
,
TECNOLOGICO DE: MONTERREY

Instituto Tecnológico y de Estudios Superiores de Monterrey
Maestría en Ciencias de la Ingeniería

Tesis

Multiple-Robot Motion Pbtnning in an Unknown
Environrnent

Rolando Bautista Montesano

Asesor:
Víctor de la Cuev~n Hemández

2013

í. " TECNOLOCilCO
DE MONlcRREY

Blblloteca

Abstract

This Thesis propases an implementation of a Multiple Robot
System that handles a heavy object from an initial point to a
final one. The System does not know where it is located inside a
workspace, so it needs to find out its location to compute a path
that connects the desired point. ·

The System is compound by three main elements: a Planner, a
'fransmitter, and the Robots. Each one of them executes differ­
ent tasks. The Robots and the 'fransm.itter are heavil:y bounded,
they are in charge of controlling the robot as well as retrieving
environment information. They are not in charge of any heavy
computing operations because it is all done in the Planner. The
Planner uses severa! Artificial Intelligence algorithms such as
the Particle Filter, Kalman Filter and A* (A star) sc:lal'Ch. The
environment is decomposed using an Approximate Cell Decom­
position.

This work's main contribution is the usage of low-c:ost robots
that work together using high comple::x:ity algorithms. Ali the
employed sensors have a certain degree of uncertaint;y which is
handled with non-parametric and Gaussian filters. The Follower
Robots' task is reduced to track where the 'fransport platform
goes, a low cost solution is proposed.

Throughout this book all of the mentioned concepts, implemen­
tations and problems will be explained.

üi

Contents

Nomenclature ix

List of Figures :xü

List of Algorithlns :xüi

1 Introduction 1

2 State of the Art 7
2.1 Path Planning . 7

2.1.1 Basic Problem . 7
2.1.2 R.oadmap . 10
2.1.3 Cell Decomposition. 12
2.1.4 Potential Field . 12

2.2 Artificial Vision . 13
2.3 Formations and communication . • 15

3 Theoretical framework 23
3.1 Motion PJaooiog . 23

3.1.1 Task 23
3.1.2 Properties of the Robot 23
3.1.3 Properties of the Algorithm 27

3.2 Approximate Cell Decomposition 28
3.3 A* (A star) . 32
3.4 Kalman Filter . 34
3.5 Particle Filter . 38

4 Employed Hardware 43
4.1 Boe-Bot Robot . 43
4.2 BASIC Stamp 2 . 43

V

vi CONTENTS

4.3 Bluetooth Module . 45
4.4 GPS 46
4.5 Compasa. 47
4.6 Laser Range Finder . 48
4. 7 Infrared Line Fbllower . 48
4.8 Robot Design and Implementation 49

4.8.1 Leader Robot . 49
4.8.2 Transmitter Board . 51
4.8.3 Follower Robots . 53
4.8.4 Transport platform . 54
4.8.5 Multiple Robot System 55

5 Software: Design and Implementation 57
5.1 Robot Programs . 58

5.1.1 Leader Robot . 59
5.1.2 Transmitter Board . 60
5.1.3 Follower Robots . 64

5.2 Planner Programs . 64
5.2.1 Data Acquisition . 65
5.2.2 Cell Decomposition i.mplementation 70
5.2.3 A* i.mplementation . 71
5.2.4 Particle Filter i.mplementation 7 4
5.2.5 Kalman Filter i.mplementation 75

5.3 Global Algorithm . 76

6 Resulta 81
6.1 lmplementation Runs . 81

6.1.1 Robot's P¡ is P¡ . 81
6.1.2 Robot's P¡ is outside of the W 82
6.1.3 Path planniug. 82

6.2 Faced Problems . 85

7 Future Work and Conclusions 91

A Basic STAMP Programs 95
A.1 Boe-Bot Leader Source Code 95
A.2 Transmitter Board Source Code 98
A.3 Boe-Bot Fbllower Source Code 103

CONTENTS vil

B MATLAB Programs
B.1 Main Source Code

105
. . 105

112 B.2 Robot Creation Ftmction
B.3 Particle Filter Movement Ftmction
B.4 Particle Filter Measurement Error Ftmction
B.5 Particle Filter Get Position Ftmction
B.6 GPS Data Acquisition Ftmction
B. 7 GPS Data Conversion Ftmction
B.8 Compass Data Acquisition Ftmction
B.9 LRF Data Acquisition Ftmction
B.10 A* Search Ftmction .
B.11 A* Search Heuristic Ftmction
B.12 Kalman Filter Measurement Ftmction
B.13 Kalman Filter Prediction Ftmction
B.14 ~Bot Movement Ftmction

Bibliography

112
113
113
114
115
116
117
118
119
120
120
120

126

vili CONTENTS

Nomenclature

O An obstacle in W or in Q

Q The configuration space of a robot is the space of all the configura­
tions of the robot.

W Workspace is an Euclidean space represented es 'R/'1 with N = 2 or
3

f(n) Estimated cost of the cheapest solution through n.

g(n) Cost function of moving from node n to node m.

h(n) Estimated cost of the cheapest path from the state at node n to a
goal state.

P¡ Final point in a Path Planning Algorithm

P¡ Initial point in a Path Planning Algorithm

q An element of Q

r(q) The region of the workspace occupied by the robot r

Azimuth Angular measurement in a spherical coordinate system. The vec­
tor from an observer to a point of interest is projectecl perpendicularly
onto a reference plane: the angle between the projected vector and
a reference vector on the reference plane

BS2 BASIC Stamp 2 Microcontroller

Configuration It is a specification of the position of every point in an object
relative to a fixed reference frame

ix

X CONTENTS

Degrees of Freedom The dimension of the configuration space is equal to the
number of independent variables in the representation of the config­
uration

GPS Global Positioning System

Latitude Geographic coordinate that specifies the north-south position of a
point on the Earth's surface. Lines of constant latitude.

Longitude Geographic coordinate that specifies the east-west position of a
point on the Earth's surface.

LRF Laser Range Finder

Simultaneous Localization and Mapping Algorithm employed by robots and
autonomous vehicles to create maps in an unknown environment
while it keeps track of its localization

List of Figures

1.1 Autonomous Robots examples .. .- 2
1.2 Robotic applications used for Resea.rch 3

2.1 Robot representations . 8
2.2 Space Representation . 9
2.3 Visibility Graph Method . 10
2.4 Probabilistic Roadmap . 11
2.5 Voronoi Diagram . 12
2.6 Cell Decomposition . 13
2. 7 Potential Field . 14
2.8 Artificial Vision Strategies for Path Planning 14
2.9 Leader - Follower Vision Ttacking. 15
2.10 Campus Walkway. 16
2.11 Leader - Follower Scheme . 17
2.12 Object Enclosure Algorithm 19
2.13 Nonprehensile Pulling by Multiple Robots 20
2.14 Strategy for Coordinating Multiple Robots Within Roadmaps 20

3.1 Car-like Robot Model . 25

4.1 Boe-Bot Robot . 44
4.2 BASIC Stamp 2 Microcontroller 45
4.3 EmbeddedBlue 500 . 46
4.4 PMB-648 GPS SiRF Internal Antenna 47
4.5 Compass Module 3-Axis HMC5883L 48
4.6 Laser Range Finder. 49
4. 7 Infrared Line Follower . 49
4.8 Leader Robot . 50
4.9 Leader Robot Schematic 51
4.10 Ttansmitter Board 52

xi

xii LIST OF F1GURES

4.11 'Iransmitter Board Schematic 52
4.12 Follower Robots
4.13 Follower Robot Schematic .
4.14 'lransport platform
4.15 Multiple Robot System

53
54
54
55

5.1 Overall Algorithm Block Diagram 58
5.2 Leader Robot Memory Maps 59
5.3 'Iransmitter Board Memory Maps 62
5.4 Follower Robots Memory Maps 64
5.5 Real Workspace . 66
5.6 Laser Range Finder Data . 67
5. 7 Measured angles from the landmarks 69
5.8 Computed Angles. 70
5.9 Cell Decomposition lmplementation 71
5.10 Employed Heuristic. 72
5.11 A* implementation . 73
5.12 Particle Filter implementation. 75
5.13 Kalman Filter implementation 77

6.1
6.2
6.3
6.4
6.5

Static Robot Example
Out of bounds Robot Example

.......... 83

Path Planning Example part 1
Path Planoiog Example part 2
Path Planning Example part 3

84
86
87
88

7.1 Pioneer Robot 92
7 .2 Samsung Galaxy SIII 93

List of Algorithms

1 Approximate Cell Decomposition 31
2 A* Search. 33
3 The Kalma.n Filter Algorithm 37
4 The Particle Filter Algorithm 39
5 Leader Robot Program . 61
6 Ttansmitter Board Program 63
7 Final Program lmplementation 79

xiii

xiv LIST OF ALGORITHMS

Chapter 1

Introduction

One ordinary day at all of 1997 a hoy and bis parents went. to the cinema to
see the Star Wars saga. After the films were over he realized how fascinating
it could be to live day by day with robots such as C9PO a.nd R2D2 [21). It
seems that decades before many people had the same drean1. They irnag:ined
and dreamed about it. What they did one day became what we know as
Robotics. Creating machines that can perform several tasks has produced a
technological revolution. The word robot comes from the Slavic Languages.
It was used for the first time in R. U. M., (Rossum's Universal Robots)
, a book written by Karel Capek [7). The exact term was robotnik. lt
described a breed of workers that were created from biolo.gical parts. They
were capable of doing many chores that human beings coulcl not. The word 's
meaning is "slave" or "worker". lt perfectly describes wb.at a robot is: an
electromechanical or virtual device in charge of fulfilling certain activities.
Robotics as a science was bom in the Foundation Series from the legendary
Isaac Asimov [6).

Far from Literature, Robotics is the combination of several areas such
as Physics, Mathematics, Electronics, Mechanics and Computer Science.
Robots are classified in severa! categories depending on its characteristics.
Motion is one of the most important for this work. They can be fixed, mobile
or hybrid. A fue robot h88 a part of it ti~ to a b88e and its movement is
always bounded to that point. The mobile robot can move loosely through
space. Finally the hybrid is a mixture of the first two. In a fixed robot, the
task is performed by an end effector that will follow a path. For the rnobile
case, the entire robot performs the task after a path planni11g algorithm took
place. A robot can also be classified by the type of motion and the number
of Degrees of Freedom it has. It can be omnidirectional or holonomic when

1

2

(a) DARPA Challenge Stanford Uni­
versity's Stanley

CHAPTER l. INTRODUCTION

(b) Deutsches Museum Bonn's
RHINO

Figure 1.1: Autonomous Robots examples

it can move at any direction, so a non holonomic one can only perform
restrained movements, ergo just in one direction. Depending its DOF it
can be non-redundant when it has as much as DOF as dimensions and
redundant when there are more DOF than dimensions. Due its autonomy
it can be directed, supervised or autonomous. It is directed when the user
specifies movement by movement what the robot shall do. Supervised when
a motion planning has been done given an environment for being executed
later. Finally it is autonomous when it can take severa! decisions by itself
under certain circumstances. There are lots of examples of robots with
severa! movements characteristics and different degrees of autonomy.

One of the biggest challenges that Robotics faces is in autonomous path
plaooiog. The goal is to demand for a task in a high level programroiog
language and the robot must transform the received instructions into a set
of low level commands. While executing the task a path must be found so
the mobile or fixed robot can follow it. This area's development has come
through with applicatioos such as digital animation, industrial processes
verifi.cation and pharmaceutical design. Sorne well known examples can be:

• 'fransportation - An example of a transport for one or two persons
is a Segway or the CyCab. They are a good environment-friendly
alternative that use small space, are oot noisy and its ecologic footprint
is quite smaller than the car's one. A bigger scale example can be
Stanford University's Stanley. Stanley can move freely in a highway
by p]aooiog its own movements (Figure l.la).

• Museum Tour Guides - In 1997, a mobile robot named RlllNO servved
as a fully autonomous tour-guide at the Deutsches Museaum Bonn

3

(a) The Mars Rover (b) The Da Vlnci Surgical System

Figure 1.2: Robotic applications used for Research

(Figure l.lb). RJilNO was able to lead museum visitors from one
exhibit to the next by calculating a path using a stored map of the
museum. Because the perfect execution model of the piano mover's
problem is unrealistic in this setting RJilNO had to be able to localize
itself by comparing its sensor readings to its stored map.

• Planetary Exploration - The Mars Rover (Figure 1.2a) is a robot whose
main task is to explore the Martian surface. lt must take several
samples from the ground and analyse them, it also has to take sorne
photographs of the environment that will supply the scientists with
valuable information about the Red Planet. As the robot does not
know where it is, the SLAM algorithm is used.

• Medicine - The Da Vinci Surgical System (Figure 1.2b) is capable of
performing surgeries with high precision actions and with the bonus
that the Doctor can be in a remote location. Robots are u.sed in
invasive procedures. They enhance the surgeon's ability to perform
technically precise maneuvers.

• lndustry - Several robotic arms are employed for assembling, painting,
welding or separating products. The complexity of their utilization
is that in the workspace there is a great amount of movement and
robots must have enough coordination to avoid collisions among them,
the users or the product. Industrial robot installations are driven
by economic factors, so there is a high priority on minimizing task

4 CHAPTER l. INTRODUCTION

execution time. This motivates motion pla.nners that return time­
optimal motion plans. Other kinds of tasks may benefit from other
kinds of optimality, such as energy or fuel optimality for mobile robots.
[9]

Robot path plaoning calculation is critical for all applicatioDB. The em­
ployed algorithm must be capable of finding a collision-free path, compute
the required movements and assuring they are physically performed.

A path planner must coDBider the task, the robot and the algorithm. The
task can be either navigation, localization or coverage. Navigation refers to
the calculation of an obstacle free trajectory from an initial point (P¡) to
a final point (P¡) . When the robot needs to explore all the points in the
workspace the task is a coverage task whereas iI1 a localization task the
robot needs to use information provided by some aeDBOrs. The robot must
also be coDBidered along with the environment. Together they determine
the number of DOF of the system, the workspace and the configuration
space. Finally the chosen algorithm must satisfy certain restraints such
as the computational complexity and the solution it returDB. Complexity
deals with memory limitatioDB and the required time for computing the
calculatioDB. The returned solution shows how com:plete the algorithm is. A
complete algorithm guarantees to find a free path whenever one exits and to
return failure otherwise. Approximate methods may not be complete; but,
for most of them, the precision of the approximation can be tuned and made
arbitrarily small, so that the methods are said to be Resolution-complete. [10]

This Thesis' objectives are:

• To develop a Jow cost Multiple. Robot System capable of moving an
object from an initial point P¡ to a goal location P¡.

• Employ a Resolution Complete Path PJauning algorithm to represent
the chosen workspace.

• Implement an online centrali7.ed planner that uses seDBOr-based infor­
mation.

• Deal with uncertainty using software solution.11.

• Identify :fixed and mobile obstacles.

• Obtain an optimal path.

• Overcome non-holonomic robot restraints.

5

In chapter 2 the State of the Art is presented. The most innovative,
different and recent proposals are explained. Having special attention in
topics such as Path Planning, Artificial Vision, Formations, Communica­
tions and Self-Localization. Chapter 3 explains all the algorithms that were
used for developing this project: Motion Planning, Appraximate Cell De­
composition, A*, Particle Filter and Kalman Filter. Chapter 4 gives a quick
overview of the employed hardware used while developing the Robot Sys­
tem: the Boe-Bot Robot, Bluetooth Module, GPS, Compass, Laser Range
Finder, lnfrared Line Follower and structure modifications. After it, Chap­
ter 5 describes how the algorith.ms explained in Chapter 3 were implemented
in the Planner, 88 well 88 an example of how they work a.nd what they take
88 inputs and return 88 outputs. The robot programa are also explained
here. Chapter 6 shows the results of combining all the pr,)grams and some
examples of the runs that were made. Finally in Chapter '7 the future work
and modifications are presented as growth areas for the project.

6 CHAPTE'R 1. INTRODUCTION

Chapter 2

State of the Art

This chapter will explain the most i.mportant techniques and algorithms that
are used in recent work. The covered topics will be:

• Path Plauuiug

• Artificial Vision

• Formations and Communication

• Localization

2.1 Path Planning

2.1.1 Basic Problem

The goal of defining a basic path planning problem is to isolate sorne central
issues and investigate them in depth before considering additional difficul­
ties.

The basic problem defines that in W the robot is the only moving object,
all its dynamic properties are ignored. Computed motions a:re contact-free so
mechanical interaction between two objects is ignored. This way a physical
path planning problem turns into a geometrical path pla.nni.ng problem. To
si.mplify the problem even more, the robot will be a single iigid body whose
movements is restrained by obstacles.

The basic motion planning problem resulting from these simplifica­
tions is the following (Figure 2.lc):

• The robot is a single point.

7

8 CHAPTER 2. STATE OF THE ART

• The robot is the only object that moves in W.

• No mechanical problems are considered.

J. C. Latombe defines the problem as:

Given an initial position and orientation and a goal position
and orientation of the robot r in W, generate a path specifying
a continuous sequence of positions and orientations of the robot
avoiding contact with the obstacles, starting at the initial posi­
tion and orientation, and terminating at the goal position and
orientation. Report failure if no such path exists .

• ~
~
(a) Real Robot

•
(b) 2D Model (e) Final Model

Figure 2.1: Robot representations

The following notation is consistent with the one proposed by Tomás
Lozano Pérez. in [20], Jean Claude Latombe in [17] and Choset et. al in [9].
For more details it is recommended to consult the bibliography.

A Workspace (W) is a R.2 or R.3 environment in which robots work. lt
can be decomposed in WO) and W¡ree· The i-th obstacle can be represented
as the first one, while the remaining free space that is not occupied by an
obstacle is the second one.

W¡ree = w-UWO¡ (2.1)

Path Planning algorithms are executed in the configuration space Q
(Figure 2.2b) not in W (Figure 2.2a). Q can be defined as the set of all
the possible robotic configurations. To the set of points in W occupied by
the robot nin the configuration q will be denoted as Rq. An obstacle in
Q corresponds to the robot configurations that intersect an obstacle in W
such that:

2.1. PATH PLANNING 9

QO¡ = { qlR.q n WO¡ -=I- O} (2.2)

A path is a continuous curve in Q expressed by a continuous function
defined in [0-1] for:

Qfree = Q - u Q¡ (2.3)

A continuous function C can be a solution to the Path Planning problem
such that C[O - 1) -t Q. The initial configuration is q¡ = C(O) and the final
one q¡ = C(l). This can be generalized as:

C(s) E Qfree V s E [O, 1) (2.4)

A Robotic System Configuration is a specification of each point of a
system. Q of a system is the space of all possible system configurations.

z

y -- •

X y

X

(a) Workspace {b) Configuration Space

Figure 2.2: Space Representation

Lots of methods and solutions have been proposed an implemented to
solve the basic path planning problem. Not all of them solve it completely.
Some of the require that W is R2 and that the objects are represented as
polygons. Most of the approaches can be generalized into: roadmap, cell
decomposition, and potential fields.

10 CHAPTER 2. STATE OF THE ART

2.1.2 Roadmap

Roadmaps are a network of 10 curves which represent the connectivity in
W¡ree or Q¡ree· After it the connectivity has been constructed it represents
a set of standard paths that connect P¡ with P¡ via N point that bind them.
The calculated path is the result of concatenating a subpath that connects
P¡ with the roadmap, a subpath that contains the roadmap and fi.nally the
one that connects the roadmap with P¡. [17}

Visibility Graph Method

This is one of the first path planning methods that were developed. It is
applied in 2D Q with polygonal QO . lt is a non-directed graph whose nodes
are qi and q¡ and all obstacle region. The links of the subgraph connect
the obstacle vertices confi.gurations and they determine the roadmap. The
other links of the graph connect the initial and goal confi.gurations with the
roadmap. [17) (Figure 2.3)

Figure 2.3: Visibility Graph Method

Probabilistic Roadmaps

A Probabilistic Roadmap algorithm constructs a map in a probabilistic way
in W. It divides planning into a learning and a query phase. During the
first one a roadmap in Q free is build, in the second one the configurations
are connected in the roadmap. The roadmap is represented in an undirected
graph G = (V, E). Where the nodes V are a set of q chosen from Q¡ree· The
edges in E are paths¡ an edge q1, q2 is a collision-free path that connects

2.1. PATH PLANNING 11

them. These paths are known as local paths, which are computed by a local
planner.

During the query phase, the roadmap solves individual path-planning
problems, where given q¡ and q¡, it tries to connect them to the closest
nodes </ and </', respectively, in V. H it succeeds it reaches the graphs G for
a set of edges E that connect </ to </'. lt finally transforms the set of nodes
into a path for the robot by recomputing each local path and concatenating
them. These paths are stored in a global roadmap, but it implies more
storage memory. The roadmap can be reused and augmented to capture
connectivity in Q free· Usually the learning phase runs before the query, but
they can be interwoven. Sometimes it is feasible to spend lots of time during
the learning phase if the roadmap will solve many queries. [9] (Figure 2.4)

Figure 2.4: Probabilistic Roadmap

Voronoi Diagram

Another roadmap method is retraction. lt defines a continuous function
in Q free to a lD subset of itself such that the restriction of this function
to this subset is the identity map. In a 2D Q¡ree the retraction is called
Voronoi Diagram. It can be defined as the set of ali Q¡ree whose minimal
distance to a QO is achieved with at leas two points in the boundary of it.
lts main advantage is the creation of free paths which usually maximize the
gap between the robot and the surrounding obstacles. A free path between
q¡ and q¡ is composed by three main subpaths: the first one is a straight
line from q¡ to q¡, a path from q¡ to q¡ and finally a line from <I¡ to q¡. [17]
(Figure 2.5)

12 CHAPTER 2. STATE OF THE ART

Figure 2.5: Voronoi Diagram

2.1.3 Cell Decomposition

One of the most popular p]anoiog methods is Cell Decomposition, it has
been widely used and studied. It decomposes Q¡ree into small regions (cells)
to generate a path from any q¡ to q¡. A connectivity graph is used to search
in the adjacency between the cells. Each node is a cell that belongs to
W¡ree or Q¡ree· Two nodes are linked if and only if they are adjacent. The
resulting output of the search is called a channe~ a continuous sequence of
cells or path. [17)

Cell decomposition methods can be broken down further into exact and
approximate methods:

• Exact cell decomposition methods decompose the free space into cells
whose union is exactly the free space. The boundary of a cell corre­
sponds to a criticality of some sort. (Figure 2.6a)

• Approximate cell decomposition methods produce cells of predefined
shape whose union is strictly included in the free space. THe boundary
of a cell does not characterize a discontinuity of some sort and has no
physical meaning. (Figure 2.6b)

2.1.4 Potential Field

A straightforward approach for path plaooiog is to discretize Q into a very
small grid of q in which ao informed search algorithm is employed to find

14 CHAPTER 2. STATE OF THE ART

....

