that will supply the scientists with
valuable information about the Red Planet. As the robot does not
know where it is, the SLAM algorithm is used.

Medicine - The Da Vinci Surgical System (Figure 1.2b) is capable of
performing surgeries with high precision actions and with the bonus
that the Doctor can be in a remote location. Robots are used in
invasive procedures. They enhance the surgeon’s ability to perform
technically precise maneuvers.

Industry - Several robotic arms are employed for assembling, painting,
welding or separating products. The complexity of their utilization
is that in the workspace there is a great amount of movement and
robots must have enough coordination to avoid collisions among them,
the users or the product. Industrial robot installations are driven
by economic factors, so there is a high priority on minimizing task

4 CHAPTER 1. INTRODUCTION

execution time. This motivates motion planners that return time-
optimal motion plans. Other kinds of tasks may benefit from other
kinds of optimality, such as energy or fuel optimality for mobile robots.
(9]

Robot path planning calculation is critical for all applications. The em-
ployed algorithm must be capable of finding a collision-free path, compute
the required movements and assuring they are physically performed.

A path planner must consider the task, the robot and the algorithm. The
task can be either navigation, localization or coverage. Navigation refers to
the calculation of an obstacle free trajectory from an initial point (FP;) to
a final point (Py). When the robot needs to explore all the points in the
workspace the task is a coverage task whereas in a localization task the
robot needs to use information provided by some sensors. The robot must
also be considered along with the environment. Together they determine
the number of DOF of the system, the workspace and the configuration
space. Finally the chosen algorithm must satisfy certain restraints such
as the computational complexity and the solution it returns. Complexity
deals with memory limitations and the required time for computing the
calculations. The returned solution shows how complete the algorithm is. A
complete algorithm guarantees to find a free path whenever one exits and to
return failure otherwise. Appraximate methods may not be complete; but,
for most of them, the precision of the appraximation can be tuned and made
arbitrarily small, so that the methods are said to be Resolution-complete. [10]

This Thesis’ objectives are:

e To develop a low cost Multiple Robot System capable of moving an
object from an initial point P; to a goal location Py.

e Employ a Resolution Complete Path Planning algorithm to represent
the chosen workspace.

e Implement an online centralized planner that uses sensor-based infor-
mation.

e Deal with uncertainty using software solutions.
¢ Identify fixed and mobile obstacles.
e Obtain an optimal path.

e Overcome non-holonomic robot restraints.

In chapter 2 the State of the Art is presented. The most innovative,
different and recent proposals are explained. Having special attention in
topics such as Path Planning, Artificial Vision, Formations, Communica-
tions and Self-Localization. Chapter 3 explains all the algorithms that were
used for developing this project: Motion Planning, Approximate Cell De-
composition, A*, Particle Filter and Kalman Filter. Chapter 4 gives a quick
overview of the employed hardware used while developing the Robot Sys-
tem: the Boe-Bot Robot, Bluetooth Module, GPS, Compass, Laser Range
Finder, Infrared Line Follower and structure modifications. After it, Chap-
ter 5 describes how the algorithms explained in Chapter 3 were implemented
in the Planner, as well as an example of how they work and what they take
as inputs and return as outputs. The robot programs are also explained
here. Chapter 6 shows the results of combining all the programs and some
examples of the runs that were made. Finally in Chapter 7 the future work
and modifications are presented as growth areas for the project.

CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

This chapter will explain the most important techniques and algorithms that
are used in recent work. The covered topics will be:

¢ Path Planning
e Artificial Vision
e Formations and Communication

e Localization

2.1 Path Planning

2.1.1 Basic Problem

The goal of defining a basic path planning problem is to isolate some central
issues and investigate them in depth before considering additional difficul-
ties.

The basic problem defines that in W the robot is the only moving object,
all its dynamic properties are ignored. Computed motions are contact-free so
mechanical interaction between two objects is ignored. This way a physical
path planning problem turns into a geometrical path planning problem. To
simplify the problem even more, the robot will be a single rigid body whose
movements is restrained by obstacles.

The basic motion planning problem resulting from these simplifica-
tions is the following (Figure 2.1c):

e The robot is a single point.

8 CHAPTER 2. STATE OF THE ART

e The robot is the only object that moves in W.

e No mechanical problems are considered.
J. C. Latombe defines the problem as:

Given an initial position and orientation and a goal position
and orientation of the robot r in W, generate a path specifying
a continuous sequence of positions and orientations of the robot
avoiding contact with the obstacles, starting at the initial posi-
tion and orientation, and terminating at the goal position and
orientation. Report failure if no such path exists.

o
(a) Real Robot (b) 2D Model (c) Final Model

Figure 2.1: Robot representations

The following notation is consistent with the one proposed by Tomais
Lozano Pérez. in [20], Jean Claude Latombe in [17] and Choset et. al in [9].
For more details it is recommended to consult the bibliography.

A Workspace (W) is a R? or R3 environment in which robots work. It
can be decomposed in WOy and Wyree. The i-th obstacle can be represented
as the first one, while the remaining free space that is not occupied by an
obstacle is the second one.

Wfree = W - UWO| (2-1)
i

Path Planning algorithms are executed in the configuration space Q
(Figure 2.2b) not in W (Figure 2.2a). Q can be defined as the set of all
the possible robotic configurations. To the set of points in W occupied by
the robot R in the configuration ¢ will be denoted as R,. An obstacle in
Q corresponds to the robot configurations that intersect an obstacle in W
such that:

2.1. PATH PLANNING 9

Q0; = {q|R[|WO; # 0} (2:2)

A path is a continuous curve in Q expressed by a continuous function
defined in [0-1] for:

Qpree = 2 — | J Qi (2:3)

A continuous function C can be a solution to the Path Planning problem
such that C[0 — 1] & Q. The initial configuration is ¢; = C(0) and the final
one gf = C(1). This can be generalized as:

C(s) € Qpec \/ 5 € [0,1] (2.4)

A Robotic System Configuration is a specification of each point of a
system. Q of a system is the space of all possible system configurations.

{(a) Workspace {(b) Configuration Space

Figure 2.2: Space Representation

Lots of methods and solutions have been proposed an implemented to
solve the basic path planning problem. Not all of them solve it completely.
Some of the require that W is R? and that the objects are represented as
polygons. Most of the approaches can be generalized into: roadmap, cell
decomposition, and potential fields.

10 CHAPTER 2. STATE OF THE ART

2.1.2 Roadmap

Roadmaps are a network of 1D curves which represent the connectivity in
Wiree OF Qfree. After it the connectivity has been constructed it represents
a set of standard paths that connect P; with Py via N point that bind them.
The calculated path is the result of concatenating a subpath that connects
P; with the roadmap, a subpath that contains the roadmap and finally the
one that connects the roadmap with Py. [17]

Visibility Graph Method

This is one of the first path planning methods that were developed. It is
applied in 2D Q with polygonal QO . It is a non-directed graph whose nodes
are ¢; and g5 and all obstacle region. The links of the subgraph connect
the obstacle vertices configurations and they determine the roadmap. The
other links of the graph connect the initial and goal configurations with the
roadmap. [17] (Figure 2.3)

%@5 1 \\e

Figure 2.3: Visibility Graph Method

Probabilistic Roadmaps

A Probabilistic Roadmap algorithm constructs a map in a probabilistic way
in W. It divides planning into a learning and a query phase. During the
first one a roadmap in Qfree is build, in the second one the configurations
are connected in the roadmap. The roadmap is represented in an undirected
graph G = (V, E). Where the nodes V are a set of g chosen from Q free. The
edges in F are paths; an edge ¢1, g2 is a collision-free path that connects

2.1. PATH PLANNING 11

them. These paths are known as local paths, which are computed by a local
planner.

During the query phase, the roadmap solves individual path-planning
problems, where given ¢; and gy, it tries o connect them to the closest
nodes ¢’ and ¢”, respectively, in V. If it succeeds it reaches the graphs G for
a set of edges E that connect ¢’ to ¢”. It finally transforms the set of nodes
into a path for the robot by recomputing each local path and concatenating
them. These paths are stored in a global roadmap, but it implies more
storage memory. The roadmap can be reused and augmented to capture
connectivity in Qfree- Usually the learning phase runs before the query, but
they can be interwoven. Sometimes it is feasible to spend lots of time during
the learning phase if the roadmap will solve many queries. [9] (Figure 2.4)

o 7

\./

Figure 2.4: Probabilistic Roadmap

Voronoi Diagram

Another roadmap method is retraction. It defines a continuous function
in Qfree to a 1D subset of itself such that the restriction of this function
to this subset is the identity map. In a 2D Qy,.. the retraction is called
Voronoi Diagram. It can be defined as the set of all Q.. Whose minimal
distance to a QO is achieved with at leas two points in the boundary of it.
Its main advantage is the creation of free paths which usually maximize the
gap between the robot and the surrounding obstacles. A free path between
¢; and gy is composed by three main subpaths: the first one is a straight
line from ¢; to ¢}, a path from ¢] to ¢s and finally a line from ¢/ to g;. [17]
(Figure 2.5)

12 CHAPTER 2. STATE OF THE ART

e

Figure 2.5: Voronoi Diagram

1 s

2.1.3 Cell Decomposition

One of the most popular planning methods is Cell Decomposition, it has
been widely used and studied. It decomposes Q re. into small regions (cells)
to generate a path from any g; to g¢. A connectivity graph is used to search
in the adjacency between the cells. Each node is a cell that belongs to
Wtree OF Qfree. TWo nodes are linked if and only if they are adjacent. The
resulting output of the search is called a channel, a continuous sequence of
cells or path. [17]

Cell decomposition methods can be broken down further into ezact and
approzimate methods:

e Exact cell decomposition methods decompose the free space into cells
whose union is exactly the free space. The boundary of a cell corre-
sponds to a criticality of some sort. (Figure 2.6a)

e Approximate cell decomposition methods produce cells of predefined
shape whose union is strictly included in the free space. THe boundary
of a cell does not characterize a discontinuity of some sort and has no
physical meaning. (Figure 2.6b)

2.1.4 Potential Field

A straightforward approach for path planning is to discretize Q into a very
small grid of ¢ in which an informed search algorithm is employed to find

14 CHAPTER 2. STATE OF THE ART

Figure 2.7: Potential Field

holonomic robot into a desired configuration. [12](Figure 2.8b) The robot
is equipped with a camera that acquires an image O, = [:c y]T which is
compared wit a reference image, which was previously acquired in the desired
configuration. The current position is analysed such that the robot moves
to a configuration in which it only will need to perform a planar movement.
This way it moves from P; to Py.

......

(RA) 1st slep 2nd step

(a) Actual and desired configuration (b) Moving to a configuration and
comparison planar adjustment

Figure 2.8: Artificial Vision Strategies for Path Planning

Another approach proposes to equip robots with panoramic cameras
that provide its exact location and distance from the other robots. These

2.2. ARTIFICIAL VISION 13

. | =
A i :
[L \ | : B
5 ®
SEimni /o5 IS .
. |
(a) Exact cell decomposition (b) Approximate cell decomposition

Figure 2.6: Cell Decomposition

a path. As in any search algorithm, a good heuristic is required to avoid
getting stuck in a certain q. Some heuristics can be described as functions
known as potential fields.

Usually this metaphor is used to explain this approach: a robot (particle)
moves influenced by an artificial potential produced by the goal Py and the
obstacles. The goal ”attracts” the particle to it while any obstacle repulses
it. The negated gradient of the potential is analogous to an artificial force
that control the robot. At any g, the direction of the force is considered the
direction of the motion. [17] (Figure 2.7)

This method can be very efficient but they have a main drawback, they
can get stuck in a local minima of the potential function rather than the
goal configuration.A way to solve it is to use potential functions that have
only one local minima in the connected subset of Qe Which contains gy.
Another approach seeks to escape from the local minima using several mech-
anisms.

2.2 Artificial Vision

Pinhole cameras have been used for creating models in which the relationship
between a 3D point an a image projection is found. This is achieved by
using epipolar geometry. This type of geometry, also known as stereo vision
geometry, relates the 3D points to 2D images. (Figure 2.8a) It uses the
IBVS (Image Based Visual Servoing) algorithm for directing a mobile non-

2.3. FORMATIONS AND COMMUNICATION 15

cameras can cover the complete workspace. The leader-robot follows a path
while the trackers follow it. (Figure 2.9) The trackers have to keep a certain
distance and orientation from the leader. This approach uses the Luenberger
non-lineal observer as well as the Jacobian. [13]

Figure 2.9: Leader - Follower Vision Tracking

After running a path planning algorithm the robot usually follows a
route, but when the only information available is the intersections the robot
shall pass it results necessary to check the actual location by Artificial Vision.
Several works accomplished that a robot could follow the pavement’s white
line, so using this achievement as a basis a work was proposed for a Campus
Walkway. An image is captured, the initial color attributes of the walkway
must be acquired. (Figure 2.10a) The part corresponding to the trail shall
be differenced from the extra elements. After it a line is drawn from the
trail’s horizon to the lower center part of the image. The generalization of it
can be explained as follows: the path’s form can be considered as a triangle,
s0 the next step is to draw a line from the upper-most vertex of a triangle to
the center of its base. The robot follows the computed line. (Figure 2.10b)
While more environment samples are taken the robot moves faster and there
are less possibilities of moving into a restricted area. [16]

2.3 Formations and communication

Control

There are two main approaches for controlling a multiple-robot. The cen-
tralized control takes all the decisions and assigns all actions in a single
computer, the environment information is in it. Its main advantage is the

16 CHAPTER 2. STATE OF THE ART

B : A point on right edge] Other area
(a) Walkway Environment Model (b) Walkway Center Line

Figure 2.10: Campus Walkway

task high execution efficiency, whereas its low failure tolerance represents its
disadvantage. If the main computer fails, everything fails. In a decentral-
ized control each robot is capable of taking its own decisions and processing
information. When this type of control is implemented local information
builds up a global behaviour. The information comes from the robot’s sen-
sors and the communication among them. Even if individual actions are
taken, each of them follows a cooperation strategy. Both approaches have
the same problems: explicit communication and the behaviour in a dynamic
environment.

Leader-follower

The leader-follower scheme can be implemented when the number of robots
goes from to to n. A robot must be the leader. It receives precise instructions
from a path planner of how to move. The followers’ only task is to track
and follow the leader’s movements. Not all the robots’ skills and abilities
are employed which can be seen as a disadvantage. In the other hand the
minimum communication between the robots is an advantage. When the
number of followers is greater than two, it is almost impossible for the i-th
follower to esteem the desired path because there is an accumulated error
generated by all the other robots. Because of that the virtual leader concept
was implemented. In it the i-th follower esteems the path of the i-th leader.

(Figure 2.11)
Communication

For big teams in big, dynamic and unknown environments where classic
communication mechanisms are not liable it is necessary to reduce the load

2.3. FORMATIONS AND COMMUNICATION 17

@/ A=t/
o ," gy

) (&L

(F2)

Figure 2.11: Leader - Follower Scheme

in data transmission. Several formations can be implemented as restrictions
between each robot position respect to another team member to maintain
a certain shape in the formation. A formation can be represented as a
set of nodes and edges in a connectivity graph. Each node represents the
localization of each agent and the edges represent the communication links
among them. The information flows in a separate way in slow and fast
time-scale. The fast one is used in critical decision taking which handle time
constraints situations such as collisions or formation adjustments. It controls
movements and paths. The slow one just takes place among non-adjacent
robots. Short term information occurs between neighbours, this reduces a
communication in complex formations. When the desired path is computed
the communication is weakly connected because individual decisions are
propagated to all the agents. [8]

Kinematic Model

In teams that employ formations the main problem resides in controlling
position and orientation of a group of robots as a whole. Several kinematic
models have been used for the leader where z and y describe position and 6
orientation.

[=vcosd ¢ =wvsind é=w]T (2.5)

Multiple-Robot Systems

In some circumstances it is necessary to work with a set of robots where each
one of them is part of a global task. It is necessary to take care interaction
among them and the environment to prevent collisions, look after all the
agents, the environment and the task. The biggest challenge that a robot
group faces is the wheel’s steering error or communication breakdowns. The

18 CHAPTER 2. STATE OF THE ART

first works that were made sought to reduce the computing load of mobile
decentralized non-holonomic robots. It used a leader-follower scheme, where
the leader knew the movement instruction and the followers esteemed the
path depending of the object’s movement in a coordinated way. [15]

Restraints

When a team is deployed with a specific task such as cleaning, environ-
ment recognition, survivor rescue or just following a path it is necessary
to know the robot’s limitations and restraints of energy and time. Some-
times the number of robots for a certain task must be minimum and the
result maximum. It results quite important to find a balance between per-
formance while executing the task and handling energy. While robots move
and work faster the goal is achieved in less time but the power consumption
is high. In the other hand if the task is done while taking extreme care of
the energy consumption the due time may be surpassed. That is why a ve-
locity variation plan must be done so energy consumption can be optimized.
Multiple-robot systems are deployed in these situations so the load can be
divided though it is important to maintain communication among them so
there are no repeated actions. [31]

Object Manipulation

A problem that has been greatly investigated is object manipulation by
multiple-robots. Certain tasks cannot be performed by just one robot be-
cause of its size, weight or the lack of sensor information. It is quite impor-
tant to consider that any action will affect the other members of the team,
that is why coordination is critical. If the robots are equipped with a gripper
or a robotic arm other factors as manipulation speed or movement delay the
problem grows bigger. [22]

Lots of approaches have been presented for a group of agents manipu-
lating an object. One of them proposes to displace an object with multiple-
robots wielding contact forces. These are modelled like non-linear potential
gradients that describe the load deformation. They also work as an im-
plicit communication way: physical interaction between the load and the
agents feedbacks the agent with information of what the other robots are
doing. [14].

There is another approach called Object Enclosure in which the trans-
ported object is caged by a team. (Figure 2.12) It creates a bounded and
mobile area for transporting the object as well as manipulating it. Its great

2.3. FORMATIONS AND COMMUNICATION 19

advantage is that there is no need for continuous contact so path planning
is simpler and more robust. The algorithm works this way: The robots ap-
proach the object independently using the Potential Field Algorithm. An
optimal formation is computed. In this formation the object will not escape
from them while transporting it. A robot is designed as a leader and the
other members change their position in the formation. [32]

(a)Approaching Moving the Object
lothe Objecs © e | Rigid Pormation

Figure 2.12: Object Enclosure Algorithm.

