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Abstract 
We study a special bilevel programming problem that arises in transactions between a Natural Gas 
Shipping Company and a Pipeline Operator. Because of the business relationships between these two 
actors, the timing, and objectives of their decision-making process are different. In order to model that, 
bilevel programming was traditionally used. Apart from the theoretical studies of the problem to 
facilitate its solution a linear reformulation is required, as well as heuristic approaches, and branch-
and-bound techniques may be applied. We present a linear programming reformulation of the latest 
version of the model, which is easier and faster to solve numerically. This reformulation makes it 
easier to theoretically analyze the problem, allowing us to draw some conclusions about the nature of 
the solution.  
      Since elements of uncertainty are definitely present in the bilevel natural gas cash-out problem, its 
stochastic formulation is developed in the form of a bilevel multi-stage stochastic programming model 
with recourse. After reducing the original formulation to a bilevel linear problem, a stochastic scenario 
tree is defined by its node events, and time series forecasting is used to produce stochastic values for 
data of natural gas price and demand. Numerical experiments were run to compare the stochastic 
solution with the perfect information solution and the expected value solutions. 
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1 Introduction 
Since 1992 in the United States (EIA, 1992a, 1992b, 2005), (Soto, 2008), and since 1995 in the 

European Union (IHS, 2007), the society regulating bodies issued and endorsed a concatenation of 
special rules aiming to separate the cardinal operations inherent for the natural gas supply chain (see 
the details in Kalashnikov et al., 2010b). The related merchandises gravely  required separation of the 
transportation and sale processes. As a consequence of such an epitomic change and the due 
transformations of the gas markets, many new attributes and subtle details appeared that urgently 
required a thorough study. 

Among the most pertinent conundrums the natural gas supply chain stumbled about was that of 
equilibrating the gas volumes supplied through a pipeline network. Such an equilibrating design is of 
great importance for the pipeline operating body (POB), due to the fact that under a well-marshalled 
gas transfer via the pipeline a strict control of its amount is indispensable. Moreover, each (natural 
gas) shipping company (SC) is also concerned about the hauled volumes being as insignificantly 
imbalanced as possible. A natural gas shipping company’s business is to distribute gas by transferring 
it through pipelines to customers: it is obliged to operate in line with signed contracts first, and after 
that it can sell the exceeding gas volumes to earn a maximum gain. Aiming at that, the SC has to 
arrange the gas supply at every selling point (called pipeline meters) having in mind the balance, the 
selling prices, and the net profit. The comprehensive mathematical framework of this problem can be 
found, e.g., in (Kalashnikov et al., 2005). 

  Although natural gas pipeline networks have been thoroughly studied, most of the well-known 
models concentrate mainly on the material movement facets of the natural gas supply chain and less 
on the SC–POB cooperation issues: cf., e.g.,  the optimization of network operations  (Borraz-Sánchez 
and Ríos-Mercado, 2005), (Chebouba et al., 2009), or stationing appliances (Kabirian and Hemmati, 
2007). In some other publications, the natural gas supply chain is implemented as a multilevel 
structure where both SC and POB are present and make decisions as partners; see, e.g., (Gabriel et al., 
2005) and (Egging et al., 2008). In these works, the authors span the whole supply chain with more 
attention to the traders (financial problems of the natural gas producers), so that imbalances in the 
system (resulting from the interaction between the SCs and POBs) aren’t investigated.  

A lot of authors admit (cf., Arano and Blair, 2008; Hawdon, 2003) the existence of some new 
difficulties in the SC–POB system generated by the principal changes, yet it is possible to find only a 
small number of references that provide reliable instruments to deal with the above-mentioned 
problems. The paper (Esnault, 2003), for example, shows that the SC requires a depot if the gas 
volume maintaining rules are too restrictive, either due to some business habits or owing to some 
technical blemishes. Nevertheless, the crucial part of the modern natural gas supply chain management 
is to keep a balance as strictly as possible when carrying out contracts. However, up to date, no policy 
has been yet admitted as comprehensive about the mode how the imbalances generated by the SC, are 
materially and economically managed. Essential devices assisting the POB in the restoration of the 
balance are the arbitrage punishment approach allowing that the POB rearrange the imbalances inside 
the system and levies some fees to the shipper. 

