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Abstract

In the past few years the development of exascale computing technology necessitated to obtain
an estimate for the energy consumption when large-scale problems are solved with different
high-performance computing (HPC) systems. In this paper we study the energy efficiency of
a class of Monte Carlo (MC) and Quasi-Monte Carlo (QMC) algorithms for a given integral
equation using hybrid HPC systems. The algorithms are applied to solve quantum kinetic
integral equations describing ultra-fast transport in quantum wire. We compare the energy
performance of the algorithms using a GPU-based computer platform and CPU-based computer
platform both with and without hyper-threading (HT) technology. We use SPRNG library and
CURAND generator to produce parallel pseudo-random (PPR) sequences for the MC algorithms
on CPU-based and GPU -based platforms, respectively. For our QMC algorithms Sobol and
Halton sequences are used to produce parallel quasi-random (PQR) sequences.

We compare the obtained results of the tested algorithms with respect to the given energy
metric. The results of our study demonstrate the importance of taking into account not only
scalability of the HPC intensive algorithms but also their energy efficiency. They also show the
need for further optimisation of the QMC algorithms when GPU-based computing platforms
are used.
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1 Introduction

In the past decade the development of energy-efficient algorithms has become more important
with increasing power of supercomputer systems and growing size of the applied problems
[1, 2]. The newest complex extreme-scale computing systems, based on diverse computing
devices (CPU, GPU, accelerators) posed the question of scalability in the light not only of
parallel efficiency, but also in terms of energy consumption. The Flops/Watt (F/W) metric

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016 1897
© The Authors. Published by Elsevier B.V.

doi:10.1016/j.procs.2016.05.492


http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.492&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.492&domain=pdf

Energy Study of MC and QMC Algorithms ... Gurov T. at al.

was introduced and now this metric is used as the standard in measuring the energy efficiency
of supercomputing systems (see [3]). Taking into account the probability of an error during
a run, some authors [4, 5] propose the time_to_solution metric for estimating the algorithm
performance. This metric can be written in the following way:

F(T,Ty) x E, (1)

where F is the cost of consumed energy; F(T,Tp) is the penalty function; T is the execution
time of the given algorithm, and T} is the fixed time, i.e. the time in which we want the task
(running job) to be completed.

In this work we concentrate on studying energy efficiency of MC and QMC algorithms for
integral equations on extreme-scale parallel computing systems with respect to metric (1). The
extreme-scale parallel computing systems are HPC systems with low latency interconnection,
equipped with GPGPU devices and/or co-processors to speed up the calculations that make
use of thousands of processor cores in high-density deployment. Such supercomputers are called
hybrid HPC systems if they are equipped additionally with CPU-based platform. The integral
equations that we solve with MC and QMC algorithms describe ultrafast carrier transport in
semiconductors, namely, a femtosecond relaxation process of optically excited electrons which
interact with phonons in one-band semiconductor [6]. In fact we consider the inhomogeneous
case - ultrafast transport in quantum wire with applied electric field, which is the more realistic
case [7].

The paper is organized as follows: In the next section we present the quantum-kinetic
equation in the integral form and the MC and QMC algorithms for solving this equation.
The parallel implementation of the algorithms using CPU-based and GPU-based computer
platforms is also described. The numerical tests and our findings are presented in section 3. In
the conclusion we summarise the main outcomes.

2 Solving Integral Equations by Monte Carlo and Quasi-
Monte Carlo algorithms

In our study of energy efficiency we consider MC and QMC algorithms for solving Wigner
equation for the nanometer and femtosecond transport regime. For this purpose we use the
formulation of the Wigner equation in an inhomogeneous case (in quantum wire - more realistic
case) where the electron evolution depends on the energy and space coordinates [7]. The
electrons, which can be initially injected or optically generated in the wire, begin to interact
with three-dimensional phonons. In this particular case the electron-phonon interaction is
described on the quantum-kinetic level by the Levinson equation [9, 10], but the evolution
problem becomes inhomogeneous due to the spatial dependence of the initial condition. The
direction of the wire is chosen to be z, the corresponding component of the wave vector is
k.. The electrons are in the ground state ¥(r ) in the plane normal to the wire, which is an
assumption consistent at low temperatures. The initial carrier distribution is assumed Gaussian
both in energy and space coordinates, and an electric field can be applied along the wire.