Using intelligent agents is also another alternative. The agents could be
able to learn from a complex and unknown environment using Q-Learning.
When the agent moves the object, it identifies the environment’s state and
autonomously it computes the optimal form to move to the goal. Its pushing
points are predefined to ease the robot’s computation. [30]

Algorithm development for the problem has returned like SBS (Situated
Behaviour Set), where some behaviours were developed for certain situations
in which a robot can find itself. The task complexity is evaluated, as well as
looking for a partner, checking the object and determining if it is possible
to move it. Depending on its parameters the outputs are: change direction,
push the object, rotate the object or look for help. [24]

Until now handling an object has just been done by pushing it, the
following solution pulls the object with a flexible tool. A rope allows to
simplify the computing process as well as having more options for moving
the object. When the object is surrounded by a rope, the contact surface,
mass centre, and rotation are changed. (Figure 2.13) The geometry does
not matter so it is easier to move because there is more stability and the
controllability grows, so the number of robots decreases. 28]

Coupled or decoupled path planning algorithms for multiple robots are
also a solution. The coupled ones create paths for all the robots by combining
the states of the robots in a space-state. It uses a centralized architecture.
Its complexity augments exponentially with the number of robots so it is
not handy to implement. Decoupled algorithms compute the paths for each
robot and its main appeal is the decentralized architecture. It simplifies

20 CHAPTER 2. STATE OF THE ART

Figure 2.13: Nonprehensile Pulling by Multiple Robots

the implementation because it is all computed in several phases. Before the
movement is performed a decision tree must be done with all the possible
robot configurations. (Figure 2.14a) During the first phase the robots move
to determined leafs of the tree, where a robot r moves to a leaf £. In the
second step a collision-free path for the robots is computed. If there is a
robot without a path then it is computed. (Figure 2.14b) Finally, only one
robot moves at the time, this way there will be no collisions. [23]

8 Y
(R2))

n (

F))

(a) Planning Problem (b) Graph-based map
Figure 2.14: Strategy for Coordinating Multiple Robots Within Roadmaps

Finally a hunting system was developed. A group of mobile robots have

2.3. FORMATIONS AND COMMUNICATION 21

the main task of capturing a mobile object. Reinforcement Learning was
used for providing the hunters certain intelligence. Each of them has a
visibility of 27. Using the available information it can take its own decisions.
The hunting algorithm is composed by several states. During the tracking
state the robot moves around randomly to explore the eavironment. The
prosecution state activates when the robot sees the pray and immediately
it begins the chase. During the capture state the hunter asks if any other
robot is chasing it, else it hunts it. The last state is prediction, this states
appears when the target is lost and an estimation shall be done. [33]

Communication

It results quite important to have a liable and adaptable communication sys-
tem in a navigation system. The LOCISS (Locally Communicable Infrarred
Sensory System) is used for inter-robot identification and IDC (Intelligent
Data Carrier) for localization. LOCISS was developed to identify if a mo-
bile object is an obstacle or another teamm member. With ordinary sensors
it turns to be almost impossible to differentiate one from another, so an
ID, location and speed information are transmitted. If received data is the
same as the one sent then the object is an obstacle. IDC is a mobile device
composed by writer and a reader where environment information is stored.
The combination of both algorithms outcomes in a local path planning prob-
lem. {29]

22

CHAPTER 2. STATE OF THE ART

Chapter 3

Theoretical framework

Robot motion planning, as it has been explained, uses lots of areas. This
work employs Navigation concepts, Artificial Intelligence and Path Plan-
ning algorithms as well Gaussian and Nonparametric Filters. The previous
chapter gave a general overview of some of the concepts that will now be
explained deeply. All the algorithms employed for developing this Thesis
will be explained in this chapter.

3.1 Motion Planning

3.1.1 Task

A motion planner most important characteristic is according to the problem
it is designed to be solved. There are four tasks it must accomplish, they are:
navigation, coverage, localization and mapping. In Navigation a collision-
free motion is calculated between two g or states for the robot. Coverage has
to do with using a sensor or an actuator interact with the space. Localization
deals with the problem of interpreting and using a map to interpret sensor
data to determine the current q. Finally, Mapping has to do exploring and
sensing an unknown environment to construct a good enough representation
for using it in in navigation, coverage and localization. [17)

3.1.2 Properties of the Robot

A motion planner is strongly bounded to the robot properties while solving
the task. This is, the robot and the environment determine the number
of DOF and the form of Q. Once it is defined, the roboi motion must be
known, if it can move instantaneously into any direction in Q it is considered

23

24 CHAPTER 3. THEORETICAL FRAMEWORK

to be omnidirectional, else if it has velocity constraints, such as a car, it
is called nonholonomic. Another way to model a robot is by employing
kynematic equations with velocities as control, or by the employment of
dynamic motion equations controlled by forces. [9]

Kinematic Constraints

In the basic problem we assumed that the robot was a free-flying object,
the only constraints on its motions were due to the obstacles. In some
problems we may want to impose additional kinematic constraints to the
robot's motions.

Holonomic Constraints Let us assume that a configuration is repre-
sented by a list of parameters of minimal cardinality. A holonomic equality
constraint relates these parameters and can be solved for one of them, this
way, the relation reduces the dimension of the current Q by one.

Suppose a 3D object A translates freely but it is constrained to rotate in
a fixed axis. .A’s orientation can be represented by three angles, but it can be
expressed as two independent equations. W’s dimension is of 6 while Q’s is
of 4. The particular case when .4 can translate freely at its current location
is considered a holonomic constraint problem, however as this problem is
totally equivalent to a motion problem for a point in RY it is a particular
case of the basic motion planning problem.

Holonomic constraints certainly affect the definition of the robot’s con-
figuration space and may even change its global connectedness. Nonetheless,
holonomic constraints do not raise new fundamental issues. [17]

Nonholonomic Constraints A non holonomic equality constraint is a
non-integrable equation involving the configuration parameters and their
derivatives (velocity parameters). Such a constraint does not reduce the
dimension of the space of configurations attainable by the robot, but reduces
the dimension of the space of possible differential motions at any given
configuration. [17]

Consider a car-like robot A rolling on a flat ground as in Figure 3.1. The
car can be modelled as a rectangular object that moves in W = R2. In an
empty space the robot can be driven at any position with any orientation,
its Q is 3D, two of translation and one of rotation such that ¢ = [:c] 0] .
z and y are Cartesian coordinates in a axis Fy, they represent the midpoint
R just in the middle R of the robot. 8 € [0, 27) is the angle between the z
axis and the robot A’s orientation. Assuming that there is no slipping and

3.1. MOTION PLANNING 25

all movements are deterministic, the velocity of R points along A’s axis. Its
motion constraint is given by:

— sin fdz + cos 0dy =0 3.1)

As equation 3.1 is non-integrable it represents a nonholonomic equality
constraint. Due to it, the differential motions [61: oyé 6’] of the robot at
any q is a 2D space. If the robot was a free-flying object the space would be
3D. The car’s instantaneous motion is determined by two parameters: the
linear velocity along its main axis and the steering angle. However, when
the steering angle different from zero it affects its orientation, therefore its
linear velocity, so the robots’s ¢ span in a 3D space.

4% %
LY

Figure 3.1: Car-like Robot Model

Nonholonomic constraints restrict the geometry of the feasible free paths
between two configurations. They are much harder to deal with a planner
than holonomic constraints. [17]

Uncertainty The basic problem assumes that the robot can follow exactly
paths generated by the planner. It also assumes that the geometry of the
robot, the geometry of the obstacles, and the location of the obstacles are
accurately known. Currently there are no robot settings that satisfies these
assumptions, and both robot control and geometric models are imperfect. In
many cases these imperfections can be ignored because the task may allow
certain tolerance, but that is not always the case.

In the other hand, the robot may have a small or no knowledge of W,
80 it would have to trust completely in its sensors at execution time to get
enough information of the environment so the task can be accomplished. In
this particular case, the robot needs to explore W and usually this approach
is outside motion planning, although it is possible to interweave planning,

26 CHAPTER 3. THEORETICAL FRAMEWORK

execution and monitoring activities, but if there is no a priori knowledge
path planning has almost no relevance. [18]

A middlepoint situation can be where there is a small error in robot
control and in all geometric models but the errors are just found in certain
bounded regions: an obstacle is expected to be in a certain location but it
is displaced, a robot moves in a different direction than the commanded one
but it displaces in a narrow cone centered along the desired direction. To
deal with that kind of error the robot shall be equipped with sensors that
it can employ during execution so it can acquire additional information.
However, sensors are not deterministic either, a position sensor does not
always return the exact ¢ in which the robot is. It results that sensor also
contain certain error in uncertainty region. If that error can be controlled a
motion plan can be generated so it can be tolerant to the overall error. [25]

The motion planning problem with bounded uncertainty can be stated
as follows:

Given an initial region Z and a goal region G in the robot’s
configuration space, generate a motion plan whose execution
guarantees the robot to reach a configuration in G if it starts
from any (unknown) configuration in Z, despite bounded uncer-
tainty in control, sensing and model. A solution to this problem
is a plan that combine motion commands and sensor readings
that interact at execution time in order to reduce uncertainty
and guide the robot toward the goal. [17]

Planning in bounded uncertainty comes up with new issues that are
not covered in the basic problem or in its extensions. Due to uncertainty in
control a motion command may produce any path among the infinitely many
ones which are consistent with both the command and the uncertainty, all
paths must reach the goal so the planner can guarantee success. The plan
must also finish in the goal, but due to uncertainty in sensing, it may be
a big problem to know if the goal has been reached. The planner must
also retrieve enough information that will allow the controller to choose the
correct actions.

Uncertainty leads to the usage of sensor-based motion commands whose
behaviour is less sensitive to errors than purely position-controlled motion
commands. Force-compliant motion commands are one example of such
commands. When used, the robot may touch obstacle surfaces and slide on
them, rather than just stop. Planning such sensory-based motion commands
may require the physics of the workspace to be taken into consideration. [17]

3.1. MOTION PLANNING 27

3.1.3 Properties of the Algorithm

Once the robot and its task have been defined, the algorithms to be used shall
be chosen according how they will solve the problem. This is, the planner
may come with optimal solutions in a certain criteria such as length, exe-
cution time or energy consumption, or just satisfy the constraints. Besides
that, computational complexity, memory requirements, running time (con-
stant, polynomial or exponential) must also be considered. The size of the
problem description could be the number of DOF of the robot system, the
amount of memory needed to describe the robot and the obstacles in the
environment, etc., and the complexity can be defined in terms of the works
case or the average case. [9]

Some planners are complete, they will always find a solution to the prob-
lem if one exists or return failure. This last property is really desirable. In a
motion planning problem, as the number of DOF grows, complete solutions
require lots of computational resources and may not be feasible to use them.
That is why some weaker forms of completeness are sought. One form of
that is resolution completeness, if a solution exists in certain discretization
resolution, the planner will find a solution. Another form, but weaker, is
probabilistic completeness, the probability of finding a solution converges to
1 in an infinite time.

Optimality, completeness and computational complexity naturally trade
off with each other. We must be willing to accept increased computational
complexity if we demand optimal motion plans or completeness from our
planner.

We say a planner is offline if it constructs the plan in advance, based
on 8 known model of the environment, and then hands the plan of to an
executor. The planner is online if it incrementally constructs the plan while
the robot is executing. In this case, the planner can be sensor-based, mean-
ing that it interleaves sensing, computation and action. The distinction
between offline algorithms and online sensor-based algorithms can be some-
what murky; if an offline planner runs quickly enough, for example, then it
can be used in a feedback look to continually replan when new sensor data
updates the environment model. The primary distinction is computation
time, and practically speaking, algorithms are often designed and discussed
with this distinction in mind. A similar issue arises in control theory when
attempting to distinguish between feedforward control and feedback control,
as techniques like model predictive control essentially use fast feedforward
control generation in a closed loop. {17}

28 CHAPTER 3. THEORETICAL FRAMEWORK
3.2 Approximate Cell Decomposition

This path planning approach consists of representing the robot’s free space
Qfree as a collection of cells. Cells are required to have a simple prespecified
shape, like a rectangular shape. Cells do not represent exactly the free space,
instead they approximate in a conservative way, that is why the name it
receives. A connectivity graph representing the adjacency relation among
the cells is built and searched for a path. The rules for using a cell shape
are:

1. Achieve space decomposition by iterating the same simple computa-
tion.

2. To be relatively insensitive to numerically approximate computations.

In this planning method the amount of free space can be controlled for the
generated path by establishing a minimal size for the cells. This is important
when the error in geometric models and/or robot control is not despicable.

The boundaries of the generated cell are kind of arbitrary, they do not
characterize discontinuities in motion constraints. As they conservatively
represent the free space they may fail to find a free path, even if one exists.
This drawback can be attacked by augmenting the time it can employ to
find a solution. [18]

Most approximate cell decomposition methods allow the size of the cells
to be locally adapted to the geometry of the obstacle region. Presetting
the size of the cells could result in significant difficulties: a large cell size
would prevent free paths from being found, while a small size would require
increased computation times. So most methods operate in a hierarchical
way, they generate an initial coarse decomposition and then locally refining
this decomposition until a free path is found or the decomposition becomes
too small.

The principle of the approximate cell decomposition approach can be
applied to the basic motion planning problem in its full generality, as well
to most of its extensions. However, the time and space complexity of the
methods based on this approach grows quickly with the dimension m of the
configuration space. These methods are applied only when this dimension
is small enough.

3.2. APPROXIMATE CELL DECOMPOSITION 29

Description

A rectangle is defined as a closed region of the following form in a Cartesian
space R™:

(@1 sza)or € [t 2],er2n€ ol 2]} (32)

The differences z{ — z}, ¢ = 1,...,n are called the dimensions of the
rectangle. None of this is zero. Let R be a robot whose configuration space
QisRY with N = 2 or 3. A configuration q is represented by the coordinates
of R’s reference point Pg in the frame F attached to the workspace.

We assume that the set of possible positions of R is contained in a
rectangle D C RN, We represent Qjp. as:

R
Qfree = 00 (3.3)

Where R = int(D) if @ = RN
Let Q = cl(R). It is a rectangle of R™, where m is the dimension of the
configuration space Q.

A rectangle decomposition P of € is a finite collection of rectangles
{#i}i=1,..., such that:

e is equal to the union of x;:

Q= LrJ Ki (3.4)

i=1

e The interiors of the x;’s do not intersect

Vi1, i2 € [1,7],41 # 2 : int(ks,) Nint(ki,) =0 (3.5)

Each rectangle «; is called a cell of the decompaosition P of 2.

Two cells are adjacent if and only if their intersection is a set of non-zero
measure in R™~1. The intersection is computed by taking into account that
Q =R? x 8!, (z,y, 2w) is identified with (z,y,0).

A cell ; is classified as:

e EMPTY - if and only if its interior does not intersect an obstacle
region. x;) N O = 0.

30 CHAPTER 3. THEORETICAL FRAMEWORK

e FULL - if and only if x;), is entirely contained in the obstacle region,
Kk;) C O.

e MIXED - otherwise.

The connectivity graph associated with a decomposition P of lis the
non-directed graph G defined as follows:

o The nodes of G are the EMPTY and MIXED cells of P.

e Two nodes of G are connected by a link if and only if the corresponding
cells are adjacent.

Given a rectangle decomposition P of 2, a channel is defined as a se-
quence (Kq,)j=1,....p of EMPTY and/or MIXED cells such that any two con-
secutive cells xo; and kq,,,, j € [1,p — 1], are adjacent. A channel that
only contains EMPTY Cells is called an E-channel. A channel that con-
tains at least one MIXED cell is called an M channel. If (kq,)j=1,..p iS
an E-channel, then any path connecting any configuration in (k4,) to any
configuration (kq,) and lying in int(Ug___lnaJ.) is a free path. If (kq;)j=1,...p
is an M-channel, there may exist a free path connecting two configurations
(Ka,) and (ka,), and lying in int(U2_, Ka,), but there is no guarantee that
this is the case. [18]

Given an initial configuration ¢; € Qfree and a goal configuration g5 €
Qfree, the problem is to generate an E-channel (kq,)j=1,..p, Such that ¢; €
Kay, and g5 € Kq,. If such a channel is generated, let 8; = Oka; NKayyy,J =
1,...,p — 1, be the intersection of the boundaries of two successive cells.
A free path joining the initial to the goal configuration can be extracted
from the E-channel by linking g¢; to gs by a polygonal line whose vertices
are points Q; € int(B;). For every j such that 8;_; and j; are subsets
of the same face of k., an additional point Q}_, located in the interior of
Ka; should be included among the path’s vertices, since in this case the line
segment Q;_1Q); is not guaranteed to lie entirely in the robot’s free space.
If necessary, the polygonal path can be smoothed. [17]

Hierarchical path planning consists of generating an E-channel by con-
structing successive rectangle decompositions of {2 and searching the as-
sociated connectivity graphs. Let P;, i = 1,2,..., denote the successive
decompositions of 2. Each decomposition P; is obtained from the previous
one, P;_; (with Py = {Q}), by decomposing one or several MIXED cells, the
other cells being unchanged. Whenever a decomposition P;, is computed,
the associated connectivity graph, denoted by Gj, is searched for a channel
connecting ¢; to gy.

3.2. APPROXIMATE CELL DECOMPOSITION 31

input : Connectivity graph G;

1 x: MIXED cell;
2 II;: M-channel;
3 Compute a rectangle decomposition P of §2;
4ie 0
5 repeat
e channel + SearchForChannel(G;);
7 if channel == E-channel then
8 return Success;
9 else if channel == M-channel then
10 Pip1 < Ps;
11 foreach « in II; do
12 RectangleDecomposition(x);
13 Pit1 < [Pir1\{c} U P";
14 end
15 end

16 until Success ;
Algorithm 1: Approximate Cell Decomposition.

The search of G; can be guided by an heuristic. In particular, one could
search for an E-channel before searching for an M-channel. But, although the
heuristic function should put an extra cost on MIXED cells in order to gener-
ate an E-channel quicker, it may also be appropriate to prefer short channels
over long ones. Thus, although an E-channel may exist in a graph G;, it
may nevertheless be preferable to generate a significantly shorter M-channel
instead, and refine G; accordingly. Notice that any E-channel existing in G;
will continue to exists in all the graphs G;, j > 1. [18]

Let us assume that the region cl(Qjfree) is a manifold with boundary.
Then the algorithm can be made complete - guaranteed to terminate and
return an E-channel whenever ¢; and ¢y lie in the same connected component
of Qfree - by working out some details appropriately, for instance:

e The search of the connectivity graph should be complete and it should
output an E-channel whenever one exits.

e All the dimensions of every MIXED cell in P; should tend toward 0
when i — oo.

32 CHAPTER 3. THEORETICAL FRAMEWORK

However, for an unknown region of Qce, there is no upper bound on
the worst-case computation time.

The computing time can be bounded at the expense of completeness by
imposing constraints on the minimal dimensions of the cell. For example, one
possible constraint is that the total volume of the EMPTY and FULL Cells
in the decomposition P* of k be greater than a predefined ratio A € (0,1) of
the volume of x; in addition, every MIXED cell whose volume is smaller than
a prespecified value ¢ is re-labelled as FULL. If such a constraint is imposed,
the algorithm is no longer guaranteed to output an E-channel whenever one
exists. However, if one exists, the algorithm will find one provided that both
A and ¢ are selected small enough. For this reason, the planning method is
said to be resolution-complete. [17]

3.3 A* (A star)

Informed search algorithms employ problem-specific knowledge beyond the
definition of itself. It finds solutions in a more efficient way than uninformed
search algorithms. The general form of A* is called best-first search, which
is a generalization of the Tree or Graph Search algorithm. In it, a node
is selected for expanding it based on an evaluation function f(n). That
function is calculated as a cost estimated, so the node with the lowest eval-
uation is expanded first. The choice made by f will determine the whole
strategy. Best-first algorithms use an heuristic function h(n) to be included
as a component of f. Heuristic functions are a way of providing additional
knowledge of the problem to the search algorithm.

The most popular variation of the Best-first Search is A* search. Its
nodes evaluation system consists of the combination of the cost to reach the
node g(n) and h(n), the cost to get from the node to the goal:

f(n) = g(n) + h(n) (3.6)

g(n) gives is the cost function of moving from the start node a node
n, in the other hand, h(n) gives the estimated cost of the path with the
lowest combined heuristic. By combining them the estimated cost f(n) is
calculated.