"

Figure 2.7: Potential Field

holonomic robot into a desired configuration. [12](Figure 2.8b) The robot

is equipped with a camera that acquires an image Oc = [x yf which is
compared wit a reference i.mage, which was previously acquired in the desired
configuration. The current position is analysed such that the robot moves
to a configuration in which it only will need to perform aplanar movement.
This way it moves from 'Pi to 'P ¡.

'•• nffin , :
;<I;
:

. .

,.

ni ·~?:·n
U::..~. H

@
m~~·... \ ¡ : ~01 . : :
.::·::::.~---------:~----'· ------············-~----é

Y,/ qd

Is& &tep 2nd •lep

(a) Actual and desired configuration (b) Moving to a configuration and
comparison planar adjustment

Figure 2.8: Artificial Vision Strategies for Path Planning

Another approach proposes to equip robots with panoramic cameras
that provide its exact location and distance from the other robots. These

2.2. ARTIFICIAL VISION 13

(a) Exact cell decomposition (b) Approximate cell decomposition

Figure 2.6: Cell Decomposition

a path. As in any search algorithm, a good heuristic is required to avoid
getting stuck in a certain q. Sorne heuristics can be described as functions
known as potential fields.

Usually this metaphor is used to explain this approach: a robot (particle)
moves influenced by an artificial potential produced by the goal P¡ and the
obstacles. The goal "attracts" the particle to it while any obstacle repulses
it. The negated gradient of the potential is analogous to an artificial force
that control the robot. At any q, the direction of the force is considered the
direction of the motion. [17] (Figure 2. 7)

This method can be very efficient but they have a main drawback, they
can get stuck in a local minima of the potential function rather than the
goal configuration.A way to salve it is to use potential functions that have
only one local minima in the connected subset of Q free which contains q¡.
Another approach seeks to escape from the local minima using several mech­
anisms.

2.2 Artificial Vision

Pinhole cameras have been used for creating models in which the relationship
between a 30 point an a image projection is found. This is achieved by
using epipolar geometry. This type of geometry, a1so known as stereo vision
geometry, relates the 30 points to 20 images. (Figure 2.8a) It uses the
IBVS (Image Based Visual Servoing) algorithm for directing a mobile non-

2.3. FORMATIONS AND COMMUNICATION 15

cameras can cover the complete workspace. The leader-robot follows a path
while the trackers follow it. (Figure 2.9) The trackers have to keep a certain
distance and orientation from the leader. This approach uses the Luenberger
non-lineal observer as well as the Jacobian. [13]

Figure 2.9: Leader - Follower Vision Tracking

After nmning a path planning algorithm the robot usually follows a
route, but when the only information available is the intersections the robot
shall pass it results necessary to check the actual location by Artificial Vision.
Several works accomplished that a robot could follow the pavement's white
line, so using this achievement as a basis a work was proposed for a Campus
Walkway. An image is captured, the initial color attributes of the walkway
must be acquired. (Figure 2.lOa) The part corresponding to the trail shall
be differenced from the extra elemeots. After it a line is drawn from the
trail's horizon to the lower center part of the image. The generalization of it
can be explained as follows: the path's form can be considered as a triangle,
so the next step is to draw a line from the upper-most vertex of a triangle to
the center of its base. The robot follows the computed line. (Figure 2.lOb)
While more environment samples are talcen the robot moves faster and there
are less possibilities of moving into a restricted area. (16]

2.3 Formations and communication

Control

There are two main approaches for controlling a multiple-robot. The cen­
tralized control takes all the decisions and assigns all actions in a single
computer, the environment information is in it. Its main advantage is the

16

- ... ~~-~-:_-~
--~

V : Vanlshlng Polnt • Walkway.,..
A : A poínt on left edge • Waplde .,_
e: A po1nt on ~ edge O otwr ..

(a) Walkway Environment Model

CHAPTER ~·- STATE OF THE ART

(b) Walkway Center Line

Figure 2.10: Campus Walkway

task high execution efficiency, whereas its low failure tolerance represents its
disadvantage. H the main computer fails, everyth.iing fails. In a decentral­
ized control each robot is capable of taking its own decisions and processing
information. When this type of control is impleniented local information
builds upa global behaviour. The information comes from the robot's sen­
sors and the communication among them. Even if individual actions are
taken, each of them follows a cooperation strategy; Both approaches have
the sam.e problems: explicit communication and the, behaviour in a dynamic
environment.

Leader-follower

The leader-follower scheme can be implemented when the number of robots
goes from to ton. A robot must be the leader. It rect,ives precise instructions
from a path planner of how to move. The followers' only task is to track
and follow the leader's movements. Not all the robots' skills and abilities
are employed which can be seen as a disadvantage. In the other hand the
minimum communication between the robots is an. advantage. When the
number of followers is greater than two, it is almost impossible for the i-th
follower to esteem the desired path because there is an accumulated error
generated by all the other robots. Because of that the virtual leader concept
was im.plemented. In it the i-th follower esteems the path of the i-th leader.
(Figure 2.11)

Communication

For big teams in big, dynamic and unknown envi:ronments where classic
communication mechanisms are not liable it is necessary to reduce the load

2.3. FORMATIONS AND COMMUNICATION 17

Figure 2.11: Leader - Follower Scheme

in data transmission. Severa! formations can be implemen1;ed as restrictions
between each robot position respect to another team member to maintain
a certain shape in the formation. A formation can be represented 88 a
set of nodes and edges in a connectivity graph. Each node represents the
localization of each agent and the edges represent the conimunication links
among them. The information flows in a separate way in slow and fast
time-scale. The fast one is used in critical decision taking which handle time
constraints situations such 88 collisions or formation adjustments. It controla
movements and paths. The slow one just takes place among non-adjacent
robots. Short term information occurs between neighbours, this reduces a
communication in complex formations. When the desired :P&th is computed
the communication is weakly connected because individual decisions are
propagated to all the agents. [8]

Kinematic Model

In teams that employ formations the main problem resides in controlling
position and orientation of a group of robots 88 a whole. Severe.l kinematic
modela have been used for the leader where x and y describe position and (J

orientation.

[• (J • • (J (J.]T x=vcos y=vsm =w (2.5)

Multiple-Robot Systems

In some circumstances it is necessary to work with a set of robots where each
one of them is part of a global task. lt is necessary to take care interaction
among them and the environment to prevent collisions, look after all the
agents, the environment and the task. The biggest challenge that a robot
group faces is the wheel's steering error or communication breakdowns. The

18 CHAPTER 2. STATE OF THE ART

first works that were made sought to reduce the computing load of mobile
decentralized non-holonomic robots. It used a leader-follower scheme, where
the leader knew the movement instruction and the followers esteemed the
path depending of the object's movement in a coordinated way. [15)

Restraints

When a team is deployed with a specific task such as cleaning, environ­
ment recognition, survivor rescue or just following a path it is necessary
to know the robot's limitations and restraints of energy and time. Some­
times the number of robots for a certain task must be minimum and the
result maximum. It results quite important to find a balance between per­
formance while executing the task and handling energy. While robots move
and work faster the goal is achieved in less time but the power consumption
is higb. In the other hand if the task is done while taking extreme care of
the energy consumption the due time may be surpassed. That is why a ve­
locity variation plan must be done so energy consumption can be optimized.
Multiple-robot systems are deployed in these situations so the load can be
divided thougb it is important to maintain communication among them so
there are no repeated actions. (31)

Object Manipulation

A problem that has been greatly investigated is object manipulation by
multiple-robots. Certain tasks cannot be performed by just one robot be­
cause of its size, weight or the lack of sensor information. It is quite impor­
tant to consider that any action will affect the other members of the team,
that is why coordination is critical. H the robots are equipped with a gripper
or a robotic arm other factors as manipulation speed or movement delay the
problem grows bigger. (22)

Lots of approaches have been presented for a group of agents manipu­
lating an object. One of them proposes to displace an object with multiple­
robots wielding contact forces. These are modelled like non-linear potential
gradients that describe the load deformation. They also work as an im­
plicit communication way: physical interaction between the load and the
agents feedbacks the agent with information of what the other robots are
doing. (14].

There is another approach called Object Enclosure in which the trans­
ported object is caged by a team. (Figure 2.12) It creates a bounded and
mobile area for transporting the object as well as manipulating it. lts great

2.3. FORMATIONS AND COMMUNICATION 19

advantage is that there is no need for continuous contact so path planning
is simpler a.nd more robust. The algorithm works this way: The robots a¡r
proach the object independently using the Potential Field Algorithm. An
optimal formation is computed. In this formation the object will not esoope
from them while tra.nsporting it. A robot is designed 88 a leader a.nd the
other members change their position in the formation. (32]

(a~

'º*Ot,¡«s

Figure 2.12: Object Enclosure Algorithm.

Using intelligent agents is also a.nother alternative. The agents could be
able to leam from a complex a.nd unknown environment using Q-Leaming.
When the agent moves the object, it identifies the environment's state and
autonomously it computes the optima] form to move to the goal. lts pushing
points are predefined to ease the robot's computation. [30J

Algorithm development for the problem has retumed like SBS (Situated
Behaviour Set), where some behaviours were developed. for certain situations
in which a robot can find itself. The task complexity is evaluated, as well as
look:ing for a partner, checking the object a.nd determinir1g if it is possible
to move it. Depending on its parameters the outputs are: change direction,
push the object, rotate the object or look for help. [24]

Until now handling an object has just been done by pushing it, the
following solution pulls the object with a flexible tool. A rope allows to
simplify the computing process 88 well 88 having more options for moving
the object. When the object is surrounded by a rope, tht:, contact surface,
mass centre, a.nd rotation are changed. (Figure 2.13) Tbe geometry does
not matter so it is easier to move because there is more stability a.nd the
controllability grows, so the number of robots decreases. (28]

Coupled or decoupled path planning algorithms for multiple robots are
also a solution. The coupled ones create paths for all the robots by combining
the states of the robots in a space-state. lt uses a centralized architecture.
Its complexity augments exponentially with the number of robots so it is
not handy to implement. Decoupled algorithms compute the paths for each
robot and its main appeal is the decentralized architecture. It simplifies

20 CHAPTER 2. STATE OF THE ART

Figure 2.13: Nonprehensile Pulling by Multiple Robots

the i.mplementation because it is all computed in severa! phases. Before the
movement is performed a decision tree must be done with all the possible
robot configurations. (Figure 2.14a) During the first phase the robots move
to determined leafs of the tree, where a robot r moves to a leaf C. In the
second step a collision-free path for the robots is computed. H there is a
robot without a path then it is computed. (Figure 2.14b) Finally, only one
robot moves at the time, this way there wil1 be no collisions. (23)

(8.
@

te
D

(a) Plaoning Problem (b) Grapb-based map

Figure 2.14: Strategy for Coordinating Multiple Robots Within Roaclmaps

Finally a hunting system was developed. A group of mobile robots have

2.3. FORMATIONS AND COMMUNICATION 21

the main task of capturing a mobile object. Reinforcement Learning was
used for providing the hunters certain intelligence. Each of them has a
visibility of 21r. Using the available information it can take its own decisions.
The hunting algorithm is composed by several states. During the tracking
state the robot moves around randomly to explore the e10.vironment. The
prosecution state activates when the robot sees the pray and immediately
it begins the chase. During the capture state the hunter asks if any other
robot is chasing it, else it hunts it. The last state is prediction, this states
appears when the target is lost and an estimation shall be: done. (33]

Communication

lt results quite important to have a liable and adaptable co:mmunication sys­
tem in a navigation system. The LOCISS (Locally Communicable lnfrarred
Sensory System) is used for ínter-robot identification and. IDC (Intelligent
Data Carrier) for localization. LOCISS was developed to identify if a mo­
bile object is an obstacle or another team member. With ordinary sensors
it turns to be almost impossible to differentiate one from another, so an
ID, location and speed information are transmitted. If received data is the
same as the one sent then the object is an obstacle. IDC is a mobile device
composed by writer and a reader where environment infon:nation is stored.
The combination of both algorithms outcomes in a local path planning prob­
lem. (29]

22 CHAPTER 2. STATE OF THE ART

Chapter 3

Theoretical framework

Robot motion planoíog, as it has been explained, uses lots of areaa. This
work employs N avigation concepts, Artificial Intelligence and Path Plan­
ning algorithins 88 well Gaussian and Nonparametric Filt131'8. The previous
chapter gave a general overview of some of the concepta that will now be
explained deeply. All the algorithins employed for devek>ping this Thesis
will be explained in this chapter.

3.1 Motion Planning

3.1.1 Task

A motion planner most important characteristic is according to the problem
it is designed to be solved. There are four tasks it must accomplish, they are:
navigation, coverage, localization and mapping. In Navigation a collision­
free motion is calculated between two q or states for the robot. Coveruge has
to do with using a sensor or an actuator interact with the space. Localization
deals with the problem of interpreting and using a map t.:> interpret sensor
data to determine the current q. Finally, Mapping hBB to do exploring and
sensing an unlmown environment to construct a good enough representation
for using it in in navigation, coverage and localization. (17)

3.1.2 Properties of the Robot

A motion planner is strongly bounded to the robot properties while solving
the task. This is, the robot and the environment determine the number
of DOF and the form of Q. Once it is defined, the robo1G motion must be
known, if it can move instantaneously into any direction in Q it is considered

23

24 CHAPTER 3. THEORETICAL FRAMEWORK

to be omnidirectional, else if it has velocity constraints, such as a car, it
is called nonholonomic. Another way to model a robot is by employing
kynematic equations with velocities as control, or by the employment of
dynamic motion equations controlled by forces. [9)

Kinematic Constraints

In the basic problem we assumed that the robot was a free-flying object,
the only constraints on its motions were due to the obstacles. In sorne
problems we may want to impose additional kinematic constraints to the
robot's motions.

Holonomic Constraints Let us assume that a configuration is repre­
sented by a list of parameters of minimal cardinality. A holonomic equality
constraint relates these parameters and can be solved for one of them, this
way, the relation reduces the dimension of the current Q by one.

Suppose a 30 object A translates freely but it is constrained to rotate in
a fixed axis. A's orientation can be represented by three angles, but it can be
expressed as two independent equations. W's dimension is of 6 while Q's is
of 4. The particular case when A can translate freely at its current location
is considered a holonomic constraint problem, however as this problem is
totally equivalent to a motion problem for a point in IRN it is a particular
case of the basic motion planning problem.

Holonomic constraints certainly affect the defi.nition of the robot's con­
figuration space and may even change its global connectedness. Nonetheless,
holonomic constraints do not raise new fundamental issues. [17)

Nonholonomic Constraints A non holonomic equality constraint is a
non-integrable equation involving the configuration parameters and their
derivatives (velocity parameters). Such a constraint does not reduce the
dimension of the space of configurations attainable by the robot, but reduces
the dimension of the space of possible d.ifferential motions at any given
configuration. [17]

Considera car-like robot A rolling on a flat ground as in Figure 3.1. The
car can be modelled as a rectangular object that moves in W = R.2 . In an
empty space the robot can be driven at any position with any orientation,
its Q is 30, two of translation and one of rotation such that q = [x y O].
x and y are Cartesian coordinates in a axis Fw, they represent the midpoint
R just in the middle R of the robot. O E [0,21r) is the angle between the x
axis and the robot A's orientation. Assuming that there is no slipping and

3.1. MOTION PLANNING 25

all movements are deterministic, the velocity of R points along A's axis. Its
motion constraint is given by:

- sin (Jdx + cos (Jdy = o (3.1)

AB equation 3.1 is non-integrable it represents a nonholonomic equality
constraint. Dueto it, the differential motions [5x óy5 O] of the robot at
any q is a 2D space. H the robot was a free-flying object the space would be
3D. The car's instantaneous motion is determined by two parameters: the
linear velocity along its main axis and the steering angle .. However, when
the steering angle different from zero it affects its orientation, therefore its
linear velocity, so the robots's q span in a 3D space.

\
\ : \
~ ..

. • a

Figure 3.1: Car-lilre Robot Model

Nonholonomic constraints restrict the geometry of the foasible free paths
between two configurations. They are much harder to deal with a planner
than holonomic constraints. (17]

U ncertainty The basic problem assumes that the robot can follow exactly
paths generated by the planner. It also assumes that the geometry of the
robot, the geometry of the obstacles, and the location of the obstacles are
accurately known. Currently there are no robot settings that satisfies these
assumptions, and both robot control and geometric modela are imperfect. In
many cases these imperfections can be ignored because the task may allow
certain tolerance, but that is not always the case.

In the other hand, the robot may have a small or no knowledge of W,
so it would have to trust completely in its sensors at execution time to get
enough information of the environment so the task can be accomplished. In
this particular case, the robot needs to explore W and usually this approach
is outside motion planuiug, although it is possible to inte.rweave planuiug,

I

26 CHAPTER 3. THEORETICAL FRAMEWORK

execution and monitoring activities, but if there is no a priori knowledge
path planning has almost no releva.nce. (18)

A middlepoint situation can be where there is a small error in robot
control and in all geometric models but the errors are just found in certain
bounded regions: an obstacle is expected to be in a certain location but it
is displaced, a robot moves in a different direction than the commanded one
but it displaces in a narrow cone centered along the desired direction. To
deal with that kind of error the robot shall be equipped with sensors that
it can employ during execution so it can acquire additional information.
However, sensors are not deterministic either, a position sensor does not
always return the exact q in which the robot is. It results that sensot8 also
contain certain error in uncertainty region. H that error can be controlled a
motion plan can be generated so it can be tolerant to the overall error. (25)

The motion planning problem with bounded uncertainty can be stated
as follows:

Given an initial region I anda goal region gin the robot's
con.figuration space, generate a motion plan whose execution
guarantees the robot to reach a configuration in g if it starts
from any (unknown) configuration in I, despite bounded uncer­
tainty in control, sensing and model. A solution to this problem
is a plan that combine motion com.mands and sensor readings
that interact at execution time in order to reduce uncertainty
and guide the robot toward the goal. [17]

Planning in bounded uncertainty comes up with new issues that are
not covered in the basic problem or in its extensions. Due to uncertainty in
control a motion command may produce any path among the infinitely many
ones which are consistent with both the command and the uncertainty, all
paths must reach the goal so the planner can guarantee success. The plan
must also finish in the goal, but due to uncertainty in sensing, it may be
a big problem to know if the goal has been reached. The planner must
also retrieve enough information that will allow the controller to choose the
correct actions.

Uncertainty leads to the usage of sensor-based motion commands whose
behaviour is less sensitive to errors than purely position-controlled motion
com.mands. Force-compliant motion commands are one example of such
com.mands. When used, the robot may touch obstacle surfaces and slide on
them, rather than just stop. Planning such sensory-based motion com.mands
may require the physics of the workspace to be taken into consideration. [17]

3.1. MOTION PLANNING 27

3.1.3 Properties of the Algorithm

Once the robot and its task have been defined, the algorithms to be used shall
be chosen according how they will solve the problem. This is, the planner
may come with optima! solutions in a certain criteria such as length, exe­
cution time or energy consumption, or just satisfy the colllStraints. Besides
that, computational complexity, memory requirements, running time (con­
stant, polynomial or exponential) must a1so be considerecl. The size of the
problem description could be the number of DOF of the robot system, the
amount of memory needed to describe the robot and the obstacles in the
environment, etc., and the complexity can be defined in terms of the works
case or the average case. (9]

Sorne planners are complete, they will always find a solution to the prob­
lem if one exists or return failure. This last property is really desirable. In a
motion planning problem, as the number of DOF grows, complete solutions
require lots of computational resources and may not be fea.!'lible to use them.
That is why sorne wea.ker forms of completeness a.re sought. One form of
that is resolution completeness, if a solution exists in certain discretization
resolution, the planner will find a solution. Another form, but weaker, is
probabilistic completeness, the probability of finding a solution converges to
1 in an infinite time.

Optimality, completeness and computational complexi~y naturally trade
off with each other. We must be willing to accept increased computational
complexity if we demand optima.l motion plans or completeness from our
planner.

We say a planner is offline if it constructs the plan in ad.vanee, basecl
on a known model of the environment, and then hands the plan of to an
executor. The planner is online if it incrementally constructs the plan while
the robot is executing. In this case, the planner can be sensor-based, mean­
ing that it interleaves sensing, computation and action. The distinction
between offline algorithms and online sensor-based algoritb.ms can be some­
what murky; if an offline planner runs quickly enough, for example, then it
can be used in a feedback look to continually replan when new sensor data
updates the environment model. The primary distinction is computation
time, and practica.lly speaking, algorithms a.re often designed and discussed
with this distinction in mind. A similar issue arises in control theory when
attempting to distinguish between feedforward control and feedback control,
as techniques like model predictive control essentially use fast feedforwa.rd
control generation in a closed loop. (17]

28 CHAPTER 3. THEORETICAL FRAMEWORK

3.2 Approximate Cell Decomposition

This path planning approach consists of representing the robot's free space
Q¡ree as a collection of cells. Cells are required to have a simple prespecified
shape, like a rectangular shape. Cells do not represent exactly the free space,
instead they approximate in a conservative way, that is why the name it
receives. A connectivity gra.ph representing the a.djacency rela.tion among
the cells is built and searched for a pa.th. The rules for using a. cell shape
are:

l. Achieve space decomposition by iterating the same simple computa.­
tion.

2. To be rela.tively insensitive to numerically a.pproximate computations.

In this p]a.nning method the amount of free space can be controlled for the
generated pa.th by establishing a minimal size for the cells. This is importa.nt
when the error in geometric models and/or robot control is not despica.ble.

The boundaries of the generated cell are kind of arbitrary, they do not
characterize discontinuities in motion constraints. AB they conservatively
represent the free space they may fail to find a free path, even if one exists.
This drawback can be attacked by augmenting the time it can employ to
find a solution. [18]

Most approxi.mate cell decomposition methods allow the size of the cells
to be locally a.dapted to the geometry of the obsta.ele region. Presetting
the size of the cells could result in significant difficulties: a large cell size
would prevent free paths from being found, while a small size would require
increased computation times. So most methods opera.te in a hierarchical
way, they generate an initial coarse decomposition and then loca1ly refining
this decomposition until a free path is found or the decomposition becomes
too small.

The principle of the approximate cell decomposition approach can be
applied to the basic motion planning problem in its full generality, as well
to most of its extensions. However, the time and space complexity of the
methods based on this approach grows quickly with the dimension m of the
configuration space. These methods are applied only when this dimension
is small enough.

3.2. APPROXIMATE CELL DECOMPOSITION 29

Description

A rectangle is defined as a closed region of the following form in a Cartesian
space R":

The differences x'/ - r¡, i = 1, ... , n are called the dimensions of the
rectangle. None of this is zero. Let R be a robot whose cmúiguration space
Q is RN with N = 2 or 3. A configuration q is represented by the coordinates
of R's reference point 1'x in the frame :Fw attached to the workspace.

