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Abstract 

 

In this work, a warehouse is allowed to function as a crossdock to minimize costs for 

a scheduling problem. These costs are due to two factors: the number of teams of 

workers hired to do the job, and the transit storage time for cargo. Each team of 

workers has a fixed cost per working day, and the cargo can incur early and tardy 

delivery costs. Then, the transit storage time for cargo is minimized according to Just 

in Time (JIT) scheduling. The goal is to obtain both: the optimal number of teams of 

workers in the crossdock and a schedule that minimizes the transit storage time for 

cargo. An integrated model to obtain both the optimal number of teams of workers 

and the schedule for the problem is written. The model uses the machine scheduling 

notation to describe it. Since the problem is known as NP-hard, a solution approach 

based on a combination of two metaheuristics, Reactive GRASP embedded in a 

Local Search algorithm and Tabu Search (RGLSTS), is provided. The results 

obtained from the exact method that uses the ILOG CPLEX 9.1 solver for 14 problem 

instances and the results obtained from the RGLSTS metaheuristic algorithm for the 

same problem instances are discussed. 

This research has an important academic contribution because it involves the 

development of a metaheuristic algorithm not previously applied to a relevant 

problem that has not received attention. Besides, the source codes of the programs 

that solve the problem are available for the reader and they can be modified 

according to the user needs. 

In the industry field, the algorithm mentioned above can be easily adapted in order to 

be applied to a real problem (i.e., large transshipments in companies like Wal-Mart, 

HEB, among others). 

Obtaining optimal or near optimal solutions for the problem of this work represents an 

improvement in the movement or distribution of the workforce and products, reducing 

this way, hiring costs, transportation costs and inventory costs. 
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Chapter 1 

 

Introduction 

 

Logistics, and particularly, inventory, transportation, scheduling, and workforce 

allocation are important activities within factories and they play a central role in the 

operations research field. Their study has led to the development of many models 

and algorithms which have also been applied to other scientific, academic, and 

industrial fields. These topics are complex and they involve many variables, 

uncertainties, and costs. Most of the time, the objective is to optimize results, i.e. to 

maximize profits or minimize costs, taking into consideration the available resources 

assigned to it. Very often, to do this, it is necessary to use sophisticated models and 

optimization techniques as well as powerful information technology [Crainic and 

Laporte (1998)]. 

The scheduling activity is strongly related to manufacturing, inventory, and 

transportation. Scheduling can help the manufacturing industry to reduce production 

and inventory costs. Also, it can help the transportation industry to reduce 

transportation costs. Obtaining optimal or near optimal solutions to problems related 

to these areas represents an improvement in the production as well as in the 

movement or distribution of the products. This is one of the reasons why the 

scheduling area is so important nowadays [Rosas (1991)]. The study of scheduling 

problems is not new. History, examples, notation, and references can be found in 

Pinedo (2002). 

In a simple model, scheduling involves the assignment of jobs to a single machine in 

an optimal sequence (assignment-sequencing problem). Of course, this problem can 

be as complex as needed. Some of the performance measures in which the 

scheduling models have focused are: the maximum completion time or makespan 
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(Cmax), the total weighted completion time (∑wjCj), the maximum lateness (Lmax), the 

number of tardy jobs (∑Uj), the total tardiness (∑Tj), and the total weighted tardiness 

(∑wjTj), among others. All these performance outputs are regular measures, this is, 

the scheduling is non-decreasing in the completion times [Pinedo (2002)]. In other 

words, if all completion times were reduced or stayed the same, the performance 

measure would decrease or stay the same. 

In particular, tardiness is a due date related regular measure and it has to do with 

customer satisfaction and costs associated with the delivery time. There is another 

due date related performance measure, called earliness, which is not a regular 

measure and it also has to do with the delivery time, but in the opposite way of the 

tardiness. Tardiness implies costs for jobs being completed after their due date, 

leads to unsatisfied customers, and perhaps even a loss of sales because of the late 

delivery. On the other hand, earliness implies additional inventory costs. This 

situation has changed because of the appearance of the Just in Time (JIT) 

philosophy, developed by Toyota Motor Company Ltd., which indicates that earliness 

and tardiness must be considered together when measuring the performance of a 

schedule [Rivera (1996)]. As mentioned before, earliness is not a regular measure, 

so, an earliness-tardiness performance measure is not a regular one. Earliness, 

tardiness, and earliness-tardiness functions can be seen in Figure 1.1. 
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Figure 1.1 a) Earliness function; b) Tardiness function; c) Earliness-tardiness function. These three functions 

have a common due date d 

Scheduling to minimize both earliness and tardiness costs has been strongly 

motivated by the adoption of the JIT concept in the manufacturing industry, which 

aims to complete the jobs exactly at their due date, not earlier and not later. Some 

other examples that include the concept of earliness-tardiness minimization are: the 

harvest of crop products which should be conducted around the time of the crop, and 

the production of perishable goods which should not be finished too early to avoid 

their possible decay, and should not be finished too late to avoid missing the delivery 

[Leung (2004)]. Under a JIT philosophy, it is highly desirable to have the jobs 

finished by the exact time requested by the customer. Otherwise, the jobs that are 

finished earlier or later than their due date will incur penalties. The objective of JIT 

scheduling is then to obtain a schedule that minimizes those penalties and part of 

this thesis deals with that objective. 

This project is closely related to the work done by Li et al. (2004) but considering now 

the workforce allocation task. It also has a relationship with the work done by Rosas 

(1991). 

In this thesis problem, when the workforce is known and fixed (purely 

crossdocking - JIT scheduling problem), the results obtained by our algorithm which 

uses an integer programming model [Nemhauser & Wolsey (1999)] taken from Li et 

al. (2004) are compared to the results obtained by their algorithm for the 16 problem 

instances presented in their work. Obviously, the objective values shown by both 

versions must be the same when both algorithms reach the optimal value (sometimes 

this is not possible due to computer memory limits). On the other hand, when the 

workforce is unknown and variable (optimal workers allocation for the 

crossdocking - JIT scheduling problem), a similar but extended integer programming 

model is presented. 

An important section of the project has to do with the development of a metaheuristic 

algorithm [Díaz et al. (1996)] to find good solutions for big problem instances. This 
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metaheuristic algorithm is also used for problem instances with known optimal value 

to determine how close its solutions are from the optimal ones. 

 

1.1 Thesis Structure. 

 

In chapter 2, the problem faced in this thesis is formally described. This chapter also 

includes a literature review about some previous works related to this problem. 

Chapter 3 talks about heuristic and metaheuristic methods in general and about the 

GRASP and Tabu Search methods, the metaheuristics applied to the problem of this 

thesis, in particular. 

Chapter 4 includes a description of the approaches applied to find a solution for the 

crossdocking - JIT scheduling problem (exact method and metaheuristic method). 

The results obtained from the different solution approaches are discussed. Analysis 

and comparisons are made. 

Chapter 5 is very similar to Chapter 4, but applied to the bigger problem known as 

the optimal workers allocation for the crossdocking - JIT scheduling problem. 

In Chapter 6, conclusions and future work related to this project are mentioned. 

Finally, some Linear Programming theory, an example of an MIP, the source codes 

(written in C language) for all of the algorithms used in this work, the problem 

instances, and the solutions obtained by the metaheuristic algorithms are shown in 

the appendixes section. Some appendixes are not printed and they only appear in 

electronic format in the CD at the end of this thesis. 

 

1.2 Methodology. 

 

In order to create this thesis, the following methodology was used: 
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1. Bibliographic research about workforce allocation, crossdocking - JIT scheduling 

and related works. 

2. Bibliographic research about problems complexity, heuristics, and metaheuristics. 

3. Bibliographic and technical research about ILOG CPLEX 9.1, which was the 

software library used to run the problem instances for the exact model. 

4. Design, implementation, and execution of the algorithm that generates problem 

instances that can be used as inputs for the exact model and for the metaheuristic 

algorithm. 

5. Design, implementation, and execution of the exact model which finds an optimal 

(when possible) feasible solution for a particular problem instance. 

6. Design, implementation, and execution of the metaheuristic algorithm which finds 

a feasible solution for a particular problem instance. 

7. Design, implementation, and execution of the algorithm that converts a solution 

from the metaheuristic into an initial solution for the exact method. 

8. Analysis of the obtained results and conclusions. 
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Chapter 2 

 

Problem Description 

 

Typically, storage and order picking are the main operations of the handling activity 

in a warehouse. These operations are labor intensive and are expensive. Handling 

costs and space utilization need to be considered when working with a warehouse. 

Even more, warehouses need to be configured to handle equipment and an inventory 

management system is required to have everything under control. Crossdocking tries 

to reduce or eliminate these issues by reducing warehouses to purely transshipment 

centers where receiving and shipping are its only functions. Shipments need to 

expend very little time at crossdocks before being moved into the next level in the 

supply chain. At crossdocks, inbound trucks arrive with cargo that is sorted, 

consolidated, and loaded onto outbound trucks sent to manufacturing sites, retailers 

or even another warehouse or crossdock. In a crossdock, the customer is 

predetermined and there is no need for storage. 

The crossdock can be divided into an import area where breakdown occurs and an 

export area where buildup occurs. In the import area, incoming containers are broken 

down, and in the export area, containers are built up after consolidation, if necessary. 

Since incoming containers come from a number of suppliers, incoming cargo will 

reach the crossdock at different times. Items, including breakdowns, are then either 

sent away directly or sent to the export area to be loaded into outgoing containers. 

Outbound cargo is shipped away by vehicles with scheduled departure times. So, in 

this context, each incoming container has a release time and a due date and each 

outgoing container has a due date. This situation is shown in Figure 2.1. 
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Figure 2.1 A crossdock flow - taken from Li et al. (2004) 

 

Each incoming (outgoing) container is processed by a breakdown (buildup) team of 

workers in the import (export) area. Since such teams are limited in number, 

scheduling teams to jobs has to be precise. Timing is extremely important for 

crossdocking. The idea is then to obtain a schedule to specify when to start 

breakdown and when to complete buildup of all cargo where the goal is to complete 

processing each container exactly at its due date. This is true for the purely 

crossdocking - JIT scheduling problem where the number of teams of workers in 

each side of the crossdock is a given parameter. 

For the optimal workers allocation for the crossdocking - JIT scheduling problem, in 

which the number of teams of workers in each side of the crossdock is an unknown 

variable that has to be determined, the costs are due to two factors: the number of 

teams of workers hired to do the job, and the transit storage time for cargo. Each 

team of workers has a fixed cost per working day, and the cargo can incur, as 

mentioned before, early and tardy delivery costs. The cost per working day of each 

team of workers is the same for both sides of the crossdock, and, as it is known, the 

transit storage time for cargo is minimized according to JIT scheduling. Then, the 

complete goal is to obtain both: the optimal number of teams of workers in each side 

of the crossdock and a schedule that specifies when to start breakdown and when to 

complete buildup of all cargo. 
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2.1 Literature Review. 

 

The first study related to JIT scheduling appeared with the work done by Sidney 

(1977) who analyzed a scheduling problem for a single machine with earliness and 

tardiness penalties, considering intervals for processing the jobs, and idle times. In 

that paper, an earliness penalty occurs when a job starts before its target start time. 

Tardiness penalty occurs when a job finishes after its target due date. A job j incurs 

no penalty if it is processed entirely in the target interval [start timej, due datej]. The 

author presented a polynomial time algorithm with O(n2) order for solving this 

problem, where n is the number of jobs in the problem instance. Later, 

Lakshminarayan et al. (1978) developed a polynomial time algorithm with O(nlogn) 

order for solving this same problem. 

The following variations of JIT machine scheduling problems were studied for a 

single machine with a common due date with some differences: 

• Large common due date (d) - the problem is called unrestricted because the 

scheduling decision will not be affected by the value of the due date. Bagchi et al. 

(1986) showed that this problem can be solved in polynomial time 

• Not large common due date (d) - Hall et al. (1991) showed that this problem is 

NP-complete in the ordinary sense, even for not weighted unit earliness and 

tardiness penalties of jobs (α = β = 1). In the same work, the authors showed that 

if unit earliness and tardiness penalties are job-dependent (αj, βj), the problem is 

NP-hard, even for a large common due date (d) 

Liaw (1999) proposed a branch and bound algorithm with dominance rules to 

minimize the sum of weighted earliness (α) and weighted tardiness (β) for a single 

machine scheduling problem where no machine idle time is allowed. 

An excellent survey of JIT scheduling for single machine can be found in Baker and 

Scudder (1990). They start the review with a basic model that contains symmetric 
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penalties and a common due date, and then they add some features to this basic 

model to form a framework for models classification with the following characteristics: 

• Linear and quadratic objective functions 

• Symmetric unit earliness and tardiness penalties (α = β), different unit earliness 

and tardiness penalties (α ≠ β), and job-dependent unit earliness and tardiness 

penalties (αj, βj) 

• Common due date (d) and job-dependent due dates (dj) 

Job-dependent due dates (dj) complicate the problem because most of the properties 

of optimal schedules do not hold any longer. Garey et al. (1988) showed that the 

problem of finding minimal cost schedules with job-dependent due dates (dj) is NP-

complete. 

In many studies, release times are not considered by researchers because jobs are 

assumed to be ready at time 0. Mazzini and Armentano (2001) developed a 

constructive heuristic and an adjacent pairwise interchange heuristic to solve the 

problem where each job has its own release time (rj) and its own due date (dj). 

There is little research on JIT scheduling for parallel machines and most research 

done on this problem deals with a common due date (d). Few authors study this 

problem with job-dependent due dates (dj). Laguna and González-Velarde (1991) 

proposed a search heuristic for the uncommon weighted earliness penalty (αj) 

problem with job-dependent deadlines (mandatory dj) in parallel identical machines. 

