
Abstract

In this work we review the definition and basic properties of the fractional Fourier

transform, along with its most common applications. We completely describe the

numerical implementation of this linear transformation and use it to restore degraded

images that are not suited for other typical image processing methods.
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1 Introduction

Image processing and enhancement has been a popular subject of study since the develop-

ment of digital picture capturing devices. The digital format of captured images permitted

the automatic and accurate detection and measurement of features, pattern recognition,

color and texture enhancement and segmentation of regions of interest [1]. This proved to

be a very valuable tool in quality inspection for industrial production.

When the degradation is space-invariant, a Wiener filter may be applied with excellent

results [2], however the current popular approach to restore images affected by a space-variant

degradation is slow and computationally demanding [3].

In particular, Fourier-domain filtering has proven to be a very powerful tool for removing

space-invariant degradations and other types of linear degradations, but it has very limited

or no restoration power when used on images distorted by space-dependant degradations.

This work reviews typical properties and applications of the fractional Fourier transform

and explores its capabilities as a tool for image filtering and restoration, to attack the areas

where the traditional Fourier transform is insufficient. The remainder of this work presents a

brief theoretical framework of the fractional Fourier transform, as well as its properties and

a computer implementation algorithm. Additionally we describe space-variant degradation

models and the appropriate filters to apply in any fractional domain. The optimal restoration

filter is applied in fractional domains to sample images to illustrate the superior results from

those obtained by filtering in the ordinary Fourier domain.

In the appendices we define the technical terms that are used throughout this manuscript

and provide the complete computer code that was implemented.
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2 Theoretical Framework

The Fourier series, named after Jean Baptiste Joseph Fourier is an integral transform that

provides the frequency spectrum of a periodic function, decomposing it in an infinite sum

of sinusoidal functions with discrete increases in their frequency. It was presented in 1807

and later published in 1822 in the Théorie Analytique de la Chaleur (The Analyitic Theory

of Heat) with, according to the modern standards, informal conclusions [1]. Since then,

Fourier’s work has inspired a great number of transformations with a wide range of applica-

tions .

Since its publication, the fourier series, inspired a great number of breakthroughs includ-

ing the Fourier transform, the fast Fourier transform algorithm and the fractional Fourier

transform.

2.1 Fourier Transform

The Fourier transform is one of the best known integral transform, since its introduction it

has been used in innumerable applications and has led to the development of other important

transforms [4], [5].

The Fourier transform of a continuous function f(x) is defined by [6]

F (u) = F {f(x)} =

∫ ∞

−∞

f(x) exp(−i2πux)dx, (1)

where u is the Cartesian coordinate in the Fourier domain, often referred to as the frequency

domain since the Fourier transform of a function represents its frequency content distribution.

This interpretation is particularly valuable for noise removal where the noise signal often has

a high frequency.

Since the Fourier transform is separable in Cartesian coordinates the two-dimensional

version, which is mostly used for optical and image processing applications, can be straight-
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forwardly obtained

F (u, v) = F {f(x, y)} =

∫ ∫ ∞

−∞

f(x, y) exp(−i2π[ux + vy])dxdy. (2)

This two-dimensional version is often used in image processing and restoration to remove

noise and degradation from a given image [7]. If a digitized image is corrupted by a linear

position-invariant degradation and additive noise, frequency domain filtering provides very

good results by means of Wiener filtering [1]. With these degradation, the observed image

o(x, y) can be expressed as

o(x, y) = h(x, y) ⊗ f(x, y) + η(x, y), (3)

where h(x, y) is the space-invariant degradation kernel, η(x, y) is the additive noise term and

⊗ stands for the convolution operation.

The Wiener filtering approach is founded considering images and noise as uncorrelated

random processes, and attempting to find an estimate f̂(x, y) of the uncorrupted image such

that the error between them is minimized. In this approach the Fourier transform of the

estimate is given by [1]

F̂ (u, v) =

[

1

H(u, v)

|H(u, v)|2
|H(u, v)|2 + K

]

O(u, v), (4)

where O(u, v) = F {o(x, y)} is the Fourier transform of the observed image, H(u, v) =

F {h(x, y)} is the transform of the degradation kernel and K is a specified constant. The

actual estimate f̂(x, y) is obtained after an inverse Fourier transform of F̂ (u, v).

This filtering approach has been improved by iterative application of the filter and is

nowadays widely used in many image improvement applications [2], [8], [9]. However, the

Weiner filtering method is only suitable for space-invariant degradations, where the degra-

dation process can be expressed as a convolution, and generates considerable errors if applied

on images that are affected by a space-dependant kernel.
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2.2 Fractional Fourier Transform

The fractional Fourier transform is a linear integral transform, commonly used in signal

processing and optics, it is a generalization of the Fourier transform and provides a smooth

transition from the spatial coordinates to the spatial frequency domain [10].

The fractional Fourier transform has been used to solve partial differential equations to

provide an extra degree of freedom [4], in digital watermarking for multimedia copyright

protection [11], beam forming [12], target detection [13], signal reconstruction [14], [15],

representation [16] and multiplexing [17].

The fractional powers Fa of the ordinary Fourier transform operation F correspond

to rotation by angles aπ/2 in the space-frequency plane, see figure 1. An ordinary Fourier

transform is depicted in the phase plane as a π/2 rotation. The fractional domains correspond

to oblique axes in the time-frequency plane, and thus the fractional Fourier transform is

directly related to the Radon transform of the Wigner distribution [18], [19]. Of particular

interest from image processing perspective is the concept of filtering in fractional Fourier

domains.