If the cheapest solution is being searched, what is usually done is to
try the lowest value node of g(r) + h(n). Using this strategy, it can be
demonstrated that A* search is both complete and optimal.

3.3. A* (A STAR) 33

input : problem
output: A solution, or failure

1 node: a node with STATE = problem. INITIAL-STATE, PATH-COST =
0;

3 frontier: a priority queue ordered by PATH-COST, with node as the
only element;

3 explored: an empty set
4 repeat
5 if Empty? (frontier) then return failure;
6 node: Pop(frontier);
7 if problem.GoalTest (node.STATE) then return Solution(node);
8 add node.STATE to explored;
9 foreach action in problem.Actions(node.STATE) do
10 child + ChildNode (problem, node, action);
11 if child.STATE is not in explored or frontier then
12 | frontier +— Insert(child, frontier)
13 else if child.STATE is in frontier with higher PATH-COST then
14 | replace that frontier node with child
15 end
16 end

17 until Solution or failure ;

Algorithm 2: A* Search

34 CHAPTER 3. THEORETICAL FRAMEWORK

Conditions for optimality: Admissibility and consistency

h(n) must be an admissible heuristic so optimality can be reached. To be
admissible it must not overestimate the cost to reach the goal. As g(n)
represents the actual cost to reach n through the path, and f(n) = g(n) +
h(n), it will never overestimate the true cost of a solution in the current
path through n.

Admissible heuristics are usually optimistic, this is, they estimate the
cost of solving the problem is smaller than it really is. Monotocity or con-
sistency is another required condition for using A* in a graph search. A
heuristic h(n) is consistent if, for every node n and every successor n’ of n
generated by any action a, the estimated cost of reaching the goal from n
is no greater than the step cost of getting to n’ plus the estimated cost of
reaching the goal from n’:

k(n) < ¢(n,a,n’) + h(n') (3.7

The previous equation is a form of the general triangle inequality, it
stipulates that each triangle’s edge cannot be longer than the sum of the
other two. The triangle is formed by n, n’ and the goal G, closest to n.
In an admissible heuristic, the inequality can be interpreted this way: if a
route from n to G, exists via n’ and it is cheaper than h(n), it will violate
the property that h(n) is a lower bound on the cost to reach the goal node.

A* is complete, optimal and optimally efficient, but it is not always the
best solution for all search needs. This is, in some problems the number of
states that surround the goal is exponential in the length of the solution.
The complexity of A* can provoke that it is not feasible to find an optimal
solution. To solve it, A* modifications have been proposed, they find sub-
optimal solutions more rapidly, or a good search heuristics can be designed,
still it will give enormous savings compared to an uninformed search..

Its main drawback is computational time, it saves all generated nodes in
memory. It is not rare that it runs out of memory before a timeout occurs.
That is why A* is not used in large-scale problems, yet some algorithms
overcome the space problem while taking care of not sacrificing optimality
or completeness, however execution time is slightly affected. [27]

3.4 Kalman Filter

Gaussian techniques all share the basic idea that beliefs are represented by
multivariate normal distributions:

3.4. KALMAN FILTER 35

p(z) = det(2n%) " exp(—3(z —)=z —) (3.8)

The density over z is characterized by the mean u and the covariance
Y. p is a vector that has the same dimensionality as z. ¥ is a quadratic
matrix that is symmetric and positive-semidefinite. The dimension is the
dimensionality of the state z squared.

The commitment to represent the posterior by a Gaussian has important
ramifications. This is, Gaussians are unimodal: they have a single maxi-
mum, this characteristic is widely used for tracking problems in robotics:
the posterior is focused around the true state with a small margin of uncer-
tainty. Gaussians posteriors are a poor match for global estimation problems
where many hypotheses exists because each of them forms its own mode in
the posterior. [18]

Linear Gaussian Systems

The moments of parametrization is the parametrization of a Gaussian by its
mean and covariance. Each of them are the first and second moments of a
probability distribution; the rest of them are zero for a normal distribution.
The Kalman filter is the best studied technique for implementing Bayes
filters. It was invented by Swerling and Kalman as a way for filtering and
predicting the behaviour of a Linear Gaussian System. It implements a
belief computation for continuous states, so it cannot be applied in discrete
or hybrid space states. It represents beliefs by the moments parametrization.
At time t, the current belief is represented by the mean y; and covariance X;.
Posteriors are Gaussian if the following three properties hold, in addition to
the Markov assumptions of the Bayes filter. [27]

1. The state transition probability p(z:|us, ;1) must be a linear function
in its arguments with added Gaussian noise. This is expressed as:

Ty = A1+ B + € (3.9

Here z; and z;..; are state vectors, and u; is the control vector at time
t. Both of these vectors are vertical vectors. They arz of the form:

T1¢

T
I = ?'t (3.10)

Tn,t

36

CHAPTER 3. THEORETICAL FRAMEWORK
and
Uyt
1‘2'
u=| (3.12)
Un,t

A; and B; are matrices. A; is a square matrix of size n x n, where n
is the dimension of the state vector x;. B; is of size n x m, with m
being the dimension of the control vector u;. By multiplying the state
and control vector with the matrices A; and B;, respectively, the state
transition function becomes linear in its arguments. Thus, Kalman
filters assume linear system dynamics.

The random variable ¢; is a Gaussian random vector that models the
uncertainty introduced by the state transition. It is of the same di-
mension as the state vector. Its mean is zero, and its covariance will
be denoted R;. A state transition probability as seen in (3.9) is called
linear Gaussian, to reflect the fact that it is linear in its arguments
with additive Gaussian noise. [18]

Equation (3.9) defines the state transition probability p(z:|us, zt — 1).
This probability is obtained by plugging (3.9) into the definition of the
multivariate normal distribution. The mean of the posterior state is
given by A;z;_; + Byu; and the covariance by R;.

P(1|ue, 7e—1) = det(2nRy) "3

exp{—%(-’vt — Azi-1 — Byw)" Ry (3o — Asziy — Bawy)} (3.12)

. The measurement probability p(z;|z;) must also be linear in its argu-

ments, with added Gaussian noise:

2zt = Cexy + 04 (3.13)

Here C; is a matrix of size k x n, where k is the dimension of the mea-
surement vector z. The vector d; describes the measurement noise.
The distribution of §; is a multivariate Gaussian with zero mean and
covariance ;. The measurement probability is thus given by the fol-
lowing multivariate normal distribution:

plaufe:) = det(2nQu) S exp{3(z — Gz '@ (e — Ciz)} (3.14)

3.4. KALMAN FILTER 37

3. Finally, the initial belief bel(z¢) must be normally distributed. This
belief will have mean p and covariance by Y.

bel(@n) = p(zn) = det(2m5o) 4 exp{ ~3(z0 — o) g (@o — o)}
(3.15)

These three assumptions are sufficient to ensure that the posterior
bel(x; is always a Gaussian, for any point in time ¢.

Algorithm

Kalman filters represent the belief bel(z;) at time ¢ by the mean y; and the
covariance Y;. The input of the Kalman filter is the belief at time ¢t — 1,
represented by p;—1 and ¥;_;. To update these parameter, Kalman filters
require the control u; and the measurement 2;. The output is the belief at
time t represented by p; and %;.

In lines 1 and 2, the predicted belief 7z and ¥ is calculated representing
the belief bel(z;) one step later, but before incorporating the measurement
z;. This belief is obtained by incorporating the control u;. "The mean is up-
dated using the deterministic version of the state transition function (3.9),
with the mean y;_; substituted for the state z;_;. The update of the co-
variance considers the fact that states depend on previous states through
the linear matrix A;. This matrix is multiplied twice into the covariance,
since the covariance is quadratic matrix.

input: Ht-1, z:t—ly Uz, 2t
1 By = Aepr—1 + Beug;
2 ¢ = A% 1A7 + Ry;
3 K; = 5,CT(C:ECT + Q)7
4=+ Kc(zt_— Cilir);
5 Xy = (I — kCy)Xy;
6 return y;1,X:

Algorithm 3: The Kalman Filter Algorithm

The belief bel(z;) is subsequently transformed into the desired belief
bel(z;) in lines 3 through 5, by incorporating the measurement z;. The vari-
able K;, computed in line 3 is called Kalman gain. It specifies the degree to
which the measurement is incorporated into the new state estimate. Line
4 manipulates the mean, by adjusting it in proportion to the Kalman gain

38 CHAPTER 3. THEORETICAL FRAMEWORK

K, and the deviation of the actual measurement, 2;, and the measurement
predicted according to the measurement probability (3.13). The key concept
here is the innovation, which is the difference between the actual measure-
ment z; and the expected measurement C;f; in line 4. Finally, the new
covariance of the posterior belief is calculated in line 5, adjusting for the
information gain resulting from the measurement. [25]

The Kalman filter is computationally quite efficient. Each iteration of
the Kalman filter is lower bounded by O(k?*), where k, where k is the
dimension of the measurement vector z;. This approximate cubic complexity
stems from the matrix inversion in line 3. [18]

3.5 Particle Filter

Nonparametric filters are an alternative to Gaussian techniques. The pos-
terior they use is represented by a finite number of values which correspond
to a region in the space state. Some nonparametric Bayes filters decompose
the state space, each of the correspond to a probability of the posterior den-
sity in a region of the space state. Some others approximate the space state
by sampling the posterior distribution. The number of parameters can be
varied such that the quality of the approximation depends on it. If that
number goes to infinity, nonparametric techniques converge uniformly to a
correct posterior under smoothness assumptions. 18]

Basic Algorithm

The particle filter is a nonparametric implementation of the Bayes filter. It
approximates the posterior using a finite number of parameters. It repre-
sents the posterior bel(x;) by a set of random state samples taken from the
posterior. Rather than representing the distribution in a parametric form -
like a normal distribution - particle filters represent a distribution by a set
of samples drawn from this distribution. This distribution is approximate
and nonparametric so it can represent much better a space of distributions.
Another advantage is that it can model nonlinear transformations of random
variables. [25]

In particle filters, the samples of a posterior distribution are called par-
ticles and are denoted

X = :1:,[,1], z?], ceey z{M] (3.16)

Each particle zg'"] (with 1 < m < M) is a concrete instantiation of the
state at time t. Put differently, a particle is hypothesis as to what the true

3.5. PARTICLE FILTER 39

world state may be at time {. Here M denotes the number of particles in
the particle set A;. In practice, the number of particles M is often a large
number. In some implementations M is a function of ¢t or other quantities
related to the belief bel(z;).

The intuition behind particle filters is to approximate the belief bel(z;)
by the set of particles X,. Ideally, the likehood for a state hypothesis z;
to be included in the particle set A; shall be proportional tc its Bayes filter
posterior bel(z:):

o™ ~ p(z|z1.4, urs) (3.17)

As a consequence of it, the denser a subregion of the state space is
populated by samples, the more likely it is that the true state falls into this
region. As it will discussed, the property (3.17) holds only asymptotically
for M 1 oo for the standard particle filter algorithm. For finite M, particles
are drawn from a slightly different distribution. In practice,, this difference
is negligible as long as the number of particles is not too small.

The particle filter algorithm constructs the belief bel(z;) recursively from
the belief bel(z;—1) one time step earlier. Since beliefs are represented by
sets of particles, this means that particle filters construct the particle set A;
recursively from the set X;_;.

inpllti Xt, Ut, 2

7\.'-; =X = 0;

for m =1 to M do

sample I ~ p(xsfus, z™));
wf™ = p(zaf™);
X=X+ (3£'n]tw£m]);
end

form = 1to M do

draw i with probability o w{‘];
add a:?] to A;;

end

return &;

Algorithm 4: The Particle Filter Algorithm

© ® 9 D N b O W=

T
| -]

The input of this algorithm is the particle set A;_;, along with the most
recent control u; and the most recent measurement z;. The algorithm then

40 CHAPTER 3. THEORETICAL FRAMEWORK

first constructs a temporary particle set X’ that represented the belief bel(z:).
It does this by systematically processing each particle 3’@1 in the input
particle set X;_... Subsequently, it transforms these particles into the set
X;, which approximates the posterior distribution bel(z;). In detail:

1. Line 3 generates a hypothetical state a:{"'] for time t based on the

m

particle :L'Lll and the control %;. The resulting sample is indexed by m,
indicating that it is generated from the m-th particle in A;_;. This step
involves sampling from the state transition distribution p(z;|us, z;—1).
To implement this step, one needs to be able to sample from this
distribution. The set of particles obtained after M iterations is the
filter’s representation of bel(z;).

2. Line 4 calculates for each particle a:i'"] the so-called importance factor,

denoted wg"'] . Importance factors are used to incorporate the measure-
ment z into the particle set. The importance, thus, is the probability

of the measurement z; under particle =", given by wE"'] = p(ztl:rim]).

If we interpret w&m] as the weight of a particle, the set of weighted par-
ticles represents (in approximation) the Bayes filter posterior bel(z;).

3. During the second for, resampling or importance sampling is imple-
mented. The algorithm draws with replacement M particles from the
temporary set X’;. The probability of drawing each particle is given by
its importance weight. Resampling transforms a particle set of M par-
ticles into another particle set of the same size. By incorporating the
importance weights into the resampling process, the distribution of the
particles change: Whereas before the resampling step, they were dis-
tributed according to bel(z;), after the resampling they are distributed
(approximately according to the posterior bel(z:) = np(zd:c,l,m])w(zt).
In fact, the resulting sample set usually possesses many duplicates,
since particles are drawn with replacement. More important are the
particles not contained in X;: Those tend to be the particles with lower
importance weights.

The resampling step has the important function to force particles back
to the posterior bel(z;). In fact, an alternative (and usually inferior) version
of the particle filter would never resample, but instead would maintain for
each particle an importance weight that is initialized by 1 and updated
multiplicatively:

3.5. PARTICLE FILTER 41

w) = p(z|zf)wl"} (3.18)

Such a particle filter algorithm would still approximate the posterior, but
many of its particles would end up in regions of low posterior probability.
As a result, it would require many more particles; how many depends on the
shape of the posterior. The resampling step is a probabilistic implementation
of the Darwinian idea of survival of the fittest: It refocuses the particle set
to regions in state space with high posterior probability. By doing so, it
focuses the computational resources of the fiilter algorithm to regions in the
state space where they matter the most. [25)

42

CHAPTER 3. THEORETICAL FRAMEWORK

Chapter 4

Employed Hardware

This chapter includes a description of the employed and developed hardware
for this Thesis. This work’s main goal is to implement several algorithms and
make them interact so the task of transporting a heavy object is achieved,
but it would not be accomplished without the correct hardware.

4.1 Boe-Bot Robot

The Parallax Boe-Bot robot (Figure 4.1) is the focus of the activities and
projects for various type of students, from a beginner student to an advanced
designer. Its popularity comes from how versatile it is for being modified.
It can be used as an standard mobile robot with wheels that uses servo
motors. [3] Another possibility is using those motors to turn it into a crawler
robot that can interact in other type of environments. [4] A final modification
provided by the manufacturer is adding the capability of carrying objects by
using a gripper that can handle up to 14 pounds. [5] Its chassis can accept
several modifications into it so its functionality can only grow.

4.2 BASIC Stamp 2

A Microcontroller is a programmable device that is designed into watches,
cellphones, calculator, etc. In robot applications, the microcontroller is
programmed to sense when a button has been pressed, to communicate,
read sensors or move. [19] The BASIC Stamp is widely used in educational,
hobby, and industrial applications. (Figure 4.2) Its main capabilities are:

1. Processor Speed: 20 MHz.

43

[
[==]

11.

© P N e W N

CHAPTER 4. EMPLOYED HARDWARE

Figure 4.1: Boe-Bot Robot

Program Execution Speed: ~ 4000 PBASIC instructions/sec.
RAM Size: 32 Bytes.

EEPROM Size: 2 KBytes ~ 500 PBASIC instructions.

I/O pins: 16 + 2 dedicated serial.

Current Draw: @5 VDC: 3 mA Run, 50 uA Sleep.
Source/Sink Current per I/O: 20 mA / 25 mA

Source/Sink Current per unit: 40 mA / 50 mA per 7 I/O.
PBASIC Commands: 42.

. Package: 24-pin DIP

Industrial-Rated since Rev J

This microcontroller is designed to interact in a friendly way with the
Boe-Bot robot and with most of the sensors that will be described in this
Chapter, that is why it was chosen. It is a low cost high capability micro-
controller which I/0 ports can perform the typical functions of a pin, but its
main advantage is that they can work as PWM outputs, Serial TX/RX pins
and with some software modifications as an I2C. Most of the products in the
market have one or two serial ports and limited PWM dedicated pins so if
several sensors need serial communications those microcontrollers would not
be a good choice. It was also included with the Boe-Bots that were used,
that was an extra reason of why to use it.

4.3. BLUETOOTH MODULE 45

Figure 4.2: BASIC Stamp 2 Microcontroller

4.3 Bluetooth Module

A Robot needs to communicate with other agents or with a computer de-
pending if it works in a centralized or decentralized way. When working in a
prototype, usually wired communication is used, usually serial or USB. But
when a robot needs to work in a remote location, wireless communication
becomes quite important. The Embedded Blue 500 module will be used, it
is shown in Figure 4.3.

Bluetooth is a technology standard for electronic devices to communicate
with each other using a short-range radio. It is ofter referred to as a ”cable
replacement” technology, because it is commonly used to connect things
that have traditionally been connected by wires. It is based on a frequency
hopping spread spectrum modulation (FHSS) technique. The term spread
spectrum describes a number of methods for spreading a radio signal over
multiple frequencies, either simultaneously or in series. Bluetooth utilizes
FHSS to reduce interference and increase security. The signal is rapidly
switched from channel to channel many times per second in a pseudo-random
pattern that is known by the sender and the receiver. This provides robust
recovery of packet errors caused by interference from another radio source
at a particular frequency. Also, data is generally more secure because it is
not possible to receive more than a fraction of the data unless the hopping
patter is known. Bluetooth utilizes frequency hopping in the 2.4 GHz radio
band and hops at a relatively fast pace with a raw data rate of about 1
Mbps. This translates to about 700 kbps of actual useful data transfer.
The eb500 module supports a maximum sustained bidirectional data rate of
230.4 kbps.

VR & T

"":”u"'- & Uhe..

v

.

[Y

nlm, wiga, a7 kb ”.,.'

T el

46

CHAPTER 4. EMPLOYED HARDWARE

Figure 4.3: EmbeddedBlue 500

The eb500 supports two main operating modes: command mode and
data mode. Upon power up, the eb500 enters command mode and is ready
to accept serial commands. In this mode baudrate can be changed, also
locate other devices and check firmware version. Once the eb500 radio is
connected to another Bluetooth device, the eb500 automatically switches
into data mode. All data transmitted while in this mode will be sent to the
remote the remote device and no further commands can be sent until the
€b500 radio is disconnected or switched back to command mode. [11]

4.4 GPS

A Global Positioning System is a space-based navigation system that can
provides several information such as time, location, speed, course, date,
satellites in view, elevation, azimuth, signal strength, and local zone time
among others. It is a program of the U.S. Department of Defence. It was
developed to overcome limitations of previous systems. The receiver uses
the messages it receives to determine the transit time of each message and
computes the distance to each satellite using the speed of light. Each of
these distances and satellites’ locations define a sphere. The receiver is on
the surface of each of these spheres when the distances and the satellites’
locations are correct. Many GPS units show derived information such as
direction and speed, calculated from position changes. In typical GPS op-
eration, four or more satellites must be visible to obtain an accurate result.
The PMB-648 GPS (Figure 4.4) has several operation modes where dif-
ferent data is returned. The selected mode is the Recommended Minimum
Specific GNSS Data (RMC). [26] The output message has the form of:

$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, , ¥10
(4.1)

4.5. COMPASS 47

Figure 4.4: PMB-648 GPS SiRF Internal Antenna

The data contained in the messages is separated by a comma, the values
are:

—

. Message ID - RMC protocol header.

