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Dr. Ramón Mart́ın Rodŕıguez Dagnino, ITESM Campus Monterrey
Dr. Anatoly A. Pogorui, Zhytomyr State University, Ukraine
Dr. Gabriel Campuzano Treviño, ITESM Campus Monterrey
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Abstract

As it is known, the problem of availability of information is normally addressed using a
buffer. Most of the times it is required that the effectiveness or reliability of the system
is calculated to optimize the amount of stored information according to the customers
random requests and to the amount of incoming information from the supply line. In
this thesis, we consider the case of single buffer connected to any number of customers
with bursty demands. We model the variation of the level of stored information in
the buffer as an evolution in a random media. We assume that the customers can be
modeled as semi-Markov stochastic processes and we use the phase merging algorithm
to reduce the evolution process in a semi-Markov to an approximated evolutions in a
Markov media. Then we obtain a general solution to the stationary probability density
of the level of the buffer and general results for the stationary efficiency of the system.
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Chapter 1

Introduction

1.1 Motivation

As it is known, the problem of availability of information is normally addressed using a
buffer. Most of the times it is required that the effectiveness or reliability of the system
is calculated to optimize the amount of stored information according to the customers
random requests and to the amount of incoming information from the supply line.

Random evolutions are the mathematical model of the evolutionary systems under the
influence of random factors. In a general form, these models are described based on
stochastic operator integral equations in a separable Banach space [11, 10]. Random
evolutions have proved to be a helpful mathematical formulation for different areas of
knowledge such as biology, finance, information systems, etc. [22].

Many times, the random factors or processes that regard these schemes are considered
to be Markov processes. Sometimes this consideration is considerably accurate. In some
other cases it is not, and semi-Markov processes need to be modeled and solved.

Although, there exist techniques to addressed this kind of problems [11], quite often
the calculations to solve exactly this problems turn cumbersome. In response to these
situations some techniques to solve approximately semi-Markov schemes have been pro-
posed. One of this techniques proposes the use of the Phase Merging Algorithm (PMA)
to reduce evolutions in a semi-Markov media to evolutions in an approximated Markov
media. We use this technique in this thesis.

As a matter of fact, the system presented here is a rather general scheme that may be
used in different information schemes. This model and results may even be useful in
some other engineering areas.

1



CHAPTER 1. INTRODUCTION 2

1.2 Problem Statement and Context

As it is known, the theory of the random evolutions was born after the application of
some probabilistic methods to the solution of some partial differential equations such
as the heat and the telegraph equations [5, 6] after a generalization of the work of Kac
regarding the motion on the real line. Then, the term was introduced by Reuben Hersh
and Richard Griego being suggested by Peter Lax. The theory was mostly developed by
authors such as Papanicolau, Hersh, Pinsky, Kertz, Watkins and others no less impor-
tant. There is a broad series of papers regarding several aspects of the evolutions such
as limit theorems [8, 16] and diffusion processes and random motions [4, 3]. The semi-
Markov case has been considered by authors such as Swishchuk, Turbin, and Korolyuk.
Of course this list is far from being complete.

In this thesis we use the evolutionary formulation to study the stationary efficiency of a
system consisting of a finite capacity buffer connected to different customers with bursty
on-off demands.

The system functionality is as follows:

We assume that the buffer is filled up at a constant rate F .

The customers switch from the active or “ON” state to the inactive or “OFF” state,
and we consider that the switching process of the customers can be modeled as a semi-
Markov process.

When active, one customer demands information at a certain rate whereas, when n
customers are active, the sum of all demands is the rate at which information is required.
If the buffer is empty (v = 0), an unproductive situation is considered. When no
customer is active, then no product is required. The filling aggregate provides the
buffer with product at a constant rate F . This aggregate is active as long as the volume
of information is below the maximum capacity of the buffer (V ), see Figure 1.1.

Z
Z
Z

Z
Z
Z

�
�
�F

v f

f

S1

SN

...

V

Figure 1.1: A system of N independent customers and one buffer filled up at a constant
rate F .
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1.3 Research Questions

The dynamics of the overall system are modeled using a semi-Markov evolution envi-
ronment and we derive design formulae involving the main parameters.

We show that it is possible to use the Phase Merging Algorithm to reduce the semi-
Markov process to an approximated Markov process. Then, we use that result and
we find the stationary distribution of the system for two different semi-Markov cases,
namely, m-Erlang and hyper-exponential cases The Markov evolution environment is
also included as a special case.

We study some limits of the stationary efficiency as the buffer capacity tends to infinity
and we identify three different stationary behavior cases for the system.

1.4 Solution Overview

The dynamics of this linear system can be captured by a first order differential equa-
tion having a random component, or the so-called random evolution process [10]. We
elaborate our semi-Markov mathematical modeling and after that deal with the special
Markov case. We obtain the stationary compound probability distribution for the buffer
content level and the mathematical expression of the efficiency parameter in terms of
the system values. Then, with the help of some plots we analyze some numerical results
for different Markov and semi-Markov cases. In particular, we include the m-Erlang,
exponential, and hyper-exponential distributions for the active periods.

Let us denote I(T ) the amount of information delivered to customers S1 and S2, in a

time interval [0, T ]. Thus, we can define K = lim
T→∞

I(T )

T
as the steady state parameter

for the system effectiveness, see Chapter 4 in [20]. Then, determine K as a function of
the system parameters, λ0, λ1, µ0, µ1, f0, f1 and F .

1.5 Main Contributions

The main contributions of this thesis are the following:

• Exact stationary probability density for the level of the buffer for the Markov case
with two different customers and the exact expression of the stationary efficiency.
Also, the approximated stationary probability density for the cases m-Erlang and
hyper-exponential in addition to the stationary efficiency for these cases [18].

• Exact general solution of the stationary probability density of the system with
any number N of superposed Markov processes (customers) [19] in addition to
generalized results for the stationary efficiency.
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1.6 Thesis Organization

In Chapter 2, we introduce some basic notions of measure theory and probability for the
reader to understand the framework of this research. Namely, we need to understand
that we can see a random variable as a measurable function. It is necessary to show the
way measurable functions are integrated using the Lebesgue integral. In addition, in
Chapter 2 random evolutions are introduced with some simple examples. We are going
to introduce the properties of the infinitesimal operator that is used in the random
evolution formulation.

In Chapter 3, we address the problem of the superposition of two different processes
(customers). This case may be useful for some applications. In Chapter 4, we consider
the case where we have a superposition of two processes with the same parameters. It
will be seen that the results of Chapter 3 regarding the stationary probability density
cannot be reduced to the case of two processes with the same parameters. Also, it will
be shown that this chapter is an important step toward the generalized results of the
superposition of any number N of processes with the same parameters. Such results are
shown in Chapter 5. In Chapter 6 we summarize the most important results.



Chapter 2

Background and State of the Art

2.1 Chapter Summary

It is necessary to introduce some basic notions of set theory and measure theory to
understand an important part of the framework of this research. Namely, we need to
understand that we can see a random variable as a measurable function. Also, we need
to understand the way these functions are integrated using the Lebesgue integral. We
will try to explain these concepts in the first part of this chapter.

After that, we are going to define some random processes that will help us introduce the
random evolutions. We will present the infinitesimal operator and we will talk about
its properties. Then, we will show a simple example where random evolutions can be
formulated. Namely, the Brownian motion.

2.2 Set theory

A set is a collection of elements from a defined space U . This is a basic concept that lines
up with the notions learned on early school with the Venn Diagrams although the modern
approach to the set theory is axiomatic. This means that sets or set memberships are
defined by axioms that describe their properties.

We can mention some examples of sets: the set of positive integer numbers N = 1, 2, 3, ...,
the set of real numbers, i.e., R = (−∞,∞).

It is a common practice to use U to denote a universal set as well as ∅ to denote an
empty set. The universal set is the set that holds all elements of a certain space. Sets
are commonly denoted with capital letters, such as U , A or B. When one says that set
A and B are equal, it means that these sets contain exactly the same members.

There are several ways to describe a set. One way is to give a description such as: S
is the set of all students in Monterrey. Another way to describe a set is by explicit

5
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enumeration, normally using braces. For example, F = {green, white, red}. Also some
abbreviation can be used to describe sets such as in the case of the set of integer numbers
N = {1, 2, 3, ...} or in the case of the set of real numbers R = (−∞,∞). The set builder
notation can also be used such as in the case {k : n ∈ N ∧ k = 2n} which stands as the
set of all even natural numbers. In this notation, the colon stands as ”such that”. Also,
it is common to denote by 2U all subsets of the universal set U including ∅ and U .

In a set there cannot be two or more identical elements. Also, the order in which the
elements of a set are listed is irrelevant.

To denote that an element is or it is not a member of a particular set, the symbols ∈,
/∈ are used respectively, for example, ”red” ∈ F . There are several other symbols that
describe relationships between sets or describe some operations. See the following table.

A ⊆ B, A is a subset of B or it is equal to B.
A ⊂ B, A is a subset of B but it is not equal to B.
A ∩B, The intersection of sets A and B.
A ∪B, The union of sets A and B
A\B, The (relative) complement of B in A

A4B, The symmetrical difference of sets or disjunctive sum

The relative complement of B in A refers to the set of all elements that belong to set
A, but do not belong to set B. This complement is relative since it does not represent
the complement with respect to the universal set U . Another way to represent the
complement of B in A is by writing A−B.

The symmetrical difference of sets or disjunctive sum can be described by the expression
A4B = (A\B)∪ (B\A). In words, the set of all elements that belong to A, but not to
B and all elements that belong to B, but not to A.

Another important concept is the monotonicity. We say that a sequence of elements
{A1, A2, . . . An, . . .} ⊂ K is a monotonic set class if A1 ⊂ A2 ⊂ · · ·An ⊂ · · ·, i.e.,

lim
n→∞

An ≡
∞⋃
n=1

An ∈ K. We also say that the set class {An : n ≥ 1} ⊂ K, is a monotonic

sequence of sets if A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·, i.e., lim
n→∞

An ≡
∞⋂
n=1

An ∈ K

2.2.1 Rings, and algebras

A ring is a set with an algebraic structure in which addition and multiplication between
its members are defined. Also, these operations fulfill the following axioms.

Let R be a ring then, for all a, b, c ∈ R. We have two operations ⊕ and ⊗ such that

1. a⊕ b = b⊕ a,

2. (a⊕ b)⊕ c = a⊕ b⊕ c,
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3. ∃θ ∈ R, an identity element, such that a⊕ θ = a,

4. ∃ − a ∈ R, a symmetric element such that a⊕−a = θ,

5. a⊗ (b⊗ c) = (a⊗ b)⊗ c,

6. a⊗ (b⊕ c) = (a⊗ (b⊕ a)⊗)c.

Assume a subset class K ⊂ U is an algebraic ring, in the case that it holds the com-
mutative property a ⊗ b = b ⊗ a and if a ⊕ a = 0, ∀a ∈ R this ring is called a Boolean
ring.

Assume K is an algebraic ring with the addition defined as the symmetric difference and
the multiplication as the intersection. This is, for any a, b ∈ K, a⊕ b = (A\B)∪ (B\A),
also a⊗ b = a ∩ b. It can easily be proved that K is also a Boolean ring.

A boolean ring can also be defined in the following way. Let R ⊂ 2U then ∀A,B ∈ R,
a ∪ b ∈ K and A\B ∈ R. It is easy to prove that the ring K holds this properties. It is
said that a Boolean ring is closed under finite union and relative complement.

A ring is called an algebra if U ∈ K. This is, if the universal set is an element of the
ring.

In a Boolean Algebra there is a correspondence between the set operations and some
basic logical operations, i.e., AND, OR and NOT. Furthermore, it is important to re-
member the properties given on sets by the DeMorgan theorems in Boolean Algebras.
Basically, these theorems state that A ∩B = A ∪ B, also, A ∪B = A ∩ B, given
A = U\A.

It is said that if a non empty set class S ⊂ 2U has all the properties of a ring, except
that it has no symmetric (or additive inverse) elements for each of its member elements,
then S is called a semi-ring.

Formally speaking, if ∀A,B ∈ S, A ∩B ∈ S, and ∃A1, A2, ...A3 ∈ S such that

A\B =
n⋃
k=1

Ak, then S is a semi-ring.

A ring R is called a σ-ring if, given An ∈ R ∀n ∈ N ,
⋃∞
n=1An ∈ R. In this case, it is

said that the ring is closed under countable union.

In the case the universal set U is an element of the σ-ring, this is called a σ-algebra.

Consider the set k(H) =
⋂

R is ring and R⊃H

R. It is said that k(H) is a ring generated

by the set class H. In fact, the ring k(H) is the intersection of all rings containing H.
Then, k(H) is the minimum ring containing H [2].

We can also define [7]:

• σk(H), the minimal σ-ring containing H.



CHAPTER 2. BACKGROUND AND STATE OF THE ART 8

• m(H), the minimal monotonic class containing H.

• a(H), the minimal algebra containing H

• σa(H), the minimal σ-algebra containing H.

2.2.2 Functions over sets

Assume H ⊂ 2U is a class of sets. Also, assume λ is a real-valued function on H.

If ∀A ∈ H, λ(A) ≥ 0, then it is said that λ is a non-negative function.

In the case that ∀Ai ∈ H, i = 1, . . . , n and
n⋃
i=1

Ai ∈ H where Ai ∩ Aj = ∅ for i 6= j, if

λ

(
n⋃
i=1

Ai

)
=

n∑
i=1

λ(Ai) then, it is said that λ is a finitely additive function. If, instead,

we have λ

(
n⋃
i=1

Ai

)
≤

n∑
i=1

λ(Ai), it is said that λ is a semi-additive function.

Also, one can recall the infinite case, where we have ∀Ai ∈ H, i = {1, 2...} and
∞⋃
i=1

Ai ∈ H,

where Ai ∩ Aj = ∅ for i 6= j. In this case that, λ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

λ (Ai), it is said that

λ is a infinite additive function, i.e., a σ-additive function. Instead, if we have that

λ

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

λ (Ai), it is said that λ is infinite semi-additive function, i.e., a

σ-semi-additive function.

We say that λ is a monotone function if for A,B ∈ H and given A ⊂ B, we have
λ(A) ≤ λ(B).

Also, we say that λ is a finite function if ∀A ∈ H we have
λ(A) < +∞.

Furthermore, in the case that ∃{Ai : i ≥ 1} ∈ H such that
∞⋃
i=1

Ai = U we say that λ is

a σ-finite function if λ (Ai) <∞, ∀i ≥ 1.

2.3 Measure

It is said that a measure µ is a real-valued function defined on a σ-algebra S ⊂ 2U if it
satisfies the following conditions.

1. µ is nonnegative.
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2. µ(∅) = 0.

3. µ is σ-additive.

If µ is a measure it has the following properties:

1. µ is a monotone function. Furthermore, if {A,B1, B2, B3, . . . , Bn} ∈ S given

A ⊂
n⋃
i=1

(Bi) then µ(A) ≤
n∑
i=1

µ (Bi).

2. For a sequence {Ai : i ≥ 1} ⊂ S such that
∞⋃
i=1

Ai ∈ S we have that

µ

( ∞⋃
n=1

Ai

)
≤
∞∑
n=1

µ(Ai),

if sets Ai and Aj may not be disjoint for any i 6= j, and i, j ≥ 1. In words µ is
semi-additive for a sequence of sets which may not be disjoint.

3. For any A ∈ R, B ∈ R such that µ(A) < +∞ and µ(B) < +∞, the equality
µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B) holds true.

4. µ is a continuous function from upper and from down. This is,

µ
(

lim
n→∞

An

)
= lim

n→∞
µ(An),

for any given monotonic sequence of sets {An|n ≥ 1}.

A set U with a σ-algebra S of subsets of U is called a measurable space and is denoted
(U , S). The triple (U, S, µ) is called a space with measure or a measure space. If
µ(U) = 1, µ is called a probability measure.

Consider the space with measure (U, S, µ). We say that the measure is discrete if it is
concentrated on no more than a enumerable infinite set of points. Any singleton (one
point subset) x ∈ S which has measure µ(x) > 0 is called an atom of µ.

On the other hand, we say that a measure is continuous if µ is defined but equals zero
on any singleton of U .

Theorem 2.1 (Lebesgue) Any σ-additive measure µ can be uniquely represented as

µ(x) = µd(x) + µc(x), ∀x ∈ S,

where µd is a discrete measure and µc is a continuous measure.

See [7], [23].
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2.3.1 Completeness and extension of a measure

Let us introduce the concept of completeness.

Consider the space (U, S, µ). A set N ⊂ U is called a µ-null set if ∃A ∈ S such that
µ(A) = 0 given A ⊃ N . (U, S, µ) is said to be a complete space if every µ-null set N ∈ S.
The measure µ is said to be also complete.

Theorem 2.2 Consider the space (U, S, µ), any null set N in the given space and the
set class S = {A ∪N : A ∈ S}. Then, the measure µ over the set class S is defined as

µ(A ∪N) := µ(A), ∀A ∈ S.

Then, S is a σ-algebra.

See [7], [23].

It is said that a space can be extended to a complete one if the symmetric difference of
both measurable sets is a null set.

It was said that a measure is a function defined on a σ-algebra, and this is the common
notion. In fact, a measure can also be defined on a semi-ring and there exists a couple
of important theorems that state that the measure over a semi-ring may be uniquely
extended to a measure over a σ-ring. Given this, the only difference of a measure over
a σ-ring and a measure over a σ-algebra is that in the latter case the measure over the
universal set U is defined.

Theorem 2.3 Every σ-finite measure on a semi-ring H can be uniquely extended to a
measure over σ-finite measure on R(H), i.e., over the minimum ring R containing the
semi-ring H.

Theorem 2.4 (Caratheodory) Every σ-finite measure over a ring R can be uniquely
extended to a σ-finite measure over σK(R), i.e., over the minimum σ-ring σK that con-
tains the ring R. Also, every σ-finite measure over an algebra A can be uniquely extended
to a σ-finite measure over σT (A), i.e., over the minimum σ-algebra σT containing the
algebra A.

Proofs are omitted. See Chapter 1 in [23].

2.3.2 Lebesgue Measure

Consider de following semi-ring. P = {(a, b]|a < b ∈ R} ∪ {∅}. Then the following
theorem is fulfilled.
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Theorem 2.5 If µ is a measure on P then there exists a nondecreasing and continuous
from the right function F on R such that

µ((a, b]) = F (b)− F (a). (2.1)

Viceversa, if there exists a nondecreasing and continuous from the right function F on
R then there exists a measure µ such that 2.1 is fulfilled.

Proof is omitted. See [23].

Now, consider the function F (x). This function defines the measure µ((a, b]) = b− a on
the semi-ring P . By using Theorem 2.3, this measure can be extended to a measure on
R(P ), i.e., over the minimum ring containing the semi-ring P . Then, using the Theorem
2.4 the measure µ can be extended to a measure on σK(P ), indeed, over the minimum
σ-ring containing P . Using Theorem 2.2 we can obtain the complete space (U, σa(P ), µ).

The measure µ is called the Lebesgue measure on R and aσ(P ), the minimum σ-algebra
containing P , is called the algebra of Lebesgue sets on R. Then, the Lebesgue measure
is a complete measure [7].

The σ-algebra σa(P ), which is the set class before completion, is called the algebra of
Borel sets on R. The measure over this σ-algebra is called the Borel measure and, of
course, it is not complete.

2.3.3 Measure on Rm

The Lebesgue measure can also be defined on the space Rm. Consider the semi-ring

Pm =

{
m∏
i=1

(ai, bi]| ai < bi, ai, bi ∈ R

}
∪ {∅}. Take the measure over Pm as

µm

(
m∏
i=1

(ai, bi]

)
=

m∏
i=1

(bi − ai), µm(∅) = 0.

For m = 2 we have µ2

(
2∏
i=1

(ai, bi]

)
= (a1, b1]× (a2, b2] which is the area of a rectangle.

For m = 3 we have µ3

(
3∏
i=1

(ai, bi]

)
= (a1, b1] × (a2, b2] × (a3, b3] which is the volume of

a parallelepiped.

The measure on Pm can be extended to the measure over σa(Pm) and it is called the
Lebesgue measure on Rm. Thereafter, σa(Pm) is called the Lebesgue σ-algebra and
sometimes is referred to as L(Rm).

It is said that the Lebesgue measure is a standard way of assigning a length, area or
volume to the subsets of an m-dimensional Euclidean space such as Rm.
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2.4 Measurable Functions

Consider that S is a σ-algebra over the set U . Also consider that B is a σ-algebra
over the set Ω. Then a function between these measurable spaces, i.e., f : U → Ω is
said to be S/B-measurable if {u|f(u) ∈ A} ∈ S, ∀A ∈ B. In words, we say that f is
S/B-measurable if

the preimage of every set in B is in S. Sometimes this is also written as f−1(A) ∈
S, ∀A ∈ B.