The ath order fractional Fourier transform is a linear operation defined by the integral [20]

fa(u) ≡ Fa {f(u)} ≡
∫ ∞

−∞

Ka(u, u′)f(u′)du′, (5)

where

Ka(u, u′) ≡ Aα exp
[

iπ
(

u2 cot α − 2uu′ csc α + u′2 cot α
)]

, (6a)

Aα ≡
√

1 − i cot α, (6b)

α ≡ aπ

2
, (6c)

The ordinary Fourier transform can be used to compute the propagation pattern observed

in the Fraunhoffer or far-field region, when you are far enough from the light source so that
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Fi g ur e 1: Gr a p hi c al i nt er pr et ati o n of t h e fr a cti o n al F o uri er tr a nsf or m.

its r a di at e d fi el d w a v e c a n b e c o nsi d er e d pl a n ar [ 2 1]. T his pr o p ert y of t h e fr e q u e n c y d o m ai n

is w ell- u n d erst o o d a n d is oft e n us e d i n o pti cs t o st u d y a n d c h ar a ct eri z e o pti c al b e a ms [ 2 2].

P h ysi c all y t h e fr a cti o n al F o uri er tr a nsf or m is i nti m at el y r el at e d t o n e ar- fi el d or Fr es n el

di ffr a cti o n i n w a v e a n d b e a m pr o p a g ati o n, w h e n t h e r a di at e d fi el d m ust b e c o nsi d er e d m at h-

e m ati c all y s p h eri c al r at h er t h a n pl a n ar, t h us t his tr a nsf or m ati o n p er mits t h e c o m p ut ati o n

of pr o p a g ati o n p att er ns at a n y gi v e n p oi nt i n t h e n e ar- fi el d r e gi o n [ 2 3].

Fi g ur e 2 s c h e m ati c all y d e pi cts t h e o pti c al r e pr es e nt ati o n of t h e fr a cti o n al F o uri er tr a ns-

f or m, t h e 0t h- or d er tr a nsf or m is a ct u all y t h e i d e ntit y or n ull o p er at or a n d r etri e v es t h e w a v e-

fr o nt at t h e r a di ati o n s o ur c e, n oti c e t h at u p o n a p pl yi n g t h e li mit a → ∞ i n e q u ati o ns ( 6)

t h e i nt e gr al k er n el b e c o m es a li mit d e fi niti o n of t h e Dir a c d elt a f u n cti o n K (u, u ′) = δ (u − u ′).

T h e fi el d at a n i nt er m e di at e p oi nt i n t h e Fr es n el di ffr a cti o n r e gi o n m a y b e r etri e v e d b y

c o m p uti n g a fr a cti o n al tr a nsf or m of t h e fi el d o n t h e s o ur c e pl a n e, as t h e pr o p a g ati o n dist a n c e

i n cr e as es s o d o es t h e or d er of t h e tr a nsf or m ati o n. I n t h e li miti n g c as e of pr o p a g ati o n b e y o n d

t h e n e ar- fi el d r e gi o n, t h e tr a nsf or m ati o n or d er is a = 1 a n d t h e fi el d distri b uti o n is r etri e v e d
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Fi g ur e 2: O pti c al i nt er pr et ati o n of t h e fr a cti o n al F o uri er tr a nsf or m.

b y usi n g a F o uri er tr a nsf or m, n oti c e t h at i n t his c as e t h e k er n el i n e q u ati o n ( 6 a) is e x a ctl y

t h at of t h e or di n ar y F o uri er tr a nsf or m [ 2 1].

T h e fr a cti o n al F o uri er tr a nsf or m is e vi d e ntl y li n e ar b ut n ot s hift-i n v ari a nt, s e v er al pr o p-

erti es of t his tr a nsf or m ati o n h a v e b e e n m e nti o n e d or d eri v e d pr e vi o usl y [ 2 0]. T h e pr o p erti es

of t h e fr a cti o n al F o uri er tr a nsf or m t h at ar e m or e r el e v a nt f or t h e a n al ysis i n s u bs e q u e nt

s e cti o ns ar e list e d i n e q u ati o ns ( 7),

I n d e x a d diti vit y F a + b { f (u )} = F a F b { f (u )} , ( 7 a)

N ull o p er at or F 0 { f (u )} = f (u ), ( 7 b)

I n d e x p eri o di cit y F a + 4 n { f (u )} = F a { f (u )} , ( 7 c)

P arit y o p er at or F a + 2 { f (u )} = f a + 1 (− u ), ( 7 d)

C o n v ol uti o n F 1 { f (u ) ⊗ g (u )} = f a + 1 (u )g a + 1 (u ). ( 7 e)

We will t a k e a d v a nt a g e of t h es e pr o p erti es w h e n n u m eri c all y i m pl e m e nti n g t h e o pti m al

filt eri n g f or i m a g e r est or ati o n.
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3 Computation of One-Dimensional Fractional Fourier

Transform

In this section we will describe the implemented algorithm for computation of the one-

dimensional fractional Fourier transform, along with the numerical tests that we performed

to ensure proper representation of a function in the fractional domains and their results.

All computer codes were written in Matlabr, mainly because of its clear programming

language and wealth of integrated mathematical functions that allow direct manipulation of

images and clear display of results [24].

3.1 Computer Implementation

The numerical calculation of this transformation is of fundamental importance for the ac-

tual application of filtering techniques in fractional domains with computer programs of

dedicated hardware. The most widely used algorithm for its computation is named the fast

convolution algorithm, pioneered by Ozaktas et al. [25]. Although many more accurate dis-

crete approaches of this transformation have been proposed [26]–[29], the fast convolution

algorithm is faster, requires less computational effort and has an acceptable accuracy for

most applications.