. UTC Time - Coordinated Universal Time in the hhmmss . sss format.
. Status - Valid or non valid data.

. Latitude - Latitude location in the ddmm.mmmm format.

. N/S Indicator - Indicates if the location is at the North or at the South.
. Longitude - Longitude location in the dddmm . mmm format.

. E/W Indicator - Indicates if the location is at the East or at the West.

. Speed Over Ground - Speed in knots.

© 0w =N e v R W N

. Course Over Ground - Course in degrees.

o
[=]

. Date - Date in the ddmmyy format.

11. Magnetic Variation - It can be East or West.

4.5 Compass

The Compass Medule 3-Axis HMC5883L (Figure 4.5) is a low-field magnetic
sensing device with a digital interface. The compass module converts any
magnetic field to a differential voltage output on 3 axes. This voltage shift is
the raw digital output value, which can then be used to calculate headings
or sense magnetic fields coming from different directions. The module is
designed for use with a large variety of microcontrollers with different voltage
requirements.

48 CHAPTER 4. EMPLOYED HARDWARE

Figure 4.5: Compass Module 3-Axis HMC5883L

The compass module communicates via a two-wire I2C bus system as a
slave device. It supports standard and fast modes, 100 kHz and 400 kHz,
but does not support a high-speed mode. No external pull-up resistors are
required to support these standard and fast speed modes. The compass
returns the value of three magnetic fields in a Cartesian environment, so to
turn it into degrees or radians a Cartesian to Spherical conversion must be
performed. [1]

4.6 Laser Range Finder

The Parallax Laser Range Finder (LRF) Module is a distance-measuring
instrument that uses laser technology to calculate the distance to a targeted
object. The design uses a Propeller processor, CMOS camera, and laser
diode to create a low-cost laser range finder as shown in Flgure 4.6. Dis-
tance to a targeted object is calculated by optical triangulation using simple
trigonometry between the centroid of laser light, camera, and object.

Its optimal measurement range of 15 - 122 cm with an accuracy error
i5%, average 3%. The maximum object detection distance is 2.4 meters. It is
communicated with asynchronous serial 300 - 115,200 baud with automatic
baud rate detection.

4.7 Infrared Line Follower

The Infrared Line Follower Kit from Parallax provides eight infrared emitter
and receiver pairs for high - precision line-following applications (Figure 4.7).
Upon connecting power, the onboard ICM7555 chip begins sending a 38 -
43 kHz signal through all 8 IR LEDs. If the IR LED is over a white surface,
light is reflected to the IR receiver, and its output is low. When the IR

4.8. ROBOT DESIGN AND IMPLEMENTATION 49

Figure 4.6: Laser Range Finder

LED is over a black surface, no light is reflected to the IR receiver, and its
output is high. Red LEDs located on the top of the board are wired to
the output of each IR receiver, and the anode of each LED is connected to
power. When the IR LED is over a white surface, the low signal completes
the LED circuit and turns the LED on. Conversely, when the IR LED is
over a black surface, the LED receives dual high signals and the LED is off.
This allows for easy visual feedback of the Infrared Line Follower’s output
states. An onboard potentiometer also allows for the easy adjustment of the
infrared frequency between 38 and 43 kHz. This allows the sensor to detect
different coloured lines, and also allows for the easy adjustment of the sensor
to different lighting conditions or mounting positions. [2]

ML
®- @

Figure 4.7: Infrared Line Follower

4.8 Robot Design and Implementation

4.8.1 Leader Robot

The leader robot needed to be equipped with the Laser Range Finder to
measure the distance between itself and an obstacle in the environment.

50 CHAPTER 4. EMPLOYED HARDWARE

However, if the LRF kept just one position the information that could be
retrieved from the surroundings would be minimum. That is why it was
mounted over a standard servo motor so it could cover the environment in
an interval [0—#]. Now it is capable of acquiring more valuable information.

Another sensor with which it was equipped is the PMB-648 GPS. As
it is working in the RMC mode, only the TTL serial output, power and
ground wires shall be connected. The GPS is located at the top of the
Transport Platform so it has a clear ”view” to the satellites to assure liable
information. As this robot leads the other ones, it needs far much more
”force” to move. Usually, Boe-Bots are equipped with continuous rotation
servos with a torque of 2.5 kg-cm. With this torque it could not move freely,
that is why those servos were replaced with high torque servo motors that
have a 13 kg-cm torque. Finally, as the Thesis’ main goal is to transport an
object from one place to another, a mechanical structure was added at its
back so it could carry part of the platform. The complete implementation
is shown in Figure 4.8.

Figure 4.8: Leader Robot

Electronic Schematic

The Leader Robot circuit looks as in Figure 4.9. The Basic STAMP mi-
crocontroller is the Robot’s core. It is in charge of receiving commands,
retrieving data from sensors and performing motion actions. The integrated
continuous rotation servo motors the robot has are wired to pins 12 and 13.
In the figure they are not represented, nonetheless they are used. The GPS
is wired into pin 1, and supplied by 8.4 V. The LRF serial input goes to pin
9 while the output to pin 15, this sensor is quite more complex than any

4.8. ROBOT DESIGN AND IMPLEMENTATION 51

other, that is why it has specific communication ports. The standard servo
motor that is in charge of moving the LRF is controlled by an output signal
generated in pin 14. The serial communication lines that are used between
the Leader and the Transmitter are pins 10 (input) and 11 (output). This
wires are not represented in the figure.

Figure 4.9: Leader Robot Schematic

Mechanic Design

The mechanical structure it has on its back is quite simple, it just provides
the robot with a toehold that pulls the Transport platform. It had to be
symmetrical so the handled weight could be evenly distributed through both
sides of the robot, Another reason was for not affecting any of the motors
performance because the desired movement will be affected because of the
weight. A wooden stick is used for coupling the structure with the platform.

4.8.2 Transmitter Board

During the initial plans, the leader robot was equipped with all the sensors
and communication devices: GPS, LRF, Compass and Bluetooth module,
but while implementing it a RAM capacity problem came through: it was
not enough. The memory problem will be explained in a deeper way in the
next chapter. That is why an extra board was needed to handle the Compass
and the Bluetooth module. The hardware split came up with a new need,
somehow the leader and the transmitter should communicate. To solve it,

52 CHAPTER 4. EMPLOYED HARDWARE

serial TX and RX wires were used among them, that way data could flow
between them.

Figure 4.10: Transmitter Board

Electronic Schematic

This schematic is quite simple, there are not much elements in Figure 4.11.
The Transmitter collects data from the Compass, sends commands to the
Leader, receives information from it to be resent to the Planner. The Com-
pass is an I2C sensor so it only has four pins: supply, ground, SDA and
SCL. SDA stands for Serial Data Line, in it the information flows from the
master to the slave and backwards. SCL is a synchronization signal. SDA is
connected to pin 9 and SCL to pin 10. The serial communication lines are
pin 15 for output and pin 14 for input. The BT module is connected to pin
0 for input and pin 1 for output. Pin 5 is used as an enable pin for starting
transmission capabilities to the module.

1
| PARALLAX .« (O]

@ BASIC Stamp HomeWork Board

Figure 4.11: Transmitter Board Schematic

4.8. ROBOT DESIGN AND IMPLEMENTATION 53

4.8.3 Follower Robots

First of all, these robots were equipped with mechanical structures similar
to the ones of the leader. But as the followers are the carriers they needed a
more robust structure with which the weight will be handled. It goes from
the front part, through both sides and it stops at the back. All the structure
has the same height and its symmetrical so the object’s weight will be evenly
distributed among it. The way the followers will pursue the leader is with
the Line Followers. Usually they are located at the lower front part, but
now they were put at the upper front part. This way the Robot will follow
the line’s path wherever it goes, in case it does not see any line it will stay
still until there is a movement.

(a) Follower 1 (b) Follower 2

Figure 4.12: Follower Robots

Electronic Schematic

This schematic is the most simple of them all. As in the Leader Robot, the
Robots’ wheels are not included in this schematic but that does not mean
they are not wired or used. The Line Follower Sensor has a pin for each of
the IR detector. Those outputs are sent to pins 0 to 7, and depending the
IR LEDs that are activated the Robot performs a correction action that can
be moving frontwards, or adjusting right or left. (Figure 4.13)

54 CHAPTER 4. EMPLOYED HARDWARE

@ BASIC Stamp HomeWork Board

Figure 4.13: Follower Robot Schematic

Mechanic Design

The structure distributes the handled weight all over the Robot’s chassis.
The whole structure links all the toeholds just for stability purposes. This
guarantees that if any joint or screw goes out of place, the robot will still be
capable of performing its task. Its main drawback is the sensor location, as
it has continuous contact with the platform’s surface it might get damaged
and malfunction at a certain point.

4.8.4 Transport platform

A platform was needed so the robots could handle the object. At the bottom
of it, two lines are placed where the followers are meant to be. They go from
the middle to the back of the platform so if they get delayed or one of them
moves faster than the other one, they still can follow the leader. At the top
of it some Velcro straps were placed where the power circuit, the battery
and the Transmitter Board will be located.

| I - |

(a) Lower view (b) Upper view

Figure 4.14: Transport platiorm

4.8. ROBOT DESIGN AND IMPLEMENTATION 55

4.8.5 Multiple Robot System

The system integrates both Follower Robots, the Leader, the Transmitter
Board, the Transport Platform and the supply system. The Leader goes at
the front of the team, it pulls the Transport Platform. When the platform
moves, it guides the way for the followers, which immediately start tracking
the leader. The supply system and the Transmitter Board are located at the
top, where they are fixed. The Figure 4.15 shows how the Multiple Robot
System is mounted during execution time.

Figure 4.15: Multiple Robot System

As the implemented robot is a prototype it has several drawbacks but
lots of virtues. Among the virtues are the usage of low cost robots working
together to perform a task, All the employed sensors and actuators are not
that expensive and can be found with ease. All the components are user-
friendly and they can be easily used, nonetheless it is important to know
how they work so all of their capabilities can be exploited. An object (not
quite heavy) can be moved between two points, for now just a uniformly
distributed weight one. The communications and all of the hardware were
carefully selected so they could be robust and quite liable while facing several
situations. Durability is a main requirement, robots must be able of working
for a long time during different conditions. Almost all devices wear out
with usage but the employed ones demonstrated to last long enough while
doing lots of tests. There are three main drawbacks, the firs one is the
uncertainty that the sensors and actuators have, for many applications high

56 CHAPTER 4. EMPLOYED HARDWARE

precision data is required, but the employed hardware does not provide it
continuously, this is, motion is not always performed as desired, and sensors’
measurements may have a large error.

Chapter 5

Software: Design and
Implementation

Throughout this chapter the developed software programs will be listed and
explained. It will be divided in two main sections: the Robot Programs and
the Planner Programs. In both of them it will be explained how data is ac-
quired or sent, communication protocols, movement commands computation
and execution, as well as localization, mapping and obstacle avoidance. The
computer used for running the Planner Programs is a DELL XPS L502X
with an Intel Core 17 @2.20GHz, 8GB RAM and its OS is Windows 7 Home
Premium x64. The most important work of this Thesis was implemented
here that is why this chapter has a great importance. Actual code is not
included here but pseudo-code is. This is for making it comprehensible to
almost anyone, as well as if this work is used as a reference it can be easier
to understand the implemented algorithms.

The algorithm can be represented as a flowchart. It represents the con-
nections and links that exist between each of the hardware and software
elements in the System. All the computing load is performed in the Planner
which retrieves information from the Transmitter. It can access all the sen-
sors and elements in the System in a direct or indirect way. The sensors can
be accessed by all the elements that have a superior hierarchy, this is, the
Planner cannot access directly any element contained in the system, but it
can ask for the data. The lower level elements of the System are in charge
of providing the Planner all the information it requires. The planner and
the Leader robot are indirectly linked, another indirect relationship is the
one between the Leader and the Follower Robots.

The diagram in 5.1 shows the overall implementation. The arrows show

57

58 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

ng'ticleFilter

CellDemmsition e > Planner [P T > KalmanFilter

Computer Bluetooth

|

EB500Module

Compass Transmitter Board

|

Leadei'Robgt

GPS Laser RangeFinder F;llower Robot
Figure 5.1: Overall Algorithm Block Diagram

the way the information flows through the various elements of the software
implementation. Algorithm interactions are marked with a dotted line, in-
direct interactions with a discontinuous line and finally direct interactions
with a continuous line. Hierarchy is as shown in the Figure. The diagram
shows a general interaction diagram, each module will be explained in the

following pages.

5.1 Robot Programs

All the Robot programs run in a BASIC Stamp 2. It is a handy but limited
microcontroller, specially when developing a large and complex implemen-
tation. As in any other microcontroller, it has internal auxiliary elements,
it is economic, it can handle several peripherals such as sensors and actu-
ators, uses several communication protocols, but most important of all, it
can work in an standalone mode, but despite of those advantages, it has a
limited program memory and RAM, that is why the code it executes shall

5.1. ROBOT PROGRAMS 59

be very efficient. As mentioned in the previous chapter, the BS2 has 2 KB
EEPROM and 32 bytes RAM, which are quite limited resources for devel-
oping a complex program. Knowing that, the BS2 will only be in charge of
acquiring data from the sensors and executing movements, no processing is
performed in it. Firstly because most of the needed instructions are quite
complex for such a microcontroller and valuable information could be lost,
lastly because such instructions consume lots of program memory.

5.1.1 Leader Robot

Figure 4.8 shows the actual implementation of the Leader Robot. This
Robot is in charge of moving, the GPS and the LRF, but as it has no wireless
transmitting capabilities, it must sent the data it has just retrieved to the
Transmitter Board. The Leader shows the way to the followers and it plays
the Master role, but as it has no decision-making capabilities, it must be a
Slave of the Planner. It waits for an indication coming from the Transmitter
Board to execute an action. Meanwhile, it waits for an instruction. The
general pseudo-code of the Leader is presented in Algorithm 5.

EEPROM Mep I

[i[xLzLaquiLqL7leglglg C

|3B0{00 00 00 00 00 00 00 00 00 00 0858 7

RAM Map
BUBRNNIB76543210
SR =5 % S 5 2 T

EEPROM Legend RAM La‘qend
Displey 557 B ool Dota - Froren B RnieE B £3- Dnesed
(a) EEPROM Map (b) RAM Map

Figure 5.2: Leader Robot Memory Maps

This code might look quite simple but the amount of memory it uses is
significant (Figure 5.2). RAM is used completely by pin definitions, Byte and
Word variables used in it. Most of it is consumed while reading the GPS.
The EEPROM is occupied in a 53% . No complex functions are used in
the code. Mainly just basic instructions like serial transmission/reception,
PWM generation and a switch structure were used. Nonetheless a great
amount of program memory is occupied. The data transmission between the

60 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

Leader and the Transmission is done by the Serial protocol. It is configured
to transmit/receive 8 bits, no parity, no end bit and a BaudRate of 9600.

The LRF samples are took by using the laser device as well as a Standard
Servo Motor. the [0 —] interval is divided in 44 parts. So when a sample
is taken, the servo motor rotates J; radians until the whole environment
is covered. Each of them represents ~ 0.07 radians. With that number of
samples, a good resolution is reach so if there is a near obstacle it can be
perfectly mapped. In case that the Kalman filter is used, the samples are
liable for being used in the algorithm. For transmitting the LRF samples,
each time one is took, it is sent to the Transmitter Board. This is because
it is not affordable to save a set of samples because of memory constraints.
Something similar happens when reading the GPS. As seen in (4.1) the
output message sent by the device is too long. Some segments must be
selected among the whole String. The interest characters are the Latitude,
Longitude, and the N/S, E/W indicators. Combined all of them, a set of 18
characters are sent to the transmitter.

The robot uses the non-holonomic model in Figure 3.1. For moving, it
just waits the indication. In the case of going front, it moves approximately
55 cm in the same direction it is heading. When going right or left, it
executes a + 90°turn while moving approximately 50 cm. As it can be ex-
pected, movements and sensor readings have a certain degree of uncertainty,
the particle filter deals with it.

5.1.2 Transmitter Board

The board can be located in Figure 4.10. The Board mainly plays the role
of a semaphore, but it also is in charge off obtaining data from the compass.
When started, it waits for a Bluetooth connection coming from the Planner.
After it has successfully connected, it waits for an action. The selected
action can be: measure the environment, read the GPS or the Compass, or
to perform a movement. As it has no direct access to the GPS or the LRF
it must request for the data to the Leader. The communication protocol
is consistent with the one that was explained just before. The Board and
the Planner communicate with each other via Bluetooth, the serial port
configuration goes as follows: the BaudRate is of 9600, 8 Data Bits, no
parity, and a "CR/LF” terminator. The BS2 has no I?)C communication
ports, so they had to be implemented by software using General Purpose
I/O Pins. Parallax provides this software implementation.
In this case the RAM was used in an 85% , essentially it was employed in
pin definitions, Boolean, Word and Byte variables. The EEPROM was used

5.1. ROBOT PROGRAMS 61

Initialize(Robot);
Initialize(LRF);
Initialize(GPS);
Initialize(Serial);

WaitFor (Synchronization signal);
WaitFor (Action from Transmitter Board)

switch Action do

case Measure
MeasureEnvironment();

WaitFor (Samples);
Serial.Send (Samples);

WaitFor(Location);
Serial.Send (Location);
case Front

| Move(Front)
case Right

| Turn(Right)
case Left

| Turn(Left)
otherwise

| Do nothing

end
end

Algorithm 5: Leader Robot Program

in a 70% mainly because of the software implementation of I2C. The code
is quite similar to the one used in the Leader. The main activity performed
by the Board is the continuous data transmission. The most important part
of it is the coordination of command/data reception/transmission between
the three entities: Leader, Board and Planner.

Transmitter Board

LeaderRobot < — — —— - ————— — — — » Planner
As the diagram shows, there is a direct connection between the Leader

62 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

RAM bap
BUBRNN9B876543210
55 0 S e

oy

»

EEPROMLegend | [RAMLegend - i s
i A -Proaran | .- - =-
L D R V= R B Ribbio e -Unused |
(a) EEPROM Map (b) RAM Map

Figure 5.3: Transmitter Board Memory Maps

and the Board, the Board and the Planner, but an indirect one between
the Leader and the Planner. This way the Planner can get data from the
Leader’s sensors. The I?C hard-coded interface is necessary because the
Compass Module 3-Axis HMC5883L communicates using this protocol. It
emulated the behaviour of this type of port by shifting registers and out-
putting them in a pin, as well as forcing SDA and SCL to a logical ’1’ and ’0’
depending on the desired action. I2C may not be the fastest communication
protocol, but it allows to control several devices using only two wires, the
Serial Data Line (SDA) and the Serial Clock (SCL). However it has several
disadvantages such as time constraints and current consumption that will
not be discussed now.