In the case that Ω = R, B is considered the Borel σ-algebra of sets over R, i.e., B(R)
and we may just say that f : U → R is S-measurable.

Ω = R̄, where R̄ = R ∪ {−∞} ∪ {∞}, may also be used to define the Borel σ-algebra
over this set, namely B(R̄). Then a function f : U → R̄ would be also S-measurable [1].

Theorem 2.6 Consider, H ⊂ 2R such that σa(H) = B(R), i.e., the minimum σ-
algebra containing the set H is the Borel σ-algebra of sets over R. Then a real function
f is S-measurable if and only if {u|f(u) ∈ A} for all A ∈ H.

See [7], [23].

Of course there is much more to say about measures.

Random variables are by definition measurable functions defined on sample spaces. An
important example, especially in the theory of probability, is the Borel algebra on the
set of real numbers. It is the algebra on which the Borel measure is defined. Given a
real random variable defined on a probability space, its probability distribution is by
definition also a measure on the Borel algebra.

2.4.1 Simple Functions

Consider the measurable space (U,S). A simple function f(x) is a function that can be
expressed in the following form

f(x) =
n∑
i=1

xiIAi
(x),

where
n⋃
i=1

Ai = U and Ai ∈ S for xi ∈ R, i = 1, 2, . . . , n. IAi
stands as the indicator

function of the set Ai, i.e.,

IAi
(x) =

{
1, x ∈ Ai,
0, x /∈ Ai.

It can be proved that the simple function f(x) is S-measurable.
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Indeed, it is said that the Borel σ-algebra is the minimum σ-algebra in Rn that contains
the open intervals in Rn. These open intervals may obtained by a numerable collection
of disjoint intervals of the form (a, b] [15].

Then, there are some remarkable sets that belong to the σ-algebra of Borel in R, say
B(R). As some examples we may mention:

1. (a, b) ∈ B(R) given a, b ∈ R, since this is an open interval.

2. (a, b] ∈ B(R) since (a, b] =
∞⋂
i=1

(
a, b+

1

i

)

3. [a, b) ∈ B(R) since [a, b) =
∞⋂
i=1

(
a− 1

i
, b
)

4. [a, b] ∈ B(R) since [a, b] =
∞⋂
i=1

(a− 1

i
, b+

1

i
).

5. (−∞, b) ∈ B(R) since this is a numerable union of sets such as those mentioned
above.

6. Any point in R belongs to B(R), say b = [b, b]. Furthermore, any collection of
points in R also belongs to B(R). For example, the collection of all the rational
numbers, say Q.

Given this, one can see that a simple function f(x) is S/B(R)-measurable.

There are some important theorems for measurable and simple functions which may be
useful ahead.

Theorem 2.7 Suppose f and g are simple functions. Then, cf (given c ∈ R), f + g,

fg,
1

f
(given f(u) 6= 0, ∀u ∈ U), are simple functions.

Theorem 2.8 Given f : U → R+ is a S-measurable function, then, there exists a
sequence of simple functions f1, f2, . . . , fn such that f1 ≤ f2 ≤ . . . ≤ fn and lim

n→∞
fn(u) =

f(u) for all u ∈ U .

Theorem 2.9 If f : U → R is S-measurable function, there exists a sequence of simple
functions f1, f2, . . . , fn such that |fn| ≤ |f | and lim

n→∞
fn(u) = f(u), ∀u ∈ U .

See [7] for proofs.
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2.5 Lebesgue Integral

Assume the measure space (U, S, µ) and the S-measurable function f : U → R. Some-
times it is preferred to present the integral of Lebesgue of the function f with respect
to the measure µ, i.e., ∫

A
fdµ, A ⊂ S,

in stages as follows.

2.5.1 Simple Functions

Consider the indicator function IAi
, Ai ∈ S as defined above. We have∫
U
IAi

dµ = µ(Ai).

Now, consider the simple function f(x) =
n∑
i=1

xiIAi
(x). The Lebesgue integral of this

function over a set A ⊂ S with respect to the measure µ is

∫
A
fdµ =

n∑
i=1

xiµ(Ai ∩ A).

There are some important properties of the Lebesgue integral of simple functions that
are important to mention at this point.

1. Given A ∈ S and µ(A) = 0, then
∫
A
fdµ = 0 for any simple function f .

2. Given A ∈ S and f(x) ≥ 0, ∀x ∈ A, then
∫
A
fdµ ≥ 0.

3.
∫
A

(af + bg)dµ = a
∫
A
fdµ+ b

∫
A
gdµ, ∀a, b ∈ R.

4. Given f > g, then
∫
A
fdµ ≥

∫
A
gdµ.

5.
∣∣∣∣∫
A
fdµ

∣∣∣∣ ≥ ∫
A
|f | dµ.

2.5.2 Nonnegative functions

Thereafter, we continue with the construction of the Lebesgue integral for other kinds
of functions.
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Consider f : U → R+ is a S-measurable function. Then, according to Theorem 2.8
there exists a sequence of non-negative simple functions such that

lim
n→∞

fn(u) = f(u), ∀u ∈ U.

Furthermore, we have, for the Lebesgue integral of f over a set A ∈ S with respect to
the measure µ, that ∫

A
fdµ = lim

n→∞

∫
A
fndµ.

2.5.3 Signed Functions

Consider f : U → R is a S-measurable function and f+ = max(f(x), 0), f−(x) =
max(−f(x), 0). We may also say that

f+(x) =

{
f(x), iff(x) ≥ 0

0, iff(x) < 0.
,

f−(x) =

{
f(x), iff(x) ≤ 0

0, iff(x) > 0.

Notice that f+ and f− are non negative functions. The Lebesgue integral of f over a

set A ∈ S with respect to the measure µ is defined if any of the integrals,
∫
A
f+dµ, or∫

A
f−dµ is finite.

From now on let us denote as L(A, µ) the set of different functions for which the integral
of Lebesgue, over a set A and with respect to the measure µ, is defined.

2.5.4 Properties of the Lebesgue Integral of L(A, µ) functions

Next we will show some of the basic properties of the Lebesgue integral of L(A, µ)
functions. Let us consider, as usual, the measure space (U, S, µ).

1. Given A ∈ S and µ(A) = 0, then
∫
A
fdµ = 0 for any S-measurable function f .

2. Given A ∈ S and f(x) ≥ 0, ∀ ∈ A. Then
∫
A fdµ.

3.
∫
A
c · fdµ = c

∫
A
fdµ, ∀c ∈ R.

4. Given A ∈ S
∫
A

dµ = cµ(A), ∀c ∈ R.

5.
∫
A

(f + g)dµ =
∫
A
fdµ+

∫
A
gdµ
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6. Given f ≥ g, then
∫
A
fdµ ≥ dµ.

7. Given f : U → R+ is a S-measurable function, then∫
A∪B

fdµ =
∫
A
fdµ+

∫
B
fdµ

if A,B ∈ S and A ∩B = ∅.

8. Given A,B ∈ S and A ⊂ B, then
∫
A
fdµ ≥

∫
B
fdµ, for any S-measurable function

f : U → R+.

The proofs of some of these properties are evident. For most of the properties whose
proof is not evident, the procedure is to take the sequence of simple functions fn ↑ f
as n → ∞. Then one can recall the properties of the integral for simple functions. In
the case of signed functions, one must consider the definition of the integral for signed
functions to complete the proof.

2.5.5 Properties almost everywhere

Consider a property P that is fulfilled by some elements of U . We say that this property
is fulfilled almost everywhere with respect to a measure µ if the set of elements N , which
do not fulfill the property, is a null set. This is, µ(N) = 0.

Theorem 2.10 Given f : U → R+ and f ∈ L(A, µ), A ∈ S. If
∫
A
fdµ = 0, then

f(x) = 0 almost everywhere.

2.6 Introduction to Probability Theory

2.6.1 Probability Measure

Consider the measurable space (Ω,F). A measure P on F is called a probability measure
if µ(Ω) = 1. Also, any set A ∈ F is called a random event.

The triplet (Ω,F , P ) is called a probability space.

A real function or map ξ : Ω → R is called a random variable if it is F -measurable.
This is, if {ω : ξ(ω) ∈ A} ∈ F , ∀A ∈ B(R). If ξ is a simple function, then it is said that
the random variable is simple.

If we take the Lebesgue integral of the random variable ξ with respect to the measure
P , we obtain the expectation Eξ of the random variable. This is,∫

Ω
ξdP = Eξ.
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2.6.2 Stochastic Processes

Consider the measurable space (X,Σ) and the probability space (Ω,F , P ). A stochastic
process is a two component function ξ(t, ω) defined on [0,+∞) × Ω which satisfies the
following conditions.

1. For every fixed t0 ∈ [0,+∞), ξ(t0, ω) : Ω→ X is a Σ-measurable function.

2. For every fixed ω0 ∈ Ω, ξ(t, ω0), is a function with values in X for all t ∈ [0,∞).

One common case for the space of a stochastic processes would be (X,Σ) = (Rn, B(Rn)),
n ≥ 1.

Consider the probabilistic space (Ω,F , P ), a stochastic process ζ(t) (or ζ(t, ω)) with
values in a measurable space (X,Σ), is called a Markovian processes if [12]

P{ζ(t) ∈ A, t > t0/ζ(t0) = x, ζ(s) ∈ B, s < t0} = P{ζ(t) ∈ A, t > t0/ζ(t0) = x},

for every x,A,B ∈ Σ.

It is said that the evolution of a Markov process after any point of time t0 is independent
of the evolution of this process before t0. It is normally assumed that the value of the
process at t0 is known.

Now it is important to continue defining a few more concepts regarding stochastic pro-
cesses in order to be able to mention important characteristics of these functions.

A stochastic kernel is a two-component function, say P (x,B), for x ∈ X and B ∈ Σ
where

1. P (x0, B) is a measure on Σ for every fixed x0 ∈ X. Also, P (x0, X) = P (x,X) = 1,
∀x ∈ X.

2. P (x,B0) : X → R is a measurable function for every fixed B0 ∈ Σ.

2.6.3 Markov processes

A family of stochastic kernels P (t, x, B), t ∈ T , where T is a finite or infinite interval
of nonnegative real numbers or integers is said to be Markovian if P (t, x, B) satisfy the
Chapman-Kolmogorov equations. This means that

P (x+ t, x, B) =
∫
X
P (s, x, dy)P (t, y, B), ∀s, t, s+ t ∈ T,

given B ∈ Σ.

P (t, x, B) are transition probabilities and (X,Σ) is the space of all possible states of
the process, i.e., a phase space. A family of stochastic kernels P (t, x, B) ∈ T on a
measurable space (X,Σ) is called a Homogeneous Markov Process
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Consider as M = M(Σ) the collection of all finite measures on the σ-algebra Σ. Then,
let us define the operator T ∗ on M as

T ∗m =
∫
X
P (t, x, A)m(dx),

given t ∈ T , A ∈ Σ.

If we take the initial distribution of a homogeneous Markov process as m(B) = P{ξ(0) ∈
B}, B ∈ Σ then we have that the distribution of the process at time t is

mt(A) =
∫
X
P (t, x, A)m(dx),

for m ∈M . Then, the operator T ∗ : M →M determines the distribution of the process
at time t given the initial distribution.

Using the properties given by the Chapman-Kolmogorov equation we have that, given
s, t, t+ s ∈ T ,

ms+t(A) =
∫
X
P (t+ s, x, A)m(dx) (2.2)

=
∫
X

∫
X
P (t, x, dy)P (s, y, A)m(dx) (2.3)

=
∫
X
P (s, y, A)

(∫
X
P (t, x, dy)m(dx)

)
(2.4)

=
∫
X
P (s, y, A)mt(dy). (2.5)

It is not difficult to see that T ∗s+t = T ∗s T
∗
t . When a family of operators owns this property

it is called a semi-group of operators.

Now, let us consider the collection of all bounded non-negative Σ-measurable functions
on X as B(Σ). Let us also define another family of operators in the same manner as
above for f ∈ B(Σ). We have

ft(x) = Ttf(x) =
∫
X
f(y)P (t, x, dy).

ft(x) is the conditional expectation of the random process f(ξ(t)) with respect to the
random event ξ(0) = x. It can be proved that ft is bounded and nonnegative since f is
bounded and nonnegative. Then Tt : B(Σ)→ (Σ).

Using the Chapman-Kolmogorov equation, we can obtain

fs+t(x) =
∫
X
f(y)P (s+ t, x, dy) (2.6)

=
∫
X
f(y)

∫
X
P (s, x, du)P (t, u, dy) (2.7)

=
∫
X
f(y)P (t, u, dy)

∫
X
P (s, x, du) (2.8)

=
∫
X
ft(u)P (s, x, du). (2.9)
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It is easy to see that Ts+t = TsTt. Then this is also a semi-group of operators.

Consider D ⊂ B(Σ) where D = {ϕ : ∃Aϕ} given

Aϕ = lim
∆t→0+

T∆tϕ− ϕ
∆t

, lim
∆t→0+

T∆tϕ = ϕ. (2.10)

The operator A is called the infinitesimal operator of the semi-group Tt. It is said,
according to the Hille-Yosida theorem, that under general conditions, the infinitesimal
operator A uniquely determines the semi-group of operators Tt and in consequence, the
Markov process [12].

Given IB(x) ∈ D, where IB(x) is the indicator function of the event B, we have that

TtIB(x) =
∫
X
IB(y)P (t, x, dy) = P (t, x, B).

Then,

∂P (t, x, B)

∂t
= lim

∆t→0

P (t+ ∆t, x, B)− P (t, x, B)

∆t
,

= lim
∆t→0

T∆tP (t, x, B)− P (t, x, B)

∆t
, (2.11)

∂P (t, x, B)

∂t
= AP (t, x, B). (2.12)

P (t, x, B) stands as the probability distribution that the state of the process after time
t belongs to the set or event B given any initial state x. Equation 2.12 is called the
first (or backward) Kolmogorov equation. In a similar way we can obtain the second
(or forward) Kolmogorov equation if we consider the semigroup T ∗t , t ∈ T .

Let D∗ ⊂M , where D∗ = {φ : ∃Aφ} given

Aφ = lim
∆t→0+

T ∗∆tφ− φ
∆t

, lim
∆t→0+

T ∗∆tφ = φ. (2.13)

Take, φ(t, B) = T ∗t φ =
∫
X
P (t, x, B)φ(dx). Then, for φ such that φ(t, B) ∈ D∗, then

∂φ(t, B)

∂t
= lim

∆t→0

φ(t+ ∆t, B)− φ(t, B)

∆t
,

= lim
∆t→0

T ∗t+∆tφ(t, B)− φ(t, B)

∆t
, (2.14)

∂φ(t, B)

∂t
= A∗φ(t, B). (2.15)

Furthermore, φ(t, B) =
∫
X
P (t, y, B)φx(dy) = P (t, x, B) for φx = δ(x) is the indicator

function of the initial state of the process.
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We have
∂P (t, x, B)

∂t
= A∗P (t, x, B), (2.16)

which is known as the second (or forward) Kolmogorov equation. It is said that the
forward equation is used when one needs to know the probability distribution of the
state of the process at some time given an initial distribution, usually represented by a
delta function.

As a conclusion, we can say that the infinitesimal operator characterizes the Markov
process. As an example we can mention the Brownian motion on R.

2.6.4 Brownian Motion on R

Given ξ(t) is the state of the process at time t, this process has the following properties.

1. E∆ξ = 0.

2. E(∆ξ)2 = b∆t, for b ∈ R.

3. E(|∆|2)2+δ = o(∆), ∀δ > 0.

If ϕ is any real function such that u(t, x) = E(ϕ(ξ(t))/ξ(0) = x) is twice differentiable,
then it can be proved that

∂u(t, x)

∂t
=

1

2
b
∂2u(t, x)

∂x2
,

with the boundary condition u(0, x) = ϕ(x).

Then, for this case, the infinitesimal operator has the form of

Aφ =
1

2
b
∂2

∂x2
φ.

This Brownian motion belongs to a more general class of processes called diffusion
processes for which the infinitesimal operator has the general form

Aφ = a(x)
∂

∂x
φ+ b(x)

∂2

∂x2
.

For this processes, a(x) is called the drift coefficient and b(x) is called the diffusion
coefficient.

2.6.5 Substochastic Kernel

In the measurable space (X,Σ), a substochastic kernel P (x,B) is a real-valued function
which accomplishes the following properties.



CHAPTER 2. BACKGROUND AND STATE OF THE ART 21

1. P (x1, B), is a measure on Σ for all fixed x1 such that P (x,X) ≤ 1.

2. P (x,B1) is a measurable function on x for every fixed B1 ∈ Σ.

2.6.6 Semi-Markov Kernel

A positive-valued function Q(x,B, t), x ∈ X, B ∈ Σ, t ≥ 0 is a semi-Markov kernel if
the following conditions are satisfied.

1. Q(x,B, t1) is a substochastic kernel on (X,Σ) for every fixed t1 > 0.

2. Q(x1, B1, t) is a non-decreasing right-continuous function on t ≥ 0 for a every fixed
x1 and B1. Also, Q(x,B, 0) = 0.

3. Q(x,B,+∞) = P (x,B) is a stochastic kernel.

4. Q(x,X, t) = Gx(t) is a distribution function on t ≥ 0 for every fixed x ∈ X.

2.7 Markov Renewal Processes

Consider the measurable space (X,Σ). In probability theory, X represents the phase
space of the process, i.e., the space of all the states of the process. Σ stands as the
σ-algebra of all the events from X. It is assumed that Σ contains all singletons from X.

Consider the Markov chain {ξn, n ≥ 0} is a Markov chain with the phase space X,Σ.
Also, consider the sequence of positive independent random variables θi, for i ≥ 0 on the
probability space (Ω,F , P ). Let us construct a homogeneous two-component Markov
process {ξn, θn;n ≥ 0}, ξn ∈ X, Θn ∈ [0,+∞) given P{ξ0 ∈ B} = p0(B), B ∈ Σ. It is
not very difficult to prove that

P{ξn+1 ∈ B, θn+1 ≤ 1/ξ0 ∈ B0, θ0 ≤ t0, ξ1 ∈ B1, θ1 ≤ t1, . . . , ξn ∈ Bn, θn ≤ tn} =
P{ξn+1 ∈ B, θn+1 ≤ t/ξn ∈ Bn},

where Bi ∈ Σ and i = 0, 1, . . . , n. In addition, P{ξn+1 ∈ X, θn+1 ≤ ∞/ξn = x} = 1.

Since, Q(x,B, t) = P{ξn+1 ∈ B, θn+1 ≤ t/ξn = x} is a semi-Markov kernel that deter-
mines the transition probabilities of the process then, the two component homogeneous
Markov process {ξn, θn;n ≥ 0} is called a Markov Renewal Process.

The component ξn, n ≥ 0 is called the embedded Markov Chain. The non-negative
random variables θn, n ≥ 0 are called the renewal times and they define the intervals

between Markov renewal moments τn =
n∑
i=0

θi.

To obtain the transition probabilities of the embedded Markov chain, one can evaluate
t = +∞ in the semi-Markov kernel in the following form.

P (x,B) = P{ξn+1 ∈ B/ξn = x} = Q(x,B,+∞).
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The distribution of the renewal time is a conditional distribution depending on the states
of the embedded Markov. This is,

Gx(t) = Q(x,X, t) = P{θn+1 ≤ t/ξn = x}.

Sometimes the notation P{θx ≤ t} = P{θn+1 ≤ t/ξn = x} is also used.

2.8 Semi-Markov Processes

Consider the probability space (Ω,F , P ) and the measurable space (X,Σ). Let us denote
as {ξn, n ≥ 0} the Markov chain in the phase space (X,Σ). Also, let us denote as θi,
i ≥ 1 a sequence of positive independent random variables. Then, let us construct the
Markov renewal process {ξn, θn, n ≥ 0} with the renewal moments given by the process

τn =
n∑
i=0

θi on (Ω,F , P ) and with the embedded Markov chain {ξn}. The transitional

probabilities are given by a semi-Markov kernel

Q(x,B, t) = P{ξn+1 ∈ B, θn+1 ≤ t/ξn = x}.

Then, the transition probabilities of the embedded Markov chain {ξn, n ≥ 0} are given
by

P (x,B) = P{ξn+1 ∈ B/ξn = x} = Q(x,B,+∞).

The distribution function of the sojourn time θx in every state x ∈ X is given by

Gx(t) = P{θn+1 ≤ 1/ξn = x}.

The Radon-Nikodym theorem states that since Q(x,B, t) ≤ P (x,B) for every fixed
x ∈ X and t ≥ 0, there exists a measurable function Gxy(t) such that

Q(x,B, t) =
∫
B
Gxy(t)P (x, dy).