 In (Kalashnikov and Ríos-Mercado, 2001), a model is developed to fit better the punishment part 
of the imbalance problem. There, the penalization deals only with the cash-out taking place between 
the SC and POB bearing no reference to real market conditions that are very important to the shipper 
(SC). The paper provides a solution algorithm for a somewhat modified problem, together with the 
examination of how this modification affects the objective function and the obtained solutions. In 
(Kalashnikov and Río-Mercado, 2006), the authors collate two procedures solving the specified 
problem. In (Dempe et al., 2005), the imbalance cash-out problem was split into several generalized 
transportation problems, which made it easier to calculate the optimal solution.  

 In (Dempe et al., 2015) and (Kalashnikov et al., 2010a), an extended version of the gas imbalance 
cash-out problem was studied, in which the upper- level objective function involves extra terms 
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reflecting the leader’s (the shipping company’s) expected net profit. Nonetheless, that scheme 
presupposes the perfect information about the tendencies of gas price along time, which is hardly 
possible in the real life systems. Even more, this assumption isn’t very useful, because the resulting 
function doesn’t clearly explain the logic behind the shipper’s activity. Hence, in the framework of our 
previous paper (Kalashnikov et al., 2010b), we describe here a stochastic formulation of the cash-out 
problem where the shipper is able to predict (to some degree of accuracy) the natural gas demand 
within a series of intervals of time, which helps plan the volumes of gas to extract from the pipeline 
meters. The model in question is a stochastic variation of the original mixed-integer bilevel 
optimization problem, and two algorithms to solve it are presented and discussed. 

 
To our best knowledge, there are few literature sources explicitly dealing with the shipper-pipeline 

subsystem by formulating a bilevel optimization problem involving the operations to resume the 
balance. For stochastic optimization methods, it is especially important that the number of the upper-
level variables be not too high, in order to save on the number of branches of scenario trees. Recent 
results obtained in this direction are also mentioned in this paper. 

The remaining part the manuscript has the following structure. After having specified the 
examined model in Section 2, a mathematical procedure of solution is developed in Section 3. The 
paper ends with the conclusions and the aims for the future research, followed by an acknowledgment 
and the list of references. 

2 Model Specification 
Proceeding along the lines previously elaborated in (Kalashnikov et al., 2010b), we examine  a 

bilevel programming model, in which the upper level decision maker (the leader), namely, the natural 
gas shipping company (SC) buys the gas, supplies it into an (interstate) pipeline at its starting meter 
station and extracts certain amounts of gas from the pipeline meters in several pool zones embracing 
inhabited territories (consumers). At the same time, the pipeline management (called the pipeline 
operating body, or POB) behaves as a follower. In more detail, the POB permits the SC to extract 
quantities of natural gas that may not match exactly with the originally claimed amounts, which often 
leads to imbalances of the different sign (positive or negative). 

Such a policy is indispensable for the fuel market flexibility and the operational dynamics within 
the natural gas supply chain. Albeit, these imbalances use to conduct to (unexpected) excess 
expenditures suffered by both the SC and POB. Therefore, the shipping company considers doing that 
only if the future market conditions forecasts hint that the aggregate gross revenues may prevail over 
the financial losses triggered by the POB’s penalization procedures towards the shipper. 

Hence, the pair SC–POB operates according to the following mode: 
  
1) The SC produces a solid foretelling of the gas demand for next time period and estimates 

probabilities for different scenarios and trends. 
2) The SC books a certain amount of natural gas at each pool zone for every time slot of the 

planned horizon. 
3) With respect to every consecutive time slot, the shipper sets what volume of gas to excerpt and 

trade. Any aberrations of these volumes from those stipulated in the agreement with the POB use to 
bring about (positive and/or negative, daily and/or final) imbalances at the meters in question. 

4) The pipeline (POB) traces the emerging daily and terminate imbalances and is in its right of 
revamping them according to the appropriate business rules. 

5) The POB charges the shipper with a penalty for the final (reshuffled) imbalances, which may 
also occur negative, i.e., the pipeline returns its debt  to the SC. 