We assume that the set of possible positions of R h: contained in a
rectangle D e RN. We represent Qfree as:

'R
Q¡ree = QO (3.3)

Where 'R = int(D) if Q = RN
Let n = cl(R). It is a rectangle of Rm, where mis the dimension of the

configuration space Q,.
A rectangle decomposition 1' of n is a finite collection of rectangles

{ ,t.¡ h=l, ... ,r such that:

• nis equal to the union of ,t.¡:

(3.4)

• The interiors of the ,t.¡ 's do not intersect

'v'i1,i2 E [l,r],i1 =f' i2: int(,t.¡1) n int(,t.¡2) = I~ (3.5)

Each rectangle lti is called a cell of the decomposition 1' of n.
Two cella are adjacent if and only if their intersection is a. set of non-zero

measure in Rm-l. The intersection is computed by taking into account that
Q = R2 x 8 1, (x, y, 21r) is identified with (x, y, O).

A cell ,t.¡ is classified as:

• EMPTY - if and only if its interior does not intersect an obstacle
region. ,t.¡) n O = 0.

30 CHAPTER 3. THEORETICAL FRAMEWORK

• FULL - if and only if K¡), is entirely contained in the obstacle region,
Ki) s; o.

• MIXED - otherwise.

The connectivity graph associated with a decomposition 'P of nis the
non-directed graph G defined as follows:

• The nodes of G are the EMPTY and MDCED cells of 'P.

• Two nodes of G are connected by a link if and only if the corresponding
cells are adjacent.

Given a rectangle decomposition 'P of n, a channel is defined as a se­
quence (Ka;);=1, ... ,JJ of EMPTY and/or MDCED cells such that any two con­
secutive cells Ka; and Ka;+1, j E [1,p - 1), are adjacent. A channel that
only contains EMPTY Cells is called an E-channel. A channel that con­
tains at least one MIXED cell is called an M channel. If (Ka;)i=l, ... ,p is
an E-channel, then any path connecting any configuration in (Ka1) to any
configuration (Kap) and lying in int(~=¡Ka;) is a free path. H (Ka;)i=l, ... JJ

is an M-channel, there may exist a free path connecting two con.figurations
(Ka1) and (Kap), and lying in int(~=¡Ka;), but there is no guarantee that
this is the case. [18]

Given an initial configuration q¡ E Q¡ree and a goal con.figuration q¡ E

Q¡ree, the problem is to generate an E-channel (Ka;)i=l,. .. ,p, such that q¡ E
Ka1, and q¡ E Kap. If such a channel is generated, let /3; = 8Ka; n Ka;+1, j =
1, ... ,P - 1, be the intersection of the boundaries of two successive cells.
A free path joining the initial to the goal configuration can be extracted
from the E-channel by Hnkiog q¡ to q¡ by a polygonal line whose vertices
are points QJ E int(/3;). For every j such that /3;-1 and /3; are subsets
of the same face of Ka, an additional point Q.i-l located in the interior of
Ka; should be included among the path's vertices, since in this case the line
segment Q;-1Q; is not guaranteed to lie entirely in the robot's free space.
If necessary, the polygonal path can be smoothed. (17]

Hierarchical path planning consists of generating an E-channel by con­
structing successive rectangle decompositions of {l and searching the as­

sociated connectivity graphs. Let 'Pi, i = 1, 2, ... , denote the successive
decompositions of n. Each decomposition 'P¡ is obtained from the previous
one, 'Pi-1 (with 'Po= {O}), by decomposing one or severa! MDCED cells, the
other cells being unchanged. Whenever a decomposition 'P¡, is computed,
the associated connectivity graph, denoted by G¡, is searched for a channel
connecting q¡ to q¡.

3.2. APPROXIMATE CELL DECOMPOSITION

input : Connectivity graph G,
1 K.: MDCED cell;
2 II,: M-cha.nnel;

3 Compute a rectangle decomposition 'P of íl;
4 i +-- O;

5 repeat
a channel +-- SearchForChannel(G¡);

7 ü channel == E-channel then
8 1 return Success;
e else if channel == M-channel then

10

11

12

13

14

'PHI f- 'P¡;
foreach " in 11¡ do

I
RectangleDecomposi tion(K);
'PHI f- ['Pi+l \ { K. }] U 'P";

end
15 end
18 until Success ;

Algorithm 1: pproximate 11 Decomposition

31

The search of G, can be guided by an heuristic. In particular, one could
search for an E-channel before searching for an M-cha.nnel. But, although the
heuristic function should put an extra cost on MDCED cells ii1 order to gener­
ate an E-channel quicker, it may also be appropriate to prefer short channels
over long ones. Thus, although an E-channel may exist in a graph G¡, it
may nevertheless be preferable to generate a significantly shorter M-channel
instead, and refine G¡ accord.ingly. Notice that any E-channel existing in G¡
will continue to exists in all the graphs G;, j > l. (18]

Let us assume that the region cl(Q/ree) is a manifold with boundary.
Then the algorithm can be made complete - guaranteed to terminate and
retum an E-channel whenever q¡ and q¡ Iie in the sa.me connected component
of Q free - by working out some details appropriately, for inatance:

• The search of the connectivity graph should be complete and it should
output an E-channel whenever one exits.

• AD the dimensions of every MDCED cell in 'P¡ should. tend toward O
when i---+ oo.

32 CHAPTER 3. THEORETICAL FRAMEWORK

However, for an unknown region of Q¡ree, there is no upper bound on
the worst-case computation time.

The computing time can be bounded at the expense of completeness by
imposing constraints on the minimal dimensions of the cell. For example, one
possible constraint is that the total volume of the EMPTY and FULL Cells
in the decomposition P,.. of ¡,;, be greater than a predefined ratio .X E (O, 1) of
the volume of ¡,;,; in addition, every MDCED cell whose volume is smaller than
a prespecified value f is re-labelled as FULL. H such a constraint is imposed,
the algorithm is no longer guaranteed to output an E-channel whenever one
exists. However, if one exists, the algorithm will find one provided that both
.X and t are selected small enough. For this reason, the planning method is
said to be resolution-complete. [17)

3.3 A*(Astar)

Informed search algorithms employ problem-specific knowledge beyond the
definition of itself. It finds solutions in a more effi.cient way than uninformed
search algorithms. The general form of A* is called best-first search, which
is a generalization of the Tree or Graph Search algorithm. In it, a node
is selected for expanding it based on an evaluation function f (n). That
function is calculated as a cost estimated, so the node with the lowest eval­
uation is expanded first. The choice made by J will determine the whole
strategy. Best-first algorithms use an heuristic function h(n) to be included
as a component of J. Heuristic functions are a way of providing additional
knowledge of the problem to the search algorithm.

The most popular variation of the Best-first Search is A* search. lts
nodes evaluation system consists of the combination of the cost to reach the
node g(n) and h(n), the cost to get from the node to the goal:

J(n) = g(n) + h(n) (3.6)

g(n) gives is the cost function of moving from the start node a node
n, in the other hand, h(n) gives the estimated cost of the path with the
lowest combined heuristic. By combining them the estimated cost J(n) is
calculated.

If the cheapest solution is being searched, what is usually done is to
try the lowest value node of g(n) + h(n). Using this strategy, it can be
demonstrated that A* search is both complete and optimal.

3.3. A* (A STAR)

input : problem
output: A solution, or failure

1 node: a node with STATE = problem. INITIAL-STATE, PATH-COST =
O;

2 frontier: a priority queue ordered by PATH-COST, with node as the
only element;

s explored: an empty set

4 repeat
I if Em.pty?(frontier} then return failure;
e node: Pop (frontier};

33

T if problem.Goa1Test(node.STA7E} then return Solution(node};
B add node.STATE to explored;
e foreach action in problem.Actions(node.STA7E} do

10 child +- ChildNode(problem, node, action};
11 if child.STA7E is not in explored or frontier the11
12 1 frontier +- Insert(child, frontier}
13 else if child.STA7E is in frontier with higher PA;rH-COST then
14 1 replace that frontier node with child
11 end
10 end
1 T until Solution or failure ;

Algorith.m 2: A* Search

34 CHAPTER 3. THEORETICAL FRAMEWORK

Conditions for optimality: Adm.issibility and consistency

h(n) rnust be an admisc¡ible heuristic so optimality can be reached. To be
admissible it must not overestimate the cost to reach the goal. AB g(n)
represente the actual cost to reach n through the path, and /(n) = g(n) +
h(n), it will never overestimate the true cost of a solution in the current
path through n.

Admissible heuristics are usually optimistic, this is, they estimate the
cost of solving the problem is srnaller than it really is. Monotocity or con­
sistency is another required condition for using A* in a graph search. A
heuristic h(n) is consistent if, for every node n and every successor n' of n
generated by any action a, the estimated cost of reaching the goal frorn n
is no greater than the step cost of getting to n' plus the estimated cost of
reaching the goal from n':

h(n) ::;; c(n, a, n') + h(n') (3.7)

The previous equation is a form of the general triangle inequality, it
stipulates that each triangle's edge cannot be longer than the sum of the
other two. The triangle is formed by n, n' and the goal Gn closest ton.
In an admissible heuristic, the inequality can be interpreted this way: if a
route frorn n to Gn exists via n' and it is cheaper than h(n}, it will violate
the property that h(n) is a lower bound on the cost to reach the goal node.

A* is complete, optimal and optirnally eflicient, but it is not always the
best solution for ali search needs. This is, in sorne problems the number of
states that surround the goal is exponential in the length of the solution.
The complexity of A* can provoke that it is not feasible to find an optima!
solution. To solve it, A* modifications have been proposed, they find sulr
optimal solutions more rapidly, or a good search heuristics can be designed,
still it will give enormous savings cornpared to an uninformed search ..

Its main drawback is computational time, it saves all generated nodes in
mernory. lt is not rare that it runs out of rnernory before a timeout occurs.
That is why A* is not used in large-scale problems, yet sorne algorithms
overcome the space problem while taking care of not sacrificing optimality
or completeness, however execution time is slightly affected. [27]

3.4 Kalman Filter

Gaussian techniques all share the basic idea that beliefs are represented by
rnultivariate normal distributions:

3.4. KALMAN FILTER 35

p(x) = det(27rE)-! exp{-~(x - µfE- 1(x - µ)} (3.8)

The density over x is characterized by the mean µ and the covariance
E. µisa vector that has the same dimensionality as x. E is a quadratic
matrix that is symmetric and positive-semidefinite. The dimension is the
dimensionality of the state x squared.

The commitment to represent the posterior by a Gaussia.n has important
ramifications. This is, Gaussians are unimodal: they have a single maxi­
mum, this characteristic is widely used for tracking problems in robotics:
the posterior is focused around the true state with a small margin of uncer­
tainty. Gaussians posteriors are a poor match for global estimation problems
where many hypotheses exists because each of them forms its own mode in
the posterior. [18]

Linear Gaussian Systems

The moments of parametrization is the parametrization of a Gaussian by its
mean and covariance. Each of them are the first and second moments of a
probability distribution; the rest of them are zero for a normal distribution.
The Kalman filter is the best studied technique for implementing Bayes
filters. lt was invented by Swerling and Kalman as a way for filtering and
predicting the behaviour of a Linear Gaussian System. It implements a
belief computation for continuous states, so it cannot be applied in discrete
or hybrid space states. It represents beliefs by the moments :parametrization.
At time t, the current belief is represented by the mean JLt and covariance Et.
Posteriors are Gaussian if the following three properties hold, in addition to
the Markov assumptions of the Bayes filter. [27]

l. The state transition probability p(xtlut, Xt-1) must be a linear function
in its arguments with added Gaussian noise. This is ·~ressed as:

(3.9)

Here Xt and Xt-l are state vectors, and ut is the control vector at time
t. Both of these vectors are vertical vectors. They 8['13 of the form:

(

Xl,t) X2,t
Xt= •

Xn,t

(3.10)

36 CHAPTER 3. THEORETICAL FRAMEWORK

and

ut = r~::1
Un,t

(3.11)

At and Bt are matrices. At is a square matrix of size n x n, where n
is the dimension of the state vector x,. Bt is of size n x m, with m
being the dimension of the control vector ut- By multiplying the state
and control vector with the matrices At and Bt, respectively, the state
transition function becomes linear in its arguments. Thus, Kalroan
filters assume linear system dynamics.

The random variable ft is a Gaussian random vector that models the
uncertainty introduced by the state transition. It is of the same di­
mension as the state vector. lts mean is zero, and its cova.riance will
be denoted Rt. A state transition probability as seen in (3.9) is called
linear Gaussian, to reflect the fact that it is linear in its arguments
with additive Gaussian noise. [18)

Equation (3.9) defines the state transition probability p(xtlut,xt -1).
This probability is obtained by plugging (3.9) into the definition of the
multiva.riate normal distribution. The mean of the posterior state is
given by AtXt-1 + Btut and the cova.riance by Rt.

1
p(xtlut,Xt-i) = det(211-Rt)-i

exp{-~(Xt - AtXt-1 - Btutf Ri-1(xt - AtXt-1 - Btut)} (3.12)

2. The measurement probability p(ztlxt) must also be linear in its argu­
ments, with added Gaussian noise:

(3.13)

Here Ct is a matrix of size k x n, where k is the dimension of the mea­
surement vector zt. The vector ót describes the measurement noise.
The distribution of ót is a multiva.riate Gaussian with zero mean and
cova.riance Q,. The measurement probability is thus given by the fol­
lowing multiva.riate normal distribution:

3.4. KALMAN FILTER 37

3. Finally, the initial belief bel(xo) must be normally distributed. This
belief will have mean µo and covariance by Eo.

bel(xo) = p(xo) = det(21rEo)-i exp{-!(xo - µ,of}:::01(xo - µo)}
(3.15)

These three assumptions are sufficient to ensure that the posterior
bel(xt is always a Gaussian, for any point in time t.

Algorithm

Kalman filters represent the belief bel(xt) at time t by the mean JLt and the
covariance Et. The input of the Kalman filter is the belief at time t - 1,
represented by JLt-1 and Et-1· To update these parameter, Kalman filters
require the control ut and the measurement Zt· The outpu1; is the belief at
time t represented by JLt and Et.

In lines 1 and 2, the predicted belief µ and E is calculated representing
the belief bel(xt) one step later, but before incorporating tbe measurement
Zt· This belief is obtained by incorporating the control 'Ut· The mean is up­
dated using the deterministic version of the state transitioIL function (3.9),
with the mean JJ,t-1 substituted for the state Xt-1 · The update of the co­
variance considers the fact that states depend on previous states through
the linear matrix At. This matrix is multiplied twice into the cove.riance,
since the covariance is quadratic matrix.

input: JLt-1, Et-1, Ut, Zt

1 lI,i = Atµt-1 + Btut;
- T :, Et = AtEt-1~ + Re;

s Kt = Etcf{(CtEtcff + Qt)-1;

4 JLt = lI,i + Kt(Zt - Ctll,i);
& Et = (I - ktCt)Ec;
e retW'D JJ,t-1, Et-1

Algoritbm 3: The Kalman Filter Algorithm

The belief bel(xt) is subsequently transformed into thEi desired belief
bel(xt) in lines 3 through 5, by incorporating the measurement Zt· The vari­
able Kt, computed in line 3 is called Kalman gain. It specifies the degree to
which the measurement is incorporated into the new state estimate. Line
4 manipulates the mean, by adjusting it in proportion to the Kalman gain

38 CHAPTER 3. THEORETICAL FRAMEWORK

Kt and the deviation of the actual measurement, zt, and the measurement
predicted according to the measurement probability (3.13). The key concept
here is the innovation, which is the difference between the actual measure­
ment zt and the expected measurement Ct74 in line 4. Finally, the new
covariance of the posterior belief is calculated in line 5, adjusting for the
infonnation gain resulting from the measurement. [25)

The Kalman filter is computationally quite efficient. Each iteration of
the Kalman filter is lower bounded by O(k2•4), where k, where k is the
dimension of the measurement vector zt. This approximate cubic complexity
stems from the matrix inversion in line 3. [18)

3.5 Particle Filter

Nonparametric filters are an altemative to Gaussian techniques. The pos­
terior they use is represented by a finite number of values which correspond
to a region in the space state. Sorne nonparametric Bayes filters decompose
the state space, each of the correspond to a probability of the posterior den­
sity in a region of the space state. Some others approximate the space state
by sampling the posterior distribution. The nu.mber of parameters can be
varied such that the quality of the approximation depends on it. H that
number goes to infinity, nonparametric techniques converge uniformly to a
correct posterior under smoothness a&<Ju.mptions. (18)

Basic Algorithm

The particle filter is a nonparametric implementation of the Bayes filter. It
approximates the posterior using a finite number of parameters. It repre­
sents the posterior bel(xt) by a set of random state samples taken from the
posterior. Rather than representing the distribution in a parametric fonn -
like a normal distribution - particle filters represent a distribution by a set
of samples drawn from this distribution. This distribution is approximate
and nonparametric so it can represent much better a space of distributions.
Another advantage is that it can model nonlinear transfonnations of random
variables. (25)

In particle filters, the samples of a posterior distribution are called par­
ticles and are denoted

V ·- (l) (2) [M] (3 16)
"'"t ·- Xt I Xt , • • ·, Xt •

Each particle xlml (with 1 s m s M) is a concrete instantiation of the
state at time t. Put differently, a particle is hypothesis as to what the true

3.5. PAKI'ICLE FILTER 39

world state may be at ti.me t. Here M denotes the nu.mber of particles in
the particle set Xt. In practice, the number of particles Mis often a large
nu.mber. In some i.m.plementations M is a function of t or other quantities
related to the belief bel(xt)·

The intuition behind particle filters is to approximate the belief bel(xt)
by the set of particles Xu. Ideally, the likehood for a state hypothesis Xt

to be included in the particle set Xt shall be proportional to its Bayes filter
posterior bel(xt):

(3.17)

As a consequence of it, the denser a subregion of the state space is
populated by samples, the more likely it is that the true stat;e falls into this
region. As it will discussed, the property (3.17) holds only asymptotically
for M t oo for the standard particle fil ter algorithm. For finite M, particles
are drawn from a slightly di.fferent distribution. In practice,., this difference
is negligible as long as the nu.mber of particles is not too small.

The particle filter algorithm constructs the belief bel(xt) recursively from
the belief bel(xt-i) one time step earlier. Since beliefs are represented by
sets of particles, this means that particle filters construct the particle set Xt
recursively from the set Xt-1 ·

input: Xt,ut,Zt

1 Xt = Xt = 0;
2 form=ltoMdo

3 sample xr "'p(xtlut, xtl);
4 w!ml = p(ztlx!ml)¡

5 Xt = Xt + (x{ml, wJml)¡
e end
1form=ltoMdo

8 draw i with probability ex: wjiJ;

9 add x{'l to Xti

10 end
11 return Xt

Algorithm 4: The Particle Filter Algorithm

The input of this algorithm is the particle set Xt-1, along with the most
recent control ut and the most recent measurement Zt· The algorithm then

40 CHAPTER 3. THEORETICAL FRAMEWORK

first constructs a temporary particle set X that represented the belief bel(xt)·
It does this by systematically processing each particle xtl in the input
particle set Xu-oo· Subsequently, it transforma these particles into the set
Xt, which approximates the posterior distribution bel(xt)· In detall:

l. Line 3 generates a hypothetica.l state x{ml for time t based on the

particle xtl and the control Ut· The resulting sample is indexed by m,
indicating that it is generated from the m-th particle in Xt-1· This step
involves sa.mpling from the state transition distribution p(xt!Ut, Xt-1).

To implement this step, one needs to be able to sample from this
distribution. The set of particles obtained after M iterations is the
filter's representation of bel(xt)·

2. Line 4 ca.lculates for each particle x{ml the S<rCalled i.mportance factor,

denoted w!ml. Importance factors are used to incorporate the measure­
ment zt into the particle set. The importance, thus, is the probability
of the measurement zt under particle xr, given by w!ml = p(ztlx{ml).
lf we interpret w!ml as the weight of a particle, the set of weighted par­
ticles represents (in approximation) the Bayes filter posterior bel(xt)·

3. During the second for, resampling or i.mportance sa.mpling is imple­
mented. The algorithm draws with replacement M particles from the
temporary set X t· The probability of drawing each particle is given by
its importance weight. Resampling transforma a particle set of M par­
ticles into another particle set of the same size. By incorporating the
importance weights into the resampling process, the distribution of the
particles change: Whereas before the resampling step, they were dis­
tributed according to bel(xt), after the resampling they are distributed

(approximately according to the posterior bel(xt) = 71p(ztlx{ml)bel(xt)·
In fact, the resulting sample set usually possesses many duplicates,
since particles are drawn with replacement. More important are the
particles not contained in Xt: Those tend to be the particles with lower
importance weights.

The resampling step has the important function to force particles baclc
to the posterior bel(xt)· In fact, an alternative (and usually inferior) version
of the particle filter would never resample, but instead would maintain for
each particle an importance weight that is initialized by 1 and updated
multiplicatively:

3.5. PARTICLE FILTER 41

(3.18)

Such a particle filter algorithm would still approximate the posterior, but
many of its particles would end up in regions of low postEirior probability.
As a result, it would require many more particles; how many dependa on the
shape of the posterior. The resampling step is a probabilistic implementation
of the Darwinian idea of survival of the fittest: lt refocuses the particle set
to regions in state space with high posterior probability. By doing so, it
focuses the computational resources of the fiilter algorithm w regions in the
state space where they matter the most. [25]

42 CHAPTER 3. THEORETICAL FRAMEWORK

Chapter 4

Employed Hardware

This chapter includes a description of the employed and developed hardware
for this Thesis. This work's main goal is to implement several algorithms and
malee them interact so the task of transporting a heavy object is achieved,
but it would not be accomplished without the correct hardware.

4.1 Boe-Bot Robot

The Parallax Boe-Bot robot (Figure 4.1) is the focus of the activities and
projects for various type of students, from a beginner student toan advanced
designer. Its popularity comes from how versatile it is for being modified.
It can be used as an standard mobile robot with wheels that uses servo
motors. [3) Another possibility is using those motors to turn it into a crawler
robot that can interact in other type of environments. [4] A final modification
provided by the manufacturer is adding the capability of carrying objects by
using a gripper that can handle up to 14 pounds. [5) Its chassis can accept
severa! modifications into it so its functionality can only grow.

4.2 BASIC Stamp 2

A Microcontroller is a programm.able device that is designed into watches,
cellphones, calculator, etc. In robot applications, the microcontroller is
programm.ed to sense when a button has been pressed, to communicate,
read sensors or move. [19) The BASIC Stamp is widely used in educational,
hobby, and industrial applications. (Figure 4.2) Its main capabilities are:

l. Processor Speed: 20 MHz.