It can proved that the function Gxy(t) is of the following form

Gxy(t) = P{θn+1 ≤ t/ξn = x, ξn+1 = y}.

This is the distribution function of the sojourn time of the MRP in a state x and in
transition to state y. If the distribution is independent of y, i.e., Gxy(t) = Gx(t), we
have that

Gxy(t) = P{θn+1 ≤ t/ξn = x}.

Then,
Q(x,B, t) = P (x,B)Gx(t).
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As an example, consider the case of a discrete phase space X = {1, 2, . . . , n}. The
semi-Markov kernel is then given by a semi-Markov matrix of the form

Q(t) = {Qij(t); i, j ∈ X},

where Qij can be represented as Qij(t) = pijGi(t), given that the sojourn time distribu-
tion depends only on the current state. Gi(t) stand as the distribution function of the
sojourn time in state i ∈ X and pij stand as the transition probabilities of the embedded
Markov chain.

Given v(t) = max{n ≥ 0; τn ≤ 1}, t ≥ 0, the process ξ(t) : ξv(t) is called a semi-Markov
process. This process changes state at renewal times tn and the sojourn time in every
state ξn = x is given by θn+1 = θx. It is easy to see that this process remains constant
in the intervals [τn, τn+1) and that it is right continuous.

Consider the process {ξn, θn, n ≥ 0} with a discrete phase space X for the embedded
Markov chain {ξn, n ≥ 0}. In the case the semi-Markov kernel is of the form

Qij(t) = pij(1− e−λit),

Then, the semi-Markov process is in fact a Markov process with the known property,
called by A. Khinchin, the absence of aftereffect.

In a more general form, the semi-Markov kernel of this sort of Markov process is given
by

Q(x,B, t) = P (x,B)
(
1− e−q(x)t

)
.

Here, q(x) ≥ 0, x ∈ X stand as the sojourn time intensities of the renewal times. Given
this, we can construct a generating kernel for the process in the following way,

Q(x,B) = q(x)(P (x,B)− 1),

for x ∈ X and B ∈ Σ. It is known that the generating kernel uniquely determines the
Markov jump process.

In the case X is a discrete phase space, we have a generating matrix of the form

Q = q(P − I),

where q is diagonal matrix of sojourn time intensities and I is the identity matrix.

2.9 Transfer Processes

Consider a space (E,Σ) and a jump Markov process η(t) on this phase space. Let the
semi-Markov kernel of the process be determined by

Q(x,B, t) = P (x,B)(1− e−λxt).
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Then, the infinitesimal operator of the process η(t) is

Q(x,B) = λx[P (x,B)− 1]

It is not difficult to see that the infinitesimal operator uniquely determines the semi-
Markov kernel.

Denote by C(u, x), a function in u ∈ R, x ∈ E which is differentiable with respect to x
and it is one value solvable for

du(t)

dt
= C(u(t)),

given t ≥ 0 and u(0) = u0.

A stochastic transfer process us(t) is given by

dus

dt
= C (us(t), η(t)) , (2.17)

for us(0) = us0.

It is well known that the two-component process (us(s), η(t)) is a Markov process and
its infinitesimal operator is of the following form.

Aφ(u, x) = Qϕ(u, x) + C(u, x)
∂

∂u
ϕ(u, x),

where
Qϕ(u, x) =

∫
E
Q(x, dy)ϕ(u, y)− λxϕ(u, x),

and Q(x, dy) is the infinitesimal operator of η(t).

In the case that η(t) is a semi-Markov process, then equation 2.17 determines the
stochastic transfer process in a semi-Markov media. If a solution of a equation of
this kind is to be intended, one needs to consider the three component Markov process
ς(t) = (us(t), η(t), γ(t)). γ(t) = t− τ(t) is called a past holding time process.

The infinitesimal operator of ς(t) is of the following form

Aϕ(u, x, τ) = Qϕ(u, x, τ) + C(u, x, τ)
∂

∂u
ϕ(u, x, τ) +

∂

∂τ
ϕ(u, x, τ),

where,

Qϕ(u, x, τ) =
∫
E

G′x(t)

1−Gx(t)
P (x, dy)ϕ(u, y, τ)− G′x(t)

1−Gx(t)
ϕ(u, x, 0).

To show the benefits of this formulation just presented known as the evolutionary for-
mulation let us consider as an example the mathematical model of the Brownian motion
in R2.
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2.10 Brownian Motion in R2

Consider that a particle can move in one of three directions in R2. The angle between

any two directions is equal to
2π

3
. Starting at x0 ∈ R2 assume the particles can move

at a velocity v > 0 in any of the three directions during a random time interval that is
exponentially distributed with parameter λ0. After that random interval, the particle
switches to another direction with a probability of 1/2 on each one and so on and so
forth.

To proceed, let us denote by x(t) and y(t) the abscissa and the ordinate of the particle
at time t. We have

fn(x, y, t)dxdy = P{x ≤ x(t) ≤ x+ dx, y ≤ y(t) ≤ y + dy/Ei},

for n = 1, 2, 3. Also,

∂

∂t
fn = Afn(t, x, y).

We have the evolution equation

∂~s

∂t
= ~c(~s(t), ξλ(t)), (2.18)

where ξλ stands as the embedded Markov chain.

The infinitesimal operator for this process is

Aϕ(s, n) = c(s, n)
∂

∂s
ϕ(s, n) +Qϕ(s, n),

given Q = q(P − I), where I stands as the identity matrix.

Here,

P =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

 ,
also,

q =

 λ 0 0
0 λ 0
0 0 λ


Then,

Q

 f0

f1

f2

 =

 −λf0 λ/2f1 λ/2f2

λ/2f0 −λf1 λ/2f2

λ/2f0 λ/2f1 −λ/2f2


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Then, since cosπ/3 = sin π/6 = 1/2 and sinπ/3 = cos π/6 =
√

3/2 we have for Eq.
(2.18) that

∂f0(t, x, y)

∂t
= v

∂

∂x
f0 − λf0 +

λ

2
f1 +

λ

2
f2, (2.19)

∂f1(t, x, y)

∂t
= −1

2
v
∂

∂x
f1 +

√
3

2
v
∂

∂y
f1 +

λ

2
f0 − λf1 +

λ

2
f2, (2.20)

∂f2(t, x, y)

∂t
= −v

2

∂

∂x
f2 −

√
3

2
v
∂

∂y
f2 +

λ

2
f0 +

λ

2
f1 − λf2 (2.21)

Then, we need to solve the system D~f = ~0. Namely,

D =

 D00 D01 D02

D10 D11 D12

D20 D21 D22

 .
Here, D01 = D02 = D10 = D12 = D20 = D21 = −1

2
and

D00 =
∂

∂t
− v ∂

∂x
+ λ

D11 =
∂

∂t
+
v

2

∂

∂x
−
√

3

2
v
∂

∂y
+ λ

D22 =
∂

∂t
+
v

2

∂

∂x
+

√
3

2
v
∂

∂y
+ λ.

Assuming Dij are commutative we have

det(D) · (f0 + f1 + f2) = det(D) · (f) = 0.

Then, we obtain

∂3

∂t3
f + 3λ

∂2

∂t2
f +

9

4
λ2 ∂

∂t
f − 3

4
v2 ∂

∂t
4f − 3

4
v2λ4f − v3

4

[
∂3

∂x3
f − 3v3 ∂3

∂x∂y2

]
= 0,

where, 4 =
∂2

∂x2
+

∂2

∂y2
.

Although evolution of systems in semi-Markov media have been formulated, most of
the times it turns too difficult to solve exactly. Many times the exact solution of these
systems using the evolutionary formulation involves the solution of several integral-
differential partial coupled equations. For example, a superposition of two-simple semi-
Markov processes may involve as much as eighteen or more integral-differential partial
coupled equations to be solved simultaneously to satisfied also initial conditions. These
calculations may be cumbersome and this is why many times some other methods are
used to approximately solved this systems. One of these techniques involves the phase
merging algorithm to reduce the evolution of the system in a semi-Markov media to an
approximated evolution in a Markov media. This technique is explained in more detail
ahead.



Chapter 3

Two Different Customers

3.1 Chapter Summary

In this paper we study the stationary efficiency of a system consisting of a finite capacity
buffer connected to two different customers with bursty on-off demands. We assume
that the buffer is filled up at a constant rate F . The dynamics of the overall system
are modeled using a semi-Markov evolution environment and we derive design formulae
involving the main parameters.

It has been shown that it is possible to use the Phase Merging Algorithm to reduce the
semi-Markov process to an approximated Markov process [9], [11], [13]..

Here, we use that result and we find the stationary distribution of the system. As
examples, we consider the m-Erlang and hyper-exponential probability distributions for
the sojourn times. The Markov evolution environment is also included as a special case.
We study some limits of the stationary efficiency as the buffer capacity tends to infinity
and we identify three different stationary behavior system cases.

Z
Z
Z

Z
Z
Z

�
�
�F

v
f0

f1

S1

S2

V

Figure 3.1: A system of two independent random state switching customers and one
buffer filled up at a constant rate.

The system functionality is as follows:

The customers switch from the active or “ON” state to the inactive or “OFF” state,

27



CHAPTER 3. TWO DIFFERENT CUSTOMERS 28

and we consider that the switching process of the customers can be modeled as a semi-
Markov process.

When active, one customer demands information at a rate f0 whereas the other customer
demands information at a rate f1. When both customers are active, information is
required at a rate f1 + f0. In each of these cases, if the buffer is empty (v = 0), an
unproductive situation is considered. When no customer is active, then no product is
required. The filling aggregate provides the buffer with product at a constant rate F .
This aggregate is active as long as the volume of information is below the maximum
capacity of the buffer (V ), see Figure 3.1.

Let us denote I(T ) the amount of information delivered to customers S1 and S2, in a

time interval [0, T ]. Thus, we can define K = lim
T→∞

I(T )

T
as the steady state parameter

for the system effectiveness, see Chapter 4 in [20]. Our main purpose in this work is to
determine K as a function of the system parameters, λ0, λ1, µ0, µ1, f0, f1 and F .

The dynamics of this linear system can be captured by a first order differential equation
having a random component, or the so-called random evolution process [10]. In Section
2, we elaborate our semi-Markov mathematical modeling. In Sections 3 and 4 we deal
with the special Markov case. We obtain the stationary compound probability distri-
bution for the buffer content level and the mathematical expression of the efficiency
parameter in terms of the system values. Then, in Section 5, with the help of some
plots we analyze some numerical results for different Markov and semi-Markov cases. In
particular, we include the m-Erlang, exponential, and hyper-exponential distributions
for the active periods.

3.2 Semi-Markov Mathematical Model

We begin studying case N = 2. Consider the semi-Markov process {χ(t)} which is the
superposition of two independent alternating semi-Markov processes with phase space
Z =

{
(h, xi) : h ∈ H, xi ∈ R2

+

}
, where H = {h : h = (h1, h2), hi = 0, 1; i = 1, 2} , and

R2
+ = {~x : ~x = (x, 0), x ≥ 0}⋃ {~x : ~x = (0, x), x ≥ 0} . We have defined hi as

hi =

{
1, if Si is active;
0, if Si is not active,

where Si stands for subsystem i. The component x of the vector (x, 0) (respectively
(0, x)) is the residual life from the last state change of S1 (respectively S2). The initial
distribution of χ(t) is P {χ(0) = (1, 1; 0, 0)} = 1.

Let us write this in more detail:

(1, 1; 0, x) - subsystem S1 starts to be active and subsystem S2 has been active for the
time x,
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(1, 1;x, 0) - subsystem S2 starts to be active and subsystem S1 has been active for the
time x,

(1, 0; 0, x) - subsystem S1 starts to be active and subsystem S2 has been inactive for
the time x,

(1, 0;x, 0) - subsystem S2 starts to be inactive and subsystem S1 has been active for
the time x,

(0, 1; 0, x) - subsystem S1 starts to be inactive and subsystem S2 has been active for
the time x,

(0, 1;x, 0) - subsystem S2 starts to be active and subsystem S1 has been inactive for
the time x,

(0, 0; 0, x) - subsystem S1 starts to be inactive and subsystem S2 has been inactive for
the time x,

(0, 0;x, 0) - subsystem S2 starts to be inactive and subsystem S1 has been inactive for
the time x.

The embedded Markov chain of this semi-Markov process has the following transition
probabilities [9]:

P
[
(h1, h2; 0, x),

{
(h̄1, h2; 0, u), u ≤ y

}]
= 1

F̄
(2)
h2

(x)

∫ y−x

0
F̄

(2)
h2

(x+ u)dF
(1)
h1

(u),

P
[
(h1, h2; 0, x),

{
(h1, h̄2;u, 0), u ≤ y

}]
= 1

F̄
(2)
h2

(x)

∫ y+x

x
F̄

(1)
h1

(u− x)dF
(2)
h2

(u),

P
[
(h1, h2;x, 0),

{
(h̄1, h2; 0, u), u ≤ y

}]
= 1

F̄
(1)
h1

(x)

∫ y+x

x
F̄

(2)
h2

(u− x)dF
(1)
h1

(u),

P
[
(h1, h2;x, 0),

{
(h1, h̄2;u, 0), u ≤ y

}]
= 1

F̄
(1)
h1

(x)

∫ y−x

0
F̄

(1)
h1

(u+ x)dF
(2)
h2

(u),

(3.1)

where h̄i = 1− hi, F̄ (x) = 1− F (x), and F (x) is the cumulative distribution function.

The sojourn times corresponding to the stochastic process χ(t) with phase space Z, have
the following expected values

m(h1, h2;x, 0) =
1

F̄
(1)
h1

(x)

∫ ∞
0

F̄
(1)
h1

(x+ y)F̄
(2)
h2

(y) dy,

m(h1, h2; 0, x) =
1

F̄
(2)
h2

(x)

∫ ∞
0

F̄
(1)
h1

(y)F̄
(2)
h2

(x+ y) dy.
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The density of the stationary distribution for the Markov chain embedded in χ(t) is of
the following form [9]:

ρ(h1, h2; 0, x) = cs0 F̄
(2)
h2

(x) and ρ(h1, h2;x, 0) = cs0 F̄
(1)
h1

(x), (3.2)

where
c−1
s0 (h1, h2) =

∫ ∞
0

(
F̄

(1)
h1

(x) + F̄
(2)
h2

(x)
)

dx.

Consider a function C(w) on the space W = Z× [0, V ] that expresses the rate of change
of the amount of information in the buffer and is defined as

C(w) =



F, w = {(0, 0; ~x), v}, {~x = (x, 0)} or {~x = (0, x)}, 0 < v < V ;

F − f, w = {(0, 1; ~x), v}, {~x = (x, 0)} or {~x = (0, x)}, 0 < v < V ;

F − f, w = {(1, 0; ~x), v}, {~x = (x, 0)} or {~x = (0, x)}, 0 < v < V ;

F − 2f, w = {(1, 1; ~x), v}, {~x = (x, 0)} or {~x = (0, x)}, 0 < v < V ;

0, in other cases.

(3.3)

Let v(t) be the amount of information in the buffer at time t. Hence, it is easily verified
that v(t) obeys to the differential equation:

dv(t)

dt
= C (χ(t), v(t)) , (3.4)

with the initial condition v(0) = v0 ∈ [0, V ]. C(w) = C(χ(t), v(t)) for χ(t) ∈ Z and
v(t) ∈ [0, V ]. It can be said that Eq. (3.4) determines the random evolution of the
system. Meaning that the process v(t) is the stochastic transfer process in the semi-
Markov medium χ(t) [9], [11]. By using the phase merging algorithm with the merging
function k(h1, h2; ~x) = (h1, h2), we can obtain a Markov averaged evolution v̄(t) that is
a close approximation to the original semi-Markov case, see Chapter 5 in [11]. Hence
the averaged evolution v̄(t) obeys the following differential equation

dv̄(t)

dt
= C̄ (χ̄(t), v̄(t)) , v̄(0) = v̄0 ∈ [0, V ],

where

C̄((h1, h2), v) =
∫ ∞

0
C{(h1, h2; ~x), v}[ρ(h1, h2; 0, x) + ρ(h1, h2;x, 0)] dx

is a function on X× [0, V ], and X = {00, 01, 10, 11}. The stochastic process {χ̄(t)} is a
Markov process with the phase space X. Let us write C̄((h1, h2), v) in more detail,

C̄ ((h1, h2), v) =
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Fcs0

∫ ∞
0

(
F̄

(1)
h1

(x) + F̄
(2)
h2

(x)
)

dx, (h1, h2) = (0, 0), 0 < v < V ;

(F − f)cs0

∫ ∞
0

(
F̄

(1)
h1

(x) + F̄
(2)
h2

(x)
)

dx, (h1, h2) = (1, 0), 0 < v < V ;

(F − f)cs0

∫ ∞
0

(
F̄

(1)
h1

(x) + F̄
(2)
h2

(x)
)

dx, (h1, h2) = (0, 1), 0 < v < V ;

(F − 2f)cs0

∫ ∞
0

(
F̄

(1)
h1

(x) + F̄
(2)
h2

(x)
)

dx, (h1, h2) = (1, 1), 0 < v < V ;

0, in other cases.

(3.5)

From Eqs. (3.1) and (3.2), we can obtain the following equations:

P
{

(h1, h2)(h̄1, h2)
}

=

1

cs1

[∫ ∞
0

ρ(h1, h2; 0, x)P
[
(h1, h2; 0, x), {(h̄1, h2; 0, u)}, u ≤ ∞

]
dx

+
∫ ∞

0
ρ(h1, h2;x, 0)P

[
(h1, h2;x, 0),

{
(h̄1, h2; 0, u), u ≤ ∞

}]
dx
]
, (3.6)

P
{

(h1, h2)(h1, h̄2)
}

=

1

cs1

[∫ ∞
0

ρ(h1, h2; 0, x)P
[
(h1, h2; 0, x), {(h1, h̄2; 0, u)}, u ≤ ∞

]
dx

+
∫ ∞

0
ρ(h1, h2;x, 0)P

[
(h1, h2;x, 0),

{
(h1, h̄2; 0, u), u ≤ ∞

}]
dx
]
, (3.7)

where
cs1 =

∫ ∞
0

(ρ(h1, h2; 0, x)) + ρ(h1, h2;x, 0)) dx.

The transition probabilities of the corresponding embedded Markov chain can be ob-
tained from Eqs. (3.6) and (3.7) and they are as follows:

P
{

(h1, h2)
(
h̄1, h2)

)}
=∫ ∞

0

∫ ∞
0

F̄
(2)
h2

(x+ u)dF
(1)

h̄1
(u)dx+

∫ ∞
0

∫ ∞
0

F̄
(2)
h2

(u)duF
(1)

h̄1
(x+ u)dx∫ ∞

0
F̄

(1)
h1

(x)dx+
∫ ∞

0
F̄

(1)
h2

(x)dx
, (3.8)

P
{

(h1, h2)
(
h1, h̄2)

)}
=∫ ∞

0

∫ ∞
0

F̄
(1)
h1

(x+ u)dF
(2)

h̄2
(u)dx+

∫ ∞
0

∫ ∞
0

F̄
(1)
h1

(u)duF
(2)

h̄2
(x+ u)dx∫ ∞

0
F̄

(1)
h1

(x)dx+
∫ ∞

0
F̄

(1)
h2

(x)dx
. (3.9)

The mean sojourn times of the process χ̄(t) in states from X are given by
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m(h1, h2) =∫ ∞
0

ρ(h1, h2;x, 0)m(h1, h2;x, 0)dx+
∫ ∞

0
ρ(h1, h2; 0, x)m(h1, h2; 0, x)dx, (3.10)

= cs0

(∫ ∞
0

∫ ∞
0

F̄
(1)
h1

(y)F̄
(2)
h2

(x+ y)dydx+
∫ ∞

0

∫ ∞
0

F̄
(1)
h1

(x+ y)F̄
(2)
h2

(y)dydx
)

.

Let us define the function f(w), where w ∈W = Θ× [0, V ] as follows,

f(w) :=



f0, if w = {1, v}, 0 < v ≤ V ;

f1, if w = {2, v}, 0 < v ≤ V ;

f0 + f1, if w = {3, v}, 0 < v ≤ V ;

0 in other cases.

(3.11)

This is the productivity of the system.

Let us denote I(T ) the amount of information delivered to customers S1 and S2, in a
time interval [0, T ]. Let us consider the joint stochastic process with a two-dimensional
phase space ξ(t) = (χ̄(t), v̄(t)).

