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Novel bioengineering strategies for the recovery and purification of 

PEGylated lysozyme conjugates: in situ ATPS and affinity chromatography 

By 

Luis Alberto Mejía Manzano 

 

Abstract 

 

  PEGylation is the modification of therapeutic proteins with polyethylene glycol (PEG) with 

the goal of improving their bioavailability and effectivity in the organism. During the PEGylation 

process, proteins with different degrees of PEGylation and positional isomers are generated. 

Numerous chromatographic and non-chromatographic techniques have been used for the 

purification of the adequate or most active conjugate. However, the obtained yields are still low, 

representing an interesting engineering challenge to address. Therefore, novel techniques to 

achieve this must be devised. In the present work, two strategies were explored: in situ aqueous 

two-phase systems (ATPS) and affinity chromatography. 

 Aqueous two-phase systems (ATPS) are a promising alternative for recovering modified 

proteins but this technique has not been tested with complete PEGylation reactions. In this work, 

lysozyme PEGylation reactions were used as part of the phase-forming chemicals to form in situ 

ATPS. This was best achieved by adding a 4M ammonium sulphate in a 20 mM Tris-HCl pH 7.0 

solution. The phases were separated and analyzed by monolithic chromatography and SDS-

PAGE. Results indicate that PEGylated lysozymes (mono- and di-) are mainly fractionated to the 

top phase (56% and 100% respectively) while native lysozyme was found in the bottom phase 

(97.7%). 

 On the other hand, PEG-modified and native lysozyme adsorption to Heparin Sepharose 

was described by Langmuir isotherms. The affinity of the conjugates decreased with the 

PEGylation degree with no significant binding of the reactive 20 kDa mPEG to the resin. A method 

in Heparin Affinity Chromatography (HAC) eluting with NaCl gradient was developed and 

optimized through Response Surface Methodology for the purification of mono-PEGylated 

lysozyme with a better yield, purity and productivity than other reported chromatographic modes. 

A formulated rate model could model and simulate the separation of mono-PEGylated and native 

lysozymes in HAC. Diverse mass transfer data were obtained from this simulation. 

 Finally, as an antecedent to the generation of immunosorbents to purify PEGylated 

proteins, the immobilization conditions of antibodies on NHS Sepharose 4 Fast Flow were 
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optimized with a factorial design. The antibody isotype showed effects on the coupling efficiency, 

being improved when isotype G was used. 

 In conclusion, in situ ATPS and heparin affinity chromatography combined with 

optimization tools such as design of experiments, modelling and simulation represent new and 

never reported before techniques in the recovery and purification of PEGylated lysozyme with 

several advantages with respect to currently used methods. 

  

 

Key words: PEGylation; PEGylated proteins; mono-PEGylated lysozyme; in situ ATPS; Heparin 

Affinity Chromatography (HAC); simulation; covalent immobilization; optimization.  
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Estrategias innovadoras de bioingeniería para la recuperación y 

purificación de conjugados de lisozima PEGilada: SDFA in situ y 

cromatografía de afinidad. 

Por  

Luis Alberto Mejía Manzano 

 

Resumen 

 

  La PEGilación es la modificación de proteínas terapéuticas con polietilénglicol (PEG) con 

el objetivo de mejorar su biodisponibilidad y efectividad en el organismo. Durante esta 

modificación, proteínas con diferentes grados de PEGilación e isómeros posicionales son 

generadas. Numerosas técnicas cromatográficas y no cromatográficas han sido usadas para la 

purificación del conjugado con mayor actividad. Sin embargo, los rendimientos obtenidos en 

procesos industriales son todavía bajos, representando un interesante reto desde el punto de 

vista ingenieril. Por lo tanto, nuevas técnicas para lograr este objetivo deben ser ideadas. En el 

presente trabajo, dos estrategias fueron exploradas con esta finalidad: sistemas de dos fases 

acuosas (SDFA) in situ y cromatografía de afinidad. 

 Los sistemas de dos fases acuosas (SDFA) son una alternativa prometedora para la 

recuperación de proteínas modificadas pero esta técnica no ha sido evaluada con reacciones de 

PEGilación completas tal cual se obtienen de este procedimiento. En este trabajo, las reacciones 

de PEGilación de lisozima fueron usadas para generar un SDFA in situ. La mejor opción para 

formar sistemas bifásicos fue agregar a la reacción una solución de sulfato de amonio 4M en 

Tris-HCl 20 mM pH 7.0. Las fases del sistema fueron separadas y analizadas por cromatografía 

monolítica y SDS-PAGE. Los resultados indican que las lisozimas PEGiladas (mono- y di-) 

presentan afinidad principalmente por la fase superior (56 % y 100% respectivamente) mientras 

la lisozima nativa fue encontrada en la fase inferior (97.7 %).  

 Por otro lado, la adsorción de lisozima modificada con PEG y la lisozima nativa a la resina 

de sefarosa modificada con heparina fue descrita por isotermas de Langmuir. La afinidad de los 

conjugados PEGilados disminuyó con el grado de PEGilación mientras el PEG reactivo (mPEG) 

de 20 kDa no se enlazó significativamente a la resina. Se desarrolló un método de Cromatografía 

de Afinidad de Heparina (CAH) eluyendo con un gradiente de NaCl, y se optimizó a través de 

Metodología de Superficie de Respuesta (MSR) para la purificación de lisozima mono-PEGilada 
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con rendimiento, pureza y productividad mejores a los obtenidos en otros modos cromatográficos 

reportados. Un modelo general de velocidad permitió modelar y simular la separación de lisozima 

mono-PEGilada y nativa en CAH. Diversos datos de transferencia de masa fueron obtenidos 

como resultado de esta simulación.  

 Finalmente, como antecedente en la generación de inmunosorbentes en la purificación 

de proteínas PEGiladas, las condiciones para la inmovilización de anticuerpos sobre el soporte 

NHS Sepharose 4 Fast Flow fueron optimizadas a través de un diseño factorial. El isotipo de 

anticuerpo mostró efectos sobre la eficiencia de acoplamiento, siendo mejor en aquellos casos 

donde el isotipo G fue usado. 

 En conclusión, los SDFA in situ y la CAH en combinación con herramientas de 

optimización como diseño de experimentos, modelamiento y simulación representan técnicas de 

recuperación y purificación de lisozima PEGilada novedosas y nunca antes reportadas, además 

de poseer diversas ventajas respecto a los métodos usados actualmente. 

 

 

Paabras clave: PEGilación; proteinas PEGiladas; lisozima mono-PEGilada; SDFA in situ; 

Cromatografía de Afinidad de Heparina (CAH); simulación; inmovilización covalente; 

optimización..  
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Chapter 1. Introduction 

 

 

The global market of biopharmaceuticals was estimated at US$ 199.7 billion in 2013 and 

it is predicted to reach US$ 500 billion by 2020, with a compound annual growth rate of 13.5% 

between 2010 and 2020.1 This is an indicator of the growing expansion of this industry mainly 

because of the constant search for new active biomolecules and production increase for the 

consumer market. This growth involves finding efficient methods for their production and 

separation. In fact, separation is one of the stages with the greatest impact on the final cost of the 

product, since in some cases it can represent up to 80% of the product cost.2 This impact is also 

applicable for additional processes that aim to improve the delivery and bioavailability of these 

biomolecules in the organism to perform their therapeutic action. One of these processes is 

PEGylation. 

 

1.1 PEGylation: generalities 

 

PEGylation is defined as the covalent attachment of polyethylene glycol (PEG) molecules 

to a biomolecule,3-5 usually a protein with therapeutic properties. Among the various benefits of 

PEGylation are: increased protein solubility, decreased renal filtration, immunogenicity, 

proteolysis, and increased bioavailability, thermal and mechanical stability.8 However PEGylation 

processes also involve the formation of conjugates with different degrees of PEGylation,9 which 

is important since usually only one of these species has the adequate properties and biological 

activity for its pharmaceutical administration. Generally, the mono-PEGylated conjugate is the 

desired isomer with the adequate properties and biological activity to the desired therapeutic 

function. The market of PEGylated drugs is calculated over US$ 8 billion per year.5 There are 

more than 10 approved PEG-modified drugs (some of which displayed in Table 1.1) in the market 

while some 30 more are in clinical trials. 

 

1.1.1 PEGylation chemistry 

 

PEG chains with different lengths are used to carry out PEGylation. Polymer molecular 

weights lower than 50 kDa are preferred in proteins3 although this depends greatly on the size of 

the biomolecule to be modified. PEG is functionalized through one of its hydroxyl groups10 with 
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different chemical functionalities selected depending on the available chemical moieties (i.e. 

amino, hydroxyl, imidazole histidine, thiol, disulfide, carboxylic, hydrophobic or electrostatic 

residues) in the desired molecule that will be PEGylated.11 

 

Table 1.1 FDA-Approved and commercial PEG-protein drugs 

 

Commercial 

name 
Active protein Therapeutic use Reference 

Adagen® Adenosine deaminase 

Severe combined 

immunodeficiency 

disease 

6 

Oncaspar® L-asparaginase Leukemia 7 

PEGasys® Interferon α-2a Hepatitis C 5 

 Krystexxa® 

(pegloticase) 
Urate oxidase Chronic gout 6 

Neulasta® 
Granulocyte colony-

stimulating factor  
Neutropenia 7 

Somavert® 

(pegvisomant) 

Growth hormone receptor 

antagonist 
Acromegaly 6 

Mircera® 
Continuos erythropoiesis 

receptor activator 

Renal anemia in patients 

with chronic kidney 

disease 

6 

Cimzia® Anti-TNFα Fab` 
Crohn´s disease and 

rheumatoid arthritis 
6 

PEGintrón® Interferón α-2b Hepatitis C 5 

Macugen® 

(PEGaptanib) 

Anti-vascular endothelial 

growth factor aptamer  

Related macular 

degeneration 
5 

 

Modification of the N-terminal amine group of the protein is the most frequently PEGylation 

strategy used,11 because this PEGylation reduces the number of PEGylation sites considerably12 

and consequently the number of isomers (also known as “PEGamers”). Also, in this amine group 

PEGylation, different agents have been used, the most used is methoxy-PEG(mPEG)-

propionaldehyde because of its preference to modify the terminal α-amino group with respect to 

the ε-amino groups of lysine when using low pH values.4 In these reactions, the α-amino group 

makes a nucleophilic attack on the carbon of the aldehyde group to form a secondary amine as it 

is shown in Figure 1.1.4 
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mPEG-OCH2CH2CH
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Reduction

proteinmPEGpropionaldehyde

intermediary  

 

Figure 1.1 PEGylation of the N-terminal amine group with mPEG propionaldehyde 

 

1.2 Current techniques in the recovery and purification of PEGylated proteins 

 

The methods of separation of PEGylated proteins can be classified into two groups: 

chromatographic and non-chromatographic techniques.12 The chromatographic techniques have 

been the most used due their high resolution while the non-chromatographic (e.g. aqueous two-

phase systems (ATPS), electrophoresis or membrane separations)13 are techniques recently 

implemented and which are used partially in the recovery or separation of these molecules. 

Generally, more than one operation or combinations of them are required for full purification.  

 

Within the non-chromatographic techniques, ultrafiltration has been applied in the 

recovery of PEGylated ovalbumin, bovine serum albumin, α-lactalbumin14 and ribonuclease A 

(RNase A), but low recoveries15 and the high cost of the membranes are two of the great 

disadvantages of this procedure. On their part, ATPS demonstrated to be a promising technique 

in the fractionation of PEGylated proteins in PEG-phosphate systems16, 17 but until now the tests 

have been carried out with individual purified standards instead of complete PEGylation reactions. 

Also, polyacrylamide gel electrophoresis (PAGE) has been used as a separation technique for 

PEGylated proteins although mainly for the characterization or analysis of the modified molecules. 

One negative characteristic of this operation is that staining procedures avoid the subsequent 

recovery of the proteins and an additional step for removing these dyes would be required.12  

 

Regarding conjugate purification in chromatography, Size Exclusion Chromatography 

(SEC) is one of the most used methodologies for its ability to separate low molecular weight 

impurities and non-reacted protein. The principle of separation in SEC is the differences of 

hydrodynamic radii and size of the molecules. Nevertheless, SEC presents disadvantages such 
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as the inability to distinguish between positional isomers, poor resolution, high buffer 

consumption, dilution and long processing times.18 At the industrial level, Ion Exchange 

Chromatography (IEX) is the most commonly applied technique because it takes advantage of 

the protein charge modification with different degrees of reaction by the effect of PEG shielding.10, 

19 The limitations of IEX are: low dynamic binding capacity of PEGylated proteins with long PEG 

chains,20 the short lifetime of the chromatographic support with effect on the separation costs and 

the low load of the column that compromises the resolution. A rarely used option is Reverse 

Phase Chromatography (RPC) due to the denaturation of proteins caused by temperature 

effects18 and the use of organic solvents in the mobile phase that results in a severe decrement 

in the protein biological activity. Finally, Hydrophobic Interaction Chromatography (HIC) has been 

recently exploited, approaching the hydrophobicity changes of the protein as a function of the 

molecular weight of PEG and the degree of PEGylation. Nonetheless, the lack of predictive 

understanding of molecule retention in HIC makes these processes not as straightforward to 

design as those based on IEX.10 In addition, in HIC free PEG is also linked to the stationary 

phase.12 

 

1.3 Aqueous Two-Phase Systems in protein recovery and its prospective role in the 

fractionation of PEGylated proteins 

 

Aqueous Two-Phases Systems (ATPS) are a liquid-liquid extraction and primary recovery 

technique, which has been applied to the separation and total or partial purification of a wide 

range of nanoparticles, biomolecules, biological structures and cells.21-23 As their name describes, 

ATPS are primarily constituted by water, reaching concentrations of about 85 or 90% of this 

component.24 Diverse benefits are attributed to ATPS such as: low cost, potential for large-scale 

separation, process integration and biocompatibility.25, 26 According with the constituents involved 

in phase formation, ATPS can be classified in polymer-polymer, polymer-salt, alcohol-salt, ionic 

liquid-based or micellar systems.27 The constituents commonly used in the formation can be of 

diverse nature since common salts up to large molecules, like antibodies, enzymes, proteins, 

nucleic acids or cell fragments are used to form ATPS.28  

 

Among the factors affecting the partitioning of proteins in ATPS are those related to the 

system components, their relative concentrations and those related to the protein properties. In 

the first case, within the factors dependent on the system are: constituent type, molecular weight 

and concentration of the components used, temperature, pH, density and viscosity of the phases, 
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settling time and interfacial tension.29 On the other hand, the protein characteristics that determine 

the partitioning are the hydrophobicity, charge, protein concentration and bioaffinity.26  

 

Some concepts to better understand the underlying ATPS theory are the following (Figure 

1.2): 

 Phase diagram: it is the potential working area for a characteristic two-phase system under 

specific conditions: pH, temperature, general phase-forming component concentrations, 

the concentration of phase components in the top and bottom phases, and the ratio of 

phase volumes.30 On these diagrams the binodal curve, tie-line length, critical 

compositions and the operation point are presented.  

 Binodal curve: curve that symbolizes the concentration boundary separating the 

monophasic from the biphasic region.27  

 Tie-line length (TLL): line connecting two nodes on the binodal curve, representing the 

thermodynamic equilibrium between two phases. 30 

 Nodes: these are the final concentrations of phase components in the top and bottom 

phases as correlated by the tie-line. 30  

 Critical point (Cp): point at which the compositions and volumes of both phases are almost 

equal. 30 

 Volume ratio (Vr): it is the quotient of the top and the bottom phase volumes. 27 

 Partition coefficient (Kp): parameter which relates the quotient of the concentration of a 

particular solute in the top and bottom phase. 27 

 

  

 

Figure 1.2 Schematic representation of a phase diagram in ATPS 
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The partitioning of PEGylated proteins in ATPS has been investigated previously with 

PEG-dextran and PEG-phosphate systems. In the first case, PEG 6000 g mol-1 and dextran T-

500 were used to build and study the separation of a 5 kDa PEGylated bovine serum albumin 

(PEG-BSA) and PEGylated granulocyte-macrophage colony stimulating factor (PEG-GM-CSF) 

mixture. 16 Conjugates were mainly found in the top-PEG rich phase and a linear relationship 

between their partition coefficients (log Kp) and the degree of modification was observed.16 This 

relationship was tried to be additionally validated by using PEG 8000 g mol-1 and Ig G, but it was 

determined that more experiments were required to analyze the influence of the size of the 

polymer, phase composition and type of protein.31 The use of 3400 g mol-1 PEG-phosphate 

systems in countercurrent distribution (CCD) to fractionate lysozyme modified with 5000 g mol-1 

p-nitrophenyl carbonate in 55 transfers suggested a more applied use of ATPS as a potential step 

in the recovery of PEGylated products. Although the separation was not completely achieved for 

unmodified, mono- and di-PEGylated conjugates.32 Afterwards, González-Valdez and 

collaborators evaluated the influence of the molecular weight of the PEG, tie-line length (TLL) and 

volume ratio (Vr) in the partition of 20 kDa mono-PEGylated RNase A and α-lactalbumin, showing 

a tendency of these conjugates to partition to  the top phase with good recoveries (98% and 77%, 

respectively).17 In a second study with a protein concentration 20 times lower, the predilection of 

mono-PEGylated RNasa A was for the interphase (77%) followed for the top phase (14.7%).33 

Such results pointed out the potential of ATPS in the recovery of PEGylated proteins. However, 

all those antecedents present shortcomings or gaps for their practical application which are 

described next. First, older studies do not report product recovery yields and the followed 

strategies are time consuming in some cases, because the phases were formed and separated 

before and the PEG phase used later to partition the proteins (as the case of CCD), even the 

transfers may demand a lot of time if this operation is performed manually32 instead of using a 

high speed countercurrent chromatography equipment. In more recent studies, the tests used 

purified conjugate samples and not the complete PEGylation reaction, which has a defined ratio 

and concentration of each protein specie (reagents and products). Therefore, the observed 

behavior with discrete samples could differ from that in the reaction mixtures. Additionally, the 

subsequent recovery of the conjugate of interest was not discussed or proposed in the previous 

works. On the other hand, from the economical aspect, the addition of PEG to form the phases is 

mandatory, representing an additional cost. Meanwhile the reactive mPEG propionaldehyde used 

in excess during PEGylation is discarded at the end, occurring in the same way for the spare 

protein that was not PEGylated. In summary, the existing ATPS strategies for PEG-protein 
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conjugates are not framed or oriented as a separation operation to be implemented in a 

production-separation process.  

 

In this framework of expectations and considerations about the application of ATPS in the 

separation of PEG-modified proteins, ATPS formation directly using PEGylation reactions is 

proposed as a solution to locate it within a production-separation train. Then, the construction of 

an ATPS in the same vessel of the PEGylation reaction media is called “in situ ATPS”. “In situ” 

procedures imply the performing of one operation in the site where others occur or have occurred, 

so these in situ processes include steps such as separations, product extraction or conversion.34 

Although the use of “in situ” removal techniques has been preferably used in biocatalytic 

processes35 when the product is unstable or it causes product inhibition,34, 36 its utilization out of 

these purposes is justified and considered as part of process integration. This means the 

substitution of two or more unit operations for a single one37 improving the yield and cost-

effectiveness of the process.34  

 

1.4 Affinity chromatography, generalities and opportunities in the purification of 

PEGylated proteins  

 

In literature, different definitions for Affinity chromatography (AC) are found among which 

are the following: “dynamic process in which a target biomolecule associates to or dissociates 

from an immobilized ligand”,38 “liquid chromatographic technique that uses a specific binding 

agent for purification or analysis”39 and “selective method for the purification of a molecule or 

group of molecules from complete mixtures based on highly specific biological interaction 

between two molecules”.40 In general, these concepts have in common that AC is a kind of 

chromatography in which a specific interaction among two biomolecules occurs. This mode of AC 

is considered the most powerful fractionation technique in the large-scale purification of 

biotechnological products.41 The advantages of AC are its high selectivity, sample concentration, 

high level of purification (greater than 1,000-fold), scalability,42 conservation of biological activity 

using gentle operations and time saving as a consequence of its high selectivity and specificity. 

Due to the variety of ligands in nature, there are several sub-types or methods of AC according 

to the ligand and target involved in the purification (Figure 1.3).39 Figure 1.3 presents the ligands, 

targets and specific names of the sub-types of AC. For example, in immunoaffinity 

chromatography the antibody is generally the ligand and the corresponding antigen is the target. 

However, the inverse separation (antigen as ligand and antibody as target) may also may be 
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considered as immunoaffinity chromatography. This last, is defined as “an efficient antibody 

separation method which exploits the binding efficiency of a ligand to an antibody”42 or “process 

in which the binding affinity of an antigen to a parent antibody is utilized as a basis of separation”.43 

Other important AC sub-types which may be useful in the separation of proteins are enzyme, 

lectin, dye-ligand and biomimetic AC. 

 

 

 

Figure 1.3 Subtypes of affinity chromatography. 

 

The separation in AC is integrated by the following stages or steps44 which are also 

presented in Figure 1.4: 

 Equilibrium: stationary phase is conditioned with mobile phase to perform the separation. 

 Adsorption: the sample is applied and the target molecule is bound to the immobilized 

ligand.  

 Washing: this stage aims to remove impurities in the bulk fluid and in the stagnant fluid 

inside particle macropores or those non-specifically bound impurities to the stationary 

phase. 

 Elution: the target is desorbed from the ligand through an eluting agent such as pH, 

chaotropic agents, polarity reducing agents or a competitive compound.  

 Regeneration: this stage cleans the column and prepares it for a new separation cycle. 
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Figure 1.4 Operational stages in affinity chromatography. 