43

44 CHAPTER 4. EMPLOYED HARDWARE

Figure 4.1: Boe-Bot Robot

2. Program Execution Speed: ,...., 4000 PBASIC instructions/sec.

3. RAM Size: 32 Bytes.

4. EEPROM Size: 2 KBytes ,...., 500 PBASIC instructions.

5. 1/0 pins: 16 + 2 dedicated serial.

6. Current Draw: @5 VDC: 3 mA Run, 50 µA Sleep.

7. Source/Sink Current per 1/0: 20 mA / 25 mA

8. Source/Sink Current per unit: 40 mA / 50 mA per 7 1/0.

9. PBASIC Commands: 42.

10. Package: 24-pin DIP

11. lndustrial-Rated since Rev J

This microcontroller is designed to interact in a friendly way with the
Boe-Bot robot and with most of the sensors that will be described in this
Chapter, that is why it was chosen. lt is a low cost high capability micro­
controller which 1/0 ports can perform the typical functions of a pin, but its
main advantage is that they can work as PWM outputs, Serial TX/RX pins
and with some software modifi.cations as an 12C. Most of the products in the
market have one or two serial ports and limited PWM dedicated pins so if
several sensors need serial communications those microcontrollers would not
be a good choice. lt was also included with the Boe-Bots that were used,
that was an extra reason of why to use it.

4.3. BLUETOOTH MODULE 45

Figure 4.2: BASIC Stamp 2 Microcontroller

4.3 Bluetooth Module

A Robot needs to communicate with other agents or with a computer de­
pending if it works in a centralized or decentralized way. When working in a
prototype, usually wired communication is used, usually serial or USB. But
when a robot needs to work in a remote location, wireless communication
becomes quite important. The Embedded Blue 500 module will be used, it
is shown in Figure 4.3.

Bluetooth is a technology standard for electronic devices to communicate
with each other using a short-range radio. lt is ofter referred to as a "cable
replacement" technology, because it is commonly used to connect things
that have traditionally been connected by wires. lt is based on a frequency
hopping spread spectrum modulation (FHSS) technique. The term spread
spectrum describes a number of methods for spreading a radio signa} over
multiple frequencies, either simultaneously or in series. Bluetooth utilizes
FHSS to reduce interference and increase security. The signal is rapidly
switched from channel to channel many times per second in a pseudo-random
pattern that is known by the sender and the receiver. This provides robust
recovery of packet errors caused by interference from another radio source
at a particular frequency. Also, data is generally more secure because it is
not possible to receive more than a fraction of the data unless the hopping
patter is known. Bluetooth utilizes frequency hopping in the 2.4 GHz radio
band and hops at a relatively fast pace with a raw data rate of about 1
Mbps. This translates to about 700 kbps of actual useful data transfer.
The eb500 module supports a maximum sustained bidirectional data rate of
230.4 kbps.

~ -- ..
1~
"' •• . ,.
~-., ¿

-4

. ·'

.i ' ;•,: .
:_;..-: :
.. J

-¡;.

: ...
·I
~\ .

46 CHAPTER 4. EMPLOYED HARDWARE

Figure 4.3: EmbeddedBlue 500

The eb500 supports two main operating modes: command mode and
data mode. Upon power up, the eb500 enters command mode and is ready
to accept serial commands. In this mode baudrate can be changed, also
locate other devices and check firmware version. Once the eb500 radio is
connected to another Bluetooth device, the eb500 automatically switches
into data mode. A1l data transmitted while in this mode wilI be sent to the
remote the remote device and no further commands can be sent until the
eb500 radio is disconnected or switched baclc to command mode. [11)

4.4 GPS

A Global Positioning System is a space-based navigation system that can
provides severa! information such as time, location, speed, course, date,
satellites in view, elevation, azimuth, signal strength, and local zone time
among others. lt is a program of the U.S. Department of Defence. lt was
developed to overcome limitations of previous systems. The receiver uses
the messages it receives to determine the transit time of each message and
computes the distance to each satellite using the speed of light. Each of
these distances and satellites' locations define a sphere. The receiver is on
the surface of each of these spheres when the distances and the satellites'
locations are correct. Many GPS units show derived information such as
direction and speed, calculated from position changes. In typical GPS op­
eration, four or more satellites must be visible to obtain an accurate result.

The PMB-648 GPS (Figure 4.4) has severa! operation modes where dif­
ferent data is returned. The selected mode is the Recommended Minimum
Specific GNSS Data (RMC). [26) The output message has the fonn of:

$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598,, *10
(4.1)

4.5. COMPASS 47

Figure 4.4: PMB-648 GPS SiRF Internal Antenna

The data contained in the messages is separated by a comma, the values
are:

l. Message ID - RMC protocol header.

2. UTC Time - Coordinated Universal Time in the hhmmss.sss format.

3. Status - Valid or non valid data.

4. Latitude - Latitude location in the ddmm.mmmm format.

5. N /S Indicator - Indicates if the location is at the North or at the South.

6. Longitude - Longitude location in the dddmm.. mmmm format.

7. E/W lndicator - lndicates if the location is at the East or at the West.

8. Speed Over Ground - Speed in knots.

9. Course Over Ground - Course in degrees.

10. Date - Date in the ddmm.yy format.

11. Magnetic Variation - lt can be East or West.

4.5 Compass

The Compass Module 3-Axis HMC5883L (Figure 4.5) is a low-field magnetic
sensing device with a digital interface. The compass module converts any
magnetic field to a differential voltage output on 3 axes. This voltage shift is
the raw digital output value, which can then be used to calculate headings
or sense magnetic fields coming from different directions. The module is
designed for use with a large variety of microcontrollers with different voltage
requirements.

1
' l

\\1
~

1

48 CHAPTER 4. EMPLOYED HARDWARE

Figure 4.5: Compass Module 3-Axis HMC5883L

The compass module communicates via a two-wire I2C bus system as a
slave device. It supports standard and fast modes, 100 kHz and 400 kllz,
but does not support a high-speed mode. No external pull-up resistors are
required to support these standard and fast speed modes. The compass
returns the value of three magnetic fields in a Cartesian environment, so to
turn it into degrees or radians a Cartesian to Spherical conversion must be
performed. [1]

4.6 Laser Range Finder

The Parallax Laser Range Finder (LRF) Module is a distance-measuring
instrument that uses laser technology to calculate the distance to a targeted
object. The design uses a Propeller processor, CMOS camera, and laser
diode to create a low-cost laser range finder as shown in Figure 4.6. Dis­
tance to a targeted object is calculated by optical triangulation using simple
trigonometry between the centroid of laser light, camera, and object.

lts optimal measurement range of 15 - 122 cm with an accuracy error
¡5%, average 3%. The maximum object detection distance is 2.4 meters. lt is
communicated with asynchronous serial 300 - 115,200 baud with automatic
baud rate detection.

4. 7 Infrared Line Follower

The Infrared Line Follower Kit from Parallax provides eight infrared emitter
and receiver pairs for high- precision line-following applications (Figure 4. 7).
Upon connecting power, the onboard ICM7555 chip begins sending a 38 -
43 kHz signal through all 8 IR LEDs. H the IR LED is over a white surface,
light is reflected to the IR receiver, and its output is low. When the IR

4.8. ROBOT DESIGN AND IMPLE:MENTATION 49

FRONT

Figure 4.6: Laser Range Finder

LED is overa black surface, no light is reflected to the IR receiver, and its
output is high. Red LEDs located on the top of the board are wired to
the output of each IR receiver, and the anode of each LED is connected to
power. When the IR LED is overa white surface, the low signal completes
the LED circuit and turns the LED on. Conversely, when the IR LED is
overa black surface, the LED receives dual high signals and the LED is off.
This allows for easy visual feedback of the Infrared Line Follower's output
states. An onboard potentiometer also allows for the easy adjustment of the
infrared frequency between 38 and 43 kllz. This allows the sensor to detect
different coloured lines, and also allows for the easy adjustment of the sensor
to different lighting conditions ar mounting positions. [2]

. .
: .. r : ~ • ! ! . - .. - .

}.{ 1,0,1 J.l J.f lJ l.l J.I
<i- - •

,,,,,,,,,,,

Figure 4. 7: Infrared Line Follower

4.8 Robot Design and lmplementation

4.8.1 Leader Robot

The leader robot needed to be equipped with the Laser Range Finder to
measure the distance between itself and an obstacle in the environment.

50 CHAPTER 4. EMPLOYED HARDWARE

However, if the LRF kept just one position the information that could be
retrieved from the surroundings would be minimum. That is why it was
mounted over a standard servo motor so it could cover the environment in
an interval [0-1r). Now it is capable of acquiring more valuable information.

Another sensor with which it was equipped is the PMB-648 GPS. AB
it is working in the RMC mode, only the TTL serial output, power and
ground wires shall be connected. The GPS is located at the top of the
Transport Platform so it has a clear "view" to the satellites to assure liable
information. As this robot leads the other ones, it needs far much more
"force" to move. Usually, Boe-Bots are equipped with continuous rotation
servos with a torque of 2.5 kg-cm. With this torque it could not move freely,
that is why those servos were replaced with high torque servo motors that
have a 13 kg-cm torque. Finally, as the Thesis' main goal is to transportan
object from one place to another, a mechanical structure was added at its
back so it could carry part of the platform. The complete implementation
is shown in Figure 4.8.

Figure 4.8: Leader Robot

Electronic Schematic

The Leader Robot circuit looks as in Figure 4.9. The Basic STAMP mi­
crocontroller is the Robot's core. lt is in charge of receiving commands,
retrieving data from sensors and performing motion actions. The integrated
continuous rotation servo motors the robot has are wired to pins 12 and 13.
In the figure they are not represented, nonetheless they are used. The GPS
is wired into pin 1, and supplied by 8.4 V. The LRF serial input goes to pin
9 while the output to pin 15, this sensor is quite more complex than any

4.8. ROBOT DESIGN AND IMPLEMENTATION 51

other, that is why it has specific communication ports. The standard servo
motor that is in charge of moving the LRF is controlled by an output signal
generated in pin 14. The serial communication lines that are used between
the Leader and the 'Iransmitter are pins 10 (input) and 11 (output). This
wires are not represented in the figure.

L.
.

<

.

Figure 4.9: Leader Robot Schematic

Mechanic Design

The mechanical structure it has on its baclc is quite simple, it just provides
the robot with a toehold that pulls the 'Iransport platform. lt had to be
symmetrical so the handled weight could be evenly distributed through both
sides of the robot, Another reason was far not affecting any of the motors
performance because the desired movement will be affected because of the
weight. A wooden stick is used far coupling the structure with the platform.

4.8.2 Transmitter Board

During the initial plans, the leader robot was equipped with all the sensors
and communication devices: GPS, LRF, Comp~ and Bluetooth module,
but while implementing it a RAM capacity problem carne through: it was
not enough. The memory problem will be explained in a deeper way in the
next chapter. That is why an extra board was needed to handle the Comp~
and the Bluetooth module. The hardware split carne up with a new need,
somehow the leader and the transmitter should communicate. To salve it,

52 CHAPTER 4. EJMPLOYED HARDWARE

serial TX and RX wires were used among them, that way data could flow
between them.

Figure 4.10: Transmitter Board

Electronic Schematic

This schematic is quite simple, there are not much elements in Figure 4.11.
The Transmitter collects data from the Compass, semls commands to the
Leader, receives information from it to be resent to the Planner. The Com­
pass is an 12C sensor so it only has four pins: supply, ground, SDA and
SCL. SDA stands for Serial Data Line, in it the information flows from the
master to the slave and backwards. SCL is a synchronization signal. SDA is
connected to pin 9 and SCL to pin 10. The serial communication lines are
pin 15 for output and pin 14 for input. The BT module is connected to pin
O for input and pin 1 for output. Pin 5 is used as an enable pin for starting
transmission capabilities to the module.

11
® I I PARALLAX • @

• ""9v • . ., -~

O . • =ese ~

® BASIC Stamp HomeWork Board ®

Figure 4.11: Transmitter Board Schematic

4.8. ROBOT DESIGN AND IMPLEMENTATION 53

4.8.3 Follower Robots

First of all, these robots were equipped with mechanical structures similar
to the ones of the leader. But as the followers are the carriers they needed a
more robust structure with which the weight will be handled. lt goes from
the front part, through both sides and it stops at the back. Ali the structure
has the same height a.nd its symmetrical so the object's weight will be evenly
distributed among it. The way the followers will pursue the leader is with
the Line Followers. Usually they are located at the lower front part, but
now they were put at the upper front part. This way the Robot will follow
the line's path wherever it goes, in case it does not see any line it will stay
still until there is a movement.

(a) Follower 1 (b) Follower 2

Figure 4.12: Follower Robots

Electronic Schematic

This schematic is the most simple of them all. AB in the Leader Robot, the
Robots' wheels are not included in this schematic but that does not mean
they are not wired or used. The Line Follower Sensor has a pin for each of
the m detector. Those outputs are sent to pins O to 7, and depending the
IR LEDs that are activated the Robot performs a correction action that can
be moving frontwards, or adjusting right or left. (Figure 4.13)

54 CHAPTER 4. EMPLOYED HARDWARE

Figure 4.13: Follower Robot Schematic

Mechanic Design

The structure distributes the handled weight all over the Robot's chassis.
The whole structure links all the toeholds just for stability purposes. This
guarantees that if any joint or screw goes out of place, the robot will still be
capable of performing its task. lts main drawback is the sensor location, as

it has continuous contact with the platform's surface it might get damaged
and malfunction at a certain point.

4.8.4 Transport platform

A platform was needed so the robots could handle the object. At the bottom
of it, two lines are placed where the followers are meant to be. They go from
the middle to the back of the platform so if they get delayed or one of them
moves faster than the other one, they still can follow the leader. At the top
of it some Velero straps were placed where the power circuit, the battery
and the Transmitter Board wil1 be located.

B
(a) Lower view (b) Upper view

Figure 4.14: Transport platform

4.8. ROBOT DESIGN AND IMPLEMENTATION 55

4.8.5 Multiple Robot System

The system integrates both Follower Robots, the Leader, the 'Iransmitter
Board, the 'Iransport Platform and the supply system. The Leader goes at
the front of the team, it pulls the 'lransport Platform. When the platform
moves, it guides the way for the followers, which immediately start tracking
the leader. The supply system and the 'Iransmitter Board are located at the
top, where they are fixed. The Figure 4.15 shows how the Multiple Robot
System is mounted during execution time.

Figure 4.15: Multiple Robot System

As the implemented robot is a prototype it has several drawbacks but
lots of virtues. Among the virtues are the usage of low cost robots working
together to perform a task, Ali the employed sensors and actuators are not
that expensive and can be found with ease. Ali the components are user­
friendly and they can be easily used, nonetheless it is important to know
how they work so ali of their capabilities can be exploited. An object (not
quite heavy) can be moved between two points, for now just a uniformly
distributed weight one. The communications and ali of the hardware were
carefully selected so they could be robust and quite liable while facing several
situations. Durability is a main requirement, robots must be able of working
for a long time during different conditions. Almost all devices wear out
with usage but the employed ones demonstrated to last long enough while
doing lots of tests. There are three main drawbacks, the firs one is the
uncertainty that the sensors and actuators have, for many applications high

56 CHAPTER 4. EMPLOYED HARDWARE

precision data is required, but the employed hardware does not provide it
continuously, this is, motion is not always performed as desired, and sensors'
measurements may have a large error.

Chapter 5

Software: Design and
lmplementation

Tbroughout this chapter the developed software programs will be listed and
explained. lt will be divided in two main sections: the Robot Programs and
the Planner Programs. In both of them it will be explained how data is ac­
quired or sent, communication protocols, movement commands computation
and execution, 88 well 88 localization, mapping and obstacle avoidance. The
computer used for nmning the Planner Programs is a D:ELL XPS L502X
with an Intel Core 17 @2.20GHz, 8GB RAM and its OS is Windows 7 Home
Premium x64. The most important work of this Thesis was implemented
bere that is wby this chapter has a great importance. Actual code is not
included bere but pseudo-code is. This is for making it comprehensible to
almost anyone, 88 well as if this work is used as a referenCE1 it can be e88ier
to understand tbe implemented algorithms.

The algorithm can be represented as a flowchart. lt represents the con­
nections and links that exist between each of the hardW&.re and software
elements in the System. All the computing load is performed in the Planner
wbich retrieves information from the Transmitter. It can access all the sen­
sors and elements in the System in a direct or indirect way. The sensors can
be accessed by all the elements that have a superior bierarchy, this is, the
Planner cannot access directly any element contained in the system, but it
can ask for the data. The lower level elements of the System are in charge
of providing the Planner all tbe information it requires. The planner and
the Leader robot are indirectly linked, another indirect relationsbip is the
one between the Leader and the Follower Robots.

The diagram in 5.1 shows the overall implementation. The arrows show

57

58 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

Particl.eFilter
····""

··· '
···.i... ..4:···

CellDecomposition-<······················>- Planner -<········ ·············>- KalmanFilter

!
Computer Bluetooth

t
EB500M odule

t
Compasa Transmitter Board

t
Leader Robot

~ t ~--
GPS Laser RangeFinde,· Follower Robot

Figure 5.1: Overall Algorithin BlOC'..k Diagram

the way the information fl.ows through the various elements of the software
i.mplementation. Algorithin interactions are marked with a dotted line, in­
direct interactions with a discontinuous line and finally direct interactions
with a continuous line. Hierarchy is 88 shown in the Figure. The diagram
shows a general interaction diagram, each module will be explained in the
following pages.

5.1 Robot Programs

All the Robot programs run in a BASIC Stamp 2.. lt is a handy but limited
microcontrol.ler, specially when developing a large and complex i.mplemen­
tation. As in any other microcontroller, it has internal auxiliary elements,
it is economic, it can handle several peripherals such 88 sensors and actu­
ators, uses several communication protocols, but most i.mportant of all, it
can work in an standalone mode, but despite of 1those adva.ntages, it has a
li.mited program memory and RAM, that is why the code it executes shall

5.1. ROBOT PROGRAMS 59

be very eflicient. As mentioned in the previous chapter, the BS2 has 2 KB
EEPROM and 32 bytes RAM, which are quite limited resources for devel­
oping a complex program. Knowing that, the BS2 will only be in charge of
acquiring data from the sensors and executing movements, no processing is
performed in it. Firstly because most of the needed instructions are quite
complex for such a microcontroller and valuable information could be lost,
lastly because such instructions consume lots of program memory.

5.1.1 Leader Robot

Figure 4.8 shows the actual implementation of the Leader Robot. This
Robot is in charge of moving, the GPS and the LRF, but as it has no wireless
transmitting capabilities, it must sent the data it has just retrieved to the
Transmitter Board. The Leader shows the way to the followers and it plays
the Master role, but as it has no decision-making capabilities, it must be a
Slave of the Planner. It waits for an indication coming from the Transmitter
Board to execute an action. Meanwhile, it waits for an instruction. The
general pseudo-code of the Leader is presented in Algorithm 5.

EEPROf.tf.'lep

ol 1lzúl üsl6171aú.Tol!ilihld, ,
360 00 00 00 00 00 00 00 00 00 00 D 58 70 9B 88 o: = "n~~~•n~~~~reu~•~
= 6~~Fl3A~1E9BVK~UMH&D~ ~~::~~~=~::~::::, = ~9B6DM~~"reu~nMKm
410 13Fl 3A~ 1E9BD7 KDl eA9H 60802BOI _
= zn~~"n~~~unM~M"~ ~ = ~n~U3AM~"~~DU"re~
- EDM~MURUM~Mff~«~
450 9BC7E6BS59B4 63M1H8E11E 413AA¡ = mRU8DMnHU8DM~au~~
= n~~m~n~~ucn~~M"~ ::~ : :~_:3 U.88 ::1~J:_=r~ :~t~Ji -
111

EEPROM Leoend
• - Undef. Otila D - Proaran
Cl - Oel. Oatr.t Cl -Unused

(a) EEPROM Map

RAF.1 l,lap

RAPA legend

• - Pins liiil - Word - Bvte
• ·NibbleCl · B~ D -Unused

(b) RAM Map

Figure 5.2: Leader Robot Memory Maps

This code might look quite simple but the amount of memory it uses is
significant (Figure 5.2) . RAM is used completely by pin definitions, Byte and
Word variables used in it. Most of it is consumed while reading the GPS.
The EEPROM is occupied in a 53% . No complex functions are used in
the code. Mainly just basic instructions like serial transmission/reception,
PWM generation and a switch structure were used. Nonetheless a great
amount of program memory is occupied. The data transmission between the

60 CHAPTER 5. SOF1WARE: DESIGN AND IMPLEMENTATION

Leader and the 'Iransmission is done by the Serial protocol. lt is configured
to transmit/receive 8 bits, no parity, no end bit a.nd a BaudRate of 9600.

The LRF samples are took by using the laser dfflrice as well as a Standard
Servo Motor. the [O -1r) interval is divided in 44 parts. So when a sample
is taken, the servo motor rotates ~ radians until the whole environment
is covered. Each of them represente ,...., 0.07 radia.ns. With that number of
samples, a good resolution is reach so if there is a near obstacle it ca.n be
perfectly mapped. In case that the Kalman filter is used, the samples are
liable for being used in the algorithm. For transmitting the LRF samples,
each time one is took, it is sent to the 'Iransmitter Board. This is because
it is not affordable to save a set of samples because of memory constraints.
Something similar happens when reading the GPS. As seen in (4.1) the
output message sent by the device is too long. Some segmente must be
selectecl among the whole String. The interest chaI"acters are the Latitude,
Longitude, a.nd the N/S, E/W indicators. Combine:l all of them, a set of 18
characters are sent to the transmitter.

The robot uses the non-holonomic model in F~'lll'e 3.1. For moving, it
just waits the indication. In the case of going front, it moves appraximately
55 cm in the same direction it is heading. When going right or left, it
executes a ± 90°turn while moving appraximately 150 cm. As it can be ex­
pected, movements and sensor readings have a certaln degree of uncertainty,
the particle filter deals with it.

5.1.2 Transmitter Board

The board can be located in Figure 4.10. The Board mainly plays the role
of a semaphore, but it also is in charge off obtaining data from the compass.
When started, it waits for a Bluetooth connection cc,ming from the Planner.
After it has successfully connected, it waits for an action. The selected
action can be: measure the environment, read the GPS or the Compass, or
to perform a movement. As it has no direct access ,to the GPS or the LRF
it must request for the data to the Leader. The communication protocol

is consistent with the one that was explained just before. The Board and
the Planner communicate with each other via Blu.etooth, the serial port
configuration goes as follows: the BaudRate is of 9600, 8 Data Bits, no
parity, anda "CR/LF" terminator. The BS2 has no I2C communication
ports, so they had to be implemented by software using General Purpose
1/0 Pins. Parallax provides this software implementation.