Sivrikaya-Serifoglu and Ulusoy (1999) employed two genetic algorithm approaches to 

heuristically solve a parallel machine scheduling problem with common and unequal 

weighted earliness and tardiness penalties (α, β) where the due dates of the jobs are 

distinct (dj) and each job has its own arrival time (rj). Heady and Zhu (1998) provided 

a heuristic algorithm for the uncommon weighted (αj, βj) JIT scheduling problem with 

job-dependent due dates (dj) in a multi-machine system where processing times 

depend on the job-machine combination. Radhakrishnan and Ventura (2000) 

provided local search heuristics in the framework of the Simulated Annealing 
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technique for the parallel machine earliness-tardiness uncommon due date (dj) 

sequence-dependent set-up time scheduling problem. 

No previous research has been done on the JIT machine scheduling characterization 

of the crossdocking problem, except for the one discussed in Li et al. (2004). They 

proposed two algorithms to solve this problem: SWOGA and LPGA. The first one 

uses Squeaky Wheel Optimization embedded in a Genetic Algorithm and the second 

one uses Linear Programming within a Genetic Algorithm. However, the work 

presented in this thesis considers a different metaheuristic approach applied to this 

problem. Besides, the source codes of our work are available for the reader. 

The crossdocking - JIT scheduling problem is NP-hard because if the due dates of 

the outgoing jobs are very large, the two phases of the problem could be processed 

independently (the second phase of the problem would not depend on the results of 

the first phase), and each phase could be reduced to the JIT scheduling problem for 

parallel machine with job-dependent due dates which it is known to be NP-hard, 

since the case for single machine is already NP-hard [Garey et al. (1988)]. 

Rosas (1991), Rivera (1996), and Li et al. (2004) contain a section in their works that 

include an excellent literature review related to JIT scheduling. 

On the other hand, some works related to JIT scheduling but now considering a 

variable number of teams of workers are referred below. This bigger problem 

includes the workforce allocation task whose study is varied. 

Abernathy et al. (1973) presented a hierarchical scheme of three phases: planning, 

scheduling, and allocation, to solve a nurse-staffing problem in a hospital. They 

formulated the planning and scheduling stages as a stochastic programming model, 

suggested an iterative solution procedure using random loss functions, and 

developed a non iterative solution procedure for a chance-constrained formulation 

that considers alternative operating procedures and service criteria. They made the 

assignment of tasks to multi-functional workers during the allocation phase. Siferd 

and Benton (1992) extended this hospital nurse staffing and scheduling study. 
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Baker (1976) studied the basic mathematical models for workforce scheduling with 

cyclic demand for staff. 

Lewis et al. (1998) studied how the tasks in a fixed size office should be organized to 

maximize throughput when short-term reassignment of workers is difficult, costly, or 

restricted. Heymann et al. (2000) studied how many workers should be allocated for 

executing a distributed application and how to assign tasks to workers in order to 

maximize resource efficiency and minimize application execution time. They 

proposed an effective scheduling strategy that dynamically measures the execution 

times of tasks and uses this information to dynamically adjust the number of workers 

to achieve a desirable efficiency, minimizing the impact of loss of speedup. Brennan 

and Orwig (2000) examined conflicting approaches to work allocation in an 

engineering consulting firm. They proposed an analytical framework to determine 

whether a leveraged approach is superior to a cascaded bin packing approach for 

the organization’s performance. 

Iima and Sannomiya (2001) proposed a module type genetic algorithm to solve a 

modified job-shop scheduling problem with a workers allocation constraint. Campbell 

and Diaby (2002) used mathematical programming to model a multi-department and 

labor-intensive service environment problem. They proposed a heuristic based on a 

linear assignment approximation for allocating cross-trained workers to multiple 

departments at the beginning of a shift. They considered the re-assignment of tasks 

to workers within the shifts. Gomar et al. (2002) developed a linear programming 

model to help optimize the multi-skilled workforce assignment and allocation process 

in a construction project. 

Tharmmaphornphilas and Norman (2004) proposed a quantitative method based on 

mathematical programming to obtain a proper job rotation interval length in a work 

setting in order to reduce worker fatigue and injuries and improve the quality of the 

job. Corominas et al. (2004) solved a problem of allocating types of tasks to the multi-

functional workers of a service center over a time horizon assuming equal efficiency 

for all of the members of the staff. 



 12

No previous research has been done on the machine characterization of the optimal 

workers allocation for the crossdocking - JIT scheduling problem. 

It was previously shown that the purely crossdocking - JIT scheduling problem is NP-

hard. Therefore, the optimal workers allocation for the crossdocking - JIT scheduling 

problem is NP-hard as well. 

 

2.2 Relationship of the Problem with Machine Scheduling. 

 

The crossdocking - JIT scheduling problem described before can be modeled 

naturally as a machine scheduling problem as follows: each incoming container can 

be thought of as a job which has a release time after which it can be processed, a 

due date, and a processing time. Each outgoing container can be thought of as a job 

which has a number of source containers or predecessors which feed it, a due date, 

and a processing time. These incoming/outgoing jobs are processed by teams of 

workers which can be thought of as machines. These machines handling 

incoming/outgoing cargo are parallel because they are able to operate 

simultaneously. 

The parameters used in this model are: 

ri - release time after which incoming container i can be broken down 

di - due date for incoming container i 

pi - processing time required to break down incoming container i 

Sij - the ith source of outgoing container j. Outgoing container j is built from Kj 

different incoming containers 

Dj - due date of outgoing container j 

Pj - processing time required to build up outgoing container j 

n - number of incoming containers 
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m - number of breakdown teams 

N - number of outgoing containers 

M - number of buildup teams 

α - penalty for unit time earliness 

β - penalty for unit time tardiness 

For the purposes of this project, it is assumed that n > m, and N > M (only for the 

purely crossdocking - JIT scheduling problem where m and M are given parameters). 

The number of jobs n and N do not have to be equal, and the number of teams m and 

M do not have to be equal either. Another note related to the problem is the 

representation of the Sij matrix given by the n incoming containers and the N 

outgoing containers. The cargo of one incoming container might be loaded in zero or 

more outgoing containers, and the cargo built up in one outgoing container might 

come for one or more incoming containers. If the cargo of one incoming container is 

loaded in zero outgoing containers it means that the cargo is directly shipped away 

after breakdown. 

Other assumptions to be considered for this project are: 

• Teams are identical 

• Teams are available at time 0 

• Teams are 100% reliable (machines do not get out of order) 

• A team can not process more than one job at the same time 

• There are no preemptions in the scheduling, this is, once a team starts to process 

a job, this job has to be finished before the team can start processing another job 

• Containers and teams have infinite capacity (the number of handled items can be 

any number) 

• All the cargo arriving to the crossdock leaves the crossdock 
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• Distribution times for the jobs inside the crossdock are already included in their 

corresponding processing times 

• The horizon of the process is one working day 

In the problem context, suppliers do not want to expend too much time in the 

crossdock because it is very likely that they have to deliver more cargo to some other 

customers and they do not want to be late. On the other hand, suppliers should not 

be early because the crossdock authorities do not want to have their cargo too much 

time inside the crossdock to avoid inventory and it is very likely that they need that 

space for some other suppliers. This agrees with the JIT scheduling philosophy. 

Incoming jobs are described by JI = {JI1, JI2, …, JIn} and outgoing jobs are described 

by JO = {JO1, JO2, …, JON}. Breakdown teams are described by MI = {MI1, MI2, …, MIm} 

and buildup teams are described by MO = {MO1, MO2, …, MOM}. Jobs in JI are 

processed only by teams in MI, and jobs in JO are processed only by teams in MO. A 

job JIi ∈ JI is described by {ri, pi, di}, where ri, pi, di denote its release time, processing 

time, and due date, respectively. A job JOj ∈ JO is described by {predj, Pj, Dj}, where Pj 

and Dj denote its processing time and due date, respectively, and predj describes its 

predecessors, all belonging to JI. Actually, predj represents a column of the Sij matrix. 

A representation of the sources or predecessors of outgoing containers and the Sij 

matrix is shown in Figure 2.2. 
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Figure 2.2 a) A representation of the sources or predecessors of an outgoing container j; b) An example of an Sij 

matrix with 4 incoming containers and 2 outgoing containers 
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Earliness and tardiness penalties of a job JIi are defined by ei = max{0, di - ci} and ti = 

max{0, ci - di}, respectively, where ci represents the incoming job’s finish time. 

Earliness and tardiness penalties of a job JOj are defined by Ej = max{0, Dj - Cj} and Tj 

= max{0, Cj - Dj}, respectively, where Cj represents the outgoing job’s finish time. The 

objective of the problem is to find a schedule that minimizes the total penalty. Figure 

2.3 shows a more detailed view of Figure 2.1 and it represents a summary of the 

whole situation. 
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Figure 2.3 A more detailed flow for the crossdocking - JIT scheduling problem 

 

In Figure 2.3, each incoming job represents a container coming from a company like 

Pepsico, the Coca-Cola Company, Bimbo, Cuauhtémoc-Moctezuma Beer Company, 

Kraft, Kimberly-Clark, among many others. Each one of these companies’ trucks 

contains several products that are going to be spread out through several locations 

like, i.e. in the Monterrey city area, Wal-Mart Las Torres, Wal-Mart Valle Oriente, 

Wal-Mart Lincoln, etc. The Wal-Mart example is used because crossdocking has 

received much attention as a result of the commercial success of large 

transshipments in this company [Gue (2001)]. In the same Figure 2.3, predj means 

that job JOj contains cargo from Kj different incoming containers or jobs. 

As mentioned before, cargo is processed in two phases: breakdown and buildup. 

Precedence relationships exist between these phases in the following sense: each 

incoming container i must be broken down before an outgoing container j can 
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commence to be built up if cargo items in container j come from container i. In other 

words, a container can start buildup only if all its source containers have been 

broken down in order to have all its items correctly loaded. Buildup should not start 

before complete breakdown because it could be possible to have the heaviest items 

loaded in the top of the container. This situation is part of another problem known as 

the Bin Packing Problem [Coffman (1976), Baase (1991), Hochbaum (1997), 

Horowitz et al. (1998), Cormen et al. (2001)] whose study is beyond the scope of this 

work. 

It is known that there are no release times for buildup. It is also known that buildup 

can not commence in outgoing container j until all its cargo predecessors have been 

broken down. So, it is possible to define the state variable Rj as follows: the 

completion time of last incoming container i broken down which contains cargo for 

outgoing container j, or Rj = max{ci}, i = first predecessor of outgoing container j, …, 

last predecessor of outgoing container j. Rj can be seen as the release time of the 

outgoing container j, however, its value depends on the current schedule. 

In summary, the crossdocking - JIT scheduling problem can be viewed as a two-

phase parallel machine scheduling problem. Also, each phase of the problem can be 

seen as an assignment - scheduling problem (the sequencing activity is implicitly 

included in the scheduling activity), according to Figure 2.4. 
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Figure 2.4 Inbound or outbound area of the crossdocking - JIT scheduling problem seen as an assignment - 

scheduling problem 

 

The sequencing part of the problem shown in Figure 2.4 can also be seen as a 

Traveling Salesman Problem (TSP) [Lawler et al. (1985)]. So, the whole picture of 

the Figure 2.4 can be viewed as a Vehicle Routing Problem (VRP) [Crainic and 

Laporte (1998)]. 

The optimal workers allocation for the crossdocking - JIT scheduling problem can be 

modeled as a machine scheduling problem just exactly in the same way as it is done 

for the purely crossdocking - JIT scheduling problem. However, in this bigger 

problem the incoming and outgoing jobs (n and N, respectively) are processed by an 

unknown number of teams of workers (m and M) which can also be thought of as 

machines. The assumptions to be considered and most of the parameters used for 

the model for this bigger problem are the same mentioned for its sub-problem, but 

the number of breakdown teams (m) and the number of buildup teams (M) are not 
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considered parameters any more, and the cost of a team hired (h) is a new 

parameter that has to be considered. 

As mentioned before, the number of teams hired to do the breakdown (m) and the 

buildup (M) is unknown. Obviously, in both cases the minimum number of teams 

hired is 1 and the maximum number of teams hired for the breakdown is the total 

number of incoming jobs (n) and for the buildup is the total number of outgoing jobs 

(N). As said earlier, the number of jobs n and N do not have to be equal, and the 

number of teams m and M do not have to be equal either. 

 

2.3 Model for the Problem. 

 

Crossdocking - JIT scheduling problem 

As the crossdocking - JIT scheduling problem described above can be seen as a 

machine scheduling problem, it is possible to formulate it with the following integer 

programming model taken from Li et al. (2004): 

 

Decision variables 

yik = 1 if incoming container i is processed by breakdown team k and 0 otherwise, for i 

= 1, …,  n, k = 1, …, m 

Yjk = 1 if outgoing container j is processed by buildup team k and 0 otherwise, for j = 

1, …,  N, k = 1, …, M 

Iijk = 1 if incoming containers i and j are both processed by breakdown team k and i 

precedes (not necessarily immediately) j, and 0 otherwise, for i, j = 1, …, n, i ≠ j, k = 

1, …, m 

Jijk = 1 if outgoing containers i and j are both processed by buildup team k and i 

precedes (not necessarily immediately) j, and 0 otherwise, for i, j = 1, …, N, i ≠ j, k = 

1, …, M 
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ci - completion time of incoming container i, i = 1, …, n 

Cj - completion time of outgoing container j, j = 1, …, N 

Variables yik and Yjk represent assignment variables, Iijk and Jijk represent sequencing 

variables, and ci and Cj represent scheduling variables. The values assigned to the 

assignment variables and to the scheduling variables represent a specific solution for 

the problem. 