 

One particular type of AC is Heparin Affinity Chromatography (HAC), which can be 

classified as DNA AC since heparin has the ability to bind to DNA binding proteins. This 

heterogeneous group of proteins has as common characteristic: its ability to bind DNA. Several 

initiation and elongation factors, RNA/DNA polymerases, restriction enzymes, transcriptional 

activators and repressors are included in the group.45 Heparin is a linear, unbranched 

heteropolysaccharyde or glycosaminoglycan composed of disaccharide repeating units 

(hexuronic acid and glucosamine residues) negatively charged.46–48 HAC has been used to 

fractionate growth factors, inhibitors, enzymes, lipoproteins, nucleic acids, hormone receptors or 

proteases, most of them presented in complex biological matrices such as blood, serum or 

tissues.45, 48-50 

 

Literature involving PEGylation and affinity chromatography is scarce. The PEGylation effect 

on ligands in affinity chromatographic supports has been the most studied topic in this aspect. 

Two publications have addressed this issue, the first case was the PEGylation of concanavalin A 

with 2, 5 and 20 kDa mPEG succinimidyl propionate and its use in lectin AC, an improvement in 

the stability of 2 kDa PEGylated concanavalin was detected, keeping a 90% of binding capacity 

respect to the unmodified support.51 In the same way, a second research showed a reduction in 

non-specific binding and increased recovery up to 15% of Ig G using PEGylated protein A with 5 

and 20.7 kDa mPEG propionaldehyde.52 Particularly, the application of AC in the purification of 

PEGylated proteins has been practically unexplored. Thus, for this reason and the positive 
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advantages of AC from other modes (i.e. selectivity, specificity, mild elution conditions) makes it 

an interesting study subject for the purification of PEGylated proteins. Moreover, as it has been 

previously stated, the recovery and purification of PEGylated proteins with low yields and purities 

using current techniques and their disadvantages constitute a contemporary problem. 

 

The implementation of AC in the purification of PEGylated proteins can be achieved through 

three main approaches: the testing of existing affinity resins, the generation of novel affinity 

supports and the optimization of the performance of the mentioned supports through several tools 

such as design of experiments (DoE), modelling and simulation. These terms will be explained in 

the next sections. The evaluation of HAC to purify PEGylated proteins developing an optimized 

chromatographic method is located within the first and third approaches since it is intended to 

give a new application to a heparin adsorbent and it is optimized at the same time. 

 

Another proposal is the generation of immunosorbents for PEG-proteins in immunoaffinity 

chromatography. These immunosorbents can be generated by the covalent attachment of 

antiPEGylated protein antibodies on N-hydroxysuccinimide (NHS) activated Sepharose 4 Fast 

Flow, a resin containing active esters to immobilize ligands through primary amino groups to form 

a stable amide linkage.53 However, a challenge in the development of these immunosorbents is 

the low amounts and concentration of antiPEGylated antibody that can be procured. Moreover, 

the factors to perform the coupling reaction have not been examined widely. So, prior to the 

development of antiPEGylated protein immunosorbents, the influence of reaction factors in 

coupling of antibodies at low concentrations was studied. Then, it is essential to contextualize the 

importance of the optimization tools such as design of experiments and modelling and simulation.  

 

1.5 Optimization tools: design of experiments, modelling and simulation in 

chromatography 

 

As it is known, the market demands for fast, safe and efficient processes in the production 

of any biotechnological product. Moreover novel paradigms and trends in the biopharmaceutical 

industry are being adopted as the quality by design (QbD), which emphasizes product and 

process understanding and process control for guarantee the quality of the final product54, 55. 

These requirements can only be pursued by performing multiple experiments to evaluate a high 

number of parameters. The sample preparation and analytic techniques consume resources, and 

materials and time are limited.44 In several cases, even human resources can be insufficient. 
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Therefore, process optimization is crucial and plays a preponderant role. Some tools that can be 

used in the optimization of bioseparations are design of experiments, modelling and simulation. 

 

Design of experiments (DoE) is defined as a statistic technique for planning, conducting, 

analyzing and interpreting data from the experiments56 or as an approach that involves systematic 

and efficient examination of multiple variables simultaneously to create an empirical model that 

correlates the process responses to the various factors.57 The use of DoE is advantageous due 

to cost and time savings which are reached performing a small number of experiments.58 The 

objectives of DoE can involve a screening of the factors significantly affecting the response on 

the process or an optimization finding the optimal set points.57 When the impact of variables is 

tested on the process, model equations are obtained to predict results and define the robustness 

of the process through the variability analysis.59 In bioseparations, there is scarce information 

about the application of DoE. Some of the works dealing with DoE in protein bioseparations are: 

Blue Sepharose for purification of recombinant human erythropoietin,58 binding and elution of 

Granulocyte Colony Stimulating Factor (G-CSF) expressed from E. coli in mix mode 

chromatography,60 definition of the process design space for phenyl hydrophobic interaction 

chromatography of Fc fusion protein expressed in a CHO cell line,61 and antibody purification 

using mix mode chromatography.62 In this context, the application of experimental designs63 is 

immature in the bioseparations area and in the downstream of PEGylated proteins. 

 

As it has been said, another tool in the optimization of separation processes is modelling 

and simulation. In several chromatographic separations, especially in those developed earlier, a 

deep knowledge and understanding of the basic phenomena involved in the operation are 

required for the evaluation of multiple parameters in a short time and with reagent saving as well 

as for future scale-up. In this scenario, mathematical modelling and simulation offer an alternative 

to those problems. Furthermore, chromatographic modelling and simulation can be performed 

from different points of view or approaches: statistic, thermodynamic, momentum, mass transfer 

or mixed. Mathematical models provide approximations or attempts of the phenomena and 

generally are supported by experimental data to restrict the model use to experimental 

conditions.59 The number and type of variables or parameters included is related to the model 

complexity, and the more complex is a model, the more precise is the description of the studied 

phenomena. but in several cases a simpler model can be sufficient to describe a process, 

therefore it is necessary to set the aim of the study and to establish the appropriate limits.  
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Two are the main theories used to model protein chromatograms: the plate model (PM) 

and the general rate model (GRM). The PM was created in the 1940s and it assumes no mass 

transfer resistances and no axial dispersion considering a chromatographic column like a constant 

succession of compartments or theoretical plates.64 In these plates, protein concentration in the 

stationary phase is considered in equilibrium with the mobile phase,65 nevertheless PM theory is 

restricted to linear adsorption, diluted protein solutions and it does not explain the spreading in 

chromatographic peaks.64 On its part, the GRM theory is another conception that has allowed the 

description of non-linear chromatography in terms not only of the protein-support interaction but 

also on the protein mass exchange between the stationary and mobile phases and it has been 

versatile enough to represent the separation in several studies.65 So, as part of optimization in the 

application of AC to PEGylated protein purification, the simulation of HAC at different operation 

conditions using the general rate model theory was addressed as fourth issue in this thesis. 

 

1.6 Lysozyme as experimental model 

 

 For this work, lysozyme from chicken egg white (Figure 1.5) was used as an experimental 

model to study PEGylation and the new implemented techniques here presented for its 

purification. Lysozyme has been a model protein in several studies about PEGylation and 

purification66-68 that has allowed the extrapolation of the related techniques to other high-value 

therapeutic proteins with similar size like ribonuclease A (RNase A), granulocyte macrophage 

colony stimulating factor, fibroblast growth factor, interleukine-6 among others.69 Additionally, 

lysozyme is relatively abundant and cheaper than other proteins (therapeutic or recombinant) 

since its production has increased in the last years.70 Lysozyme (EC 3.2.1.17) is a glycosyl 

hydrolase monomer71 of 14.3-14.6 kDa and isoelectric point of 10.772 with catalytic activity on (1-

4)-β-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in 

peptidoglycan and N-acetyl-D-glucosamine residues in dextrins.71 So, lysozyme displays activity 

against peptidoglycan in the cell wall of Gram-positive organisms66 and well as in some Gram-

negative bacteria.73 This protein has been used as preservative in milk based products, cheese 

and meat. It is a pharmacological agent too. Diverse studies register its role as biological marker 

and antibiotic synergist.72 It was the first enzyme for which an atomic resolution x-ray structure 

was published and it has had importance in biochemical, molecular evolution and 

immunochemical studies.74 
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Figure 1.5 Structure of lysozyme from chicken egg.71 

 

1.7 Hypotheses 

 

The purification of PEGylated proteins is an important area because it is related with the 

production of therapeutic drugs for the treatment of various pathologies. Moreover, the current 

and future estimated markets of these products show their huge role in the economy of 

biopharmaceuticals. In this way, the development or improvement of strategies for the purification 

of PEGylated proteins such as in situ ATPS and affinity chromatography is an important research 

topic not only from the biopharmaceutical viewpoint but also from the arising opportunities of 

“PEGylaided” bioprocessing which may increase in a nearby future.75 Under this foundation and 

the contextual framework established previously, this dissertation deals with the following four 

hypotheses: 

 

I. It is possible to form aqueous two-phase systems using the leftover mPEG at the end of 

the PEGylation reaction and a polymer or salt solution to form an “in situ ATPS” and to 

recover PEGylated lysozyme.  

II. Optimized Heparin Affinity Chromatography can purify mono-PEGylated lysozyme with 

improved yields, purity and productivity. 

III. The separation of mono-PEGylated lysozyme in heparin chromatography from a 

PEGylation reaction can be simulated and explained at different flow and gradient length 

conditions, applying the general rate model. 

IV. The coupling efficiency in the covalent immobilization of antibodies to a NHS sepharose 

4 Fast Flow resin is affected by temperature, buffer and reaction times and by the antibody 
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isotype, however optimal conditions to perform this procedure can be found using a full 

factorial and a nested designs. 

 

1.8 Objectives 

 

Based on the previous hypothesis the next objectives were stated: 

 

1. To propose a practical and profitable strategy to recover PEGylation products and 

reactants through the formation of ATPS exploiting PEGylation reaction media while 

providing new knowledge in the partitioning of the native and PEGylated proteins in the 

selected ATPS. 

2. To understand and characterize the binding of native, PEGylated lysozyme and 20 kDa 

mPEG propionaldehyde to heparin-modified Sepharose 6 Fast Flow resins and to suggest 

an optimized chromatographic method for the efficient purification of mono-PEGylated 

lysozyme with the desired purity level based on Response Surface Methodology model. 

3. To provide a mathematical model as a tool in the prediction and simulation of mono-

PEGylated lysozyme separation in heparin chromatography at different operational 

conditions like flow and gradient length. 

4. To offer a guide in the covalent generation of immunosorbents for PEGylated proteins 

through the evaluation of the effect of coupling buffer, temperature, reaction time and 

antibody isotype in the immobilization of antibodies. 

 

1.9 Dissertation structure 

 

In order to reach the stated research objectives the present thesis is divided in six 

chapters. The content for each chapter is described below. 

 

 Chapter 1 “Introduction” defines the term PEGylation and its importance, how it is 

performed and the separation methods that have been used for these conjugates until now. It 

includes the problem statement, fundamental concepts addressed in the solution overview, 

proposes the hypotheses and objectives and describes the thesis structure. 

 

Chapter 2 presents an accepted manuscript in the Journal of Chemical Technology and 

Biotechnology under the name of “Recovery of the PEGylated and native lysozyme using an in 
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situ aqueous two-phase system directly from the PEGylation reaction”. Such work integrates a 

recovery and concentration technique of PEGylated proteins using the same PEGylation reaction 

media to form two phases, called in situ ATPS.  

 

Chapter 3 comprises a published paper titled “Optimized purification of mono-PEGylated 

lysozyme by Heparin Affinity Chromatography using Response Surface Methodology”. This 

research focused in the development of a heparin chromatographic method to purify mono-

PEGylated lysozyme and its joint optimization through a Response Surface Methodology using a 

Box-Behnken design for yield, purity and productivity, considering as factors the protein load, the 

flow and the gradient length. In this work, the plate theory is considered to explain the column 

performance and consequently the efficiency of the peak separation.  

 

Chapter 4 summarizes the application of the general rate model theory to the modelling 

and simulation of the separation of PEGylated lysozyme reactions with heparin chromatography. 

A deep knowledge about the physical mass transfer processes in this purification are elucidated. 

The derived manuscript “Simulation of mono-PEGylated lysozyme separation in heparin affinity 

chromatography using a general rate model” has been accepted for publication in the Journal of 

Chemical Technology and Biotechnology. 

 

Chapter 5 presents a published paper in the journal of Separation Science and 

Technology entitled: “Covalent immobilization of antibodies for the preparation of immunoaffinity 

chromatographic supports”. This study shows the effect of reaction time, temperature, buffer and 

antibody isotype kind on the coupling efficiency of antibodies when these are covalently 

immobilized at low concentrations on a N-hydroxysuccinimide (NHS) activated sepharose resin. 

 

Chapter 6 “Conclusions, contributions and perspectives” presents the general conclusions 

of the whole thesis, highlights the contributions and the potential research lines derived from this 

research.  

 

It should be mentioned that the result chapters (chapters 2, 3, 4 and 5) contain research 

papers that have been published or been accepted for publication. The contents of these 

manuscripts are presented in the final accepted versions. However, some format editing was 

performed in them for the purposes of this thesis. 
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2.1 Abstract 

 

BACKGROUND: Purification of PEGylated proteins from reactions is still a challenge due to the 

formation of isomers. Despite the fact that aqueous two-phase systems (ATPS) have shown to 

be an attractive operation for their purification, the fractionation of complete PEGylation reaction 

mixtures has been poorly attended. In this work, the recovery of PEGylated lysozyme was studied 

in a novel integrative approach called in situ ATPS. The excess of PEG in the lysozyme 

PEGylation reaction (LPR) was used as part of the phase forming chemicals with different polymer 

(UCON, ficoll, dextran) and salt (sodium phosphates, potassium sulphates, sodium sulphate, 

ammonium sulphate, sodium carbonate) solutions.  After selecting the system, cation exchange 

monolithic chromatography and SDS-PAGE were used to analyze proteins from each phase. 

 

RESULTS: The best option for the in situ ATPS formation was the addition of a 4 M ammonium 

sulphate in 20 mM Tris-HCl (pH 7.0) solution to the PEGylation reaction. PEGylated conjugates 

of lysozyme exhibited a preferential partition to the top (PEG-rich) phase while native protein was 

partitioned to the bottom (salt-rich) phase. Di-PEGylated lysozyme partitioned entirely to the top 

phase (recovery of 100 %), while the mono-PEGylated protein presented a recovery yield of 56% 

in the in top phase. On its part, 97.7% of the native lysozyme was concentrated in the bottom 

phase.  

 

CONCLUSION: The proof-of-concept presented in this work allows the recovery of PEGylated 

proteins directly from a PEGylation reaction. It is the first time that PEGylated proteins have been 

fractionated using a PEG-ammonium sulphate system taking advantage of the unreacted PEG 

left in a PEGylation reaction. Based on reaction engineering, in situ ATPS are a potential 

mechanism for PEGylation control, a good alternative for “packed-bed” or on-column PEGylation 

processes and a pioneer strategy in the development of phase transfer catalysis in PEGylation. 

 

Key words: in situ ATPS; PEGylated lysozyme; PEGylation; Protein Recovery; Monolithic 

Chromatography 
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2.2 Introduction 

 

The chemical modification of proteins via PEGylation, is a common strategy to improve 

bioavailability of therapeutic proteins in the organism due to multiple advantages (e.g. reduced 

antigenicity, proteolysis and kidney filtration, increased solubility and mechanical and thermal 

stability) given by the covalent attachment of one or more polyethylene glycol (PEG) molecules 

to their structure.1,2 Among the different PEGylation techniques available, N-terminal amine 

PEGylation is one of the site-specific PEGylation strategies in which methoxy PEG-

propionaldehyde (mPEG) is used for the reaction at approximately pH 5.3 However, despite of the 

relative acidic pH used to control the reaction, proteins with different PEGylation degrees are 

produced. Therefore, since in most cases only one of the conjugates possesses the required 

physicochemical properties, the separation of the desired PEGylated conjugate at high yields 

(generally the mono-PEGylated product) remains an important engineering challenge4 since even 

when the PEGylation reaction has been fully optimized the conversion yield and selectivity are 

low.4,5 

 

In this context, several chromatographic and non-chromatographic techniques6 have been 

studied for the recovery of PEGylated conjugates. However achieving their total separation using 

only one technique with high yields is difficult. In this sense, two promising techniques readily 

available for the purification of these chemically modified proteins are aqueous two-phase 

systems (ATPS)7,8 and chromatographic monoliths.9-11 On their part, ATPS is a liquid-liquid 

extraction technique characterized by a high biocompatibility, reduced toxicity of phase-forming 

chemicals, ease of process integration, scale-up potential, continuous processing, rapid mass 

transfer and low denaturation of the biomolecules separated.12-13 On the other hand, monoliths 

are continuous and homogenous supports packed within disks or columns used for the fast 

chromatographic separation of molecules,14 these provide several processing benefits like the 

opportunity of using higher flow rates to shorten purification times, better resolutions and reduction 

of peak broadening in comparison to packed columns.9,15 

 

In previous works concerning the recovery of PEGylated proteins exploiting ATPS,7,8 

purified samples of PEGylated proteins have been used at different concentrations mainly in a 

discrete manner (i.e. using samples of each one of the produced conjugates by separate). 

However, the direct use of complete PEGylation reactions has rarely been reported. In the better 

cases, “synthetic” mixtures of PEGylated proteins simulating the typical obtained yields of each 
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of the conjugates are prepared from purified stocks of these molecules. Furthermore, it is clear 

that in the use of ATPS, the removal of unreacted and phase-forming polymers as the 

concentration of the proteins is mandatory and remains an issue that has not been widely 

addressed. An interesting alternative involves the direct recovery of the proteins from the 

PEGylation reaction by generating an ATPS within the reaction and integrating the production 

and the primary recovery operations in a single stage. Consequently, an increment in product 

recovery and the reduction in the amount of phase-forming chemicals could be obtained while 

minimizing the operational costs. In this framework, process integration is understood as the 

appropriate selection and logical combination of purification techniques with a minimum number 

of stages.16  

 

In the present work, an integrated process approach for the recovery of conjugated and 

native lysozyme molecules was proposed exploiting the generation of in situ ATPS directly from 

the PEGylation reaction and monolithic chromatography. Lysozyme was selected as model 

protein since besides presenting antibacterial and pharmacological activity, its PEGylation 

reaction has been widely reported.17, 18 The term “in situ ATPS” refers to the generation of a 

biphasic system in the same site where a previous operation (e.g. fermentation, cell rupture, 

extraction, bioseparation, reaction or bioconversion) has been performed.19-20 Specifically in this 

case, PEGylation reaction media was used to form an ATPS taking advantage of the excess of 

mPEG used in the PEGylation reaction. To assess the effectiveness of the operation, the effects 

of several polymers and salt solutions as potential phase-forming chemicals were compared 

studying the partition of the different PEG-lysozyme conjugates in the formed systems. In doing 

so, the top and bottom phases of the generated systems were processed by separate in an ion 

exchange (IEX) monolith disk. 

 

2.3 Materials and methods 

 

2.3.1 Materials 

 

Lysozyme from chicken egg white (cat. no. L6876), ficoll 70,000 (cat. No. F2878), dextran 

10,000 g mol-1 (cat. no. D9260-100G), dextran 75,000 g mol-1 (cat no. D8821-100G), and dextran 

500,000 g mol-1 (cat no. 31392) were all purchased from Sigma-Aldrich (MO, USA). Methoxy-

PEG-propionaldehyde (cat no. A3001-10) with nominal molecular weight of 20 kDa was obtained 

from Jen Kem Technologies (TX, USA). Sodium cyanoborohydride (cat. no. 1001911397) and 
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ficoll 400,000 g mol-1 (cat no. 46327-100G-F) were purchased from Fluka (MO, USA). Tris base 

(cat no. 4099-02) and ammonium sulphate (cat no. 0792-01) of ultra-pure grade were purchased 

from J.T. Baker (PA, USA). All other used chemicals were at least of analytical grade. 