The data retrieved by the Compass comes in the format X = 100,Y =
200, Z = 300, so the individual values are sent to the Planner to be pro-
cessed and the current orientation can be calculated. Originally, this Board
was not supposed to be used. The leader had to handle all the sensors and
the BT module by itself, but as memory consumption outranged the BS2
capacity, the Board came as a solution. An advantage gained by using it
is the distribution of sensor readings and communication management from
the software point of view. From the hardware point of view, due to the
dimensions of the LRF and the BT module, while scanning the environ-
ment, sometimes both devices collided causing the system’s malfunction.
By being in the Transport platform, the BT module has an free way to the
Planner; the compass returns the global orientation of the System, not only
the Leader’s one. And finally, it made more complex and attractive the
problem itself.

5.1. ROBOT PROGRAMS

63

end

Initialize(Bluetooth);
Initialize(Compass);
Initialize(Serial);

WaitFor{(Connection with Planner);
Serial.Send (Synchronization signal to the Leader)

WaitFor (Action from the Planner)

switch Action do
case Measure

Serial.Send (Request to the Leader);
WaitFor (Acknowledge);
foreach sample do
Serial.Receive(Sample from the Leader);
Serial.Send (Sample to the Planner);
end

case Location

Serial.Send (Request to the Leader);
WaitFor (Acknowledge);

Serial.Receive (Location from the Leader);
Serial.Send (Location to the Planner);

case Orientation

Read (Compass);
Serial.Send (X, Y and Z values to the Planner);

case Front

Serial.Send (Command to the Leader);
WaitFor (Acknowledge);

case Right

Serial.Send (Command to the Leader);
WaitFor (Acknowledge);

case Left

Serial.Send (Command to the Leader);
WaitFor (Acknowledge);

otherwise

Do nothing

end

Algorithm 6: Transmitter Board Program

64 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

5.1.3 Follower Robots

Follower robots are just equipped with the IR Line Follower as seen in Figure
4.12. Their main and only task is to pursue the Transport platform wherever
it goes. From the hardware employed for tracking paths, no big algorithm
is needed to implement this kind of Slave behaviour. An ordinary Line
Follower code can be a good reference of how the Followers work. Their
memory (RAM and EEPROM) usage is minimum, that way the will only
be focused on always tracking any movement at all.

EEPROM Map

ll.I.LLZ_I.a.lJJ_SlGJJJ.Bf JATE _Lcj_n_L:_[r -

RAM Map
BUBRNOVIB76543210

REG?:
RE!
REGS:
- REG1
R0 REG1
= |« [m) REG1
EEPROM Legend W-’Leqtﬂﬁ- —
i =3-Proa Pi W
™ DisploysSC BB e B Ured &8 Kbt B C3-Onssed
(a) EEPROM Map (b) RAM Map

Figure 5.4: Follower Robots Memory Maps

The only big modification that had to be made was the sensor’s threshold
of when to detect that a line is present. This is, with different illumination
sources the sensor can behave differently that is why it had to be calibrated
so it could work properly in several locations with diverse luminous intensity.

5.2 Planner Programs

The Planner runs in a remote computer. Its task is to compute the employed
algorithms: A*, Particle Filter, Kalman Filter, and Cell Decomposition, It
requires additional information from the environment, such as the robot’s
location, orientation and obstacle presence. That information comes from
the Leader Robot’s and Transmitter Board’s sensors. After the algorithm’s
output is computed, it must translate it to a primitive command for the
Robot to execute. All the planner runs in MATLAB 2012a. The commu-
nication protocol is Bluetooth with the BaudRate of 9600, 8 Data Bits, no
parity, and a "CR/LF” terminator. The system’s intelligence is contained

5.2. PLANNER PROGRAMS 65

here, most of the calculations are done in quite large loops, which are not
recommended to implement in an autonomous system with small memory.
Some other calculations require a more powerful processor, examples can be
an arctangent, float point operations, array manipulation, linear algebra or
random number generation.

5.2.1 Data Acquisition

All the algorithms used in this Thesis require environment information. The
Kalman filter needs to sample to know if there is any moving object, so it
can estimate where it will be at the time ¢t + 1. A* requires to know where
the robot is located and if there are obstacles in W so they can be evaded.
The Particle Filter requires a location and orientation to estimate the real
robot’s position.

GPS Data

The PMB-648 GPS returns the data it retrieves in a format as shown in
Equation 4.1. Not all the information is useful, so only a part of it is
retrieved for usage. From the entire message, only 19 characters are received
from the Leader. The string looks like: 37232475N121583416W. The first
part contains the latitude information. The first two characters are the
hours, the next two the minutes, and the last four the seconds, the last
letter describes if the location is at the North or the South. Similarly, the
latitude is expressed in the same way, but the hours are contained in three
characters and the final letter represents East or West. This format is only
useful for navigation and people with an expertise in it can easily interpret
them. Usually they are read in the degree representation, such format is
used in different types of applications such as Google Maps, Foursquare,
and Google Places.

To transform the data from degrees to the decimal representation the
following operation must be done:

Decimal — { Hours 4 Minutes 4 Seconds [f North or East

1 x Hours + 2i3ues Mo""‘t“ + =econds ‘sec""d" If South or West (5.1)

With data being transformed to this representation. it can be manipu-
lated as if in a planar (z,y) coordinate system. Now that the concept has
been mentioned and taking advantage that the GPS Location theme is be-
ing treated. The environment in which the Robots will work is located at

66 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

"Explanada CEDETEC”. It is usually used for different type of events such
as cultural, medical and sports. This place has the great advantage that its
form is like two contiguous rectangles. They can be used as a semi-ideal W.
Each of them will be used separately, just to keep its ideal shape.

Figure 5.5: Real Workspace

Just for now, another theme will be treated but it has to be mentioned
in this section. Landmarks are needed for implementing the Particle Filter.
They are used as a reference for the robot to know where it is located. In
environments with no regular shape, landmarks are set by the experience of
the designer, but when it can be approximated to a regular one the designer
must take advantage of it.

Each of the corners of the rectangles will be used as a landmark. The
landmarks will be stored in an a 4x2 matrix. The order of the corners used
as landmarks is: Upper right, Lower right, Lower left and Upper left.

They will look this way for the upper rectangle:

19.283587 —99.135622
19.283265 —99.135668
Ly = |19983301 -99.135947 (5.2)

19.283622 —99.135788

And for the lower one:

5.2. PLANNER PROGRAMS 67

19.283201 —99.135535

19.282911 —99.135567
Ly = 19282053 —09.135838 (5.3)

19.283276 —99.135788

LRF Data

The LRF returns data in a [0 — 99]cm interval. As mentioned before, it
samples the environment each 7; radians. If the sampling takes place in an
empty W then all the samples will have a magnitude of 99 in all the angles.
If this data is plotted it resembles the form of a semicircle.

100
[

90+ Gcoocoooo

80} o o]

01 [2

60} o 4

50+ [o

aOr 4 o

0F

[e]

o fel
20F o o
1wof °

o}

-‘%00 -5IO 0 50 100

Figure 5.6: Laser Range Finder Data

Whenever an obstacle is located, a different value rather than 99 is re-
turned. That way it can be mapped so A* can use it so it can be avoided.
The retrieved data is also employed while using the Kalman Filter, its func-
tion will be explained later.

Compass Data

The Compass Module 3-Axis HMC5883L returns X,Y and Z values corre-
sponding to Earth’s magnetic fields. These data comes in a three dimen-
sional Cartesian form. Assuming that our planet has a spherical shape, the
information can be transformed into a spherical coordinate system. This is,
in a Cartesian system a point is specified by its coordinates in each plane

68 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

while in a spherical system by r(radius), f(inclination) and ¢ (Azimuth).
They can be calculated by:

r=yz2+2+22
< 0=arctan (f) (5.4)
o= san ()

All the information can be handy at certain point, but the most impor-
tant component of it is the Azimuth. It tell us the inclination it has from
the porth. After calculating the Robot’s current orientation it must be ma-
nipulated so it can be used in a more natural way. In the planar coordinate
system used as W the 0° marks is located exactly at the East, so 90° had
to be summed to the original computed orientation. The obtained angle
by itself gives information of where the Robot is facing, but if used with
other information it can provide further knowledge of where certain places
are located, specifically, the landmarks’ location.

That information is used by the Particle Filter. To compute the land-
marks’ angles, latitude and longitude must be obtained from the GPS. After
obtaining it the following operations must be done:

Alat; = L4t — latgps

Alon; = L;jon — longps (5.5)
Alon;
0; = arctan (Alat,-)

In the previous lines, i is the i-th landmark used in W. The differences
calculated for the latitude and longitude are used for knowing in which
quadrant is the landmark located. Lets remember that when using the
arctan trigonometrical function the sign of that difference determines the
quadrant it will be mapped. Conventional arctan just work in the first and
second quadrant, that is why the arctan 2 function was developed, with it,
the angle can be spotted correctly in the corresponding quadrant. In the
Particle Filter, all the angles are in radians, but for explaining what was
done, degrees will be used.

5.2. PLANNER PROGRAMS

69

Lets suppose that an angle of 168° was calculated using the Azimuth

formula. The GPS returned a latitude of 19.283529 and a
99.135783. The first row of L, will be used:

Alaty = 19.283587 — 19.283529 = 0.000058

Alon; = —99.135622 — (—99.135783) = 0.000160

8, = arctan (0.000160) —70

0.000058

This way the angles for all the landmarks are computed
are plotted, the can be seen as:

156° 1 1 / 70°

longitude of -

(5.6)

. If the angles

-5 -4 -3 -2 - 2 3

51

Figure 5.7: Measured angles from the landmarks

The next step is to subtract the original angle, the data is in the [0-360]

range, so what the Particle receives looks like:

70 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

141° o | 47

-5 -4 -3 -2 - 1 3 4
el 348°

Yg 1L
Figure 5.8: Computed Angles

5.2.2 Cell Decomposition implementation

The Approximate Cell Decomposition Algorithm will be used to represent
the location shown in 5.5. The algorithm that was explained in Chapter
3 subdivided M-cells until a path was found from P; to Ps. In this case,
as there is no clue if there are obstacles in W, the cell size must be set
to a very small value ¢, this way it can be semi-warranted to find a path.
A relationship must be obtained to have an equivalence between the cell
size and a decimal degree, that is why using experience from Mobile Device
programming, the GPS decimal degree coordinates will be multiplied by 106.
So for example from L; the first row will go from [19.283587 — 99.135622]
to [19283587 — 99135622].

Now, this data is too ambiguous for representing it in a m x n matrix,
specially because in almost all programming languages memory usage is an
important criteria for its efficiency. Because of that, an adaptation of the
decimal degree representation must be done. First of all, the minimum lat-

5.2. PLANNER PROGRAMS 7

itude and longitude are computed from the landmarks L, or Ly, depending
which W is currently used. After that, min;,; and min, are subtracted
from L;, so the new landmarks are:

326 323
280 1
L, = 1 37 (5.7)

52 358

The set of values can be seen as the corners of a rectangle so assuming
Explanada Cedetec is a perfect rectangle, this is a valid and functional
representation of W. Everything outside the rectangle’s borders will be
considered as an obstacle.

50

150

50 100 150 200 250 300 350

Figure 5.9: Cell Decomposition Implementation

5.2.3 A¥* implementation

Having explained how W is represented, A* will now get into action. Let
us remember that an Informed Search Algorithm requires knowledge that
will aid it to find an optimal solution to certain problem. To find an op-
timal path we want to get from P; to Py in the minimum number of steps
possible, so our heuristic shall penalize the number of steps taken. So, it

72 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

will find a way to reach the goal quicker. It must be said that the robot’s
environment is defined if Manhattan Distance, and it can only move in a
vertical or horizontal way, no direct diagonals are allowed. With that said,
the implemented heuristic shall conduce all movements to goal. While the
robot is far from the goal it will greedily try to find a way to reach it. A
paraboloid was used to generate it. Its mathematical expression is:

_(@-9) (-9)
z= " + 5 (5.8)
Where g, is the goal’s coordinate, a and b are set to 1. This way the
center of the paraboloid will be located at the goal, so it will always converge
if a path exists, else it will return failure. In a grid of 50 x 50, with the goal
located at (25,25) the paraboloid will look as follows:

1400

Figure 5.10: Employed Heuristic

Now, as mentioned in the previous section, W is defined in a m x n
cell matrix, Wy, has a value of ’0’, in the other case if an obstacle is
located at that point OW contains a '1’. In an hypothetical environment
like the one showed in Figure 5.11 (a) the blue cells are empty, the other
ones are obstacles. A* will only look for an optimal path through W. After
it has performed the search, it will return primitive instructions such as the
following;:

B 1 I o S JEY (5.9)

Each arrow describes the direction of where there robot shall move. As
it can be inferred, the actions are up (1), down ({), right (—) and left (+).

5.2. PLANNER PROGRAMS

When goal is reached, a * is returned.

100 150 20 250 300

(a) W with obstacles

100 150 200 250

(b) Computed Path

Figure 5.11: A* implementation

73

74 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

A run of the algorithm is shown in Figure 5.11 (b), the paraboloid’s
center (heuristic) is located at the goal, the computed path is shown as a
white line.

5.2.4 Particle Filter implementation

The Particle Filter shows the general scheme described in Algorithm 4 but it
suffers some little modifications so it can be coupled to the current problem.
First of all some noise constants must be defined: bearing, steering and dis-
tance. Robot motion usually is not as exact as one could wish, that is why
these parameters shall be set according to observed uncertainty. PF deals
with Gaussian noise in sensor readings and motion, so the noise constants
can be seen as o2 for a reading p. Next, the number of particles shall be
specified. This number shall be proportional to the difference of the max-
imum and minimum data in which the algorithm will run. High precision
is reached by using a large number of particles, but the disadvantage is the
time consumption. For our case N = 500 particles worked nice enough.
A random initial population of N particles is thrown to the environment.
They have a random location and orientation:

random (max(L; jq¢) — min(L; 1at)) T
pi = |(random (max(L;on) — min(L;on)) (5.10)
random (27))

The big next step is to perform a movement according to the robot’s
motion. Each of the particles moves and rotates from their own location.
At this point, distance and steering noise are critical values because they
define how much does each particle really moved. Then, sensor data is
acquired from the GPS and the Compass. Data is returned in the format
that has been explained previously. The measurement error stage takes
place. Here, the error is calculating by obtaining the difference between the
physical measurement and all the particles computed measurement. Finally
a resampling takes place, only particles with a very small error survive, the
ones that have a big error are relocated near the real robot location following
a Gaussian distribution.

A brief example will be given. Using Explanada Cedetec’s upper rectan-
gle as W, the robot will locate itself. It will perform no movements at all, nei-
ther planar nor rotational. The robot’s real location is [19.283529, —99.135783]
with an orientation of 168.19°. The previously explained steps are taken.
After 5 iterations the particle population has dramatically reduced into a

5.2. PLANNER PROGRAMS

radius surrounding the real location: [19.283533 — 99.135780] with an ori-
entation of 167.17°. As five more iterations are done, the Gaussian estimate
of the robot’s location is narrowly closed to the real one, as an estimate of

[19.283527 — 99.135791) and 167.47° is computed.

- -
PR B o
el e T o%t 7T 5 e s
bt ° o S % 5 %e
o % 0, gP 0 2
1o o 8 o $
ogf o ® %8 &
Ll ° o
o o %o 5"
om S AL AT ..
B o % 8 fea0 n
N
- o o
o i .;; eo: NELA
s oo oo
o o 0® g, RN]
° o o
PR e'ﬂ . N oo B &
°o e © 8o o o °
ramf ® o 8o =
el o o,
9 ® ¢ 0’8 ° % o
o RN
$ o b o 090 eu .t oo o
R B N A L
o o © 0%,
i . o
R T T T ST TR S T T T

(a) Initial Random Particles

. ‘0‘ []
- W .
.-“‘\'\B
- . T
l' .

(b) Particles after 5 iterations

(c) Particles after 10 iterations

Figure 5.12: Particle Filter implementation

5.2.5 Kalman Filter implementation

Kalman Filter is tightly related to LRF samples. At first, the environment
is completely sampled. If there is an object detected, there will be 5 more
environment samples taken. The centroid of the detected object will be
computed so just one z and y value per sample is used. After that, the data
is set into the KF to esteem where will the moving object will be located at

76 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

t + 1. The Employed matrices look as follows:

—4.6236
137416 (5.11)
00 0
00 0 0
Z1= (g 0 1000 o0 (5.12)
00 0 1000
0
0
u= (o (5.13)
0
1027 0
01 0 27
A=l00 1 o (5.14)
00 0 1
01 0
w0
1000
m=[} 00 510

For example, the Robot will track a moving object that is moving away
from it. It takes an initial sample that will be used as p. The samples z;
are taken each 2.7 seconds, which is the time the LRF scans completely the
environment. After sampling 5 times the environment, the result is really
impressive, it computes the estimated output with great precision, such as
Figure 5.13 (b).

5.3 Global Algorithm

The whole algorithm implementation required a coupling strategy so all of
them could employ the same (or very similar) data. Through the previous
chapter all algorithms outputs were shown individually, now the final results
are presented. The final implementation will be explained in detail.

5.3. GLOBAL ALGORITHM 77

100,
a0 © Original
20 90| © Muestral
Cq © Muestra?
80 Vi 80 Muestra3
o, © Muesred
70 © L Prediction
o ©
60 o ¢ 60|
o o
50| ° e L3 50|
° . Q o
@F o o -
20 L] PP o 30 =
a vo&" A °
2 o P o 2 o
o
o} ° J" °© 10
o o
S0 0 0 % 00 S0 50 o 50 100

(a) LRF’s Environment Samples (b) Kalman Filter Estimate

Figure 5.13: Kalman Filter implementation

The program starts by asking which W of Explanada Cedetec will be
used (Figure 5.5), if the upper or the lower one, each one of them has different
landmarks coordinates. Whichever was chosen, it will be conditioned to be
used by all the algorithms, so it is multiplied by 10° and rounded to the
nearest integer. With those digits the resolution is quite good enough. The
step is to calculate the minimum and maximum values of the latitude and
longitude that define each W.

The next big step is to define all of the constants that will be used, these
are:

1. Particle Filter - Particle number definition (500), the robot’s length
(1), bearing noise (1), steering noise (0.1) and distance noise (1). The
measurements is initialized to an empty array, the initial motion is set
to stay still.

2. Kalman Filter - Sampling time (2.7 seconds), p:—1, X1, ut, 2, At,
C; and @;. Also the angles in which the LRF will point are set.

3. Cell Decomposition - Set the corners to a parametrized W represen-
tation, this is, it will not have the conventional GPS decimal degree
representation, but a smaller number not bigger than 350. Everything
outside W will be set as an obstacle. (Figure 5.9)

4. A* Search - The goal location is defined if and only if it is a valid one
inside W.

5. Serial Port - 9600 Baudrate, 8 Data bits, no parity, CR/LF terminator
and a time out of 1.

78 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

The initial set of particles is thrown an plotted (Figure 5.12 (a)). A while
loop starts just at this point, it will only stop if the robot is located at the
goal. Particles move according to their location and orientation. After it, the
GPS and Compass are read for obtaining the errors between the expected
and the actual measurement. Particles with small error will survive, the rest
of them will be re-sampled until they are located near the actual location
Gaussian.