In the fast convolution algorithm, first we take advantage of the index periodicity prop-

erty, equation (7c) to reduce the continuous order interval to the finite range a ∈ [0, 4], to

achieve this we simply take the modulus of the input transformation order after division by

four.

The transformation order is further reduced to the interval a ∈ [0, 2] by using the parity

operator property shown in equation (7d), if the required transformation is in the range

a ∈ [2, 4] we can invert the input function and reduce the transformation order by two,
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namely

Fa {f(x)} = Fa−2 {f(−x)} , (8)

this can be straightforwardly derived from equation (7d).

To retrieve accurate results, the fast convolution algorithm still requires an additional

range decrease, since the convolution is performed between chirped functions that have their

highest frequency values near even numbers of a. In order to perform the operation as far

as possible from transformation orders a = 0 and a = 2, the original algorithm proposed

that the transformation order should be reduced to the main interval [25] a ∈ [0.5, 1.5].

However, later the main interval was optimized through a theoretical analysis [30] and it

was shown that a reduction of transformation error can be achieved if the main interval is

a ∈ [0.366, 1.366].

To reduce the interval a ∈ [2, 4] to the main interval a ∈ [0.366, 1.366] we take advantage

of the index additivity property, equation (7a), and the fast Fourier transform algorithm,

namely

Fa {f(x)} = F∓1
{

Fa±1 {f(x)}
}

. (9)

The definition of the fractional Fourier transform, as expressed in equation (5), can be

rewritten as a convolution operation

Fa(u) = Fa {f(x)} = AαB′
a(u)

∫ ∞

−∞

f(x)B′
a(x) exp

[

iπ(u − x)2 csc α
]

dx (10)

= AαB′
a(u) [f ′

a(x) ⊗ Ba(x)] , (11)

where

f ′
a(x) = f(x)B′

a(x), (12)

Ba(x) = exp
(

iπx2 csc α
)

, (13)

B′
a(x) = exp

[

−iπ tan(α/2)x2
]

, (14)

the operator ⊗ stands for convolution operation, and the functions Ba(x) and B′
a(x) are

chirp functions.
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By using the convolution theorem of the Fourier transform, equation (11) can be rewritten

as a conventional multiplication

Fa(u) = Fa {f(x)} = AαB′
a(u)F−1

{

F1 {f ′
a}F1 {Ba(x)}

}

(15)

The discrete convolution that is required for computation of the fractional transform

can be performed by using the well-assessed fast Fourier transform algorithm. The Fourier

transform of the chirp function Ba(x) has an analytic closed form given by

F1 {Ba(x)} =

√

i

csc α
exp

(−iπω2

csc α

)

, (16)

where the variable ω is used to clearly distinguish between the frequency domain and frac-

tional Fourier domains. This analytic function was used, instead of computing the discrete

Fourier transform of Ba(x) to improve the algorithm accuracy.

3.2 Numerical Tests and Results

We numerically tested the accuracy and stability of the implemented one-dimensional algo-

rithm. A fractional Fourier transform of the rectangular function was computed for several

transformation orders using the previously described implementation. The rectangular func-

tion is defined as

rect(x) =











1 |x| <= 1

2
,

0 |x| > 1

2
,

(17)

and has no analytic expression for its fractional transform, thus the results were directly

compared to previously published numerical approximations [20]. Figure 3 show the magni-

tude and phase distribution of the computed transformations, they are remarkably similar to

the results found in the literature, and they explicitly depict the smooth transition between

the original function and the integer order Fourier transform.
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Figure 3: Magnitude and phase distribution for computed fractional Fourier transforms of

the rectangular function.
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Figure 4: Iterative transformation of the rectangular function.

To test the method stability we implemented iterative transformations of the rectangular

function with a = 0.025. After 40 successive transformations, due to the fractional trans-

form additive property, the sine cardinal function should be retrieved, that is, the Fourier

transform of the original input. The results of this test are shown in figure 4, where the a-th

transforms of the input function are explicitly shown. Notice that after 40 transformations

with a = 0.025 the retrieved function has the exact form of the magnitude of a sine cardinal

function; also notice the resemblance of these results to the actual optical propagation of a

finite square aperture.

The results from the performed numerical tests of the implemented one-dimensional gave

excellent results, the computed transforms have a remarkable resemblance to previously

published material [20], [23], [25].
4 Computation of Two-Dimensional Fractional Fourier

Transform

For optical and image processing applications, the two-dimensional fractional Fourier trans-

form is often needed. Of particular interest for noise removal and image restoration is the
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application of the this transformation with different orders along the vertical and horizontal

dimensions.

Later in this work it will became clear that the optimal domain for image processing is

often a fractional domain with different transformation orders for each Cartesian coordinate,

and that the results obtained are superior to those of the conventional Fourier transform.

4.1 Computer Implementation

The integral kernel of the two-dimensional fractional transform is defined as

fax,ay
(x, y) =

∫ ∞

∞

∫ ∞

∞

Kax,ay
(x, y; x′, y′)f(x′, y′)dx′dx′, (18)

where ax and ay denote independent transformation orders along the horizontal and vertical

coordinate respectively.

The transformation kernel Kax,ay
(x, y; x′, y′) is separable in Cartesian coordinates, namely

Kax,ay
(x, y; x′, y′) = Kax

(x, x′)Kay
(y, y′). (19)

This permits computing the two-dimensional transformation by independently integrating

along the y axis followed by a corresponding integration along the x axis. With this approach,

we take advantage of the one-dimensional algorithm described in section 3 to compute an ay

order transform along the columns of the input array and then apply an ax order transform

to the rows of the resulting matrix.