In this case the RAM was used in a.n 85% , essentially it was employed in
pin definitions, Boolean, Word and Byte variables. The EEPROM was used

5.1. ROBOT PROGRAMS

Ini tialize (Robot);
Initialize(LRF);
Initialize(GPS);
Initialize(Serial);

VaitFor(Synchronization signal)¡

VaitFor(Action from '.lransmitter Board)

switch Action do
case Mea.sure

MeasureEnvironment();
WaitFor(Samples);
Serial.Send (Samples);

case Location
Read(GPS);
WaitFor(Location);
Serial.Send (Location);

case Ji1ront
I Move(Jiront)

case Right
I Turn(Right)

case Left
I Turn (Left >

otherwise
I Do nothing

end
end

Algorit 5: Leader Robot Program

61

in a 70% mainly because of the software i.mplementation of :12C. The code
is quite similar to the one used in the Leader. The main activity performed
by the Board is the continuous data transmiasion. The most importa.nt part
of it is the coordination of comma.nd/data reception/transmission between
the three entities: Leader, Board a.nd Pla.nner.

Transmitter Board

~~
LeaderRobot~ - - - - - - - - - - - - - .,.. Planner

As the diagram shows, there is a d.irect connection between the Leader

5.1. ROBOT PROGRAMS

Ini tialize (Bluetooth);
Initialize(Compass);
Ini tialize (Serial);

WaitFor(Connection with Planner);
Serial.Send(Synchronization signal to the Leader)

WaitFor(Action from the Planner)

switch Action do
case Measure

Serial.Send(Request to the Leader);
WaitFor(Acknowledge);
foreach sample do

I
Serial.Receive(Sample from the Leader);
Serial.Send(Sample to the Planner);

end
case Location

Serial.Send(Request to the Leader);
WaitFor(Acknowledge);
Serial.Receive(Location from the Leader);
Serial.Send(Location to the Planner);

case Orientation

I
Read(Compass);
Serial.Send(X, Y and Z values to the Planner);

case F'ront

I
Serial.Send(Command to the Leader);
WaitFor(Acknowledge);

case Right

I
Serial.Send (Command to the Leader);
WaitFor(Acknowledge);

case Left

I
Serial.Send(Command to the Leader);
Wai tFor (Acknowledge);

otherwise
I Do nothing

end
end

orithm 6: Transmitter Board Program

63

64 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

5.1.3 Follower Robots

Follower robots are just equipped with the ffi Line Follower as seen in Figure
4.12. Their main and only task is to pursue the Transport platform wherever
it goes. From the hardware employed for tracking paths, no big algorithm
is needed to implement this kind of Slave behaviour. An ordinary Line
Follower code can be a good reference of how the Followers work. Their
memory (RAM and EEPROM) usage is mínimum, that way the will only
be focused on always tracking any movement at all.

EEPROU f.'lap

720
730 oo 00 oo 00 00 oo 00 00 D4CD 52 8F A8 41
= ""~U~M"OO~U~~a•ua =~:~~~::::::::=~~
= eu~~~nm~~umv"~" ~
= ~n~remmABam~a~Me•~ = ~"~"u"mABaH~a~~ ­
= •~oooMMM~~-~Moo~ua
- ~""e"~~n~~-UA~U~
= 3~2~MGXMR~nHDMQ9
- H~M~"~~QMü~~M~ooa
= H$tt"M~OOO~MMD~~~~~
7f0 5 Z 113 6 t: '
' 111

1 D~ployéSC
EfPROrJ Logend

• • Undef. Data CJ - Prooran
c:::J-Det.Omt D - Unosed

(a) EEPROM Map

RAl.11.lap

"61413T2TI1l9 8 7 6 5 4 3 2 1 O
!NS:
OUTS
DIRS:
REGO:i
REG1 :i
REG2:i
REGJ:i
REG4:i
REGS:i
REG6:i
REG7:i

:g:=: =::===:=====
REG, ~lf m~m#mm :gJlll 111: 111111111:

RAr.1 Legend

• - Pins m -word -Bvte
• -NibbieCl - Btt D - Unused

(b) RAM Map

Figure 5 .4: Follower Robots Memory Maps

The only big modification that had to be made was the sensor's threshold
of when to detect that a line is present. This is, with different illumination
sources the sensor can behave differently that is why it had to be calibrated
so it could work properly in several locations with diverse luminous intensity.

5.2 Planner Programs

The Planner runs in a remate computer. Its task is to compute the employed
algorithms: A*, Particle Fil ter, Kalman Fil ter, and Cell Decomposition, It
requires additional information from the environment, such as the robot 's
location, orientation and obstacle presence. That information comes from
the Leader Robot's and Transmitter Board's sensors. After the algorithm's
output is computed, it must translate it to a primitive command for the
Robot to execute. All the planner runs in MATLAB 2012a. The commu­
nication protocol is Bluetooth with the BaudRate of 9600, 8 Data Bits, no
parity, and a "CR/LF" terminator. The system's intelligence is contained

5.2. PLANNER PROGRAMS 65

here, most of the calculations are done in quite large loops, which are not
recommended to implement in an autonomous system with small memory.
Sorne other calculations require a more powerful processor, examples can be
an arctangent, float point operations, array manipulation, linear algebra or
random number generation.

5.2.1 Data Acquisition

Ali the algorithms used in this Thesis require environment information. The
Kalrnan filter needs to sample to know if there is any moving object, so it
can estimate where it will be at the time t + l. A* requires to know where
the robot is located and if there are obstacles in W so they can be evaded.
The Particle Filter requires a location and orientation to estimate the real
robot 's position.

GPS Data

The PMB-648 GPS returns the data it retrieves in a format as shown in
Equation 4.1. Not ali the information is useful, so only a part of it is
retrieved for usage. From the entire message, only 19 characters are received
from the Leader. The string looks like: 37232475N121583416W. The first
part contains the latitude information. The first two characters are the
hours, the next two the minutes, and the last four the seconds, the last
letter describes if the location is at the North or the South. Similarly, the
latitude is expressed in the same way, but the hours are contained in three
characters and the final letter represents East or West. This format is only
useful for navigation and people with an expertise in it can easily interpret
them. Usually they are read in the degree representation, such format is
used in different types of applications such as Google Maps, Foursquare,
and Google Places.

To transform the data from degrees to the decimal representation the
following operation must be done:

{
Hours +Minutes+ Seconds H North or East

Decimal - 60 3600 (5 1)
- 1 x Hours +Minutes+ Seconds H South or West .

60 3600

With data being transformed to this representation. it can be manipu­
lated as if in a planar (x, y) coordinate system. Now that the concept has
been mentioned and taking advantage that the GPS Location theme is be­
ing treated. The environment in which the Robots will work is located at

66 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

"Explanada CEDETEC". lt is usually used for di.fferent type of events such
as cultural, medical and sports. This place has the great advantage that its
fonn is like two contiguous rectangles. They can be used as a semi-ideal W.
Each of them will be used separately, just to keep its ideal shape.

Figure 5.5: Real Workspace

Just for now, another theme will be treated but it has to be mentioned
in this section. Landmarks are needed for implementing the Particle Filter.
They are used as a reference for the robot to know where it is located. In
environments with no regular shape, landmarks are set by the experience of
the designer, but when it can be approximated to a regular one the design.er
must tak.e advantage of it.

Each of the comers of the rectangles will be used as a landmark. The
landmarks will be stored in an a 4 x 2 matrix. The order of the comers used
as landmarks is: Upper right, Lower right, Lower left and Upper left.

They will look this way for the upper rectangle:

[

19.283587 -99.135622]
19.283265 -99.135668

Li = 19.283301 -99.135947
19.283622 -99.135788

And for the lower one:

(5.2)

5.2. PLANNER PROGRAMS

LRF Data

[

19.283201 -99.135535]
19.282911 -99.135567
19.282953 -99.135838
19.283276 -99.135788

67

(5.3)

The LRF retums data in a [O - 99]cm interval. As mentioned before, it
samples the environment each ~ radians. H the sampling takes place in an
empty W then all the samples will have a magnitude of 99 in all the angles.
H this data is plotted it resembles the form of a semicircle.

100

90

80

70

60

50 o
o

40 o

30
o

o
20 o

o
10

o

o
o

o
o

ºººººº e o o o
o o

o o
o o

o o
o

-50 o 50

o
o

o
o
o
o
o
o
o
o
o

Figure 5.6: Laser Range Finder Data

100

Whenever an obstacle is located, a di.fferent value rather than 99 is re­
turned. That way it can be mapped so A* can use it so it can be avoided.
The retrieved data is also employed while using the Kalman Filter, its func­
tion will be explained later.

Compass Data

The Compass Module 3-Axis HMC5883L retums X, Y and Z values corre­
sponding to Earth's magnetic fields. These data comes in a three dimen­
sional Cartesian form. Assuming that our planet has a spherical shape, the
information can be transformed into a spherical coordinate system. This is,
in a Cartesian system a point is specified by its coordinates in each plane

68 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

while in a spherical system by r(radius), 8(inclination) and cp (Azimuth).
They can be calculated by:

< e= arctan (;) (5.4)

cp = arctan (~)

All the information can be handy at certain point, but the most impor­
tant component of it is the Azimuth. lt tell us t;he inclination it has from
the north. After calculating the Robot's current orientation it must be ma­
nipulated so it can be used in a more natural way. In the planar coordinate
system used as W the 00 marks is located exactly at the East, so 900 had
to be summed to the original computed orientation. The obtained angle
by itself gives information of where the Robot is facing, but if used with
other information it can provide further knowledge of where certain places
are located, specifically, the landmarks' location.

That information is used by the Particle Filt.er. To compute the land­
marks' angles, latitude and longitude must be obtained from the GPS. After
obtaining it the following operations must be done:

dlat¡ = Li,lat - lataps

dlo14 = Li,lon - loncps (5.5)

() . _ (dlon¡)
1 - arctan AJ

u at¡

In the previous lines, i is the i-th landmark used in W. The differences
calculated for the latitude and longitude are used for knowing in which
quadrant is the landmark located. Lets remember that when using the
arctan trigonometrical function the sign of that difference determines the
quadrant it will be mapped. Conventional arctan just work in the first and
second quadrant, that is why the arctan 2 function was developed, with it,
the angle can be spotted correctly in the corresponding quadrant. In the
Particle Filter, all the angles are in radians, bu.t for explaining what was
done, degrees will be used.

5.2. PLANNER PROGRAMS 69

Lets suppose that an angle of 168° was calculated using the Azimuth
formula. The GPS returned a latitude of 19.283529 and a longitude of -
99.135783. The first row of L1 will be used:

L\lat1 = 19.283587 - 19.283529 = 0.000058

L\lon1 = -99.135622 - (-99.135783) = 0.000160
(5.6)

(
0.000160) (Ji= arctan
0

_
000058

= 70

This way the angles for all the landmarks are computed. H the angles
are plotted, the can be seen as:

-5 4

-5

Figure 5.7: Measured angles from the landmarks

The next step is to subtract the original angle, the data is in the (0-360]
range, so what the Particle receives looks li.ke:

70 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

-5

4

261º
-2

4

-5

Figure 5.8: Computed Angles

5.2.2 Cell Decomposition implementation

The Approximate Cell Decomposition Algorithm will be used to represent
the location shown in 5.5. The algorithm that was explained in Chapter
3 subdivided M-cells until a path was found from A to 'P ¡. In this case,
as there is no clue if there are obstacles in W, the cell size must be set
to a very small value t:, this way it can be semi-warranted to find a path.
A relationship must be obtained to have an equivalence between the cell
size and a decimal degree, that is why using experience from Mobile Device
prograroroiog, the GPS decimal degree coordinates will be multiplied by 106 •

So for example from L1 the first row will go from [19.283587 - 99.135622]
to [19283587 - 99135622].

Now, this data is too ambiguous for representing it in a m x n matrix,
specially because in almost all programroiog languages memory usage is an
important criteria for its efliciency. Because of that, an adaptation of the
decimal degree representation must be done. First of all, the minimum lat-

5.2. PLANNER PROGRAMS 71

itude and longitude are computed from the landmarks L1 or L2, depending
which W is currently used. After that, miniat and minion are subtracted
from L¡, so the new landmarks are:

[

326

L1 = 280
1

52

323] 1
37

358

(5.7)

The set of values can be seen as the comers of a rectangle so assuming
Explanada Cedetec is a perfect rectangle, this is a valid and functional
representation of W. Everything outside the rectangle's borders will be
considered as an obstacle.

50 100 200 250 300

Figure 5.9: Cell Decomposition lmplementation

5.2.3 A* i.mplementation

Having explained how W is represented, A* will now get into action. Let
us remember that an Informed Search Algorithm requires knowledge that
will aid it to find an optimal solution to certain problem. To find an o~
timal path we want to get from ~ to P¡ in the minimum number of steps
possible, so our heuristic shall penalize the number of steps taken. So, it

72 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

will find a way to reach the goal quicker. lt must be said that the robot's
environment is defined if Manhattan Distance, and it can only move in a
vertical or horizontal way, no direct diagonals are allowed. With that said,
the implemented heuristic shall conduce all movements to goal. While the
robot is far from the goal it will greedily try to find a way to reach it. A
paraboloid was used to generate it. lts mathematical expression is:

z = (x - 9:,:)2 + (y - gy)2
a b

(5.8)

Where 9x,y is the goal's coordinate, a and b are set to l. This way the
center of the paraboloid will be located at the goal, so it will always converge
if a path exists, else it will return failure. In a grid of 50 x 50, with the goal
located at (25, 25) the paraboloid will look as follows:

1400

1200

1000

800

600

400

200

40 81) 10 20 30 40 50

Figure 5.10: Employed Heuristic

Now, as mentioned in the previous section, W is defined in a m x n
cell matrix, W free has a va.lue of 'O', in the other case if an obstacle is
located at that point OW contains a '1 '. In an hypothetical environment
like the one showed in Figure 5.11 (a) the blue cells are empty, the other
ones are obstacles. A* will only look for an optima! path through W. After
it has performed the search, it will return pri.mitive instructions such as the
following:

(5.9)

Each arrow describes the direction of where there robot shall move. As
it can be inferred, the actions are up (t), down (..!..), right (---+) and left (+--).

5.2. PLANNER PROGRAMS

When goal is reached, a * is returned.

(a) W with obstacles

(b) Computed Path

Figure 5.11: A* implementation

73

74 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

A run of the algorithm is shown in Figure 5.11 (b), the paraboloid's
center (heuristic) is located at the goal, the computed path is shown as a
white line.

5.2.4 Particle Filter implementation

The Particle Filter shows the general scheme described in Algorithm 4 but it
suffers sorne little modifications so it can be coupled to the current problem.
First of ali some noise constants must be defined: bearing, steering and dis­
tance. Robot motion usualiy is not as exact as one could wish, that is why
these parameters shali be set according to observed uncertainty. PF deals
with Gaussian noise in sensor readings and motion, so the noise constants
can be seen as u2 for a reading µ. Next, the number of particles shall be
specified. This number shali be proportional to the difference of the max­
imum and minimum data in which the algorithm will run. High precision
is reached by using a large number of particles, but the disadvantage is the
time consumption. For our case N = 500 particles worked nice enough.
A random initial population of N particles is thrown to the environment.
They have a random location and orientation:

[

random (max(L;,lat) - min(L;,lat))] T

Pi = random (max(L;,ton) - min(L;,lon))
random (21r))

(5.10)

The big next step is to perform a movement according to the robot 's
motion. Each of the particles moves and rotates from their own location.
At this point, distance and steering noise are critica! values because they
define how much does each particle really moved. Then, sensor data is
acquired from the GPS and the Compass. Data is returned in the format
that has been explained previously. The measurement error stage takes
place. Here, the error is calculating by obtaining the difference between the
physical measurement and ali the particles computed measurement. Finally
a resampling takes place, only particles with a very small error survive, the
ones that have a big error are relocated near the real robot location following
a Gaussian distribution.

A brief example will be given. Using Explanada Cedetec's upper rectan­
gle as W, the robot will locate itself. lt will perform no movements at ali, nei­
ther planar nor rotational. The robot's real location is [19.283529, -99.135783]
with an orientation of 168.19°. The previously explained steps are taken.
After 5 iterations the particle population has dramaticaliy reduced into a

5.2. PLANNER PROGRAMS 75

radios surrounding the real location: [19.283533 - 99.135780) with an ori­
entation of 167.17°. As fi.ve more iterations are done, the Gaussian estimate
of the robot's location is narrowly closed to the real one, asan estimate of
[19.283527 - 99.135791) and 167.47° is computed .

.... ·•' .. ·
... ' ,.. . .

• 1 ' .. \. . ·. \ \.' . . '

.. _ _ --•.
(a) Initial Random Particles (b) Particles after 5 iterations .. ·

-111• -111• _.IUII -11.. ·Hl:9 _.1'1311
rit'

(e) Particles after 10 iterations

Figure 5.12: Particle Filter implementation

5.2.5 Kalman Filter implementation

Kalman Filter is tightly related to LRF samples. At first, the environment
is completely sampled. H there is an object detected, there will be 5 more
environment samples taken. The centroid of the detected object will be
computed so just one x and y value per sample is used. After that, the data
is set into the KF to esteem where will the moving object will be located at

76 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

t + l. The Employed matrices look as follows:

[

-4.6236]
_ 13.7416

J.Lt-1 - o
o

[

o o
o o

Et-1 = O O

o o

o
o

1000
o

~= [~]

1]

A = [~ ~ 207 2~7]
t O O 1 O

O O O 1

Rt = [º01 0~1]
Ilt = [~ ~ ~ ~]

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

For example, the Robot will track a moving object that is moving away
from it. It takes an initial sample that will be used as µ. The samples zt
are taken each 2. 7 seconds, which is the time the LRF scans completely the
environment. After sampling 5 times the environment, the result is really
impressive, it computes the estimated output with great precision, such as
Figure 5.13 (b).

5.3 Global Algorithm

The whole algorithm implementation required a coupling strategy so all of
them could employ the same (or very similar) data. Througb. the previous
chapter all algorithms outputs were shown individually, now the final results
are presented. The final implementation will be explained in detail.

5.3. GLOBAL ALGORITHM

100

"' ººo
o 80 o

70 o
o o

60 o
o

50

o/ 40

30 oº . ,,/t
20 o ··1'~
10 ~

800 .50 50 100

(a) LRF's Environment Samples

100

90

80

70

80

50

40

30

20

10

.loo .so

o Orig nel

o -1
o -"""1ra3
o

Preócoon

50 100

{b) Kalman Filter Estimate

Figure 5.13: Kalman Filter implementation

77

The program starts by asking which W of Explanada Cedetec will be
used (Figure 5.5) , if the upper or the lower one, each one of them has different
landmarks coordinates. Whichever was chosen, it will be conditioned to be
used by ali the algorithms, so it is multiplied by 106 and rounded to the
nearest integer. With those digits the resolution is quite good enough. The
step is to calculate the mínimum and maximum values of the latitude and
longitude that define each W.

The next big step is to define all of the constants that will be used, t hese
are:

l. Particle Filter - Particle number definition (500) , t he robot 's length
(1), bearing noise (1), steering noise (0.1) and distance noise (1). The
measurements is initialized to an empty array, the initial motion is set
to stay still.

2. Kalman Filter - Sampling time (2.7 seconds), µt - I , Lt- 1, ut, Zt, At,

Ct and Qt. Also the angles in which the LRF will point are set.

3. Cell Decomposition - Set the corners to a parametrized W represen­
tation, this is, it will not have the conventional GPS decimal degree
representation, but a smaller number not bigger than 350. Everything
outside W will be set asan obstacle. (Figure 5.9)

4. A* Search - The goal location is defined if and only if it is a valid one
inside W.

5. Serial Port - 9600 Baudrate, 8 Data bits, no parity, CR/LF terminator
and a time out of l.

78 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

The initial set of particles is thrown an plotted (Figure 5.12 (a)). A while
loop starts just at this point, it will only stop if 1;he robot is located at the
goal. Particles move according to their location aud orientation. After it, the
GPS and Compasa are read for obtaining the erirors between the expected
and the actual measurement. Particles with small error will survive, the rest
of them will be re-sampled until they are located near the actual location
Gaussian.

Now the Kalroau Filter is used to map any obstacle present in the sur­
roundings of the robot, in case it is a mobile object, its trajectory is esti­
mated. The previously computed position is used as the initial location of
the robot to start the A* search for an optimal path. After it, the movement
is performed and the while loop repeats until the robot completes the task.
Algorithm 7 shows the pseudo code of what has just been described.

5.3. GLOBAL ALGORJTHM

input: Goal

1 Ini tialize (Constants);
2 Ini tialize (Bluetooth);
a Create (Environment) ¡
, Create(Particles);

& repeat
o ParticleFilter .Move (Particles) ¡
T Read(GPS);
a Read. (Compau) ¡
e ParticleFilter.Com.pute (Angles) ¡

10 ParticleFilter.Compute(Error);
11 ParticleFilter.Resaaple (Particles);
12 ParticleFilter.Get (Location)

1a if Location == Goal then
1, 1 return Success
1& end

10 KalmanFilter .Sample (Environment);
1 T if Mofling Object then
18 1 KalmanFilter.TrackO;
1e else
20 1 KalmanFilter.Map() ¡
21 end

22 A* .Compute (Path);
:,a lf Path exits then
24 1 Move (Robot);
2& else
20 1 return Failure
2T end
28 until Success or Failure ;

A)gorithm 7: Final Program lmplementation

79

80 CHAPTER 5. SOFTWARE: DESIGN AND IMPLEMENTATION

Chapter 6

Results

In this chapter results will be presented throughout the most representative
cases. All the problems that were faced are also mentioned here. Lots
of images will be used so the understanding process can be done easily.
Due to workspace awilability, all the tests were done at Explanada Cedetec
secondary ares, but they could have been easily done in auother location.

6.1 Implementation Runs

Four cases will be presented in this section. Each of th13m shows the al­
gorithms functionality in various situations. They were carefully chosen so
they could represent all the cases that the robot can face .. It must be said
that the robot executes the Particle Filter first of all so it can locate itself
at W before any motion action is performed, this way collisions are avoided
as well as creating more uncertainty. Once the robot's location is identified
a Path is computed using A* and it is translated to a primitive action so
the robot can perform it.