The integral representation of the quantum kinetic equation for the electron Wigner function
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fw in this case has the form [8]:
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Here, fu,(z,k.,t) is the Wigner function described in the 2D phase space of the carrier wave
vector k, and the position z, and ¢ is the evolution time. The kernel S(k, k,,t',t",q/,) of the
integral equation in (2) is well described in [7, §].

In the inhomogeneous case the wave vector (and respectively the energy) and the density
distributions are given by the integrals

dz dk.,

flko t) = 27wa(z,kz,t), n(z,t) 7/ o fw(z, ks, t). (3)
MC algorithms [19, 11] and QMC algorithms [16] are developed to estimate the quanti-
ties (3) and the Wigner function (2). To sample numerical trajectories in the MC algorithms
SPRNG library [14] and CURAND generator is used to produce parallel pseudo-random (PPR)
sequences. In the case of QMC algorithms we use low-discrepancy sequences to sample numer-
ical trajectories. The computations were performed with both Sobol and modified Halton

sequences. The implementations of these sequences are given in [12, 17] and [13].

2.1 Parallel implementation

The MC and QMC algorithms are perceived as computationally intensive, but naturally par-
allel. The so-called “master-worker” model is usable for dynamic load-balancing, while static
load-balancing is sufficient in the case when the variations in the computational load can be
controlled. In this model, a large MC task is split into smaller independent subtasks, which are
then executed separately. One process or thread is designated as "master” and is responsible
for the communications with the ”worker” processes or threads, which perform the actual com-
putations. The partial results are collected and used to assemble an accumulated result with
smaller variance than that of a single copy. In the MC algorithms when the subtasks are of the
same size, their computational time is also similar, i.e., we can use static load balancing. In the
case of QMC computations where one can not afford to lose computations we use the blocking
approach in the generation of the sequences, combined with static load balancing. Our parallel
implementation uses MPI for the CPU-based parallelisation and CUDA for the GPU-based
parallelisation.

2.2 Implementation on CPUs and GPUs

In our numerical tests we compared the CPU performance of the parallel code with and without
hyper-threading (HT) for both type algorithms. We note that some codes using HT do not
improve the overall speed of calculations because the floating point units of the processor are
shared between the threads. In our experience substantial gains may be achieved without any
additional coding effort by simply using logical instead of physical cores when sizing the launch
of the MPI job. We have observed about 30% improvement of the CPU performance of the MC
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algorithms [11] when HT is turned on. This result shows that our overall code is reasonably
efficient.

In the case of GPGPU-based implementation we used CUDA for parallel computations.
Parallel processing is based on splitting the computations on a grid of threads. We use thread
size of 256, which is optimal taking into account the relatively large number of registers. Parallel
quasi-random (PQR)generators for the scrambled Sobol sequence and modified Halton sequence
have been developed and tested in our previous works [12, 13].

3 Numerical Results and Energy Efficiency Study

The MC and QMC algorithms under considaration were tested on the heterogeneous cluster
HPCG in the HPC Centre of the Institute of Information and Communication Technologies,
Bulgarian Academy of Sciences (IICT-BAS) [15].