 

State variables: their values depend on the current built schedule 

ei - earliness of incoming container i, i = 1, …, n 

Ej - earliness of outgoing container j, j = 1, …, N 

ti - tardiness of incoming container i, i = 1, …, n 

Tj - tardiness of outgoing container j, j = 1, …, N 

 

Objective function 

Minimize ( ) ( )∑∑
==

+++
N

j
jj

n

i
ii TEte

11

βαβα  

 

Constraints 

For job to team uniqueness - each job must be processed by exactly one team: 

(1) ∑
=

=
m

k
iky

1
1 , i = 1, …, n (breakdown area) 

(2) ∑
=

=
M

k
jkY

1
1, j = 1, …, N (buildup area) 

For job precedence relationships: 

(3) yik + yjk - (Iijk + Ijik) ≤ 1 (breakdown area) 
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(4) 2(Iijk + Ijik) - yik - yjk ≤ 0 (breakdown area) 

i, j = 1, …, n, i < j, k = 1, …, m 

These two previous groups of constraints come from a transformation of the following 

relationships: 

yik + yjk = 2  Iijk + Ijik = 1 (jobs i and j are processed by the same team) 

yik + yjk ≤ 1  Iijk + Ijik = 0 (jobs i and j are not processed by the same team) 

i, j = 1, …, n, i < j, k = 1, …, m 

A similar reasoning is used for the outgoing containers, obtaining: 

(5) Yik + Yjk - (Jijk + Jjik) ≤ 1 (buildup area) 

(6) 2(Jijk + Jjik) - Yik - Yjk ≤ 0 (buildup area) 

i, j = 1, …, N, i < j, k = 1, …, M 

For sufficient time between jobs on the same team - if job i precedes job j, there must 

be enough time between them for job j to be completed: 

(7) ci ≤ (cj - pj) + G(1 - Iijk), i, j = 1, …, n, i ≠ j, k = 1, …, m (breakdown area) 

(8) Ci ≤ (Cj - Pj) + G(1 - Jijk), i, j = 1, …, N, i ≠ j, k = 1, …, M (buildup area) 

where G is a nonzero real number such that G ≥ max{f(x) | x ∈ D} and f : D  R for 

some D, δ ∈ {0, 1}. Then, for each δ ∈ {0, 1} and x ∈ D, the following are equivalent: 

• δ = 0  f(x) ≤ 0 

• f(x) - G·δ ≤ 0 

This binary variables reduction lemma is better explained in Sierksma (2001). 

Since it is not easy to know the exact value that satisfies the conditions mentioned 

above, Li et al. (2004) recommend, for practical purposes, to use a big value for G. 

They used G = 10,000 for their runs. 

The rest of the groups of constraints that complete the model are: 

(9) ci - ri ≥ pi, i = 1, …, n (breakdown area) 
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(10) Cj - ci ≥ Pj, j = 1, …, N, i = first predecessor of outgoing container j, …, last 

predecessor of outgoing container j (buildup area) 

(11) ci - di = ti - ei, i = 1, …, n (breakdown area) 

(12) Cj - Dj = Tj - Ej, j = 1, …, N (buildup area) 

yik ∈ {0, 1}, i = 1, …, n, k = 1, …, m 

Yjk ∈ {0, 1}, j = 1, …, N, k = 1, …, M 

Iijk ∈ {0, 1}, i, j = 1, …, n, i ≠ j, k = 1, …, m 

Jijk ∈ {0, 1},  i, j = 1, …, N, i ≠ j, k = 1, …, M 

ci, ei, ti ∈ Z+ (nonnegative integer numbers), i = 1, …, n 

Cj, Ej, Tj ∈ Z+ (nonnegative integer numbers), j = 1, …, N 

The group of constraints (9) enforces release times in the breakdown area. The 

group of constraints (10) specifies that an outgoing container can start buildup only if 

all its source containers have been broken down. The groups of constraints (11) and 

(12) specify each job’s earliness and tardiness in the breakdown area and the 

buildup area, respectively. 

This model contains: 

• A total of variables (including state variables) equal to )(322 NnMNmn +++ , from 

which: 

o MNmn 22 +  are binary variables and )(3 Nn +  are integer variables 

o NnMNmn +++ 22  are decision variables and )(2 Nn +  are state variables 

• A total of constraints equal to ∑
=

+−+−++
N

j
jKMNNmnnNn

1

22 )(2)(223 , where 

nNKN
N

j
j ≤≤ ∑

=1
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• A total of non-empty cells in the technological coefficients matrix (see Appendix 1) 

equal to ∑
=

+−+−++++
N

j
jKMNNmnnNMnmNn

1

22 2)(7)(734  

The technological coefficients matrix is sparse because the total of non-empty cells is 

too small with respect to the total of cells in that matrix. This total of cells is computed 

multiplying the total of variables times the total of constraints. This situation can be 

noticed in Table 2.1 

Min case Max case Min case Max case Min case Max case Min case Max case
4 2 3 2 71 93 102 297 315 6603 7242 4.5% 4.3%
5 3 4 3 150 219 235 739 771 32850 35250 2.2% 2.2%
10 2 11 3 626 1083 1182 3718 3916 677958 739932 0.5% 0.5%
15 3 14 2 1154 2075 2271 7161 7553 2394550 2620734 0.3% 0.3%
20 8 18 7 5582 10478 10820 36730 37414 58488196 60397240 0.1% 0.1%
24 11 25 12 13983 26691 27266 93689 94839 373220253 381260478 0.0% 0.0%

Total of
constraints

Total of
non-empty cells

Percentage of
occupation

Total of
cellsTotal of

variablesn m N M

 

Table 2.1 Percentage of occupation of the technological coefficients matrix for different crossdocking - JIT 

scheduling problem instances 

 

It can be seen in Table 2.1 that the percentage of occupation of the technological 

coefficients matrix tends to zero as the problem instance grows. 

 

Optimal Workers Allocation for the crossdocking - JIT scheduling problem 

The integer programming model for the optimal workers allocation for the 

crossdocking - JIT scheduling problem presented below is very similar to the one 

shown for its sub-problem, the purely crossdocking - JIT scheduling problem. It is 

possible to formulate it using the machine scheduling notation as follows: 

 

Decision variables 

yik = 1 if incoming container i is processed by breakdown team k and 0 otherwise, for i 

= 1, …,  n, k = 1, …, n 
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Yjk = 1 if outgoing container j is processed by buildup team k and 0 otherwise, for j = 

1, …,  N, k = 1, …, N 

Iijk = 1 if incoming containers i and j are both processed by breakdown team k and i 

precedes (not necessarily immediately) j, and 0 otherwise, for i, j = 1, …, n, i ≠ j, k = 

1, …, n 

Jijk = 1 if outgoing containers i and j are both processed by buildup team k and i 

precedes (not necessarily immediately) j, and 0 otherwise, for i, j = 1, …, N, i ≠ j, k = 

1, …, N 

ci - completion time of incoming container i, i = 1, …, n 

Cj - completion time of outgoing container j, j = 1, …, N 

mk = 1 if breakdown team k is hired and 0 otherwise, for k = 1, …,  n 

Mk = 1 if buildup team k is hired and 0 otherwise, for k = 1, …,  N 

Variables yik and Yjk represent assignment variables, Iijk and Jijk represent sequencing 

variables, ci and Cj represent scheduling variables, and mk and Mk represent 

machines variables. The values assigned to the assignment variables, scheduling 

variables and machines variables represent a specific solution for the problem. 

 

State variables: their values depend on the current built schedule 

ei - earliness of incoming container i, i = 1, …, n 

Ej - earliness of outgoing container j, j = 1, …, N 

ti - tardiness of incoming container i, i = 1, …, n 

Tj - tardiness of outgoing container j, j = 1, …, N 

 

Objective function 



 24

Minimize ( ) ( ) ∑∑∑∑
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Constraints 

(1) ∑
=

=
n

k
iky

1

1, i = 1, …, n (breakdown area) 

(2) ∑
=

=
N

k
jkY

1
1, j = 1, …, N (buildup area) 

(3) yik + yjk - (Iijk + Ijik) ≤ 1 (breakdown area) 

(4) 2(Iijk + Ijik) - yik - yjk ≤ 0 (breakdown area) 

i, j = 1, …, n, i < j, k = 1, …, n 

(5) Yik + Yjk - (Jijk + Jjik) ≤ 1 (buildup area) 

(6) 2(Jijk + Jjik) - Yik - Yjk ≤ 0 (buildup area) 

i, j = 1, …, N, i < j, k = 1, …, N 

(7) ci ≤ (cj - pj) + G(1 - Iijk), i, j = 1, …, n, i ≠ j, k = 1, …, n (breakdown area) 

(8) Ci ≤ (Cj - Pj) + G(1 - Jijk), i, j = 1, …, N, i ≠ j, k = 1, …, N (buildup area) 

(9) ci - ri ≥ pi, i = 1, …, n (breakdown area) 

(10) Cj - ci ≥ Pj, j = 1, …, N, i = first predecessor of outgoing container j, …, last 

predecessor of outgoing container j (buildup area) 

(11) ci - di = ti - ei, i = 1, …, n (breakdown area) 

(12) Cj - Dj = Tj - Ej, j = 1, …, N (buildup area) 

(13) mk - yik ≥ 0, i = 1, …, n, k = 1, …, n (breakdown area) 

(14) Mk - Yjk ≥ 0, j = 1, …, N, k = 1, …, N (buildup area) 

yik ∈ {0, 1}, i = 1, …, n, k = 1, …, n 
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Yjk ∈ {0, 1}, j = 1, …, N, k = 1, …, N 

Iijk ∈ {0, 1}, i, j = 1, …, n, i ≠ j, k = 1, …, n 

Jijk ∈ {0, 1},  i, j = 1, …, N, i ≠ j, k = 1, …, N 

mk ∈ {0, 1}, k = 1, …, n 

Mk ∈ {0, 1}, k = 1, …, N 

ci, ei, ti ∈ Z+ (nonnegative integer numbers), i = 1, …, n 

Cj, Ej, Tj ∈ Z+ (nonnegative integer numbers), j = 1, …, N 

All groups of constraints were previously explained, except for the new groups of 

constraints (13) and (14) which specify that a job can only be assigned to a team of 

workers that has been hired. Again, for the group of constraints (7) and (8), it is 

recommended, for practical purposes, to use a big value for G since it is not easy to 

know the exact value for G that satisfies them. We used G = 100,000 for the 

experiments. This value for G is bigger than the one mentioned for the previous 

model because the model of this bigger problem considers the costs due to the 

number of teams of workers hired in each side of the crossdock. For the cost of a 

team hired we used a value of h = 1,000. 

This model contains: 

• A total of variables (including state variables) equal to )(433 NnNn +++ , from 

which: 

o NnNn +++ 33  are binary variables and )(3 Nn +  are integer variables 

o )(233 NnNn +++  are decision variables and )(2 Nn +  are state variables 

• A total of constraints equal to ∑
=

++++−+
N

j
jKNnNnNn

1

3322 )(2)(23 , where 

nNKN
N

j
j ≤≤ ∑

=1

 



 26

• A total of non-empty cells in the technological coefficients matrix equal to 

∑
=

++++−+
N

j
jKNnNnNn

1

3322 2)(7)(434  
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Chapter 3 

 

Heuristics and Metaheuristics 

 

One of the goals of this project is to create an algorithm able to solve the optimal 

workers allocation for the crossdocking - JIT scheduling problem described in 

Chapter 2. As mentioned before, this problem is NP-hard, therefore, the use of 

heuristics and metaheuristics to obtain a good feasible solution for big instances is 

an important option to consider. 

 

3.1 Heuristics. 

 

Given the difficulty to obtain an optimal solution by an exact method, i.e. using the 

simplex method [Murty (1983), Bazaraa et al. (1990), Dantzig and Thapa (2003)] or a 

branch and bound algorithm [Horowitz et al. (1998), Neapolitan and Naimipour 

(1998)], for a group of important combinatorial optimization problems when dealing 

with big instances, some series of algorithms that provided near optimal feasible 

solutions in a reasonable processing time started to appear in the last decades. 

These kinds of algorithms were denominated heuristics. In this context, “near optimal” 

and “reasonable” can be considered as subjective terms. 

The word "heuristic" derives from the Greek "heuriskein," which means "to discover", 

however, this meaning might be changed for the meaning “to search” because that is 

what heuristics actually do in practice. 

Polya (1957) was one of the first authors in mentioning the word heuristic. He 

claimed: “heuristics are methods of solution that aims at generality, at the study of 

procedures which are independent of the subject-matter and apply to all sorts of 
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problems”. Zanakis and Evans (1981) defined the heuristics as “simple procedures, 

often guided by common sense, that are meant to provide good but not necessarily 

optimal solutions to difficult problems, easily and quickly”. Another definition of 

heuristic is given by Adam and Ebert (1991) as a “set of methods and principles 

whose result is a satisfactory solution of the problem obtained by using simple criteria 

that allow correctly identifying good decisions”. Their lack of mathematical rigor and 

the easiness of their designs have made the heuristics gain acceptance by many 

practitioners who are interested in a useful tool to obtain a quick solution for complex 

problems in a way that they can understand. On the other hand, one of the major 

disadvantages of heuristics is that, generally, the quality of their solutions can not be 

known. Even though there are many advantages when using a heuristic, if an optimal 

algorithm can be used effectively to solve a problem, this last action must be done. 

Zanakis and Evans (1981) explained why and when the use of heuristics is desirable 

and advantageous. 

 

3.2 Metaheuristics. 

 

In their original definition, “metaheuristics are solution methods that orchestrate an 

interaction between local improvement procedures and higher level strategies to 

create a process capable of escaping from local optima and performing a robust 

search of a solution space”. Over time, these methods have also included any 

procedures that employ strategies for overcoming the trap of local optimality in 

complex solution spaces, specially those procedures that use one or more 

neighborhood structures as a mean of defining admissible moves to transition from 

one solution to another, or to build or destroy solutions in constructive and 

destructive processes [Glover and Kochenberger (2003)]. Gendreau (2002) defined a 

metaheuristic as a “general strategy for guiding and controlling inner heuristics”. 

Metaheuristics provide general frames that allow the creation of new hybrids by 

combining different concepts derived from classic heuristics, artificial intelligence, 
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biological evolution, neural systems, and statistical mechanics, among others. 