Now the Kalman Filter is used to map any obstacle present in the sur-
roundings of the robot, in case it is a mobile object, its trajectory is esti-
mated. The previously computed position is used as the initial location of
the robot to start the A* search for an optimal path. After it, the movement
is performed and the while loop repeats until the robot completes the task.
Algorithm 7 shows the pseudo code of what has just been described.

5.3. GLOBAL ALGORITHM

79

input: Goal
1 Initialize(Constants);
2 Initialize(Bluetooth);

3 Create(Environment);
4 Create(Particles);

5 repeat

e ParticleFilter Move (Particles);

7 Read (GPS);

8 Read (Compass);

) ParticleFilter.Compute (Angles);
10 ParticleFilter.Compute (Error);
11 ParticleFilter.Resample (Particles);
12 ParticleFilter.Get (Location)

13 if Location == Goal then
14 | return Success

15 end

16 KalmanFilter.Sample (Environment);
17 if Moving Object then

18 | KalmanFilter.Track();
19 else

20 | KalmanFilterMap();

21 end

22 A*.Compute (Path);

23 if Path ezits then

2 | Move(Robot);

25 else

20 | return Failure

27 end

28 until Success or Failure ;

Algorithm 7: Final Program Implementation

80 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

Chapter 6

Results

In this chapter results will be presented throughout the most representative
cases. All the problems that were faced are also mentioned here. Lots
of images will be used so the understanding process can be done easily.
Due to workspace availability, all the tests were done at Explanada Cedetec
secondary area, but they could have been easily done in another location.

6.1 Implementation Runs

Four cases will be presented in this section. Each of them shows the al-
gorithms functionality in various situations. They were carefully chosen so
they could represent all the cases that the robot can face. It must be said
that the robot executes the Particle Filter first of all so it can locate itself
at W before any motion action is performed, this way collisions are avoided
as well as creating more uncertainty. Once the robot’s location is identified
a Path is computed using A* and it is translated to a primitive action so
the robot can perform it.

6.1.1 Robot’s P, is P;

The first situation is one of the most simple of them all. The robot is
already located at the goal, so when the robot initializes and determines its
own location it will know that it is already located at the final point so it will
return Success immediately. In Figure 6.1a it can be seep. the initial robot
location in a Google Maps View. The initial particle guess shows that all
were thrown at random locations, Figure 6.1b. After 10 iterations (Figure
6.1c) there is no good guess of where the robot is located so the Particle

81

82 CHAPTER 6. RESULTS

Filter must continue working to improve it. Figure 6.1d shows similar results
as in 10 iterations, but there is a significant particle cluster formed. Ten
iterations later (Figure 6.1e) a good approximate is computed, but if there
is a considerable amount of noise while reading sensors this believe may have
several peaks. Forty iterations returns a fairly good approximate that shows
the robot’s current location.

After the robot finishes the self-localization stage, it checks out if it
is located at the goal. In this particular case that condition is true, so
immediately it returns Success.

6.1.2 Robot’s P, is outside of the W

This case is a particularity of the previous one. The Particle Filter finds the
robot location given the sensor’s data. In Figure 6.2a there are two pointing
arrows. The leftmost one shows the robot’s location, the one at the bottom
right is the goal location. As the particles converge to the robot location,
it can be seen that from Figure 6.2c to Figure 6.2f the particle’s centroid
is located outside the W. So when the localization stage finishes, the A*
search returns Faslure, and immediately the program stops.

6.1.3 Path planning

Now, the previous examples have shown how the self-location stage works.
The particle filter executes with a movement vector of [O 0]. The first
element represents the travelled distance, the second one the rotation angle.
In other words, it stays still. Now that that the robot location has been
found no more images from this stage will be shown except for the initial
belief and the located robot in the 40th iteration. The next step consists
in finding a path from the current location to the goal state. Each time a
movement is performed all the particles move in the same direction as the
robot does. The A* path is also refreshed so it fits the actual location and
orientation. As movements go by, the path gets reduced and the particles
approach the goal state.

The next three figures show some snapshots from an algorithm run. They
illustrate how the robot moves. The left column shows the robot orientation
at a Google Maps location while in the right one the estimated location the
Particle Filter returns and the computed path that A* returns. The initial
location (Figure 6.3a and ??7) shows where the robot is at a time ¢ = 0.
As the robot performs some movements, it can be seen that it does not
perform as exactly as planned due to several causes such as loose earth and

6.1. IMPLEMENTATION RUNS

E

x10’

(c) Particles after 10 iterations

2’

\\o
3

Ve

SN AR N MD NP SN 1

a0’

(e) Particles after 40 iterations

Figure 6.1: Static Robot Example

o

':,00800096&>0ag
S996 ® B,
L N
By Op @9°
o0 %

o
(S

"
\\,
b3

&

IR 0130 SN0 HID. 91 I NTB
=0’

(@) Particles after 30 iterations

x10

“

?

L3

I S —
AT 91D 12 5139
x10'

(f) Particles after 50 iterations

(a) Robot initial location

"o
|
=]
w = o

(c) Particles after 10 iterations

’l
00 20 W

a1’
o

SIS STIR 5130 91308 130 3T

2%’

S 0TI ST YT 9108 ST VTN
0’

(e) Particles after 40 iterations

CHAPTER 6. RESULTS

sam
J o
iy @‘%’@Zﬁeﬁ&fﬁ
I AARE R
% Bglosog ©
1o Goe oty e mof o
B tigce
3 o
15 9@. o°%o’%°
v f5e Vg,
152m| °%’g@?’ o8
ROER oA
1m0 ’o:,, g°%g°°:

IR NIRRT TR
"

(d) Particles after 30 iterations

3

1
1.9m
X
1402

N —
4 5TED SO 91 3R #3097 ST
a0

(f) Particles after 50 iterations

Figure 6.2: Out of bounds Robot Example

6.2. FACED PROBLEMS 85

irregular ground. So each time the robot executes a movement the path
is recalculated dynamically. When the robot reaches the goal location it
returns success and the run is aborted.

6.2 Faced Problems

Throughout the development of the final implementation lots of problems,
hardware and software, emerged. Some of them will be listed now. Hard-
ware design was the first obstacle that was faced, some modifications had to
be done to the Boe-Bot Robots so each one of them could perform its role
in a better way. Several designs were done trying to give enough capabili-
ties to the Follower Robots. Initially their task was to push the object in
the direction the Leader indicated, but as there could be some movements
that over exploited a Follower, that idea was replaced with the final one.
As Figure 4.12 shows, the robots were equipped with a certain ’exoskeleton’
that distributes the carried weight all over the structure. It suffered several
modifications due to the resources that were available at the time. At the
beginning. four metal tubes held a small platform. That design was thrown
away because of the huge overall weight of the Robots. The structure de-
sign came from considering how could the weight be distributed evenly into
the robot’s chassis while having enough surface contact with the Transport
Platform. Another problem with this robots was to figure out how will they
follow the Leader. What people usually do is to "feel” where the Leader
is going, but as it is quite too mainstream something different could be a
big breakthrough. While watching how light-follower car-like robots worked,
the idea came: there could be a form in which the robot can keep following
a signal. In this case, following a light was not a good choice because in
different environments, the light-source intensity is variable and it could not
always work. So, if a platform was used above the robots, it shall help and
indicate them where it is moving. The low cost solution was to place a line
follower sensor over the Followers and a line under the Platformn. It results
easier to calibrate a line than a light follower. As under the Platform a
shadow is projected, the illumination changes would not affect that much
the Follower. That is why the Follower Robots are always waiting for a
Leader’s movement, wherever it goes they will follow him.

Sensor data gave lots of trouble. Each of them had its own degree of
uncertainty. For example, the employed Compass is not as precise as one
could wish. As it measures magnetic field’s strength, any electronic device
or electric object interfered with the sensor’s readings. Most of the times it

86 CHAPTER 6. RESULTS

STORIIN NN TN ITNESIIS
x10"

(b)

S —
61380013891 3051300 910 5136
x10'

(c) (d)

-3
°
15| l

S S S R—
D3I DTIE1MD 013000100 5138
210’

(e) (f)
Figure 6.3: Path Planning Example part 1

6.2. FACED PROBLEMS 87

L.
2910713 S1IN FI MRS
w0

N,
D010 013D STHO 01350 H1 M5 5138
x10’

(e) (f)
Figure 6.4: Path Planning Example part 2

88 CHAPTER 6. RESULTS

J

OB RRIND I 91 1 ST
w10

(c) (d)
Figure 6.5: Path Planning Example part 3

6.2. FACED PROBLEMS 89

gave a very large mistake from the current orientation to the measured one.
Fortunately, the particle filter leads with this mistake, so it did not affect a
lot the System’s performance. The range sensor gave almost no error at all,
80 it represented no big deal. In the other hand, the GPS gave lots of trouble.
First of all because it depends on how good its connection is to any of the
satellites, During rainy or clouded days its measurements were not liable
at all. It returned an error from 2 to 10 meters, which was not desirable.
Another problem with it was that as it was embedded in the Leader Robot,
during certain movements the high-torque servo motors demanded quite too
much current from the power source which provoked that the GPS loosed
connection with the satellites, increasing the measured error. The solution
to this problem was to implement a local power source for the GPS so it
could have a constant current feed. With this modification, the readings it
returned were quite accurate.

The Leader had some common problems with the Followers. At first, it
was going to pull the object. After the Slave Robots were given an Exoskele-
ton, it needed one too. It only was equipped with a small contact surface
what enable it to carry part of the platform’s weight while leading the way.
During the first tests the Leader had many problems to pull the platform, the
Servo Motors it had did not give it the necessary torque. They were changed
for some more powerful motors, but now another problem emerged. As all
the weight was distributed in the robot’s back, the wheels could not create
enough friction to start the movement. A counterweight was placed at the
robot’s front part. Now there were no motion problems.

Communication was critical among the Planner, the Board and the
Leader. The Leader and the Board use the Serial protocol. Parallax shows
off with its hardware because every I/O pin is capable of generating a PWM
signal and communicating via Serial. In its datasheet it specifies that any
pin can be used as a serial input and output port. In practice, it does not
work as the manufacturer assumes. So separate input/output pins were
used for communication. The BT communication between the Board and
the Planner presented almost no problems. Except for the Time out MAT-
LAB requires for waiting data.

Algorithm coupling was not that complex as it sounds. Almost all of
them are very flexible and can manipulate data with almost no problem.
The real challenge was to parametrize data. This is, the Particle Filter
had no problem while using Decimal Degree coordinates, but for A*’s W
the landmark’s location was too broad, so they had to be set from 1 to a
maximum of 400.

CHAPTER 6. RESULTS

Chapter 7

Future Work and
Conclusions

The obtained results were quite satisfactory, all the proposed objectives were
accomplished. An online centralized low-cost non-holonomic object carrier
Multiple Robot System was developed. All the algorithms employed worked
as expected, plus they were all integrated and modified so they could coexist
and work together. This project can grow as much as it can be wanted. The
robots can be changed for more complex ones just like a Pioneer Robot.
These type of robots are capable of moving any distance that it is specified,
as well as rotating in any direction. Obviously their motion actions can be
represented as Gaussian, not always they will perform exactly what they
were commanded but they are much more liable. They have really big
motors capable of handling large weights. And most impcrtant of all, they
can be structurally modified with certain ease. The only disadvantage they
can face is the presence of a computer that manipulates them, but due to
wireless communications as XBee that is a minor problem.

Another improvement that the System can have is the employment of
better sensors. LRF is not that liable for measuring large distances. Ob-
stacle detection is critical for robot navigation so a faster and more precise
sensor is required. Ultrasonic sensors are a good choice but they are not
punctual, so noise can interfere into measurements, laser looks like a great
choice but its limitations are the sampling time. The employed compass
is quite accurate but it sometimes malfunctions because cf the presence of
some magnetic field, there shall be no problem is a shield is built for pro-
tecting it. A better and more accurate GPS can be used. The current one
has not a good functioning while being indoors, so if an external antenna is

91

92 CHAPTER 7. FUTURE WORK AND CONCLUSIONS

Figure 7.1: Pioneer Robot

connected that problem can be considered as solved.

An extension to the problem that was solved here can be the implemen-
tation of a Multiple Robot-Team System where several teams work together
to deal with objects in the environment. With this extension a decentralized
schema can be used. Each team will know the global goal and will plan its
actions individually. Each team can have N robots depending of what it
is going to transport, thus, some team members can be equipped with a
robot-arm so the object is mounted and dismounted from the platform. An
option for the robot’s processor can be the employment of a mobile device
such as a tablet. Currently, these devices are capable of doing lots of cal-
culations at the time, have a nice user interface, Bluetooth, can access a
remote server via Wi-Fi , and most important of all, they got the minimum
required sensors used for navigation: GPS, magnetic field sensor and altime-
ter. Extended Reality as well as human interaction are the most attractive
capabilities it has.

While talking about software improvements, the path can be computed
while using Dynamic programming, this way a faster online algorithm can
be used, and there will be less impact of motion uncertainty. The only
disadvantage is that all actions are computed at the time so there is a large
computing-load. The localization and mapping done here by the Particle
Filter, can be replaced with a modified-SLAM algorithm, that is quite more
efficient than SLAM and it maps all the environment. Reducing computing
load is important if a decentralized architecture is used.

The job done to develop this project was demanding but at the same
time satisfying. Hardware and Software resources were exploited to almost
its maximum capabilities. The selected workspace helped a lot due to its

93

Figure 7.2: Samsung Galaxy SIII

rectangular shape and because it was in an open space so GPS could have
a direct access to the satellites. It also aided that there are no big magnetic
sources near there to interfere with the Compass readings. There were also
lots of learnings. The author has a Biomedical Engineer background so
much of the themes that where developed in this Thesis resulted new and
abstract, so there was the need to check lots of bibliography to get up to
date. Robotics is a field that is not the future, but the present of human
race. Much of the risky activities that were made by humans are now done
by robots. They are also capable of exploring certain areas that have been
affected by a natural disaster or automating processes. What will come
tomorrow may be autonomous robots just as the ones that only exist in
films, but who knows, maybe one day The Jetsons world will be real.

CHAPTER 7. FUTURE WORK AND CONCLUSIONS

© ® N ® AW N -

Ngi-n-—n-.-n-n-v--n-
- © O NS AN = O

E8BN8BRRYESN

Appendix A

Basic STAMP Programs

A.1 Boe-Bot Leader Source Code

» {$STAMP BS2}
» {$PBASIC 2.5}

LrfServo
LRF_TX
LRF_RX

minimo
maximo
salto

accion

iteraciones
LatGrad
LatMin
LatMinD
NS
LonGrad
LonMin
LonMinD
EW
pulso
range

Inicializacion:

PIN
PIN
PIN

CON
CON

VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR
VAR

14
16

280
1140
20

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Word
Word

’ Servo que mueve el Ping)))
Serial output to LRF (connects to SIN)
' Serial input from LRF (connects to SOUT)

Ancho de pulso para 0°
Ancho de pulso para 180°
Ancho de pulso para 0°

-

@
2
@

&)}
2
1CY)

DEBUG "Iniciando al robot lider...", CR
GOSUB Init_1rf
DEBUG "Moviendo servo del LRF a posiciém inicial®, CR
GOSUB MotorPingInicial

95

31
32
33

35

36

37

39

41
42

S8

46
47

49

51

&8 8E8SQ

87

59

61
62

64
65

67

69
70
71
72
73
74
75
76
77

79

96

DEBUG “Esperando sefial de sincronizaciém...", CR

SERIN 11, 84, [WAIT("start")]
PAUSE 10

SERQUT 10, 84, ["ack"]

DEBUG "Sefilal recibida!!®", CR, CR

Poll_accion:

DEBUG CR, "Esperando accion", CR
SERIN 11, 84, [accion]
PAUSE 100

IF (accion = "m") THEN
DEBUG "Medir ambiente®™, CR
SEROUT 10, 84, ["ack*)
GOSUB Mide_ambiente

ELSEIF (accion = “g") THEN
DEBUG "Leer GPS", CR
SEROUT 10, 84, ["ack"]
GOSUB lee_GPS

ELSEIF (accion = "f") THEN
DEBUG "Mueve al fremte", CR
SEROUT 10, 84, ["ack"]
GOSUB Frente

ELSEIF (accion = "i") THEN
DEBUG "Gira izquierda”, CR
SEROUT 10, 84, ["ack"]
GOSUB Izquierda

ELSEIF (accion = "d") THEN
DEBUG "Gira derecha®, CR
SEROUT 10, 84, ["ack"]
GOSUB Derecha

ENDIF

GOTO Poll_accion

Frente:

FOR i = 0 TO 150
PULSOUT 13, 620
PULSOUT 12, 860

PAUSE 20

NEXT

PAUSE 500

RETURN

Izquierda:

FOR i = 0 TO 145
PULSOUT 12, 960
PULSOUT 13, 660
PAUSE 20

NEXT

APPENDIX A. BASIC STAMP PROGRAMS

'izquierdo quieto 720

'derecho

quieto 740

81

gegeesn

21

E2E8R

97

1
101
102
103
104
108
108
107
108
109
110

112
113
114
116
116
117
118
119
120
111
122
123
124
125
126
127
128

A.1. BOE-BOT LEADER SOURCE CODE

PAUSE 6500
RETURN

Derecha:

FOR { = 0 TO 106
PULSOUT 12, 810
PULSOUT 13, 610
PAUSE 20

NEXT

PAUSE 500

RETURN

Mide_ambiente:

MotorPingInicial

pulso = minimo

FOR i = 1 TO 44
SEROUT LRF_TX, 396, ["R")
SERIN LRF_RX, 396, 3000, No_Response, [WAIT("D = "), DEC4 range]
range = range MAX 990 MIN 160
SEROUT 10, 84, [DEC range/10]
PULSQUT LrfServo, pulso
pulso = pulso + salto
PAUSE 20

NEXT

RETURN

Init_1rf:
DEBUG ®"Iniciando LRF... "
PAUSE 500
SEROUT LRF_TX, 396, ["U"]
SERIN LRF_RX, 396, [WAIT(":")]
DEBUG "Listo!", CR
RETURN

No_Response:
PAUSE 1000
SERQUT LRF_TX, 396, ["U"]
SERIN LRF_RX, 396, [WAIT(":")]
RETURN

MotorPinglInicial:
FOR i = 1 TO 50
PULSOUT LrfServo, minimo
PAUSE 20
NEIT
RETURN

leo_GPS:
SERIN 1,188, [WAIT("RMC,"),SKIP 9,STR LatGrad\2, STR LatMin\2, SKIP 1,

97

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
14
145
146
147
148
149

© ® N O A WDN =

L R R I e T S R R
=0 © ® N @ ¢ h W = O

22

28

98

APPENDIX A. BASIC STAMP PROGRAMS

STR LatMinD\4, SKIP 1, STR NS\1, SKIP 1, STR LonGrad\3, STR LonMin\2,
SKIP 1, STR LonMinD\4, SKIP 1, STR EW\1]

SEROUT 10, 84, [STR LatGrad\2]
SERIN 11, 84, [WAIT("ack")]
SEROUT 10, 84, [STR LatMin\2]
SERIN 11, 84, [WAIT("ack")]
SEROUT 10, 84, [STR LatMinD\4]
SERIN 11, 84, [WAIT("ack")]
SEROUT 10, 84, [STR NS\1)
SERIN 11, 84, [WAIT("ack™)]
SEROUT 10, 84, (STR LonGrad\3]
SERIN 11, 84, [WAIT("ack")]
SEROUT 10, 84, [STR LonMin\2]
SERIN 11, 84, [WAIT("ack")]
SERDUT 10, 84, [STR LonMinD\4]
SERIN 11, 84, [WAIT(“ack")]
SEROUT 10, 84, [STR EW\1]
SERIN 11, 84, [WAIT("ack")]

RETURN
A.2
* {$STAMP BS2}
* {$PBASIC 2.5}
SDA PIN
SCL PIN
WRITE_ Data CON
READ_Data CON
MODE CON
X_MSB CON
I2C_LSB VAR
accion VAR
i VAR
iteraciones VAR
range VAR
opcion VAR
I2C_DATA VAR
I2C_REG VAR
I2C_VAL VAR
datosGPS VAR
X VAR
Y VAR
Z VAR

10

$02
$03

Bit

Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Byte
Word
Word
Word

Transmitter Board Source Code

' SDA of compass to pin PO
? SCL of compass to pin P1

' Requests Write operation

’ Requests Read operation

' Mode setting register

! X MSB data output register

@

dE bt sBRYERBE RN

g2geseyes

83888

59

61
62

g&28

73

A.2. TRANSMITTER BOARD SOURCE CODE

rawl VAR Word
rash VAR Word
Inicializacion:

PAUSE 1000

SEROUT 1, 84, ["con 88:53:2e:70:16:88", CR)
SERIN 0, 84, [WAIT("ACK",CR)]

WaitForConnection:
IF ING6 = 0 THEN

DEBUG HOME, "Iniciando BT...", CR,"esperando conexion..