This cluster combines CPU-based computing platform with 36 blades BL 280c (dual Intel
X5560, 24 GB RAM per a blade,total 576 CPU logic cores) and GPGPU-based platform with
high-end GPU computing devices (2 HP ProLiant SL390s G7 servers, each with dual Intel Xeon
E5649, 96 GB RAM, with a total of 16 NVIDIA Tesla M2090 graphic cards). Both computing
platforms are connected with 2 InfiniBand switches and use 3 storage file systems with a total of
132 TB storage. We note that GPUs have continued to increase in terms of energy usage, while
CPU designers have recently focused on improving performance per Watt. High performance
GPUs may now be the largest power consumer in a system. The peak performance of any
system is essentially limited by the amount of power it can draw. Consequently, performance
per watt of a GPU design translates directly into peak performance of a system that uses that
design.

The numerical results presented in Tables 1-3 and on Figures 1-3 are obtained for the problem
with GaAs material parameters: the electron effective mass is 0.063, the optimal phonon energy
is 36 meV, the static and optical dielectric constants are €, = 12.9 and e, = 10.92. The
initial condition is a product of two Gaussian distributions of the energy and space. The k2
distribution corresponds to a generating laser pulse with an excess energy of about 180 meV.
The z distribution is centered around zero. The side of the wire is chosen to be 10 nanometers.
The number of the realized numerical trajectories in MC and QMC algorithms is NV = 10
million. For the MC algorithms we use SPRNG library [14] to sample numerical trajectories on
the CPU-based computing platform while we use CURAND generator on the GPGPU-based
platform. Sobol and Halton sequences are used to produce PQR sequences for QMC algorithms.

In our tests the price of energy is assumed to be 10 euro cents per 1K Wh. In case there are
no running jobs the energy consumption of n number of CPU blades or GPU devices is denoted
by Wy. When we have running jobs using n number of devices than the energy consumption is
denoted by W,,. The difference AW,, = W,, — W is attributed to the computational workload
being run. The function F(T') that penalizes the algorithms is chosen in the following way:

F(T) = exp (a|T/Ty — 1)).

Using this penalty function allows the metric (1) to find the minimum number of blades and
GPU cards necessary for the completion of the task (running job) for a fixed time - Tp, leaving
the energy cost close to the minimum. In our test Ty = 600s and the parameter a = 1. The
parameter a is chosen so that the results are more easily comparable for all cases.

The test results for MC and QMC algorithms using CPU devices with and without HT
are shown in Tables 1 and 2. In each table the optimal values are underlined. Looking at
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Figure 1: Compering the energy cost using CPU devices without HT for the MC and QMC
algorithms.
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Figure 2: Compering the energy cost using CPU devices with HT for the MC and QMC
algorithms.
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Table 1: Test results for the MC and QMC algorithmits using CPU devices without Hyper-
Threading.

PPR sequence/ Blades/ CPU Energy Energy metric
PQR sequence Cores  Time (s) AW, cost: E F(T) x (E)
1/8 2728.02 211 16.00 955.95
2/8 1545.63 353 15.15 92.12
SPRNG 4/8 702.91 831 16.22 24.11
8/8 350.89 1863 18.16 31.31
16/8 193.64 2819 15.16 39.78
1/8 2401.52 272 18.14 365.37
2/8 1206.56 415 13.91 38.22
Sobol 4/8 605.12 861 14.47 14.60
8/8 307.55 1624 13.87 22.59
16/8 160.12 3152 14.02 29.18
1/8 2499.10 372 25.82 611.84
2/8 1254.81 435 15.16 45.16
Halton 4/8 631.52 951 16.68 17.58
8/8 355.82 1622 16.03 24.08
16/8 179.81 3073 15.35 30.92

Table 2: Test results for the MC and QMC algorithmits using CPU devices with Hyper-
Threading.