A number of tools and mechanisms that have emerged from the creation of 

metaheuristic methods have proved to be so effective that metaheuristics have lately 

become the preferred method used for solving many types of complex problems, 

especially combinatorial problems [Glover and Kochenberger (2003)]. 

Metaheuristics can be classified according to their use of memory: metaheuristics 

with memory and metaheuristics without memory. Unlike the metaheuristics without 

memory, the metaheuristics with memory contain structures that retain information 

about decisions previously taken, allowing that way a kind of learning. Commonly, 

Tabu Search and Scatter Search are classified as metaheuristics with memory while 

Simulated Annealing and GRASP are considered metaheuristics without memory [De 

Alba (2004)]. Of course, some metaheuristics that usually do not make use of 

memory to solve problems can be adapted to make use of it for a specific purpose. 

Heuristics and metaheuristics are important approaches used in the operations 

research field and, in particular, in the combinatorial optimization field, which 

includes most of the interesting scheduling problems. Over the last years, these 

approaches have been used to solve complex problems in several applications, 

including NP-hard scheduling applications [Crainic and Laporte (1998)]. 

Very general methods having a wide range of applicability are typically weak with 

respect to their performance. Genetic Algorithms and Neural Networks tend to belong 

to this category. Problem specific methods achieve a highly efficient performance but 

with little use in other problem domains. Tabu Search and Simulated Annealing can 

be counted as examples of this category. Regardless of the category, heuristics and 

metaheuristics can be viewed as tools for searching a space of feasible alternatives 

in order to find a good solution within reasonable time limitations, but without any 

guarantee of optimality [Blazewicz et al. (2001)]. 

An excellent description and classification of heuristics and metaheuristics are given 

in Díaz et al. (1996). Glover and Kochenberger (2003) present research done by 

several renowned authors in the field of the metaheuristics. 
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To solve the problem described in Chapter 2 an approach based on a combination of 

two metaheuristics, GRASP and Tabu Search, is proposed. Each one of these 

metaheuristics is explained next. 

3.2.1 GRASP. 

 

Greedy Randomized Adaptive Search Procedure (GRASP) was developed by Feo 

and Resende (1989) to study a complex set covering problem. In its basic version, 

GRASP is a multi-start or iterative method that consists of two phases at each 

iteration: a constructive phase whose result is a feasible and good but not 

necessarily optimal solution, and a local search procedure, during which, 

neighborhoods of the solution are examined until a local optimum is attained. The 

construction phase is based on the idea that a variety of good solutions can be 

generated by an “intelligent randomization” of the selection step of a greedy 

heuristic. These solutions are then passed to an exchange procedure that searches 

for local improvements. The iterations proceed, keeping the best solution found, until 

a stopping criterion is reached [Laguna and González-Velarde (1991)]. Then, 

GRASP has two main parameters: one related to the stopping criterion and another 

related to the amount of “randomization” allowed in the selection step of a greedy 

heuristic. This last parameter is often called α. The case α = 0 corresponds to a pure 

greedy algorithm while α = 1 is equivalent to a completely random algorithm. 

Figure 3.1 shows a basic GRASP pseudo-code taken from Resende and Ribeiro 

(2001). For this particular case, the stopping criterion of the procedure is the 

maximum number of iterations while the parameter α is not mentioned. 

procedure GRASP( Max_Iterations  )
Best_solution   ∞ or -∞; // minimization or maximization problem
for i  = 1, …, Max_Iterations  do

Solution   Greedy_Randomized_Construction();
Solution   Local_Search( Solution  );
Update_Solution( Solution , Best_Solution  );

end for;
return Best_solution;

end GRASP.  



 30

Figure 3.1 Pseudo-code for a basic GRASP procedure 

 

Other pseudo-codes for a basic GRASP are shown in Díaz et al. (1996) and in 

Resende and González-Velarde (2003). 

Unlike the rest of the metaheuristics, which operate over previously obtained 

solutions, GRASP is a constructive method that focus on building high-quality 

solutions for further processing in order to get better results. At each step of the 

construction phase, a substructure is added to a partial solution, initially empty, until 

a complete solution is found. 

Each one of the words that form the acronym GRASP characterizes one of the 

components of this metaheuristic. At each iteration of the construction phase, 

GRASP maintains a set of candidate elements that can be feasibly incorporated to 

the partial solution under construction. All candidate elements are evaluated 

according to a greedy function in order to select the next element to be added to the 

construction. This greedy function usually represents the marginal increase in the 

cost function from adding the element to the partial solution. The evaluation of the 

elements is used to create a restricted candidate list (RCL) which consists of the best 

elements, i.e. those whose incorporation to the current partial solution results in the 

smallest incremental costs (for a minimization problem) -this is the greedy aspect of 

the method-. The element to be added into the partial solution is randomly selected 

from those in the RCL -this is the random aspect of the metaheuristic-. Once the 

selected element is added to the partial solution, the RCL is updated and the 

incremental costs are recalculated -this is the adaptive aspect of the metaheuristic-. 

The previous high-level description of the components of the GRASP technique was 

taken from Resende and Ribeiro (2001) and from Laguna and Martí (2003). 

The immediate GRASP strategy predecessor is the semi-greedy heuristic proposed 

by Hart and Shogan (1987), which is also a multi-start approach based on greedy 

randomized constructions, but without local search. An older background of the 

GRASP technique can be found in Lin and Kernighan (1973). 
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The solutions generated by a greedy randomized construction are not necessarily 

optimal, even with respect to simple neighborhoods. The local search phase usually 

improves the constructed solution. A local search algorithm works in an iterative 

fashion by successively replacing the current solution by a better solution found in 

the neighborhood of the current solution. This procedure can be done during the 

construction phase or at the end of it. Local search is very important for the GRASP 

technique because it is useful when searching locally optimal solutions in promising 

regions of the solutions space. 

GRASP is based on the premise that good and diverse initial solutions play an 

important role in the success of local search methods. The effectiveness of a local 

search procedure depends on several aspects, such as the neighborhood structure, 

the neighborhood search techniques, the speed of evaluation of the objective 

function of neighbor solutions, and the initial solution. The construction phase plays a 

critical role with respect to providing high-quality starting solutions for the local 

search. Simple neighborhoods structures are usually used. The neighborhood search 

may be implemented using either a best-improving or a first-improving strategy. In 

the case of the best-improving strategy, all neighbors are examined and the current 

solution is replaced by the best neighbor. In the case of the first-improving strategy, 

the current solution moves to the first neighbor whose cost function value is strictly 

less than that of the current solution (for a minimization problem). 

The first phase (construction) of the GRASP metaheuristic constitutes the core of this 

technique. The way in which the second phase (local search) of this procedure is 

done varies from methods that explore simple neighborhoods through more 

sophisticated procedures. Very often, a local search ends in a locally optimal 

solution. To escape from these local optima, several strategies have been 

suggested, i.e. the use of other metaheuristics as an improvement procedure. 

Actually, GRASP hybridizations with other metaheuristics that use GRASP results as 

initial solutions are common. Actually, for the local improvement phase of the work 

under study in this thesis, the Tabu Search algorithm with the best-improving strategy 

is used. 
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3.2.2 Tabu Search. 

 

According to Glover and Laguna (1997), “Tabu Search (TS) is a metaheuristic 

procedure that guides a local heuristic search algorithm to explore the solution space 

beyond local optimality”. The local procedure is a search that uses an operation 

called “move” to define the neighborhood of any given solution. 

TS is based on the premise that problem solving, in order to qualify as intelligent, 

must incorporate “adaptive memory” and “responsive exploration”. The adaptive 

memory feature of TS allows the implementation of procedures that are capable of 

searching the solution space economically and effectively. Since local choices are 

guided by information collected during the search, TS contrasts with memory-less 

designs that heavily rely on random processes that implement a form of sampling, i.e. 

GRASP. Memory-based strategies are then the hallmark of TS approaches. Actually, 

TS is perhaps the metaheuristic procedure that employs memory in the most 

strategic and direct way. 

On the other hand, the emphasis on responsive exploration in TS derives from the 

supposition that a bad strategic choice can yield more information than a good 

random choice. In a system that uses memory, a bad choice based on strategy can 

provide useful clues about how the strategy may be profitably changed. 

TS is concerned with finding new and more effective ways of taking advantages of 

the mechanisms associated with both elements: adaptive memory and responsive 

exploration. These two elements of the TS procedure have several important 

characteristics which are summarized in Table 4.2 of Díaz et al. (1996). This 

previous high-level description of TS was taken from Glover and Laguna (1997) and 

from Laguna and Martí (2003). 

TS was formally proposed by Glover (1986), but its basic form is founded on some 

previous ideas proposed by himself [Glover (1977)], including elements like short 
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term memory to prevent the reversal of recent moves, and longer term frequency 

memory to reinforce attractive components. The basic principle of TS is to pursue 

local search whenever it encounters a local optimum by allowing non-improving 

moves. Cycling back to previously visited solutions is prevented by the use of 

“memories”, called “tabu lists”, which record the recent history of the search. 

Gendreau (2002) considered TS as an extension of classical local search 

procedures. In fact, he mentioned that TS can be seen as simply the combination of 

local search with short-term memories. According to him, the two first basic elements 

of any TS heuristic are the definition of its “search space” and its “neighborhood 

structure”. The search space of a TS heuristic is simply the space of all possible 

solutions that can be considered (visited) during the search. The neighborhood of the 

current solution S, denoted by N(S), is a subset of the search space defined by the 

solutions obtained by applying a single local transformation to S. In general, for any 

specific problem, there are many more possible (an even attractive) neighborhood 

structures than search space definitions. This follows from the fact that there may be 

several feasible neighborhood structures for a given definition of the search space. 

Choosing a search space and a neighborhood structure is by far the most critical 

step in the design of any TS heuristic. 

Figure 3.2 shows basic TS pseudo-code taken from Pinedo (2002). In this particular 

case, the pseudo-code is applied to a scheduling problem and the stopping criterion 

of the procedure is the maximum number of iterations allowed. 
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procedure Tabu-Search( S 1 , Max_Iterations  )
Step 1:

Set k  = 1
Set S 0  = S 1

Step 2:
Select a candidate schedule S c  from the neighborhood of S k

If the move S k   S c  is prohibited by a mutation on the tabu-list then
Set S k+1  = S k

Go to Step 3
If the move S k   S c  is not prohibited by any mutation on the tabu-list then

Set S k+1  = S c

Enter reverse mutation at the top of the tabu-list
Push all other entries in the tabu-list one position down
Delete the entry at the bottom of the tabu-list

If Value(S c )  < Value(S 0 )  then
Set S 0  = S c

Step 3:
Increment k  by 1
If k  = Max_Iterations  then

Stop
Otherwise

Go to Step 2  

Figure 3.2 Pseudo-code for a basic Tabu Search procedure 

 

It is interesting to note that in the same year that TS appeared, a similar approach 

named steepest ascent / mildest descent was proposed by Hansen (1986). However, 

in the traditional steepest ascent / mildest descent optimization method, the search 

stops when the value of the objective function evaluated in a solution S is not better 

that the obtained value in the previous iteration, this is, when a local optimum has 

been found. To avoid this, TS keeps exploring solutions, even non-improving ones. 

GRASP and TS metaheuristics are also mentioned in the next chapters, which 

explain the approach used to solve the problem under study. 
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Chapter 4 

 

Solution Approach for the Crossdocking - Just in 

Time Scheduling Problem 

 

This chapter deals with the solution approach for the problem described in Chapter 2 

when the number of teams of workers in each side of the crossdock is fixed and 

known (m and M). This is called the crossdocking - JIT scheduling problem and it 

represents a sub-problem (or a particular case) of the problem under study in this 

thesis work. This sub-problem is, as mentioned before, NP-hard. 

 

4.1 Solution Form. 

 

To solve this problem it is necessary, for the inbound area, to have each one of the n 

incoming jobs assigned in a position in one of the m breakdown machines and a 

completion time. Two notes can be cited with regard to this statement: 

• The use of a machine has no fixed cost; then, the model will make use of all of the 

available machines because that way it is easier to accommodate the jobs in 

order to obtain better results. It is convenient to remember that n > m and N > M 

• Once the completion time for a job is obtained, its earliness and tardiness 

penalties are directly obtained 

Using a notation similar to the one used in Laguna and González-Velarde (1991), the 

incoming schedule, SI, has the form: 

SI = {πI, cI} 

where: 
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• πI = {πI1, πI2, …, πIm} is the assignment of the n incoming jobs to the m breakdown 

machines 

• cI is the set of completion times for the n incoming jobs 

where πIk represents the sequence in which the nk incoming jobs assigned to 

machine k will be processed. This πIk sequence has the following form: 

πIk = {πIk(1), πIk(2), …, πIk(nk)} 

where πIk(i) is the index of the incoming job in position i on machine k. 

A similar reasoning and representation is used for the outbound area and its 

outgoing schedule, SO. 

As mentioned in Chapter 1, the development of a computer program that solves the 

integer programming model developed by Li et al. (2004) and the development of a 

metaheuristic algorithm to find good solutions for different problem instances are two 

important tasks to consider in the project. These tasks are mentioned in the following 

two sections of this chapter. 

 

4.2 Exact Method of Solution. 

 

Our solution of the integer programming model for the crossdocking - JIT scheduling 

problem developed by Li et al. (2004) is obtained through a computer program that 

makes use of the ILOG CPLEX 9.1 library. The results obtained by this program are 

compared to the results obtained by their program (which also uses the ILOG CPLEX 

library) for the 16 problem instances presented in their work. Obviously, the objective 

values shown by both versions must be the same when both algorithms reach the 

optimal value. The code of the computer program is easily done once the integer 

model is obtained. It is necessary just to follow the coding conventions mentioned in 

the ILOG CPLEX 9.1 User’s Manual. 