GOTD WaitForConnection
ENDIF
DEBUG "Se comecto!!", CR, CR

DEBUG "Iniciando HMCS5883L... "
I2C_REG = MODE

I2C_VAL = $0

I2C_Vrite_Reg

DEBUG "Listo!", CR

PAUSE 1000

DEBUG "Sincronizando micros...", CR
SERDUT 16, 84, ["start"]

SERIN 14, 84, [WAIT("ack")]

DEBUG “"Micros sincronizados!!!®, CR, CR
PAUSE 100

Poll_accion:

Do
DEBUG “"Esperando accion®, CR
SERIN O, 84, [accion]

IF (accion = "M") THEN
DEBUG "Medir ambiente...", CR
SEROUT 15, 84, ["="]
SERIN 14, 84, [VAIT("ack")]
Recupera_1rf
SEROUT 1, 84, [DEC 255)
ELSEIF (accion = "G") THEN
DEBUG "Leer GPS...", CR
SEROUT 16, 84, ["g"]
SERIN 14, 84, [WAIT("ack")]
Recupera_gps
SEROUT 1, 84, [DEC 266]
ELSEIF (accion = *"C") THEN
DEBUG “Leer HMCG6883L...", CR
GOSUB GetRawReading

.",CR

100 APPENDIX A. BASIC STAMP PROGRAMS

74 SEROUT 1, 84, ["x", SHEX x]
75 SEROUT 1, 84, ["y", SHEX y]
76 SEROUT 1, 84, ["z", SHEX z]
kg SEROQUT 1, 84, ["w", DEC 265,CR]
78 ELSEIF (accion = "F") THEN

79 DEBUG "Mover al fremte", CR
80 SEROUT 15, 84, ["f"]

81 SERIN 14, 84, [WAIT("ack")]
82 ELSEIF (accion = "I") THEN

83 DEBUG "Gira izquierda”, CR
84 SEROUT 16, 84, ["i"]

85 SERIN 14, 84, [WAIT("ack")]
86 ELSEIF (accion = "D") THEN

87 DEBUG "Gira derecha", CR

88 SEROUT 15, 84, ["d"]

89 SERIN 14, 84, [WAIT("ack")]
20 ENDIF

91 LOOP

92
93 Recupera_ lrf:
94 FOR i = 1 TO 4

95 SERIN 14, 84,[STR range\2]

2 SEROUT 1, 84, [STR range\2, CR]
87 NEXT

98 RETURN

99

100 Recupera_gps:

101

102 ' LATITUD GRADOS

103 SERIN 14, 84, [STR datosGPS\2])
104 SEROUT 1, 84, [STR datosGPS\2, CR]
105 SEROUT 15, 84, ["ack"]

106 ' LATITUD MINUTOS

107 SERIN 14, 84, [STR datosGPS\2]
108 SEROUT 1, 84, [STR datosGPS\2,CR]
109 SEROUT 15, 84, ["ack"]

110 > LATITUD DECIMAS DE MINUTO

111 SERIN 14, 84, [STR datosGPS\4]
112 SEROUT 1, 84, [STR datosGPS\4,CR]
113 SEROUT 15, 84, ["ack"]

114 ’ NORTE/SUR

115 SERIN 14, 84, [STR datosGPS\1]
116 SEROUT 1, 84, [DEC datosGPS,CR]
117 SEROUT 165, 84, ["ack"]

118 ? LONGITUD GRADOS

119 SERIN 14, 84, [STR datosGPS\3]
120 SEROUT i, 84, [STR datosGPS\3,CR]
121 SEROUT 165, 84, ["ack"]

122 ? LONGITUD MINUTOS

123
124
128
126
127
128
129
130
131
132
133
134
138
136
197
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
1568
159
160
161
162
163
164
165
1668
167
168
169
170
171

A.2. TRANSMITTER BOARD SOURCE CODE

SERIN 14, 84, [STR datosGPS\2]
SEROUT 1, 84, [STR datosGPS\2,CR]
SEROUT 15, 84, ["ack"]

' LONGITUD DECIMAS DE MINUTO
SERIN 14, 84, [STR datosGPS\4]
SEROUT 1, 84, [STR datosGPS\4,CR]
SEROUT 15, 84, ["ack"]

' ESTE/OESTE

SERIN 14, 84, [STR datosGPS\1]
SEROUT 1, 84, [DEC datosGPS,CR]
SEROUT 16, 84, ["ack"]

RETURN

GetRawReading:
PAUSE 400
' Send request to X MIB register
GOSUB I2C_Start
I2C_DATA = WRITE Data
I2C_Vrite
I2C_DATA = X_MSB
GOSUB I2C_Write
GOSUB I2C_Stop

’Get data from register (6 bytes total, 2 bytes per axis)

GOSUB I2C_Start
I2C_DATA = READ_ Data
GOSUB I2C_Write

’ Get X

GOSUB I2C_Read

rawll = I2C_Data
I2C_ACK

GOSUB I2C_Read

rawl = I2C_Data

GOSUB I2C_ACK

I = (rawH << 8) | rawL

' Get Z

GOSUB I2C_Read

rawll = I2C_Data

GOSUB I2C_ACK

GOSUB I2C_Read

rawl. = I2C_Data
I2C_ACK

Z = (ravlH << 8) | rawL

’Get Y
GOSUB I2C_Read
rawH = I2C_Data

’ Wait for new data

101

172
173
174
178
176
177
178
179
180
181
182
183
184
186
186
187
188
189
190
181
192
193
194
195
196
197

212
213
214
216
216
217
218
219
220

102 APPENDIX A. BASIC STAMP PROGRAMS

GOSUB I2C_ACK

GOSUB I2C_Read

rawl = I2C_Data

GOSUB I2C_NACK

Y = (rawll << 8) | rawlL

GOSUB I2C_Stop

' Set I2C_REG & I2C_VAL before calling this

I2C_Write_Reg:
GOSUB I2C_Start
I2C_DATA = WRITE_DATA
GOSUB I2C_Write
I2C_DATA = I2C_REG
GOSUB I2C_Write
I2C_DATA = I2C_VAL
GOSUB I2C_Vrite
GOSUB I2C_Stop
RETURN

' Set I2C_REG before calling this, I2C_DATA will have result
I2C_Read_Reg:
GOSUB I2C_Start
I2C_DATA = WRITE_DATA
GOSUB I2C_Write
I2C_DATA = I2C_REG
GOSUB I2C_Write
GOSUB I2C_Stop
GOSUB I2C_Start
I2C_DATA = READ_DATA
GOSUB I2C_Write
GOSUB I2C_Read
GOSUB I2C_NACK
GOSUB I2C_Stop
RETURN

I2C_Start:
LOW SDA
LOW SCL
RETURN

I2C_Stop:
LOW SDA
INPUT SCL
INPUT SDA
RETURN

D D N R e W W

[e
R bW N =0

16

A.3. BOE-BOT FOLLOWER SOURCE CODE 103

I2C_ACK:
LOV SDA
TNPUT SCL
LOV SCL
INPUT SDA

T2C_NACK:
INPUT SDA
INPUT SCL
LoV SCL
RETURN

I2C_Read:
SHIFTIN SDA, SCL, MSBPRE, [I2C_DATA]
RETURN

I12C_Vrite:
I2C_LSB = I2C_DATA.BITO
I2C_DATA = I2C_DATA / 2
SHIFTOUT SDA, SCL, MSBFIRST, [I2C_DATA\7]
IF I2C_LSB THEN INPUT SDA ELSE LOW SDA
INPUT SCL
LOW SCL
INPUT SDA
INPUT SCL
LOW SCL
RETURN

A.3 Boe-Bot Follower Source Code

* {$STAMP BS2}
» {$PBASIC 2.5}
DO
SELECT INL ? Select line follower states
CASE %00011000, %00001100, %00110000
DEBUG HOME, "ADELANTE -

PULSQUT 13, 1000
PULSOUT 12, 500
CASE %00000011, %00000111, %00000001, %00000110, %00111000
DEBUG BUME, "AJUSTA IZQUIERDA "
PULSOUT 12, 450
’ PULSOUT 12, 760
CASE %11000000, %11100000, %10000000, %01100000, %00011100
DEBUG HOME, "AJUSTA DERECHA "
’ PULSOUT 13, 750

104 APPENDIX A. BASIC STAMP PROGRAMS

17 PULSOUT 13, 1050
18 ENDSELECT
19 LOOP

© ® N AW N

e e e e e e e
N e wm e W N =~ 0O

18

Appendix B
MATLAB Programs

B.1 Main Source Code

close all; clear all; clec

format longEng

%% SELECCION DEL ESPACIO DE TRABAJO
espacio = 0;

while 1
cle
disp (’Selecciona_un.espacio.de.trabajo:’);
disp(’1.—_.Rectédngulo_superior’');
disp(’2.-_Rectingulo_inferior ’);
disp('3.-_.Dentro CEDETEC’);
disp(’4_.—_Canchas_Prepa’)

espacio = input(’Tu_opcién.es:.");

if espacio = 1 || espacio = 2 || espacio — 3 || espacio =— 4
break

end

end
disp(strcat(’Se_cargard_el_espacio_de.trabajo:.’, num2str(espacio)));

switch espacio
case 1
% CEDETEC 1
landmarksGPS = [19.283587845330565 -—99.13562268018722;
% Arriba Derecha
19.283265050042573 —99.13566827774048; % Abajo Derecha
19.283301760127006 —99.13594722747803; % Abajo Izguierda
19.283622023617926 —99.13589626550674); % Arriba Izquierda
goal = [19.283537, -99.135785];
case 2
% CEDETEC 2

105

106 APPENDIX B. MATLAB PROGRAMS

30 landmarksGPS = [19.283201756774254 —-99.13553550839424;
% Arriba Derecha
31 19.282911873292704 -99.13556769490242; % Abajo Derecha
32 19.282953646926493 —99.13583859801292; % Abajo Izquierda
33 19.28327644282828 -99.13578897714615]; % Arriba Izquierda
L7 goal = [19.283011876822485, -99.1356173157692];
35 case 3
36 % DENTRO CEDETEC
s7 landmarksGPS = [19.283651138449677, -—99.1348448395729;
38 19.283035928295213, -99.13514792919159;
39 19.283208086102178, -—99.13551270961761;
40 19.28382076388827, —99.13519889116287];
41 goal = [19.28329669666758, —99.13522034883499];
42 case 4
43 % CANCHA PREPA
4 landmarksGPS = [19.285181558622586, —99.13645818829536;
45 19.285029656515284, —99.13656547665596;
46 19.285163836717327, —99.13684576749801;
47 19.285320802097164, -99.13675993680954];
48 goal = [19.2852195341274, -99.13674920797348);
4 end
50

s1 disp(’Cargando.constantes.de W...")

landmarks = fliplr (floor(10°6 * landmarksGPS));
goal = fliplr (floor(10°6 * goal));

goal2 = goal;

E§8X88

min(landmarks (:

minLat »2));
max(landmarks (: ,2));
1));
1))

57 maxLat
58 minLon
59 maxLon

min(landmarks (:
max(landmarks (: ,

61

62 %% CTES FILTRO PARTICULAS
disp (’Cargando._constantes.del .Filtro_de.Particulas...’)

N = 500;

length = 1;

e7 motions = [0 0];
68 measurements = [];
69 bearing_noise = 1;
70 steering_noise =
71 distance_noise =

g8

-

.1;

?

-

3 % Ax

74

76 disp(’Creando_mundo.para._.usar._en_.A*....
76 mundo_land(:,1) = 1 + landmarks(:,1) — minLon;
77 mundo_land (:,2) = 1 4+ landmarks(:,2) — minLat;

1

B.1. MAIN SOURCE CODE 107

goal(1) = goal (1) — minLon;

78

7 goal(2) goal (2) — minLat;

80

81 mundo = zeros (max(mundo_land (:,1)), mex(mundo_land(:,2)));
82

a3 for i = 1:size(mundo,1)

84 for j = 1:size(mundo,2)

8 if “inpolygon(i, j, mundo_land(:,1), mundc.land(:,2))
86 mundo(i,j) = 1;

87 end

88 end

8 end

20

91 subplot(1,2,1)

92 Imagesc(mundo)

03

o4« %X KALMAN FILTER

o5 disp(’Matrices_para_Filtro._de_Kalman’)

%

o7 dt = 2.7;

9s P=[0000; 0000; 00 1000 0; 00 0 1000];
o u= [0; 0; 0; 0];

w F=[10dt0; 010dt; 0010; 000 1];
im H=[1000; 010 0];

102 R= [0.1 0; 0 0.1];

103

104 ancho = 280:20:1140;

105 angulo = 0:180/(size (ancho,2) —1):180;
108 angulo = deg2rad(angulo’);

107

108 %% SERIAL

100

110 disp('Iniciando_el_puerto_serial...’)
m sl = serial (’OOM4’);

unz set(sl, ’Baudrate’, 9600);

us set(sl, ’DataBits’, 8);

14 set(sl, ’'Parity’, ’nome’);

115 set(sl, ’Terminator’, 'CR/LF’);

1s set(sl, ’OutputBufferSize’', 2);

117 set(sl, ’'InputBufferSize’, 1000);

1s set(sl, 'Timeout’, 1);

1o fopen(sl)

120 diap(’Conexién_exitosa._a_eb500!! ")

131

123 %% CREACION DE PARTICULAS

123 disp(’Creando_Particulas...’)

124

128 for i = 1:N

126 p(i,:) = robot(minLat + (meaxLat-minLat)s*rand(), minLon + (maxLon—minLon)*rand(), m

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
156
156
157
158
169
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

108 APPENDIX B. MATLAB PROGRAMS

end

% VEO PARTICULAS ALEATORIAS
subplot (1,2,2)
scatter(p(:,2), p(:,1))

saveas (gef,strcat ('C:\ Users\ Rolix\Dropbox\ Tesis\Programas.finales \MATLAB\ prueb:
num2str(1),’.jpg’))

disp(’'Pausa... _Presiona_"ENTER” _para.continuar’)
% pause

%% ALGORITMO PRINCIPAL
disp ('Ubicando._robot ')

for iteracion = 1:100
disp(strcat (’Iteracién....’ ,num2str(iteracion)))

disp ('Moviendo._particulas ... ')
for i = 1:N
p2(i,:) = move(p(i,:), motions(end,:), distance_noise, steering.noise,
end
P = p2;

% LECTURA DE GPS

disp (’Leyendo_GPS’)

gps = leeGPS(sl);

[lat lon] = convierteGPS(gps);

lat = floor(lat = 10°6);
lon = floor(lon * 10°6);
gpsDatos{iteracion} = [lat lon];

disp(’Leyendo_Brijula’)

% LECTURA DE BRUJULA

[x ¥y 2] = leeCompass(sl);

[azimuth elev r] = cart2sph(x, y, z);
azimuth = mod(azimuth + pi/2, 2xpi);
compassDatos{iteracion} = azimuth;

disp (’Obteniendo_4ngulos ... ")

% OBTENCION DE ANGULOS
zZ=]
for i = 1:size(landmarks,1)
deltax = landmarks(i,2) — lat;
deltay = landmarks(i,1) — lon;
temp = atan2(deltay, deltax) — azimuth;
temp = mod(temp, (2xpi));
Z = (Z temp];

178
176
177
178
179
180
181
182
183
184
185
180
187
188
189
180
191

£ES

EESEEEBEEEERRRR

NN
=
-]

B.1. MAIN SOURCE CODE 109

end

% CALCULO ERROR
measurements(end + 1, :) = Z;

disp (’Encontrando.error...’)
for i = 1:N

w(i,:) = measurement_prob(p(i,:), landmarks, measurements(end,:), bearing_mois
end

disp (’Re—sampling ... ’)
index = floor(rand() * N) + 1;

beta = 0;
mw = max(w);
for i = 1:N

beta = beta + rand() * 2 * mw;
while beta > w(index)
beta = beta — w(index);
index = mod(index , N) + 1;
end
p3(i,:) = p(index,:);
end
P = p3;
[lat —minLat lon—minLon]
subplot (1,2,2)
scatter (p(:,2), p(:,1))
axis ([minLon maxLon minLat maxLat])

saveas(gcf,strcat (’C:\ Users\Rolix\Dropbox\ Tesis\Programas. finales \MATLAB\ pruebad\ c
num32str(iteracion+1),’.jpg’))

disp(’'Pausa... .Presiona _"ENTER" _para.continuar’)

particulas{iteracion} = p;
end
disp(’Iniciando_algoritmo._principal ... ’)
iteracion = iteracion + 1;
while 1
disp(strcat (’'Iteracién....’ ,num2str(iteracion)))
for k = 1:2
disp (’Moviendo._particulas ... ')
for i = 1:N
p2(i,:) = move(p(i,:), motions(end,:), distance_noise, steering._noise, len

110 APPENDIX B. MATLAB PROGRAMS

224 P =Pp2;

225

228 % LECTURA DE GPS

227 disp('Leyendo _GPS’)

228 gps = leeGPS(s1);

229 [lat lon] = convierteGPS(gps);

230

231 lat = floor(lat = 10°6);

232 lon = floor(lon * 10°6);

233

234 disp ('Leyendo._Brijula’)

235 % LECTURA DE BRUJULA

236 [x y z] = leeCompass(sl);

237 [azimuth elev r] = cart2sph(x, y, z);
238 azimuth = mod(azimuth + pi/2, 2«pi);
23p

240 disp (’Obteniendo_4ngulos ... ’)

241 % OBTENCION DE ANGULOS

242 Z=1[];

243 for i = 1:size(landmarks,1)