PPR sequence/ Blades/ CPU Energy  Energy metric
PQR sequence  Cores/HT  Time (s) AW, cost: E F(T) x (E)
1/8/2 1818.17 609 15.98 121.71
2/8/2 904.50 712 18.63 30.94
SPRNG 4/8/2 456.96 1130  12.47 15.82
8/8/2 231.15 1767 14.10 26.07
16/8/2 123.20 3624 13.33 29.51
1/8/2 155549 414 17.89 87.04
2/8/2 780.93 543 11.78 15.92
Sobol 4/8/2 388.36 1081 11.66 16.59
8/8/2 195.33 1987 10.78 21.16
16/8/2 100.56 3689 10.30 23.69
1/8/2 1587.63 609 26.86 139.29
2/8/2 803.14 712 15.88 22.28
Halton 4/8/2 40322 1130 12.66 17.57
8/8/2 222.39 1767 10.91 20.47
16/8/2 121.20 3624 12.20 27.10

the results we see that there is a difference between the SPRNG, Sobol and Halton sequences.
Here we observe that by turning on the hyper-threading in the case of Sobol sequence one can
achieve the same metrics with just 2 blades instead of 4. For both the Halton sequences and
the SPRNG sequences it is optimal to use 4 blades.

The energy cost for the different algorithms using CPU-based computations with and with-
out HT is compared on Figures 1-2. We see that QMC algorithms consume a little bit less
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Table 3: Test results for the MC and QMC algorithms using GPU devices.

PPR sequence/ NVIDIA GPGPU Energy  Energy metric
PQR sequence  Tesla M2090 Time (s) AW, cost: E  F(T)x (E)
1 564.34 398 6.24 6.62
2 292.37 555 4.51 7.53
CURAND 4 164.41 895 4.09 8.45
8 105.28 1404 4.11 9.36
16 87.56 2525 6.14 14.42
1 893.24 156 3.87 6.31
2 456.32 316 4.01 5.09
Sobol 4 246.15 638 4.36 7.87
8 155.88 1295 5.61 11.75
16 103.97 2419 6.99 15.97
1 803.85 158 3.53 4.96
2 411.01 307 3.50 4.80
Halton 4 228.86 614 3.90 7.25
8 142.07 1094 4.32 9.26
16 98.24 2494 6.81 15.71
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Figure 3: Compering the energy cost using GPU devices for the MC and QMC algorithms.

energy that MC algorithms as in the case of HT the results are improving. Taking in the
account that QMC algorithms converge to the exact solution better than MC algorithms [18]
we can conclude that QMC algorithms in our case are preferable for CPU-based computational
platform.

In the case of GPGPU computations the test results for both algorithms are presented in
Table 3 while the energy cost using different number of GPU cards is shown on Figure 3. We
observe that in case of small number of GPU devices the energy cost of the QMC algorithms
is smaller that for MC algorithm. With increasing the number of GPU devices the picture is
changed. This situation can be explained by the fact that algorithms are not optimized for
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calculations with many cards. In part this is due to the relatively high initial startup overhead
for the CUDA and MPI implementations.

Comparing results using both computational platform we can conclude that GPU-based
platform is preferable because the energy cost is reduced by 30% to 40%.

4 Conclusion

In this paper we compared the energy performance of a class of MC and QMC algorithms for
solving quantum kinetic integral equations describing ultra-fast transport in quantum wire. The
algorithms were implemented on a GPU-based computer platform and on CPU-based computer
platform with and without hyper-threading. Although the quasi-random sequence generators
are not optimized for the GPU-based platform, the QMC algorithms demonstrate better energy
efficiency. As a penalty function in our work we used an exponential function. The purpose
of this function is to find the minimal number of CPU/GPU devices needed to solve the given
problem for a fixed execution time.

The new computing platforms lead to new challenges in programming. That is why it is
necessary to optimize the codes (in some cases they need rewriting) of the existing quasi-random
generators in order to exploit the advantages of the computer hardware with accelerators. In
our future work we plan to compare the energy performance of MC and QMC algorithms for
solving linear algebra problems. We also foresee porting these algorithms on new extreme-
scale parallel system Avitohol [20], which consists of 150 heterogeneous computing HP Cluster
Platform SL250S GENS servers, equipped with 2 Intel Xeon E 2650 v2 CPUs and 2 Intel Xeon
Phi 7120P coprocessors and study the efficiency there.
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