4.2 Numerical Tests and Results

To prove the method accuracy when computing transforms of different orders for each Carte-

sian dimension, we computed the ax = 0.8 and ay = 0.4 fractional transformation of a

Gaussian function.
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Figure 5: Magnitude of the Gaussian function.

The implemented input function f(x, y) is given by

f(x, y) = exp
[

σ
(

x2 + y2
)]

, (20)

where σ = 0.1 is a free parameter that defines the width of the function, its amplitude

distribution is shown in figure 5.

Equation (20) can be expressed as a multiplication of two functions that depend exclu-

sively in one of the Cartesian dimensions, and the one-dimensional transform of a Gaussian

function is known analytically, thus we can directly compare the results of our numerical

implementation with exact analytic solutions.

The transformation of equation (20) can be expressed as

fax,ay
(x, y) = Fax,ay {f(x, y)} = Fax,ay {f(x)f(y)} (21)

= Fax {f(x)}Fay {f(y)} = fax
(x)fay

(y), (22)

where the one-dimensional transform of a Gaussian function is given by

fax
(x) =

√

1 − i cot αx

σ − i cot αx

exp

[

iπx2
(σ2 − 1) cot αx

σ2 + cot2 αx

]

exp

[

−πx2
σ csc2 αx

σ2 + cot2 αx

]

, (23)
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Figure 6: Magnitude comparison between the analytic expression of a fractional transform

of a Gaussian function and that computed with the described algorithm.

which can be straightforwardly identified as a chirped Gaussian function. Notice that al-

though the input function is purely real, its transform is complex and contains an oscillatory

phase that linearly increases in frequency. This particular characteristic of chirped func-

tions makes them very difficult to represent numerically and provides an ideal benchmark to

evaluate the method limitations.

A comparison between the magnitude of the analytic fractional Fourier transform of the

Gaussian function and that of the numerically retrieved is shown in figure 6. Figure 7 depicts

an equivalent comparison between the phase of these functions. An excellent qualitative

and quantitative agreement is achieved in these comparisons, notice that the phase of the

numerically computed function is accurately retrieved within an horizontal range, beyond

this position the oscillating frequency of the signal is larger than the sampling Nyquist

frequency and cannot be properly modeled.

The amplitude and phase comparison between the analytical expression and that obtained

from the described algorithm gave excellent results. The different implemented transforma-

tion orders for the x and y directions ensure that proper computation of the expression
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Figure 7: Phase comparison between the analytic expression of a fractional transform of a

Gaussian function and that computed with the described algorithm.

appearing in equation (18) is achieved through separate computation of the horizontal and

vertical integrals.

An important feature that any algorithm that approximates the fractional Fourier trans-

form must fulfill, is the original function retrieval after an inverse transformation. This is

particularly important in image processing, since accurate inverse transformation is crucial

to obtain the desired result after filtering. We performed numerical tests on a sample image

to ensure a good quality of the retrieved data.

Figure 8 shows the results of image retrieval. Zero padding is a widely used technique

when processing in the frequency domain, the discrete Fourier transform assumes that the

input signal is periodical and may incur in serious errors if not properly padded with zeros.

With this technique, the original image is expanded with zeros around it, The number of

zeros must be equal to the total number of pixels in the image. In the case of the fractional

Fourier transform we found that zero padding is crucial to avoid aliasing effects in the

retrieved image, this occurs because in the computation we need to perform a convolution

and we implement it as a multiplication in the Fourier domain.
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Figure 8: Results of image retrieval with the fractional Fourier transform.

Notice in figure 8, that the aliasing effects are practically eliminated in the image were the

image transform and retrieval were computed using zero padding. Still in this image, there

are some artifacts that can be observed near the image borders upon close examination,

this are completely removed by applying a trim operation before performing the inverse

transform. This trimming consists on forcing all points of the original function padding to

have a value of zero. Excellent results are obtained for the image retrieval with zero padding

and trimmed where the artifacts are completely removed.
5 Optimal Image Restoration

In this section the concept of filtering in fractional Fourier domains is applied to the problem

of estimating images with space varying statistics in the presence of atypical degradation

and noise. An optimal filter for each set of fractional domains is estimated with a statistical
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Figure 9: Image corrupted by additive chirp noise signal.

approach to restore an image degraded by the general model

o(x, y) =

∫ ∫

h(x, y; x′, y′)f(x′, y′)dx′dy′ + η(x, y), (24)

where o(x, y) is the observed image, f(x, y) is the image we wish to recover, h(x, y; x′, y′) is

the kernel of the degradation model and η(x, y) is an additive noise term, usually originated

during digital capture of data.

5.1 Degradation Models

To illustrate the performance of fractional Fourier domain filtering we apply two different

degradation mechanisms to sample images and then attempt to recover the original signal.

The original image shown in figure 9 was corrupted by means of two chirp waveforms.

Although the ordinary Fourier transform is best suited to process images with periodic noise

of a single frequency, this particular noise has a spatially varying frequency and orientation.

Thus, best results are expected by processing in fractional domains.

A second degradation model that we implemented is a spatially dependant motion blur
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Figure 10: Image corrupted by spatially dependant motion blur and additive Gaussian noise.

that was applied to the original image. For this type of degradation the kernel in equation

(24) is given by

h(x, y; x′, y′) =
1

αx + α0

rect

(

x − x′

αx + α0

− 1

2

)

δ(y − y′), (25)

where α and α0 are the parameters of the distortion model and correspond to the growing

rate and initial window size of the rectangular function. This particular degradation creates a

motion effect on the original image, where the magnitude of the motion degradation depends

on the pixel position.

For the particular case of α = 0 in equation (25), the motion blur becomes independent

of spatial coordinates and the optimum domain is that of the conventional Fourier transform.