 

2.3.2 Lysozyme PEGylation reaction (LPR) 

 

Lysozyme PEGylation reactions were prepared according the procedure originally 

reported by Daly et al.21 Briefly, a 5.5 mL solution of lysozyme at a 3.0 mg mL-1 concentration in 

100 mM sodium phosphate buffer pH 5.1 with 20 mM sodium cyanoborohydride was added to a 

vial containing 82.5 mg of 20 kDa mPEG. The reaction mixture was stirred and incubated at 4°C 

for 17 h. The reaction was stopped freezing the vials at -20 °C. For analytical purposes and the 

generation of protein standards, the mono and  di-PEGylated lysozyme species were purified 

using Size Exclusion Chromatography (SEC), concentrated by ultrafiltration, lyophilized and 

stored at -4 °C as it has been reported previously.22  

 

2.3.3 In situ ATPS formation and selection with different polymers and salt 

solutions 

 

Dextran (MW 10,000, 75,000 and 500,000 g mol-1) solutions at 30% (w/w); ficoll® 70,000 

and 400,000 g mol-1 solutions at 30% (w/w); and UCON solutions at 30% and 50% (w/w) were 

prepared along with saline solutions of 30% (w/w) sodium phosphates, 40% (w/w) potassium 

phosphates, 20% (w/w) sodium sulphate, 20% (w/w) sodium carbonate, 4 M ammonium sulphate 

in water and 4 M ammonium sulphate in 20 mM Tris-HCl (pH 7.0). With these, ATPS formation, 

was assessed with a qualitative test was in which 100 µL of each polymer or salt solution were 

added individually to 2.5 mL of LPR in 15 mL centrifuge tubes up to a final volume of 3 mL. Each 

combination was then centrifuged at 10,000 rpm, at room temperature for 6 min. After each 

addition, the presence of two defined phases was verified, one system was selected considering 

the minimum formed phase volume and their stability over time. The partition of the different 

PEGylated lysozyme conjugates and the native species in the selected ATPS was measured 

using the natural logarithm of the partition coefficient (KP), the top phase recovery yield (YTop) and 

the purification factor in the top phase (PFTop) were all estimated as previously reported.23, 24 
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2.3.4 IEX chromatography using a monolithic disk 

 

To perform the appropriate partition, yield and purification measurments, the phases of 

the in situ ATPS formed with 4 M ammonium sulphate in 20 mM Tris-HCl (pH 7.0) were analyzed 

and purified by cation exchange chromatography using a CIM™ Multus SO3 monolith (inner 

diameter: 6.7 mm, length: 4.2 mm, CV: 1 mL) (BIA Separations; Ajdovščina, Slovenia). The 

monolith was connected to an Äkta Avant System 150 (GE Healthcare, Uppsala, Sweden). The 

mobile phases used were 20 mM Tris-HCl, pH 7.0 (buffer A) and 20 mM Tris-HCl pH 7.0 + 1 M 

NaCl (buffer B). The flow rate in the system was kept at 5 mL min-1 and absorbance was monitored 

at 280 nm. The top and bottom phases were carefully separated and diluted in ratios of 1:6 and 

1:3, respectively in buffer A. The linear gradient for top phase separation was 25 column volumes 

(CVs) from 0 to 100 % buffer B. For the bottom (salt-rich) phase a gradient of 10 CVs was used 

in the same proportions. The recovered chromatographic fractions were concentrated using 

Amicon® Ultra 3 kDa centrifugal filter devices (Merck Millipore, MA, USA). After a concentrated 

volume of approximately 500 µL was reached, the samples were washed 4 times with 3 mL of 

deionized water for desalinization purposes. Calibration curves at 280 nm of native, mono and di-

PEGylated lysozyme using purified standards as it has been mentioned before, were done in 

each chromatographic method for the identification and quantification of the different observed 

peaks in each of the samples. 

 

2.3.5 SDS-PAGE analysis and protein identification 

 

Sodium dodecyl sulphate-polyacrilamyde gel electrophoresis (SDS-PAGE) was 

performed according to the Laemmli method25 using a 12.5% (w/v) resolving gel and a 5% (w/v) 

stacking gel. The desalted fractions (0.014 mL) of each phase were mixed with 6X loading buffer 

and heated for 10 min at 99 °C. The gels were silver-stained for protein detection and afterwards 

stained using a barium–iodine method to visualize mPEG as it has been previously reported.26 

 

2.3.6 Statistical analysis 

 

Experiments of in situ ATPS formation were repeated at least three times. About twenty 

fractions per peak were pooled to perform SDS-PAGE analysis. Data is expressed as the average 

of the different results with the standard error of the corresponding number of replicates for each 

experiment. 
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2.4 Results and discussions 

  

2.4.1 Selection of the in situ ATPS 

 

The general strategy used for the recovery of PEGylated lysozyme species with in situ 

ATPS is described in Figure 2.1. As it has been stated, tests with different salt and polymer 

solutions were performed to select the best system to form these in situ ATPS. In this context, the 

polymer and salt solutions that were able to form the ATPS with the PEGylation reactions are 

shown in Table 2.1. High molecular weight dextrans of 75,000 and 500,000 g mol-1 were able to 

generate biphasic systems with the largest top phase volumes (approximately 400 µL). However, 

these were not selected as an alternative for the recovery of PEGylated lysozyme to avoid dilution 

effects in the target products. For this reason, the systems generated with ammonium sulphate 

were selected even when the obtained top phase volumes were small. In fact, there is a current 

trend regarding the handling of miniaturized phase volumes since their use concentrates the 

biomolecules while using a lower amount of reagents.27 

 

 

 

Figure 2.1 General strategy for obtaining the in situ ATPS. Firstly, the adequate solution for in situ ATPS 

formation was evaluated, selected systems was repeated and phases were separated and purified in a 

monolith, the fractions were ultrafiltrated and characterized by SDS-PAGE. 
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Table 2.1 Tested solutions in the in situ ATPS formation with lysozyme PEGylation reaction 

 

Solution  pH 
ATPS 

formation 

Required 

volume 

to form 

phases 

(mL)  

Total 

system 

volume 

(mL) 

Formed 

top 

phase 

volume 

(mL) 

VR 

Stability 

of the 

system 

up to 5 

min  

(min) 

Polymer solutions - - - - - - - 

30%(w/w) Dextran MW 

9,000-11,000 
- NO - - - - - 

30%(w/w) Dextran MW 

64,000-76,000 
- YES 3.6 9.1 0.4 0.046 5 

30%(w/w) Dextran MW 

450,000-650,000 
- YES 2.4 7.9 0.4 0.053 5 

30%(w/w) Ficoll® MW 

70,000 
- NO - - - - - 

30%(w/w) Ficoll® MW 

400,000 
- NO - - - - - 

30%(w/w) UCON 50-HB-

5100 
- NO - - - - - 

50%(w/w) UCON 50-HB-

5100 
- NO - - - - - 

Salt solutions      
 

 
30%(w/w) sodium 

phosphates 
8.6 YES 1.5 7 0.1 0.015 1 

40%(w/w) potassium 

phosphates 
7.4 YES 1.5 7 0.1 0.015 1 

20%(w/w) sodium sulphate 8.6 YES 2.8 8.3 0.1 0.013 3 

20%(w/w) sodium 

carbonate 
11.4 YES 2.0 7.5 0.1 0.014 2.5 

4 M ammonium sulphate 5.0 YES 1.6 7.1 0.15 0.022 2 

4 M ammonium sulphate in 

20 mM Tris-HCl pH 7.0  
7.0 YES 1.8 7.3 0.2 0.028 4 

 

It should be noted that all of the salt solutions tested were able to form in situ ATPS with 

the PEGylation reactions. In fact, the capacity to form biphasic systems with mPEG solutions of 

chemical species such as potassium phosphate, sodium sulphate and sodium carbonate has 

already been reported,28 and  according to the literature, the phase formation in polymer-salt 

systems is affected by the total amount and type of salt added.29  In the different tests performed 

in this work using salt solutions, the top phase volume was smaller (less than 200 µL) when 20% 
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(w/w) sodium carbonate, 30% (w/w) sodium phosphates and 4 M ammonium sulphate were used. 

Furthermore, the stability of these systems over time was small since the systems were 

completely dissolved after a determined time. On the other hand, the system generated with 1.8 

mL of 4 M ammonium sulphate in 20 mM Tris-HCl (pH 7.0) achieved an easy to handle top phase 

volume between the evaluated salt solutions (0.2 mL) and it was reproduced using 5.5 mL of LPR 

by triplicate. This last system was also selected since phase separation was preserved for a 

longer time when compared to the other systems indicating a larger stability and because the 

extractive capacity of 1.5-8 kDa PEG-ammonium sulphate systems for protein recovery has been 

previously reported.30-32 

 

The theoretical concentration of free mPEG at the end of the PEGylation reaction 

(considering a water density of 1.0 g cm-3) is about 1.14 ± 0.02% (w/v). After the addition of the 4 

M ammonium sulphate in 20 mM Tris-HCl at pH 7.0 solution, the free mPEG concentration in the 

system is believed to change to 0.86 ± 0.02% (w/w). In the same way, the ammonium sulphate 

concentration in the total system was about of 11% (w/w). Both mPEG and ammonium sulphate 

concentrations are located outside of the biphasic zone in the phase diagram for the PEG 20,000 

g mol-1 - ammonium sulphate systems reported by Zaslavsky.33 However, since mPEG and PEG 

have different terminal groups (i.e. mPEG presents a metoxi (CH3O-) and an aldehyde (HCO-) 

group in each end while PEG has only alcohol (HO-) groups in its molecular ends) the net charge 

of each molecule is expected to change causing the phase diagram to slightly shift as noted by 

the formation of the system using mPEG. The volume ratio (VR; ratio between the top and bottom 

phase volumes) measured for the system was 0.028 and in this line, the small top phase volume 

favored the system handling while concentrating the proteins at the same time. It should be 

mentioned that grafted mPEG in the protein conjugates may have some contribution to the phase 

formation, however there are no reports regarding this and more experiments must be performed 

to confirm this hypothesis.  

 

2.4.2 Partition analysis using IEX monolithic chromatography and SDS-PAGE 

 

Analysis of PEGylated lysozyme species using ion exchange (IEX)10,15 and hydrophobic 

interaction monolithic supports9 has been previously reported with successful results. Some of 

these separations have been performed with randomly PEGylated species where small mPEG 

succinimidyl carbonates were used as activated PEG agents.10,15 From these examples, mPEG 

propionaldehyde was only used in one case, where the separation was done with a CIM C4 A 
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monolithic disk.11 Previous works reinforce the application of monolithic chromatography as a fast 

analytical technique that can be used for the phases generated from in situ ATPS. Figure 2.2A 

shows the chromatographic profile for the separation of proteins in the top phase. The first peak 

with an elution volume of 14.3 mL (lane 3) corresponds to di-PEGylated lysozyme (as compared 

to its corresponding standard in lane 4), which showed a band for protein staining (Figure. 2.2B) 

and a band for PEG staining in SDS-PAGE at 75 kDa (Figure 2.2C). The second peak (16.1 mL, 

lane 6) was attributed to the mono-PEGylated lysozyme (as compared to its corresponding 

standard in lane 7) at 50 kDa in both I2-BaCl2 and silver staining. Peak 3 (23.7 mL, lane 9) 

corresponds to native lysozyme, protein band with MW between 10-14 kDa (as compared to its 

corresponding standard in lane 10), this band can be clearly seen in SDS-PAGE for the PEG-rich 

phase (Figure 2.2 B). 

 

 

 

Figure 2.2 Separation in monolith and characterization of fractions of top phase (PEG-rich phase) (A) 

Chromatographic profile of top phase in CIM™ Multus SO3 monolith. Buffer A: Tris-HCl 20mM pH 7.0. 

Buffer B: Tris-HCl 20mM pH 7.0 containing 1M NaCl. Loop: 100 µL. Flow rate: 5 mL min-1, lineal gradient 

from A to B: 25 CVs. (B) Silver staining for protein detection of SDS-PAGE analysis of the 

chromatographic fractions. (C) I2-BaCl2 staining for mPEG detection of SDS-PAGE analysis of the 

chromatographic fractions. 
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Protein separation in the bottom phase is presented in Figure 2.3A. It shows a peak at 

14.2 mL (line 4), which is the mono-PEGylated lysozyme (standard in lane 6) due to the match 

with the 50 kDa band protein and PEG detection in the SDS-PAGE gel (Figure 2.3B and 2.3C). 

The peak at 17.6 mL (lane 7) corresponds to native lysozyme with a defined band at 10-15 kDa 

in silver staining (standard in lane 8). As it can be observed in the SDS-PAGE gels (Figure 2.2 

and 2.3) the standard of the mono-PEGylated conjugate had traces of the 20 kDa mPEG. The 

band of 20 kDa mPEG was visualized at 37 kDa (lane 2).he low mobility of PEG and protein 

conjugates bands indicate a disparity in comparison to real molecular size, this behavior was also 

reported by González-González34 for a PEGylated antibody and it is a consequence of the high 

hydrodynamic radius of PEG. The same effect has also been observed and explained for other 

PEGylated proteins such as PEGASYS.35 

  

 

 

Figure 2.3 Separation in monolith and characterization of fractions of bottom phase (salt-rich phase) (A) 

Chromatographic profile of bottom phase in CIM™ Multus SO3 monolith. Buffer A: Tris-HCl 20mM pH 7.0. 

Buffer B: Tris-HCl 20mM pH 7.0 containing 1M NaCl. Loop: 100 µL. Flow rate: 5 mL min-1, lineal gradient 

from A to B: 10 CVs. (B) Silver staining for protein detection of SDS-PAGE analysis of the 

chromatographic fractions. (C) I2-BaCl2 staining for mPEG detection of SDS-PAGE analysis of the 

chromatographic fractions. 
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The elution order for PEGylated lysozyme species in chromatography for the top phase 

correlates to previous works 10, 36, 37 and this is explained based on the charge shielding effect of 

PEG on the protein.38 Retention is described by steric hindrance between the ion exchange 

monolith and the charged groups on the protein surface.39 In this tenor, the chromatographic 

analysis of both phases and mass balance allowed to estimate that the conversion yields of native 

protein transformed to mono-PEGylated  and di-PEGylated conjugates were 56.65 ± 5.21% and 

7.87 ± 0.57%, respectively. Mono and di-PEGylated lysozyme conjugates reached a final 

concentration of 4.06 ± 0.37 and 0.89 ± 0.06 mg mL-1 in the LPRs, while residual native lysozyme 

had a final concentration of 1.07 ± 0.09 mg mL-1. The achieved conversion yield for the mono-

PEGylated lysozyme conjugate is located in the same conversion range (50%) that has been 

reported for lysozyme with the use of 20 kDa mPEG propionaldehyde at optimized conditions,5 

but our results were higher than those with 10 and 30 kDa mPEG propionaldehyde modified 

lysozyme (30-45%).40 

 

After the separation of the phases in the generated in situ ATPS and their chromatographic 

analysis, the partition coefficient, yields and purity were estimated. Table 2.2 shows the natural 

logarithm of the partition coefficients (ln KP), top phase recovery yields (YTop, %) and purification 

factors (PFTop) of each of the studied species in the selected system. Positive ln KP values indicate 

a partition preference of the products towards the top phase while negative values indicate a 

preference for the bottom phase.41  

  

Table 2.2 Natural logarithm of partition coefficients (ln Kp), recovery yields (YTop) and purification factors 

(PF Top) of native lysozyme and its PEGylated conjugates 

 

Protein Ln Kp Y Top (%) PF Top 

Native lysozyme -0.16 ± 0.06 2.23 ± 0.17 0.73 ± 0.07 

Mono-PEGylated lysozyme 3.82 ± 0.09 55.71 ± 5.13 18.27 ± 2.03 

Di-PEGylated lysozyme >>>1* 100 ± 5.23 32.77 ± 2.65 

* Di-PEGylated lysozyme was not detected in the bottom phase 
 

 

The affinity of PEGylated conjugates towards the top phase (PEG-rich phase) has been 

explained by an increment in the hydrophobicity generated from the attached mPEG chains to 

the protein.42 Initial observations about PEG association with proteins has been presented 

previously in Blomquist´s work.43 Protein partition coefficients in polymer-salt ATPS increase 

directly with the PEGylation degree or the number of attached polymeric chains44, 45. 
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Sookkumnerd & Hsu46 proved this trend in countercurrent distribution (CCD) ATPS of 5000-p-

nitrophenyl carbonate PEGylated lysozyme in PEG 3400 g mol-1 and potassium phosphate 

systems. In the same line, Delgado et al. 47 found a linear correlation between the PEGylation 

degree and the partition coefficient of the proteins in PEG-dextran ATPS. This corresponds to the 

obtained results where di-PEGylated lysozyme was recovered completely (~100%) in the top 

phase, while the mono-PEGylated lysozyme also presented ln KP value of 3.82 ± 0.09 and a 

recovery yield (YTop) in the top phase of 55.71 ± 5.13% (the remaining 44% was accumulated in 

the bottom phase). These results are also consistent with previous reports regarding the partition 

of PEGylated RNase A conjugates where top phase yields for di-PEGylate and mono-PEGylated 

RNase A where of 88% and 98%, respectively in PEG 8000-phosphate systems.7  

 

Regarding the lower top phase yields obtained for mono-PEGylated lysozyme, it is 

believed that the difference between the volumes of the bottom (7.1 mL) and top phases (0.2 mL), 

may influence the partition of the conjugate towards the bottom phase once the top phase 

becomes saturated and unable to accommodate a higher amount of protein because of free 

volume and steric effects. This same effect was observed in PEG 8000-phosphate systems for 

mono-PEGylated RNase A at a tie-line length (TLL; line which shows points with the same final 

concentration of phase components in the top and bottom phases but with differing total 

compositions and volume ratios)48 of 45% (w/w), with recovery yields of 41.05 ± 0.28% and 17.49 

± 0.55% in the top and bottom phases, respectively, the remaining percentage was assigned to 

the interphase.8 In another study using the same PEG 8000-phosphate system but with a greater 

protein concentration (0.20g of 10 mg mL-1 solution), mono-PEGylated conjugates had preference 

for top phase with yields of 98% and 77% for RNase A and α-lactalbumin, respectively.7 

Nonetheless, as it has been stated previously, the evaluation of the separation of PEGylated 

proteins with ATPS has been mainly done with individual protein standards without considering 

the amounts and ratios of the protein conjugates or unreacted species existing in the PEGylation 

reaction. In this sense, this is one of the first occasions in which a complete PEGylation reaction 

mixture is fractionated in ATPS without further processing. On its part, native lysozyme presented 

a ln KP value of -0.16 ± 0.06 indicating that unreacted protein can be recovered in the bottom 

(salt-rich) phase with a yield of 97.7%. This behavior has also been observed in ATPS lysozyme 

extraction and for proteins such as ribonuclease A (RNase A) and α-lactalbumin.7 This behavior 

is mainly attributed to salting-out forces and also excluded volume effects.49 At the end of the 

separation the purification factors in top phase were 18.27 ± 2.03 and 32.77 ± 2.65 for mono-
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PEGylated and di-PEGylated lysozyme respectively. This also demonstrates the ability of this 

strategy to concentrate the different obtained conjugates.  

 

In general, the recovery of proteins from complex mixtures in ATPS is difficult to achieve 

because there are only two phases for the distribution of molecules. However in most cases, a 

partial separation of the products of interest can be achieved with a good removal of contaminants 

or reactants that in some occasions presents similar yields as those found in chromatographic 

operations.50 In addition to the obtained partition of the mono and di-PEGylated lysozyme species, 

the generated in situ ATPS allowed the concentration of said proteins in a small volume which 

might represent additional advantages in further processing operations. 

 

From the perspective of PEGylation reactions and purification engineering, the application 

of in situ ATPS may present several advantages from a bioprocessing point of view. First, it can 

be devised as an unidirectional and integrative process4 in the production of mono-PEGylated 

proteins at large reaction volumes, which can not be processed using packed bed or on column 

PEGylation processes due to the limiting saturation capacities or the large columns needed to do 

so.4  Second, the fast remotion of PEGylated products would improve the reaction efficiency, 

being itself a regulation strategy to deal with undesirable conjugates while enabling the re-use of 

the leftover protein and reactants in the bottom phase to perform a second reaction which might 

also help in developing the concept called “phase transfer catalysis”.51 Third, any alternative to 

improve desirable conversions in PEGylation reaction and approaching the recovery of reactants 

(mPEG or native protein) is interesting from an economical perspective specially in 

pharmaceutical environments.4 

 

2.5 Conclusions 

 

ATPS is highlighted as a promising technique for the recovery of several biomolecules 

including PEGylated proteins, however the direct application of this operation on reaction media 

has not been studied. An in situ ATPS was formed adding 4 M ammonium sulphate in 20 mM 

Tris-HCl (pH 7.0) to lysozyme PEGylation reactions. PEGylated conjugates of lysozyme had 

affinity for the top (PEG-rich) phase with ln KP values higher than 1 while native lysozyme was 

mainly partitioned towards the bottom phase with recovery yields of 97-98%. 100% of di-

PEGylated lysozyme and 56% of mono-PEGylated protein were recovered in the top phase.  

Approximately, 40% of total amount of native lysozyme remained unreacted. This proof-of-
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concept demonstrated that an ATPS directly formed from the PEGylation reaction can separate 

PEGylation mixtures making their processing and purification easier and allowing a design of a 

shorter purification train. The findings reported here open the potential for the generic application 

of in situ ATPS for the recovery of high-value biological products, such as therapeutic proteins 

modified with different PEG sizes from large reaction volumes. It would be highly recommended 

to evaluate the economic advantages of integrating the reaction and primary recovery operations 

in a single stage as is the case for these in situ ATPS to further validate the attractiveness of 

these types of operations. 
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3.1 Abstract 

 

Background: The efficient, controlled and robust purification of conjugates from PEGylation has 

a growing demand in the biopharmaceuticals market. In general the yield and purity reached 

through the conventional chromatographic modes are not particularly high nor efficient. Affinity 

chromatography has so far been scarcely explored. The present work, introduces the purification 

of mono-PEGylated lysozyme from a PEGylation reaction by heparin affinity chromatography 

(HAC) for first time in a single step. Response Surface Methodology (RSM), particularly a Box-

Behnken design (BBD) was employed to optimize the separation. 

 

Results: Protein adsorption of PEGylated and native lysozyme on Heparin Sepharose 6 Fast Flow 

resin was described by Langmuir isotherms, showing a relatively low affinity for the PEGylated 

proteins. From the experimental design, optimal elution conditions in a linear gradient of sodium 

chloride (NaCl) for the three response variables (yield, purity and productivity) were: gradient 

length of 13 column volumes (CVs), flow at 0.8 mL min-1 and protein load of 1 mg mL-1. Based on 

this optimization, a step gradient procedure was designed that achieved the purification of mono-

PEGylated lysozyme with approximately 100% yield and purity in comparison with 92.7% and 

99.7% with the linear gradient. Productivity was ca. 0.048 ± 0.001 mg mL-1 min-1 using 0.05 M 

NaCl for its elution. 

   

Conclusions: Mono-PEGylated lysozyme was completely separated from a PEGylation mixture 

with high yield and purity using HAC for first time. Applying Response Surface Methodology 

(RSM), adequate conditions for more than one requirements were found as well as optimal 

conditions for a linear gradient of NaCl. Based on this optimization a step gradient procedure was 

designed that achieved the purification of mono-PEGylated lysozyme in one step with advantages 

in time, resolution, yield and purity compared to other chromatographic modes such as 

hydrophobic interaction chromatography (HIC) and cation exchange chromatography (CEX). 