6) The shipper (SC) reckons up the net profit as its aggregate revenue minus the penalty. 
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The above-outlined paradigm is referred to as a bilevel multi-stage stochastic optimization problem 

(Kall and Wallace, 1994). Here, the shipper is the upper level decision maker (the leader) maximizing 
its net profit as the difference between the gross revenue from the sales of its gas in the pipeline and  
the possible penalty charged by the POB. On the other hand, the pipeline (POB) plays at the lower 
level (being the follower) by trying to minimize the absolute figure of the penalty cash-out flow, either 
positive or negative. The first stage of the stochastic process consists in booking the supply by the 
shipper; these reserved supply fixed during the whole time horizon. At all the subsequent stages, the 
decision variables are the daily excerpt volumes, unsatisfied demand, and the penalty cash-outs 
charged by the pipeline. 

. 
Remark 1. Even though the pipeline (POB) seems to play a more important role in the above-

described system, still the shipper (SC) is the leader in the bilevel (Stackelberg duopoly) model. In 
order to conclude which of the parties enjoys the more or less important influence, one has to consider 
and analyze many aspects of different processes in a system. In our model, the timing of the decision 
making is pivotal for the classification of who is the principal and who accepts the follower’s role, 
because the latter determines whose actions are dependent on whose resolution. 

      
A. Notation 
Throughout this paper, the following notation is used: 
Sets 
P The quantity of time periods at each node; P Z ; 
N The number of pool zones; N Z ; 
L The number of event nodes in the process; L Z ; 
B The number of stages in the process; B Z ; 
T Set of time periods at any given node; T = 1 2, , ,P… ; 

J Set of pool zones; J =  1 2, , , N… ; 

L Set of event nodes; L =  1 2, , ,L… ; 

L   Set of nodes at stage β; 1 2, , ,B  … . 
 
Upper Level Parameters 

Lower Upper
tj tjx ,x  Lower and upper bounds for the imbalances on day t at node , in pool zone j; jJ; 

tT; L; 
Lower Upper
t tx ,x  Lower and upper bounds for the total imbalances on day t at node ; tT; L; 

Lower Upper
tj tjs ,s  Lower and upper bounds on imbalance swings on day t at node , in pool zone j;  

jJ; tT; L; 

0 jx               Initial imbalance at the beginning of day 1 at node 1, in pool zone j; jJ; 

tjED           Expected demand on day t, at node , in pool zone j; jJ; tT; L; 

tj              Unit price for the gas extracted/sold in line with the contract on day t at node  in 
zone j; jJ; tT; L; 

tj tjRC ,BC  Recourse and booking capacity costs per gas unit on day t at node , in pool zone j; 
jJ; tT; L; 
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p              The probability of node  to appear in any scenario; L. 
 
Lower Level Parameters 

ijf         Fraction of gas used as the fuel being hauled from pool zone i to pool zone j; i, jJ; i < j; 

ijv         Forward haul unit cost for moving gas from pool zone i to pool zone j; i, jJ; i < j; 

ijn         Backward credit for “returning” a unit of gas from pool zone j to pool zone i; i, jJ; i < j; 

jm         Cash-out penalty coefficient in pool zone j; jJ. 
 
Upper-Level Decision Variables 

tjx         Imbalance on day t at node  in pool zone j; jJ; tT; L; 

tjs         Imbalance swing on day t at node  in pool zone j; jJ; tT; K; 

tjAE     Amount of gas actually extracted on day t at node  in pool zone j; jJ; tT; L; 

ktiAPE   Amount of gas planned to be extracted (i.e., the booked pipeline capacity) on day t 
              at node k in pool zone i; iJ; tT; k K; 

tjAS      Amount of gas actually extracted and sold on day t at node  in pool zone j; jJ; tT; 
L; 

tjUD      The part of demand tjED  unmet on day t at node in pool zone j; jJ; tT; L. 
 
Lower Level Decision Variables 

jz            Final imbalance in pool zone j; jJ; 

iju           Amount of gas moved from pool zone i to pool zone j; i, jJ; i < j; 

ijb           Amount of gas decided to “return” from pool zone j to pool zone i; i, jJ; i < j; 
y             Total cash-out charge imposed on the shipper (SC) by the pipeline (POB). 
 
Auxiliary Variables 
q            A binary variable equal to 1(0) if the final imbalances jz  are all non-negative 
(non-positive). In the special case when jz  = 0, j J, we set q = 1. 
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                                             Fig. 1. A 3-staged, ternary scenario tree. 
 