In any other case the frequency domain will not be suited to represent the degradation as a

multiplication and filtering in fractional domains will give better results than the ordinary

Fourier transform.

We also added white Gaussian noise of signal to noise ratio SNR = 4 and zero mean

to the images that were degraded with the spatially dependant blur. This noise is typically

introduced by digital capture. Figure 10 and 11 show this degradation implemented on two
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Figure 11: Image corrupted by spatially dependant motion blur and additive Gaussian noise.

different images, notice how the blur degradation is stronger on the right side of the sample

images.

5.2 Optimum Filter Implementation

The optimum image restoration technique for this kind of degradation is well known but has

a high computational cost. We choose to implement a multiplicative filter in the fractional

domain in order to speed up the filter execution time. Optimal noise signal separation

can sometimes be better achieved in a fractional domain than in the ordinary frequency

domain [31].

It was shown by Alper [3] that the optimal fractional-domain multiplicative filter is

described by

mopt(x, y) =
Rfax,ay

,oax,ay

Roax,ay
,oax,ay

=
fax,ay

(x, y) ⊗ o∗ax,ay
(x, y)

oax,ay
(x, y) ⊗ o∗ax,ay

(x, y)
, (26)

where (∗) stands for complex conjugation. The operator Rfax,ay
,oax,ay

represents the cross-

correlation of the original and the observed images [32].

This operation can be greatly accelerated by taking advantage of the index additivity
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properties of the fractional Fourier transform, shown in equation (7a). Therefore, the filter

can be re-written as follows:

mopt(x, y) =
F−1,−1

{

fax+1,ay+1(x, y)o∗ax+1,ay+1(x, y)
}

F−1,−1

{

oax+1,ay+1(x, y)o∗ax+1,ay+1(x, y)
} , (27)

where o(x, y) is the degraded image and f(x, y) is the original image. Notice that with

equation (27) we can compute the optimum filter with an element by element multiplication

instead of a convolution, with this simple modification the numerical requirements are greatly

relaxed.

The estimate of the original function can be straightforwardly obtained using the filter

defined in equation (27), namely

f̂(x, y) = F−ax,−ay

{

oax,ay
(x, y)mopt(x, y)

}

. (28)

The main advantage of the optimal filter approach, equation (28), over the Weiner filter

shown in expression (4) is that the former can account for spatially-dependant degradation

and the filter may be applied in any combination of horizontal and vertical fractional domains.

Of course this suggests that we should search for the fractional domains where optimal results

are obtained.

5.3 Optimum Order Search

Even with the optimum filter, as shown in equation (27), the processed image can have a

significant amount of noise if processed in an arbitrary fractional domain. Since the error

of the estimated function is modified by the chosen fractional domain there should exist a

combination of ax and ay domains that minimizes the error between the original and the

estimated images.

We propose an exhaustive search of the minimum error filtering domain, by performing

the optimum filtering approach in evenly spaced samples for the ax and ay transformation

orders in the [-1,1] range.
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Figure 12: Error topology for the fractional domain search for optimum filtering

With this methodology, the optimum order search is achieved by finding the best-

performing filtering domain within this grid. We used the mean square error to test the

filter performance in the fractional domains. This error measurement is defined for a digital

image as

MSE =
∑

x

∑

y

|o(x, y) − f(x, y)|2, (29)

The topology of the mean square error computation, for different ax and ay filtering

domains is shown in figure 12. The optimum filtering domain lies wherever the deepest

valley in this topology is.

5.4 Results

The optimum fractional domain for multiplicative filtering was searched for each of the

degraded images shown in section 5.1. The optimal restoration filter appearing in equation

(27) was applied to the degraded images in each fractional domain of the domain space,

seeking the highest reduction of mean square error.
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Figure 13: Results of optimum filtering in the Fourier domain and in the optimal fractional

domain.

Figure 14: Results of optimum filtering in the Fourier domain and in the optimal fractional

domain.

The image that was corrupted by a chirp additive noise and the obtained restoration

results are shown in figure 13. The original error of the corrupted image is MSE = 5× 10−3,

this quantity was reduced to MSE = 3.4× 10−3 in the ax = 1.0, ay = 0.9 fractional domain.

The result obtained with the conventional Fourier transform is also shown in figure 13 the

retrieved error with this transformation was MSE = 4.6×10−3. A reduction of the computed

mean square error of 32% was achieved by searching for the optimal fractional domain, 24%

more than filtering in the ordinary frequency domain.

Two additional degraded images were processed with the described methodology, these
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Figure 15: Results of optimum filtering in the Fourier domain and in the optimal fractional

domain.

images were corrupted using a spatially dependant blur with additive Gaussian noise. The

degraded image of a circle and the results obtained are shown in figure 14. The original error

of the corrupted image is MSE = 13 × 10−3, this quantity was reduced to MSE = 9 × 10−3

in the ax = −0.5, ay = 0.7 fractional domain. The result obtained with the conventional

Fourier transform is also shown in figure 14, the retrieved error with this transformation was

MSE = 4.6 × 10−3. A reduction of the computed mean square error of 31% was achieved

by searching for the optimal fractional domain, 16% more than filtering in the ordinary

frequency domain.

The results obtained for the second sample image corrupted with the spatially dependant

blur and additive Gaussian noise are shown in figure 15. The mean square error of the

corrupted image is MSE = 26 × 10−3, this quantity was reduced to MSE = 17 × 10−3 in

the ax = −0.9, ay = 1.0 fractional domain. The result obtained with the conventional

Fourier transform is also shown in figure 15, the retrieved error with this transformation was

MSE = 17 × 10−3. A reduction of the computed mean square error of 35% was achieved

by searching for the optimal fractional domain, 12% more than filtering in the ordinary

frequency domain.