Then, we can state the following equality

K = lim
T→∞

I(T )

T
= lim

T→∞

1

T

∫ T

0
f (ξ(t)) dt. (3.12)

It follows from ergodic theory [21] that if the process ξ(t) has a stationary distribution
ρ(·), then

lim
T→∞

1

T

∫ T

0
f (ξ(t)) dt =

∫
W
f(w)dρ(w). (3.13)

Hence, by using Eq. (3.12) we obtain

K =
∫
W
f(w)dρ(w) =

∫
W
f(w)ρ(dw). (3.14)

In summary, by using the merging algorithm, the random evolution v(t) in the semi-
Markov medium χ(t) can be reduced to the Markov evolution v̄(t) in the Markov medium
χ̄(t). So, as an example we consider an evolution in a Markov medium.

3.3 Markov Mathematical Model

Let us introduce the following stochastic process {χ̄(t)} where
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χ̄(t) =



0, if no customer is active;

1, if customer S1 is active;

2, if customer S2 is active;

3, if customers S1 and S2 are active.

The stochastic process χ̄(t) is a Markov process on the phase space (or states) Θ =
{0, 1, 2, 3}. Hence, the generating operator (or matrix) of χ̄(t) can be written as [21]

Q = q[P − I] =


−(λ0 + λ1) λ0 λ1 0

µ0 −(µ0 + λ1) 0 λ1

µ1 0 −(µ1 + λ0) λ0

0 µ1 µ0 −(µ0 + µ1)

 ,

where q = [qiδij; i, j ∈ {0, 1, 2, 3}] is a diagonal matrix of sojourn times intensities of
different states and q0 = λ1 + λ0, q1 = λ1 + µ0, q2 = λ0 + µ1, and q3 = µ1 + µ0. Here, as
usual, the Kronecker’s delta is defined as

δij =

{
1, i = j;
0, i 6= j.

We should notice that qθ = (m(h1, h2))−1, with the equivalence (h1h2) = {00, 01, 10, 11}
⇔ {0, 1, 2, 3} = Θ 3 θ.

The elements of the P matrix are the transition probabilities of the Markov chain
embedded in the Markov process χ̄(t), i.e.,

P =



0
λ0

λ1 + λ0

λ1

λ1 + λ0

0

µ0

λ1 + µ0

0 0
λ1

λ1 + µ0

µ1

µ1 + λ0

0 0
λ0

µ1 + λ0

0
µ1

µ0 + µ1

µ0

µ0 + µ1

µ0


.

Consider a function C̄(w) on the space W = {0, 1, 2, 3} × [0, V ] defined as

C̄(w) =



F w = {0, v}, 0 < v < V ;

F − f0 w = {1, v}, 0 < v < V ;

F − f1 w = {2, v}, 0 < v < V ;

F − (f0 + f1) w = {3, v}, 0 < v < V ;

0 in other cases.

(3.15)
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Denote by v̄(t) the amount of information in the buffer at time t. It is easily verified
that v̄(t) satisfies the following equation

dv̄(t)

dt
= C̄ (χ̄(t), v̄(t)) , (3.16)

with the initial condition v̄(0) = v̄0 ∈ [0, V ]. Eq. (3.16) determines the random evolution
of the system in the Markov medium χ̄(t) [17].

Assume now the joint stochastic process with a two-dimensional phase space ξ =
(χ̄(t), v̄(t)). Then, the parameter K can be calculated from the stationary distribution
ρ of the process ξ(t), as it is shown in Eqs. (3.12), (3.13) and (3.14).

3.4 Stationary Distribution and Stationary Efficiency

The sojourn time distribution functions, say Fθ(t), have the following form for the
different states: F0(t) = 1 − e−(λ1+λ0)t, F1(t) = 1 − e−(λ1+µ0)t, F2(t) = 1 − e−(µ1+λ0)t,

and F3(t) = 1 − e−(µ1+µ0)t. Now, denote as fθ(t) =
dFθ(t)

dt and rθ =
fθ(t)

1− Fθ(t)
for all

θ ∈ Θ, i.e., r0 = λ1 + λ0, r1 = λ1 + µ0, r2 = µ1 + λ0, and r3 = µ1 + µ0. Then, the two
component process ξ(t) = (χ̄(t), v̄(t)) is a Markov process with the generator [17, 10]

Aϕ(θ, v̄) = C̄(θ, v̄)
∂

∂v̄
ϕ(θ, v̄) + rθ[Pϕ(θ, v̄)− ϕ(θ, v̄)],

where Pϕ(θ, v̄) =
∑
y∈Θ

pθyϕ(y, v̄), or equivalently,

Aϕ(θ, v̄) = C̄(θ, v̄)
∂

∂v̄
ϕ(θ, v̄) +Qϕ(θ, v̄),

where Q = r[P − I].

Denote as ρ the stationary distribution of the process ξ(t). Then, for every function
ϕ(·) belonging to the domain of the operator A we have∫

W
Aϕ(w)ρ(dw) = 0. (3.17)

The analysis of the process ξ(t) properties leads up to the conclusion that, for the case
max(f0, f1) < F < f1 + f0, the stationary distribution ρ has atoms at points (3, 0),
(0, V ), (1, V ), and (2, V ). We denote them as ρ[3, 0], ρ[0, V ], ρ[1, V ] and ρ[2, V ]. We
denote the continuous part of ρ as ρ(θ, v).

Let us write Eq. (3.17) in more detail for the case, max(f0, f1) < F < f1 + f0 as follows

∫
W
Aϕ(w)ρ(dw)
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=
∫ V−

0+

{[
F
∂

∂v
ϕ(0, v)− (λ0 + λ1)ϕ(0, v) + λ0ϕ(1, v) + λ1ϕ(2, v)

]
ρ(0, v)

+

[
(F − f0)

∂

∂v
ϕ(1, v) + µ0ϕ(0, v)− (µ0 + λ1)ϕ(1, v) + λ1ϕ(3, v)

]
ρ(1, v)

+

[
(F − f1)

∂

∂v
ϕ(2, v) + µ1ϕ(0, v)− (µ1 + λ0)ϕ(2, v) + λ0ϕ(3, v)

]
ρ(2, v)

+

[
(F − f0 − f1)

∂

∂v
ϕ(3, v) + µ1ϕ(1, v) + µ0ϕ(2, v)− (µ0 + µ1)ϕ(3, v)

]
ρ(3, v)

}
dv

+ [−(λ0 + λ1)ϕ(0, V ) + λ0ϕ(1, V ) + λ1ϕ(2, V )] ρ[0, V ]

+ [µ0ϕ(0, V )− (µ0 + λ1)ϕ(1, V ) + λ1ϕ(3, V )] ρ[1, V ]

+ [µ1ϕ(0, V )− (µ1 + λ0)ϕ(2, V ) + λ0ϕ(3, V )] ρ[2, V ]

+ [µ1ϕ(1, 0) + µ0ϕ(2, 0)− (µ0 + µ1)ϕ(3, 0)] ρ[3, 0] = 0. (3.18)

Let A∗ be the conjugate or adjoint operator of A. Then, by changing the order of
integration in Eq. (3.18) we can obtain the following expressions for the continuous
part of A∗ρ



−F ∂

∂v
ρ(0, v)− (λ0 + λ1)ρ(0, v) + µ0ρ(1, v) + µ1ρ(2, v) = 0

−(F − f0)
∂

∂v
ρ(1, v) + λ0ρ(0, v)− (µ0 + λ1)ρ(1, v) + µ1ρ(3, v) = 0

−(F − f1)
∂

∂v
ρ(2, v) + λ1ρ(0, v)− (µ1 + λ0)ρ(2, v) + µ0ρ(3, v) = 0

−(F − f0 − f1)
∂

∂v
ρ(3, v) + λ1ρ(1, v) + λ0ρ(2, v)− (µ0 + µ1)ρ(3, v) = 0

. (3.19)

The expressions for the atoms for the case max(f1, f0) < F < f1 + f0 are given by

−Fρ(0, 0+) = 0

−(F − f0)ρ(1, 0+) + µ1ρ[3, 0] = 0

−(F − f1)ρ(2, 0+) + µ0ρ[3, 0] = 0

−(F − f0 − f1)ρ(3, 0+)− (µ0 + µ1)ρ[3, 0] = 0

, (3.20)

and 

Fρ(0, V−)− (λ0 + λ1)ρ[0, V ] + µ0ρ[1, V ] + µ1ρ[2, V ] = 0

(F − f0)ρ(1, V−) + λ0ρ[0, V ]− (µ0 + λ1)ρ[1, V ] = 0

(F − f1)ρ(2, V−) + λ1ρ[0, V ]− (µ1 + λ0)ρ[2, V ] = 0

(F − f0 − f1)ρ(3, V−) + λ1ρ[1, V ] + λ0ρ[2, V ] = 0

. (3.21)
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In these equations we have defined the notation

ρ(θ, 0+) := lim
v↓0

ρ(θ, v),

and
ρ(θ, V−) := lim

v↑V
ρ(θ, v).

It follows from Eqs. (3.19) that

Fρ(0, v) + (F −f0)ρ(1, v) + (F −f1)ρ(2, v) + (F −f0−f1)ρ(3, v) = c = constant (3.22)

The constant c can be proved to be equal to 0 from Eqs. (3.20) and (3.21).

Using Eqs. (3.19) we obtain

∂3

∂v3
ρ(0, v) =

A0

D0

∂2

∂v2
ρ(0, v) +

B0

D0

∂

∂v
ρ(0, v) +

G0

D0

ρ(0, v), (3.23)

ρ(1, v) =
A1

D1

∂2

∂v2
ρ(0, v) +

B1

D1

∂

∂v
ρ(0, v) +

G1

D1

ρ(0, v), (3.24)

ρ(2, v) =
A2

D2

∂

∂v
ρ(0, v) +

B2

D2

ρ(0, v) +
G2

D2

ρ(1, v), (3.25)

ρ(3, v) =
A3

D3

ρ(0, v) +
B3

D3

ρ(1, v) +
G3

D3

ρ(2, v), (3.26)

where

A0 = F 3λ1 + (F − f0)
(
F 2{2(λ0 + µ0 + µ1) + λ1} − F{f0(2λ0 + λ1 + µ1)

+f1[2(λ1 + µ0 + µ1) + 3λ0]}+ λ0f
2
1 + λ0f0f1

)
− (F − f1)

(
F [λ1f0

+f1(2λ1 + µ0)]− λ1f0f1

)
− λ1f1f

2
0 ,

B0 = −F
(
λ0µ0f0 + f1[λ1(λ0 + µ1) + µ0µ1]

)
+ (F − f0)

(
F{µ1[2(λ1 + µ0)

+3λ0 + µ1] + 3λ0λ1} − λ0f0(λ0 + λ1 + µ1)− f1(2λ0(λ1 + µ1) + λ1µ1)
)

+(F − f1)
(
F [λ2

1 + (λ0 + µ0)2 + µ0(3λ1 + µ1)]− f0[λ0(λ0 + µ0)

+λ1(λ1 + 2µ0)]− λ1f1(λ0 + λ1 + µ0)
)
,

G0 = (λ0 + λ1 + µ0 + µ1)(λ1 + µ1)(λ0 + µ0)

(
F − λ1f1

µ1 + λ1

− λ0f0

λ0 + µ0

)
,

D0 = −F (F − f1)(F − f0)(F − f1 − f0),

and

A1 = F (F − f1)(F − f0)(F − f0 − f1),

B1 = (F − f0){F 2(λ1 + µ1)− F [f0(2λ0 + λ1 + µ1) + f1(λ1 + µ1)] + f0f1(λ0 + λ1)}
+(F − f1){F 2(2λ0 + 2µ0)− F [f0(2λ0 + µ0) + f1(λ0 + λ1 + µ0)] + f0f1(λ0 + λ1)},

G1 = (F − f0){F [λ2
0 + µ0(µ1 + λ1)]− λ0f0(λ0 + λ1 + µ1)− f1(λ2

0 + λ1µ0)}
+(F − f1){F [λ0(µ1 + λ1) + µ0(λ0 + λ1 + µ1)]− λ0f0(λ1 + µ1)− λ1µ0f1},

D1 = µ0{ − (F − f0)(µ1F + λ0f0) + (F − f1)[F (λ0 − λ1 + µ0)− f0(λ0 − λ1) + f1λ1]},
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as well as, A2 = F , B2 = λ0 + λ1, G2 = −µ0, D2 = µ1, and, A3 = −F , B3 = −(F − f0),
G3 = −(F − f1), and D3 = F − f0 − f1.

Solving Eq. (3.23) we obtain

ρ(0, v) = c1e
δ1v + c2e

δ2v + c3e
δ3v, (3.27)

where δ1, δ2 and δ3 are the roots of the polynomial

x3 +
A0

D0

x2 +
B0

D0

x+
G0

D0

= 0.

Using expression (3.27) into (3.24) we obtain

ρ(1, v) = k11c1e
δ1v + k12c2e

δ2v + k13c3e
δ3v, (3.28)

where

k11 =
G1 +B1δ1 + A1δ

2
1

D1

,

k12 =
G1 +B1δ2 + A1δ

2
2

D1

,

k13 =
G1 +B1δ3 + A1δ

2
3

D1

.

Also, using expression (3.28) into (3.25) we obtain

ρ(2, v) = k21c1e
δ1v + k22c2e

δ2v + k23c3e
δ3v, (3.29)

where

k21 =
B2D1 +G2G1 + (G2B1 + A2D1)δ1 +G2A1δ

2
1

D1D2

,

k22 =
B2D1 +G2G1 + (G2B1 + A2D1)δ2 +G2A1δ

2
2

D1D2

,

k23 =
B2D1 +G2G1 + (G2B1 + A2D1)δ3 +G2A1δ

2
3

D1D2

.

Using expression (3.29) into (3.26) we obtain

ρ(3, v) = k31c1e
δ1v + k32c2e

δ2v + k33c3e
δ3v. (3.30)

where

k31 =
A3

D3

+B3
G1 +B1δ1 + A1δ

2
1

D1D3

+G3
B2D1 +G2G1 + (G2B1 + A2D1)δ1 +G2A1δ

2
1

D1D2D3

,

k32 =
A3

D3

+B3
G1 +B1δ2 + A1δ

2
2

D1D3

+G3
B2D1 +G2G1 + (A2D1 +G2B1)δ2 +G2A1δ

2
2

D1D2D3

,

k33 =
A3

D3

+B3
G1 +B1δ3 + A1δ

2
3

D1D3

+G3
G2G1 +B2D1 + (A2D1 +G2B1)δ3 +G2A1δ

2
3

D1D2D3

.
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In Eqs. (3.27), (3.28), (3.29) and (3.30) the constants kij, i, j = 1, 2, 3 are known.
However c1, c2 and c3 need to be found. On the case where max(f1, f0) < F < f1 + f0

we obtain from Eqs. (3.20) that ρ(0, 0+) = 0, and then we obtain

c3 = −c1 − c2. (3.31)

Using the second and third expressions from Eqs. (3.20) we can eliminate ρ[3, 0] and
obtain

c2 = c12c1 and c3 = c13c1,

where

c12 = −F (µ0(−k11 + k13) + µ1(k21 − k23)) + f0µ0(k11 − k13) + f1µ1(−k21 + k23)

F (µ0(−k12 + k13) + µ1(k22 − k23)) + f0µ0(k12 − k13) + f1µ1(−k22 + k23)
,

c13 =
F (µ0(−k11 + k12) + µ1(k21 − k22)) + f0µ0(k11 − k12) + f1µ1(−k21 + k22)

F (µ0(−k12 + k13) + µ1(k22 − k23)) + f0µ0(k12 − k13) + f1µ1(−k22 + k23)
.

The constant c1 can be calculated from the normalization condition∫
W
ρ(dw) = 1. (3.32)

c1 is a factor of every term in the continuous part of the stationary distribution, ρ(·).
Now, we need to find an expression for the atoms of the stationary distribution in terms
of the solutions in the continuous part. Using the last expression of Eqs. (3.20) we can
see that

ρ[3, 0] =
−(F − f0 − f1)

µ0 + µ1

ρ(3, 0+), (3.33)

for max(f1, f0) < F < f1 + f0.

Let us say ρ[3, 0] = K33ρ(3, 0+), where the constant K31 is known. For the rest of the
atoms we need to solve the system of equations (3.21). We can use the first, second and
third expressions of (3.21) to find

ρ[0, V ] =
(λ0 + µ1)(λ1 + µ0)Fρ(0, V−) + µ0(λ0 + µ1)(F − f0)ρ(1, V−)

λ0λ1(λ0 + λ1 + µ0 + µ1)
,

+
µ1(λ1 + µ0)(F − f1)ρ(2, V−)

λ0λ1(λ0 + λ1 + µ0 + µ1)
, (3.34)

ρ[1, V ] =
(λ0 + µ1)Fρ(0, V−) + (λ0 + λ1 + µ1)(F − f0)ρ(1, V−)

λ1(λ0 + λ1 + µ0 + µ1)
,

+
µ1(F − f1)ρ(2, V−)

λ1(λ0 + λ1 + µ0 + µ1)
, (3.35)
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ρ[2, V ] =
(λ1 + µ0)Fρ(0, V−) + µ0(F − f0)ρ(1, V−)

λ0(λ0 + λ1 + µ0 + µ1)

+
(λ0 + λ1 + µ0)(F − f1)ρ(2, V−)

λ0(λ0 + λ1 + µ0 + µ1)
. (3.36)

As a check, we can substitute these results into the last expression of Eqs. (3.21). We
obtain

Fρ(0, V ) + (F − f0)ρ(1, V ) + (F − f1)ρ(2, V ) + (F − f0 − f1)ρ(3, V ) = 0,

which also comes after Eq. (3.22). So, these results seem to be correct.

Just as we did for Eq. (3.33), let us say,

ρ[0, V ] = K00ρ(0, V−) +K01ρ(1, V−) +K02ρ(2, V−),

ρ[1, V ] = K10ρ(0, V−) +K11ρ(1, V−) +K12ρ(2, V−),

ρ[2, V ] = K20ρ(0, V−) +K21ρ(1, V−) +K22ρ(2, V−),

where the constants Kij, i, j = 0, 1, 2 are known.

Now, we can use Eq. (3.32) to find c1.

For the case max(f0, f1) < F < f0 + f1 we have

∫ V

0
{ρ(0, v) + ρ(1, v) + ρ(2, v) + ρ(3, v)} dv

+ρ[0, V ] + ρ[1, V ] + ρ[2, V ] + ρ[3, 0] = 1. (3.37)

Writing Eq. (3.37) in more detail and solving for c1 we have

c−1
1 =

(1 + k11 + k21 + k31)(eδ1V − 1)

δ1

+
c12(1 + k12 + k22 + k32)(eδ2V − 1)

δ2

+
c13(1 + k13 + k23 + k33)(eδ3V − 1)

δ3

+K33(k31 + c12k32 + c13k33)

+[K00 +K10 +K20 + k11(K01 +K11 +K21) + k21(K02 +K12 +K22)]eδ1V

+c12[K00 +K10 +K20 + k12(K01 +K11 +K21) + k22(K02 +K12 +K22)]eδ2V

+c13[K00 +K10 +K20 + k13(K01 +K11 +K21) + k23(K02 +K12 +K22)]eδ3V .
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3.5 Numerical Results

With the expression of c1, it is now possible to evaluate the complete expression of
the stationary distribution. For example, on the case f0 = 3/2, f1 = 1, λ0 = 3/10,
λ1 = 2/10, µ0 = 1/10, µ1 = 1/15, V = 100, F = 7/4 (max(f0, f1) < F < f0 + f1) we
obtain from Eq. (3.27),

ρ(0, v) =

√
2

5

−2 + e16(−4+
√

2)v/105 + e−16(4+
√

2)v/105

−676
√

2 + (2
√

2− 1)e−(320
√

2+1280)/21 + (2
√

2 + 1)e(320
√

2−1280)/21
.

We can define the following stationary distribution

ρ(v) =


ρ(0, v) + ρ(1, v) + ρ(2, v), 0 < v < V

ρ[3, 0] v = 0
ρ[0, V ] + ρ[1, V ] + ρ[2, V ] v = V

.

We can plot both this analytical result and simulation results to illustrate some common
cases, see Figure 3.2. On these plots F = 7/4, F = 2 are considered, and

F =
f0λ0

λ0 + µ0

+
f1λ1

λ1 + µ1

=
15

8
, (3.38)

i.e., when F is equal to the expected average demand of the two customers.

Some sort of perturbation close to v = 100 can be noticed in the curves from the
simulation in Figure 3.2. That perturbation comes from the system functionality for
the case max(f0, f1) < F < f0 + f1, i.e., if any of the two customers is active, the level
of the buffer can be increased. However, the filling rate is expected to stop when the
level of the buffer reaches its maximum. The result is that, if any of the two customers
is active, the level of the buffer can be increased to its maximum, then the filling rate
is turned off and the level starts to decrease. At any moment that the level is sensed
not to be at its maximum again, then the filling rate is restored. On that scenario, for
the time that this single customer is active, the level in the buffer swings between its
maximum and some close point below. This is the reason why some small peaks can be
observed in the computer simulation at some point close to V .