ILOG CPLEX search for solutions in nodes trees created according to the model 
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defined. So, different orders in the definitions of variables and/or constraints might 

create different search trees (and very likely different solutions if the computer runs 

out of memory before reaching the optimal solution). 

Figure 4.1 shows the output given by the exact method algorithm for the following 

small problem instance. This problem instance creates an MIP with 71 variables and 

99 constraints which can be seen in Appendix 2. 

n  = 4 r p d P D S 1 2 3
m  = 2 1 5 6 14 1 2 22 1 0 1 1
N  = 3 2 6 12 19 2 5 28 2 1 1 1
M  = 2 3 8 6 16 3 19 39 3 1 0 1
α  = 1 4 7 1 11 4 1 1 0
ß  = 100 K 1 =3 K 2 =3 K 3 =3
G  = 10000  

Table 4.1 Input data for a crossdocking - JIT scheduling problem instance with 4 incoming jobs and 2 

breakdown machines, and 3 outgoing jobs and 2 buildup machines 
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Figure 4.1: Solution for a crossdocking - JIT scheduling problem instance: a) Assignment; b) Scheduling 

For the particular crossdocking - JIT scheduling problem instance shown in Table 

4.1, Figure 4.1 presents an optimal solution with an objective value of 206 (t2 = 1, e3 

= 3, e4 = 3). 

The computer program that solves the crossdocking - JIT scheduling problem using 

the exact model is shown in Appendix 3 (only in electronic format in the software and 

data CD). 

 

4.3 Alternative Method of Solution. 

 

The problem under study is NP-hard. The experiments show that the integer 

programming solver of ILOG CPLEX 9.1 takes a long time to reach an optimal 

solution (when possible) for large problem instances using the formulation of Chapter 

2. To obtain high quality faster solutions for the problem an approach based on a 

combination of two metaheuristics: Reactive GRASP (RG), and Tabu Search (TS), is 

proposed. The whole algorithm is abbreviated as RGTS. The RG procedure is used 

to construct initial feasible solutions which, in turn, are used by the TS procedure in 

order to try to improve those solutions. RG algorithm is embedded in RGTS, so 

RGTS will offer equal or better objective values than just RG. 

This combination of procedures: GRASP and Tabu Search, was used to solve a 
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similar problem in Laguna and González-Velarde (1991) with good results and is 

referred by the authors as GTS. 

 

4.3.1 Solutions Construction. 

 

As mentioned before, a Reactive GRASP (RG) metaheuristic algorithm is used to 

construct initial feasible solutions for the crossdocking - JIT scheduling problem. The 

following figure describes this RG algorithm: 

1 for each RG iteration
2 for each section of the crossdock
3 while there are jobs to be scheduled in the section
4 select the greedy function to be used
5 adapt the restricted candidate list (RCL) of admissible jobs according to the selected greedy function
6 select job to be scheduled
7 adapt the RCL of machines according to the time horizon
8 select machine to host the selected job
9 insert the selected job in the selected machine

10 update the schedule
11 mark the job as scheduled
12 if the schedule is good enough and different enough
13 include the schedule in the list of good schedules  

Figure 4.2: Pseudo-code for the RG algorithm 

 

For the RG algorithm shown above, there are several notes to comment: 

For line 1, we defined 3000 iterations. 

For line 4, we defined 4 greedy functions (gf) that can be used: 

• gf1(j) = ideal starting timej + potential slack timej = (due datej - processing timej) + 

(due datej - processing timej) - release timej 

• gf2(j) = ideal starting timej = due datej - processing timej 

• gf3(j) = release timej 

• gf4(j) = due datej 

These greedy functions are used in both sides of the crossdock and as each job j can 
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only start after its release time, the release time for outgoing containers is defined by 

their source containers as described in Chapter 2. 

The values for the selected greedy function at any given iteration are obtained for 

each non scheduled job j at that iteration. To select the greedy function, a Reactive 

strategy is used. In GRASP context, using a Reactive strategy means that a 

parameter value is not fixed, but instead is chosen by the algorithm from a discrete 

set of possible values. The selection of this parameter value is guided by self-

constructed probabilities obtained along previous iterations of the algorithm. This 

Reactive strategy of GRASP changes the probabilities for the parameter values of 

being selected in order to favor those values that historically have produced good 

solutions. In our RG algorithm, for the first 100 iterations, we simply use a uniform 

distribution to choose the greedy function. In other words, the 4 different greedy 

functions mentioned above are equally likely to be chosen for the first 100 iterations. 

For the rest of the iterations, we use the Reactive strategy previously mentioned. The 

Reactive strategy in the context of GRASP was proposed by Prais and Ribeiro 

(2000). 

The Reactive strategy has been widely used to obtain the value of the usually single 

parameter α of GRASP but it had not been used to select the greedy function to be 

applied in an iteration of the algorithm. Usually, a single greedy function is used for 

all of the iterations of the GRASP algorithm. However, the experiments showed that 

when we used a single greedy function in our algorithm, a particular greedy function 

showed better results than the others for some problem instances (see Table 4.6). 

On the other hand, the Reactive strategy that we applied showed good results for all 

of the problem instances. So, we decided to apply that strategy in our algorithm to 

the different greedy functions mentioned above in order to obtain more robustness. In 

other words, using the Reactive strategy of GRASP, the algorithm is not restricted to 

one problem instance. This is an important contribution of this work to the GRASP 

methodology and it has a relationship with the hyper-heuristics field where the 

algorithms choose a heuristic among a set of different heuristics, depending on the 

properties of the problem, in order to solve an optimization problem. Most of the time, 
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each heuristic is selected according to its performance which can be increased or 

decreased depending on a learning mechanism. This places hyper-heuristics in a 

higher level of abstraction than most heuristics and allows the user to operate 

efficiently and effectively within a more general framework [Burke et al. (2003)]. In 

our case, instead of selecting a heuristic to solve the problem, we select a greedy 

function per iteration of the GRASP algorithm to do it. By doing this, we avoid the 

time consuming fine-tuning task, which usually performs well just for some problem 

instances. 

For line 5, we defined that a job j belongs to the RCL of jobs if: 

gfh(j) ≤ minValueJ + αjobs * (maxValueJ - minValueJ), for each non scheduled job j 

where minValueJ and maxValueJ are the minimum and maximum values of all of the 

gfh(j) values that correspond to non scheduled jobs, respectively, and αjobs (0 ≤ αjobs ≤ 

1) is a parameter that controls the amount of randomization allowed for jobs 

selection. The parameter value for αjobs is selected using the Reactive strategy from 

the following discrete set of 7 possible values: 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. 

For line 6, the job is simply randomly selected from the RCL of jobs. 

For line 7, we defined that a machine k belongs to the RCL of machines if: 

machine horizonk ≤ minValueM + αmachines * (maxValueM - minValueM), for each 

machine k 

where minValueM and maxValueM are the minimum and maximum values of all of 

the machine horizonk values, respectively, and αmachines (0 ≤ αmachines ≤ 1) is a 

parameter that controls the amount of randomization allowed for machines selection. 

The machine horizonk value is defined as the completion time of the job assigned in 

the last position of machine k. If machine k has no jobs assigned to it then the 

machine horizonk value is equal to 0. Again, the parameter value for αmachines is 

selected using the Reactive strategy from the following discrete set of 7 possible 

values: 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30. 

For line 8, the machine is simply randomly selected from the RCL of machines. 
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For line 9, the algorithm applies insertion of jobs in a way similar to the one done in 

Mazzini and Armentano (2001), but adapting that procedure to the parallel machines 

problem’s structure of this work because they just consider single machine 

scheduling. When a job j is going to be inserted in a machine schedule, the 

procedure tries to put the job in a place where the cost is minimal. If there is no 

overlapping between the job j and any other already scheduled job in the machine, 

the procedure starts the insertion of another job. Otherwise, it is necessary to 

eliminate the overlapping between jobs in such a way the cost increase be minimal. 

The algorithm considers four possible moves in order to eliminate the overlapping 

between the inserted job and the already scheduled jobs. These moves are deeply 

explained in Mazzini and Armentano (2001). 

For line 10, the algorithm updates the idle times over a partial feasible schedule in 

order to decrease its cost. This update procedure consists of two phases: in the first, 

the jobs are shifted to the left, and in the second, the jobs are shifted to the right. 

These phases are also deeply explained in Mazzini and Armentano (2001). Again, 

we adapted their procedure to our parallel machines problem’s structure. An 

important characteristic of this update procedure is that idle times are inserted during 

the construction stage. This allows offering a better performance than most of the 

approaches found in the literature which insert the idle times over complete 

schedules. 

In the same line 10, our implementation includes an ejection chain process in the 

schedule (after the insertion of idle times) if it is convenient and possible, i.e., a 

movement to the left of the job[j] in a machine (job in position j of the machine) might 

move to the left the job[j-1] in the same machine and this last movement might cause 

the job[j-2] to be moved to the left in the same machine, and so on. Sometimes, a job 

might be moved during the process to some other machine (when working with more 

than one machine in the section of the crossdock that corresponds to that job) if 

necessary. This ejection chain process is considered only when working with the 

right section of the crossdock due to the flexibility in the outgoing releases times 

(Rj’s) and it is triggered when in any iteration of the algorithm the insertion of a job 
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causes that same job or another job to be tardy. This process might affect just the 

right section of the crossdock, or both (when the movement to the left of a job in the 

right section of the crossdock affects its predecessors or source containers). An 

example of the chain ejection process can be seen in Figure 4.3. 
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Figure 4.3: An example of the ejection chain process: a) Before the movement of the job[j]; b) After the 

movement of the job[j] 

 

It can be seen in Figure 4.3a that the movement to the left of the job[j] in the outbound 

area affects its predecessors 1 and 2 (job[3] and job[5], respectively) because their 

completion times are equal to Rj, but it does not affect its predecessor 3 (job[6]) 

because its completion time is lower than Rj. It can be seen in Figure 4.3b that, in the 

inbound area, the movement to the left of the job[j]’s predecessor 1 does not affect 

the job at its left (job[2]), but the movement to the left of the job[j]’s predecessor 2 does 

affect the job at its left (job[4]) which is moved to another machine. The Rj decreases 

by one unit. 

In the context of the problem, convenient means to have a schedule with a lower 

cost. We decided to apply this ejection chain process due to the Proximate Optimality 

Principle (POP) which stipulates that “good solutions at one level are likely to be 

found close to good solutions at an adjacent level” [Glover and Laguna (1997), 

Fleurent and Glover (1999)]. In our case, level refers to a stage of the construction 
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phase, and we have defined mechanisms for moving across these levels so that the 

principle applies. 

For lines 12 and 13, we decided to keep a set with the 5 best diverse schedules 

called elite solutions or set S. The set S is used to guide the procedure as follows: 

when a schedule s with cost(s) < cost(worst(S)) is generated, it is a candidate to be 

added to S replacing worst(S) if s is different enough from all of the schedules in S. 

In our case, worst(S) is the schedule in the fifth position in the ordered by objective 

value set S. To measure how different is s from a schedules s’ ∈ S, we count the 

number of identical positions of the jobs in the machines for both schedules s and s’. 

If the number of identical positions is greater than 50% of the number of jobs in the 

complete schedule, the solution s is discarded unless an aspiration criteria is 

satisfied, i.e. cost(s) < cost(best(S)). A deeper explanation about the Diversification 

strategy can be found in Fleurent and Glover (1999). Appendix 4 shows the set S, 

output of the RG algorithm for a crossdocking - JIT scheduling problem instance with 

20 incoming jobs and 3 breakdown machines, and 21 outgoing jobs and 3 buildup 

machines. The input data for this problem instance is also shown in Appendix 4. It 

can be seen in the same appendix that the elite solutions in the set S are shown in 

ascending order by objective value. Sometimes, some different solutions have the 

same objective value. 

Figure 4.4 shows a graphical sequence of the output given by an iteration of the RG 

algorithm just for the left section of the crossdock for the following problem instance: 

α  = 1 i r i p i d i
β  = 100 1 21 2 24
n  = 10 2 14 2 16
m  = 2 3 6 5 13

4 3 2 6
5 8 5 16
6 1 2 3
7 28 6 34
8 9 6 16
9 4 3 10

10 0 3 4  

Table 4.2 Input parameters {ri, pi, di} for a crossdocking - JIT scheduling problem instance with 10 incoming jobs 

and 2 breakdown machines 
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It can be seen in Figure 4.4 that at each step of an iteration of the RG algorithm a job 

is inserted into the schedule (GRASP is a constructive method). All schedules (partial 

or complete) are feasible. After that insertion, the already mentioned update 

procedure is done. 
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Figure 4.4: Graphical sequence of the output of an iteration of the RG algorithm for the inbound area of the 

crossdock 
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4.3.2 Solutions Improvement. 

 

The solutions generated by the RG algorithm and kept in the set S previously 

discussed are used as starting points for the TS algorithm. In our implementation, we 

make use of a traditional “fixed” size short-term memory in the following context: the 

memory size is related to the size of the problem instance and it is calculated as the 

number of jobs divided by the number of machines in each section of the crossdock. 

So, we have one memory size per section: ⎡ ⎤mnsizerymemo inbound =  and 

⎡ ⎤MNsizerymemo outbound = . Once the memory size per section is computed it remains 

the same for all of the 100 iterations that we decided for the TS algorithm. 

Given an initial solution, TS tries to improve it by making a succession of moves. A 

move can improve, deteriorate or leave the solution with the same objective value. Of 

course, even if the solution remains with the same objective value, the schedule 

changes from iteration to iteration. Regardless of the move applied, the solution 

remains feasible. 

The moves considered in our algorithm are: 

• InsertLeftSameMachine(πk(i)) which consists of transferring the job currently in 

position i of machine k one position immediately before it in the same machine. 