Although the results shown in figure 15 did not improve visually, the restored images are
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Figure 16: Comparison of image values along an horizontal line for the degraded and restored

image.

better suited for automated processing or recognition. The gray level values of the degraded

image and the restored image are shown in figure 16 for better visualization of the results.

The red lines depict the degraded and restored values, while the blue lines depict the original

uncorrupted image. Notice how upon filtering in the optimal fractional domain the noise

amplitude and frequency are greatly reduced, and the gray level abrupt changes, that seemed

to be shifted due to the motion blur, are closer to their original value in the restored image.

Although this effects are hard to notice from direct inspection of the retrieved image, their

effects will be noticeable when trying to automatically retrieve useful information from it.
6 Conclusion

Although the results showed in section 5.4 demonstrate a significant reduction in the image

mean square error, they do not reflect an important improvement in visual quality. This

indicates that the implemented error parameter is not a good indicator for visual quality.

Nevertheless, we found optimal filter in fractional domains is a good alternative to restore

image parameters before segmentation or image recognition, due to the high percentage of
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error decrease that was observed. We are confident that if an image quality descriptor was

available, the same algorithm presented in this work would render better visual results.

Additionally, our work further demonstrates that traditional Fourier filtering is not al-

ways the best technique to restore a heavily degraded image, since it can be significantly

outperformed by fractional Fourier filtering. In the implemented examples, a greater reduc-

tion in the image error was achieved by fractional domain filtering. We found that filtering

in fractional domains outperforms traditional frequency filtering, specially when removing

additive chirp noise, as shown in figure 13, where by filtering in fractional domains noise was

reduced 24% more than with traditional Fourier filtering.

Filtering in fractional domain renders better results because the noise signal can be opti-

mally separated from the image signal, the fractional domains provide additional parameters

that can be optimized to achieve superior restoration results.
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A Computer Code

All implemented computer codes are included in this section for completeness and future

reference.

One-Dimensional Fractional Fourier Transform

The algorithm realization of the fractional transformation in one dimension is included here.

This code receives a matrix of arbitrary number of elements and performs the transformation

on the columns of the array.

% F = frft(f, a, deltay) returns the ath order fractional fourier

% transform of the one-dimensional functions in the columns of f, using the

% convolution algorithm.

%

% f :: The columns of f represents one-dimensional samples of a signal,

% which should be sampled in an even amount of points. Several conditions

% should be met for f:

%

% 1. The amount of samples of f should be even;

% The best performance is accomplished when

% the amount of samples if a power of 2.

% 2. f should be pre-processed with a reasonable

% amount of zero-padding to avoid aliasing.

%

% a :: any positive real number or 0 is admitted for a, which is the order for

% the fractional transform to perform.

%

% deltay :: Is the sampling period for the dependent variable. This is

% needed to sample an analytic form of the convolution-chirp.

function F = frft(f,a,deltay); pack

%Defines the lower limit for the fractional fourier transform

h = 0.366;

%Calculate the number of sample points and the number of received columns

[Ny,Nx] = size(f);

%If the number of sample points is odd, return an error message.
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if( mod(Ny, 2) )

error( sprintf(’Sample points should be even, %d points received’, Ny ) );

F = []

return

end;

%FFT shift functions.

chess = (-1).^[0:Ny-1]’; chessmat = repmat(chess,1,Nx);

%Wrap for a, fractional fourier transforms are periodic with a period of 4.

%When a = 5 it is equivalent to perform a fractional transform of order 1.

a = mod(a,4);

%Validations for a to avoid unnecessary computing, taking advantage of some

%properties

switch a

case 0

%Zero transform of a function is itself.

F = f;

return

case 1

%First order fractional fourier transform is equal to the fourier

%transform.

F = (1/sqrt(Ny))*fft(f.*chessmat).*chessmat;

return

case 2

%Second order transform is the inverted version of the function.

f = flipud(f);

F = [ zeros(1, Nx); f(1:Ny-1, :) ];

return

case 3

%Third order is the inverted direct fourier transform.

f = flipud(f);

f = [ zeros(1, Nx); f(1:Ny-1, :) ];

F = (1/sqrt(Ny))*fft(f.*chessmat).*chessmat;

return

otherwise

%Otherwise, further processing is required.

if a > 2

f = flipud(f);

f = [ zeros(1, Nx); f(1:Ny-1, :) ];

a = a-2;
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end

end

%Backup of the validated order for final processing...

a2 = a;

%Another wrapping to fit in the range (h, 1+h) as described in <reference>

if a > 1+h

a = a-1;

elseif a < h

a = a+1;

end

%%% Begin of actual fractional fourier transforming.

alfa = a*pi/2;

% Reconstruction of the sampling vector for Bprime

y = repmat( deltay*( [1:Ny]’ - (Ny/2 + 1) ), [1 Nx] );

%Sampling of an analytic version of the tranformation of the chirp.

Bprime = exp(-i*pi*tan(alfa/2)*y.^2 ); fprime = f.*Bprime;

%Calculation of Fprime

Fprime = fft(fprime.*chessmat);

%Reconstruction of a sampling vector for the fourier domain.

v = y/(Ny*deltay^2);

Balfa = sqrt(i/csc(alfa))*exp( -i*pi*v.^2/csc(alfa) );

% Convolution

convol = ifft(Fprime.*Balfa).*chessmat;

%Inclution of scaling parameters and other required calculations.