For the sake of the analytical solution, the atoms ρ[1, V ] and ρ[2, V ] were considered
as a more steady approximation of the real system behavior. It is worth saying that
this behavior is not observed for other choices of F . For example, if we choose F <
min(f1, f0) we obtain the exact analytical solution.

Now, we can recall the function f(w) and show some plots regarding the efficiency
parameter K from Eq. (3.14). Let us write this expression in more detail for this
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Figure 3.2: Stationary distribution of the buffer for the case max(f1, f2) < F < f1 + f2

for three different values of F .

system with max(f0, f1) < F < f0 + f1,

K =
∫ V

0
{f0ρ(1, v) + f1ρ(2, v) + (f0 + f1)ρ(3, v)} dv + f0ρ[1, V ] + f1ρ[2, V ],

= c1

(
eδ1V − 1

δ1

)
(f0 + f1K11 + f2K21 + f3K31)

+ c2

(
eδ2V − 1

δ2

)
(f0 + f1K11 + f2K21 + f3K31)

+ c3

(
eδ3V − 1

δ3

)
(f0 + f1K11 + f2K21 + f3K31).

K(V ) is shown in Figure 3.3, i.e., K as a function of the maximum capacity of the
buffer, for the same three cases of F from Figure 3.2.

As it can be seen from Figure 3.3, the case of F that satisfies condition in Eq. (3.38)
keeps growing while each of the other two F -equally-spaced cases converge faster to a
different value. Notice also that after some value of V the difference between the two
highest values of K is relatively small.
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Figure 3.3: Efficiency parameter as a function of the buffer capacity for the case
max(f0, f1) < F < f1 + f2 and three different values of F .

It can be proved that in every case

lim
V→∞

[
K(V )

]
F ≥ f1λ1

λ1+µ1
+ f0λ0

λ0+µ0

=
f1λ1

λ1 + µ1

+
f0λ0

λ0 + µ0

. (3.39)

In addition, it can be proved that in every case

lim
V→∞

[
K(V )

]
F < f1λ1

λ1+µ1
+ f0λ0

λ0+µ0

< F <
f1λ1

λ1 + µ1

+
f0λ0

λ0 + µ0

. (3.40)

That is, if the buffer is big enough, no F larger than the average system demand is
required to meet the system maximum efficiency. On the other hand, if the incoming
stream F is smaller than the expected long term average system demand, the system
efficiency K(V ) is even smaller than the incoming stream.

These results are the same even for other choices of F besides max(f0, f1) < F < f0 +f1.
For example, if we choose F < min(f0, f1), we obtain the same results as those on (3.39)
and (3.40).

According to Section 2, the phase merging algorithm can be used to obtain a random
evolution v̄(t) in an approximated Markov environment from an evolution v(t) in a
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semi-Markov environment. Then, some plots regarding the semi-Markov case can be
displayed. As a first example, we can consider a m-Erlang scenario where both active
and inactive sojourn times are considered with such distribution. This is, for the actual
sojourn time distributions we have

F
(1)
0 (u) =

∫ u

0

λ0e
−λ0x(λ0x)m

(1)
0 −1

(m
(1)
0 − 1)!

dx,

F
(1)
1 (u) =

∫ u

0

µ0e
−µ0x(µ0x)m

(1)
1 −1

(m
(1)
1 − 1)!

dx,

F
(2)
0 (u) =

∫ u

0

λ1e
−λ1x(λ1x)m

(2)
0 −1

(m
(2)
0 − 1)!

dx,

F
(2)
1 (u) =

∫ u

0

µ1e
−µ1x(µ1x)m

(2)
1 −1

(m
(2)
1 − 1)!

dx.

Here, m
(i)
j (i ∈ {1, 2}, j ∈ {0, 1}), stands for the number of exponentials that form

the m-Erlang distribution of the i subsystem in the j state. As we know, if we make
m

(i)
j = 1 we get an exponential distribution.

We use Eqs. (3.8) and (3.9) to calculate the transition probabilities of the embedded
Markov chain. We obtain

P =



0
m

(2)
0 λ0

m
(2)
0 λ0 +m

(1)
0 λ1

m
(1)
0 λ1

m
(2)
0 λ0 +m

(1)
0 λ1

0

m
(2)
0 µ0

m
(1)
1 λ1 +m

(2)
0 µ0

0 0
m

(1)
1 λ1

m
(1)
1 λ1 +m

(2)
0 µ0

m
(1)
0 µ1

m
(2)
1 λ0 +m

(1)
0 µ1

0 0
m

(2)
1 λ0

m
(2)
1 λ0 +m

(1)
0 µ1

0
m

(1)
1 µ1

m
(2)
1 µ0 +m

(1)
1 µ1

m
(2)
1 µ0

m
(2)
1 µ0 +m

(1)
1 µ1

0


.

After that, we use Eq. (3.11) to calculate the mean sojourn times and consequently the
sojourn time intensities. Let us remember that qθ = (m(h1, h2))−1 with the equivalence
(h1, h2) = {00, 01, 10, 11} ⇔ {0, 1, 2, 3} = Θ 3 θ. Also let us remember that q =
[qiδij; i, j ∈ {0, 1, 2, 3}] is a diagonal matrix. Then we obtain

q =



λ0

m
(1)
0

+
λ1

m
(2)
0

0 0 0

0
λ1

m
(2)
0

+
µ0

m
(1)
1

0 0

0 0
λ0

m
(1)
0

+
µ1

m
(2)
1

0

0 0 0
µ0

m
(1)
1

+
µ1

m
(2)
1


.
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Now, we can calculate the generating operator Q = q[P−I] and solve for the continuous
part and atoms of a stationary distribution just as we did in Section 3 for an evolution
in a Markov media.

We can consider the inactive sojourn time with an exponential distribution (m
(i)
0 = 1,

i = 1, 2) and plot several m-Erlang cases for the active sojourn time. This example is
illustrated in Figures 3.4 and 3.5.

We considered as before

F =
f0λ0

λ0 + µ0

+
f1λ1

λ1 + µ1

, (3.41)

max(f0, f1) < F < f0 + f1. (3.42)

We also used f0 = 3/2, f1 = 1, λ0 = 3/10, λ1 = 2/10, µ0 = 1/10, µ1 = 1/15 and
V = 100.
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Figure 3.4: Stationary distribution of the buffer with m-Erlang distributed active so-
journ time and exponentially distributed inactive sojourn time.

In Figures 3.4 and 3.5 we can see a good match between the analytical solutions and
simulations for every m-Erlang case. In this case we see that the behavior of the curves
is modified as the number of exponentials in the m-Erlang distributions is increased. We
can also observe that for more exponentials in the m-Erlang distribution of the active
sojourn time the expected value of the active sojourn times for subsystems S1 and S2
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Figure 3.5: A closer view of the stationary distribution of the buffer with m-Erlang
distributed active sojourn time and exponentially distributed inactive sojourn time.

is longer. Therefore we can see on Figures 3.4 and 3.5 that this causes the stationary
distribution to be biased to the empty side of the buffer.

Finally, we can introduce the hyper-exponential semi-Markov case as another example.
For this case the distribution of the active and inactive sojourn times were taken as

F
(1)
0 (u) = 1− p exp(−λ0u)− (1− p) exp(−λ0bu),

F
(1)
1 (u) = 1− p exp(−µ0u)− (1− p) exp(−µ0bu),

F
(2)
0 (u) = 1− p exp(−λ1u)− (1− p) exp(−λ1bu),

F
(2)
1 (u) = 1− p exp(−µ1u)− (1− p) exp(−µ1bu).

The following choices were taken as an instance

λ0b = nλ0,

λ1b = nλ1,

µ0b = nµ0,
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µ1b = nµ1,

n > 0. We use Eqs. (3.8) and (3.9) to calculate the transition probabilities of the
embedded Markov chain. We obtain

P =



0
λ0

λ1 + λ0

λ1

λ1 + λ0

0

µ0

λ1 + µ0

0 0
λ1

λ1 + µ0

µ1

µ1 + λ0

0 0
λ0

µ1 + λ0

0
µ1

µ0 + µ1

µ0

µ0 + µ1

µ0


.

This is the same transition probability matrix of the Markov case that does not depend
on the choice of n.

After that we use Eq. (3.11) to calculate the mean sojourn times and consequently the
sojourn time intensities. The result is

q =



n(λ0 + λ1)

np+ 1− p
0 0 0

0
n(λ1 + µ0)

np+ 1− p
0 0

0 0
n(λ0 + µ1)

np+ 1− p
0

0 0 0
n(µ0 + µ1)

np+ 1− p


.

Now, we can calculate the generating operator Q = q[P−I] and solve for the continuous
part and atoms of the stationary distribution just as we did in Section 3 for the evolution
in a Markov media.

We can make some plots for this semi-Markov example. In Figure 3.6, the behavior of
the approximation can be appreciated along with some plots from simulations for this
semi-Markov case. In Figure 3.6 we choose n = 2 as an instance. Besides, we took again
f0 = 3/2, f1 = 1, λ0 = 3/10, λ1 = 2/10, µ0 = 1/10, µ1 = 1/15 and V = 100, as well as
F from conditions (3.41) and (3.42).

It can be noticed that we can use the stationary probability density obtained before for
the Markov case to obtain the approximated stationary density for these semi-Markov
cases. Meaning that for the m-Erlang case we may only use the substitutions: λ0 →
λ0

m
(1)
0

, λ1 →
λ1

m
(2)
0

, µ0 →
µ0

m
(1)
1

and µ1 →
µ1

m
(2)
1

directly on the Eqs. (3.27), (3.28),

(3.29) and (3.30) as well as in the expressions for the atoms to obtain the approximated
stationary density for this semi-Markov case. For the hyper-exponential case we should
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Figure 3.6: Stationary distribution of the Hyper-exponential semi-Markov case for the
active and inactive sojourn time.

use the substitutions λ0 →
λ0

np+ 1− p
, λ1 →

λ1

np+ 1− p
, µ0 →

µ0

np+ 1− p
and µ1 →

µ1

np+ 1− p
.

Also, we can use the same substitutions in the expression (3.38) to obtain the condition
that leads to the best usage of the buffer in terms of the stationary efficiency of the
system.



Chapter 4

Two Equal Customers

4.1 Chapter Summary

In this paper we study the stationary efficiency of a system consisting of a finite capacity
buffer connected to two equal customers with bursty on-off demands. System function-
ality is similar to that presented on Chapter 3. Nevertheless, we considered this problem
as a previous step before finding a general result for the superposition of any number N
of processes. Also, it can be easily proved that the result shown in the previous Chapter
is not reducible for the case subsystems S1 and S2 have the same parameters. This
regards undefined limits in the solution of stationary probability density the as f0 → f1,
λ0 → λ1 and µ0 → µ1. The formulation to this problem is similar to that one shown
on Chapter 3, except for the fact that it is necessary to state from the beginning that
S1 and S2 have the same parameters. In spite of this consideration, the results of the
phase merging algorithm does not show important modifications from those shown on
Chapter 3 and then we will use, as well, some of the formulas obtained there.

Since it has already been proved that the PMA is helpful in finding and approximated
solution for evolutions in semi-Markov media, we start our formulation in section 2 with
the Markov case. Nevertheless, we do consider the semi-Markov formulation in section 4
to show some results that will help us find a general result for the PMA for any number
of superposed processes.

The system functionality is as follows:

When active, each customer demands information at a ratio f . When both customers
are active, information is required at a ratio 2f . In each of these cases, if the container
is empty (v = 0), an unproductive situation is considered. When no customer is active,
then no product is required. The filling aggregate provides the container with product
at a constant ratio F . This aggregate is active as long as the amount of information is
below the maximum capacity of the buffer (V ), see Figure 4.1.

48
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Figure 4.1: A system of two independent random state switching customers and one
buffer filled up at a constant rate.

4.2 Markov Mathematical Model

Let us introduce the following stochastic process {χ̄(t)} such that

χ̄(t) =


0, if no customer is active;
1, if S1 is active;
2, if S2 is active;
3, if customers S1 and S2 are active;

The stochastic process χ̄ is a Markov process on the phase space (or states) Θ =
{0, 1, 2, 3}. Hence, the generating operator (or matrix) of χ̄(t) can be written as [21]

Q = q[P̄ − I] =


−2λ λ λ 0
µ −(λ+ µ) 0 λ
µ 0 −(λ+ µ) λ
0 µ µ −2µ

 ,

where q = [qiδij; i, j ∈ {0, 1, 2, 3}] is a diagonal matrix of sojourn times intensities of
different states and q0 = 2λ, q1 = λ + µ, q2 = λ + µ and q3 = 2µ. Here, the Kronecker
delta is defined as

δij =

{
1, i = j;
0, i 6= j.

We should notice that qθ = (m(h1, h2))−1, with the equivalence (h1h2) = {00, 01, 10, 11}
⇔ {0, 1, 2, 3} = Θ 3 θ.

The elements of the matrix P̄ are the transition probabilities of the Markov chain
embedded in the Markov process χ̄(t), i.e.,
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P̄ =



0
1

2

1

2
0

µ

λ+ µ
0 0

λ

λ+ µ
µ

λ+ µ
0 0

λ

λ+ µ

0
1

2

1

2
0


.

If we consider that customers S1 and S2 are equal we can construct a birth-and-death
process {χ(2)(t)} as a simplification of process χ̄(t).

We consider the superposition of two on-off Markov processes as the birth-and-death
process {χ(2)(t)} of the following form:

χ(2)(t) =


0, if no customer is active
1, if one customer is active
2, if two customers are active

. (4.1)

The stochastic process χ(2) is a Markov process on the phase space (or states) Θ(2) =
{0, 1, 2} with the state diagram shown in Fig. 4.2

��
��

0
-2λ

�
µ ��

��
1

-λ

�
2µ ��

��
2

Figure 4.2: A system of two independent customers that is a birth-and-death process
with three states.

Then, for this system we have the following matrix of sojourn times intensities

q(2) =

 2λ 0 0
0 λ+ µ 0
0 0 2µ

 . (4.2)

Also, we have a transition probability matrix given by

P (2) =


0 1 0
µ

λ+ µ
0

λ

λ+ µ
0 1 0

 . (4.3)

Hence, the generating operator (or matrix) can be written as [21]
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Q(2) = q(2)[P (2) − I] =

 −2λ 2λ 0
µ −(λ+ µ) λ
0 2µ −2µ

 . (4.4)

Then, we consider a function C(2)(w) on the space W(2) = {0, 1, 2} × [0, V ] defined as

C(2)(w) =


F w = {0, v}, 0 < v < V ;

F − f w = {1, v}, 0 < v < V ;
F − 2f w = {2, v}, 0 < v < V ;

0 other cases

. (4.5)

Denote as v(t) the amount of information in the buffer at time t. It can be easily verified
that v(t) satisfies the following equation

dv(t)

dt
= C(2)(χ(2)(t), v(t)), (4.6)

with the initial condition v(0) = v0 ∈ [0, V ]. Eq. (4.6) determines the random evolution
of the system in the Markov medium χ(t) [17].

The sojourn time distribution functions, say F
(2)
θ (t), have the following form for the

different states: F
(2)
0 (t) = 1 − e−2λt, F

(2)
1 (t) = 1 − e−(λ+µ)t, and F

(2)
2 (t) = 1 − e−2µt.

Now, denote as f
(2)
θ =

dF
(2)
θ (t)

dt
and r

(2)
θ =

fθ(t)

1− Fθ(t)
for all θ ∈ Θ(2), i.e., r

(2)
0 = 2λ,

r
(2)
1 = λ + µ, r

(2)
2 = 2µ. Then, ξ(2)(t) = (χ(2)(t), v(t)) is a Markov process with the

generator [17, 10]

A(2)φ(θ, v) = C(2)(θ, v)
∂

∂v
φ(θ, v) + r

(2)
θ [P (2)φ(θ, v)− φ(θ, v)], (4.7)

where P (2)φ(θ, v) =
∑
y∈Θ

pθyφ(y, v), or equivalently,

A(2)φ(θ, v) = C(2)(θ, v)
∂

∂v
φ(θ, v) +Q(2)φ(θ, v). (4.8)

Denote by ρ the stationary distribution of process ξ(2)(t). Then, for every function φ(·)
belonging to the domain of the operator A we have

∫
W(2)

A(2)φ(w)ρ(dw) = 0. (4.9)

The analysis of the properties of process ξ(2)(t) leads up to the conclusion that, for case
f < F < 2f , the stationary distribution ρ has atoms at points (2, 0), (0, V ) and (1, V ).
We denote them as ρ[2, 0], ρ[0, V ] and ρ[1, V ]. The continuous part of ρ is denoted by
ρ(θ, v).



CHAPTER 4. TWO EQUAL CUSTOMERS 52

Let us write Eq. (4.9) in more detail.

∫
W(2)

A(2)φ(w)ρ(dw) =
∫ V−

0+

{[
F
∂

∂v
φ(0, v)− 2λφ(0, v) + 2λφ(1, v)

]
ρ(0, v)

+

[
(F − f)

∂

∂v
φ(1, v) + µφ(0, v)− (µ+ λ)φ(1, v) + λφ(2, v)

]
ρ(1, v)

+

[
(F − 2f)

∂

∂v
φ(2, v) + 2µφ(1, v)− 2µφ(2, v)

]
ρ(2, v)

}
dv

+[2µφ(1, 0)− 2µφ(2, 0)]ρ[2, 0]

+[− 2λφ(0, V ) + 2λφ(1, V )]ρ[0, V ]

+[µφ(0, V )− (µ+ λ)φ(1, V ) + λφ(2, V )]ρ[1, V ] = 0.

Let A(2)∗ be the conjugate operator of A(2). By changing the order of integration in Eq.
(4.9) we can obtain the following expression for the continuous part of A(2)∗ρ.



−2λρ(0, v) + µρ(1, v) = F
∂

∂v
ρ(0, v)

2λρ(0, v)− (µ+ λ)ρ(1, v) + 2µρ(2, v) = (F − f)
∂

∂v
ρ(1, v)

λρ(1, v)− 2µρ(2, v) = (F − 2f)
∂

∂v
ρ(2, v)

. (4.10)

Eqs. (4.10) can also be stated in the following form:

Q(2)T

 ρ(0, v)
ρ(1, v)
ρ(2, v)

 =

 F 0 0
0 (F − f) 0
0 0 (F − 2f)

 ∂

∂v

 ρ(0, v)
ρ(1, v)
ρ(2, v)

 . (4.11)

We obtain the expression for the atoms for the case f < F < 2f ,
−Fρ(0, 0+) = 0

−(F − f)ρ(1, 0+) + 2µρ[2, 0] = 0
−(F − 2f)ρ(2, 0+)− 2µρ[2, 0] = 0

(4.12)

and 
Fρ(0, V−)− 2λρ[0, V ] + µρ[1, V ] = 0

(F − f)ρ(1, V−) + 2λρ[0, V ]− (µ+ λ)ρ[1, V ] = 0
(F − 2f)ρ(2, V−) + λρ[1, V ] = 0

. (4.13)

Similarly, we obtain expression for atoms for the case F < f ,
−Fρ(0, 0+) + µρ[1, 0] = 0

−(F − f)ρ(1, 0+)− (λ+ µ)ρ[1, 0] + 2µρ[2, 0] = 0
−(F − 2f)ρ(2, 0+) + λρ[1, 0]− 2µρ[2, 0] = 0

(4.14)
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and 
Fρ(0, V−)− 2λρ[0, V ] = 0

(F − f)ρ(1, V−) + 2λρ[0, V ] = 0
(F − 2f)ρ(2, V−) = 0

. (4.15)

In these equations we have defined the notation

ρ(θ, 0+) := lim
v↓0

ρ(θ, v)

and
ρ(θ, V−) := lim

v↑0
ρ(θ, v)

It follows from Eqs. (4.10) that

Fρ(0, v) + (F − f)ρ(1, v) + (F − 2f)ρ(2, v) = c = cte. (4.16)

From Eqs. (4.12), (4.13), (4.14) and (4.15) we get c = 0 in Eq. (4.16) for both cases of
F .

Using Eqs. (4.10) and (4.16) we can get

∂ρ(0, v)

∂v
= K00ρ(2, v) +K01ρ(1, v),

∂ρ(1, v)∂v = K10ρ(0, v) +K11ρ(1, v)
(4.17)

where

K00 =
−2λ

F

K01 =
µ

F

K10 =
−1

(F − f)

[
2µF

F − 2f
− 2λ

]

K11 = −
[
λ+ µ

F − f
+

2µ

F − 2f

]
.