 

Key words: Heparin Affinity Chromatography (HAC); mono-PEGylated lysozyme; PEGylation; 

optimization; Response Surface Methodology (RSM); Box-Behnken Design (BBD). 
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3.2 Introduction 

 

PEGylation is a drug delivery strategy which consists of covalently linked PEG 

(polyethylene glycol) to therapeutic proteins with the aim to improve significantly their 

biodistribution through positive characteristics among which are increased solubility, thermal and 

mechanical stability, reduced renal clearance, less immunogenicity and resistance to protease 

degradation.1-3 There are several approved PEGylated proteins in the market used in the 

treatment of diseases4 meanwhile, others are still in clinical trials.5 

 

Nowadays, the purification of PEGylated proteins is a bottleneck in their production due 

to the fact that a mixture of bio-conjugates with different PEGylation grades are generated in this 

reaction,6,7 even when a site-specific PEGylation method is used.8 Chromatography due to its 

high resolution and purification obtained9 continues to be the preferred technique for the 

separation of PEGylated proteins from the reaction mixture. Size Exclusion Chromatography 

(SEC), Ion Exchange Chromatography (IEX), Reverse Phase Chromatography (RPC) and 

Hydrophobic Interaction Chromatography (HIC) have been the modes used, however these 

present several drawbacks amongst which is the sample dilution, process times, low recovery 

and loss of biological activity8, 10-12 of the PEG-conjugate. The total separation in these modes is 

reached with more than one chromatographic step. Thus, only affinity chromatography (AC) 

appears a suitable option.13-15This is a selective, high level-purification, fast, single step, reversible 

and mild technique14, 16 used for separation of proteins, enzymes, antibodies, hormones, 

receptors, factors, vitamins, nucleic acids, cell components,  viruses and phages14 . Few 

publications refer to the combined use of PEGylation and AC. Some have modified the stationary 

phases with PEG and studied their impact in the chromatographic separation of antibodies and 

glucose oxidase17, 18 or the use of AC in on-column PEGylation19 to protect the enzyme´s active 

site. Nevertheless, purification of PEGylated proteins through AC has not been widely studied 

and characterized.  

 

Heparin Affinity Chromatography (HAC) contains heparin as affinity ligand, a negatively 

charged (sulphated) glycosaminoglycan (alternating hexuronic acids with glucosamine residues) 

capable of binding to a wide range of biomolecules.20, 21 Mainly, HAC has been used for the 

fractionation of proteins and coagulation factors in serum,22 and also in the isolation of proteases, 

lipoproteins, polymerases, nucleic acids, growth factors in bovine bone marrow and proteins from 

diverse sources.21, 23-24 Heparin is a high-cost ligand because it is obtained from animal sources, 
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however recent advances in chemoenzymatic synthesis of heparin and other related 

oligosaccharides are encouraging its large-scale production25-27 and in the next years heparin use 

in diverse applications will be unlimited. 

 

Aditionally, several process variables have to be taken in account during the operation 

design in a short time with limited availability of protein. In this point, design of experiment 

strategies as Response Surface Methodology (RSM) plays an important role and their use can 

provide advantages such as fast, control, scalability, robustness and quality in product.28, 29 

Despite the fact that RSM is now being used more routinely in the design of unit operations in 

biotechnological processes, 30 its employment in preparative chromatography optimization has 

been rare. 31, 32  

 

In this paper, the separation of PEG-conjugates of lysozyme produced by N-terminal site-

specific PEGylation with 20kDa mPEG propionaldehyde in HAC is studied. Lysozyme is a protein 

model to study the PEGylation and the purification of conjugates in small therapeutic proteins, 

moreover lysozyme presents antibacterial activity33 and it functions as preservative and antibiotic 

synergist.34 Batch adsorption of PEGylated and native lysozyme were characterized through 

isotherms. Recovery of mono-PEGylated lysozyme was optimized in linear gradient elution via 

Box-Benkhen design (BBD) by Response Surface Methodology (RSM) to make the separation 

efficient. Using this result a highly efficient step gradient method was designed. So an optimized 

affinity chromatographic method is proposed to the purification of mono-PEGylated proteins. 

 

3.3 Materials and methods 

 

3.3.1 Materials 

 

Lysozyme from chicken egg white (cat. no. 10837059001), barium chloride dehydrate (cat. 

no. B0750-100G) and iodine solution (cat. no. 319007-100mL) were purchased from Sigma-

Aldrich (MO, USA). Methoxy-PEG-propionaldehyde (cat no. A3001-10) with a nominal molecular 

weight of 20 kDa came from Jen Kem Technologies (TX, USA). Sodium cyanoborhydride (cat. 

no. 1001911397) was purchased from Fluka (MO, USA). Tris buffer grade (cat no. TR-16514) 

was supplied by Winkler LTDA (Santiago, Chile). Sodium chloride (cat no. 106404) came from 

Merck Millipore (MA, USA). Also Coomassie Brilliant Blue G used in the Bradford reagent 

preparation was obtained from Sigma Aldrich. Heparin Sepharose 6 Fast Flow (cat no. 17099801) 



Chapter 3. Optimized purification of mono-PEGylated lysozyme by HAC using RSM  

 

45 

  

was purchased from GE-Healthcare (Uppsala, Sweden). All solutions were made using Milli-Q-

grade water (Merck Millipore, MA, USA).  

  

3.3.2 Preparation of PEGylated lysozyme standards 

 

The di- and mono-PEGylated lysozyme standards were obtained from the purification of 

lysozyme PEGylation reactions. PEGylation reactions were prepared as described by Daly et al 

and Cisneros-Ruiz,35, 36 consisting of a solution of 5.5 mL of lysozyme at 3.0 mg mL-1 in 100 mM 

sodium phosphate buffer pH 5.1 with 20 mM sodium cyanoborhydride, and 82.5 mg of 20 kDa 

mPEG propionaldehyde stirred for 17 h at 4 °C. The reaction mixture was resolved by Size 

Exclusion Chromatography (SEC) on Äkta Explorer System (GE Healthcare, Uppsala, Sweden) 

with a Sephacryl S-300 Hi Prep column (2.6 cm ID, 60 cm long, GE Healthcare, Uppsala, Sweden) 

at 1 mL min-1 using 10 mM sodium phosphate buffer pH 7.2, containing 150 mM potassium 

chloride.11 Fractions absorbing at 280 nm were collected and concentrated by ultrafiltration with 

a 10 kDa Diaflo membrane (Amicon Inc., MA, USA) in an Amicon chamber. Finally, proteins were 

lyophilized and stored at -20 °C. 

 

3.3.3 Batch adsorption 

 

The adsorption of native and PEGylated lysozyme on Heparin Sepharose adsorbent was 

carried out individually by batch experiments at room temperature at different concentrations. 

Total volume of gel slurry was equilibrated for 0.5 h with 5 volumes of 20 mM Tris-HCl pH 7.5 

(buffer A) and dispensed into 1.5 mL microcentrifuge tubes (0.12 mL of gel slurry per tube). Then 

the resin was covered with 5 volumes of binding solution adding a mixture of buffering solution 

and protein solution to obtain final concentrations in the range of 0.5 mg mL-1 to 4 mg mL-1 of 

protein. Adsorption equilibrium was measured after incubation in a thermomixer comfort 

(Eppendorf, NY, USA) for 5 h at 1,000 rpm. After that, the solution was removed by centrifugation 

at 9,800 rpm for 5 min, the resin was washed with buffer A and protein desorption was done with 

20 mM Tris-HCl pH 7.5 containing 2M NaCl. All experiments were carried out in triplicate. 

Adsorbed protein (qe) was calculated by a mass balance from protein determination in solution 

using the Bradford assay37 in a spectrophotometer. Prior to sample analysis, each protein was 

calibrated in both buffers. Equilibrium adsorption capacity, qe (mg g-1), was calculated by mass 

balance as shown in Eq. (3.1), considering Co and Ce, the initial and equilibrium protein 



Chapter 3. Optimized purification of mono-PEGylated lysozyme by HAC using RSM  

 

46 

  

concentrations (mg mL-1), V, the volume of aqueous solution (mL) and m, the heparin adsorbent 

mass (g). 

 

𝐪𝐞 =
((𝐂𝐨−𝐂𝐞)∗𝐕)

𝐦
                                                        (3.1) 

 

Three adsorption models (Langmuir, Freundlich and Temkin) commonly described for 

protein adsorption were tested. The respective equations are the following:38 

 

 𝐪𝐞 =
𝐪𝐨 𝐛𝐂𝐞

𝟏+𝐛𝐂𝐞
                                                                     (3.2) 

 

𝐪𝐞 = 𝐊𝐅𝐂𝐞
𝟏

𝐧                                                                   (3.3) 

 

𝒒𝒆 =
𝑹𝑻

𝑩𝒕
𝐥𝐧 (𝑨𝒕 ∗ 𝑪𝒆)                                                       (3.4) 

 

Where qo is the maximum monolayer adsorption capacity (g Lgel
-1) and b is the Langmuir 

isotherm constant in the Langmuir model (L g-1). KF is the Freundlich isotherm constant ((g Lgel
-

1)*(L g-1)2.36) and n is the adsorption intensity. In the Temkin equation, R is the Universal Gas 

Constant (8.314 J K-1 mol-1), T is temperature (K) and Bt is the Temkin isotherm constant and At 

is the Temkin isotherm binding equilibrium constant (L g-1).  

 

3.3.4 PEG test binding 

 

In order to study the non-specific interactions between PEG and the heparin adsorbent, 

0.12mL of gel slurry were put in contact with PEG solution at 3 mg mL-1 as described for protein 

batch adsorption. Binding, washing and elution solutions were analyzed for PEG quantification by 

the iodine/barium chloride method as reported by Gong et al,39 and the amount of PEG adsorbed 

was calculated by mass balance as for protein. 

 

3.3.5 Chromatographic method 

 

Chromatographic experiments were performed in an Äkta Purifier 10 System (GE 

Healthcare, Uppsala, Sweden) equipped with a 200 µL injection loop. Heparin Sepharose 6 Fast 
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Flow was flow packed in a 1 mL HR 5/5 column (100 mm x 5 mm ID). Packing performance was 

checked injecting 1% acetone pulses. All experiments were performed at room temperature. The 

liquid phases used in the chromatography were 20 mM Tris-HCl pH 7.5 (buffer A) and 20 mM 

Tris-HCl pH 7.5 containing 1 M sodium chloride (buffer B). Solutions were filtered on a membrane 

of 0.2 µm (Advantec, WI, USA) and subsequently degassed. The column outlet was monitored at 

215 nm. Two elution modes were tested: an increasing linear salt gradient and a step salt gradient, 

which are described below. The yield and purity were calculated using the plate model according 

to Belter.40 Productivity was estimated as before.40, 41 

 

3.3.5.1 Linear gradient  

 

Some test runs were done injecting protein mixtures of mono-PEGylated and native 

lysozyme in buffer A as a representative solution of the lysozyme PEGylation reaction. The 

separation was done with a linear salt gradient from A to 100% B. As mono-PEGylated and native 

lysozyme were not separated totally, optimization was suggested by design of experiments. For 

the experimental design the linear gradient elution mode was done using different conditions: 

gradient length (CVs), flow (mL min-1) and protein load (mg mL-1) according to the points 

generated in the experimental design. Once the separation conditions were optimized, the 

individual standards (di-PEGylated, mono-PEGylated and native lysozyme) were evaluated at 

those operational conditions to identify retention and elution behavior of the proteins. 

 

3.3.5.2 Design of experiments (DoE) and result analysis in linear gradient 

 

Response Surface Methodology (RSM) was applied to optimize the purification of mono-

PEGylated lysozyme in HAC by linear gradient elution using as proof of concept a mixture of 

mono-PEGylated and native lysozyme at a ratio 4:1; this proportion was chosen based on 

previous knowledge about the concentrations at the end of the PEGylation reaction of these 

proteins. Di-PEGylated lysozyme was omitted in this mixture because it was not retained by the 

chromatographic column. The effect of gradient length from 5 to 25 column volumes (CVs), flow 

from 0.8 to 1.2 mL min-1, and protein load from 0.25 to 1.75 mg mL-1 in three response variables: 

yield (%), purity (%) and productivity (mg mL-1 min-1) were evaluated. A Box-Behnken design 

(BBD) with two central points and two replicates was generated on Minitab software and the 

experiments were done according to the specified run order. The data was analyzed individually 

for each response variable on the same software. Non-significant terms in the quadratic model 
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were eliminated until a reduced model was obtained. The model fit was checked by analyzing 

lack of fit and the R2. Also, the analysis of variance (ANOVA) assumptions were verified: 

normality, constant variance and independence of the residuals. The three response variables 

were jointly maximized through the “optimizer” option on Minitab. Target value, minimum and 

importance values were defined according to the current requirements and end-use of mono-

PEGylated lysozyme and these are indicated in Table A1. Optimal conditions were slightly 

adjusted for practical operational purposes. 

 

The surface plots were created for the different responses studied. To confirm the 

optimum predicted average from the model the number of replicates was obtained with “power 

and sample size” from Minitab. After performing the appropriate replicates at optimal conditions 

comparison with predicted responses was done using a one sample t-test at 95 % confidence 

level. Finally, confidence intervals were computed for the optimum predicted average.    

 

3.3.5.3 Step gradient 

 

In order to improve the purification of mono-PEGylated lysozyme, a step gradient was 

developed with a lysozyme PEGylation reaction diluted 1:3 in buffer A at a flow of 0.8 mL min-1. 

The initial concentrations were established according to the corresponding percentages of phase 

B where the mono-PEGylated and native lysozyme were eluted in the linear gradient; the method 

was modified to achieve the separation. The step gradient started with 5% phase B (5 CVs), 25% 

phase B (5 CVs) and 100% phase B (2 CVs). 

 

3.4 Results and discussion 

 

3.4.1 Adsorption isotherms 

 

Adsorption data of proteins were tested with the linearized equations of three adsorption 

models: Langmuir, Freundlich and Temkin models which are the most frequently used models in 

the literature to describe protein adsorption on chromatographic resins,42-44including affinity 

chromatography;14, 45 the regression coefficient (R2) was the criteria for the selection of the model 

to fit. For the three proteins (di-, mono-PEGylated and native lysozyme) the best adjustment was 

observed with the Langmuir model (R2 = 0.997, R2 = 0.908, R2 = 0.977, respectively) (Figure S1), 

while in the other models the values of regression were low (in Freundlich model these were: 
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0.635, 0.841 and 0.932 and in Temkin model these were 0.960, 0.902 and 0.643, respectively). 

The Langmuir behavior has been observed in the most of adsorption studies with PEGylated 

proteins on other chromatographic supports, mainly on ion exchange or hydrophobic 

adsorbents.46, 47  

 

Of the three proteins studied in batch adsorption, mono-PEGylated lysozyme showed the 

highest adsorption capacity (Table 3.1) (10.8 g L-1 of gel) with the Langmuir model followed in 

decreasing order by native and di-PEGylated lysozyme with 4.9 and 2.8 g L-1 of gel, respectively. 

It was expected that the mono-PEGylated conjugate had less binding capacity compared to the 

native protein due to the change caused by PEG-modification which has also been observed with 

other PEGylated proteins46, 48 on ion exchangers, nevertheless the discrepancy may be explained 

because the adsorption at static conditions not only might be driven by the ionic interaction with 

the protein but also with the PEG chain slightly as it has been happened on hydrophobic resins.49 

 

Table 3.1 Estimated parameters for Langmuir isotherms of native and PEGylated lysozyme. 

 

Langmuir 

parameter 

Native 

lysozyme 

Mono-PEGylated 

lysozyme 

Di-PEGylated 

lysozyme 

qo (g g-1) 4.884 10.787 2.797 

b(L g-1) 41.377 2.971 5.204 

Ka (M-1) 6.082 x 105 1.030 x 105 2.847 x 105 

 

The low capacity observed for di-PEGylated lysozyme could be more related to a reduced 

accessibility to the pore space of the resin due to the increased size of the protein. Regarding the 

Langmuir association constant or affinity constant, native lysozyme had the highest affinity (6.08 

x 105 M-1) and it was lower for mono-PEGylated (1.03 x 105 M-1) and di-PEGylated (2.85 x 105 M-

1) lysozyme; this value shows that PEGylation decreased the affinity of lysozyme for the resin. 

Examples where PEGylation also influences the affinity of the proteins are the reduction in the 

binding for glucose oxidase of PEGylated concanavalin A,17 and the increase of the dissociation 

constant (kd) with anti-native RNase antibody when ribonuclease was modified with 4 and 9 

mPEG 5,000 molecules.50 
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The 20kDa mPEG propionaldehyde exhibited a binding percentage between 1.0 and 

3.0%, which was not considered significant, hence there appears to be no specific interactions 

between the PEG and the heparin adsorbent. 

 

3.4.2 Heparin Affinity Chromatography (HAC) purification 

 

Initial chromatographic tests in the 1 mL packed column with Heparin Sepharose 6FF 

showed a separation profile for PEGylated and native lysozyme using a linear gradient of NaCl at 

1 M (Figure 3.1). Di-PEGylated lysozyme was not retained in the column at dynamic conditions 

and it was eluted in the washing step. This result is different from the detected binding in the batch 

isotherms but the effect of the flow could have affected the retention of the di-PEGylated 

conjugate. The mono-PEGylated and native lysozyme appeared early and relatively close in the 

elution at low salt concentrations as can be seen in Figure. 3.1. The identity of the peaks 

separated from the reaction components was verified with the injection of the individual standards.  

The amount of salt required to elute unmodified lysozyme (0.2 - 0.35 M NaCl) agrees with the 

reported 0.3 M NaCl for lysozyme purification from egg white at pH 7.4 on heparin-Ultrogel 

A4R.51The observed elution order of lysozyme isomers in the present study correlates with that 

for PEGylated proteins on cation exchange supports,48, 52 however the profile presented here for 

HAC shows the complete resolution between mono- and di-PEGylated lysozyme conjugates 

which was not achieved in cation exchange chromatography (CEX) using Toyopearl Gigacap S-

650 M and TSKgel SP-5PW resins.48, 52 Based on this and the role of heparin as a weak cation 

exchanger with some proteins,53 the affinity between lysozyme and heparin could be influenced 

mainly by an ionic effect, by decreasing of the charge in PEGylation caused by the PEG addition,54 

however no experimental demonstration is shown and affinity may be affected by different kind of 

interactions such as: hydrophobic interactions, hydrogen bonding or Van der Waals forces.55 More 

studies to know the nature of these interactions between lysozyme and PEGylated proteins need 

to be done. 
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Figure 3.1 Chromatographic profile in initial tests for the separation of a lysozyme PEGylation reaction 

(1:3) separation on HAC using a protein mixture of di-PEGylated lysozyme, mono-PEGylated and native 

lysozyme.  Buffer A: Tris-HCl pH 7.5. Buffer B: Tris-HCl pH 7.5 containing 1M NaCl; linear gradient from A 

to B of 5 CVs, flow rate: 0.8 mL min-1, loop: 200 µL. [Di-PEGylated lysozyme]: 2 mg mL-1, [Mono-

PEGylated lysozyme]: 4 mg mL-1, [Native lysozyme]: 1 mg mL-1. 

 

3.4.2.1 Optimization of linear gradient purification by Response Surface 

Methodology (RSM) 

 

Since an incomplete separation of the mono-PEGylated and native lysozyme in the 

PEGylation reaction was observed, optimization of the separation of mono-PEGylated lysozyme 

in the linear elution gradient was pursued. In this optimization Response Surface Methodology 

(RSM) was applied through a Box-Behnken design (BBD). Although RSM has already been 

applied in chromatographic purifications of several therapeutic products and proteins such as 

recombinant erythropoietin on Blue-Sepharose,56 so far the application of RSM for the 

optimization of the chromatographic purification of PEGylated proteins has not been explored. 

The experimental points were done with a mixture of the above-mentioned proteins in a 4:1 ratio. 

The factor protein load and its levels were chosen based on the maximum amount of protein 

available to test this variable; gradient length and flow levels were studied in a reasonable space.  
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The analysis of variance (ANOVA) results for the yield, purity and productivity is shown in 

Table 3.2. Additionally, Figure 3.2 depicts the corresponding surface graphs. The lack of fit p-

values in the three response variables: yield (0.537), purity (0.450) and productivity (0.254) were 

not significant, proving the fitting of the models. Also, the corresponding coefficients of 

determination (R2) (yield (92.80%), purity (93.31%) and productivity (99.53%)) suggest the data 

and the variation in each response is explained by that percentage with the model. ANOVA 

assumptions (normality, constant variance and independence of the residuals) were verified and 

satisfied for all the models developed. 