Just after the move is made, the completion time of job i (c[i]) in machine k is equal 

to the starting time of job i-1 (s[i-1]) in the same machine k. This move might cause 

infeasibility due to two reasons: the release time constraint of job i (r[i]) is broken, 

or there is overlapping between jobs i and i-2. In any case, the infeasibility is 

eliminated by shifting to the right the necessary jobs in machine k as many unit 

times as needed 

• InsertRightSameMachine(πk(i)) which consists of transferring the job currently in 

position i of machine k one position immediately after it in the same machine. Just 

after the move is made, the starting time of job i (s[i]) in machine k is equal to the 

completion time of job i+1 (c[i+1]) in the same machine k. This move might cause 
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infeasibility due to overlapping between jobs i and i+2. This infeasibility is 

eliminated by shifting to the right the necessary jobs in machine k as many unit 

times as needed 

• InsertDifferentMachine(πk(i), πq) which consists of transferring the job currently in 

position i of machine k into machine q. This move implies removing job i from 

machine k and putting it into machine q according to the insertion procedure 

mentioned in line 9 of Figure 4.2. This move does not cause infeasibility 

• ExchangeSameMachine(πk(i)) which consists of allowing jobs in positions i and i-1 

of machine k to exchange positions (also known as Adjacent Pair-wise 

Interchange or API). Just after the move is made, the starting time of job i (s[i]) is 

equal to the starting time of job i-1 (s[i-1]) and the completion time of job i-1 (c[i-1]) is 

equal to the completion time of job i (c[i]). This move causes infeasibility if the 

release time constraint of job i (r[i]) is broken. This infeasibility is eliminated by 

shifting to the right the necessary jobs in machine k as many unit times as 

needed. We do not consider an exchange between jobs in positions i and i+1 in 

the same machine because the exchange of these two jobs is analyzed when i is 

increased to i+1 

• ExchangeDifferentMachine(πk(i), πq(j)) which consists of allowing jobs in position i 

and j of machines k and q, respectively, to exchange machines assignments. This 

move implies removing job i from machine k and putting it into machine q and 

removing job j from machine q and putting it into machine k simultaneously 

according to the insertion procedure mentioned in line 9 of Figure 4.2. This move 

does not cause infeasibility. A threshold value for each section of the crossdock 

called maxDistanceinbound and maxDistanceoutbound are used for this movement to 

detect and eliminate from consideration unreasonable moves. These threshold 

values are calculated as the 25% of the difference between the maximum 

completion time and the minimum completion time of all of the jobs in the 

corresponding section of the crossdock. If the absolute value of the completion 
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time of πk(i) minus the completion time of πq(j) is greater than the corresponding 

threshold value, the move is not considered 

Figure 4.5 shows the 5 movements considered. 
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Figure 4.5: Movements of the algorithm: a) InsertLeftSameMachine(πk(i)); b) InsertRightSameMachine(πk(i)); c) 

InsertDifferentMachine(πk(i), πq); d) ExchangeSameMachine(πk(i)); e) ExchangeDifferentMachine(πk(i), πq(j)) 

 

All moves make use of the update procedure mentioned in line 10 of Figure 4.2 after 

the move is made to try to improve the solution. If the move involves two machines, 

the update procedure is applied over both machines. 

The moves are applied over all jobs in each section of the crossdock when possible, 

i.e. the move InsertLeftSameMachine(πk(i)) cannot be applied to the first job in a 

machine and the move InsertRightSameMachine(πk(i)) cannot be applied to the last 
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job in a machine. This creates a neighborhood for each one of the two sections of the 

crossdock. A list of moves and their associated move values is made at every step of 

the procedure for these neighborhoods. We simply select the move with the best 

objective value of both neighborhoods to be applied to the current schedule. In case 

of ties, we select the move randomly. Obviously, the selected move is admissible 

according to the tabu restrictions being imposed. 

The following figure describes the TS algorithm we use to solve the problem: 

1 for each RG solution s 0

2 bestSolution = s  = s 0

3 bestValue = F(s ) = F(s 0 )
4 for each TS iteration
5 for each section of the crossdock
6 for each job in the section
7 for each neighbor of the job
8 save the move and its objective value
9 select the best move that is not tabu

10 apply the move to s
11 update the schedule s
12 update the corresponding tabu structure of the selected move
13 if F(s ) < F(s 0 )
14 bestSolution = s
15 bestValue = F(s )  

Figure 4.6: Pseudo-code for the TS algorithm 

 

Appendix 5 shows the set S, output of the RGTS algorithm for the same problem 

instance shown in Appendix 4. It can be seen in Appendix 5 that sometimes the best 

RGTS solution (Solution 2 in Appendix 5) does not come from the best RG solution 

(Solution 1 in Appendix 4). 

Figure 4.7 shows the output given by the RGTS algorithm for the following problem 

instance: 
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α  = 1 i r i p i d i j preds j R j P j D j
β  = 100 1 21 2 24 1 6, 7 34 2 58
n  = 10 2 14 2 16 2 1, 6, 9 24 3 54
m  = 2 3 6 5 13 3 3, 6, 9 11 3 26
N  = 11 4 3 2 6 4 3, 7 34 2 46
M  = 3 5 8 5 16 5 3 11 1 15

6 1 2 3 6 3, 6, 7, 8 34 4 68
7 28 6 34 7 5, 6, 8 16 3 29
8 9 6 16 8 1, 5, 6, 7, 10 34 5 77
9 4 3 10 9 3, 9 11 2 32

10 0 3 4 10 1, 5, 7, 8, 10 34 5 68
11 1, 8 24 2 27  

Table 4.3 Input data for a crossdocking - JIT scheduling problem instance with 10 incoming jobs and 2 

breakdown machines, and 11 outgoing jobs and 3 buildup machines 

a)

i s i c i e i t i
Assigned
machine j S i C i E i T i

Assigned
machine

1 22 24 0 0 2 1 56 58 0 0 2
2 15 17 0 1 1 2 51 54 0 0 1
3 6 11 2 0 2 3 23 26 0 0 1
4 4 6 0 0 1 4 44 46 0 0 3
5 11 16 0 0 2 5 14 15 0 0 3
6 1 3 0 0 1 6 64 68 0 0 1
7 28 34 0 0 1 7 26 29 0 0 2
8 9 15 1 0 1 8 72 77 0 0 2
9 6 9 1 0 1 9 30 32 0 0 1
10 1 4 0 0 2 10 63 68 0 0 3

11 25 27 0 0 3  

b)
Inbound area

i (si, ci, ei, ti)
Machine 1:   6 (1, 3, 0, 0) 4 (4,   6, 0, 0) 9 (  6,   9, 1, 0) 8 (  9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28, 34, 0, 0)
Machine 2: 10 (1, 4, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)

Outbound area
j (Sj, Cj, Ej, Tj)

Machine 1: 3 (23, 26, 0, 0)   9 (30, 32, 0, 0) 2 (51, 54, 0, 0) 6 (64, 68, 0, 0)
Machine 2: 7 (26, 29, 0, 0)   1 (56, 58, 0, 0) 8 (72, 77, 0, 0)
Machine 3: 5 (14, 15, 0, 0) 11 (25, 27, 0, 0) 4 (44, 46, 0, 0) 10 (63, 68, 0, 0)  

c)
Inbound area

Horizon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Machine 1
Machine 2

JIT
Earliness
Tardiness

510 3
79 8 246

1
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Figure 4.7: RGTS solution: a) Tabular form; b) Machine-Job form; c) Graphical form (only inbound area) 

 

The outputs si and Sj in Figure 4.7 are not variables of the model described in 

Chapter 2; however, they are very useful when coding the RGTS algorithm and they 

represent the starting times for incoming jobs and outgoing jobs, respectively. 

For the particular crossdocking - JIT scheduling problem instance shown in Table 

4.3, Figure 4.7 presents an optimal solution with an objective value of 104 (t2 = 1, e3 

= 2, e8 = 1, e9 = 1). However, as mentioned in Chapter 3, heuristics and 

metaheuristics can not guarantee optimality. 

The computer program that solves the crossdocking - JIT scheduling problem using 

the RGTS algorithm is shown in Appendix 6 (only in electronic format in the software 

and data CD). 

 

4.4 Computational Experiments. 

 

The test data that we used for the experiments for the problem are the same 16 

problem instances shown in Li et al. (2004). They provided us with this data. All data 

are integer values. The way this data was generated is specified in their work. 

Although we used these 16 crossdocking - JIT scheduling problem instances to make 

valid and real comparisons between the behavior of our RGTS metaheuristic and 

their metaheuristic with best results which they called LPGA, a computer program 

was coded in C language which can create new problem instances (for possible 

future research) under the conditions mentioned in their work. This computer 

program is shown in Appendix 7 (only in electronic format in the software and data 

CD) and it uses the following parameters: 

• ri ~ round( UNIF( 0, 10 ) ) 

• pi ~ ceil( EXP( 5 ) ) (pi = 0 does not make any sense) 
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• di  ~ round( UNIF( 0, 5 ) ) + ri + pi 

• Kj ~ discrete UNIF( 0, n ) 

• predsj or column j of Sij matrix  ~ random sample without replacement 

• Pj ~ ceil( EXP( 5 ) ) (Pj = 0 does not make any sense) 

• Dj ~ round( UNIF( 0, 5 ) ) + max{di} that belongs to predsj + Pj 

i = 1, ..., n; j = 1, ..., N 

where n is the number of incoming jobs and N is the number of outgoing jobs. 

All parameters are integer values and, obviously, these values can be easily 

changed in the computer program. All these parameters were mentioned in Chapter 2 

and their values are independent of the number of breakdown machines (m) and the 

number of buildup machines (M). 

This problem instance generator program creates as output a text file which is used 

as input for the exact model algorithm shown in Appendix 3 and for the RGTS 

algorithm shown in Appendix 6 (both appendixes are only shown in electronic format 

in the software and data CD). This text file structure is the following: 

1 row { n m N M timeHorizon
n rows { ri pi di
N rows { Sji
N rows { Pj Dj  

Figure 4.8: Input file structure for the exact model algorithm and for the RGTS algorithm 

 

The crossdocking - JIT scheduling problem instances provided by Li et al. (2004) are 

shown in Appendix 8 (only in electronic format in the software and data CD) and their 

structure is the same shown in Figure 4.8. 

The penalty for one job to be early one unit time (α) is 1 and the penalty for one job 

to be tardy one unit time (β) is 100 just as in Li et al. (2004). 

A personal compatible computer with a processor Pentium IV with a speed of 3 GHz 
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and a RAM of 1 GB was used to run all of our experiments. The source codes of all 

of the programs mentioned in this thesis were written in the C programming language 

[Gottfried (1997)]. For the algorithm that solves the crossdocking - JIT scheduling 

problem using the integer programming model described in Chapter 2, the ILOG 

CPLEX 9.1 library was used. 

 

4.4.1 Testing and Comparison of Results. 

 

We show in Table 4.4 the results found from our exact model algorithm and from the 

RG and the TS algorithms described before. The column data set specifies the 

following parameters: number of incoming containers (n), number of machines in the 

import area (m), number of outgoing containers (N), number of machines in the 

export area (M), time horizon (th). The parameter time horizon is used to create the 

release times of each incoming container and it represents a time window for their 

arrivals. 

ID Data set
(n -m -N -M -th ) CPLEX Time CPLEX

(seconds) RG Time RG
(seconds) RGTS Time TS

(seconds)
Time RGTS

(seconds)
1 10-2-11-3-30 104 ~0 104 ~0 104 1 1
2 15-3-14-2-35 8 41 8 ~0 8 1 1
3 20-3-21-3-40 615 8221 744 1 616 4 5
4 32-3-34-4-50 926 12684 724 1 423 14 15
5 30-4-29-5-46 211 12845 211 1 211 13 14
6 32-4-33-5-50 5 67704 5 1 5 14 15
7 30-5-30-5-90 1 2 1 1 1 12 13
8 40-5-38-5-60 9 21503 9 2 9 27 29
9 42-5-43-5-55 112 21000 114 2 111 30 32

10 32-5-35-6-54 3 12 3 1 3 19 20
11 40-5-43-6-56 4 21356 10 2 4 32 34
12 56-5-57-6-62 21281 20733 1671 3 858 90 93
13 34-6-32-6-60 7 45003 7 1 7 21 22
14 50-7-60-8-70 10 34934 10 3 10 88 91
15 90-8-89-9-70 2351 48065 14 5 13 450 455
16 93-9-94-9-75 4526 36067 48 7 33 480 487  

Table 4.4: Experimental results of our solution approach for the crossdocking - JIT scheduling problem 

 

Italicized results from column CPLEX in Table 4.4 indicate that it cannot be 

guaranteed that an optimal solution has been reached because the memory limits 
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were exceeded. In those cases, the best known integer value is reported (instances 

3, 4, 5, 6, 8, 9, 11, 12, 13, 14, 15, and 16). Bold results from the same column 

CPLEX show the instances in which the optimal solutions were found (instances 1, 2, 

7, and 10). 

As it can be seen in Table 4.4, the RG algorithm is effective and fast. However, it can 

be improved in many cases by the TS algorithm which is much slower. 

The results of the RG and RGTS algorithms for the 16 crossdocking - JIT scheduling 

problem instances already mentioned are shown in Appendix 9. 

Table 4.5 shows a comparison between Li et al. (2004) results and our results. For 

the column CPLEX of this table we used a merge of our results and their results 

when using the ILOG CPLEX library. The value shown in the column CPLEX is the 

best objective value of both results. In case of tie in the objective value of both 

results, we report for the column Time CPLEX the result of the algorithm that took the 

lowest time to solve the problem. The differences in the objective values from column 

CPLEX of both works are not due to the memory limits because both groups of 

authors used a computer with 1 MB of RAM. It is very likely that the differences are 

due to the way the variables and/or constraints were defined in the computer 

programs or the parameters used to run the ILOG CPLEX library. We used the 

default parameters in our experiments when using the ILOG CPLEX library 9.1. The 

order in which the variables and constraints were defined in our computer program is 

the same order in which the integer programming model was written in Chapter 2. 