Figure 1 illustrates a three-staged scenario tree generating nine scenarios. Scenario 1 “passes 

through” nodes 1, 2, and 5; scenario 2 through nodes 1,2, and 6, and so on. Every node is endowed 
with the probability of occurring to be equal to the sum of probabilities of all the scenarios “passing” 
through it; the leaf (termination) nodes occurs with the same probabilities that the corresponding 
scenarios finishing at them. 
    Since the probabilities through all the scenarios sum up to 1, one has 1p




L

, where L

enumerates the set of all leaf nodes (all them related to the last stage B.) The root evidently has the 
probability of 1. Therefore, for each consecutive stage, the sum of probabilities of all nodes at that 
stage also gives 1. The probabilities p  depend on the scenario tree forecast scheme. 

The function : L L determines the predecessor of any node  (except the root, whose 
predecessor doesn’t exist); that is,   '  if  and '  are the extremes of an arc in the scenario 

tree, and 1'    L L , 2 3, , ,B  … . In the particular case of  = 1, we set 

  01 j,P , jx : x , j  J . 

 Because the costs RC ,BC aren’t random variables, they have the same values at every node for 

a fixed stage β, that is,  for all 2 3tj ' tj tj ' tjRC RC ,BC BC , , ' , , ,B; j     L J… . The same 
holds true for the variables APE, as explained below in (1i). 

Lastly, the node imbalance matrix x is defined by fixing one node  and arranging the imbalance 

matrix elements in the following form:       

1 1

P N
tj t , j

x x
 

 , while the last day imbalance vector Px  is 

gathered in a classic way:  Pj j
x

J
. 
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3 Problem Statement 
Following the lines of the model described in (Kalashnikov and Ríos-Mercado, 2001), we propose 

a multi-stage stochastic bilevel optimization problem defined below with (1a)–(1j) and (4a)–(4l). After 
that, we will reduce the model to a bilevel linear program, the lower level of which may be recognized 
as a generalized transportation problem, or a quadratic assignment problem. It is worthy to mention 
that bilevel programs defined over networks (see, e.g., Chiou, 2005; and Cruz et al., 1999) often arise 
when studying transportation problems; cf., also (Yang and Bell, 2001), (Ben-Ayed et al., 1988). 

A. Upper Level Model 
Relationships (1b)–(1j) present the upper level of the bilevel program. The upper level problem is 
stochastic and reflects a ternary scenario tree similar to that depicted in Figure 1. 

 

  
1 

                                           tj tj tj tj tj tj tj
t j

Min W x,s, AE, APE,UD;z,u,b, y,a,q

p BC UD min AE ,UD RC APE
  



 
    

  
 

L T J

(1a) 

                                         Pp w x ; z,u,b,z ,a,q ,



L

                                                                  (1b)                   

subject to 
                  Lower Upper

tj tj tjx x x , ,t , j ;    L T J                                                                         (1c) 

                   Lower Upper
tj tj tjs s s , ,t , j ;    L T J                                                                         (1d) 

                Lower Upper
t tj t

j

x x x , ,t ;


   
J

L T                                                                                (1e) 

                   

1

  if 1
  

   otherwise;
tj,P , j

tj
,t , j tj

x s , t ;
x ,t , j ;

x s ,




    


L T J                                                     (1f) 

                  , tj tj tjx APE AE ,t , j ;    L T J                                                                       (1g) 

               0tj tj tjUD max ,ED AE , ,t , j ;    L T J                                                            (1h) 

              , 1tj ' tjAPE APE , ' , , ,B;t , j ;     L T J…                                                        (1i) 
                0, tjAE ,t , j .   L T J                                                                                            (1j) 

 
      In (1b), the terms  Pw x ;z,u,b, y,a,q y combine the variables from both levels and have the 
meaning of the optimal solutions of the corresponding lower level problems (4a) – (4l). In other 
words, they represent the penalty cash-out flows that the shipper (SC) has to pay to the pipeline 
(POB). The product  tj tj tjmin AE ,ED is the revenue earned with the gas excerpt out from the 

wells and sold in pool zone j on day t at node . Further, tj tjBC UD is the full value of the unsatisfied 
demand, which could be interpreted either as the redemption of the consumers, or the cost of a stock 
purchased from a third party in the amount just sufficient to meet the demand completely. 