F = sqrt(1-i*cot(alfa))*Bprime.*convol;

%Final validation

if a2 > 1+h

F = (1/sqrt(Ny))*fft(F.*chessmat).*chessmat;

elseif a2 < h

F = sqrt(Ny)*ifft(F.*chessmat).*chessmat;

end
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Two-Dimensional Fractional Fourier Transform

With this code we compute two-dimensional fractional Fourier transform using the one-

dimensional code previously presented.

function F = frft2(f, ay, ax, deltay, deltax)

F = frft(f, ay, deltay); F = F.’; F = frft(F, ax, deltax);

F = F.’;
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Optimal Filtering and Fractional Order Search

We applied this computer code to filter the degraded image in each fractional domain. Search

for the optimal fractional domain is achieved by computing and applying the optimal filter

in a predetermined grid of the domain space.

clear all; close all;

% Search parameters, (2/step)^2 grid points

step = 0.2;

% Read images from file

blurname =’test3j.bmp’; originalname =’test3o.bmp’;%

f = im2double(imread(blurname));%

fo = im2double(imread(originalname));

% Image red channel is chosen for processing

f=f(:,:,1); fo=fo(:,:,1);

% Image size is obtained and the search grid is defined

[jlim, ilim] = size(f); [X,Y]=meshgrid([1:ilim],[j:jlim]);

% Zero padding

f2 = zeros(2*jlim, 2*ilim); fo2 = zeros(2*jlim, 2*ilim);

f2(ilim/2+1:3*ilim/2, jlim/2+1:3*jlim/2)=f;%

fo2(ilim/2+1:3*ilim/2, jlim/2+1:3*jlim/2)=fo;

%The mask for image trimming is defined

mask = zeros(2*jlim, 2*ilim); mask(ilim/2+1:3*ilim/2,

jlim/2+1:3*jlim/2) = 1;

% Computation of deltax and deltay

[Nx,Ny]=size(f2); deltax = 1/sqrt(Nx); deltay = 1/sqrt(Ny);

% Definition of best estimate variables

MSE = zeros(2/step); TIME = zeros(2/step); Mbest = 1000000000;

secs = 0;

% Monitor variables

h = waitbar(0, ’0 porciento’); k = 0;

% Search begins

for ii = 1:(2/step),

for jj = 1:(2/step),

tic;
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ax = 3 + ii*step;

ay = 3 + jj*step;

F = frft2(f2,ay,ax,deltay,deltax).*mask;

Fo = frft2(fo2,ay,ax,deltay,deltax).*mask;

F = frft2(F,1,1,deltay,deltax);

Fo = frft2(Fo,1,1,deltay,deltax);

% Computation of optimum filter

Num = frft2((Fo).*(F),3,3,deltay,deltax);

Den = frft2((F).*(F),3,3,deltay,deltax);

Mopt = (Num./Den);

clear Num

clear Den

Moptpad = zeros(Ny, Nx);

Moptpad(ilim/2+1:3*ilim/2, jlim/2+1:3*jlim/2) =...

(1/4)*(...

Mopt(1:2:Ny,1:2:Nx)+...

Mopt(2:2:Ny,1:2:Nx)+...

Mopt(1:2:Ny,2:2:Nx)+...

Mopt(2:2:Ny,2:2:Nx)...

);

Ffil = frft2(F,3,3,deltay,deltax);

% Filter application

est = frft2(Ffil.*Moptpad.*mask,4-ay,4-ax,deltay,deltax);

MSE(jj,ii) = mean(mean(abs(abs( ...

est(ilim/2+1:3*ilim/2, jlim/2+1:3*jlim/2) )...

/max(max(abs(est(ilim/2+1:3*ilim/2, ...

jlim/2+1:3*jlim/2)))) - fo).^2));

if( Mbest > MSE(jj,ii) )

Mbest = MSE(jj,ii);

axbest = ax;

aybest = ay;

best = abs(est(ilim/2+1:3*ilim/2, jlim/2+1:3*jlim/2))...

/max(max(abs(est(ilim/2+1:3*ilim/2, jlim/2+1:3*jlim/2))));

tbest = TIME(jj,ii);

end

TIME(jj,ii) = toc
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secs = secs + TIME(jj,ii);

k = k+1;

waitbar( k/((2/step)^2), h, ...

sprintf(’%3.2f porciento %f segundos’, k/((2/step)^2), secs) );

end

end

% Search variables are saved to file

savename = sprintf(’%s_%dx%d’, blurname, 2/step,2/step);

save(savename);

% Display of results

figure; imshow( best );

title( sprintf(’Optimo: MSE:%1.5f ax:%1.2f ay:%1.2f tiempo:%f segundos’,...

Mbest, axbest, aybest, tbest) );

figure; imshow( f ); title( ’Imagen con blur’ ); figure; imshow(

fo ); title( ’Imagen original’ );

axisax = [3+step:step:5]; figure; surf(axisax,axisax’,MSE),

shading interp, lighting phong, view(2)

’MSE original’ mean(mean(abs(f - fo).^2))
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B Glossary of Technical Terms

Sine cardinal: Also called the “sampling function”. The sine cardinal is a function that

arises frequently in signal processing and the theory of Fourier transforms.

Chirp: A signal that linearly ramps up (or down) in frequency.

Convolution: A convolution is an integral that expresses the amount of overlap of one

function as it is shifted over another function.

Digitized: A term for information that has been converted into binary digits for computer

processing.

Dirac delta: The delta function is a generalized function that can be defined as the limit

of a class of delta sequences. The delta function is sometimes called the “impulse

function” for its schematization as an infinitely narrow function with unitary area.

Fraunhoffer region: Also called the far-field region. When you get far enough from an

electromagnetic source so that its radiated field wave can be considered planar.