We do not know the way their computer program was coded and we do not know how 

they set the ILOG CPLEX parameters either. Besides, they do not specify the ILOG 

CPLEX version used in their work. 
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ID Data set
(n -m -N -M -th ) CPLEX Time CPLEX

(seconds) SWOGA LPGA Time LPGA
(seconds) RG Time RG

(seconds) RGTS Time RGTS
(seconds)

1 10-2-11-3-30 104 ~0 104 104 2 104 ~0 104 1
2 15-3-14-2-35 8 32 8 8 2 8 ~0 8 1
3 20-3-21-3-40 615 8221 1305 715 15 744 1 616 5
4 32-3-34-4-50 926 12684 924 530 34 724 1 423 15
5 30-4-29-5-46 211 12845 409 312 42 211 1 211 14
6 32-4-33-5-50 5 51362 5 4 44 5 1 5 15
7 30-5-30-5-90 1 2 1 1 43 1 1 1 13
8 40-5-38-5-60 9 21503 107 27 40 9 2 9 29
9 42-5-43-5-55 112 21000 210 111 45 114 2 111 32

10 32-5-35-6-54 3 12 3 3 25 3 1 3 20
11 40-5-43-6-56 4 45230 200 4 35 10 2 4 34
12 56-5-57-6-62 6569 23374 2463 1384 123 1671 3 858 93
13 34-6-32-6-60 7 45003 7 6 38 7 1 7 22
14 50-7-60-8-70 10 34934 110 12 46 10 3 10 91
15 90-8-89-9-70 1147 41514 113 15 57 14 5 13 455
16 93-9-94-9-75 3500 38193 458 149 131 48 7 33 487  

Table 4.5: Comparison of results of our solution approach with other authors’ solution approach for the 

crossdocking - JIT scheduling problem 

 

As it can be seen in Table 4.5, RG objective values are always better or equal than 

SWOGA (one of their two metaheuristics) objective values. Besides RG is always 

faster than SWOGA; therefore, we could say that RG algorithm outperforms SWOGA 

algorithm in terms of both, objective value and time. 

On the other hand, RG objective values are better than LPGA (their metaheuristic 

with best results) objective values for instances 5, 8, 14, 15 and 16 (most cases are 

large problem instances, where RG has a very good behavior in terms of objective 

value and time). Both algorithms found the same objective value for instances 1, 2, 7, 

and 10. For the other 7 instances (3, 4, 6, 9, 11, 12, and 13) LPGA obtained better 

objective values than RG. In all cases, RG is faster than LPGA. 

According to Li et al. (2004), LPGA offers better objective values than SWOGA. On 

the other hand, it is known than RG algorithm is embedded in RGTS, so it is 

expected that RGTS offers equal or better results than just RG. Then, LPGA and 

RGTS are compared. Both algorithms found the optimal value for the 5 out of the 16 

cases when the exact model algorithm also found the optimal value (instances 1, 2, 

7, 10, and 11). For the other 11 problem instances, RGTS found better results than 

LPGA in 8 occasions (instances 3, 4, 5, 8, 12, 14, 15, and 16), LPGA found better 

results than RGTS in 2 occasions (instances 6 and 13), and they found the same 
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objective value in 1 occasion (instance 9). For most cases, RGTS takes less 

computational effort than LPGA except for very large problem instances. This is due 

to the TS part of RGTS. 

As mentioned before, four greedy functions were used in the Reactive strategy of the 

GRASP algorithm. It was also mentioned that a particular greedy function showed 

better results than the others for some problem instances, but another greedy 

function showed better results than the others for some other different problem 

instances as it can be seen in Table 4.6. Results from each column gf represent the 

average objective value of 5 runs per instance just for the RG algorithm. 

ID Data set
(n -m -N -M -th )

gf 1 gf 2 gf 3 gf 4

1 10-2-11-3-30 104.0 104.0 104.0 104.0
2 15-3-14-2-35 9.2 10.0 112.0 211.8
3 20-3-21-3-40 837.2 657.4 674.6 701.0
4 32-3-34-4-50 972.8 683.4 1172.2 1189.6
5 30-4-29-5-46 221.6 211.0 398.8 218.2
6 32-4-33-5-50 9.0 5.0 30.8 6.0
7 30-5-30-5-90 1.0 1.0 1.4 1.0
8 40-5-38-5-60 78.6 9.0 36.6 12.0
9 42-5-43-5-55 409.4 113.8 307.0 217.8

10 32-5-35-6-54 7.2 3.0 9.2 3.6
11 40-5-43-6-56 112.6 8.2 153.8 106.2
12 56-5-57-6-62 2916.2 1834.0 3121.2 2135.4
13 34-6-32-6-60 14.2 7.2 13.8 8.0
14 50-7-60-8-70 31.0 10.0 79.4 12.2
15 90-8-89-9-70 254.2 14.0 1509.2 20.8
16 93-9-94-9-75 310.6 44.4 434.4 252.2  

Table 4.6: Average objective values for the RG algorithm when using the 4 different greedy functions separately 
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Chapter 5 

 

Solution Approach for the Optimal Workers 

Allocation for the Crossdocking - Just in Time 

Scheduling Problem 

 

This chapter deals with the problem described in Chapter 2 when the number of 

teams of workers in each side of the crossdock is not a given parameter but an 

unknown variable which has to be determined. This problem is bigger than the one 

studied in Chapter 4 (actually, it is a super problem of it) and it is known as the 

optimal workers allocation for the crossdocking - JIT scheduling problem which is, 

obviously, NP-hard. The representation of the solution of this problem is the same 

used for the sub-problem shown in Section 4.1. 

 

5.1 Exact Method of Solution. 

 

Our solution of the optimal workers allocation for the crossdocking - JIT scheduling 

problem is obtained through a computer program that makes use of the ILOG CPLEX 

9.1 library. The code that solves this problem using the integer programing model 

described in Chapter 2 is shown in Appendix 10 (only in electronic format in the 

software and data CD). The order in which the variables and constraints were 

defined in our computer program is the same order in which the integer programming 

model was written. 

Unfortunately, our computer resources are limited in speed and memory and the 

integer programming model contains too many variables and constraints. So, the 
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results obtained by the exact method when using the ILOG CPLEX 9.1 library (with 

default parameters) are very poor in terms of objective value and time as it can be 

seen in Table 5.1 compared to the results obtained by the alternative approach 

shown in Table 5.2. 

ID Data set
(n -N -th )

Number of
breakdown

machines (m )

Number of
buildup

machines (M )

Machines
cost

Schedule
cost

Total
cost

Time
CPLEX

(seconds)
1 10-11-30 2 1 3000 111 3111 2842
2 15-14-35 3 1 4000 144 4144 9469
3 20-21-40 4 2 6000 237 6237 19926
4 32-34-50 5 4 9000 7 9007 29500
5 30-29-46 5 4 9000 326 9326 36602
6 32-33-50 5 4 9000 14 9014 28687
7 30-30-90 3 3 6000 107 6107 38101
8 40-38-60 6 4 10000 921 10921 55770
9 42-43-55 7 6 13000 2 13002 44632

10 32-35-54 5 4 9000 23 9023 39935
11 40-43-56 6 4 10000 10 10010 40176
12 56-57-62 10 9 19000 1 19001 62781
13 34-32-60 6 3 9000 128 9128 46381
14 50-60-70 7 10 17000 9 17009 68780  

Table 5.1: Experimental results for the complete version of the optimal workers allocation for the crossdocking - 

JIT scheduling problem when using the integer programming solver ILOG CPLEX 9.1 with default parameters 

 

Italicized results from column Total Cost in Table 5.1 indicate that it can not be 

guaranteed that an optimal solution has been reached because the memory limits 

were exceeded. In those cases, the best known integer value is reported. Bold 

results from the same column Total Cost show the instances in which the optimal 

solutions were found. It can be seen in Table 5.1 that only for the instance 1 an 

optimal solution was found. 

The 14 optimal workers allocation for the crossdocking - JIT scheduling problem 

instances mentioned in Table 5.1 are the same first 14 out of the 16 problem 

instances provided by Li et al. (2004) which are shown in Appendix 8 (only in 

electronic format in the software and data CD). The structure of this 14 problem 

instances is the same shown in Figure 4.8, but without using the values of m and M 

because the number of breakdown machines and the number of buildup machines 

are not parameters any more. The last 2 problem instances provided by Li et al. 
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(2004) are not used in this problem because they are too big for our computer 

resources. 

5.2 Alternative Method of Solution. 

 

To obtain high quality faster solutions for the optimal workers allocation for the 

crossdocking - JIT scheduling problem, a very similar approach to the one described 

in Chapter 4 is proposed: a combination of the metaheuristics Reactive GRASP but 

now embedded in a Local Search algorithm (RGLS), and Tabu Search (TS). The 

whole algorithm is abbreviated as RGLSTS. The RGLS procedure is used to find the 

number of teams of workers hired in each side of the crossdock and to construct 

initial schedule solutions which, in turn, are used by the TS procedure in order to try 

to improve those schedule solutions. TS procedure does not change the number of 

teams of workers obtained by the RGLS procedure. RGLS algorithm is part of the 

RGLSTS, so RGLSTS will offer equal or better objective values than just RGLS. 

Figure 5.1 describes the RGLS algorithm we used to solve the problem. As 

mentioned before, the Reactive GRASP (RG) is embedded in a Local Search (LS) 

algorithm. The RG algorithm is used to construct initial schedule solutions depending 

on the current number of teams of workers hired in each side of the crossdock (m 

and M). The LS algorithm is used to select the number of teams of workers to be 

hired. 

1 assign an initial value for the number of machines to be rented in each side of the crossdock
2 while the best value has not been found
3 make a search in the neighborhood
4 for each RG iteration
5 for each section of the crossdock
6 while there are jobs to be scheduled in the section
7 select the greedy function to be used
8 adapt the restricted candidate list (RCL) of admissible jobs according to the selected greedy function
9 select job to be scheduled

10 adapt the RCL of machines according to the time horizon
11 select machine to host the selected job
12 insert the selected job in the selected machine
13 update the schedule
14 mark the job as scheduled
15 if the schedule is good enough and different enough
16 include the schedule in the list of good schedules
17 update the value for the number of machines to be rented in each side of the crossdock  
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Figure 5.1: Pseudo-code for the RGLS algorithm 

 

For the RGLS algorithm shown above, there are some notes to comment: 

For line 1, we defined the initial number of machines in each side of the crossdock as 

the center point of the n x N dimension mesh given by the number of incoming and 

outgoing jobs, respectively, as it can be seen in Figure 5.2. In other words, the initial 

number of machines for the inbound and outbound areas is ⎡ ⎤2n  and ⎡ ⎤2N , 

respectively. 

1 n
1

N

⎡ ⎤2/nm =

⎡ ⎤2/NM =

1 n
1

N

⎡ ⎤2/nm =

⎡ ⎤2/NM =

 

Figure 5.2: Assignment of the initial values for the number of breakdown and buildup machines for the RGLS 

algorithm 

 

Lines 2, 3 and 17 represent the Local Search (LS) algorithm that embeds the 

Reactive GRASP (RG) metaheuristic used to construct initial schedule solutions. The 

LS algorithm creates the path along the point representing the current number of 

machines (m, M) moves to reach the best overall value. At each iteration of the LS 

algorithm, a neighborhood of points around the point that represents the current 

number of machines (m, M) is explored as shown in Figure 5.3. The iterations 

proceed, keeping the best solutions found, until no one of the points around the point 

(m, M) shows better results than this point. It can be mention that, during iterations, if 

the cost of a neighbor point due to the number of machines rented is greater than the 

best solution found so far, that neighbor point is not explored. This is done to make 

the LS algorithm faster. 
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(m – 1, M – 1) (m, M – 1) (m + 1, M – 1)

(m – 1, M) (m + 1, M)

(m – 1, M + 1) (m, M + 1) (m + 1, M + 1)

(m, M)

(m – 1, M – 1) (m, M – 1) (m + 1, M – 1)

(m – 1, M) (m + 1, M)

(m – 1, M + 1) (m, M + 1) (m + 1, M + 1)

(m, M)

 

Figure 5.3: Neighborhood of the point (m, M). This point represents the current number of machines rented in 

the inbound and outbound areas of the crossdock, respectively 

 

The path from the initial values to the final values for the number of breakdown and 

buildup machines (m and M) for the RGLS algorithm for the 14 problem instances 

already mentioned are included in the results of the RGLSTS algorithm shown in 

Appendix 11. 

Lines 4 - 16 of Figure 5.1 are exactly the same whole lines shown in Figure 4.2. 

The TS part of the RGLSTS algorithm is exactly the same TS part of the RGTS 

algorithm shown in Figure 4.6. 

The results obtained by the RGLSTS algorithm are summarized in Table 5.2. 

ID Data set
(n -N -th )

Number of
breakdown

machines (m )

Number of
buildup

machines (M )

RGLS
Machines

cost

RGLS
Schedule

cost

Time
RGLS

(seconds)

RGLSTS
Schedule

cost

Time
TS

(seconds)

RGLSTS
Total
cost

Time
RGLSTS

(seconds)
1 10-11-30 2 1 3000 111 5 111 ~0 3111 5
2 15-14-35 2 1 3000 1936 8 1148 1 4148 9
3 20-21-40 3 2 5000 922 22 629 5 5629 27
4 32-34-50 3 3 6000 958 63 434 24 6434 87
5 30-29-46 4 3 7000 438 42 338 19 7338 61
6 32-33-50 3 3 6000 256 58 238 21 6238 79
7 30-30-90 2 2 4000 535 43 529 12 4529 55
8 40-38-60 4 3 7000 272 94 63 50 7063 144
9 42-43-55 4 3 7000 1482 145 656 64 7656 209

10 32-35-54 4 3 7000 931 70 51 29 7051 99
11 40-43-56 4 3 7000 540 142 231 53 7231 195
12 56-57-62 6 5 11000 2409 336 298 251 11298 587
13 34-32-60 4 2 6000 1290 59 580 25 6580 84
14 50-60-70 5 4 9000 1359 299 268 83 9268 382  

Table 5.2: Experimental results of the optimal workers allocation for the crossdocking - JIT scheduling problem 
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when using the RGLSTS algorithm 

It can be seen in Table 5.2 that for the instance 1 an optimal solution was found, 

according to Table 5.1. However, as mentioned in Chapter 3, heuristics and 

metaheuristics can not guarantee optimality. 