  The term tj tjRC APE  means the expenses suffered by the SC when booking capacity in the 
pipeline on day t at node  in pool zone j. The latter term is especially important to guarantee the non-
triviality of solutions. Indeed, if the capacity booking were free for the shipper, the latter would simply 
increase the values of variables APE and trade the available gas at the price π. 
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It is noteworthy that if there are multiple stages, then 1p


 L
. This inequality holds because 

the first term of the objective function is an expected value not over the nodes but rather over the 
scenarios. Here, the non-anticipativity constraints (cf., Kall and Wallace, 1994) have been implicitly 
exposed by applying the node formulation instead of a scenario one. 

  Constraints (1c)–(1e) impose the technological bounds on the generated imbalances at each node, 
as well as on their daily totals, and the daily imbalance swings. Equalities (1f) describe the structure of 
the everyday imbalance swings. At every node, time period and pool zone, the imbalance on one day 
isn’t allowed to vary too much day after day; this is outlined in different ways depending upon  
whether one is at an in-node (i.e., when 2t , ,P … ) or at a cross-node (when t = 1). 

If we are at an in-node, then the swing of the imbalance from 1,t , jx   to tjx is determined with the 
value of the swing variable tjs . The latter is bounded from above and below with the values of 

parameters Upper
tjs and Lower

tjs , respectively. It also holds for the cross-nodes but the day before the first 
day at such a node is the last day at the predecessor node, hence, one has to use the update formula 

 tj tj,P , jx x s  . 

We also remark the following property of the imbalance swing variables s: their values are 
completely determined by the imbalance variables x, as combined with the predefined initial 
imbalances x0. So we introduce the swing variables merely to make the imbalance movements more 
transparent, but in fact, they are not necessary for the solution process. When solving the modified 
upper level problem as explained later with equations (2b)–(2j), we simply drop these variables in 
favour of equivalent bounds on imbalances x. 

Equations (1g) illustrate the interrelations among the imbalance, the booked capacity, and the 
excerption from each pool zone within every time slot, while (1h) calculates the unmet demand values. 
Then, constraint (1i) characterizes the one-stage feature of the variables APE, in the sense that each 
node on a given stage must boast the same value of those variables. 

Even though program (1a)–(1j) is an appealing model of the SC–POB subsystem, it is nonlinear 
due to the presence of the operators max and min, which makes it much harder to solve as compared 
to, say, a linear programming problem.  

Nevertheless, we can diminish the considered program’s computational difficulty by introducing 
certain auxiliary variables in such a way that the objective function isn’t affected. The equivalent 
problem gets rid of max or min operators, yet it remains nonlinear because the upper level objective 
function contains the variable y controlled by the lower level as an optimal response to the upper level 
actions. Now we are going to eliminate y from the upper level objective function in order to reduce our 
problem to a completely linear model. Moreover, once the lower level can be also reformulated as a 
linear program, the resulting bilevel model is called a bilevel linear programming problem. 

One can qualify the optimization problem (2a)–(2j) as an “almost” linear program equivalent to the 
original upper level formulation (as is explained in detail in Kalashnikov et al. 2010a, 2010b). 

   

 

   

2 

                           tj tj tj tj tj tj tj tj
t j

Min W x, AE, AS;z,u,b, y,a,q

p BC UD AS AS RC x AE
  



 
      

  
 

L T J

      (2a) 

                                Pp w x ; z,u,b, y,a,q ,



L

                                                                         (2b)     

subject to 
                  Lower Upper

tj tj tjx x x , ,t , j ;    L T J                                                                         (2c) 
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                Lower Upper
t tj t

j

x x x , ,t ;


   
J

L T                                                                               (2d) 

               1 1 1   Lower Upper
j j j,P , js x x s , , j ;    L J                                                                    (2e) 

              1  2  Lower Upper
tj tj ,t , j tjs x x s , t , ,P; , j ;     L J…                                                      (2f) 

                 , tj tjAS ED ,t , j ;   L T J                                                                                    (2g) 
                , tj tjAS AE ,t , j ;   L T J                                                                                     (2h) 

              , 1tj tj ' tj ' tjx AE x AE , ' , , ,B;t , j ;       L T J…                                         (2i) 
            0, 0tj tjAE x , ,t , j .    L T J                                                                                    (2j) 

Here  Pw x ; z,u,b, y,a,q y is the lower level optimal response to the upper level move, as 
specified below in (3a)–(3l). 