Fresnel region: Also called the near-field region. When you are close enough to an electro-

magnetic source so that its radiated field must be considered mathematically spherical

rather than planar.

Gaussian: The normal or Gaussian distribution is a continuous symmetric distribution that

follows the familiar bell-shaped curve. The distribution is uniquely determined by its

mean and variance.

Nyquist frequency: The Nyquist frequency, also called the Nyquist limit, is the highest

frequency that can be coded at a given sampling rate in order to be able to fully

reconstruct the signal.
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Radon transform: The Radon transform is an integral transform whose inverse is used to

reconstruct images from medical computer tomography scans.

Uncorrelated: In probability theory and statistics, to call two real-valued random variables

uncorrelated means that their correlation is zero, or, equivalently, their covariance is

zero.

Watermark: Bits altered within an image to create a pattern that indicates proof of own-

ership. Unauthorized use of a watermarked image can then be traced.

Wigner distribution: Time-frequency representation of a signal.
C Acknowledgements

We acknowledge the advice and support received from professor Carlos Hinojosa during the

development of this project.

References

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. New Jersey: Prentice

Hall, 2002.

[2] M. K. Ozkan, A. T. Erdem, M. I. Sezan and A. M. Tekalp, “Efficient mul-

tiframe Wiener restoration of blurred and noisy image sequences,” IEEE Trans-

actions on Image Processing [online] 1 (4), pp. 453–476, 1992. IEEE Xplore,

http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=ieeexplore (Accessed: 23

April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).

37



Radon transform: The Radon transform is an integral transform whose inverse is used to

reconstruct images from medical computer tomography scans.

Uncorrelated: In probability theory and statistics, to call two real-valued random variables

uncorrelated means that their correlation is zero, or, equivalently, their covariance is

zero.

Watermark: Bits altered within an image to create a pattern that indicates proof of own-

ership. Unauthorized use of a watermarked image can then be traced.

Wigner distribution: Time-frequency representation of a signal.

C Acknowledgements

We acknowledge the advice and support received from professor Carlos Hinojosa during the

development of this project.

References

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. New Jersey: Prentice

Hall, 2002.

[2] M. K. Ozkan, A. T. Erdem, M. I. Sezan and A. M. Tekalp, “Efficient mul-

tiframe Wiener restoration of blurred and noisy image sequences,” IEEE Trans-

actions on Image Processing [online] 1 (4), pp. 453–476, 1992. IEEE Xplore,

http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=ieeexplore (Accessed: 23

April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).

37



Radon transform: The Radon transform is an integral transform whose inverse is used to

reconstruct images from medical computer tomography scans.

Uncorrelated: In probability theory and statistics, to call two real-valued random variables

uncorrelated means that their correlation is zero, or, equivalently, their covariance is

zero.

Watermark: Bits altered within an image to create a pattern that indicates proof of own-

ership. Unauthorized use of a watermarked image can then be traced.

Wigner distribution: Time-frequency representation of a signal.

C Acknowledgements

We acknowledge the advice and support received from professor Carlos Hinojosa during the

development of this project.
References

[1] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. New Jersey: Prentice

Hall, 2002.

[2] M. K. Ozkan, A. T. Erdem, M. I. Sezan and A. M. Tekalp, “Efficient mul-

tiframe Wiener restoration of blurred and noisy image sequences,” IEEE Trans-

actions on Image Processing [online] 1 (4), pp. 453–476, 1992. IEEE Xplore,

http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=ieeexplore (Accessed: 23

April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).

37



[3] M. A. Kutay and H. M. Ozaktas, “Optimal image restoration with the fractional Fourier

transform,” Journal of the Optical Society of America A [online] 15 (4), pp. 825–833,

1998. Optics Infobase http://www.opticsinfobase.org (Accessed: 2 April 2005).

[4] A. D. Poularikas, The Transforms and Applications Handbook,

Boca Raton: CRC Press LLC, 2000. MATHnetBASE [online]

http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=mty.mathnetbase (Ac-

cessed: 22 April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).

[5] E. Hecht, Optics, 4th ed. San Francisco: Adison Wesley, 2002.

[6] J. Rosenblatt and S. Bell, Mathematical Analysis for Model-

ing, Boca Raton: CRC Press LLC, 1999. MATHnetBASE [online]

http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=mty.mathnetbase (Ac-

cessed: 14 April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).

[7] L. Lucchese and G. M. Cortelazzo, “Motion analysis and displacement estimation in

the frecuency domain,” in Digital Image Sequence Processing, Compression, and Anal-

ysis, T. R. Reed, Boca Raton: CRC Press LLC, 2005. Engineering Electronic Library

[online] http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=mty.engnetbase

(Accessed: 21 April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).

[8] A. D. Hillery and R. T. Chin, “Iterative Wiener filters for image restoration,” IEEE

Transactions on Signal Processing [online] 39 (8), pp. 1892–1899, 1991. IEEE Xplore

http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=ieeexplore (Accessed: 20

April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).

[9] M. A. King, P. W. Doherty, R. B. Schwinger and B. C. Penney, “A Wiener filter for

nuclear medicine images,” Medical Physics [online] 10 (6), pp. 876-880, 1983. Medical

Physics Online http://scitation.aip.org (Accessed: 20 April 2005).

38



[10] A. I. Zayed, “On the relationship between the Fourier and fractional Fourier trans-

forms,” IEEE Signal Processing Letters [online] 3 (12), pp. 310–311, 1996. IEEE Xplore

http://biblioteca.itesm.mx/nav/contenidos salta2.php?col id=ieeexplore (Accessed: 22

April 2005 through Biblioteca Digitalr, Tecnológico de Monterrey).
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