6.1.1 Robot's /'¡ is P¡

The first situation is one of the most simple of them all. The robot is
a.lready located at the goal, so when the robot initializes and determines its
own location it will know that it is already located at the final point so it will
return Success immediately. In Figure 6. la it can be seen. the initial robot
location in a Google Maps View. The initial particle gufflS shows that all
were thrown at random locations, Figure 6.lb. After 10 iterations (Figure
6. lc) there is no good guess of where the robot is located so the Particle

81

82 CHAPTER 6. RESULTS

Filter must continue working to i.mprove it. Figuri::l 6.ld shows similar resulta
as in 10 iterations, but there is a signi.ficant particle cluster formed. Ten
iterations later (Figure 6. le) a good approximat«i is computed, but if there
is a considerable amount of noise while reading sellSOrs this believe may have
several peales. Forty iterations returns a fairly good approximate that shows
the robot 's current location.

After the robot finishes the self-localization stage, it checks out if it
is locatecl at the goal. In this particular case that condition is true, so
immediately it returns Succ.ess.

6.1.2 Robot's P¡ is outside of the W

This case is a particularity of the previous one. The Particle Filter finds the
robot location given the sensor's data. In Figure 6.2a there are two pointing
arrows. The leftmost one shows the robot's location, the one at the bottom
right is the goal location. AB the particles converge to the robot location,
it can be seen that from Figure 6.2c to Figure 6.2f the particle's centroid
is locatecl outaide the W. So when the localization stage finishes, the A*
search returns Failure, and immediately the prog:ram stops.

6.1.3 Path planning

Now, the previous examples have shown how the self-location stage works.
The particle filter executes with a movement vector of [O O]. The first
element representa the travelled distance, the second one the rotation angle.
In other words, it stays still. Now that that the robot location has been
found no more images from this stage will be shown except for the initial
belief and the located robot in the 40th iteratio,n. The next step consista
in finding a path from the current location to the goal state. Each time a
movement is performed all the particles move in the same direction as the
robot does. The A* path is also refreshed so it fits the actual location and
orientation. AB movementa go by, the path geta reduced and the particles
approach the goal state.

The next three figures show some snapshots from an algorithm run. They
illustrate how the robot moves. The left column shows the robot orientation
at a Google Mapa location while in the right one the estimated location the
Particle Filter retums and the computed path that A* retums. The initial
location (Figure 6.3a and ??) shows where the robot is at a ti.me t = O.
AB the robot performs some movementa, it can be seen that it <loes not
perform as exactly as planned due to severa! causes such as loose earth and

6.1. IMPLEMENTATION RUNS

(a) Robot initial location
110'

,.,.,

,_.,.,
o o' .. . '' ·- o ••

• o • ""' ·-,
""',~

.10'

(e) Particles a.fter 10 iterations

....
ua,

....
U2113

,.,.,

......

....

,.,,

....
-l..l'l_.9'1_..._.,.JM31H"l31

(e) Particles a.fter 40 iterations

(b) lnitial particle population

,.,.,

......
' , .. ,,.,
'• ·- ... ,

·-... t ·- ,¡¡,

DI ,.,, ,.., ... ,8..IUIU1m.l1:m,t-...,-..,31
,:to'

(d) Particles a.fter 30 iterations
.10'

.

"""'
......
....
.

100 3D SD

(f) Particles after 50 iterations

Figure 6.1: Static Robot Example

83

84

(a) Robot initial location

·~· ·- t

• ·-
................. ~ ,.,

(e) Particles after 10 iterations
,,,.

·-­.•.
(e) Particles after 40 iterations

CHAPTER 6. RESULTS

(b) Initial particle population
.•.

.. ...,. u.~~

(d) Particles after 30 iterations
.•. ·-,

(f) Particles after 50 iterations

Figure 6.2: Out of bounds Robot Example

6.2. FACED PROBLEMS 85

irregular ground. So each time the robot executes a movement the path
is recalculated dynamically. When the robot reaches the goal location it
returns success and the run is aborted.

6.2 Faced Problems

Throughout the development of the final implementation lots of problems,
hardware and software, emerged. Some of them will be listed now. Hard­
ware design was the first obstacle that was faced, some modifications had to
be done to the Boe-Bot Robots so each one of them could pedorm. its role
in a better way. Several designs were done tcying to give enough capabili­
ties to the Follower Robots. Initially their task was to push the object in
the direction the Leader indicated, but 88 there could be some movements
that over exploited a Follower, that idea was replaced with the final one.
As Figure 4.12 shows, the robots were equipped with a certaiD. 'exoskeleton'
that distributes the carried weight all over the structure. lt suffered several
modifications due to the resources that were available at the time. At the
beginning. four metal tubes held a small platform.. That design was thrown
away because of the huge overall weight of the Robots. The structure de­
sign came from considering how could the weight be distributed evenly into
the robot's chassis while having enough sudace contact with the Transport
Platform. Another problem with this robots was to figure out lttow will they
follow the Leader. What people usually do is to "feel" where the Leader
is going, but as it is quite too mainstream something different could be a
big brea.kthrough. While watching how light-follower car-like robots worked,
the idea came: there could be a form in which the robot can lo:iep following
a signal. In this case, following a light was not a good choice because in
different environments, the light-source intensity is variable and it could not
always work. So, if a platform. was used above the robots, it shall help and
indicate them where it is moving. The low cost solution was to, place a line
follower sensor over the Followers and a line under the Platfonn. It results
easier to calibrate a line than a light follower. As under the Platform. a
shadow is projected, the illwnination changes would not affect that much
the Follower. That is why the Follower Robots are always waiting for a
Leader's movement, wherever it goes they will follow him.

Sensor data gave lots of trouble. Each of them had its own degree of
uncertainty. For example, the employed. Compass is not 88 precise as one
could wish. As it measures magnetic fi.eld's strength, any electronic device
or electric object interfered with the sensor's readiugs. Most of the times it

86 CHAPTER 6. RESULTS

., ..
,.-

"

'
,..,.,

100 um 1
'" ·-·-

UlD

,_...

"" ,., ,.. DI ..a.8UIU1 39.1131U'131

(a) (b)

1110•

·-
" ·- ' • ·- 1
'"

,..,.,

um ,..

·-"' ·-
"" ... ,..

"'11-....-....
•10

1

(e) (d)

....
......

" '·""" o
o ·- 11

.....
""

"' ,..,,.,

... ""' DI .e.81318..11311U1..,,S.1131U1:9

(e) (f)

Figure 6.3: Path Planning Example part 1

6.2. FACED PROBLEMS 87

.,,,
.....
U213

1.11213

.....
ºt ·-

1.11213

·-.. ,..e.e131U1...,....,SJ't..,.31
.,o'

(a) (b)

110
1

,..,,.,
,..,.,

,..,,.,

,.,.,

1 ' ·-·-
,.,.,

... "" 300 -aJl'DIU1-~.t1lll.11-.J138
.,o'

(e) (d)

....
·-
,.,.,

·-
'""" • ·-
um

..... 300

(e) (f)

Figure 6.4: Path Planning Example part 2

88 CHAPTER 6. RESULTS

....
,_.,.,

·-,_.,.,

,_.,.,

...... • ,....,

....

(a) (b)

110'

·-.. ·-
100 ·-
"º ·-·-

ºo'
"" ' "' ,..,

,.,
'"" ... -8.81...,tDI

(e) (d)

Figure 6.5: Path Planning Example part 3

6.2. FACED PROBLEMS 89

gave a very large mistake from the current orientation to the measured one.
Fortunately, the particle filter leads with this mistake, so it did not affect a
lot the System's peñonnance. The range sensor gave almost no error at all,
so it represented no big deal. In the other hand, the GPS ge.ve lots of trouble.
First of all because it depends on how good its connectio11 is to any of the
satellites, During rainy or clouded days its measurements were not liable
at all. It returned an error from 2 to 10 meters, which 11ras not desirable.
Another problem with it was that as it was embedded in the Leader Robot,
during certain movements the high-torque servo motors demanded quite too
much current from the power source which provoked that the GPS loosed
connection with the satellites, increasing the measured eriror. The solution
to this problem was to implement a local power source for the GPS so it
could have a constant current feed. With this modification, the readings it
returned were quite a.ccurate.

The Leader had some common problema with the Followers. At first, it
was going to pull the object. After the Slave Robots were given an Exoskel~
ton, it needed one too. It only wes equipped with a small contact suñace
what enable it to carry part of the platform's weight whilEi leading the way.
During the first tests the Leader had many problems to pull the platform, the
Servo Motors it had did not give it the necessary torque. They were changed
for some more powerful motors, but now another probleu:t emerged. As all
the weight wes distributed in the robot 's back, the wheels. could not create
enough friction to start the movement. A counterweight was placed at the
robot's front part. Now there were no motion problems.

Communication was critical among the Planner, the Board and the
Leader. The Leader and the Board use the Serial protocol. Parallax shows
off with its hardware because every 1/0 pin is capable of generating a PWM
signal and communicating via Serial. In its datasheet it Bpecifies that any
pin can be used as a serial input and output port. In predice, it does not
work as the manufacturer assumes. So separate input/output pins were
used for communication. The BT communication between the Board and
the Planner presented almost no problems. Except for thu Time out MAT­
LAB requires for waiting data.

Algorithm coupling was not that complex as it sounds. Almost all of
them are very flexible and can manipulate data with almost no problem.
The real challenge was to parametrize data. This is, the Particle Filter
had no problem while using Decimal Degree coordinates, but for A *'s W
the landmark's location was too broad, so they had to be set from 1 to a
maximum of 400.

90 CHAPTER 6. RESULTS

Chapter 7

Future Work and
Conclusions

The obtained results were quite satisfactory, all the proposed objectives were
accomplished. An online centrali7.ed low~ non-holonomic object carrier
Multiple Robot System was developed. AD the algorithms employed worked
as expected, plus they were ali integrated and modified so they could coexist
and work together. This project can grow 88 much 88 it cau be wanted. The
robots can be changed for more complex ones just like a Pioneer Robot.
These type of robots are capable of moving any distance that it is specified,
88 well 88 rotating in any d.irection. Obviously their motion actions can be
represented 88 Gaussian, not always they will perform e::cactly what they
were commanded but they are much more liable. They have really big
motors capable of handling large weights. And most important of all, they
can be structurally modified with certain ease. The only disadvantage they
can face is the presence of a computer that manipulates them, but due to
wireless communications 88 XBee that is a minor problem.

Another improvement that the System can have is tbe employment of
better sensors. LRF is not that liable for measuring large distances. Ob­
stacle detection is critical for robot navigation so a faster and more precise
sensor is required. Ultrasonic sensors are a good choice but they are not
punctual, so noise can interfere into measurements, laser looks like a great
choice but its limitations are the sampling time. The employed compass
is quite accurate but it sometimes malfunctions because of the presence of
some magnetic field, there shall be no problem is a shield is built for pro­
tecting it. A better and more accurate GPS can be used. The current one
has not a good functioning while being indoors, so if an ex:temal antenna is

91

92 CHAPTER 7. FUTURE WORK AND CONCLUSIONS

Figure 7.1: Pioneer Robot

connected that problem can be considered as solved.

An extension to the problem that was solved here can be the implemen­
tation of a Multiple Robot-Team System where severa! teams work together
to deal with objects in the environment. With this extension a decentralized
schema can be used. Each team will know the global goal and will plan its
actions individually. Each team can have N robots depending of what it
is going to transport, thus, sorne team members can be equipped with a
robot-arm so the object is mounted and dismounted from the platform. An
option for the robot's processor can be the employment of a mobile device
such as a tablet. Currently, these devices are capable of doing lots of cal­
culations at the time, have a nice user interface, Bluetooth, can access a
remote server via Wi-Fi, and most important of all, they got the mínimum
required sensors used for navigation: GPS, magnetic field sensor and altime­
ter. Extended Reality as well as human interaction are the most attractive
capabilities it has.

While talking about software improvements, the path can be computed
while using Dynamic programmiog, this way a faster online algorithm can
be used, and there will be less impact of motion uncertainty. The only
disadvantage is that all actions are computed at the time so there is a large
computing-load. The localization and mapping done here by the Particle
Filter, can be replaced with a modified-SLAM algorithm, that is quite more
efficient than SLAM and it maps all the enviromnent. Reducing computing
load is important if a decentralized architecture is used.

The job done to develop this project was demanding but at the same
time satisfying. Hardware and Software resources were exploited to almost
its maximum capabilities. The selected workspace helped a lot due to its

93

Figure 7.2: Samsung Galaxy SIII

rectangular shape and because it was in an open space so GPS could have
a direct access to the satellites. It also aided that there are no big magnetic
sources near there to interfere with the Compass readings. There were also
lots of learnings. The author has a Biomedical Engineer background so
much of the themes that where developed in this Thesis resulted new and
abstract, so there was the need to check lots of bibliography to get up to
date. Robotics is a field that is not the future, but the present of human
race. Much of the risky activities that were made by humans are now done
by robots. They are also capable of exploring certain areas that have been
affected by a natural disaster or automating processes. What will come
tomorrow may be autonomous robots just as the ones that only exist in
films, but who knows, maybe one day The Jetsons world will be real.

94 CHAPTER 7. FUTURE WORK AND CONCLUSIONS

Appendix A

Basic STAMP Progran1s

A.1 Boe-Bot Leader Source Code

• {$STAMP BS2}

2 • {$PBASIC 2.5}
3

4 LrfServo PD 14 • Servo que aueve el PiDg)))
5 LRF_TI PD 9 • Serial output to LRF (cmmeC1;11 to SD)
8 LRF_RI PD 15 • Serial input froa LRF (connec:ts to SOUT)
7

8 IIIÍD.illlO COH 280 • Ancho de pulso para Oº
9 mu:imo CON 1140 'Ancho de pulso para 180°

10 salto CON 20 • Ancho de pulso para 0°
11

12 accion Vil Byte
13 i V.IR Byte
14 iteraciones Y.IR Byte
15 LatGrad V.IR Byte (2)
18 LatMi.D Vil Byte (2)
17 LatM:iDD Vil Byte (4)
18 RS Vil Byte
19 Lcm.Grad Vil Byte (3)

20 LoDMin Vil Byte (2)
21 LoDM:iJID Vil Byte (4)
22 EW Vil Byte
23 pulso Vil Vord
24 ruge Vil Vord
25

26 Inicializacion:
27 DEBUG "Iniciando al robot líder ... •, CR
28 GOSU8 Init_lrf
29 DEBUG "Moviendo servo del LRF a posici6n inicial", CR
30 GOSUB MotorPinglnicial

95

96 APPENDIX A. BASIC STAMP PROGRAMS

31 DEBUG "Esperando señal de sincronización ... " , CR
32 SER.IN 11, 84, [V.&IT("start•)]
33 PAlJSE 10
34 SEROUT 10 1 84 1 [•ac1t•]
311 DEBUG "Seftal recibida! ! • • ca, ca
38

37 Poll_accion:
38 DEBUG ca, •Esperando accion•, ca
39 SERlH 11 1 84 1 [accion]
40 P.I.USE 100
41

42 IF (accion • 11m•) TBEN
43 DEBUG •Medir -biente•, ca
44 SERDUT 10, 84 1 [•ac1t11

]

411 GOSUB Mide_-biente
48 ELSEIF (accion • •g•) TBEN
47 DEBUG "Leer GPS", ca
48 SERDUT 10, 84, [•acJt•]
49 GOSUB lee_GPS
liO ELSEIF (accion • •f•) TBEN
111 DEBUG "Mueve al frente• , ca
112 SERDOT 10, 84, [•ac1t•]
113 GOSUB Frente
M ELSEIF (accion • 11 i •) TBEN
1111 DEBUG "Gira izquierda• , ca
116 SERDOT 10, 84, [•ac1t•]
111 GOSUB Izquierda
118 ELSEIF (accion • "d11

) TBEN
119 DEBUG •aira derecha•, ca
so SERDOT 10, 84, [•aa•]
01 GOSUB Derecha
02 ENDIF
83 GOTO Poll_accion
84

85 Frente:
oo FOR i • O TO 150
01 PULSOUT 13, 620
68 PULSOUT 12, 860
89 PAUSE 20
70 'NE1T
n PAUSE 500
72 RE'l'URR
73

74 Izquierda:
111 FOR i • O TO 146

16 POLSDUT 12, 960
11 POLSOUT 13, 660
1s P.I.USE 20
79 'NE1T

'izquierdo quieto 720
'derecho quieto 740

A.1. BOE-BOT LEADER SOURCE CODE 97

80 PAUSE 600
81 BEl'IJU
82

83 Derecha:
M F(Jl i • 0 m 106
86 PULSOU'1' 12, 810
118 PULSOU'1' 13, 110
87 PAUSE 20
88 IElT
89 PAUSE 600
90 IIE1'VRI
111

112 Mide_aabiat•:
113 GDSOB NotorPiDginicial
IM pulso • aiDi8o
1111 Fm1·1m44
1NI S!RDU'l' U1F _n. 396. c•a•J
97 SF.llD UIF_ll, 396, 3000, lo_Reepoue, [Vl.lT(•D • •), DEX:4 ruge]
III ruge • ruge Nll 990 MD 160
1111 SEROUT 10, 84, [))BC range/10)

100 PULSOU'1' LrfServo, pulso
101 pulso • pulso + salto
102 PAUSE 20
103 IElT
UM RE'l'UJII
lOII

108 Init_lrf:
107 DDOG •1D1ciudo LIF. . . •
10& PAUSE 600
100 S!RDU'l' UIF_n, 396, c•u•J
110 SER.IR LRF Jll, 396. [Vl.lT(• : •)]
111 DEBUC •Li•tot •. Cll
112 RE1'UU
113

114 lo_llespcmee:
1111 PAUSE 1000
118 SEIDUT LRF_TI, 396, [•u•]
117 9ER.II LIFJII, 396, [Vl.lT(•:•)]
118 RE1'UU
1111

120 NotorPiDglDicial:
121 FDll 1 • 1 m &0
122 PULSOU'1' LrfSeno. aiDi8o
123 PAUSE 20
124 l!lT
121i REl'URll
128

127 lee_GPS:
121 SEllD 1,188,[Vl.lT(•RlfC,•),SKIP 9,STR LatGrad.\2, S'1B Latlfin\2, SXIP 1,

98 APPENDIX A. BASIC STAMP PROGRAMS

1211 STR LatMiDD\4, SKIP 1, STR NS\1, SKIP 1, STR LonGrad\3, STR LoDMin\2,
130 SKIP 1, STR LonMiDD\4, SKIP 1, STR m,\1]
131

132 SEROUT 10, 84, [STR LatGrad\2]
133 SElllN 11, 84, CVAIT(•ack•)]
134 SERDUT 10, 84, [STR LatMill\2]
135 SERIN 11, 84, CVAIT(•ack•)]
136 SEROOT 10, 84, [STR LatMiDD\4]
137 SERIN 11, 84, [VAIT(•aa•)]
138 SERDOT 10, 84, [STR NS\1]
139 SERIN 11, 84, [VAIT(•ack•)]
140 SEIUJOT 10, 84, [STR LonGrad\3]
141 SERIN 11, 84, CVAIT(•ack•)]
142 SERDUT 10, 84, [STR LoDMill\2]
143 SERIN 11, 84, [VAIT(•ack•)]
144 SERDOT 10, 84, [STR LonMiDD\4]
145 SERIN 11, 84, CVAIT(•aa•)]
148 SERDUT 10, 84, [STR m,\1]
147 SERIN 11, 84, [VAIT(•aa•)]
148

149 RETUIUI

A.2 Transmitter Board Source Code

'{$STAMP BS2}
2 '{SPBASIC 2.6}
3

4 SDA PIN 9 • SDA of compasa to pin PO
5 SCL PIN 10 'SCL of COllpa88 to pin Pl
8

7 WRITE_Data CON $3C • Requeata Write operation
8 READ_Data CON $3D • Requeata Raad operation
9 MDDE CON $02 • Mode aetting register

10 I_MSB CON $03 • 1 MSB data output regiater
11

12 l2C_LSB V.&R Bit
13 accion V.&R Byte
14 i V.&R Byte
lli iteraciones V.&R Byte
18 ranga V.&R Byte
17 opcion V.&R Byte
18 l2C_DATA V.&R Byte
19 I2C_REG V.&R Byte
20 12C_YIL Y.&R Byte
21 datoaGPS V.&R Byte (4)
22 1 V.&R Word
23 y V.&R Word
24 z V.&R Word

A.2. TRANSMITI'ER BOARD SOURCE CODE

2a rawl
2e ravh
27

28 IDicializaciOD:
:1e PAUSE 1000

Vil
Vil

Vord
Vord

:,o SERllUT 1, 84, [•coa 88:53:2e:70:16:88•, CRJ
31 SF.RD o, 84, CV.llTC•.tae• .ca>l
32

33 VaitForConnectiOD:
M IF Il6 • o TBEI
36 DEBUG IIIJIIE, •wcimuio BT ••• •, ca. •esperando CODanOD ••• • .ca
38 GOTO VaitForConnection
3T EIDIP
38 DEIIUG •s. conecto 11 •, ca, ca
39

'° DEIIUG •Iniciando IIMC6883L ••• •
(1 I2C_Rm • IIJDE
u I2C_VlL • to
.s OOSOB I2C_Vrite_leg
" DEBUG •Li•to ! • , ca
(11

'8 PAUSE 1000
,T DEBUG •s1ncron1 zendo llicroe ••• •, ca
" S!RDUT 16, 84, [•etart•]
,9 SF.RD 14, 84, [VAIT(•aa•)]
IIO DEBUG •Micro• •incroni zadoe ! ! ! • • ca. ca
111 PAUSE 100
112

113 Poll_accion:
M

1111 DO
118 DEBUG •&1perando accion", ca
IIT SERll 0, 84, [accion.]
118

119 IP (accion • •N•) TBEI
80 IJl!BUG •Medir ambiente .•. • , CR
91 SERDUT 16, SI, [•a•]
92 SP.llD 14, SI, [V.llT(•acJt•)]
83 GOSU8 Beeupera_lrf
M S!IIDUT 1, SI, (J)F.C 265]
811 EIJIEIP (acciOD • •e•) TBEI
ee DBBUG •J:Aer GPS ••• • , ca
8T SERDUT 16, 84, [•g•]
88 SEBD 14, SI, [V.llT(•acJt•)]
89 GOSUB Recupera_gpe
TO SERD0T 1, SI, [l>F.C 266]
Tl EIJIEIP (accion • •e•) 1BEI
n DEBUG "IAer BNC6883L ••• " , ca
T3 G0SUB GetRadeadillg

99

100 APPENDIX A. BASIC STAMP PROGRAMS

1, SERDUT 1, 84, ["JC•, SBEl JC]
75 SERDUT 1, 84, [•y• , SBEl y]
76 SERDUT 1, 84, [•z•, SBEl z]
11 SEIUJUT 1, 84, [•v•, DEC 266,Cll]
78 ELSEIF (accion • •p•) TREN
19 DEBUG •Mover al frente• , ca
so SERDUT 15, 84, ["P]
81 SER.IR 14, 84, [WAIT(•ack")]
82 ELSEIF (accion • •1 11