 
B. Lower Level Model 
 
The lower level problem exactly coincides with the one examined in (Kalashnikov and Ríos-

Mercado, 2006); it uses the linear objective function a to substitute equivalently the absolute-value 
lower level objective function with the help of inequalities: 

        1 PMin w x ;z,u,b, y,a,q a                                                                                                 (3a) 
subject to 
                        1   j Pj ij ij ij jk jk

i :i j k :k j

z x f u b b u , j ;
   

         
J J

J                                    (3b) 

                             0  ij ki Pi
j : j i k :k i

u b max ,x , ,i ;
   

    
J J

L J                                                 (3c) 

                            
  if  0 and 0  

0       otherwise;
Pi Pi Pj

ij

x , x x ;
u ;i, j ,i j;

,

    


L J                                 (3d) 

                            
  if  0 and 0  

0       otherwise;
Pi Pj Pi

ij

x , x x ;
b ;i, j ,i j;

,

    


L J                                  (3e) 

                             0 0   Pi i Pimin ,x z max ,x , ; i ;   L J                                                     (3f) 

                            1 11   iq z q, i ;    M M J                                                                            (3g) 

                               
 

 
 

1i i ij ij ij ij ij
i i , j :i j i , j :i j

y m z n b v f u ;
  

      
J

                                             (3h) 

                            a z a;                                                                                                             (3i) 
                                iy,z R; i ; J                                                                                                 (3j) 
                              0 0  ij iju ,b , i, j ,i j;   J                                                                              (3k) 

                                0 1q , .                                                                                                          (3l) 
Here, M1 > 0 is a large fixed scalar parameter (an analog of the Big-M concept in linear 

programming). 
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4 Conclusions 
In this paper, we present a bilevel multi-stage stochastic optimization model, which is developed to 

deal with a certain subsystem of the Natural Gas Supply Chain. While former models were focused on 
the arbitrage policies in a deterministic setting, here we have expanded the problem to include such 
elements as gas sales and booking costs and added a stochastic framework to model the uncertainty in 
demand and prices faced by the upper level decision maker (the leader).  

 
The developed model was implemented numerically and compared to the Perfect Information 

Solution (PIS) and the Expected Value Solutions (EVS). Experimental findings show that 19 of the 21 
instances deliver implementation values of over half of the PIS, whereas only one of the EVS 
implementation values has a relative error below 0.75. The Stochastic Solution Implementation values 
are better than those of the EVS values in all but one case – which corresponds to the simplest instance 
tested, – which testifies in favor of our approach. The performed linear reformulation also proved 
advantageous, as solving the original model with nonlinear levels takes considerably longer time and 
does not provide better solutions after up to 10 hours of running time in 20 of the 21 experiments. 

 
Future work includes assessing the convenience of using heuristic approaches for solving the lower 

level (as opposed to using a specialized linear solver,) and reformulating the linear lower level in the 
form of its duality conditions, adding these to the upper level to solve a single-level problem instead of 
a bilevel one. We also intend to study these models under different time series not showing seasonality 
is also planned, as it is the implementation of a rolling horizon approach to remedy the lack of 
accuracy over long-period problems. In addition, we present here our first steps in the direction of 
development of techniques allowing one to reduce the quantity of the upper level variables thus 
decreasing essentially the number of branches of the scenario trees.  

 
Another prospective direction of future research is to study some approaches helping one to reduce 

the dimension of the upper level problem in a bilevel optimization model. This question is important 
because sometimes the dimension of the upper level is a critical parameter for applications of 
stochastic optimization algorithms. 

Indeed, if a stochastic process relies on generation of scenario trees, the quantity of tree 
branches/nodes grows exponentially along with the increasing number of upper level variables and 
possible outcomes. If the latter is high enough, then even when only three possible outcomes are taken 
into account, the scenario trees expand so fast that after 5-6 stages the examined problems become 
numerically intractable. 

 
To diminish the quantity of variables controlled at the upper level, one could think of introducing 

an artificial (“dummy”) follower added to the initially existing follower in the original problem. The 
newly inserted follower is endowed with the objective function that jibes with that of the leader, 
whereas part of the originally governed variables of the upper level, are controlled by the dummy 
follower at the lower level. In this way, the lower level problem is also transformed and becomes a 
Nash equilibrium problem for the initial and dummy followers. One can try to find the conditions that 
provide that both the transformed and original bilevel programing models share (at least one) optimal 
solution. 
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