 

For yield, the protein load quadratic term was deleted from the model and the interaction 

flow-protein load was significant; protein loads from 0.25 mg mL-1 up to 1.0 mL min-1 combined 

with low flow (0.8 mL min-1) (Figure 3.2A) maximize the yield. With regards to purity, the flow 

quadratic term was omitted from the model since it was not significant, but the interaction gradient 

length-flow was held, keeping protein load at 1 mg mL-1. Low flows and gradients between 15 and 

25 CVs improve the purity (Figure 3.2B), although in general the purities reached in the design 

are good. For productivity, all the interactions between the three factors were significant and the 

gradient length had an inverse impact on the productivity. Figure 3.2C shows the joint effect of 

gradient length and flow, the shorter the gradient (5 CVs) and the flow, the greater the productivity 

(0.050 mg of mono-PEGylated lysozyme (mg mL-1 min-1). Regarding the gradient length-protein 

load interaction, if the gradient is around 5 CVs, regardless of protein load, productivity was 

between 0.040 and 0.045 (mg mL-1 min-1). The interaction of flow-protein load at gradient length 

of 15 CVs (Figure 3.2D) indicates that if the flow goes from 0.8 to 0.9 mL min-1, productivity will 

be between 0.035-0.040 (mg mL-1 min-1), and it is the highest value if the flow is moved inside the 

design space. 
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Table 3.2 ANOVA for the BBD in the optimization of mono-PEGylated lysozyme separation in 

linear elution gradient of HAC. P-value < 0.05 was considered significant 

Source Sum of squares Degrees of freedom Mean square F-value P-value 

Yield (%) ANOVA     

Model 1215.40 6 202.567 54.72 0.000 

GL 504.03 1 504.032 136.16 0.000 

F 211.46 1 211.457 57.12 0.000 

PL 204.12 1 204.117 55.14 0.000 

GL2 196.17 1 196.173 52.99 0.000 

F2 51.82 1 51.824 14.00 0.001 

F*PL 89.76 1 89.755 24.25 0.000 

Error 70.33 19 3.702   
Lack of fit 20.29 6 3.382 0.88 0.537 

Pure error 50.04 13 3.850   
Total 1285.74 25    

Purity (%) ANOVA     

Model 5.69509 6 0.94918 59.13 0.000 

GL 4.31269 1 4.31269 268.65 0.000 

F 0.42639 1 0.42639 26.56 0.000 

PL 0.08728 1 0.08728 5.44 0.031 

GL2 0.73327 1 0.733327 45.68 0.000 

PL2 0.16130 1 0.16130 10.05 0.005 

GL*F 0.11243 1 0.11243 7.00 0.016 

Error 0.30501 19 0.01605   
Lack of fit 0.09810 6 0.01635 1.03 0.450 

Pure error 0.20691 13 0.01592   
Total 6.00010 25    
Productivity (mg mL-1 min-1) ANOVA    

Model 0.003041 7 0.000434 759.97 0.000 

GL 0.001977 1 0.001977 3458.81 0.000 

F 0.000938 1 0.000938 1641.16 0.000 

PL 0.000022 1 0.000022 38.26 0.000 

GL2 0.000032 1 0.000032 55.48 0.000 

GL*F 0.000062 1 0.000062 108.64 0.000 

GL*PL 0.000004 1 0.000004 7.1 0.016 

F*PL 0.0000006 1 0.000006 10.37 0.005 

Error 0.000010 18 0.000010   
Lack of fit 0.000004 5 0.000001 1.51 0.254 

Pure error 0.000007 13 0.000001   
Total 0.003051 25    
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In previous table GL = Gradient length, F = Flow, PL = Protein load. 

 

 

 

Figure 3.2 Surface plots for yield, purity, resolution and productivity responses. (A) Yield: flow versus 

protein load (gradient length fixed at 15 CVs). (B) Purity: gradient length versus flow (protein load fixed at 

1 mg mL-1). (C) Resolution: flow versus protein load (gradient length fixed at 15 CVs). (D) Resolution: 

gradient length versus protein load (flow fixed at 1 mL min-1). (E) Productivity: gradient length versus flow 

(protein load fixed at 1 mg mL-1). (F) Productivity: flow versus protein load (gradient length fixed at 15 

CVs). 

 

Expressions describing quadratic models are listed in equations (S3.1) to (S3.3) in 

Supplementary Material. Since the optimal conditions for the three response variables were 

slightly different and opposed regarding productivity and yield, a joint optimization was carried out 

using the optimizer application of Minitab. The yield, purity and productivity were maximized and 
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their respective top and objective values and importance; therefore, productivity was ranked with 

the highest importance followed by purities greater than 99 %. The optimal conditions given by 

the optimizer were gradient length of 13.5 CVs, flow of 0.8 mL min-1 and protein load of 0.95 mL 

min-1 with a desirability or global satisfaction of the committed solution of about 0.89. Final 

conditions were fixed as 13 CVs for gradient length, 0.8 mL min-1 for flow and 1 mg mL-1 for protein 

load. The desirability for the modified conditions was 0.87, not far from the previous estimation. 

These conditions make it possible to obtain mono-PEGylated lysozyme at a yield of 92.71%, 

purity of 99.69% and productivity of 0.0407 mg mL-1 min-1. Finally, the model validation for each 

response variable was done running chromatographs at optimal conditions. In all the responses, 

the experimental values were not significantly different from the predicted values in the quadratic 

model (Table 3.3), confirming the precision of the model with a confidence level equal to or higher 

than 95% (α < 0.05). All experimental response variables were in the range of the estimated 

confidence intervals (also included in Table 3.3). The chromatography results obtained by this 

optimization are shown in Figure 3.3 

 

Table 3.3 Statistic results in one-sample test for quadratic model validation in the mono-PEGylated 

lysozyme HAC at optimal conditions using linear gradient (1 M NaCl) 

 

 Response 

variable 

Predicted 

value by 

model  

Experimental 

value 

Confidence 

level (%) 
P-value 

Estimated 

Confidence 

Interval 

Yield (%) 92.71 93.76 95 0.182 91.52-95.99 

Purity (%) 99.69 99.55 96 0.044 99.41-99.70 

Productivity (mg 
-1mL min-1) 

0.0407 0.0406 95 0.634 0.0397-0.0415 
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Figure 3.3 Chromatographic profile of purified di-PEGylated, mono-PEGylated, native lysozyme and a 

lysozyme PEGylation reaction (1:3) separation on optimized linear gradient conditions in HAC. Buffer A: 

Tris-HCl pH 7.5. Buffer B: Tris-HCl pH 7.5 containing 1 M NaCl; linear gradient from A to B of 13 CVs, 

flow rate: 0.8 mL min-1, protein load: 1 mg mL-1, loop: 200 µL. [Di-PEGylated lysozyme]: 2 mg mL-1, 

[Mono-PEGylated lysozyme]: 4 mg mL-1, [Native lysozyme]: 1 mg mL-1. Each protein standard and the 

reaction mixture were analyzed separately. The chromatograms were superimposed. 

 

3.4.2.2 Step gradient purification 

 

Based on the optimal conditions of the linear gradient and salt concentrations at which 

mono-PEGylated and native lysozyme eluted, 0.18 M and 0.32 M NaCl, respectively, a step 

gradient method was designed to separate the lysozyme PEGylation reaction products. Several 

tests were assayed changing the percentage of phase B and the duration of the step for the first 

two steps; the third was fixed at 100% of B. Almost the complete separation of proteins was 

achieved with a first step at 0.05 M NaCl with 5 CVs, and a second step at 0.25 M NaCl with 5 

CVs (Figure 3.4). These results point out that the small differences in the salt concentration make 

it possible to elute mono-PEGylated lysozyme from the native one (Figure 3.4); the low NaCl 

concentration is favorable to recover the protein in solution and even the subsequent desalting 

operation may be omitted. One sign of total purification in the step gradient procedure is the 

reached resolution (2.35 ± 0.001), which is greater than 1.5, a resolution factor greater than or 

equal to 1.5 is considered a complete separation of peaks41 So, the yield and purity estimated by 

the plate model theory were 100% approximately; these values are 1.078 and 1.003 times greater 
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than the yield and purity reached during the optimal conditions in the linear gradient, respectively. 

Productivity (0.048 ± 0.001 mg mL-1 min-1) improved slightly with respect to the linear gradient 

prediction (0.041 mg mL-1 min-1). Clearly, the step gradient procedure improves the separation of 

the lysozyme PEGylation reaction. 

 

 

 

Figure 3.4 Step gradient elution profile of lysozyme PEGylation reaction (1:3) on HAC. Buffer A: Tris-HCl 

pH 7.5. Buffer B: Tris-HCl pH 7.5 containing 1 M NaCl; step gradient from A to B. First step: 5% of B (5 

CVs), second step: 25% of B (5 CVs), third step:100% of B (2 CVs), flow rate: 0.8 mL min-1, loop: 200 µL. 

 

Since no detailed information on yield and purity have been published for other 

chromatographic separations of mono-PEGylated lysozyme it was not possible to compare our 

results with previously reported ones. Our yields and purities (either those obtained by the 

optimized linear gradient or step gradient) are better relative to those reached for mono-

PEGylated ribonuclease A purification in hydrophobic interaction chromatography (HIC) using 

butyl sepharose (85% yield and 97% purity)57 and sepharose 6B-PEG5000 (96% yield and 85 % 

purity).58 In these separations the plate model was also applied to estimate yield and purity, and 

ribonuclease A is a protein with similar size to lysozyme (13.6 kDa vs 14.3 kDa), so it is a good 

guide to compare. The calculated productivity in the above-mentioned HIC purifications was 

0.0039 mg mL-1 min-1 and 0.0031 mg mL-1 min-1, respectively; these values are lower than those 

presented in this work.  

 



Chapter 3. Optimized purification of mono-PEGylated lysozyme by HAC using RSM  

 

58 

  

Comparatively, HAC presented better resolution between conjugates than the observed 

when cation exchange resins separated 5, 10 and 30 kDa PEGylated lysozyme reactions48, 52. 

Also, the separation with Toyopearl Gigacap S-650M was longer (400 min)48 than the required 

time to perform a chromatographic run in HAC at optimized step gradient method (16.8 min). In 

summary, HAC for PEGylated proteins purification is a promising technique.   

 

3.5 Conclusions 

 

The adsorption of di-PEGylated, mono-PEGylated and native lysozyme to heparin 

Sepharose 6 Fast Flow adsorbent is described by the monolayer Langmuir model. The PEGylated 

conjugates had less affinity for the heparin adsorbent than the native protein while 20 kDa mPEG 

propionaldehyde did not display unspecific binding with the resin. 

 

A robust, efficient and novel chromatographic method for the purification of mono-

PEGylated lysozyme from a PEGylation reaction mixture was developed with Heparin Affinity 

Chromatography (HAC). The linear salt gradient elution using 20 mM Tris-HCl with 1 M NaCl was 

optimized via a Box-Behnken design, for which the adequate conditions used in the separation 

were a gradient length of 13 CVs, flow at 0.8 mL min-1 and protein load of 1mg mL-1. In this elution 

mode the predicted values by the model for the yield, purity and productivity were validated 

experimentally with an error level lower than 5% (α < 0.05). The linear salt gradient found helped 

in designing a step gradient procedure to obtain a higher yield and purity of around 100 % 

approximately and a productivity of 0.048 mg mL-1 min-1. These yields, purities and productivities 

achieved for mono-PEGylated lysozyme by HAC are superior to those found in the purification of 

PEGylated proteins using other types of packed-bed chromatography, particularly HIC and 

advantageous in time saving and resolution respect to CEX.  

 

The optimization strategy implemented in operation stage with Response Surface 

Methodology (RSM) offers the possibility to streamline other chromatographic purifications with 

PEGylated proteins as a first step to design proper, efficient and fast purification procedures. 
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3.6 Supplementary material 

 

Table A1. Criteria for joint optimization for mono-PEGylated lysozyme purification in linear gradient of 

HAC 

 

Response variable Goal Target Lower  Importance 

Yield (%) Maximize 95.00 88.00 1.0 

Purity (%) Maximize 99.80 99.00 1.5 

Productivity (mg mL-1 min-1) Maximize 0.040 0.030 8.0 

 

 

 

 

Figure S1. Langmuir adsorption isotherms of native and PEGylated lysozyme on Heparin Sepharose 6 

Fast Flow obtained after 5 h at room temperature. 

 

Expressions describing quadratic models: 

 

𝑌𝑖𝑒𝑙𝑑 (%) = −2.885 + 2.337𝐺𝐿 + 156.257𝐹 + 17.568𝑃𝐿 − 0.059𝐺𝐿2 − 76.052𝐹2 −

22.330𝐹 ∗ 𝑃𝐿                                                                                                             (S3.1) 

 

𝑃𝑢𝑟𝑖𝑡𝑦 (%) = 99.329 + 0.101𝐺𝐿 − 1.705𝐹 + 0.70𝑃𝐿 − 0.004𝐺𝐿2 − 0.302𝑃𝐿2 + 0.059𝐺𝐿 ∗

𝐹                                                                                                                                (S3.2) 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (
𝑚𝑔

𝑚𝐿∗𝑚𝑖𝑛
) = 0.108631 − 0.003281𝐺𝐿 − 0.053439𝐹 + 0.302756𝑃𝐿 −

0.000023𝐺𝐿2 − 0.001393𝐺𝐿 ∗ 𝐹 − 0.000095𝐺𝐿 ∗ 𝑃𝐿 − 0.005739𝐹 ∗ 𝑃𝐿                     (S3.3) 

 

Where GL is gradient length (CVs), F is flow (mL min-1) and PL is protein load (mg mL-1). 
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4.1 Abstract 

 

BACKGROUND: The bioavailability of therapeutic proteins is improved through PEGylation. This 

chemical modification involves the production of isomers with different number and site of 

attached PEG chains, which are difficult to separate efficiently. Their purification with 

chromatography requires the understanding of the operation and the evaluation of different 

operational conditions. We applied the General Rate Model (GRM) for modelling the linear salt 

gradient elution of mono-PEGylated and native lysozyme in Heparin Affinity Chromatography 

(HAC) considering mass balance equations for proteins in the bulk-fluid phase, in the particle 

phase and the kinetic adsorption. 

 

RESULTS: The model was able to simulate the individual proteins and the separation of these in 

a PEGylation reaction using as proof-of-concept a mono-PEGylated and native lysozyme mixture 

under the change of operational parameters such as the gradient length (5, 13, 25 column 

volumes) and flow (0.8 and 1.2 mL min-1) with a relative error in retention times of less than 6% 

and correlation coefficients greater than 0.78. 

 

CONCLUSION: Simulation of the elution curves of PEGylated lysozyme in HAC was performed 

in this work and the diverse information generated by the model is explained through the 

physicochemical protein properties. This simulation represents a tool for optimization, prediction 

and future scale-up of PEGylated proteins purification, which would reduce the investment in time 

and resources to test several operation conditions.  

 

 

Key words: Simulation; mono-PEGylated lysozyme; Heparin Affinity Chromatography (HAC); 

General Rate Model (GRM); PEGylation. 
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4.2 Introduction 

 

PEGylated proteins are therapeutics with improved biodistribution, physical and chemical 

properties caused by the addition of polyethylene glycol (PEG) to the protein such as good 

solubility, resistance to proteolysis, retarded kidney elimination, and non-toxicity.1, 2 

 

Lysozyme is a model enzyme which interacts with large substrates, and it has 

demonstrated bactericidal activity with numerous applications as a food preservative, antibiotic 

and pharmacological agent,3, 4 it is due to this reason that the PEGylation of this protein and its 

use are being widely studied.5, 6 The lysozyme PEGylation reaction contains reactive PEG, 

unmodified proteins and PEG-modified proteins or conjugates; of the latter only the mono-

PEGylated conjugates have the appropriate characteristics and efficacy for their beneficial action. 

Despite the fact that diverse chromatographic modes in packed bed column have been tested in 

one-single step purification, such as Size Exclusion (SEC), Ion exchange (IEX), Reverse Phase 

(RPC) and Hydrophobic Interaction (HIC), the yield and purity are usually being low.7 Recently, it 

has been demonstrated that heparin affinity chromatography (HAC) is able to separate the 

products of the lysozyme PEGylation reaction with high yield and purity.8 However, purification of 

mono-PEGylated lysozyme and any other PEGylated proteins at pilot production level demand to 

have knowledge about the mechanism governing the separation so as to understand, optimize, 

control, predict and scale-up the chromatographic operation. Simulation and modelling of 

chromatographic processes is a tool to reach these aims,9 in addition to selecting strategic 

directions in the design, thus saving time and resources.10 Until now, simulation of 

chromatographic separation of polymer grafted proteins has not been studied and it can help to 

overcome or make efficient the current challenges and difficulties in the post-production of 

PEGylated proteins. Since the original physical and chemical properties of the PEG-modified 

proteins are changed by the PEGylation,11 it is interesting to evaluate if the separation of 

PEGylated proteins can be predicted through the simulation. In this way, many trials in the 

chromatographic purification of PEGylated proteins may reduce costs in the optimization of 

expensive PEG-modified proteins. 

 

The theoretical relationships in a process such as chromatography are described in a 

mathematical model, a set of expressions; then these equations are solved under specific 

conditions.12 Among the most used models to represent and simulate the behavior of adsorptive 

chromatography with proteins is the General Rate Model (GRM). 10, 13 Particularly, in affinity 



Chapter 4.Simulation of mono-PEGylated lysozyme separation in HAC using a GRM 

 

68 

  

chromatography the examples of application of the GRM are few. These include the scale-up of 

the separation of a bovine serum albumin (BSA) and hen egg white lysozyme solution on Cibacron 

Blue F-3GA column,14 the salt gradient elution of Bovine Serum Albumin (BSA) and rabbit 

hemoglobin (Hb) from Blue Sepharose CL-6B, and the pH gradient elution of a three-mouse 

antibody mixture (Ig G1, Ig G2a and Ig G2b) from protein A.15 

 

The objective of this research was to model and simulate the elution curves of mono-

PEGylated lysozyme and native lysozyme in HAC with a linear salt gradient elution applying the 

theory of the GRM. Also the simulation efficiency when changes in operational parameters (flow 

and gradient length) was evaluated. 

 

4.3 Theory 

 

4.3.1 General rate model 

 

The general rate model (GRM) is a mathematical model used for studying 

chromatographic phenomena using rate expressions which represent the mass transfer of the 

components (protein and modulator or salt) in the system. The GRM considers in the 

mathematical formulation the adsorbent properties, process conditions and different mass 

transfer processes.13, 16 The model is integrated by three sets of differential equations (Equation 

1 to 3 in Supplementary Material), two of them describing the mass balance of the components 

in the bulk-fluid phase and in the particle phase inside the bed,17 and the third representing the 

adsorption mechanism of the proteins to the adsorbent.  

 

In the formulation of the GRM, the assumptions considered are: isothermal 

chromatography, spherical and uniform diameter of adsorbent particles, negligible radial 

dispersion in the column and no convective flow inside the macropores. There is an instantaneous 

equilibrium between macropore surfaces and the stagnant fluid inside the particles; diffusional 

and mass transfer parameters are constant and independent from the mixing effects of the 

components involved; the column was pre-equilibrated. Before the sample load the system does 

not contain protein; symmetric distribution of the compounds inside the adsorbent; and the column 

outlet protein dispersion flux is null.13, 17 
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Mass balance of the protein in the bulk-fluid phase takes into account diffusion, 

convection, accumulation and interfacial flux from bulk-fluid to particle (Eq. (S4.1) in 

Supplementary Material). For the salt component, interfacial mass transfer is not considered. The 

mass balance of the particle inside the pore involves accumulation in the micropore, accumulation 

in the macropore, and radial diffusion inside the porous particle (Eq. (S4.2) in Supplementary 

Material). Finally, the adsorption of the protein is modeled as a second-order kinetic binding 

reaction (Eq. (S4.3) in Supplementary Material) and initial and boundary conditions are given by 

equations (S4.4) to (S4.10) in Supplementary Material. 

 

The affinity of the proteins for the ligand and the modulator concentration in the mobile 

phase were described with a linear relationship, which has been proposed by Melander et al18 

and validated by Sandoval et al15 in affinity chromatography. 

 

𝐥𝐨𝐠𝟏𝟎𝐛𝐢 =  𝛂𝐢 − 𝛃𝐢𝐂𝐛,𝐍+𝟏                                                     (4.1) 

 

with 𝑏𝑖 being a parameter in a Langmuir isotherm, in Eq. (4.2), that considers equal saturation 

capacities (𝐶∞) for all the components: 

 

𝒄𝒑𝒊
∗ =

𝒂𝒊𝐜𝒑𝒊

𝟏+∑ 𝒃𝒋𝑪𝟎𝒋𝒄𝒑𝒋
𝑵
𝒋=𝟏

                                                              (4.2) 

 

𝑎𝑖 and  𝑏𝑖 are related to Damkhöler numbers of adsorption and desorption through Eq. (4.3)  

 

 𝒃𝒊𝑪𝒐𝒊 =
𝑫𝒂𝒊

𝒂

𝑫𝒂𝒊
𝒅 ,     𝒂𝒊 = 𝑪∞𝒃𝒊 = 𝒄𝒊

∞ 𝑫𝒂𝒊
𝒂

𝑫𝒂𝒊
𝒅                                             (4.3) 

 

4.4 Materials and methods 

 

4.4.1 Materials  

 

The resin Heparin Sepharose 6 Fast Flow (Cat. No. 17099801) was purchased from GE 

Healthcare (Uppsala, Sweden). Lysozyme from chicken egg white (Cat. No. 10837059001) was 

acquired from Sigma Aldrich. Methoxy-PEG-propionaldehyde (Cat No. A3001-10) with a nominal 

molecular weight of 20 kDa was obtained from Jen Kem Technologies (TX, USA). Tris buffer 

grade (Cat. No. TR-16514) came from Winkler LTDA (Santiago, Chile). Sodium chloride (Cat. No. 
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106404) came from Merck Millipore (MA, USA). The mono-PEGylated lysozyme standard was 

prepared and purified as indicated by Mayolo-Deloisa et al.19 

 

4.4.2 Chromatographic experiments 

 

Resin was packed into a 5/5 HR column (5 cm length, 0.5 cm diameter, Pharmacia 

Biotech) and chromatographic experiments were performed in an Äkta Purifier 10 System (GE 

Healthcare, Uppsala, Sweden) equipped with a 200 µL injection loop using a linear salt gradient 

of 1M of sodium chloride as it was pointed out by Mejía-Manzano et al.8  As mobile phases A and 

B, 20 mM Tris-HCl pH 7.5 and 20 mM Tris-HCl pH 7.5 containing 1 M NaCl were used, 

respectively. The detection of native and mono-PEGylated lysozyme was done at 215 nm. 