Solving the set of Eqs. (4.17) we get

ρ(1, v) = c0e
δ0v + c1e

δ1v (4.18)

ρ(0, v) =
c0

K10

(δ0 −K11)eδ0v +
c1

K10

(δ1 −K11)eδ1v, (4.19)

where,
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δ0 =
K11 +K00 +

√
(K11 +K00)2 − 4(K11K00 −K01K10)

2

δ1 =
K11 +K00 −

√
(K11 +K00)2 − 4(K11K00 −K01K10)

2

We can evaluate expressions for K00, K01, K10 and K11 and we find

δ0 =
−(µ+ λ)

F − f

δ1 =
−2(µF + λ(F − 2f))

F (F − 2f)

Rewriting expression (4.16) we find that

ρ(2, v) =
−F

F − 2f
ρ(0, v)− F − f

F − 2f
ρ(1, v)

= c0

(
−F (δ0 −K11)

(F − 2f)K10

− F − f
F − 2f

)
eδ0v + c1

(
−F (δ1 −K11)

(F − 2f)K10

− F − f
F − 2f

)
eδ1v

On the case that f < F < 2f we know from Eqs. (4.12) that ρ(0, 0+) = 0. Thus, we
get that

c0(δ0 −K11) + c1(δ1 −K11) = 0.

That is,

c1 =
δ0 −K11

K11 − δ1

c0 = D1 c0.

For the case F < f we know from Eqs. (4.15) that ρ(2, V−) = 0. Then

c0

(
−F (δ0 −K11)

K10

− (F − f)

)
eδ0V− + c1

(
−F (δ1 −K11)

K10

− (F − f)

)
eδ1V− = 0.

And we have

c1 = − F (δ0 −K11) +K10(F − f)

F (δ1 −K11) +K10(F − f))
c0e

(δ0−δ1)V− = D2 c0.

The constant c0 can be calculated using the normalization equation.∫
W(2)

ρ(dw) = 1. (4.20)

But, first we have to find the expressions for the atoms of the stationary distribution ρ.
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Solving system (4.13) and (4.12), we get the expressions for the atoms for the case
f < F < 2f .

ρ[0, V ] = −F − f
2λ

ρ(1, V−)− (µ+ λ)
F − 2f

2λ2
ρ(2, V−)

ρ[1, V ] = −F − 2f

λ
ρ(2, V−)

ρ[2, 0] = −F − 2f

2µ
ρ(2, 0+)

That is,

ρ[0, V ]

c0

=
1

2λ2

(
F (µ+ λ)(δ0 −K11)

K10

+ µ(F − f)

)
eδ0V−

−δ0 −K11

2λ2

(
F (µ+ λ)

K10

+
µ(F − f)

δ1 −K11

)
eδ1V−

ρ[1, V ]

c0

=
1

λ

(
F (δ0 −K11)

K10

+ (F − f)

)
eδ0V−

−δ0 −K11

λ

(
F

K10

+
F − f
δ1 −K11

)
eδ1V−

ρ[2, 0]

c0

=
1

2µ

(
F (δ0 −K11)

K10

+ (F − f)

)

−δ0 −K11

2µ

(
F

K10

+
F − f
δ1 −K11

)

Then, we can get from Eq. (4.20)

c−1
0 =

a0e
δ0V− + a1e

δ1V− + a2

2δ0δ1K10λ2µ(F − 2f)(δ1 −K11)

where

a0 = δ1µ(δ1 −K11){ − 2fλ2[K10 + 2(δ0 −K11)]

+δ0(F − 2f)[K10(F − f)(µ+ 2λ) + F (µ+ 3λ)(δ0 −K11)]}
a1 = −δ0µ(δ0 −K11){ − 2fλ2[K10 + 2(δ1 −K11)]

+δ1(F − 2f)[K10(F − f)(µ+ 2λ) + F (µ+ 3λ)(δ1 −K11)]}
a2 = −λ2(δ0 − δ1){δ0δ1K10(F − f)(F − 2f)

+2µf [2δ1δ0 + (K10 − 2K11)(δ0 + δ1 −K11)]}

For the case F < f we solve system (4.14) and (4.15). Then we find,
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ρ[0, V ]

c0

=
F

2λ

[
δ0 −K11

K10

eδ0V− +D2
δ1 −K11

K10

eδ1V−
]

ρ[1, 0]

c0

=
F

µ

[
δ0 −K11

K10

+D2
δ1 −K11

K10

]
ρ[2, 0]

c0

=
µK10(F − f) + F (µ+ λ)(δ0 −K11)

2µ2K10

+D2
µK10(F − f) + F (µ+ λ)(δ1 −K11)

2µ2K10

Then, using Eq. (4.20) we get.

c−1
0 =

b0e
δ0V− + b1e

(δ0−δ1)V− + b2

2δ0δ1λµ2K10(F − 2f)[K10(F − f) + F (δ1 −K11)]

where

b0 = µ2(δ0 − δ1){K10(F − 2f)[Fδ0δ1(F − f) + fλ(K10 − 2K11)]

+Ffλ[K10 + 2(δ0 −K11)][K10 + 2(δ1 −K11)]};
b1 = −δ0λ[K10(F − f) + F (δ0 −K11)]{2fµ2[K10 + 2(δ1 −K11)]

+δ1(F − 2f)[µK10(F − f) + F (λ+ 3µ)(δ1 −K11)]};
b2 = δ1λ[K10(F − f) + F (δ1 −K11)]{2fµ2[K10 + 2(δ0 −K11)]

+δ0(F − 2f)[µK10(F − f) + F (λ+ 3µ)(δ0 −K11)]};

Now, let us define the function f(w) on W(2) as follows:

f(w) :=



f, if w = {1, v}, 0 < v ≤ V ;

f, if w = {2, v}, 0 < v ≤ V ;

2f, if w = {3, v}, 0 < v ≤ V ;

0 in other cases.

(4.21)

Let us assume the joint stochastic process with a two-dimensional phase space ξ(t) =(
χ(2)(t), v(t)

)
. Denote as I(T ) the amount of information delivered to customers S1 and

S2, in a time interval [0, T ]. Then, we can state the following equality

K = lim
T→∞

V (T )

T
= lim

T→∞

1

T

∫ T

0
f (ξ(t)) dt. (4.22)

It follows from ergodic theory [21] that if the process ξ(t) has a stationary distribution
ρ(·), then

lim
T→∞

1

T

∫ T

0
f (ξ(t)) dt =

∫
W(2)

f(w)dρ(w). (4.23)

Hence, by using Eq. (4.22) we obtain

K =
∫
W(2)

f(w)dρ(w) =
∫
W(2)

f(w)ρ(dw). (4.24)
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4.3 Numerical Results and Stationary Efficiency

With the expression of c0, now it is possible to evaluate for the complete expression of
the stationary distribution. For example, on the case f = 3/2, λ = 3/10, µ = 1/10,
V = 100 and F = 9/4 (f < F < 2f) we get, from Eq. (4.19),

ρ(0, v) = − 1

10

1− e8v/15

169− e−160/3

We can plot this analytical result with others as well as results from a computer simu-
lation to illustrate some common cases. In Figure 4.3 we show plots for the stationary
distribution ρ(v). That is, for

ρ(v) =


ρ(0, v) + ρ(1, v) + ρ(2, v), 0 < v < V ;

ρ[2, 0], v = 0;
ρ[0, V ] + ρ[1, V ] v = V ;
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Figure 4.3: Stationary distribution of the buffer for the case f < F < 2f for three
different values of F .

On these plots it is considered F = 2, F = 5/2, and

F =
2fλ

λ+ µ
. (4.25)
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For this case that means F = 15/8.

Some sort of perturbation close to v = 100 can be noticed in the curves from the
simulation. This effect comes from the system functionality for the case f < F < 2f .
From this condition of F , it can be said that, if any of the two customers is active,
the level of the buffer can be increased. That is because the rate F , filling the buffer,
is larger than the demanding information rate of any customer. However, the filling
rate is expected to stop when the level of the buffer reaches its maximum. The result
is that, if any of the two customers is active, the level of the buffer can be increased
up to its maximum, then the filling rate is turned off and the level starts to decrease.
At any moment the level is sensed not to be at its maximum again, the filling rate is
restored. On that scenario, for the time that this single customer is active the level of
the buffer swings between its maximum and some close point below. That is why some
small peaks can be seen in the simulation at some point close to V .

For sake of the analytical solution, the atom ρ[1, V ] was considered as a more steady
approximation of the real system behavior.

No such approximation is taken for the case F < f . Plots from analytical solutions
as well as from simulations for this case are shown in figure (4.4). The parameters
considered for this case are f = 3/2, λ = 1/20, µ = 1/10, and V = 100, somehow
similar to the ones used for plots on Figure 4.3. Three different cases of F are considered,
including

F =
2fλ

λ+ µ
.

This is F=1. The cases F = 3/4 and F = 5/4 are also considered.

We can now recall the function f(w) and show some plots regarding the efficiency
parameter K from Eq. (4.24). Let us write this expression in more detail for this
system with f < F < 2f ,

K = f
∫ V

0
{ρ(1, v) + 2ρ(2, v)}dv + fρ[1, V ].

We show on Figure 4.5 K(V), i.e., K as a function of the maximum capacity of the
buffer, for the same three cases of F from Figure 4.3. On Figure 4.6 we show K(V ) for
the three cases of F from Figure 4.4.

As it can be seen from Figure 4.5, the case of F that satisfies condition in Eq. (4.25)
keeps growing while the other two F-equally-spaced cases converge faster to a value.
Notice also that after some value of V the difference between the two higher values of
K(V ) is relatively small. The same behavior can be observed on Figure 4.6.

Actually, it can be seen that the limit of the efficiency parameter K as V tends to
infinity, for the cases where

F ≥ 2fλ

λ+ µ
,

is

lim
V→∞

K(V ) =
2fλ

λ+ µ
.
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Figure 4.4: Stationary distribution of the buffer for the case F < f for three different
values of F .

That means that, if the buffer is big enough, no F larger than 2fλ
λ+ µ is required to meet

the maximum efficiency of the system.

In some other case, if the buffer is not big enough, some efficiency close to the maximum
of the system can be reached using

F >
2fλ

λ+ µ

This holds for both analyzed cases of F , i.e., f < F < 2f and F < f .

4.4 Semi-Markov Mathematical Model

Consider the semi-Markov process {χ(t)} which is the superposition of two independent
alternating semi-Markov processes (N = 2) with the phase space

Z =
{

(h, xi) : h ∈ H, xi ∈ R2
+

}
,

where
H = {h : h = (h1, h2), hi = 0, 1; i = 1, 2} ,
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Figure 4.5: Efficiency parameter as a function of the buffer capacity for the case f <
F < 2f and three different values of F .

and R2
+ = {~x : ~x = (x, 0), x ≥ 0}⋃ {~x : ~x = (0, x), x ≥ 0} . We have defined hi as

hi =

{
1, if Si is active;
0, if Si is not active,

where Si stands for subsystem i. The component x of the vector (x, 0) (respectively
(0, x)) is the residual life from the last state change of S1 (respectively S2). The initial
distribution of χ(t) is P {χ(0) = (1, 1; 0, 0)} = 1.

Let us write this in more detail:

(1, 1; 0, x) - subsystem S1 starts to be active and subsystem S2 has been active for the
time x,

(1, 1;x, 0) - subsystem S2 starts to be active and subsystem S1 has been active for the
time x,

(1, 0; 0, x) - subsystem S1 starts to be active and subsystem S2 has been inactive for
the time x,



CHAPTER 4. TWO EQUAL CUSTOMERS 61

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1

V

K
(V

)

F=3/4

F=1 

F=5/4 

Figure 4.6: Efficiency parameter as a function of the buffer capacity for the case F < f
and three different values of F .

(1, 0;x, 0) - subsystem S2 starts to be inactive and subsystem S1 has been active for
the time x,

(0, 1; 0, x) - subsystem S1 starts to be inactive and subsystem S2 has been active for
the time x,

(0, 1;x, 0) - subsystem S2 starts to be active and subsystem S1 has been inactive for
the time x,

(0, 0; 0, x) - subsystem S1 starts to be inactive and subsystem S2 has been inactive for
the time x,

(0, 0;x, 0) - subsystem S2 starts to be inactive and subsystem S1 has been inactive for
the time x.

Let v(t) be the amount of information in the buffer at time t. It was shown in [19]
that we can use the PMA to reduce the random evolution v(t) in the semi-Markov
medium χ(t) to the Markov evolution v̄(t) in the Markov medium χ̄(t). Then we have
the following transition probabilities of the embedded Markov chain.

P
{

(h1, h2)
(
h̄1, h2)

)}
=
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0

∫ ∞
0

F̄
(2)
h2

(x+ u)dF
(1)

h̄1
(u)dx+

∫ ∞
0

∫ ∞
0

F̄
(2)
h2

(u)duF
(1)

h̄1
(x+ u)dx∫ ∞

0
F̄

(1)
h1

(x)dx+
∫ ∞

0
F̄

(1)
h2

(x)dx
, (4.26)

P
{

(h1, h2)
(
h1, h̄2)

)}
=∫ ∞

0

∫ ∞
0

F̄
(1)
h1

(x+ u)dF
(2)

h̄2
(u)dx+

∫ ∞
0

∫ ∞
0

F̄
(1)
h1

(u)duF
(2)

h̄2
(x+ u)dx∫ ∞

0
F̄

(1)
h1

(x)dx+
∫ ∞

0
F̄

(1)
h2

(x)dx
. (4.27)

where h̄i = 1− hi, F̄ (x) = 1− F (x), and F (x) is the cumulative distribution function.

The mean sojourn times of the process χ̄(t) in states from X = {00, 01, 10, 11} are given
by

m(h1, h2) =∫ ∞
0

ρ(h1, h2;x, 0)m(h1, h2;x, 0)dx+
∫ ∞

0
ρ(h1, h2; 0, x)m(h1, h2; 0, x)dx, (4.28)

= cs0

(∫ ∞
0

∫ ∞
0

F̄
(1)
h1

(y)F̄
(2)
h2

(x+ y)dydx+
∫ ∞

0

∫ ∞
0

F̄
(1)
h1

(x+ y)F̄
(2)
h2

(y)dydx
)

.

As a first example we can consider some m-Erlang scenario where both, active and
inactive sojourn times are considered with such distribution. This is, for the actual
sojourn time distributions we have

F
(1)
0 (u) =

∫ u

0

λe−λx(λx)m0−1

(m0 − 1)!
dx,

F
(1)
1 (u) =

∫ u

0

µe−µx(µx)m1−1

(m1 − 1)!
dx,

F
(2)
0 (u) =

∫ u

0

λe−λx(λx)m0−1

(m0 − 1)!
dx,

F
(2)
1 (u) =

∫ u

0

µe−µx(µx)m1−1

(m1 − 1)!
dx.

Here, m1 and m0 stand for the m parameter of the distribution for the active and
inactive subsystems states.

We use Eqs. (4.26) and (4.27) to calculate the transition probabilities of the embedded
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Markov chain. We obtain

P =



0
1

2

1

2
0

m0µ

m0µ+m1λ
0 0

m1λ

m0µ+m1λ

m0µ

m0µ+m1λ
0 0

m1λ

m0µ+m1λ

0
1

2

1

2
0


. (4.29)

After that we use Eq. (4.28) to calculate the mean sojourn times and consequently the
sojourn time intensities defined as qθ = (m(h1, h2))−1. Let us consider the equivalence
(h1, h2) = {00, 01, 10, 11} ⇔ {0, 1, 2, 3} = Θ 3 θ to simplify notation. Also let us
remember that q = [qiδij; i, j ∈ {0, 1, 2, 3}] is a diagonal matrix. Then we obtain

q =



2λ

m0

0 0 0

0
λ

m0

+
µ

m1

0 0

0 0
λ

m0

+
µ

m1

0

0 0 0
2µ

m1


. (4.30)

Now, since there is no distinction between subsystems S1 and S2, we can construct one
birth-and-death process just to simplify the solution of the system. We consider the
process

χr(t) =


0, if no customer is active,
1, if one customer is active,
2, if both customers are active.

We obtain from Eq. (4.29) the transition probabilities for the simplified process as

Pr =



0 1 0

m0µ

m0µ+m1λ
0

m1λ

m0µ+m1λ

0 1 0

 . (4.31)

Also, we can obtain from Eq. (4.30) the sojourn time intensities for the simplified
process as
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qr =



2λ

m0

0 0

0
λ

m0

+
µ

m1

0

0 0
2µ

m1

 . (4.32)

The stochastic process χr is a Markov process on the phase space (or states) Θr =
{0, 1, 2}. Hence, the generating operator (or matrix) of the process can be written as
Qr = qr[Pr − I] [21].

At this point it is not difficult to see that the approximated semi-Markov process cor-

responds to a Markov process with the escalated parameters in the form λ → λ

m0

and

µ→ µ

m1

. Then, we may wonder if this construction holds for approximations different

from N = 2. The first choice obvious inspection is the case N = 1.

We consider the process

χ(1)
r (t) =

{
0, if customer is not active,
1, if customer is active.

For this case, we can write directly the transition probability matrix as well as the

sojourn time intensity matrix in the form P (1)
r =

[
0 1
1 0

]
and q(1)

r =


λ

m0

0

0
µ

m1

.

Again, the approximated semi-Markov process corresponds to a Markov process with

the escalated parameters of the form λ→ λ

m0

and µ→ µ

m1

.

As a second example for the case N = 2, we introduce the hyper-exponential semi-
Markov case. For this case, the distribution of the active and inactive sojourn times are
taken as

F
(1)
0 (u) = 1− p exp(−λu)− (1− p) exp(−λbu),

F
(1)
1 (u) = 1− p exp(−µu)− (1− p) exp(−µbu),

F
(2)
0 (u) = 1− p exp(−λu)− (1− p) exp(−λbu),

F
(2)
1 (u) = 1− p exp(−µu)− (1− p) exp(−µbu).

The following choices can be taken as an instance:
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λb = kλ,

µb = kµ,

k > 0. We use Eqs. (4.26) and (4.27) to calculate the transition probabilities of the
embedded Markov chain and we obtain

P =



0
1

2

1

2
0

µ

λ+ µ
0 0

λ

λ+ µ
µ

λ+ µ
0 0

λ

λ+ µ

0
1

2

1

2
0


. (4.33)

After that we use Eq. (4.28) to calculate the mean sojourn times and consequently the
sojourn time intensities. The result is

q =



2kλ

1 + (k − 1)p
0 0 0

0
k(λ+ µ)

1 + (k − 1)p
0 0

0 0
k(λ+ µ)

1 + (k − 1)p
0

0 0 0
2kµ

1 + (k − 1)p


(4.34)

Again, since there is no distinction between subsystems S1 and S2, we can construct one
birth-and-death process just as we did previously to simplify the solution of the system.
We obtain from Eq. (4.33) the transition probabilities matrix for the simplified process
as

Pr =


0 1 0
µ

λ+ µ
0

λ

λ+ µ
0 1 0

 .

Also, we can obtain from Eq. (4.34) the sojourn time intensities of the simplified process
as

qr =



2kλ

1 + (k − 1)p
0 0

0
k(λ+ µ)

1 + (k − 1)p
0

0 0
2kµ

1 + (k − 1)p


(4.35)
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The generating operator of this Markov process is also Qr = qr[Pr − I]. Once again,
we can see that the approximated semi-Markov process corresponds to a Markov pro-

cess with the parameters escalated, this time in the form λ → λ

1 + (k − 1)p
and µ →

µ

1 + (k − 1)p

Now, let us consider the semi-Markov process χ(1)
r (t) for the hyper-Exponential case

N = 1. We can write directly the transition probability matrix as well as the sojourn

time instensity matrix in the form P (1)
r =

[
0 1
1 0

]
and

q(1)
r =


λ

1 + (k − 1)p
0

0
µ

1 + (k − 1)p

 .
Again, the approximated semi-Markov process corresponds to a Markov process with

the escalated parameters of the form λ→ λ

1 + (k − 1)p
and µ→ µ

1 + (k − 1)p
.

Then, for now on, we can generalize the m-Erlang approximation for any N with a

Markov process with the parameters escalated in the form λ→ λ

m0

and µ→ µ

m1

.

For the Hyper-Exponential approximation we can escalate the Markov process param-

eters in the form λ→ λ

1 + (k − 1)p
and µ→ µ

1 + (k − 1)p
for any other N as well.

We can make some plots for the m-Erlang case. In Figure 4.7 the case

F =
2fλ

λ+ µ
, (4.36)

F < f, (4.37)

was considered. Again, we choose f = 3/2, λ = /20, µ = 1/10, and V = 100. For
each one of the curves, shown on Figure 4.7 we used the same “m” number for every
m-Erlang distribution of sojourn time.