) TREN
83 DEBUG •Gira izquierda", ca
84 SERDUT 15, 84, [•i•]
85 SEI\Ilf 14, 84, [WAIT(•ac1t•)]
ee ELSEIF (accion • •o•) TBEN
e1 DEBUG •Gira derecha•, ca
ee SERDUT 15, 84, [•d•]
89 SER.IR 14, 84, [WAIT(•ac1t•)]
90 ENDIF
91 LOOP
92

93 Recupera..lrf:
94 FORi•1T044
96 SERIII 14, 84, [STR range\2]
96 SERDUT 1, 84, [STR range\2, ca]
97 lfEl1'
98 RETURH
99

100 Recupera..gps:
101

102 ' LATITUD GR.IDOS
103 SEllIJI 14, 84, [STR datosGPS\2]
104 SERDUT 1, 84, [STR datosGPS\2, ca]
1or; SERDUT 15, 84, ["ack•]

1oe ' LATITUD MDIOTOS
101 SERIN 14, 84, [STR datosGPS\2]
1oe SERDUT 1, 84, [STR datosGPS\2,Cll]
109 SERDUT 15, 84, [•ac1t•]
110 ' LATITUD DECIMAS DE MIRUTO
m SERIN 14, 84, [STR datosGPS\4]
112 SERDUT 1, 84, [STR datosGPS\4,Cll]
113 SERDUT 16, 84, ["ack•]
114 ' IIORTE/SUR
115 SERIH 14, 84, [STR datosGPS\1]
116 SERDUT 1, 84, [DEC datosGPS, ca]
111 SEROOT 16, 84, [•aa•]
118 ' LONGITUD GRADOS
119 SERIN 14, 84, [STR datosGPS\3]
120 SERDOT 1, 84, [STR datosGPS\3,CR]
121 SERDUT 16, 84, ["ac:k•]
122 ' LOIIGITUD MIHtTl'OS

A.2. TRANSMITTER BOARD SOURCE CODE 101

123 SEIIII 14, 84, [STI datoeGPS\2]
1:u SERDUT 1, 84, [S'Ill datoeGPS\2,ca]
1211 SERDUT 16, 84, [•aa•]
1211 ' LOIGITUD DBCINlS DE MIIUl'O
127 SERD 14, 84, [SD datoeGPS\4]
12a SERDUT 1, 84, [SD datoeGPS\4,CRJ
129 SEIUJOT 15, 84, [•ac:k•]

130 ' ESTE/OESTE
131 SEIIII 14, 84, [8111. datoeGPS\1]
1~ SEROUT 1, 84, [DEC datoeGPS,CB.]
133 SEROUT 15, 84, [•aa•]
13' IIE'l'UIIII
138

138 GetRadeading:
1S1 PAUSE 400 ' Vait for nn data
138 • Sud requeat to I MSB regieter
139 GOSUB I2C_Stut
140 I2C.J)AT.l • VIITE.J)ata
u.1 GOSUB I2C_Vrite
1a I2C.J)AT.l • LMSB
143 OOSUB I2C_Vrite
144 GOSUB I2C_Stop
1411

148 'Get data fr• register (6 bytu total, 2 bJt•• per arle)
u.1 GOSOB I2C_Start
1411 I2C.J)ATA • WD.J)ata
1411 GOSU8 I2C_Vrite
150

1151 1 Get I
m GOSUB I2C.Jlead
163 ravll • I2CJ)ata
1114 GOSUB I2C_ACK
1511 GOSOB I2C.Jleed
158 ruL • I2C.J)ata
151 GOSUB I2C_ACX
151 1 • (ravll « 8) 1 ravL
158

180 1 Get Z
101 GOSU8 I2CJINd
102 rmdl • I2C.J)ata
103 GOSU8 I2C_ACK
104 GOSU8 I2C.Jlead
11111 ravL • I2CJ)ata
100 GOSUB I2C_ACX
101 Z • (ravll « 8) 1 ruL
108

UIII 'GetT
110 GOSUB I2C..)1Nd.
111 rmdl • I2CJ)ata

102 APPENDIX A. BASIC STAMP PROGRAMS

112 GOSUB I2C_.lCIC
173 COSUB I2C_Read
114 ravL • I2C_Data
1111 GOSUB I2C_N.lCIC
176 Y • (ravll « 8) 1 ravL
177

118 GOSUB I2C_Stop
179 RETORN
180

181

182 •---------I2C functions------------
183 • Set I2CJIEG t I2C_V.lL before calli.Dg this
184 I2C_Vrite_Reg:
1811 GOSOB I2C_Start
186 I2C_D.lT.l • VRITE_D.lT.l
187 GOSUB I2C_Vri te
188 I2C_D.lT.l • I2C_REG
189 GOSUB I2C_Vrite
100 I2C_D.lT.l • I2C_ V.lL
191 GOSUB I2C_Vrite
11r.1 GOSOB I2C_Stop
193 RETORN
194

195 ' Set I2C_REG before calli.Dg this, I2C_D.lT.l vill have reault
196 I2C_Read_Reg:
197 GOSOB I2C_Start
196 I2C_D.lT.l • VRITE_D.lT.l
199 GOSUB I2C_Vrite
200 I2C_D.lT.l • I2C_REG
201 GOSUB I2C_Vrite
202 GOSOB I2C_Stop
203 GOSOB I2C_Start
204 I2C_D.lT.l • READ_D.lTA
205 GOSOB I2C_Vrite
206 GOSUB I2C_Read
201 GOSUB I2C_N.lCIC
208 COSUB I2C_Stop
209 RE'l'UIIR
210

211 I2C_Start:
212 LOV SD.l
213 LOV SCL
214 RETORN
215

216 I2C_Stop:
211 LOV SD.l
218 INPUT SCL
219 INPUT SD.l
220 RETORN

A.3. BOE-BOT FOLLOWER SOURCE CODE

221

222 I2C_ACK:
223 LDV SDA
22' DPOT SCL
2211 LDV SCL
228 DPOT SDA
227 RE'1'UIUI
228

2211 I2C_UCK:
230 IIPUT SDA
231 IIPOT SCL
232 LDV SCL
233 BE'l'tJJUI
23'

2M I2C_llead:
236 SBD"tü SDA, SCL, MSBPIE, [I2C_DAT.t.]
237 RETURI
238

239 I2C_Vrite:
240 I2C_LSB • I:ZCJ)ATA.BITO
241 I:zc_DATA • I:ZCJ)ATA / 2
242 SBIF1'DUT SDA, SCL, NSBFIIIST, [I2CJ>ATA\7]
243 IF I2C_LSB TBEI üPUT SDA ELSE LDV SDA
244 IIPUT SCL
2411 LDV SCL
248 IIPOT SDA
241 IIPUT SCL
248 LDV SCL
249 RE'1'UIUI

A.3 Boe-Bot Follower Source Code

• {$STAIIP 882}
2 • {.PBASIC 2.6}
3

' DO

103

II SELECT DL • Select line follonr lltatea
e CASE l00011000, I00001100, %00110000
7

8

9

10

11

12

13

14

111

16

DEBUG BIIIE, • .ADEUffE
PIJLSOUT 13, 1000
PIJLSOUT 12, 600

•

CASE 100000011, 100000111, 100000001, 100000110, 100111000
DEBUG Bmm, •AJUSTA IZQUIERDA •
PIJLSOUT 12, 460

PIJLSOUT 12, 760
CASE 111000000, 111100000, 110000000, 101100000, l00011100

DDUG IIDME, •AJUSTA DERECIIA •
PIJLSOUT 13, 750

104 APPENDIX A. BASIC STAMP PROGRAMS

17 PULSOU'l' 13, 1060
18 ENDSELECT
1s LOOP

Appendix B

MATLAB Programs

B.1 Main Source Code

1 elose ali ; elear ali ; ele
2 format longEng
3 ~ SELECCIÓN DEL ESPACIO DE TRABAJO
4 espacio = O;

e whlle 1
1 ele
s disp ('Selecciona-un-espacio-de-trabajo: ');
9 diap('L--Rectángulo-superior ');

10 diap('2---Rectángulo-inferior ');
11 diap('3---Dentro~');
12 diap('4---Ca.ncha.s-Prepa.')
13 espacio = input ('Tu-opción-es : _');
u lf espacio = 1 11 espacio = 2 11 espacio = 3 11 espacio = 4
111 break
1e end
17 end
1s dlap(strcat ('Se-ca.rgará-eLespacio-de_tra.ba.jo: - ', num2atr(espacio)));
19

20 switch espacio
21 case 1
22 % CEDFJIEC 1
23 landmarksGPS = [19.283587845330565 -99.13562268018722;

% Arriba Derecha
u 19.283265050042573 -99.13566827774048; % Abajo Derecha
211 19.283301760127006 -99.13594722747803; % Abajo Izquierda
26 19.283622023617926 -99.13589626550674); % Arriba Izquierda
21 goal = (19.283537, -99.135785);
28 case 2
29 % CEDETE)C 8

105

106 APPENDIX B. MATLAB PROGRAMS

30 landmarksGPS = [19.283201756774254 -99.13553550839424;
% Arriba Derecha

31 19.282911873292704 -99.13556769490242; % Abajo Derecha
32 19.282953646926493 -99.13583859801292; % Abajo Izquierda
33 19.28327644282828 -99.13578897714615]; % Arriba Izquierda
34 goal = [19.283011876822485, -99.1356173157692];
35 case 3
38 % DENTRíJ CEDEIFJC
37 landmarksGPS = (19.283651138449677, -99.1348448395729;
38 19.283035928295213, -99.13514792919159;
39 19.283208086102178, -99.13551270961761;
40 19.28382076388827, -99.13519889116287);
u goal = (19.28329669666758, -99.13522034883499);
42 case 4
43 % CAl\UfA PREPA
" landmarksGPS = (19.285181558622586, -99.13645818829536;
46 19.285029656515284, -99.13656547665596¡
46 19.285163836717327, -99.13684576749801;
47 19.285320802097164, -99.13675993680954)¡
48 goal = (19.2852195341274, -99.13674920797348)¡
49 end

51 disp('Cargando-constantes-de-W ... ')
52 landmarks = fliplr(floor(10"6 * landmarksGPS))¡
53 goal= fliplr(floor(10"6 * goal))¡
M goal2 = goal ;
55

56 minLat = min(landmarks (: , 2)) ¡
57 maxLat = max(landmarks (: , 2)) ¡
58 minLon = mln(landmarks (: , 1)) ¡
59 maxLon = max(landmarks (: , 1)) ¡
80

61

62 ~ CTFS FILTRO PARTÍCULAS
63 disp ('Cargando-constantes-deLFiltro _de-Partículas ... ')

65 N = 500;
66 lengtb = 1;
67 motions = (O O)¡
68 measurements = [] ¡
69 bearing.noise = 1;
10 steering.noise = 0.1¡
71 distance.noise = 1;
72

74

75 disp ('Creando-mundo_para-usar-en..A*- ... ')
76 mundo.land (: , 1) = 1 + landmarks (: , 1) - minLon;
77 mundo.land(: ,2) = 1 + landmarks(: ,2) - minLat;

B.1. MA1N SOURCE CODE

19 goal(l) = goal(l)
19 goal (2) = goal (2)
80

minLon;
minLat;

81 mundo = zeros (max(mundo_land (: , 1)) , max(mundo_land (: , 2)));

u for i = 1: sise (mundo, 1)
84 for j = 1: slze(mundo,2)
86 lf -inpolygon(i, j, mundo_land(: ,1), mundcdand(: ,2))
ae mundo(i , j) = 1;
87 end
88 end
89 end
90

91 subplot(l ,2 ,1)
9:11 lmagesc (mundo)
93

tM !ai KAlMAN FILTER
911 dlsp ('Matrices _para-Filtro _de-Kalman ')
96

97 dt = 2. 7;
98 P = (O O O O; O O O O; O O 1000 O; O O O 1000);
99 u = [O; O; O; O);

100 F = (1 O dt O; O 1 O dt; O O 1 O; O O O 1];
101 H = (1 O O O; O 1 O O);
102 R = [O. 1 O; O O. l] ;
103

104 ancho= 280:20:1140;
10& angulo= 0:180/(slze(ancho,2)-1):180;
1oe angulo = deg2rad (angulo ') ;
107

1oa !ai SERIAL
109

110 dlsp('Iniciando-el-puerto-serial ... ')
111 sl = serial ('CDM4');
112 set (sl , 'Baudrate ' , 9600);
11a set (sl , 'DataBits ' , 8);
1u set (sl, 'Parity', 'none');
1111 set (sl , 'Terminator ' , 'CR./LF') ;
111 set(sl, 'OutputBufferSize', 2);
111 set(sl, 'lnputBufferSize', 1000);
118 set(sl, 'Timeout', 1);
119 fopen(sl)
120 disp('Conexión-exitosa_a_eb50011 ')
121

122 9'i1J6 CREACIÓN DE PARTÍCULAS
123 dlsp('Creando-Partículas ... ')
124

1211 for i = 1 :N

107

1311 p(i ,:) = robot(minLat + (maxLat-minLat)•rand{), minLon + (max:Lon-minLon)•rand{), r1

108

121 end
128

12e % VID PARTICULAS ALEATORIAS
130 subplot(l,2,2)
131 scatter(p(: ,2), p(: ,1))
132

APPENDIX B. MATLAB PROGRAMS

133 saveas (gcf, strcat ('C: \ Users\Rolix\Dropbox\ Tesis \Programas_ fina les \MAnAB\prueb1
134 oum2str(1) , '. jpg '))
135

1ae dlsp ('Pausa ... -Presiona_ "ENim" -para-continuar')
137 % pause
138

139 9166 ALGORJTMO PRINCIPAL
140

141 disp ('Ubicando-robot ')
142 for iteracion = 1:100
143 disp (st rcat ('lter ación ... _' ,oum2str(i teracion)))
144 disp('Moviendo-partículas ... ')
145 for i = l:N
146 p2(i ,:) = move(p(i ,:) , motions(eod,:), distance_noise, steering_noise,
147 eod
148 p = p2¡
149

150 % LFXJIVRA DE GPS
un dlsp ('Leyendo-GPS')
152 gps = leeGPS (sl) ¡
153 [lat Ion]= convierteGPS(gps);
154

1M lat = floor(lat * 10"6);
156 Ion = floor(lon * 10"6)¡
157 gpsDatos{ iteracion} = [lat Ion J;
158

159 disp('Leyendo-Brújula')
160 % LFXJIVRA DE BRÚJULA
161 [x y z] = leeCompass(sl)¡
1e2 [azimuth elev rJ = cart2sph(x, y, z);
163 azimuth = mod(azimuth + pi/2, 2•pi);
164 compassDatos{ iteracion} = azimuth;
165

166 disp ('Obteniendo-ángulos ... ')
167 % OBTENCIÓN DE ÁNGULOS
168 Z = [] j
169 for i = 1: size (landmarks , 1)
170 deltax = landmarks(i ,2) - lat ¡
111 deltay = landmarks (i , 1) - Ion;
112 temp = atao2(deltay , deltax) azimuth;
113 temp = mod(temp, (2•pi)) ¡
114 Z = (Z temp);

B.l. MAIN SOURCE CODE 109

1111 end
178

177 % CALCUW ERROR
179 measurements (end + 1, :) = Z;
179

180 dlsp ('Encontrando-error ... ')
181 for i = l:N
18:1 w{i ,:) = measuremenLprob(p(i ,:) , landmark11, measurements{end,:), bearing_nois,
183 end
184

185 dlsp ('Re-sampling ... ')
1se i ndex = floor (rand () • N) + 1;
187 beta = O;
188 mw = nmx(w);
189 for i = l:N
1so beta = beta + rand () • 2 • mw;
191 whlle beta > w(index)
1n beta = beta - w(index) ;
193 index = mod(index , N) + 1;
194 end
195 p3{i ,:) = p{index ,:);
186 end
197 p = p3;
198

199 [lat-minLat lon-minLon]
:ioo

:io1 subplot{l,2,2)
:io:i scatter{p{: ,2), p(: ,1))
:I03 axis ([minLon maxLon minLat maxLat])
:1(14,

:I06 saveas(gcf, strcat ('C:\ Users\Rolix\Dropbox\ Tesis\Programas-finales \MA'ILAB\prueba4\c
:ioe num2str{ iteracion+l), '.jpg '))

:ios dlsp('Pausa ... -Presiona-"ENim" _para-continuar')
209

:110 particulas { i teracion} = p;
:111

:11:i end
:113

:114 dlsp('Iniciando-algoritmo-principal ... ')
:1111 iteracion = iteracion + l;
:iu1 while 1
:117 dlsp (strcat ('Iteración ... - ',num2str(iteracion)))
:118

:119 for k = 1:2
:i:io disp('Moviendo-partículas ... ')
:1:11 for i = 1 :N
:i:i:i p2(i ,:) = move(p(i ,:) , motions{end,:), ciistance_noise, steering_noise, len
:1:13 end

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

248

247

248

2411

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

2611

286

267

268

269

270

271

110

p = p2;

% LECIVRA DE GPS
disp ('Leyendo-GPS')
gps = leeGPS(sl);

APPENDIX B. MATLAB PROGRAMS

(lat lon) = convierteGPS(gps);

lat = floor(lat * 10"6);
lon floor(lon * 10"6);

disp ('Leyendo-Brújula')
% LECIVRA DE BRÚJULA
[x y z) = leeCompass(sl);
[azimuth elev r) = cart2sph(x, y, z);
azimuth = mod(azimuth + pi/2, 2•pi);

disp ('Obteniendo-ángulos ... ')
% OBTENCIÓN DE ÁNGULOS
z = [);
for i = 1: size (landmarks , 1)

end

deltax = landmarks(i ,2) - lat;
deltay = landmarks (i , 1) - lon;
temp = atan2(deltay, deltax) azimuth;
temp = mocl(temp, (2•pl));
Z = [Z temp);

% CALCULO ERROR
measurements (end + 1 , :) = Z;

disp('Encontrando-error ... ')
for i = 1:N

w(i ,:) = measurement_prob(p(i ,:) , landmarks, measurements(end,:), 1

end

dlsp ('Re-sampling ... ')
index = floor(rand() * N) + l;
beta= O;
mw = 11111X(w);
for i = 1:N

end

beta = beta + rand() * 2 * mw;
while beta > w(index)

end

beta = beta - w(index);
index = mocl(index , N) + 1;

p3(i ,:) = p(index ,:);

p = p3;

B.1. MAIN SOURCE CODE 111

272

273 subplot(l ,2 ,2)
214 scatter(p(: ,2), p(: ,1))
2111 axis ([minLon maxLon minLat maxLat])
276 end
277

278 [x y theta] = geLposition(p)¡
279 init = floor([y xi);
280

281 init(l) = aba(init(l) - minLon)¡
212 i ni t (2) = aba (in i t (2) - minLat) ¡

284 dlap('Verificando-se-se-11eg6_a_la-meta ... ')
2811 lf ((init(2) < (goal(2) * 1.2)) &&: (init(2) > (goal(2) * .8)))
286 && ((in i t (1) < (goal (1) * l. 2)) &&: (in i t (1) > (goal (1) * . 8)))
287 disp ('¡Meta-alcanzada! ')
288 break
289 end

291 dlap('¡Meta-aún-Do-alcanzada! ')
292 dlap('Continúa-algoritmo ... ')
293

294 dlsp('Detectando-obstáculos ... ')

298 [mundomov] =mappea(sl, mundo, round(x- minLe.t), round(y - minLon), theta);
297

298 disp('Calculando-trayectoria ... ')
299 [path path_inst linea] = astar2 (mundo, init , goal);
300

301 accion = movBoeBot(mov, path_inst (1));

303 subplot(l ,2 ,1)
SO& lmagesc (mundo)
305 llne(linea(:,2),linea(:,1), 'Color','white')
308

307 % ma11or a 915º o menor a 45º
308 lf theta <= deg2rad(45) 11 theta > deg2rad{315)
309 temp = 'v ' ¡
310 % ma11or a 45º o menor a 195°
311 elself theta <= deg2rad{135) && theta > deg2rad(45)
312 temp = '<';
313 % mayor a 195º o menor a 885º
314 elaelf theta <= deg2rad(225) &&: theta > deg2rad(135)
3111 temp = ' • ' ;
318 % mayor a 255º o menor a 885º
317 elself theta <= deg2rad{315) &&: theta > deg2rad(225)
311 temp = '>' ;
319 end
320

112 APPENDIX B. MATLAB PROGRAMS

321 disp ('Moviendo-robot ')
322 policy_actions(l:2) = (temp path_inst(l)];
323 temp = policy_actions (2);
324 mov = trad_mov(policy_actions(l:2));
3211

326 if strcmp(mov(l), 'F')
327 motions(end+l ,:) = (12 O];
328 elseif strcmp(mov(1), 'D')
329 motions(end+l ,:) [12 3•pi/4];
330 else
331 motions(end+l ,:) = (12 pi/4];
332 end
333

334 for gg=l:size(mov,2)
335 fwrlte(sl ,mov(gg));
338 pause(5)
331 end
338

339 iteracion = iteracion + 1;
340 saveas (gcf, strcat ('C: \ Users\ Rolix\Dropbox\ Tesis \Programas-finales \MA'ILAB\p1
341 num2str(iteracion), '.jpg '))
342

343 disp ('Pausa ... -Presiona-"ENim." _para-continuar')
344 % pause
345 end
346

347 • FIN
348 disp('Terminando-conexión ... ')
349 fclose(sl),delete(sl),clear sl;
350 dlsp ('Fin-de-conexión')

B.2 Robot Creation Function

1 function r = robot (x, y, z)
2

3 r=(xyzJ;
..
5 end

B.3 Particle Filter Movement Function

1 function result = move(r, motion, distance_noise, steering_noise, length)
2

3 alfa = motion(l) + randn() * steering_noise;
4 d = motion(2) + randn() * distance_noise;
5

e x=r(l);
1 y=r(2);

B.4. PARTICLE FILTER MEASUREMENT ERROR FiUNCTION 113

a theta = r (3)¡
11

10 beta = (d / length) * tan(alfa)¡
11 if beta= O
12 beta = 0.001;
13 end

111 R = d / beta;
10 ex = x - (R * sln(theta));
11 ey =y+ (R * cos(theta))¡
18

111 x =ex+ (R * sln(theta + beta))¡
20 y= ey - (R * cos(theta + beta));
21 theta = mod(theta + beta, 2•pl);

23 resnlt = robot(x, y, theta)¡

26 end

B.4 Particle Filter Measurement Error Function

1 function error = measurement_prob(r, landmarks, mE•asurements, bearing_noise)

3 predicted_measurements = sense (r, landmarks) ¡
4

II error = 1;
e for i = 1: sise (measurements ,2)
1 error_bearing = abs(measurements(i) - predictedLmeasurements(i));
a error_bearing = mod((error_bearing + pi}, 2•pl) - pi¡
11

10 error = error * (exp(-(error _bearing -2) / (bearing_noise ·2) / 2) / ...
11 sqrt(2 * pi * (bearing_noise ·2)));
12 end
13

14 end.