 

Individual standards of the proteins were injected separately to obtain the elution curves 

at a flow of 0.8 mL min-1 and 13 column volumes (CVs). To represent the lysozyme PEGylation 

reaction, mixtures containing mono-PEGylated and native lysozyme in mass ratio (4:1)8 were 

prepared at a total protein load of 1 mg mL-1. These mixtures were analyzed in the Äkta Purifier 

10 System at different combinations of flow and gradient length as shown in Table 4.1. 

 

Table 4.1 Operation conditions used for simulating elution of mono-PEGylated and native lysozyme 

mixture in HAC 

 

Tested condition 
Flow 

(mL/min)  

Gradient length 

(CVs) 

A 0.8 13 

B 1.2 13 

C 1.2 5 

D 0.8 25 

E 0.8 5 

F 1.2 25 

 

4.4.3 Software and numerical methods for simulation 

 

The formulated rate model was translated to algorithms programmed in Matlab® R2014a 

software (The Mathworks, Natick, MA, USA) based on programming guides established by 

Sandoval et al15 and Gu et al.17 The bulk-fluid and the particle phase expressions were discretized 
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in space with finite elements (with 5 quadratic elements) and orthogonal collocation methods to 

obtain an Ordinary Differential Equations (ODEs) system.15 This ODEs system was solved with 

the Matlab ode15s routine. All simulations were carried out on a laptop computer with Windows 

8.1 operating system. 

 

4.4.4 Parameter definition and estimation of kinetic parameters for individual 

protein standards 

 

Parameters are classified in physical, operational, dimensionless mass transfer 

parameters and adsorption kinetic parameters. The first refers to the physical characteristics of 

the adsorbent, sample, phases and column (Table 4.2), and were found and established 

according to Orellana et al,20 Hahn,21 Geankoplis22 and Hage and Cazes.23 Since for this particular 

chromatography the reference in the values of tortuosity (Ʈtor) and bed void volume fraction (εb) 

was absent, it was decided to perform preliminary simulations with individual standards and select 

their adequate value in the approximation of the kinetic parameters. The values tested for Ʈtor 

were 2, 4 and 6 and for εb were 0.2, 0.3 and 0.4, taking as positive criteria the absence of an initial 

peak and how long took the simulation. Also interior orthogonal collocation points (Nr) with values 

of 2, 4 and 8 were evaluated. 

 

Table 4.2 Physical parameters used in chromatographic simulations 

 

Physical parameter Value 

Bed void volume fraction, εb  0.2a 

Column capacity, C ∞(M) Lys nat 0.660b; Lys mon 0.622b 

Column length, L(cm) 5c 

Column volume, V (mL) 1 

Density of the mobile phase, ρ (g cm-3) 0.99823d 

Inner diameter of the column, d (cm) 0.5c 

Macroporous particle diameter, dporous (nm) 300e 

Molecular weight, MW (kDa) Lysnat 14.7f; Lysmon 34.7g 

Particle porosity, εp Lysnat 0.75h 

Particle radius, Rp (cm) 0.0090i 

Tortuosity, Ʈtor 2j 

Viscosity of the mobile phase, µ (g cm-1 s-1) 0.010015d 

a[20, 21], b[8], c Column dimensions (Pharmacia Biotech), d[22], e[23], f Sigma Aldrich, 
lysozyme (Cat. No. 10837059001), g Calculated, h[21], i[20], j[14] 
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The dimensionless mass transfer parameters and related variables (Re, PeLi, Rh, Dpi, dmi, 

Dmi, ki, Bii) were determined through the same equations as in Sandoval et al15 and Orellana et 

al20 (Eq. (S4.11) to (S4.20) in Supplementary Material). 

 

Adsorption kinetic parameters (α, β, Dad) were estimated applying Eq. (4.3) for each 

protein from the experimental curves of the pure proteins at a flow of 0.8 mL min-1 and a gradient 

length of 13 CVs, starting off with approximated values and after obtaining the precise values 

through the algorithm “fminsearch” of Matlab with termination tolerance on 1x10-4 .  

 

Operational parameters such as gradient length and flow are those which can be modified 

during each run such as flow, protein concentration and gradient length.  

 

4.4.5 Simulation of PEGylation mixture separation at different operational 

conditions 

 

Once kinetic parameters were determined for mono-PEGylated and native lysozyme, 

protein mixtures at different conditions were simulated. 

 

4.4.6 Statistical analysis 

 

To evaluate the simulation effectiveness, two criteria were considered: the relative error 

between simulated and experimental retention times and the correlation of the simulated and 

experimental data. Relative error in retention times was calculated using the following equation: 

 

𝐄𝐫𝐫𝐨𝐫 (%) = |𝟏 −
𝐭𝐬𝐢𝐦

𝐭𝐞𝐱𝐩 
| ⋅ 𝟏𝟎𝟎                                             (4.4) 

 

Where tsim is simulated retention time and texp is the average of experimental retention 

time. Correlation (Corr) was estimated by comparing point by point the simulated absorbance with 

the experimental absorbance. 
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4.5 Results and discussion 

 

In the present work, PEGylated lysozyme separation in Heparin Chromatography from 

native and mono-PEGylated lysozyme were simulated applying the general rate model (GRM) 

theory and resolving the derived ODEs system through a numerical method on Matlab software.  

 

4.5.1 Parameter definition and estimation for individual protein standards 

 

As it has been described in methods, preliminary tests with different Ʈtor, εb and Nr were 

done to select the best values for the simulation and kinetic parameter estimation. Therefore, 

adequate combination in this pre-selection was Ʈtor = 2, εb = 0.2 and Nr = 4. 

 

The estimated kinetic parameters for individual standards of proteins (native and mono-

PEGylated lysozyme) are shown in Table 4.3. From this table it can be seen that each kinetic 

parameter is different for both proteins. Constant α encompasses all the characteristic system 

parameters (electrostatic and hydrophobic interactions), β is only a descriptor parameter of the 

electrostatic interactions,18 and Dad is a dimensionless term which describes the relationship 

between the dissociation velocity of the ligand and protein and the mass transfer rate.24 In this 

study, we observed that β is higher for mono-PEGylated than for native lysozyme, as it was 

expected that retention of the proteins in this heparin support is inverse to the magnitude of β 

parameter. Despite the fact that β is a function of the diverse properties such as protein charge 

(number, distribution and size), salt counter-ion and charge of the stationary phase,25 it is obvious 

that the change in β is attributed to the decrease in number and size of charges in mono-

PEGylated conjugates respect to native proteins, since that elution was performed at the same 

elution conditions and with the same heparin adsorbent. As described by some authors, 11,26 there 

is a charge-shielding effect due to the PEGylation, and in ion exchange chromatography 

PEGylated proteins are weakly retained. The observed difference in β parameter also can be 

explained by a change in the isolectric points (pI). Some studies,5,27,28 have pointed out that mono-

PEGylated lysozyme may be modified in other 5 lysine residues alternatively to the N-therminal 

residue (position 1), however the most abundant isomers of mono-PEGylated lysozyme are at 

position 1 and lysine 33, those had calculated pI between 11.07 and 11.12 in comparison to 11.28 

of native lysozyme,28 so a slightly decreasing in pI occurred, although an specific correlation is 

difficult to stablish in this moment, more analysis including calculated pI and other PEGylated 

proteins would need to be done. The Damkӧler number for desorption (Dad) was greater for the 
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native than for the modified lysozyme. For the Damkӧhler desorption numbers (Dad), the values 

were intermediate without indicating apparently some prevalence of desorption on diffusion rate. 

From the Dad, the respective Damkӧhler adsorption numbers (Daa) were estimated (9.18 x 10-18 

for native and 3.02 x 10-45 for mono-PEGylated) and the adsorption rate is the rate-limiting the 

mass transfer step (Daa <1).24 The respective Daa for each protein shows that the adsorption of 

the PEG-conjugate shape occurs faster than in the native lysozyme. In general, to compare our 

estimated kinetic parameters using the Melander relationship with those published before is 

difficult since affinity supports and proteins are different. 

 

Table 4.3 Kinetic parameters estimated and used to simulate chromatographic profiles of individual and 

protein PEGylation mixtures in Heparin Affinity Chromatography 

 

Protein α β Dad Error (%) Corr* 

Native lysozyme 3.849 16.956 1.765 1.62 0.995 

Mono-PEGylated lysozyme 2.626 42.881 0.558 0.87 0.997 

α, β and Dad are dimensionless kinetic parameters.  

* Correlation coefficient between simulated and experimental absorbance data. 

 

The dimensionless number at flow 0.8 mL min-1, such as Re, showed that the flow through 

the packed heparin bed is laminar (Re <<100). Pe were greater than 280, thus indicating that the 

mass transfer process in both proteins is controlled by convection rather than diffusion. The 

estimated Bi numbers for the studied proteins were greater than 100; therefore, the external film 

mass transfer is negligible in the pore diffusion,10 predominating the intraparticle diffusion rate. In 

this last, although diffusion has few intervention on the separation, the calculated molecular 

diffusivity (Dm) showed that mono-PEGylated lysozyme (1.12 x 10-6 cm2 s-1) diffuses slower than 

the unmodified lysozyme (8.40 x 10-7 cm2 s-1). Estimated diffusivity for native lysozyme here was 

agree with the experimental coefficient measured by Brune and King29 for this same protein in 

water, reinforcing the possible use of the mono-PEGylated lysozyme coefficient in future 

calculations. The diffusivity correlates inversely (if Stokes-Einstein equation is considered and the 

proteins are treated as rigid spheres30) with estimated protein viscosity radii (Rh) using the Fee 

and Van Alstine proposed model,31 20.087 Å for native and 50.31 Å for mono-PEGylated. As it 

can be concluded, the viscosity radii in the modified protein is approximately 2.5 times greater 

than that for unmodified lysozyme, and as consequence it diffuses faster. So, the separation may 

be slightly driven for these diffusivity differences in addition to other main processes such as 

convection and adsorption rate. 
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The experimental curves for native and mono-PEGylated lysozyme are shown in Figure 

4.1A and 4.1B. The peak of the native lysozyme is symmetric while the PEGylated one is 

asymmetric presenting peak tailing, which has been associated with the low desorption reaction 

rate when some fraction of the molecules bound to the ligand are dissociated slowly.17 The peak 

tailing observed for the mono-PEGylated conjugates makes more difficult to simulate it; however, 

simulated and experimental absorbance data at 215 nm of both proteins had correlation 

coefficients (Corr) higher than 0.990. Regarding the retention times, standards showed a low 

relative error (below 2%). Therefore, individual standards were successfully simulated at 0.8 mL 

min-1 and at a linear elution gradient of 13 CVs.  

 

 

 

Figure 4.1 Experimental (dotted line) and simulated (continuous line) profiles in Heparin Affinity 

Chromatography of individual standards and salt concentration: native (A) and mono-PEGylated 

lysozyme (B) at flow 0.8 mL min-1 and gradient length 13 CVs. 

 

4.5.2 Simulation of PEGylation mixture at different operational conditions of flow 

and gradient length  

 

The comparison in retention times between the simulation and experimental profiles for 

mixtures at each operational condition from Table 4.1 is indicated in Table 4.4, while their 

respective chromatographic profiles are shown in Figure 4.2.  
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Table 4.4 Retention times and relative error of simulated and experimental peaks for individual and 

protein PEGylation mixture at different operational conditions using HAC 

 

Mixtures of proteins 

(conditions) 

Native lysozyme Mono-PEGylated lysozyme 

Corr* 
tsim texp 

Error 

(%) 
tsim texp 

Error 

(%) 

A 7.86 7.90 0.51 5.76 5.68 1.41 0.991 

B 5.11 5.33 4.13 3.77 3.82 1.31 0.920 

C 4.00 4.29 6.76 3.48 3.53 1.42 0.853 

D 10.31 9.72 6.07 6.41 6.30 1.75 0.798 

E 6.10 6.32 3.48 5.33 5.15 3.50 0.943 

F 6.63 6.42 3.27 4.21 4.25 0.94 0.784 

* Correlation coefficient between simulated and experimental absorbance data. 

 

 The protein mixture tested at condition A (flow at 0.8 mL min-1 and 13 CVs, Figure 4.2A) 

represents lysozyme PEGylation separation at the optimal conditions for the purification of mono-

PEGylated lysozyme using a linear salt gradient found by our group in a previous study8. The 

relative error for the retention time of native lysozyme in mixture A (0.51%) was lower than that in 

the individual standard (1.62%), while for the mono-PEGylated lysozyme the error increased 

slightly (0.87 vs 1.41%). The correlation between the simulation and the experimental curve in 

this mixture was also good (0.991), only the peak of the simulated unmodified protein was slightly 

smaller than in the experimental mixture. Gradient of NaCl or modulator was also well simulated. 

The error in retention times of the native lysozyme at the other conditions increased relative to 

that observed in the individual standard. The same behavior was observed for the modified 

protein. 
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Figure 4.2 Experimental (dotted line) and simulated (continuous line) profiles in Heparin Affinity 

Chromatography of protein PEGylation mixture (native and mono-PEGylated lysozyme): (A) 0.8 mL min-1 

and 13 CVs, (B) 1.2 mL min-1 and 13 CVs, (C) 1.2 mL min-1 and 5 CVs, (D) 0.8 mL min-1 and 25 CVs, (E) 

0.8 mL min-1 and 5 CVs, (F) 1.2 mL min-1 and 25 CVs. 

 

 The biggest relative errors in the simulation of the mixtures were for the native lysozyme, 

up to 7%, while the PEG-protein errors did not exceed 4%. The error of retention times of native 

lysozyme in mixtures was the highest (above 6%, Figure 4.2C-D) when the mixture was simulated 

at extreme and opposite tested operational conditions: a high flow (1.2 mL min-1) with a short 
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gradient length (5 CVs) as the mixture C or a low flow (0.8 mL min-1) with a large gradient length 

(25 CVs) as the mixture D. The error for mono-PEGylated lysozyme was kept below 2% in almost 

all mixtures except for case E (Figure 4.2E), when a gradient length of 5 and a flow at 0.8 mL 

min-1 were used. In summary, mono-PEGylated lysozyme is better simulated than unmodified 

protein in mixtures. These results show a slightly bigger difference in the modelling at operational 

conditions (flow and gradient) with respect to the simulation in the separation of conalbumin, α-

lactalbumin and BSA with the anionic Q-Sepharose Fast Flow, which errors ranked from 0 to 

4.6%,20 but our relative errors are lower than those obtained in the separation of BSA and 

hemoglobin with Blue Sepharose (values between 1.78 and 17.62%).15 

 

 The correlation indicates the overlapping of the curves and indirectly the amount of the 

predicted protein. In mixtures, the less accurate correlation for the simulations was for mixtures 

D and F (0.798 and 0.784, respectively). These had in common the same gradient length of 25 

CVs but a different flow; also, the relative error for native lysozyme was somewhat higher. This 

may be due to small changes of the kinetic parameters at different conditions as seen by Orellana 

et al,20 which would require their re-adjustment at each tested condition. 

 

 The average time in the simulation of the mixtures takes between 40 and 100 s, which is 

a very short time compared to performing a chromatogram (6 min) at the fastest conditions (flow 

at 1.2 mL min-1 and gradient length of 5 CVs), without considering the time involved in the 

preparation of samples or equipment. This suggests that simulation saves time and experimental 

costs in the determination of the adequate operational conditions. 

 

 It is important to point out that in the mentioned simulations, despite the fact that native 

lysozyme is a well-known protein, the mono-PEGylated conjugate has not been completely 

studied and characterized, and its properties are unknown with precision (molecular weight, 

viscosity radii, diffusivity), nevertheless, the results allowed to validate the used or calculated 

properties.  

 

In our study, di-PEGylated lysozyme was not included in the PEGylation protein mixture 

because in our previous work8 this protein was determined not be retained in the heparin support 

at dynamic conditions and it was proven that a mixture of mono-PEGylated lysozyme and native 

lysozyme in a 4:1 ratio represents the separation observed in a lysozyme PEGylation reaction. 
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Nowadays, model predictions based on pure proteins provide a good approximation to the real 

separation.32  

 

 The modelling of elution curves of PEGylated proteins or any other kind of polymer grafted-

protein has not been researched; hence the results shown here establish a reference for future 

simulation of polymer-protein conjugates, particularly PEGylated proteins. In the same way, mass 

transfer data obtained in the simulation offers a guide for future scale-up procedures.12  

 

As applications of the present work, we suggest the simulation of other PEG-protein 

conjugates: di-PEGylated, tri-PEGylated or poly-PEGylated isomers varying the size of the linked 

mPEG-chains in other random PEGylation mixtures. Actually, simulation of lysozyme PEGylation 

separation in other types of adsorption chromatographies such as ion exchange, hydrophobic or 

reverse phase and their comparison (from the technical and economical viewpoints) will provide 

information about the most robust technique in its purification. Also, the simulation of step gradient 

methods may increase its range of performance. As mentioned above, scale-up of Heparin 

Chromatography with lysozyme PEGylation reaction at pilot scale design process is a future 

recommended application of the simulation when conditions as the flow and gradient length are 

varied. 

 

4.6 Conclusions 

 

The purification of the adequate PEGylated protein conjugate from a reaction mixture with 

high yield and purity still continues being a challenge. Therefore, the purification of mono-

PEGylated lysozyme in HAC is limited by both the understanding of the operation itself and the 

great number of conditions to test; thus, its simulation and modelling is a strategy to deal with 

these hurdles. In this work the separation of a lysozyme PEGylation mixture, representing the 

PEGylation reaction, was simulated under different operational conditions (flow and gradient 

length) using the GRM approach. Retention times for both proteins in mixtures were predicted 

with relative errors less than 6%, indicating that unmodified lysozyme was slightly more difficult 

to be simulated in extreme and opposite conditions of flow and gradient length. Correlation 

between simulated and experimental data was the lowest when a large gradient was used; 

however, the rate model was able to simulate the elution curves of the separation between mono-

PEGylated and native lysozyme in HAC. The processes that controlled the separation were the 

adsorption/desorption rate, the convection and the pore diffusion.  
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In the future, scale-up to a pilot plant purification through HAC may be done taking as a 

basis the information collected by the simulation done; furthermore, the application of the GRM 

to chromatography of PEGylated proteins may be extended to other modes for optimizing each 

process individually. 

 

4.7 Supplementary material  

 

4.7.1 General rate model 

 

Derived from continuity equations, Eq. (S4.1) represents the mass balance of the protein 

in the bulk-fluid phase, taking into account the terms of diffusion, convection, accumulation and 

interfacial flux from bulk-fluid to particle.15 For the salt component or modulator, the last three 

terms are omitted because the interfacial mass transfer is not considered. 

 

−𝟏

𝑷𝒆𝑳𝒊

𝝏𝟐𝒄𝒃𝒊

𝝏𝒛𝟐 +
𝝏𝒄𝒃𝒊

𝝏𝒛
+

𝝏𝒄𝒃𝒊

𝝏𝝉
+ 𝛏𝒊(𝒄𝒃𝒊 − 𝒄𝒑𝒊,𝒓=𝟏) = 𝟎                                      (S4.1) 

 

The mass balance of the particle inside the pore involves accumulation in the micropore, 

accumulation in the macropore, and radial diffusion inside the porous particle, and is given by Eq. 