244 deltax = landmarks(i,2) — lat;
245 deltay = landmarks(i,1) - lon;
246 temp = atan2(deltay, deltax) — azimuth;
247 temp = mod(temp, (2+pi));

248 Z = [Z temp];

249 end

250

251 % CALCULO ERROR

252 measurements(end + 1, :) = Z;

253

254 disp('Encontrando._error... ")

255 for i = 1:N

256 w(i,:) = measurement_prob(p(i,:), landmarks, measurements(end,:), |
257 end

258

269 disp ('Re—sampling ... ’)

260 index = floor(rand() * N) + 1;

261 beta = 0;

262 mw = max(w);

263 for i = 1I:N

264 beta = beta + rand() * 2 * mw;
265 while beta > w(index)

266 beta = beta — w(index);

267 index = mod(index , N) + 1;
268 end

269 p3(i,:) = p(index ,:);

270 end

271 p = p3;

m
m

275
276
2w
78
279
280
281

EEERRERRRRRRRRERERRRRER R

1
11
1
313
314
316
316
317
318
319
320

&

(24
»

B.1. MAIN SOURCE CODE 11

subplot (1,2,2)

scatter (p(:,2), p(:,1))
axis ([minLon maxLon minLat maxLat])

[x y theta] = get_poasition(p);

init

init
init

= floor ([y x]);
(1) = abs(init (1) — minLon);
(2) = abs(init(2) — minLat);

disp('Verificando._se_se._llegé._a_la_meta... ’)
if ((init(2) < (goal(2) » 1.2)) && (init(2) > (goal(2) * .8)

end

&& ((init (1) < (goal(l) » 1.2)) && (init (1) > (goal(
disp(’{Meta_alcanzada!’)
break

disp (’{Meta_atin.no.alcanzada!’)
disp(’Continda_algoritmo ... ')

disp (’Detectando._obstéculos ... ’)

[mundo mov] = mappea(sl, mundo, round(x — minLat), round(y

disp ('Calculando._trayectoria ... ')
[path path_inst linea] = astar2(mundo, init, goal);

accion = movBoeBot(mov, path_inst (1));

subplot(1,2,1)
imagesc (mundo)
line(linea (:,2),linea(:,1), 'Color’, *white’)

% mayor a 315° o menor a 45°
if theta <= deg2rad(45) || theta > deg2rad(315)

temp = 'v';
% mayor a 45° o menor a 135°

elseif theta <= deg2rad(135) && theta > deg2rad{45)

temp = '<’;
% mayor a 135° o menor a 225°

elseif theta <= deg2rad(225) && theta > deg2rad(135)

LRI |

temp = 3
% mayor a 255° o menor a 285°

elseif theta <= deg2rad(315) && theta > deg2rad(225)

end

temp = >’;

1

) ...
1) = .8)))

— minLon), theta);

321
322
323
324
326

327

Dok WN =

L I - I W N B UR

112

APPENDIX B. MATLAB PROGRAMS

disp ('Moviendo_robot ')

policy_actions (1:2) = [temp path_inst (1)];
temp = policy_actions (2);
mov = trad.mov (policy_actions (1:2));
if stremp(mov(1),’F’)
motions(end+1,:) = [12 0];
elseif strcmp(mov(1l),’D’)
motions (end+1,:) = [12 3xpi/4];
else
motions(end+1,:) = [12 pi/4];
end
for gg=1:size (mov,2)
fwrite (sl ,mov(gg));
pause(5)
end
iteracion = iteracion + 1;
saveas (gef,strcat ('C:\ Users\Rolix\Dropbox\ Tesis\Programas.finales \MATLAB\ p!
num2str(iteracion),’.jpg’))
disp(’Pausa ... _Presiona _"ENTER” _para.continuar’)
% pause
end
%% FIN
disp(’Terminando.conexién... ")

fclose(sl),delete(sl),clear sl;
disp ('Fin_de_conexién’)

B.2 Robot Creation Function

function r = robot(x, y, z)

r=[xy z];

end

B.3 Particle Filter Movement Function

function result = move(r, motion, distance_noise, steering _noise, length)

alfa = motion(l) + randn() * steering._noise;

d

x
y

motion(2) + randn() * distance_noise;

10
11
12
13
14
16
16

SR8 RBEES

© ® @ C AN~

Al Ol =
h W N = O

© ® Nk W W =

e
]

B.4. PARTICLE FILTER MEASUREMENT ERROR FUNCTION

theta = r(3);

beta = (d / length) * tan(alfa);
if beta =— 0

beta = 0.001;
end

R=4d / beta;

¢cx = x — (R * sin(theta));
cy =y + (R « cos(theta));
x = cx + (R *« sin(theta + beta));
y=cy — (R * cos(theta + beta));
theta = mod(theta + beta, 2xpi);

result = robot(x, y, theta);

end

113

B.4 Particle Filter Measurement Error Function

function error = measurement_prob(r, landmarks, measurements, bearing.-noise)

predicted _measurements = sense(r, landmarks);

error = 1;
for i = l:size(measurements,?2)

error_bearing = abs(measurements(i) - predicted_measurements(i));

error_bearing = mod((error_.bearing + pi), 2«pi) — pi;

error = error * (exp(—(error_bearing~2) / (bearing._noise~2) / 2) / ...

sqrt (2 * pi * (bearing_noise “2)));
end

end
B.5 Particle Filter Get Position Function

function [x y orientation] = get_position(p)

x = 0;
y=20;
orientation = 0;

1:size(p,1)
x + p(i,1);
y + p(i,2);

for i
x

y

orientation = orientation + mod((p(i,3) — p(1,3) + pi), (2+pi)) + p(1,3) — pi;

11
12
13
14
15
16
17

© ® N DA W N e

Sugv—r—nwn—l—»—-n—-—-u
- © ® N AW N = O

23
24
25
26
27

glggapgeegrs

114 APPENDIX B. MATLAB PROGRAMS

end
x = x / size(p,1);
y =y / size(p,1);

orientation = orientation / size(p,1);

end

B.6 GPS Data Acquisition Function

function gps2 = leeGPS(sl)

pause (2)

ges = [}
fwrite(sl,’G’);

while (true)
if sl.BytesAvailable "= 0
a = fscanf(sl, %3u’);
gps = [gps,a];
a=|[];
if size(find(gps =— 255),1)==
break
end
end
end

gps’;

bR

gps2 = ’’;

for i = l:size(gps,1)-1
ifi=2|] i=7
if size(num2str(gps(i)),2) =1
gps2 = strcat (gps2, ’0’ ,num2str(gps(i)));
else
gps2 = strcat (gps2, num2str(gps(i)));
end
elseif i —= 3 || i = 8
if size(num2str(gps(i)}),2) =1
gps2 = strcat (gps2, ’00’ ,num2str(gps(i)));
elseif size(num2str(gps(i)),2) = 2
gps2 = strcat (gps2, ’0’ ,num2str(gps(i)));
else
gps2 = strcat (gps2, num2str(gps(i)));
end
elseif i — 5
if gps(i) = 78

e s 38s5zr2 288

51
52

ERXE

57

59

61

O ® N D e DN -

sugn—.—-nu—-nunuu——-
- © O N s X N =O

B.7. GPS DATA CONVERSION FUNCTION

gps2 = strcat (gps2, °'N’);
elseif gps(i) =— 83
gps2 = strcat (gps2, 'S’);
end
elseif i — 6
if size(num2str(gps(i)),2) =— 2
gps2 = strcat(gps2, '0’,num2str(gps(i)));
else
gps2 = strcat (gps2, num2str(gps(i)));
end
elseif i =— 10
if gps(i) = 87
gps2 = strcat (gps2, W');
elself gps(i) — 69
gps2 = strcat(gps2, ’E’);
end
else
gps2 = strcat (gps2, num2str(gps(i)));
end

end

end

B.7 GPS Data Conversion Function

function [latitud longitud] = convierteGPS (cadena)
latDeg = cadena (1:2);

latMin = str2double(cadena(3:4));

latMinD = str2double(cadena (5:8));

NS = cadena (9);

lonDeg = cadena(10:12);

lonMin = str2double(cadena(13:14));

lonMinD = str2double(cadena (15:18));
EW = cadena(19);

wl = (latMin=*1000/6) + latMinD /60;
wls = num2str(wl);

w2 = (lonMinx1000/6) + lonMinD /60;
w28 = num2str(w2);

for i = l:size(wls,2)
if stremp(wls(i),’.’)
wls(i) = {];
wls = strcat(’.’,wls);

115

23
24
25
26
27
28

3o
3
32
33
4
35
36
37

39

41

42

43

45

a7

© @ N O AW N -

I I R O Y
O © ® NS e WN = O

116

break;

end

end
wls = strcat (latDeg,wls);

APPENDIX B. MATLAB PROGRAMS

latitud = str2double(wls);
if strcmp(NS,’S’)
latitud = -1 = latitud;

end

for i = 1:8ize(w2s,2)

w2s(i) = {];
w2s = strcat(’.
break;
end
end

if stremp(w2s(i),’.’)

yW28);

w2s = strcat (lonDeg,w2s);

longitud = str2double(w2s);
if strcmp(EW, 'W’)
longitud = -1 * longitud;

end

end

B.8 Compass Data Acquisition Function

function [x y z] = leeCompass(sl)

pause(2)
valores = [];
fwrite(sl, 'C’);

while (true)
if sl1.BytesAvailable "= 0
a = fscanf(sl,
valores = [valores; a];

a=[];

"%3u’);

if size(find(valores = 255),1)==

break
end
end
end
cy = find(valores
cz = find(valores
cw = find(valores

N

*

7

1.

y’);
z');
w');

Y8Ry RRBEEE

rEs 23

-
-0 O ® N T e W N =

Hsu-'-—-b-v-v-n-ll-
- Q ® N e e N

B.9. LRF DATA ACQUISITION FUNCTION

xh = valores (2:cy-—1);
yh = valores(cy+1:cz —1);
zh = valores(cz+1l:cw—1);

if stremp(xh(1), '-')
x = -1 » hex2dec(xh(2:end));

else
x = hex2dec(xh);
end
if stremp(yh(1), '-7)
y = -1 * hex2dec(yh(2:end));
else
y = hex2dec(yh);
end
if stremp(zh(1), '-’)
z = —1 » hex2dec(zh(2:end));
else
z = hex2dec(zh);
end
end

B.9 LRF Data Acquisition Function

function valores = Irf(sl)
pause(2)
valores = [];

fwrite(sl, M’);

while (true)
if sl1.BytesAvailable "= 0
a = facanf(sl, '%3u’);
valores = [valores; a];
a = [];
size(valores)

if size(find(valores =— 255),1) =1

break
end
end
end

valores = valores (l:end-1)

end

117

LTI - B A

EHEE L5288 Y88 REBEERENBENBYIREEENGREERES

118 APPENDIX B. MATLAB PROGRAMS

B.10 A* Search Function

function [policy policy_actions puntos] = astar2(grid, init, goal)
puntos = [];

cost = 1;
delta = [-1 0; 0 —1; 1 0; 0 1];
delta_name = [*"7; '<’; 'v'; >'];

closed = zeros(size(grid));
closed (init (1),init (2)) = 1;
action = —1 * ones(size(grid));
expand = action;

heuristica = gridFire(size(grid,1), size(grid,2), goal);

init (1);
init (2);
heuristica(x,y);
0;

found = 0;
resign = 0;
count =0;

while found — 0 && resign — 0

if size(open, 1) = 0
resign = 1;
disp (' fail’)

else
open = flipud (sortrows(open));
next = open(end,:);
open(end,:) = [];

x = next (4);
y = next (5);
g = next (2);

expand (x,y)=count;
count=count +1;

if x = goal (1) & y — goal(2)
found = 1;
else

47

49

51
52

ES8EXE

61

2388288

a3

74
™
76

2RI IY

[I SR U

B.11. A* SEARCH HEURISTIC FUNCTION 119

for i = 1l:size(delta,l)
x2 = x + delta(i,1);
y2 =y + delta(i,2);

if (x2>=1) && (x2<=sisze(grid, (1)) &l (y2 >=1) && (y2<=size(grid,2))

if closed(x2,y2) =— 0 && grid(x2,y2) = 0
g2 = g + cost;
h2=heuristica (x2,y2);
f2=g2+h2;

open = [open; {f2 g2 h2 x2 y2]];
closed (x2,y2) = 1;
action(x2,y2) = i;

end
end
end
end
end

end
policy (size(grid))="_";
x=goal (1);
y=goal (2);
policy (x,y)="+";
policy_actions = 'x’;

grid2 = seros(size(grid));
while x "=init (1) || y =init (2)
x2 = x — delta(action(x,y),1);
y2 = y — delta(action(x,y),2);
puntos = [puntos; x2 y2];
policy(x2,y2) = delta_name(action(x,y));
policy_actions = [policy.actions, delta_name(action(x,y))];
x*=x2;
y=y2;
end

policy_actions = fliplr (policy_actions);

end

B.11 A?* Search Heuristic Function

function [heuristica]=gridFire(m,n,centro)

%genera una matriz con valores crecientes alrededor del punto centro
heuristica = zeros(m,n);
fin = centro;

for i = 1:size(heuristica,l)

10
11
12

ook W © ® N DA W N -

© D O RN AN

SRR i
NN RR

120 APPENDIX B. MATLAB PROGRAMS

for j = l:size(heuristica,2)
heuristica(i,j) = ((i—-fin(1))) "2 + ((j—fin(2)))"2;
end
end

end

B.12 Kalman Filter Measurement Function

function [x P] = KalmanFilterMeasurement(x, P, Z, H, R)

Z’ — Hxx;

H+«Ps+H’ + R;

PxH'xpinv(S);

x + Kry;

(eye(size(P)) — (K+«H))+P;

y
S
K
x
P

end

B.13 Kalman Filter Prediction Function

function [x P] = KalmanFilterPrediction(x, P, F, u)
x = Fxx + u;
P = F+P«F’;

end

B.14 Boe-Bot Movement Function

function [mov]=trad_mov(policy)
%Esta funcion recibe una policy de la forma string lineal

policy=">u>>>>vvvx ')
regresa los moviemientos para el robot
— seguir derecho
— girar 90° izquierda

— girar 90° derecha
— dar vueltas de Felicidad, porque llegaste al final

S) o~

el resultado lo regresa en mov como siring

[mov]=trad_mov (policy)

%estado =0;

88 NBEREBRERSE

grxBESZ3E885280288¢8

67

59

61
62

28828

B.14. BOE-BOT MOVEMENT FUNCTION

Fmov="3 ’;
switch policy (1)

for

case

case

case

case

case

'> ’
estado=0;
mov="F"’;

l< ?
estado=1;

mov="F"’;

v
estado=2;

mov="F’;

r~

estado=3;

mov="F";

*
estado=4;

mov="F"’;

i=2:slze (policy ,2)
switch policy (i)

end

case >’
estadon=0;
case <’
estadon=1;
'v ’
estadon=2;
ry~

case

case

estadon=3;
2 x *

estadon=4;

case

if estado ™=estadon

%Si estaba viendo a la derecha
if estado=—=0 && estadon==2

% mov=sircat (mov,
mov="DD’;

elseif estado=—0 && estadon=—73
% mov=sircat (mov,
mov="11";

elseif estado=—0 && estadon=—1
% mov=strcat (mov,
mov="1I1";

%Si estaba viendo a la izquierda
elseif estado—1 &A& estadon—==2
% mov=strcat (mov,
mov="11";
elseif estado—1 && estadon—=—=3
% mov=afrcat (mov,

rl,’);

"Us ’);

’

r

rs’);

ls’);

rs’);

121

[i1.]
69
70
71
72
73
74
75
76
7
78

g3

81
82

E8EE

88
89

91
22
93

95

97
98

100
101
102

122 APPENDIX B. MATLAB PROGRAMS

mov="DD’ ;

elseif estado—1 && estadon=—=0
% mov=strcat (mov, 'rrs ’');
mov="DDD’ ;

%Si estaba viendo hacia arriba
elseif estado—3 && estadon=2

% mov=strcat (mov, 'rrs’);
mov="DDD’ ;

elseif estado—3 && estadon==1
% mou=strcat (mov, 'ls ’);
mov="]1";

elseif estado—3 && estadon—0
% mov=strcat (mov, 'rs’);
mov="DD’;

%Si estaba viendo hacia abajo
elseif estado=—2 && estadon—=3

% mov=strcat (mov, 'rrs ’);
mov="DDD’ ;
elseif estado=—2 && estadon—1
% mov=strcat (mov, 'rs ');
mov="DD’;
elseif estado—2 && estadon=—=0
% mov=sgtrcat (mov, 'ls ');
mov="111";
elseif estadon—A
% mov=strcat (mov, 'f’);
mov="F";
end
else
% mov=strcat (mov, ’'s’);
mov="F"';
end
estado=estadon;
end
end

Bibliography

(1] Compass Module 3-Azis HMC5883L. Parallax Inc., 1.0 edition, April
2011.

{2] Infrared Line Follower Kit. Parallax Inc., 1.0 edition, January 2011.

[3] Boe-bot robot kit. http://www.parallax.com/Store/Robots/
Al1Robots/tabid/128/CategoryID/3/List/0/SortField/0/Level/
a/ProductID/296/Default.aspx, October 2012.

[4] Crawler kit for the boe-bot robot. http: //www.parallax.com/Store/
Robots/Al1Robots/tabid/765/CategoryID/3/List/0/SortField/
0/Level/a/ProductID/314/Default.aspx, October 2012.

[5] Gripper kit of the boe-bot robot. http://www.parallax.com/Store/
Robots/Al1Robots/tabid/755/CategoryID/3/List/0/SortField/
0/Level/a/ProductID/311/Default.aspx, October 2012.

[6] Isaac Asimov. The Foundation Novels. Bantam Dell, 2001.

[7] Karel Capek. R.U.R. (Rossum’s Universal Robots). Dover Thrift Edi-
tions, 2001.

[8] Khac Duc Do Khiang-Wee Limm Cheng-Heng Fua, Shuzhi Sam Ge.
Multirobot formations based on the queue-formation scheme with lim-
ited communication. IEEE Transactions On Robotics, 23(6):1160-1169,
2007.

[9] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wol-
fram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principle of
Robot Motion: Theory, Algorithms, and Implementation. The MIT
Press, 2005.

[10] Victor de La Cueva Hernéndez. Planificacidn de trayectorias. Instituto
Tecnolégico y de Estudios Superiores de Monterrey, 2011.

123

124 BIBLIOGRAPHY

[11] A7 Engineering. EmbeddedBlue 500 User Manual. Parallax Inc., 12860
C Danielson Court, revision e edition, April 2005.

[12] Domenico Prattichizzo Gian Luca Mariottini, Giuseppe Oriolo. Image-
based visual servoing for nonholonomic mobile robots using epipolar ge-
ometry. IEEE Transactions On Robotics, 23(1):87-100, February 2007.

[13] Domenico Prattichizzo Nicholas Prattichizzo Nicholas Vander Valk
Nathan Michael George Pappas Gian Luca Mariottini, Fabio Mor-
bidi and Kostas Daniilidis. Vision-based localization for leader-follower
formation control. IEEE Transactions On Robotics, 25(6):1431-1448,
2009.

[14] Joh Wen He Bai. Cooperative load transport: A formation-control<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>