B.5 Particle Filter Get Position Function

1 functlon [x y orientation) = get_position (p)

3 X= O;
" y= O;
a orientation = O;
8

1 for i = 1:size(p,l)
8 X= X+ p(i ,l)¡
II y=y+p(i,2);

10 orientation = orientation + mod((p(i ,3) - p(l ,;3} + pi), (2•pl)) + p(l ,3) - pi¡

114

11 end
12

~ x = x / size(p,1);
14 y = y / size (p, 1);

APPENDIX B. MATLAB PROGRAMS

15 orientation = orientation / size (p, 1);
16

11 end

B.6 GPS Data Acquisition Function

1 function gps2 = leeGPS (sl)
2

3 pause(2)
4 gps = [);
s fwrite(sl,'G');
6

7 whlle (true)
8 lf sl. BytesAvailable -= O
e a = fscanf(sl , 'o/o3u');

10 gps = (gps ,a);
11 a= [);
12 if size(find(gps = 255),1)==1
13 break
14

111

16

17

18

19

20

21

end
end

gps ';

gps2 =

end

. , .
•

22 for i = l:size(gps,1)-1
23 if i = 2 11 i = 7
24 if slze(num2str(gps(i)),2) = 1
25 gps2 = strcat (gps2, 'O' ,num2str(gps(i)));
26 else
21 gps2 = strcat(gps2, num2str(gps(i)));
28 end
29 elseif i = 3 11 i = 8
so lf slze(num2str(gps(i)),2) = 1
31 gps2 = strcat (gps2, '00' ,num2str(gps(i)));
32 elself slze (num2str(gps(i)) ,2) = 2
33 gps2 = strcat (gps2, 'O' ,num2str(gps (i)));
34 else
36 gps2 = strcat (gps2, num2str(gps (i)));
36 end
37 elseif i = 5
38 i f gps (i) = 78

B.7. GPS DATA CONVERSION FUNCTION

39 gps2 = strcat (gps2, 'N');

'° elself gps(i) == 83
41 gps2 = strcat (gps2, 'S');
42 eod
43 elself i == 6
44 lf slze(num2str(gps(i)),2) == 2
46 gps2 = strcat (gps2, 'O ' , num2str(gps (i))) ;
46 else
47 gps2 = strcat (gps2, num2str(gps(i)));
48 end
49 elseif i == 10
50 if gps(i) == 87
lil gps2 = strcat (gps2, W');
52 elself gps(i) == 69
53 gps2 = strcat (gps2, 'E');
54 eod
65 else
58 gps2 = strcat(gps2, num2str(gps(i)));
57 end
58

59 end
80

61 end

B.7 GPS Data Conversion Function

1 function (latitud longitud) = convierteGPS(cadena)
2

a latDeg = cadena (1: 2);
4 latMin = str2double(cadena(3:4));
5 latMinD = str2double(cadena(5:8));
6 NS = cadena (9);
7

e lonDeg = cadena(l0:12);
9 lonMin = str2dou ble (cadena (13: 14));

10 lonMinD = str2double (cadena (15: 18));
u &V= cadena(19);
12

1s wl = (latMin•l000/6) + latMinD/60;
14 wls = num2str(wl);
15

16 w2 = (lonMin•l000/6) + lonMinD/60;
11 w2s = num2str(w2);
18

19 for i = 1:slze(wls,2)
20 lf strcmp(wls(i), '. ')
21 wls(i) = [);
22 wls = strcat ('. ',wls);

115

116 APPENDIX B. MATLAB PROGRAMS

23 break;
2, end
2& end
28 wls = strcat (latDeg, wls) ¡
27

21 latitud = str2double(wls)¡
29 if strcmp(NS, 'S ')
30 latitud = -1 * latitud;
31 end
32

33 for i = 1: size (w2s ,2)
34. lf strcmp(w2s(i), '. ')
36 w2s(i) = [);
38 w2s = strcat ('. ',w2s)¡
37 break;
38 end
39 end
4.0 w2s = strcat(lonDeg,w2s)¡

,2 longitud = str2double(w2s);
4.3 i f strcmp (EW, W')
4.4. longitud = -1 * longitud;
4,5 end
4.8

u end

B.8 Compass Data Acquisition Function

function [x y z) = leeCompass (s 1)
2

3 pause(2)
, valores = [];
6 fwrite(sl 1 ·e·) j
8

7 while (true)
a if sl. BytesAvailable - O
9 a = fscanf(sl , 'o/o3u');

10 valores = [valores¡ a J;
u a= [);
12 if size(find(valores = 255),1)==1
13 break
14. end
15 end
18 end
17

18 cy = find (valores - 'y 1) i
19 cz = find (valores - 'z') ¡
20 cw = find (valores 'w')¡

B.9. LRF DATA ACQUISITION FUNCTION

21

22 xh = valores (2:cy-1);
23 yh = valores(cy+l:cz-1);
24 zh = valores (cz+l:cw-1);

211 lf 11trcmp(xh (1), '- •)
27 X= -1 * hex2dec(xh(2:end));
28 el11e
211 X = hex2dec (xh) ;
30 end
31

32 if strcmp(yh (1), '-')
33 y= -1 • hex2dec(yh(2:end));
34 el11e
36 y = hex2dec(yh);
38 end
37

38 lf atrcmp(zh(l), '-')
39 z = -1 • hex2dec(zh(2:end));
40 elae
41 z = hex2dec(zh);
42 end

44 end

B.9 LRF Data Acquisition Function

1 functlon valores= lrf(sl)
2

3 pause(2)
4 valores = [];
II fwrite(sl,'M');
8

7 while (true)
a lf sl. BytesAvailable -= O
e a = facanf(sl, 'o/o3u');

10 valores = [valores; a];
u a= (];
12 alze (valores)
13 lf aize(find(valores = 255) ,1) = 1
14 break
111 end
18 end
11 end
18

19 valores = valores (1:end-1)
20

21 end

117

118 APPENDIX B. MATLAB PROGRAMS

B.10 A* Search Function

functlon (policy policy_actions puntos)= astar2(grid, init, goal)

3 puntos = [);
4

5 cost = 1;
e delta = [-1 O; O -1; 1 O; O 1);
1 delta_name = ['· '; '<'; 'v'; '>') ¡
8

9 closed = zeros(size(grid));
10 closed(init(l),init(2)) = 1;
11 action = -1 * ones(size(grid));
12 expand = action;
13

u heuristica = gridFire(size(grid,1), size(grid,2), goal);
115

16 X = i n i t (1) ;
11 y = init (2);
18 h = heuristica(x,y);
19 g = O;
20 f = g-th;
21 %open =fg z 11];
22 open = [f g h x y) ¡

24 found = O;
:115 resign = O;
:116 count=O;
27

28 while found = O &&: resigo = O
29 if size (open, 1) = O
30 resigo = 1 ¡
31 disp (' fa i 1 ')
32 else
33 open = flipud (sortrows (open))¡
34 next = open(end,:);
35 open (end, :) = [) ;
36

37

38

39

40

41

42

43

44

45

46

x = next (4);
y = next (5);
g = next (2);

expand(x,y)=count;
count=count+l;

if x = goal (1) &&: y = goal (2)
found = 1;

else

B.11. A* SEARCH HEURISTIC FUNCTION

for i = l:aize(delta ,1)
x2 = x + delta(i ,l);
y2 =y+ delta(i ,2);

119

47

48

49

liO

lil

62

113

54

lili

if (x2>=1) &r.& (x2<=aize(grid ,1)) &&: (y2 >=l) &r.& (y2<=aize(grid ,2))
if closed(x2,y2) = O &r.& grld(x2,y2) = O

g2 = g + cost;
h2=beuristica (x2, y2);
f2=g2+h2;

116 open = [open ; [f2 g2 h2 x2 y2]] ;
117 closed(x2,y2) = l;
118 action(x2,y2) = i;
69 end
80 end
81 end
82 end
83 end
84 end
811 policy (alze (grid)}= ' - ';
68 x=goal (1) ;
87 y=goal (2);
88

89 policy(x,y)='•';
ro policy_actions = '•';
71

72 grid2 = zeroa (size (grld));
73 whlle x -=init (1) 11 y-=init (2)
74 x2 = x - delta(action(x,y),l);
75 y2 = y - delta(action(x,y) ,2);
78 puntos = [puntos; x2 y2) ;
77 policy (x2, y2) = delta_name (action (x, y));
78 policy_actions = (policy_actions, delta_name(act.ion(x,y)));
79 x=x:2;
80 y=y2;
81 eud
82

83 policy _actions fllplr (policy _actions);
84

811 eud

B.11 A* Search Heuristic Function

1 functlon [beuristica)=gridFire (m,n, centro)
2 %genera una matriz con valorea creciente• alrededor del punto centro
3 heuristica = zeroa(m,n);
4 fin = centro;
li

8 for i = 1: slze (beuristica , 1)

120 APPENDIX B. MATLAB PROGRAMS

7 for j = l:size(heuristica ,2)
8 heuristica(i,j) = ((i-fin(l)))-2 + ((j-fin{2)))-2;
9 eod

10 eod
11

12 eod

B.12 Kalman Filter Measurement Function

1 fuoctioo (x P) = KalmanFilterMeasurement(x, P, Z, H, R)
2

a y = Z' - H•x;
, S = H•P•H' + R;
II K = P•H' * piov (S) ;
6 X = X + K•y;
7 P = (eye(size(P)) - (K•H))•P;
8

9 eod

B.13 Kalman Filter Prediction Function

1 fuoctioo [x P) = KalmanFilterPrediction(x, P, F, u)
2 x = F•x + u;
a P = F•P•F';

' II eod

B.14 Boe-Bot Movement Function

1 fuoctioo (mov)=trad_mov (poli e y)
2 %Esta funcion recibe una policy de la fonna string lineal
3 %
4 %
11 %

polic11='>v>>>>t1t1t1• ';

e %y regresa los moviemientos para el robot
7 %
8 %
9 %

10 %
11 %
12 %

s -
l -
r-

/-

seguir derecho
girar 90° izquierda
girar 90° derecha
dar vueltas de Felicidad, porque llegaste al final

13 % el resultado lo regresa en mov como string
14 %
15 %
16

17

/mov/=trad_mov (policy)

11 %estado =0;

B.14. BOE-BOT MOVEMENT FUNCTION

19 %mov= 'a ';
30 switch policy (1)
:111 case '>'
22 estado=O;
23 mov= 'F' ;
24 case '<'
26 estado=l;
20 mov='F';
21 case 'v'
28 estado=2;
211 mov='F';
30 case 'A'
31 estado=3;
3:1 mov='F';
33 case '*'
3' estado =4;
311 mov='F';
36 eml
37

38 for i =2: sise (policy , 2)
39 switch policy (i)
40 case '>'
41 estadon=O;
42 case '<'
43 estadon=l;
.u
46

48

47

48

49

IIO eml

case 'v'
estadon=2;

case 'A'
estadon=3;

case '*'
estadon=4;

11 l f estado-=estadon
1:1 %Si eataba viendo a la derecha
li3 lf estado==() &k estadon==2
M % ~11trcat(mov, 'r11 ');
11

li8

17

118

19

60

81

8:1

83

84

8li

88

87

mov='ID';
elaeif estado==() &rk estadon----3

% ~11trcat{mov, 'la'),·
mov='II,;

elself estado==() &rk estadon=l
% ~11trcat(mov, '1111 ');
mov=' 111 ';
%Si eataba viendo a la izquierda

elseif estado 1 &k estadon==2
% moo=atrcat {mov, 'la ');
mov=' 11.;

elseif estado=l &&; estadon----3
% ~a.vcat{mov, 'ra ');

121

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

122

else

APPENDIX B. MATLAB PROGRAMS

mov='DD';
elaeif estado=! && estadon==O

% mov=strcat(mov, 'rrs ');
mov='IID';
%Si estaba viendo hacia arriba

elaeif estado---3 && estadon 2
% mov=strcat(ffl011, 'rrs ');
mov='IID';

elseif estado---3 && estadon=l
% mov=strcat (mov, 'ls ');
mov==' 11 '¡

elseif estado==3 && estadon==O
% mov=strcat {ffl011, 'rs ');
mov=='DD' ¡
%Si estaba viendo hacia abajo

el11eif estado 2 && estadon==3
% mov=strcat(ffl011, 'rrs ');
mov='IID' ¡

elseif estado 2 && estadon=l
% mov=strcat(mov, 'rs ');
mov='DD';

elseif estado 2 && estadon==O
% mov=strcat{mov, 'ls ');
mov=' 11 '¡

elseif estadon 4
% mov=strcat{ffl011, 'f ');
mov='F';

end

% mov=strcat{ffl011, 's ');
98 mov='F' ¡
gg end

100 estado=estadon;
101 end
102 end

Bibliography

(1) Compass Module 3-Axis HMC5883L. Parallax Inc., 1..0 edition, April
2011.

[2] Infrurea Line Follower Kit. Parallax Inc., 1.0 edition, .January 2011.

(3) Boe-bot robot kit. http: / /vvw. paralla:x. com/Store/Robots/
AllRobots/tabid/128/CategoryID/3/List/0/SortFj_eld/0/Level/
a/ProductID/296/Default. aspx, October 2012.

(4) Crawler kit for the boe-bot robot. http: / /vw. parallu. com/Store/
Robots/AllRobots/tabid/765/categoryID/3/List/0/SortField/
0/Level/a/ProductID/314/Default. aspx, October 2012.

(5) Gripper kit of the boe-bot robot. http: / /wvv. paralLu:. com/Store/
Robots/AllRobots/tabid/765/GategoryID/3/List/0/SortField/
0/Level/a/ProductID/311/Default.aspx, October 2012.

[6) Isaac Asimov. The Foundation Novels. Bantam Dell, 21001.

[7) Karel Capek. R.U.R. (Rossum's Universal Robots). Dover Thrift Edi­
tions, 2001.

(8) Khac Duc Do Khiang-Wee Li.m Cheng-Heng Fua, Sbuzhi Sam Ge.
Multirobot formations based on the queu~formation scheme with lim­
ited communication. IEEE 7hmsactions On Robotics, 2::1(6):1160-1169,
2007.

[9) Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wol­
fram Burgard, Lydia E. Kavraki, and Sebastian Thrw1. Principie o/
Robot Motion: Theory, Algorithms, and Implementatfon. The MIT
Press, 2005.

[10) Víctor de La Cueva Hemá.ndez. Planificación de trayectorias. Instituto
Tecnológico y de Estudios Superiores de Monterrey, 2011.

123

124 BIBLIOGRAPHY

[11) A7 Engineering. EmbeddedBlue 500 User Manual. Parallax Inc., 12860
C Danielson Court, revision e edition, April 2005.

[12) Domenico Prattichizzo Gian Luca Mariottini, Giuseppe Oriolo. Image­
based visual servoing for nonholonomic mobile robots using epipolar ge­
ometry. IEEE '.lransactions On Robotics, 23(1):87-100, February 2007.

[13) Domenico Prattichizzo Nicholas Prattichizzo Nicholas Vander Valle
Nathan Michael George Pappas Gian Luca Mariottini, Fabio Mor­
bidi and Kostas Daniilidis. Vision-based localization for leader-follower
formation control. IEEE '.lransactions On Robotics, 25(6):1431-1448,
2009.

[14) Joh Wen He Bai. Cooperative load transport: A formation-control
perspective. IEEE '.lransactions on Robotics, 26(4):742-750, August
2010.

[15) Manabu Sato Kazuhiro Kosuge. Transportation of a single object by
multiple decentralized-controlled nonholonomic mobile robot. In Pro­
ceedings o/ the 1999 IEEE/RSJ, pages 1681-1686.

[16) Shoichi Maeyama Shin'ichi Yuta Kazunori Ohno, Talmshi Tsubouchi.
A mobile robot campus walkway following with daylight-change­
proof walkway color image segmentation. In Proceedings o/ the 2001
IEEE/RSJ International Gonference on Intelligent Robots and Systems,
pages 77-83, Mani, Hawaii, USA, Oct. 29 - Nov. 03 2001. IEEE.

[17) Jean-Claude Latombe. Robot Motion Planning. The Kluwer Interna­
tional Series In Engineering And Computer Science. Kluwer Academic
Publishers, 1991.

[18) Steven M. La Valle. Planning Algorithms. Cambridge University Press,
2006.

(19) Andy Lindsay. Robotics with the BOe-Bot. Parallax Inc., version 3.0
edition, 2012.

(20) Tomás Lozano-Pérez. Spatial planning: A con.figuration space ap­
proach. IEEE '.lransactions On Gomputers, 32(2):108-120, February
1983.

(21) George Lucas. Star Wars: A New Hope. Ballatine Books, 1976.

BIBUOGRAPHY 125

(22) ZhiDong Wang Eiji Nakano Majid Nili Abroadabadi,
Saabin Mehdinezbad. A constrain-move based distributed coop­
eration strategy for four object lifting robots. In P7'oceedings o/ the
2000 IEEE/RSJ, International Conference on Intelligent Robots and
Systems, pages 2030-2035. IEEE, 2000.

(23) John McPhee Mike Peasgood, Christopber Micbael Clark. A complete
and scalable strategy for coordinating multiple robots witbin roadmaps.
IEEE 1mnsactions on Robotics, (2):283-292, April 2008.

(24) J. Saito S. Yaroada. Action selection without explicit communication
for multi-robot box-pushing. In Proceedings o/ the 1999 IEEE/RSJ,
International Conference on Intelligent Robot and Syste:ms, pages 1444-
1449. IEEE, 1999.

(25) Dieter Fox Sebastian Thrun, Wolfram Burgard. Probabilistic Robotics.
The MIT Press, 2006.

(26) Inc SiRF Technology. NMEA Reference Manual. Number 1050-0042.
SRIF, 217 Devcon Drive, revision 2.2 edition, November 2008.

(27) Peter Norvig Stuart Russel. Artificial lntelligence: A Modern Approach.
Pearson Education, Inc., 2010.

(28) Prasertsak Detudom Thavida Maneewarn. Mechanics of cooperative
nonprehensile pulling by multiple robots. In Proceedings o/ the 2005
IEEE/RSJ, International Conference on Intelligent Robot and Systems,
pages 1319-1324. IEEE, 2005.

(29) H. Asama H. Kaetsu l. Endo Y. Arai, T. Fujii. Realization of au­
tonomous navigation in mulirobot environment. In Proceedings o/ the
1998 IEEE/RSJ, International Conference on Intelligeut Robots and
Systems, pages 1999-2004, Victoria B.C., Canada, October 1998. IEEE.

(30) Clarance W. de Silva Ying Wang. Multi-robot bax:-pushing: Single­
agent-q-learning vs. team q-learning. In Proceedingll o/ the 2006
IEEE/RSJ.

(31) Y. Charlie Hu C. S. George Lee Yongguo Mei, Yung-lfüiang Lu. De­
ployment of mobile robots with energy and timing contraints. IEEE
'.Imnsactions on Robotics, 22(3):507-522, June 2006.

126 BIBLIOGRAPHY

(32] Kazuhiro Kosuge ZhiDong Wang, Yasuhisa Hirata. Control multiple
mobile robots for object caging and manipulation. In Proreedings o/
the 2003 IEEE/RSJ.

(33] Lei Li Nong Gu Shuo Wang Zhiqiang Cao, Min Tan. Cooperative
hunting by distributed mobile robots based on local interaction. IEEE
'.lransactions on Robotics, (2):403-407, April 2006.

	33068001110529-1
	33068001110529-2
	33068001110529-3
	33068001110529-4
	33068001110529-5
	33068001110529-6
	33068001110529-7
	33068001110529-8
	33068001110529-9
	33068001110529-10
	33068001110529-11
	33068001110529-12
	33068001110529-13
	33068001110529-14
	33068001110529-15
	33068001110529-16
	33068001110529-17
	33068001110529-18
	33068001110529-19
	33068001110529-20
	33068001110529-21
	33068001110529-22
	33068001110529-23
	33068001110529-24
	33068001110529-25
	33068001110529-26
	33068001110529-27
	33068001110529-28
	33068001110529-29
	33068001110529-30
	33068001110529-31
	33068001110529-32
	33068001110529-33
	33068001110529-34
	33068001110529-35
	33068001110529-36
	33068001110529-37
	33068001110529-38
	33068001110529-39
	33068001110529-40
	33068001110529-41
	33068001110529-42
	33068001110529-43
	33068001110529-44
	33068001110529-45
	33068001110529-46
	33068001110529-47
	33068001110529-48
	33068001110529-49
	33068001110529-50
	33068001110529-51
	33068001110529-52
	33068001110529-53
	33068001110529-54
	33068001110529-55
	33068001110529-56
	33068001110529-57
	33068001110529-58
	33068001110529-59
	33068001110529-60
	33068001110529-61
	33068001110529-62
	33068001110529-63
	33068001110529-64
	33068001110529-65
	33068001110529-66
	33068001110529-67
	33068001110529-68
	33068001110529-69
	33068001110529-70
	33068001110529-71
	33068001110529-72
	33068001110529-73
	33068001110529-74
	33068001110529-75
	33068001110529-76
	33068001110529-77
	33068001110529-78
	33068001110529-79
	33068001110529-80
	33068001110529-81
	33068001110529-82
	33068001110529-83
	33068001110529-84
	33068001110529-85
	33068001110529-86
	33068001110529-87
	33068001110529-88
	33068001110529-89
	33068001110529-90
	33068001110529-91
	33068001110529-92
	33068001110529-93
	33068001110529-94
	33068001110529-95
	33068001110529-96
	33068001110529-97
	33068001110529-98
	33068001110529-99
	33068001110529-100
	33068001110529-101
	33068001110529-102
	33068001110529-103
	33068001110529-104
	33068001110529-105
	33068001110529-106
	33068001110529-107
	33068001110529-108
	33068001110529-109
	33068001110529-110
	33068001110529-111
	33068001110529-112
	33068001110529-113
	33068001110529-114
	33068001110529-115
	33068001110529-116
	33068001110529-117
	33068001110529-118
	33068001110529-119
	33068001110529-120
	33068001110529-121
	33068001110529-122
	33068001110529-123
	33068001110529-124
	33068001110529-125
	33068001110529-126
	33068001110529-127
	33068001110529-128
	33068001110529-129
	33068001110529-130
	33068001110529-131
	33068001110529-132
	33068001110529-133
	33068001110529-134
	33068001110529-135
	33068001110529-136
	33068001110529-137
	33068001110529-138
	33068001110529-139
	33068001110529-140
	33068001110529-141
	33068001110529-142