As it can be seen, from Figure 4.7, the stationary distribution for every m-Erlang case is
very similar in the continuous part. That is due to the fact that, when the active sojourn
time was added with another exponential distribution i.e., we increase the m number of
the m-Erlang distribution, the same thing happened to the inactive sojourn time. Then,
some proportion of the “unscaled” exponential case is kept and that caused the results
to be very similar. Some flat behavior is maintained in the approximated analytical
solution and also in the simulated system. However the area under the continuous
part tends to be smaller as we increase the number of exponentials, then the atoms
tend to be higher. This tendency is more drastic in the approximated solution than in
the simulation and that caused that, for a greater number of exponentials added, the
less the analytical solution approximates the simulation. As expected, the best match
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Figure 4.7: Stationary distribution of the m-Erlang semi-Markov case for the active and
inactive sojourn time.

between analytical solution and simulation is the merely exponential case. We can show
some other examples where a good match between approximated analytical solution and
simulation is maintained for different m-Erlang cases.

We can consider the inactive sojourn time with an exponential distribution and plot
several m-Erlang cases for the active sojourn time. This example is illustrated in Figures
4.8 and 4.9. Again, for these figures we used F based on conditions stated in Eqs. (4.36)
and (4.37). We also used f = 3/2, λ = /20, µ = 1/10, and V = 100.

In Figures 4.8 and 4.9 we can see a good match between the analytical solutions and
simulations for every m-Erlang case. In this case we see that the behavior of the curves
is modified as we increase the number of exponentials in the m-Erlang distributions.
For more exponentials in the m-Erlang distribution of the active sojourn time expect
subsystems S1 and S2 to be active longer. Therefore we can see on Figures 4.8 and 4.9
that this causes the stationary distribution to be biased to the empty side of the buffer.

Also, we can make some plots for the hyper-exponential case. In Figure 4.10, the behav-
ior of the approximation can be appreciated along with some plots from simulations for
this semi-Markov case. We choose In Figures 4.10 and we choose n = 2 as an instance.
Besides, we took again f = 3/2, λ = 1/20, µ = 1/10, and V = 100, as well as F from
conditions (4.36) and (4.37).
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Figure 4.8: Stationary distribution of the buffer with m-Erlang distributed active so-
journ time and exponentially distributed inactive sojourn time.

As it can be seen, the behavior of the system for different values of p is very similar.
That is again, because active and inactive were modified simultaneously.

This is, subsystem S1 has a probability p to have a expected sojourn time 1/λ0 every
time it switches to the inactive state, also has a probability 1 − p to have a expected
sojourn time twice as large (n = 2). The same thing happens to the active sojourn
time. It has a probability p to have a expected value of 1/µ0 and a probability 1− p to
have a expected value twice as large. So, as the proportion p of short inactive sojourn
times corresponds to the proportion p of short active sojourn times and the proportion
1− p corresponds to the active and inactive long sojourn times, in the long term a very
similar behavior to the exponential case if observed in the curves. For subsystem S2 it
is the same.

It is worth to say that Figure 4.10 has a rather small scale. For example a little “jump”
can be appreciated for the atoms of the exponential case between the analytical solution
and the simulation, but this approximation is just as good as the one shown for the
exponential case in Figure 4.8. It can be seen in Figure 4.10 that the approximated
analytical solution is good for every value of p.
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Figure 4.9: Detail: Stationary distribution of the buffer with m-Erlang distributed active
sojourn time and exponentially distributed inactive sojourn time.
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Chapter 5

N Equal Customers

5.1 Chapter Summary

In this chapter we study the stationary probability density of a system consisting of a
finite capacity buffer connected to N equal customers with bursty on-off demands. We
assume that the buffer is filled up at a constant rate and we analyze the case when this
filling rate satisfies an optimization condition according to the customer demands. We
will also show that we can generalize the results for the stationary efficiency K.

During the active state, each customer demands information at a rate f . Hence, when
n customers are active, information is demanded at a rate n × f . On the other hand,
an unproductive situation is considered if the buffer is empty, i.e., v = 0. No product is
required when all customers are inactive. The filling rate of the buffer F is considered a
constant. The buffer is filled as long as the amount of information is below its maximum
capacity V , see Figure 5.1.

Z
Z
Z

Z
Z
Z

�
�
�F

v f

f

S1

SN

...

V

Figure 5.1: A system of N independent customers and one buffer filled up at a constant
rate F .

71
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5.2 Markov Mathematical process to N customers

We consider the superposition of N on-off Markov processes as the birth-and-death
process {χ(N)} of the following form:

χ(N)(t) =



0, if no customer is active
1, if one customer is active
2, if two customers are active
...

...
N, if N customers are active

.

The stochastic process χ(N) is a Markov process on the phase space (or states) Θ(N) =
0, 1, 2, ..N with the state diagram shown in Fig. 5.2.

��
��

0
-

Nλ

�
µ ��

��
1

-
(N − 1)λ

�
2µ ��

��
2

-
(N − 2)λ

�
3µ

· · ·
-2λ

�

(N − 1)µ��
��
N − 1

-λ

�

Nµ��
��
N

Figure 5.2: A system of N independent customers that is a birth-and-death process
with N + 1 states.

Then, for this system we have the following matrix of sojourn time intensities

q(N) =



Nλ 0 0 · · · 0 0
0 µ+ (N − 1)λ 0 · · · 0 0
0 0 2µ+ (N − 2)λ · · · 0 0
...

...
...

...
...

...
0 0 0 · · · (N − 1)µ+ λ 0
0 0 0 · · · 0 Nµ


.

Also, we have a transition probability matrix given by

P (N) =

0 1 0 · · · 0 0
µ

µ+ (N − 1)λ
0

(N − 1)λ

µ+ (N − 1)λ
· · · 0 0

0
2µ

2µ+ (N − 2)λ
0 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 0
λ

λ+ (N − 1)µ
0 0 0 · · · 1 0


.
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Hence, the generating operator (or matrix) can be written as [21]

Q(N) = q(N)[P (N) − I] = (5.1)

−Nλ Nλ 0 0 . . . 0 0
µ −(N − 1)λ− µ (N − 1)λ 0 . . . 0 0
0 2µ −(N − 2)λ− 2µ (N − 2)λ . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 2λ 0
0 0 0 0 . . . −λ− (N − 1)µ λ
0 0 0 0 . . . Nµ −Nµ


.

Then, we consider a function C(N)(w) on the space W(N) = {0, 1, 2, . . . , N} × [0, V ]
defined as

C(N)(w) =



F w = {0, v}, 0 < v < V ;
F − f w = {1, v}, 0 < v < V ;
F − 2f w = {2, v}, 0 < v < V ;

...
...

F − (N − 1)f w = {N − 1, v}, 0 < v < V ;
F −Nf w = {N, v}, 0 < v < V ;

0 other cases.

Denote by v(t) the amount of information in the buffer at time t. It can be easily verified
that v(t) satisfies the following equation

dv(t)

dt
= C(N)(χ(N)(t), v(t)), (5.2)

with the initial condition v(0) = v0 ∈ [0, V ]. Eq. (5.2) determines the random evolution
of the system in the Markov medium χ(N)(t) [17].

The sojourn time probability distribution functions, say F
(N)
θ (t), have the following form

for the different states:



F
(N)
0 (t) = 1− e−Nλt,
F

(N)
1 (t) = 1− e−((N−1)λ+µ)t,

F
(N)
2 (t) = 1− e−((N−2)λ+2µ)t,

...
...

...

F
(N)
N−1(t) = 1− e−(λ+(N−1)µ)t,

F
(N)
N (t) = 1− e−Nµt.

Now, denote as f
(N)
θ =

dFθ
dt

and r
(N)
θ =

fθ(t)

1− Fθ(t)
for all θ ∈ Θ(N), i.e.,
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

r
(N)
0 = Nλ,

r
(N)
1 = (N − 1)λ+ µ,

r
(N)
2 = (N − 2)λ+ 2µ,

...
...

...

r
(N)
N−1 = λ+ (N − 1)µ,

r
(N)
N = Nµ.

Then, ξ(N)(t) =
(
χ(N)(t), v(t)

)
is a Markov process with generator [17, 10]

A(N)φ(θ, v) = C(N)(θ, v)
∂

∂v
φ(θ, v) + r

(N)
θ [P (N)φ(θ, v)− φ(θ, v)], (5.3)

where P (N)φ(θ, v) =
∑
y∈Θ

pθyφ(y, v), or equivalently,

A(N)φ(θ, v) = C(N)(θ, v)
∂

∂v
φ(θ, v) +Q(N)φ(θ, v).

Denote by ρ the stationary distribution of the process ξ(N)(t). Then, for every function
φ(·) belonging to the domain of the operator A we have∫

W(N)
A(N)φ(w)ρ(dw) = 0. (5.4)

Let A(N)∗ be the conjugate operator of A(N). By changing the order of integration in
Eq. (5.4) we can obtain the following expression for the continuous part of A(N)∗ρ.

Q(N)Tρ(N) =



F 0 0 . . . 0 0
0 F − f 0 . . . 0 0
0 0 F − 2f . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 0
0 0 0 . . . F − (N − 1)f 0
0 0 0 . . . 0 F −Nf


∂

∂v
ρ(N), (5.5)
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where ρ(N) =



ρ(0, v)
ρ(1, v)
ρ(2, v)

...
ρ(N − 2, v)
ρ(N − 1, v)
ρ(N, v)


and ρ(θ, v) denote the continuous part of ρ.

Let us write Eqs. (5.5) in more detail,

−Nλρ(0, v) + µρ(1, v) = F
∂

∂v
ρ(0, v)

Nλρ(0, v)− [(N − 1)λ+ µ]ρ(1, v) + 2µρ(2, v) = (F − f)
∂

∂v
ρ(1, v)

(N − 1)λρ(1, v)− [(N − 2)λ+ 2µ]ρ(2, v) + 3µρ(3, v) = (F − 2f)
∂

∂v
ρ(2, v)

(N − 2)λρ(2, v)− [(N − 3)λ+ 3µ]ρ(3, v) + 4µρ(4, v) = (F − 3f)
∂

∂v
ρ(3, v)

... =
...

λρ(N − 1, v)−Nµρ(N, v) = (F −Nf)
∂

∂v
ρ(N, v).

(5.6)

Then, we can write a general equation for any n as

(F − (n− 1)f)
∂

∂v
ρ(n− 1, v) = (N − (n− 2))λρ(n− 2, v)

− [(N − (n− 1))λ+ (n− 1)µ]ρ(n− 1, v)

+nµρ(n, v), (5.7)

such that 1 < n ≤ N .

Solving for ρ(n, v) we have

ρ(n, v) =
(F − (n− 1)f)

nµ

∂

∂v
ρ(n− 1, v) +

[(N − (n− 1))λ+ (n− 1)µ]

nµ
ρ(n− 1, v)

−(N − (n− 2))λ

nµ
ρ(n− 2, v), (5.8)

for 1 < n ≤ N . We also know that

ρ(1, v) =
F

µ

∂

∂v
ρ(0, v) +

Nλ

µ
ρ(0, v). (5.9)



CHAPTER 5. N EQUAL CUSTOMERS 76

5.3 Stationary Distribution

We can use Eqs. (5.8) and (5.9) to solve the continuous part of the stationary distribu-
tion of the system with two customers (N = 2).

As a first step we can evaluate Eqs. (5.8) and (5.9) for N = 2. Then we obtain

ρ(1, v) =
F

µ

∂

∂v
ρ(0, v) +

2λ

µ
ρ(0, v) (5.10)

and

ρ(n, v) =
(F − (n− 1)f)

nµ

∂

∂v
ρ(n− 1, v) +

((3− n)λ+ (n− 1)µ)

nµ
ρ(n− 1, v)

−(4− n)λ

nµ
ρ(n− 2, v), (5.11)

for n = N = 2. Then, we obtain

ρ(2, v) =
(F − f)

2µ

∂

∂v
ρ(1, v) +

(λ+ µ)

2µ
ρ(1, v)− λ

µ
ρ(0, v). (5.12)

So far, we have from Eq.(5.10) an expression for ρ(1, v) in terms of ρ(0, v). If we use
this expression into Eq. (5.12) we can also obtain an expression of ρ(2, v) in terms of
ρ(0, v) as follows

ρ(2, v) =
F (F − f)

2µ2

∂2

∂v2
ρ(0, v) +

(3Fλ− 2fλ+ µF )

2µ2

∂

∂v
ρ(0, v) +

λ2

µ2
ρ(0, v). (5.13)

Then, we can use Eq. (4.16) and evaluate expressions (5.10) and (5.13) for ρ(1, v) and
ρ(2, v). We obtain

F (F − f)(F − 2f)

2µ2

∂2

∂v2
ρ(0, v)

+

(
F (F − f)

µ
+

(F − f)(F − 2f)λ

µ2
+
F (F − 2f)(λ+ µ)

2µ2

)
∂

∂v
ρ(0, v)

+

(
F +

2λ(F − f)

µ
+

(F − 2f)(λ+ µ)λ

µ2
− (F − 2f)λ

µ

)
ρ(0, v) = 0.

(5.14)

If we solve this equation we get the following result:
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ρ(0, v) = C01 exp

{
−2

F (λ+ µ)− 2fλ

F (F − 2f)
v

}
+ C02 exp

{
(λ+ µ)

F − f
v

}
. (5.15)

If we consider F (λ+ µ)− 2fλ = 0 and we solve for F , we obtain

F =
2fλ

λ+ µ
, (5.16)

which is a consistent condition for systems with N customers. Actually, this condi-
tion can also be constructed if we make F equal to the expected average demand of a
two-customer system. We start considering the long-term proportion of time that one

customer is active, i.e.,
λ

λ+ µ
. If we multiply this proportion by f then we obtain the

long-term average customer demand. Let us remember that each customer process is
independent. Then, if we make F equal to the average demand of the two-customer

system, we have F =
2fλ

λ+ µ
, which could be considered as an optimizing condition.

By considering condition (5.16) in Eq. (5.14) we can express this equation in the fol-
lowing form:

∂2

∂v2
ρ(0, v) +

(λ+ µ)2

f(λ− µ)

∂

∂v
ρ(0, v) = 0, (5.17)

which has the following solution:

ρ(0, v) = C01 + C02 exp

{
− (λ+ µ)2

f(λ− µ)
v

}
. (5.18)

If we look at Eqs. (5.10) and (5.13) it is not difficult to see that

ρ(1, v) = C11 + C12 exp

{
− (λ+ µ)2

f(λ− µ)
v

}
,

ρ(2, v) = C21 + C22 exp

{
− (λ+ µ)2

f(λ− µ)
v

}
.

(5.19)

Now, we can think again about the system with three customers. If we recall Eqs. (5.8)
and (5.9), and we evaluate them for N = 3. Then, we obtain

ρ(1, v) =
F

µ

∂

∂v
ρ(0, v) +

3λ

µ
ρ(0, v) (5.20)

and

ρ(n, v) =
F − (n− 1)f

nµ

∂

∂v
ρ(n− 1, v) +

(4− n)λ+ (n− 1)µ

nµ
ρ(n− 1, v)

−(5− n)λ

nµ
ρ(n− 2, v) (5.21)
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for 1 < n ≤ N . Then we may evaluate this equation for n = 2 and n = 3 giving

ρ(2, v) =
(F − f)

2µ

∂

∂v
ρ(1, v) +

2λ+ µ

2µ
ρ(1, v) +

3λ

2µ
ρ(0, v) (5.22)

and

ρ(3, v) =
(F − 2f)

3µ

∂

∂v
ρ(2, v) +

λ+ 2µ

3µ
ρ(2, v) +

2λ

3µ
ρ(1, v). (5.23)

It is not difficult to prove that, as an extension of Eq. (4.16) for the two-customer
system, the following equality holds for the three-customer system

Fρ(0, v) + (F − f)ρ(1, v) + (F − 2f)ρ(2, v) + (F − 3f)ρ(3, v) = 0. (5.24)

Now, we can use expressions (5.20), (5.22) and (5.23) in Eq. (5.24) just as in the case
for a two-customer system and we can obtain an expression for ρ(0, v). If we use the
condition

F =
3fλ

λ+ µ
, (5.25)

which resembles condition (5.16), then we can express Eq. (5.24) in the following form:

f 2(2λ− µ)(λ− 2µ)
∂3

∂v3
ρ(0, v) + 4f(λ− µ)(λ+ µ)2 ∂

2

∂v2
ρ(0, v) + 2(λ+ µ)4 ∂

∂v
ρ(0, v) = 0.

(5.26)

Eq. (5.25) can be constructed by making F equal to the expected average demand of the
three-customer system in the same way we constructed Eq. (5.16) for the two-customer
system. Also, we may find Eq. (5.25) as a condition to eliminate one of the roots in
the equation for ρ(0, v), just as we found Eq. (5.16). Conditions like these are present
ahead in equations for systems with a larger number of customers.

It is not difficult to see that the solution for differential equation (5.26) is of the following
manner:

ρ(0, v) = C01 + C02 exp

{
−(2λ− 2µ+

√
2λµ)(λ+ µ)2

(2λ− µ)(λ− 2µ)f
v

}

+C03 exp

{
−(2λ− 2µ−

√
2λµ)(λ+ µ)2

(2λ− µ)(λ− 2µ)f
v

}
. (5.27)

Therefore, solutions for ρ(1, v), ρ(2, v) and ρ(3, v) take the general form of ρ(0, v)

ρ(i, v) = Ci1 + Ci2 exp

{
−(2λ− 2µ+

√
2λµ)(λ+ µ)2

(2λ− µ)(λ− 2µ)f
v

}
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+Ci3 exp

{
−(2λ− 2µ−

√
2λµ)(λ+ µ)2

(2λ− µ)(λ− 2µ)f
v

}
, (5.28)

for i = {0, 1, 2, 3}.

Let us focus on equations for ρ(0, v), which lead to the general form of the rest of the
continuous part of the stationary distribution.

We can use Eqs. (5.8), (5.9) along with the N -general form equation

N∑
n=0

(F − nf)ρ(n, v) = 0, (5.29)

that comes from the generalization of Eqs. (4.16) and (5.24), and the condition

F =
Nfλ

λ+ µ
, (5.30)

that comes from the generalization of conditions (5.16) and (5.25), to find the set of
equations for N = 1, 4, 5, 6, 7, 8 just as it is shown in Table 5.1.

If we look at the equations in Table 5.1, it is not difficult to realize the pattern governing
them. It can be seen that there is a difference between equations for even and odd N
according to factor (

∂

∂v
+

(λ+ µ)2

(λ− µ)f

)
. (5.31)

The rest of the equations follow the same pattern for every N . Then, we can write a
tentative general equation for a system with any N > 2 customers.

For odd N > 2 we may say that

( (N−1)/2∏
n=1

(f 2((N − n)λ− nµ)(nλ− (N − n)µ)
∂2

∂v2

+2(N − n)nf(λ− µ)(λ+ µ)2 ∂

∂v
(5.32)

+(N − n)n(λ+ µ)4)

)
∂

∂v
ρ(0, v) = 0.