(S4.2)  

 

(𝟏 − 𝝐𝒑)
𝝏𝒄∗

𝒃𝒊

𝝏𝝉
+ 𝝐𝒑

𝝏𝒄𝒃𝒊

𝝏𝝉
− 𝜼𝒊 [

𝟏

𝒓𝟐

𝝏

𝝏𝒓
(𝒓𝟐 𝝏𝒄𝒑𝒊

𝝏𝒓
)] = 𝟎                                  (S4.2) 

  

The third equation expresses a second-order kinetic binding: 

 

𝝏𝒄∗
𝒑𝒊

𝝏𝒕
= 𝑫𝒂𝒊

𝒂𝒄𝒑𝒊 (𝒄𝒊
∞ − ∑

𝑪𝒐𝒋

𝑪𝒐𝒊

𝑵
𝒋=𝟏 𝒄𝒑𝒋

∗ ) − 𝑫𝒂𝒊
𝒅𝒄𝒑𝒊

∗ = 𝟎                                   (S4.3) 

 

The initial and boundary conditions are given by Eq. (S4.4): 

 

𝐜𝐛𝐢(𝟎, 𝐳) = 𝟎                                                          (S4.4) 
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𝝏𝒄𝒃𝒊(𝝉,𝟎)

𝝏𝒛
= 𝑷𝒆𝑳𝒊 [𝒄𝒃𝒊(𝝉, 𝟎) −

𝑪𝒇𝒊(𝝉)

𝑪𝒐𝒊
]                                           (S4.5) 

 

𝛛𝐜𝐛𝐢(𝛕,𝟏)

𝛛𝐳
= 𝟎                                                           (S4.6) 

 

for i = 1, …, N+1 

 

𝐜𝐩𝐢(𝟎, 𝐳, 𝐫) = 𝟎                                                     (S4.7) 

 

𝒄𝒑𝒊
∗ (𝟎, 𝒛, 𝒓) = 𝟎                                                     (S4.8) 

 

𝛛𝐜𝐩𝐢(𝛕,𝟎,𝐳)

𝛛𝐫
= 𝟎                                                       (S4.9) 

 

𝝏𝒄𝒑𝒊(𝝉,𝟏,𝒛)

𝝏𝒓
= 𝑩𝒊𝒊[𝒄𝒃𝒊(𝝉, 𝒛) − 𝒄𝒑𝒊(𝝉, 𝒛, 𝟏)]                                    (S4.10)  

for i=1, …, N 

 

4.7.2 Estimation of dimensionless mass transfer parameters and variables15 

 

Re number was calculated as:  

 

𝐑𝐞 =  
𝟐 𝐑𝐩𝐯𝛒

𝛍
                                                            (S4.11) 

 

For Peclet number (PeLi) with 0.001 < Re < 1000:  

 

𝐏𝐞𝐋𝐢 =  
𝐋

𝟐𝐑𝐏∈𝐛
(𝟎. 𝟐 + 𝟎. 𝟎𝟏𝟏𝐑𝐞𝟎.𝟒𝟖)                                    (S4.12) 

 

Solute molecular diameter (dm) was estimated multiplying for 2 the viscosity radius (Rh), 

which was calculated for native (Rhprot) and PEGyated lysozyme (RhPEG-prot) using the proposed 

equations by Hagel33 and Fee and Alstine,31 respectively. For viscosity radius for mPEG (RhPEG) 

was used the expression indicated by Kuga.34 
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𝐑𝐡𝐩𝐫𝐨𝐭 = 𝟎. 𝟖𝟐 (𝐌𝐖)
𝟏

𝟑                                            (S4.13) 

 

𝐑𝐡𝐏𝐄𝐆 = 𝟎. 𝟏𝟗𝟏𝟐 (𝐌𝐖)𝟎.𝟓𝟓𝟗                                      (S4.14) 

 

𝐑𝐡𝐏𝐄𝐆−𝐩𝐫𝐨𝐭 =
𝟏

𝟔
[𝟏𝟎𝟖𝐑𝐡𝐩𝐫𝐨𝐭

𝟑 + 𝟖𝐑𝐡𝐏𝐄𝐆
𝟑 + 𝟏𝟐(𝟖𝟏𝐑𝐡𝐩𝐫𝐨𝐭

𝟔 + 𝟏𝟐𝐑𝐡𝐩𝐫𝐨𝐭
𝟑 𝐑𝐡𝐏𝐄𝐆

𝟑 )
𝟏

𝟐]
𝟏

𝟑 +

𝟐

𝟑

𝐑𝐡𝐏𝐄𝐆
𝟐

[𝟏𝟎𝟖𝐑𝐡𝐩𝐫𝐨𝐭
𝟑 +𝟖𝐑𝐡𝐏𝐄𝐆

𝟑 +𝟏𝟐(𝟖𝟏𝐑𝐡𝐩𝐫𝐨𝐭
𝟔 +𝟏𝟐𝐑𝐡𝐩𝐫𝐨𝐭

𝟑 𝐑𝐡𝐏𝐄𝐆
𝟑 )

𝟏
𝟐]

𝟏
𝟑

+
𝟏

𝟑
𝐑𝐡𝐏𝐄𝐆                   (S4.15) 

 

𝐝𝐦 = 𝟐𝐑𝐡                                                     (S4.16) 

 

For molecules with MW > 1000, molecular diffusivity (Dm) is estimated with the Polson`s 

correlation: 

 

𝐃𝐦 = 𝟐. 𝟕𝟒 𝐱 𝟏𝟎−𝟓(𝐌𝐖)
−𝟏

𝟑                                             (S4.17) 

 

Effective diffusivity (Dpi) was calculated using equation (S4.18), which λ=dm/dp 

 

𝐃𝐩𝐢 =  
𝐃𝐦((𝟏−𝟐.𝟏𝟎𝟒𝛌+𝟐.𝟎𝟗𝛌𝟑−𝟎.𝟗𝟓𝛌𝟓)

Ʈ𝐭𝐨𝐫
                                    (S4.18) 

 

Film mass transfer coefficient (ki) was determined with: 

 

𝐤𝐢 = 𝟎. 𝟔𝟖𝟕𝐯
𝟏

𝟑(
𝟏

𝐃𝐦
∈𝐛 𝐑𝐩)

−𝟐

𝟑                                             (S4.19) 

 

And Biot number was calculated using: 

 

𝐁𝐢𝐢 =
𝐤𝐢𝐑𝐩

∈𝐩𝐃𝐩𝐢
                                                              (S4.20) 
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4.8 Nomenclature 

 

Bii Biot number for mass transfer for component I, kiRp/εpDpi 

Coi Maximum concentration of protein i, equal to initial feed concentration of the 

component 

C∞ Maximum capacity of the column 

CA,N+1 Initial dimensionless concentration of the modulator in the mobile phase 

cbi Dimensionless concentration of component i in the bulk-fluid phase 

Cfi(Ʈ) Feed concentration of  component i 

cpi Dimensionless concentration of component i adsorbed to the resin 

d Inner diameter of the column 

Dai
a Damkӧler number for adsorption of component i, LkaiCoi/v 

Dai
d Damkӧler number for desorption of component i, Lkdi/v 

Dbi Axial dispersion coefficient of component i 

dmi Solute molecular diameter 

dp Solute molecular diameter 

Dmi Molecular diffusivity 

Dpi Effective diffusivity of component i 

F Flux of the mobile phase 

L Column length 

kai Adsorption rate constant for component i. 

kdi Desorption rate constant for component i. 

ki Mass transfer coefficient of component i 

N Number of proteins in the sample. Modulator corresponds to component N+1 

Nr Radial dimension, interior orthogonal collocation points 

Nz Axial dimension, finite element discretization points 

PeLi Peclet number for mass transfer component i, vL/Dbi 

r Dimensionless radial coordinate 

Rp Radius of the adsorbent particle 

Re Reynolds number, 2Rpvρ/µ 

Rh Viscosity radii 

v Interstitial velocity, 4F/Ʈd2εb 

z Dimensionless axial coordinate 

αi, βi Experimental parameters for the exponential elution relationship 

εb Bed void volume fraction 

εp Adsorbent particle porosity 

Ʈ Dimensionless time 

Ʈtor Tortuosity 

ηi Dimensionless parameter for component i, εpiDpiL/Rp
2v 

µ Viscosity of the mobile phase 

ξi Dimensionless parameter for component i, 3Bii ηi (1-εb)/εb 

ρ Density of the mobile phase 
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5.1 Abstract 

 

Immunosorbents in Inmunoaffinity Chromatography (IAC) are prepared immobilizing 

expensive antibodies without guidelines for ensuring the best coupling efficiencies, and avoid low 

binding capacities. Covalent immobilization of antibodies on N-hydroxysuccinimide (NHS) 

activated Sepharose 4 Fast Flow resin was optimized using human Ig G via full factorial design 

with incubation times (4, 9, 14, 19 and 24 h), temperatures (4 ºC and 20ºC) and coupling reaction 

buffers (sodium bicarbonate and triethanolamine). The best coupling efficiency (CE) (83.4 ± 8.7%) 

was reached with triethanolamine buffer, 14 h and 4 ºC. Comparison of antibody isotypes (Ig G 

or Ig M) by a nested factorial analysis suggested that antibodies in the Ig G isotype presents the 

best coupling efficiency. 

 

 

Key words: Coupling Efficiency (CE); Ig G; Ig M; Immunoaffinity Chromatography (IAC); 

Optimization. 

 

 

5.2 Introduction 

 

Immunoaffinity chromatography (IAC) is a separation technique with high specificity and 

selectivity that takes advantage of the antigen-antibody recognition as the principle for the 

separation of different biotechnological products.1,2 Diverse target biomolecules (i.e. viruses, 

hormones, peptides, enzymes and pharmaceutical substances) with different characteristics have 

been purified with this technique using antibodies as ligands.3,4 These antibodies are immobilized 

on solid supports that consist of several low or high performance materials such as cellulose or 

agarose, modified silica, methacrylate, acrylamide and polyethersulfone among others.5 An 

optimal support must be mechanically and chemically stable and should avoid non-specific protein 

binding6 Antibodies and the support constitute the immunoaffinity matrix or immunosorbent.  

 

In preparing IAC supports, there are three different antibody immobilization methods: 

random immobilization, site-specific immobilization and adsorption to secondary ligands.7 The 

choice of the method for antibody incorporation should be based on ligand availability and cost, 

frequency of use, and the final objective of the immunoaffinity operation. In this sense, a typical 

method involves the covalent attachment of antibodies to the support because this technique 
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allows retaining and stabilizing these biomolecules during the chromatographic elution phase8. 

Besides, this strategy allows the reuse of the chromatographic resin7 avoiding considerable losses 

of antibodies by leaching.  

 

The covalent immobilization of antibodies uses amino, hydroxyl and carboxyl groups in 

the biomolecule for random immobilization while thiol groups and carbohydrate residues are 

exploited in site-selective immobilization5. Immobilization by primary amines represents the most 

used route since this group is an effective nucleophile which can react with carboxylic acids 

present in the resin through activated agents such as N-N´-carbonildiimidazol, aldehyde, 

isothiocyanate, cyanogen bromide, epoxide, tresyl/tosyl chloride or N-hydroxysuccinimide 

(NHS).9 Furthermore, NHS esters are the most common activating groups for carboxylic acids, 

due to their capacity as leaving groups that form stable amide groups, when these react with 

amines.10 However, this process is sometimes incomplete potentially due to steric hindrance or 

improper orientation which reduce antibody binding capacity.7 For this reason, optimizing and 

assuring a more efficient antibody coupling to the support is important.  

 

Until now, optimization of the covalent coupling of antibodies to produce IAC resins has 

not been studied thoroughly but should be an important reference for the immobilization of difficult 

to produce and/or expensive antibodies with potential use in the purification of high-value 

biomolecules, biomarkers or cells. In this context, statistical experimental designs have been 

applied in several biological, environmental, pharmaceutical, food and industrial processes to 

screen which factors influence an experiment while finding the optimal settings for the 

procedure,11 reducing time and using resources efficiently. Finding the optimal coupling conditions 

in the preparation of IAC supports by using a model antibody such as human Ig G is important in 

establishing efficient reaction parameters for other expensive antibodies that might be used in the 

recovery of high-value biotechnological products via IAC. Furthermore, the coupling of antibodies 

of different kinds or with different physicochemical characteristics to chromatographic supports is 

also important to validate the obtained human Ig G optimized conditions. One of these antibodies, 

anti CD-133, has received particular attention due to its capacity of recognizing the stem cell 

marker CD-133.12 In fact, diverse bioprocesses are being investigated right now for future 

purification of stem cells using the anti CD-133 antibody.13 So preparation of an immunosorbent 

by coupling the anti-CD133 antibody can potentially contribute to the downstream processing of 

stem cells. Another important and potentially useful IAC ligand is the anti-PEG (polyethylene 

glycol) antibody, a novel murine antibody produced to evaluate PEGylation efficiency, 
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pharmacokinetics, pharmacodynamics and immunogenicity of PEGylated drugs.14 This 

biomolecule may be used in the future for the purification of PEGylated proteins or PEG removal 

from different streams via IAC. 

 

The aim of this work was to optimize the covalent coupling of isotype G antibodies on 

activated-Sepharose 4 Fast Flow resin using human Ig G as a model ligand and examining factors 

such as reaction time, temperature and buffer type. The optimized coupling conditions are 

compared with other isotype molecules (i.e. Ig M) to assess their applicability in the general 

preparation of IAC supports since comparison of the coupling of antibody isotypes into this kind 

of resin has not been previously reported. By knowing the adequate levels for each reaction factor, 

a high and optimal antibody coupling percentage can be reached. Although an increase in 

coupling efficiency does not necessarily correlates to an increase in the binding capacity,15 a 

larger number of antibodies immobilized in a resin would extend the number of binding sites for 

the target molecule in the purification process.  

 

5.3 Materials and methods 

 

5.3.1 Materials 

 

NHS-activated Sepharose 4 Fast Flow was purchased from GE-Healthcare (Uppsala, 

Sweden). Human Immunoglobulin Ig G (Cat. No. 340-21) was acquired from Lee Biosolutions 

(MO, USA). Anti PEG Ig M antibody (Cat. No. A01795) was purchased from Gen Script (NJ, USA) 

and anti CD-133 antibody was kindly donated by Dr. Richard C. Willson of the University of 

Houston. Bradford reagent, hydrochloric acid, triethanolamine and ethanolamine were purchased 

from Sigma-Aldrich (MO, USA). Sodium chloride, sodium acetate, glacial acetic acid, and sodium 

bicarbonate were all of analytical grade and acquired from J.T. Baker (PA, USA). Tris 

(hydroxymethyl aminomethane) and glycine were purchased from BioRad (CA, USA). Deionized 

water was produced using a Milli-Q-integral Water Purification System (EMD Millipore, Darmstadt 

Germany). All other salts and reagents used were from analytical grade or higher. 

 

5.3.2 General experimental strategy  

 

The followed strategy for the optimization of antibody coupling on NHS-activated 

Sepharose 4 Fast Flow resin is described in Figure 5.1. The first stage consisted of optimization 
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Ig G coupling through a full factorial design. After that, a nested factorial design study about the 

effect of antibody isotype on CE was performed. 

 

5.3.3 Ig G coupling experimental design  

 

A factorial design was generated in Minitab 15.1.20.0 (2007) software (Minitab Inc., PA, 

USA) using CE as a response output and as factors the reaction times (4, 9, 14, 19 and 24 h), 

temperature (4 or 20°C) and kind of coupling buffer (sodium carbonate (NaHCO3) or 

triethanolamine) with two replicates. The results analysis was also performed using the Minitab 

software as specified below. 

 

 

 

Figure 5.1 General methodological scheme for the covalent optimization of antibody coupling used in this 

work. 

 

5.3.4 Preparation and coupling of antibodies to the activated resin  

 

Preparation and coupling of human Ig G was carried out testing different variables along 

the recommendations provided by the manufacturer. Briefly, NHS-activated Sepharose 4 Fast 
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Flow (200 µL) was thoroughly washed with 2.5 V (gel volumes) of a cold 1 mM solution of HCl 

three times centrifuging at 16,000 rpm (27, 000 x g) for 5 min in each one of them. Afterwards, 

the resin was equilibrated twice with 2 V of the corresponding coupling buffer. 0.5 mg mL-1 stock 

solutions of antibodies were prepared in 0.2 M NaHCO3 pH 8.3 + 0.5 M NaCl and 0.15 M 

triethanolamine pH 8.3 + 0.5 M NaCl buffers. Then, 1 mL of the antibody solutions was added to 

the chromatographic gel and incubated at the corresponding temperature and time conditions 

according to the factorial experimental design on an adjustable Lab rotator revolver (Labnet 

International, NJ, USA). Next, the samples were centrifuged at 16,000 rpm (27, 000 x g) for 5 

minutes and the solution with residual antibody was removed. The unmodified activated groups 

in the gel were blocked with 1 V of 0.5 M ethanolamine pH 8.3 buffer + 0.5 M NaCl at 4 °C for 17 

h, and afterwards alternating with 1.5 V of 0.1 M Tris-HCl pH 8.5 buffer and 1.5 V of 0.1 M acetate 

pH 4.5 buffer + 0.5 M NaCl, this cycle was repeated three times. All samples were collected and 

kept at 4°C until analysis was performed.  

 

5.3.5 Sample analysis  

 

After coupling, residual solutions were analyzed for total protein content using the Bradford 

colorimetric assay at 595 nm16 in an EPOCH multiple well plate reader (Biotek, NY, USA). 

Calibration was done using as standards human Ig G (0.010-1.4mg mL-1) and anti-PEG Ig M 

(0.010-0.060 mg mL-1). Coupling efficiency (CE) was calculated as a percentage using the 

following equation: 

 

𝐂𝐄 (%) =
(𝐌𝐨−𝐌𝐫)

𝐌𝐨
∗ 𝟏𝟎𝟎                                                   (5.1) 

 

Where Mo is the mass of antibody in the coupling solution before immobilization and Mr 

is the amount of antibody in the residual and wash solutions after reaction. Antibody mass is 

estimated as the product of concentration and volume. Finally, the optimum coupling efficiency 

(OCE) percentage at optimum immobilization conditions for human Ig G and its estimated 

confidence interval were calculated using the following equation: 

 

𝐎𝐂𝐄 (%) = 𝐘 + (𝐓𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞𝟒°𝐂 − 𝐘) + (𝐭𝟏𝟒𝐡 − 𝐘) + (𝐁𝐮𝐟𝐟𝐞𝐫𝐓𝐫𝐢𝐞𝐭𝐡𝐚𝐧𝐨𝐥𝐚𝐦𝐢𝐧𝐞 − 𝐘) +

[(𝐭𝟏𝟒𝐡𝐁𝐮𝐟𝐟𝐞𝐫𝐓𝐫𝐢𝐞𝐭𝐚𝐧𝐨𝐥𝐚𝐦𝐢𝐧𝐞 − 𝐘) + (𝐓𝐞𝐦𝐩𝐞𝐫𝐚𝐭𝐮𝐫𝐞𝟒°𝐂𝐁𝐮𝐟𝐟𝐞𝐫𝐓𝐫𝐢𝐞𝐭𝐡𝐚𝐧𝐨𝐥𝐚𝐦𝐢𝐧𝐞 − 𝐘)]        (5.2) 
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Where Ȳ is the CE average for all the design points, Temperature4°C, t14h and 

BufferTriethanolamine  are the CE means corresponding to the treatments at 4°C, 14h and 

triethanolamine buffer and t14h Temperature4°C, t14hBufferTriethanolamine and Temperature4°C 

BufferTriethanolamine are the corresponding interactions, which were identified as the better conditions 

for coupling of human Ig G. 

 

5.3.6 Study of antibody isotype effect on immobilization 

 

To compare the effect of antibody isotype in coupling versus the obtained results for 

human Ig G, a test at optimal coupling conditions was done with anti CD-133 Ig G and anti PEG 

Ig M antibodies at concentrations of 0.5 mg mL-1 per duplicate. 

 

5.3.7 Experimental design analysis for human Ig G coupling and for antibody 

isotype effects  

 

Experimental design analysis of human Ig G CE was performed using the Minitab software 

through the option “balanced ANOVA” while the antibody isotype effect test (nested factorial 

design) was performed using “general linear model” option and means comparison through a 

Tukey test in the same software. 

 

5.4 Results and discussion 

 

5.4.1 Ig G coupling experimental design  

 

Balanced ANOVA for Ig G CE (Table 5.1A) evaluating the effect of reaction times (5, 9, 

14, 19 and 24 h), temperature (4 or 20 ºC) and buffer (sodium carbonate (NaHCO3) and 

triethanolamine) indicated that reaction temperature and buffer as individual factors had a 

significant effect (p-value < 0.05) in the coupling efficiency as seen in Figure 5.2A. Double 

interactions between time and temperature, time and buffer and temperature and buffer were also 

significant. All these statistical analyses comply with the ANOVA assumptions of normality, 

homogeneity of variances and independence of residuals. The R-squared value in this analysis 

is 86.6% that indicates that this variability percentage in the response (CE) is explained by the 

statistical model or analysis.17 
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Table 5.1 Antibody coupling optimization ANOVAS. Results for Ig G coupling (A) and for the effect of 

antibody isotype (B) on this same parameter are shown  

 

A. Balanced ANOVA for coupling efficiency (CE) in optimization of Ig G 

coupling 

Source DFa Fb Pc 

Time 4 0.67 0.616 

Temperature 1 23.71 0 

Buffer 1 23.18 0 

Time*Temperature 4 8.41 0 

Time*Buffer 4 7.72 0 

Temperature*Buffer 1 41.51 0 

Error 24   

Total 39     

Sd = 4.86015  R-Sqe = 86.64% 

    
B. ANOVA for coupling efficiency (CE) in effect of antibody isotype 

Source DFa Fb Pc 

Isotype 1 32.42 0.011 

Antibody (Isotype) 1 0.03 0.883 

Error 3  
 

Total 5     

Sd = 1.33618  R-Sqe = 91.54% 

    
a Degrees of freedom 

   
b F-statistics 

   
c P-value 

   
d Standard deviation 

   
e Squared regression coefficient 
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Figure 5.2 Main effect plots for reaction time (A), temperature (B) and buffer (C) on coupling efficiency 

(CE) percentage (%) in the optimization of human Ig G immobilization on NHS activated Sepharose 4 

Fast Flow resin. 

 

NHS esters are fast hydrolyzed.18 Some studies report that the half-life for these activated 

groups is on the order of hours at physiological pH,19 but reported coupling protocols do not 

specify reaction times to work with antibody immobilization. In this context, the time-temperature 

interaction (Figure 5.3A) indicates that after 4 h of incubation there is no change in CE whether 

it is carried out at 4 ºC or 20 ºC. However, if reaction times are longer (9, 14 and 24 h) and 
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temperature is set at 20 ºC the amount of immobilized antibody drastically decreases with respect 

to reactions carried out at 4 ºC for the same time lengths. These observations can be explained 

considering antibody denaturation caused by temperature and long immobilization times.20 Other 

factors involved in antibody degradation are the selected reaction buffer solution, salt 

concentration and antibody concentration21 and should all be explored further. In fact, Zheng and 

Janis22 have found that the degradation by deamidation of the LA298 antibody occurs faster at 25 

ºC. Therefore, antibody immobilization must be preferably performed at low temperatures such 

as 4 ºC.20 The sole exception to this time-temperature correlation results was observed at 19 h 

where the CE was higher at 20 ºC (64.6 ± 4.9%) than at 4ºC (59.6 ± 6.2%). This may be due to 

additional antibody aggregation to the support induced at room temperature or even as a resulting 

difference of analysis variation. 