For even N > 2 we may say that

( (N/2)−1∏
n=1

(f 2((N − n)λ− nµ)(nλ− (N − n)µ)
∂2

∂v2

+2(N − n)nf(λ− µ)(λ+ µ)2 ∂

∂v
(5.33)

+(N − n)n(λ+ µ)4)

) (
∂

∂v
+

(λ+ µ)2

(λ− µ)f

)
∂

∂v
ρ(0, v) = 0.
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N=1
∂

∂v
ρ(0, v) = 0

N=2

(
∂

∂v
+

(λ+ µ)2

(λ− µ)f

)
∂

∂v
ρ(0, v) = 0

N=3

(
f 2(2λ− µ)(λ− 2µ)

∂2

∂v2
+ 4f(λ− µ)(λ+ µ)2 ∂

∂v
+ 2(λ+ µ)4

)
× ∂

∂v
ρ(0, v) = 0

N=4

(
f 2(3λ− µ)(λ− 3µ)

∂2

∂v2
+ 6f(λ− µ)(λ+ µ)2 ∂

∂v
+ 3(λ+ µ)4

)

×
(
∂

∂v
+

(λ+ µ)2

(λ− µ)f

)
∂

∂v
ρ(0, v) = 0

N=5

(
f 2(4λ− µ)(λ− 4µ)

∂2

∂v2
+ 8f(λ− µ)(λ+ µ)2 ∂

∂v
+ 4(λ+ µ)4

)

×
(
f 2(3λ− 2µ)(2λ− 3µ)

∂2

∂v2
+ 12f(λ− µ)(λ+ µ)2 ∂

∂v
+ 6(λ+ µ)4

)
× ∂

∂v
ρ(0, v) = 0

N=6

(
f 2(5λ− µ)(λ− 5µ)

∂2

∂v2
+ 10f(λ− µ)(λ+ µ)2 ∂

∂v
+ 5(λ+ µ)4

)

×
(
f 2(4λ− 2µ)(2λ− 4µ)

∂2

∂v2
+ 16f(λ− µ)(λ+ µ)2 ∂

∂v
+ 8(λ+ µ)4

)

×
(
∂

∂v
+

(λ+ µ)2

(λ− µ)f

)
∂

∂v
ρ(0, v) = 0

N=7

(
f 2(6λ− µ)(λ− 6µ)

∂2

∂v2
+ 12f(λ− µ)(λ+ µ)2 ∂

∂v
+ 6(λ+ µ)4

)

×
(
f 2(5λ− 2µ)(2λ− 5µ)

∂2

∂v2
+ 20f(λ− µ)(λ+ µ)2 ∂

∂v
+ 10(λ+ µ)4

)

×
(
f 2(4λ− 3µ)(3λ− 4µ)

∂2

∂v2
+ 24f(λ− µ)(λ+ µ)2 ∂

∂v
+ 12(λ+ µ)4

)
× ∂

∂v
ρ(0, v) = 0

N=8

(
f 2(7λ− µ)(λ− 7µ)

∂2

∂v2
+ 14f(λ− µ)(λ+ µ)2 ∂

∂v
+ 7(λ+ µ)4

)

×
(
f 2(6λ− 2µ)(2λ− 6µ)

∂2

∂v2
+ 24f(λ− µ)(λ+ µ)2 ∂

∂v
+ 12(λ+ µ)4

)

×
(
f 2(5λ− 3µ)(3λ− 5µ)

∂2

∂v2
+ 30f(λ− µ)(λ+ µ)2 ∂

∂v
+ 15(λ+ µ)4

)

×
(
∂

∂v
+

(λ+ µ)2

(λ− µ)f

)
∂

∂v
ρ(0, v) = 0

Table 5.1: ρ(0, v) equations for N = 1, 2, 3, 4, 5, 6, 7, and 8.
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Now we can proceed to find a general solution for (5.32) and (5.33). As it can be
seen, equations in Table 5.1 are factored in second order polynomials, therefore it is not
difficult to find their roots. We obtain the general solutions as follows:

For odd N > 2,

ρ(i, v) = Ci,0

+
(N−1)/2∑
n=1

Ci,n exp

−
(
(N − n)n(λ− µ) + (N − 2n)

√
(N − n)nλµ

)
(λ+ µ)2

((N − n)λ− nµ)(nλ− (N − n)µ)f
v

(5.34)

+
(N−1)/2∑
m=1

Ci,N−m exp

−
(
(N −m)m(λ− µ)− (N − 2m)

√
(N −m)mλµ

)
(λ+ µ)2

((N −m)λ−mµ)(mλ− (N −m)µ)f
v

 .

For even N ≥ 2,

ρ(i, v) = Ci,0 + Ci,N/2 exp

{
− (λ+ µ)2

(λ− µ)f
v

}

+
(N/2)−1∑
n=1

Ci,n exp

−
(
(N − n)n(λ− µ) + (N − 2n)

√
(N − n)nλµ

)
(λ+ µ)2

((N − n)λ− nµ)(nλ− (N − n)µ)f
v

(5.35)

+
(N/2)−1∑
m=1

Ci,N−m exp

−
(
(N −m)m(λ− µ)− (N − 2m)

√
(N −m)mλµ

)
(λ+ µ)2

((N −m)λ−mµ)(mλ− (N −m)µ)f
v

 .

As we know, these solutions are not only valid for ρ(0, v), but also for the general form of
the rest of the stationary distribution. Nevertheless we may just consider the constants
from ρ(0, v) as C0,n ⇔ Cn, n ∈ {0, 1, ..., N − 1} in order to simplify the solution and we
may express the rest of the distributions ρ(i, v) in terms of ρ(0, v) using Eqs. (5.8) and
(5.9).

The analysis of the properties of the process ξ(N)(t) leads up to the conclusion that,
for the case af < F < bf , the stationary distribution ρ has atoms at the points
(b, 0), (b + 1, 0), ..., (N, 0), and at the points (0, V ), (1, V ), ..., (a, V ). We denote them
as ρ[b, 0], ρ[b+ 1, 0], ..., ρ[N, 0] and ρ[0, V ], ρ[1, V ], ..., ρ[a, V ].

We get from the discrete part of Eq. (5.4) the following expressions
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

F 0 0 . . . 0 0
0 F − f 0 . . . 0 0
0 0 F − 2f . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 0
0 0 0 . . . F − (N − 1)f 0
0 0 0 . . . 0 F −Nf





ρ(0, 0+)
ρ(1, 0+)
ρ(2, 0+)

...
ρ(N − 2, 0+)
ρ(N − 1, 0+)
ρ(N, 0+)


= Q(N)TR(0),

(5.36)

where R(0) =



0
...
0

ρ[b, 0]
ρ[b+ 1, 0]

...
ρ[N, 0]


. Also,



F 0 0 . . . 0 0
0 F − f 0 . . . 0 0
0 0 F − 2f . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 0 0
0 0 0 . . . F − (N − 1)f 0
0 0 0 . . . 0 F −Nf





ρ(0, V−)
ρ(1, V−)
ρ(2, V−)

...
ρ(N − 2, V−)
ρ(N − 1, V−)
ρ(N, V−)


= −Q(N)TR(V ),

(5.37)

where R(V ) =



ρ[0, V ]
ρ[1, V ]

...
ρ[a, V ]

0
...
0


.

If we use b = a+ 1, that is, a < F < a+ 1 it is easy to see from Eq. (5.36) that


ρ(0, 0+) = 0,
ρ(1, 0+) = 0,

...
ρ(a− 1, 0+) = 0.

(5.38)

Also, from Eq. (5.37) we obtain that
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
ρ(a+ 2, V−) = 0,
ρ(a+ 3, V−) = 0,

...
ρ(N, V−) = 0.

(5.39)

It is not difficult to use Eqs. (5.38) and (5.39) to obtain expressions for the constants
Cn, n ∈ {1, 2, ..., N − 1}.

Also, by using expressions in Eq. (5.36) not equal to zero we may obtain expressions for
the atoms in R(0) in terms of the continuous part ρ(θ, 0+). In the same way we may
use (5.37) to obtain expressions for the atoms in R(V ) in terms of the continuous part
ρ(θ, V−).

After that it is not difficult to calculate constant C0 using the normalization condition∫
W(N) ρ(dw) = 1.

That completes the calculation of the stationary distribution ρ of the system.
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Figure 5.3: Stationary distribution of the buffer for N equal customers.

Figures 5.3 and 5.4 show some plots of the stationary probability density of the level
of the buffer for the cases N = 2, 3, 4, 5, 10, 20, 50. The first Figure depicts only de
stationary distribution and the second one adds some simulations for these N cases.
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Figure 5.4: Stationary distribution of the buffer for N equal customers and simulation.

5.4 Stationary Efficiency

The stationary distribution of this system ρ has already been found for any N . Now,
we are going to use those results to find generalized results for the stationary efficiency.

Let us define the function f (N)(w), where w ∈W = Θ(N)× [0, V ], of the following from

f(w) :=



f, if w = {1, v}, 0 < v ≤ V ;

2f, if w = {2, v}, 0 < v ≤ V ;

3f, if w = {3, v}, 0 < v ≤ V ;
...

...

Nf, if w = {N, v}, 0 < v ≤ V ;
0 in other cases.

(5.40)

This is the efficiency of the system.

Let us assume the joint stochastic process with a two-dimensional phase space ξ(t) =
(χ̄(t), v̄(t)). Then, we can state the following equality

K = lim
T→∞

V (T )

T
= lim

T→∞

1

T

∫ T

0
f (ξ(t)) dt. (5.41)
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It follows from ergodic theory [21] that if the process ξ(t) has a stationary distribution
ρ(·), then

lim
T→∞

1

T

∫ T

0
f (ξ(t)) dt =

∫
W
f(w)dρ(w). (5.42)

Hence, by using Eq. (5.41) we obtain for the stationary efficiency of the system that

K =
∫
W
f(w)dρ(w) =

∫
W
f(w)ρ(dw). (5.43)

We will begin the generalization of the stationary efficiency of the system with the case
of the N = 2. For this case we have

K = f
∫ V

0
{ρr(1, v) + 2ρr(2, v)}dv + fρr[1, V ]. (5.44)

We can identify
2fλ

λ+ µ
as the expected average demand of the two customers. Then, for

the stationary efficiency of the system, we can identify three different scenarios respect
to the incoming stream F . Those are

F = Fa =
2fλ

λ+ µ
, F = Fb <

2fλ

λ+ µ
and F = Fc >

2fλ

λ+ µ
.

Let us use the choice f < F < 2f as an instance to define the existing atoms of the

system. Then, for the case F = Fa we have f <
2fλ

λ+ µ
< 2f. Then, we can use

without loss of generality f = 1. Also, in order to simplify calculations, we can use the

substitution µ = αλ, 0 < α. Then, we obtain 1 <
2

1 + α
< 2. Then, we have 0 < α < 1.

We calculate the stationary efficiency of the system using Eq. (5.44) as

Ka(V ) = 2

λ(1 + α)2V + 2α + α(α− 1) exp

(
λ(1 + α)2V
α− 1

)

(1 + α)(λ(1 + α)2V + 3α + 1) + α(α2 − 1) exp

(
λ(1 + α)2V
α− 1

) .
For this parameter we should study the case V →∞. We obtain

lim
V→∞

Ka(V ) =
2

1 + α
=

2λ

λ+ µ
= F.

This is a rather good case where the stationary efficiency of the system equals the
expected average demand and equals the incoming stream F .

Now we should study the cases F = Fb,c. For this cases we have f < Fb,c < 2f . Let us

use F (k) =
kfλ

λ+ µ
, where Fb = F (kb), kb < 2 and Fc = F (kc), kc > 2 . Then, we can use
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f = 1 without loss of generality and we have 1 <
k

1 + α
< 2. We obtain the stationary

efficiency of the system in the following form.

Kb,c(V ) =
2nα((4k − k2 − 4− 4α)e1(V ) + 2αke2(V ) + (k − 2)(k − 2− 2α)e3(V ))

(1 + α)(Dk1)

+
2α(2− k)((k − 2− 2α)2e4(V )− αk2e5(V ))

(1 + α)(Dk2)
,

where

Dk1 = (4α + k2 − 4k + 4)(k − 2− 2α)e1(V ) + α2k3e2(V )

+2α(k − 2)(k − 2− 2α)(k − 1− α)e3(V )

and

Dk2 = (4α + 4 + k2 − 4k)(k − 2− 2α)

+2α(k − 2)(k − 2− 2α)(k − 1− α)e4(V ) + α2k3e5(V ).

Also,

e1(V ) = exp

(
V λ(1 + α)(4α2 + (k2 − 4k + 8)α + 4 + (k − 2)k)

k(k − 2− 2α)(k − 1− α)

)
,

e2(V ) = exp

(
V λ(1 + α)(2α2 + (4− k)α + 4− k)

(k − 2− 2α)(k − 1− α)

)
,

e3(V ) = exp

(
2λV (1 + α)(2 + 4α + (k + 2)α2)

k(k − 2− 2k)(k − 1− α)

)
,

e4(V ) = exp

(
−λ(1 + α)2V

k − 1− α

)
,

e5(V ) = exp

(
−2V (1 + α)2(k − 2)λ

(k − 2− 2α)k

)

Now, we should study the cases V →∞ for Kb,c(V ). First we obtain

lim
V→∞

Kb(V ) =
2αkb

(1 + α)(2 + 2α− kb)
< Fb =

kb
1 + α

<
2λ

λ+ µ
.

Then, for the region 0 < k < 2, the incoming stream F is a boundary of the limit of the
stationary efficiency K(V ) as the buffer size grows to infinity.

It is evident that K(V ) is a non-decreasing function of F . Also, we know that the
maximum stationary efficiency of the system is the long term average customers demand.
Then we have for the case Kc(V ) that
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lim
V→∞

Kc(V ) =
2

1 + α
< Fc

Then, for the region 2 < k, the stationary efficiency K(V ) is less than the incoming
stream F .

Let us plot an example of the limit of the stationary efficiency along the different regions
of k. In Figure, 5.5 we use α = 1/6 as an example. This choice gives us 7/6 < k < 14/6

for F =
6k

7
and for K(V ) as well.

0 0.5 1 1.5 2 2.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

k

lim
 K

(V
)

lim K(V)
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Figure 5.5: Limit of K(V) as V tends to infinity with α = 1/6 and F = 6k/7.

To show that this results do not depend on the choice f < F < 2f , we can show that
we can obtain the same results for the case F < f . With this choice we have for the

case F = Fa that
2fλ

λ+ µ
< f . Then, we can use without loss of generality f = 1 and we

obtain
2

1 + α
< 1. We calculate the stationary efficiency of the system as.

Ka(V ) = 2α

(1 + λ(1 + α)2V ) exp

(
λ(1 + α)2V

α− 1

)
− 1

1− α2 + (1 + α)α(λ(1 + α)2V + α + 3) exp

(
λ(1 + α)2V

α− 1

) ,
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Also, we obtain that

lim
V→∞

Ka(V ) =
2

1 + α
=

2λ

λ+ µ
= F.

This is a good case where the stationary efficiency of the system equals the expected
average demand and equals the incoming stream F .

For the cases Fb,c we use the substitution F (k) =
kfλ

λ+ µ
, where Fb = F (kb), kb < 2 and

Fc = F (kc), kc > 2. Then, we can use f = 1 without loss of generality and we have
k

1 + α
< 1. We obtain the stationary efficiency of the system in the following form.

Kb,c(V ) =
2α2n

1 + α
(5.45)

× (4α + k2 − 4k + 4)g1(V ) + k(2− k)g2(V )− 4 + 2k − 4α

α2n(4α + k2 − 4k + 4)g1(V ) + 2αk(k − 2)(k − 1− α)g2(V ) + (k − 2− 2α)3
,

where

g1(V ) = exp

(
−2V (1 + α)2(k − 2)λ

(k − 2− 2α)k

)

g2(V ) = exp

(
−(1 + α)2(4α + k2 − 4k + 4)V λ

(k − 1− α)(k − 2− 2α)

)

Now, we study the case V →∞ for Kb,c. First, given kb < 2, we obtain

lim
V→∞

Kb(V ) =
4α2kb

(kb − 2− 2α)2(1 + α)
< Fb =

kb
1 + α

<
2λ

λ+ µ

Then, for this case where the incoming stream is less than the expected long term average
customers demand, we obtain that the stationary efficiency of the system is even less
than the incoming stream no matter the buffer grows to infinity. Then, for this case we
also have that for the region 0 < k < 2, the incoming stream F , is a boundary of the
limit of stationary efficiency K(V ) as the buffer size grows to infinity.

On the other hand, it is not difficult to show from Eq. (5.45) that

lim
V→∞

Kc(V ) =
2

1 + α
< Fc.

Then, for the region 2 < k, the stationary efficiency K(V ) is less than the incoming
stream F . This result was expected because it is evident that K(V ) is a non-decreasing
function of F , i.e., k, and we know that the maximum stationary efficiency of the system
is the long term average customers demand.

Let us plot an example of the limit of the stationary efficiency along the different regions

of k. In Figure (5.6) we use α = 2 as an example. This choice gives us k < 3 for F =
k

3
and for K(V ) as well.
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Figure 5.6: Limit of K(V) as V tends to infinity with α = 2 and F = k/3.

Then as conclusions we can say that the stationary efficiency does not depend directly
on λ nor µ but in the ratio α = λ/µ. Also, we can say that no matter the buffer grows
to infinity, the stationary efficiency of this system is less than the incoming stream F
everywhere except in one point that is F = 2/(1+α). Also we can say that the maximum
stationary efficiency of the system is the long term average customers demand. The

system reaches this efficiency for F ≥ 2

1 + α
and V →∞.

Once we know this, it is possible to design the system for a determined efficiency or
percentage of the maximum efficiency using expressions for the stationary efficiency
shown above.

5.5 Generalization for any N

Now we can start generalizing results for a system with any N . Calculations for the
stationary efficiency for any F can be cumbersome, but now we can focus on the case
the incoming stream equals the long term average customers demand for the system
with any number N of customers. As it was shown we can use f = 1 without loss of

generality and we have F =
Nfλ

λ+ µ
=

N

1 + α
. It is not difficult to prove the following
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results

N = 1, F =
1

1 + α
, lim

V→∞
K(1)(V ) =

1

1 + α
;

N = 3, F =
3

1 + α
, lim

V→∞
K(3)(V ) =

3

1 + α
;

N = 4, F =
4

1 + α
, lim

V→∞
K(4)(V ) =

4

1 + α
;

N = 5, F =
5

1 + α
, lim

V→∞
K(5)(V ) =

5

1 + α
.

Then, if we add the result we already have for N = 2, we can generalize in the following
form

lim
V→∞

[
K(N)(V )

]
F ≥ Nf

1+α

=
Nf

1 + α
=

Nfλ

λ+ µ
,

for any a < F < a+ 1, a = 0, 1, 2, ..., c.

Although it was mention that for this system the incoming stream F is turned off once
the buffer reaches its maximum capacity V , all the results shown here regarding the
stationary efficiency of the system also match those of a system with an overflowed
buffer where the incoming stream F is always on. For that system we can consider the
stationary overflowed information as

H = fρ[1, V ] + 2fρ[2, V ] + · · ·+ afρ[a, V ], (5.46)

for a < F < a+ 1.



Chapter 6

Conclusions

In this thesis we studied the stationary efficiency of a system consisting of a finite
capacity buffer connected to N equal customers with bursty on-off demands. We assume
that the alternating demands can be modeled by a semi-Markov stochastic process and
we assume that the buffer is filled up at a constant rate.

It was shown that it is possible to use the phase merging algorithm to reduce a semi-
Markov process to an approximated Markov process. Once this is done, it is possible
to find some closed-form expression for the stationary distribution of the system. It
has been seen that the approximation that the algorithm gives may be good enough for
some applications. We showed plots of some analytical results and computer simulations
regarding the Markov and semi-Markov cases.

Also, it has been shown that the approximation can also be considered to obtain expres-
sions for the stationary efficiency of the system for some semi-Markov cases. Besides the
driving function C(w) typical in the random evolution formulation [14], we introduce
an additional function f(w) to capture the functionality of our scheme. Two cases were
studied regarding the incoming stream F in terms of the stationary efficiency K and
we showed some typical cases for this parameter. Some graphics of the performance
parameter K where added and we analyzed an optimization condition which is related
to the long-term average demand of the customers.

First, we considered the case of two different customers which may be a system of interest
for some applications. Regardless the fact that we only superposed two processes, the
number of different parameters makes it difficult to find expressions for the stationary
probability density of the system and the stationary efficiency. Nevertheless, these
expressions are showed in terms of the system parameters, namely F , f0, f1, λ0, λ1, µ0

and µ1.

In the Chapter 4 we considered the case of two equal customers. It is easy to see
that the result from the case of two different customers can not be reduced a result
for the case of two equal customers. Also, it is important to show this case because
it shows how the formulation is simplified by this assumption. The use of the birth

91



CHAPTER 6. CONCLUSIONS 92

and death process is introduced and this is an important previous step before finding
a more general solution for the case of the superposition of any number N of different
customers, namely, processes.

In Chapter 5 We found that the problem of the single buffer with N equal customers
connected to it has a general solution for the stationary probability distribution of the
amount of stored information. We found this general solution considering only one
condition that could be considered as an optimizing condition. We constructed this
condition so that the stream of information is equal to the expected average demand
of the system, and it is also present as one of the roots of the general equation to be
solved. By having this condition, the general equation is simplified so that the solution
may present one less exponential term.

Our buffer is a subsystem aimed to increase the availability of information. It is worth
to mention that, even thought it was mentioned as part of the system functionality that
the main stream F turns off when the buffer reaches its maximum capacity, the results
presented here also match to those of a system with an overflowed buffer. That is, a
system where the main stream F is always on and when the buffer reaches its maximum
capacity some data may be thrown away.

We showed that the maximum efficiency of the system with any N customers is precisely
the expected average demand of the customers. If the incoming stream is equal or greater
than the expected average demand of the customers, the system reaches its maximum
efficiency if the buffer size grows to infinity. Nevertheless, only when the incoming
stream F equals the expected average demand of the customers the efficiency of the
system equals the incoming stream when buffer size grows to infinity. In the other case,
the efficiency of the system K is below the incoming stream F . These results also match
those of system with an overflowed buffer where the incoming stream F is always on.

It is not difficult to see that this model is the same as the one that would be used for a
particle that moves in one dimension with absorbing boundaries that retain the particle
until it changes direction. For the case of one process (customer), this particle would
have only two velocities in different directions. For the case of N processes this particle
would have N different velocities and every time it changes state it can either accelerate
its velocity or it can decelerate up to the point where it changes direction.
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