 

For reaction time and buffer combinations, triethanolamine buffer shows better coupling 

results than with reactions using the NaHCO3 buffer (see Figure 5.3B). This trend is kept at 4 ºC, 

but not at 20 ºC where Ig G coupling shows no significant change with temperature regardless of 

the buffer being used. Furthermore, antibody coupling is slightly lower at 4 ºC than at 20 ºC when 

using the NaHCO3 buffer in the reaction (see Figure 5.3C). In this sense, despite the fact that 

both buffer solutions have the same pH value, the chemical components in them greatly influence 

antibody coupling. This is due to the differences in charges between triethanolamine and NaHCO3 

because this is a nucleophilic substitution reaction,23 in which the predominant negative charged 

groups in the triethanolamine molecules may promote the selectivity of the nucleophilic attack of 

N-terminal primary amines in proteins to carbonyl groups whereas the scarcity of negative 

charges in the bicarbonate group can only do it at a lower rate. Also, among the two buffers the 

ionic strength is different, triethanolamine buffer has a calculated ionic strength of 0.65 M while 

the ionic strength for bicarbonate buffer is 1.1 M. This high ionic strength of the bicarbonate buffer 

may have adversely affected the solubility and coupling reaction of the antibody to the solid 

support. There are few reports about ionic strength affecting coupling reactions to 

chromatographic resins, for instance in the research of Matson & Little24 the effect of concentration 

of NaCl (0.15, 0.5, 1.0, 2.0 and 3.0 M) on CE was evaluated. They found that CE is improved at 

high salt concentration which is divergent with the trend observed in our experiments. 
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Figure 5.3 Interaction plots of coupling efficiency (CE) percentages (%) for human Ig G immobilization on 

NHS activated Sepharose 4 Fast Flow. (A) Reaction time and temperature, (B) reaction buffer and time 

and (C) reaction buffer and temperature. (A) and (B): 4 h (●, yellow), 9 h (●, blue), 14 h (●, red), 19 h (●, 

green) and 24 h (●, black). (C ): 4 °C (●, black) and 20 °C (●, red). 

 

Based on these results, the optimal conditions to statistically achieve the highest Ig G CE 

are reactions of 14 h at 4 ºC while using the triethanolamine buffer. For these conditions, the 

optimum coupling efficiency or OCE can be estimated at 83.4 ± 8.7% with an α (significance level 

or type I error) = 0.03. This value is in agreement with the 80% CE reported (Table 5.2) by Matson 
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and Little24 for murine anti-tPA (tissue plasminogen activator) Ig G on NHS activated Affi-Prep 10 

resin and by Salvador and collaborators25 for Ab145 antibody immobilized on NHS-activated 

Sepharose 4FF. It should be noted however that in other reports26, 27 CEs of antibodies up to 93% 

were reached in this resin. In the case of immunoaffinity resin for follicle stimulating hormone 

(FSH) the CE of 100% could be easily overestimated since the coupling was semiquantified 

through SDS-PAGE. Strict comparison is difficult to achieve with our experimental design since 

in most of these works details about coupling conditions at different stages are not given. From 

Table 5.2 it is important to mention that the room temperatures (20-25 °C) and the short times 

(0.17-6 h) that were used in the other research reports differ with our study, nonetheless the initial 

antibody concentration used in these publications is high (2-10 mg mL-1), while in this work 

antibody concentration was kept at 0.5 mg mL-1 representing an advantage from the standpoint 

of working with difficult to produce or expensive antibodies as ligands. Furthermore, as it was 

concluded with the anti-tPA immobilization study, the incremental ligand-matrix density may 

decrease the antigen binding efficiency.24  

 

Table 5.2 Immobilization conditions for different Ig G isotype antibodies on NHS activated Sepharose 4FF 

 

Coupled 

antibody  
CE (%) 

Antibody 

concentration 

(mg mL-1) 

T T 
Coupling buffer Ref. 

(h) (°C) 

Anti-tPA (Ig G) 80 4 0.17 20† 

0.1 M 3-(N-

morpholino)-

propanesulfonic acid 

pH 7.5 + 0.5 M NaCl 

24 

Ab145 (Ig G) 80 10 3 20† 
0.2 M NaHCO3 pH 8.3 

+ 0.5 M NaCl 
25 

M5B4 (Ig G) 93-95 10 4 25 
0.2 M NaHCO3 + pH 

8.3 + 0.5 M NaCl 
26 

Anti-human-

FSH (Ig G) 
100 2* 6 20† 

Phosphate buffer 

saline (PBS) pH 7.4 
27 

Human Ig G 74.7-92.1 0.5 14 4 
0.15 M triethanolamine 

pH 8.3 + 0.5M NaCl 

Current 

work 

*Estimated value from data 
     

†Inferred from literature. 
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5.4.2 Effect of antibody isotype on immobilization 

 

The effect of antibody isotype on CE was studied as a nested factorial design. Nested 

factorial or hierarchical designs are those in which each level of a given factor (nested factor) 

appears in only a single level of any other factor.28 For isotype comparison, the main levels are G 

and M isotype, the nested levels in the G isotype corresponded to the anti CD-133 and human Ig 

G antibodies, because these antibodies belong to G isotype. The anti-PEG Ig M antibody was 

used as representative antibody of the M isotype. Results of this nested design were analyzed by 

the General Linear Model option in Minitab. The R-squared for this analysis (91.5 %) is greater 

than the rule of thumb (≥ 75%),17 achieving a good fit of the data. According to these results, 

antibody isotype presented significant coupling differences (p-value < 0.05) while different 

antibody kinds inside the isotype G showed no difference whatsoever (Table 2.1B). In this sense, 

the selected anti-PEG Ig M had the lowest CE (76.8 ± 1.7%) with respect to the antibodies of the 

G isotype that had a CE of about 83% (83.5 ± 0.8% for human Ig G and 83.3 ± 1.3% for the anti 

CD-133 antibody, respectively). Ig M has a pentameric mushroom-shaped structure with a central 

region that projects out from the plane while Ig Gs show a “Y” shaped structure that can be 

considered to be on a single plane. The immunoglobulin M isotypes present molecular weights 

around 950 kDa29 while the G isotype has molecular weights of about 150 kDa.30 Therefore, the 

observed differences in CEs may be a consequence of the isotype molecular size. It is believed 

that the larger size of Ig M molecules cause a higher steric hindrance that leaves a smaller number 

of available sites for antibody bonding to the activated resin. This might however be compensated 

in the IAC runs by its pentameric structure since larger amounts of the target biomolecule can be 

potentially bound. Ig Ms currently present a limited usage as chromatographic ligands prepared 

by covalent attachment,31 but the use of Ig M isotypes in IAC may represent a viable option for 

the creation of IAC matrixes,32 particularly when Ig Gs are not available or its production is 

expensive. 

 

The performed Tukey test (Figure 5.4) does not present differences between the means 

of the experimental CE between the tested G isotype antibodies. Furthermore, the results in this 

work allow the use of the optimized coupling conditions found for human Ig G to other antibodies 

of the same isotype. This is important in the case of the anti CD-133 antibody since an 

immunoaffinity matrix for the chromatographic separation for stem cells can be potentially created. 

The same conditions may be extrapolated to other isotypes like the case of the selected anti-PEG 

Ig M in this study. Even when CE are not as high as for the Ig Gs, these are still good considering 
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that they surpass CEs of 70%. Anti-PEG Ig M can potentially be used in the recovery of polymer-

modified molecules or in negative chromatography to remove PEG from process streams where 

this polymer needs to be added. 

 

 

Figure 5.4 CE percentage comparison between selected antibody isotypes and kinds. Graph bars with 

different colors and letters are significantly different. 

 

5.5 Conclusions 

 

The covalent immobilization of Ig G antibodies on NHS activated Sepharose 4 Fast Flow can be 

optimized to reach a CE of up to 83.48 ± 0.80% with reaction conditions of 14 h, 4 ºC and using 

triethanolamine buffer. The tested Ig M isotype had a lower coupling efficiency compared with the 

anti G isotype antibodies, which can be related to its larger molecular size which causes steric 

hindrance. It was found however that antibodies of both isotypes can be covalently attached to 

the NHS groups in the resin using the same immobilization method and conditions as for the 

model human Ig G with excellent CEs. This is especially useful when dealing with expensive or 

difficult-to-manufacture antibodies intended to be used in IAC where large amounts of these 

molecules are needed to achieve the modification of industrial quantities of resin. This is the case 

of the selected anti CD-133 and anti-PEG antibodies selected which presented reactions with 

CEs of 83.3 ± 1.3% and 76.8 ± 1.7%, respectively. Future studies in this path will have to evaluate 

and correlate the binding capacity and antibody orientation of these immobilized antibodies with 

the achieved percentage of coupling in route of finding conditions to optimize biomolecule binding 

in IAC operation. 
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Chapter 6. Conclusions, contributions and 

perspectives 

 

 

After the results presented in this work, we found that PEGylation reaction media is 

suitable to perform an ATPS to recover the mono-PEGylated and di-PEGylated conjugated in 

(approximately 60% and 100%) in the top phase while most native lysozyme is partitioned towards 

the bottom phase. These results suggest that in situ ATPS might serve as an integrated unit 

operation not only for the recovery but also for the concentration of PEGylated proteins. 

Alternatively, this in situ ATPS procedure is a likely option to the re-use or the recycling of 

unmodified protein. 

 

Regarding the AC research, it was concluded that PEGylation decreases the affinity of 

native lysozyme to Heparin Sepharose 6 Fast Flow resin while the free reactive mPEG 

propionaldehyde is not bound to the adsorbent. Optimized HAC is an advantageous technique in 

the purification of mono-PEGylated lysozyme in comparison to other chromatographic modes in 

packed-bed format, with high yield, purity and productivity. At the same time, the general rate 

theory is able to explain the mass transfer mechanisms involved in the separation, which showed 

to be controlling by the adsorption/desorption rate and convection processes. On its part, the 

covalent coupling of antibodies is mainly affected by temperature and the type of reaction buffer. 

However, reaction times also influence the degree of modification of the supports while the use 

of G isotype antibodies increases the coupling efficiency.  

 

As general conclusion, in situ ATPS and heparin affinity chromatography are novel 

strategies in the recovery and purification of PEGylated proteins, which experiment great benefits 

(operation integration, time and reactive savings, selectivity, predictability, improved yields, 

purities and productivity, and easy) when these are combined with optimization tools such as 

modelling and design of experiments.  
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Among the main contributions of this thesis, a framed strategy to recover PEGylated 

proteins directly from the reaction media, considering the operation as part of a downstream 

processing strategy for PEGylated proteins was proposed. This aspect has not been fully 

addressed in previous works about ATPS with PEG-modified proteins. So, the incorporation of 

the complete PEGylation mixture and phase formation in a single operation reduces the number 

of purification stages. After the in situ ATPS implementation, the recovery of proteins from each 

phase through an ion exchange monolith is highlighted because this has also not been considered 

in earlier works. Moreover the proposed system studied here represents a green-environment 

solution due to ammonium sulphate rich-phase may be used as fertilizing solution for soils in 

comparison to the phosphate formed ATPS, which are responsible for eutrophication problems 

when these residues are discharged into bodies of water. 

 

A robust affinity chromatographic method is suggested to produce mono-PEGylated 

lysozyme achieving market purity requirements and it also establishes a methodology to create a 

specific AC method to purify other therapeutic PEGylated proteins. It should be noted that DoE 

and the joint optimization of several response variables is scarcely treated in protein 

chromatography and in other newly developed methods. Another contribution is a mathematical 

algorithm to predict the separation of the modified PEG-proteins in HAC with application at 

laboratory, pilot or even industrial scales. A protocol to generate immunosorbents by covalent 

attachment of antibodies is suggested, minimizing time and antibody losses. From the point of 

view of knowledge generation, it is the first work dealing with AC applied to the purification of 

PEGylated proteins. All the results have either been published or accepted in indexed journals 

related to novel bioseparation procedures for PEG-proteins and the scientific disclosure of these 

contributions has been reinforced in two international conferences.  

 

The perspectives or future work derived from this thesis have been classified in short-

medium and long-term perspectives. The first type has been defined as those experiments or 

projects to be developed in a period not exceeding 2 years after the presentation of this 

dissertation and those are focused on the publication of scientific papers giving continuity to the 

generated knowledge. The second group refers to tentative projects which will aim for the 

generation of research products (patents, manuscripts or chapter books) and the formation of 

human resources (undergraduate, master and doctoral students).  
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In the short-medium term perspectives related to in situ ATPS, comparison between this 

operation and non-integrative ATPS (where the system is built in an independent operation adding 

extra PEG) can be made to validate the economic impact of the proposed strategy. In addition, 

the recovery and concentration of native lysozyme in the bottom phase by ultrafiltration and its 

use as reactant in other PEGylation reactions may be an alternative to reduce costs. The 

economic analysis using specialized software is an interesting option to demonstrate the 

advantages of this novel strategy.  

 

For HAC, frontal analysis experiments to determine binding capacity and stability studies 

of the heparin adsorbent are planned to demonstrate extra advantages of this chromatography 

against other modes. The upcoming task derived from the simulation is the scale-up of this 

chromatography in a bigger column than that used in our studies, because a column with larger 

dimensions will increase the production volume of the PEG-conjugate protein and could represent 

an advancement towards its transference to an industrial scale.  

 

After the optimization of the covalent immobilization of antibodies, the next task consists 

in the generation of immunoaffinity supports with immobilized anti-PEGylated protein antibodies 

and its evaluation in the separation these conjugates. In this way, some work has been started 

regarding the immobilization of these anti-PEGylated protein antibodies and heparin on 

chromatographic monoliths with the goal to produce affinity supports to purify these molecules. 

Finally, a review manuscript describing the current developments, trends and challenges in the 

application of AC to PEGylated protein separation is also visualized.  

 

On the other hand, the long-term perspective projects derived from this work are:  

 

 Physicochemical stability of in situ ATPS. This line will focus in studying the effect of 

temperature, pH and PEGylated proteins modified with different polymer sizes on the 

recovery of the molecules in in situ ATPS.  

 Phase transfer PEGylation. It will consist on performing PEGylation reactions in a pre-

formed PEG-phosphate system and analyzing the conversion yields and reaction rates 

versus conventional PEGylation. 

 Design of affinity ligands for PEGylated-proteins. Considering the mentioned problems 

related to ligand availability (cost and production) as a limitation in the use of affinity 

chromatography, the generation of specific ligands to PEGylated proteins may represent 
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a promising future research line. At first, the characterization of the interactions between 

PEGylated proteins and the related affinity ligands by atomic force microscopy, 

microcalorimetry, protein-protein interactions and structural techniques (e.g. mass 

spectrometry, x-ray, circular dichroism) should be performed. Afterwards, structures with 

new chemistries would be designed and evaluated through molecular docking simulations 

with platforms such as PyMOL, AutoDock or QSAR. The production of these ligands can 

be achieved in two ways, by chemo-enzymatic synthesis for molecules or by peptide 

ligand design produced in simple recombinant systems.  

 Development of in situ-affinity ATPS based bioseparations. Because of this thesis, this 

strategy would combine the in situ ATPS concept with the use of affinity ligands not only 

to recover PEGylated proteins but also to recover other biomolecules or cells.  
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Appendix A – Material presented in Congresses 

 

 Abstract sent to Affinity 2015 (September 2015) 

Optimizing antibody immobilization for the preparation of immunoaffinity 
chromatography supports 

 
Luis Alberto Mejía-Manzano, José González-Valdez, Karla Mayolo-Deloisa, Edgardo J. Escalante-Vázquez, Marco 

Rito-Palomares* 
Tecnológico de Monterrey, Campus Monterrey. Ave. Eugenio Garza Sada 2501, Sur, Col. Tecnológico 64849. 

Monterrey, N.L., México. 
*Corresponding author: mrito@itesm.mx 

Abstract 
Immunoaffinity chromatography (IAC) exploits the immobilization of antibodies on 
chromatographic supports for the separation of target molecules with high selectivity and 
specificity [1]. One of the most used antibody coupling techniques is the covalent attachment 
through primary amines in the antibody and an activated agent in the resin such as N-
hydroxysuccinimide (NHS) [2].In this work, the coupling of human Ig G as a model antibody was 
optimized evaluating reaction times (5, 9, 14, 19 and 24 h), temperatures (4 or 20 ºC) and buffers 
(sodium bicarbonate or triethanolamine) as factors. The maximum coupling efficiency (83.43 ± 
8.69%) was achieved with triethanolamine buffer at 14 h and 4 ºC. At these optimal coupling 
conditions, the coupling of two other potential IAC antibodies of different isotype and subtype (see 
Figure 1) was compared in a nested factorial analysis. Results indicate (Figure 1) that the Ig G 
isotype (83.38 ± 1.10%) had a better coupling efficiency with respect to Ig M (76.79 ± 1.72%). 
However, no significant difference between Ig G subtypes can be observed. Even when all tested 
antibodies presented good coupling efficiency (> 75%) significant differences can be observed 
between Ig isotypes, nonetheless, the obtained optimal conditions can be used in these 
procedures to prepare IAC supports. 

 
Figure 1. Coupling efficiency (%) for isotype antibody. Graph bars with different colors are significantly 

different. 

 
[1] FITZGERALD J., et al., Protein Chromatography Springer, pp. 35-59, 2011.  
[2] STEEN REDEKER E., et al., Bioconjugate Chemistry 24,1761-1777, 2013.  

 
Keywords: Immunoaffinity Chromatography, Antibody Immobilization, Optimization. 
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 Abstract sent to ESBES 2016 (September 2016) 
 

Innovative process for the production and recovery of PEGylated lysozyme 
through in situ aqueous two phase systems and monoliths 

 
Luis Alberto Mejía-Manzano, Calef Sánchez-Trasviña, José González-González, Mirna González-González, Karla 

Mayolo-Deloisa, Marco Rito-Palomares* 
Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada 2501, 

Sur, Col. Tecnológico 64849. Monterrey, N.L., México. 
*Corresponding author: mrito@itesm.mx 

 
Abstract 

 
The development of novel, high-yield, fast and economical downstream processes is a current 
paradigm for biopharmaceutical proteins. The choice of appropriate techniques and logical 
combination are the key for a successful and efficient purification [1] of these products. As well is 
known, product of N-terminal amine PEGylation is a heterogeneous mixture of proteins with 
varying number of polyethylene glycol (PEG) moieties [2]. Aqueous two phase systems 
represents a valuable and attractive recovery option for proteins [3] and also for PEG modified 
proteins. In this work, ATPS formation immediately after lysozyme PEGylation reaction was 
researched with different polymer (UCON, ficoll, dextran) and salt (sodium phosphates, potassium 
sulphates, sodium sulphate, ammonium sulphate, sodium carbonate) solutions, using the reaction 
media as part of the phases system. The best option for the ATPS formation was the addition of 
4M ammonium sulphate. This approaching has the advantages of PEG saving, quick processing 
and concentration stage emerges being called here in situ ATPS. The phases were analyzed 
using a cation exchange monolithc disk. The results shown a preferential distribution of 
PEGylated conjugates in top phase (PEG) and native lysozyme for bottom (salt). SDS-PAGE 
electrophoresis of eluted fractions from chromatography helped to identify the proteins and their 
relative purity. Implementation of monolithic chromatography in PEGylated protein purification 
offers fast separation at large scale due to the convective mass transference properties [4]. As a 
final conclusion an integral bioprocess is suggested in the purification of monoPEGylated 
lysozyme and potential recovery of non-reacted native lysozyme. 

 
References: 
[1] Nfor, B. K., Ahamed, T., van Dedem, G. W., van der Wielen, L. A., van de Sandt, E. J., Eppink, M. H., & Ottens, M. 
(2008). Design strategies for integrated protein purification processes: challenges, progress and outlook. Journal of 
chemical technology and biotechnology, 83(2), 124-132. 
[2] Hakem, I. F., Leech, A. M., Bohn, J., Walker, J. P., & Bockstaller, M. R. (2013). Analysis of heterogeneity in 
nonspecific PEGylation reactions of biomolecules. Biopolymers, 99(7), 427-435. 
[3] Asenjo, J. A.& Andrews, B. A. (2011). Aqueous two-phase systems for protein separation: a perspective. Journal of 
Chromatography A, 1218(49), 8826-8835. 
[4] Josic, D., Buchacher, A., & Jungbauer, A. (2001). Monoliths as stationary phases for separation of proteins and 
polynucleotides and enzymatic conversion. Journal of Chromatography B: Biomedical Sciences and Applications, 
752(2), 191-205. 
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Abstract 

 
Therapeutic proteins covalently modified with polyethylene glycol (PEG) have improved 
biodistribution in the organism due to the positive properties that the PEGylation confers to them 
[1, 2]. The purification of these proteins is still a challenging task in chromatography [3]. Affinity 
chromatography (AC) is an attractive option due to its selectivity, high purification level and mild 
elution conditions [4]; however, it has been scarcely reported in purification of PEGylated proteins. 
Heparin Affinity Chromatography (HAC) has been used for the fractionation of proteins, 
coagulation factors in serum, proteases, lipoproteins, polymerases and growth factors [5, 6]. In 
this work we characterized the binding of di-, mono-PEGylated and native lysozyme to a heparin 
adsorbent. Then, we developed a chromatographic method for the separation of mono-PEGylated 
lysozyme from a PEGylation reaction in a linear NaCl elution gradient. Three response variables 
(yield, purity and productivity) were jointly optimized for three factors (flow, protein load and 
gradient length) by Response Surface Methodology considering minimum and target values for 
each variable. The optimal conditions allowed to find a better separation with a step gradient 
method. The results showed that PEGylated lysozymes have less affinity for the heparin support 
with respect to the native lysozyme, and their adsorption followed a Langmuir behavior. Purity 
(~100 %), yield (~100 %) and productivity (0.048 mg/mL min) achieved in the step gradient of 
HAC (Fig. 1) were better than those found in other chromatographic modes, particularly with 
hydrophobic interaction chromatography (HIC). 
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