As mentioned before, RGLSTS algorithm shows a better behavior in terms of 

objective value and time than the exact method when using the ILOG CPLEX 9.1 

library (with default parameters). 

The computer program that solves the optimal workers allocation for the 

crossdocking - JIT scheduling problem using the RGLSTS algorithm is shown in 

Appendix 12 (only in electronic format in the software and data CD). 

 

5.3 Model for the Problem (reduced version). 

 

As the results obtained by the exact method and shown in Section 5.1 for the optimal 

workers allocation for the crossdocking - JIT scheduling problem when using the 

ILOG CPLEX 9.1 library (with default parameters) for the model described in Chapter 

2 are poor in terms of objective value and time compared to the results obtained by 

the alternative approach named RGLSTS, it has been decided to reuse the model of 

that chapter with the following changes: 

• We used the sum of the teams of workers obtained by the RGLSTS algorithm 

(that we called m’ + M’) as an upper bound for the total number of teams of 

workers that can be hired. This implied the following: 

o We could reduce the number of variables and constraints in the new 

version of the exact model depending on the values of m’ and M’ compared 

to the values of n and N, respectively (m’ ≤ n, and M’ ≤ N). This can be 

seen in the indexes used in most of the decision variables, in the objective 

function and in most of the groups of constraints of the new model 

o We created the single constraint (15) which can be seen at the end of the 
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new model 

• We used the solutions obtained by the RGLSTS algorithm as initial solutions in 

the program in C language that solves the optimal workers allocation for the 

crossdocking - JIT scheduling problem using the ILOG CPLEX 9.1 library. It was 

important to consider the following at this point: 

o To set the parameter CPX_PARAM_MIPSTART on (by default this 

parameter is off) in order to accept initial solutions 

o The structures of both types of solutions are different. So, it was necessary 

to transform the solutions obtained by the RGLSTS algorithm into solutions 

that could be read by the program that solves the optimal workers 

allocation for the crossdocking - JIT scheduling problem using the new 

exact model. The computer program used to do that is shown in Appendix 

13 (only in electronic format in the software and data CD) 

• To avoid exceeding memory limits, we decided to use the ILOG CPLEX node files 

storage feature. This required to set the following ILOG CPLEX parameters: 

o CPX_PARAM_WORKMEM. We used the default value for this parameter 

which is 128 MB. This parameter means that once the tree (ILOG CPLEX 

keeps the information of the problem solution in a tree) storage size 

exceeds this limit, what happens next is defined by the parameter 

CPX_PARAM_NODEFILEIND. ILOG CPLEX uses node file storage most 

effectively when the amount of working memory is reasonably large so that 

it does not have to create node files too frequently. A reasonable amount is 

to use approximately half the RAM of the computer used to run the 

problem, but no more than 128 MB 

o CPX_PARAM_NODEFILEIND. It indicates the type of storage for the node 

files. We used the value of 3 for this parameter which means that we 

wanted to write the node files to disk in a compressed way (by default the 

value of this parameter is 1 which means that the node files are not written 
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to disk but they are compressed in RAM) 

o CPX_PARAM_TRELIM. This parameter is used to limit the size of the tree 

kept in the node files so that it does not exceed the amount of disk space 

chosen. We used a value of 1 x 104 MB (10 GB) for this parameter (the 

default value of this parameter is 1 x 1075 MB) 

o CPX_PARAM_WORKDIR. We used the default value for this parameter 

which is “.” and it means that we wanted to save the node files in the 

current working directory 

• We set the value of the parameter CPX_PARAM_TILIM in 90000 seconds which 

specifies that the limit runtime for a problem instance is 25 hours 

• We decided to use the ILOG CPLEX strong branching feature by setting the value 

of CPX_VARSEL_STRONG for the parameter CPX_PARAM_VARSEL. With this 

feature, the program invests considerable effort in analyzing potential branches in 

the hope of drastically reducing the number of nodes that will be explored in the 

tree. This is recommended when working with very big problems like the one 

presented in this chapter 

It can be mentioned that, for the new model, the parameters m and M (these are 

parameters again in the new model) are equal to (m’ + M’) - 1, where (m’ + M’) is the 

sum of the teams of workers hired obtained by the RGLSTS algorithm. This value of 

(m’ + M’) is used as the maximum number of teams of workers that can be hired in 

total for both sides of the crossdock. We used the equality m = M = (m’ + M’) - 1 

because we need at least one team of workers hired in each side of the crossdock. 

This modification with respect to the model described in Chapter 2 allowed us to 

drastically reduce the number of variables and constraints in the new model. Even 

though, the problem is still big. 

The formulation of the optimal workers allocation for the crossdocking - JIT 

scheduling problem (reduced version) using the machine scheduling notation is the 

following: 
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Decision variables 

yik = 1 if incoming container i is processed on breakdown machine k and 0 otherwise, 

for i = 1, …,  n, k = 1, …, m 

Yjk = 1 if outgoing container j is processed on buildup machine k and 0 otherwise, for 

j = 1, …,  N, k = 1, …, M 

Iijk = 1 if incoming containers i and j are both processed by breakdown machine k and 

i precedes (not necessarily immediately) j, and 0 otherwise, for i, j = 1, …, n, i ≠ j, k = 

1, …, m 

Jijk = 1 if outgoing containers i and j are both processed by buildup machine k and i 

precedes (not necessarily immediately) j, and 0 otherwise, for i, j = 1, …, N, i ≠ j, k = 

1, …, M 

ci - completion time of incoming container i, i = 1, …, n 

Cj - completion time of outgoing container j, j = 1, …, N 

mk = 1 if breakdown machine k is used and 0 otherwise, for k = 1, …, m 

Mk = 1 if buildup machine k is used and 0 otherwise, for k = 1, …, M 

Variables yik and Yjk represent assignment variables, Iijk and Jijk represent sequencing 

variables, ci and Cj represent scheduling variables, and mk and Mk represent 

machines variables. The values assigned to the assignment variables, scheduling 

variables and machines variables represent a specific solution for the problem. 

 

State variables: their values depend on the current built schedule 

ei - earliness of incoming container i, i = 1, …, n 

Ej - earliness of outgoing container j, j = 1, …, N 

ti - tardiness of incoming container i, i = 1, …, n 

Tj - tardiness of outgoing container j, j = 1, …, N 
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Objective function 

Minimize ( ) ( ) ∑∑∑∑
====

+++++
M
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Constraints 

 (1) ∑
=

=
m

k
iky

1
1 , i = 1, …, n (breakdown area) 

(2) ∑
=

=
M

k
jkY

1
1, j = 1, …, N (buildup area) 

 (3) yik + yjk - (Iijk + Ijik) ≤ 1 (breakdown area) 

(4) 2(Iijk + Ijik) - yik - yjk ≤ 0 (breakdown area) 

i, j = 1, …, n, i < j, k = 1, …, m 

 (5) Yik + Yjk - (Jijk + Jjik) ≤ 1 (buildup area) 

(6) 2(Jijk + Jjik) - Yik - Yjk ≤ 0 (buildup area) 

i, j = 1, …, N, i < j, k = 1, …, M 

 (7) ci ≤ (cj - pj) + G(1 - Iijk), i, j = 1, …, n, i ≠ j, k = 1, …, m (breakdown area) 

(8) Ci ≤ (Cj - Pj) + G(1 - Jijk), i, j = 1, …, N, i ≠ j, k = 1, …, M (buildup area) 

 (9) ci - ri ≥ pi, i = 1, …, n (breakdown area) 

(10) Cj - ci ≥ Pj, j = 1, …, N, i = first predecessor of outgoing container j, …, last 

predecessor of outgoing container j (buildup area) 

(11) ci - di = ti - ei, i = 1, …, n (breakdown area) 

(12) Cj - Dj = Tj - Ej, j = 1, …, N (buildup area) 

(13) mk - yik ≥ 0, i = 1, …, n, k = 1, …, m (breakdown area) 
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(14) Mk - Yjk ≥ 0, j = 1, …, N, k = 1, …, M (buildup area) 

(15) ( )''
11

MmMm
M

k
k

m

k
k +≤+ ∑∑

==

 (both areas) 

yik ∈ {0, 1}, i = 1, …, n, k = 1, …, m 

Yjk ∈ {0, 1}, j = 1, …, N, k = 1, …, M 

Iijk ∈ {0, 1}, i, j = 1, …, n, i ≠ j, k = 1, …, m 

Jijk ∈ {0, 1},  i, j = 1, …, N, i ≠ j, k = 1, …, M 

mk ∈ {0, 1}, k = 1, …, m 

Mk ∈ {0, 1}, k = 1, …, M 

ci, ei, ti ∈ Z+ (nonnegative integer numbers), i = 1, …, n 

Cj, Ej, Tj ∈ Z+ (nonnegative integer numbers), j = 1, …, N 

This model is very similar to the one shown in Chapter 2, but with the changes 

previously mentioned in this section. Again, we used G = 100,000 and h = 1,000 for 

the experiments. The new single constraint (15) is used to reduce the solution search 

space. 

This model contains: 

• A total of variables (including state variables) equal to 

( ) ( ) )(311 22 NnMNmn +++++ , from which: 

o ( ) ( )MNmn 11 22 +++  are binary variables and )(3 Nn +  are integer variables 

o ( ) ( ) NnMNmn +++++ 11 22  are decision variables and )(2 Nn +  are state 

variables 

• A total of constraints equal to ∑
=

+++−+−++
N

j
jKNMnmMNNmnnNn

1

22 )(2)(223 , 

where nNKN
N

j
j ≤≤ ∑

=1
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• A total of non-empty cells in the technological coefficients matrix equal to 

∑
=

+−+−++++
N

j
jKMNNmnnNMnmNn

1

22 2)(7)(73334  

The computer program that solves the optimal workers allocation for the 

crossdocking - JIT scheduling problem using the previous exact model (reduced 

version) is shown in Appendix 14 (only in electronic format in the software and data 

CD). 

The results obtained by the reduced version of the problem are shown in Table 5.3. It 

can be seen that few problem instances (the smallest ones) improved their objective 

values compared to the solutions provided by the RGLSTS algorithm as initial 

solutions for the exact method when using the ILOG CPLEX 9.1 library with the 

specific parameters mentioned above. However, the optimal value can not be 

guaranteed for most of the problems instances when running the reduced version of 

the optimal workers allocation for the crossdocking - JIT scheduling problem for up to 

25 hours (an arbitray but reasonable timeout). 

ID Data set
(n -m -N -M -th )

Number of
breakdown

machines (m )

Number of
buildup

machines (M )

Machines
cost

Schedule
cost

Total
cost

Time
CPLEX

(seconds)
1 10-2-11-2-30 2 1 3000 111 3111 3
2 15-2-14-2-35 2 1 3000 651 3651 1129
3 20-4-21-4-40 3 2 5000 566 5566 90000
4 32-5-34-5-50 3 3 6000 434 6434 90000
5 30-6-29-6-46 4 3 7000 338 7338 90000
6 32-5-33-5-50 3 3 6000 238 6238 90000
7 30-3-30-3-90 2 2 4000 529 4529 90000
8 40-6-38-6-60 4 3 7000 63 7063 90000
9 42-6-43-6-55 4 3 7000 656 7656 90000

10 32-6-35-6-54 4 3 7000 51 7051 90000
11 40-6-43-6-56 4 3 7000 231 7231 90000
12 56-10-57-10-62 6 5 11000 298 11298 90000
13 34-5-32-5-60 4 2 6000 580 6580 90000
14 50-8-60-8-70 5 4 9000 268 9268 90000  

Table 5.3: Experimental results for the reduced version of the optimal workers allocation for the crossdocking - 

JIT scheduling problem when using the integer programming solver ILOG CPLEX 9.1 with specific parameters 

 

Italicized results from column Total Cost in Table 5.3 indicate that it can not be 

guaranteed that an optimal solution has been found because the time limit was 
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reached. In those cases, the best known integer value is reported. Bold results from 

the same column Total Cost show the instances in which the optimal solutions were 

found. It can be seen in Table 5.3 that only for the instances 1 and 2 an optimal 

solution was found and it was improved the objective value for instance 3 with 

respect to its initial solution provided by the RGLSTS algorithm. 

The 14 optimal workers allocation for the crossdocking - JIT scheduling problem 

instances mentioned in Table 5.3 refer to the first 14 out of the 16 problem instances 

provided by Li et al. (2004) which are shown in Appendix 8 (only in electronic format 

in the software and data CD). However, now each problem instance requires two 

input files: one contains the data provided by Li et al. (2004) -slightly modified- and 

the other contains the initial solution obtained from the RGLSTS algorithm. The 

structure of the input files related to the data for these 14 problem instances is the 

same shown in Figure 4.8, but adding the value of m’ + M’ at the end of the first line. 

The 28 input files corresponding to these 14 problem instances are shown in 

Appendix 15 (only in electronic format in the software and data CD). 
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Chapter 6 

 

Conclusions 

 

The crossdocking - JIT scheduling problem is a sub-problem of the optimal workers 

allocation for the crossdocking - JIT scheduling problem. The number of teams of 

workers in each side of the crossdock is a fixed and known parameter in the sub-

problem. 

The crossdocking - JIT scheduling problem is a relevant NP-hard problem that has 

not received much attention by researchers. The work presented in this thesis has an 

important academic contribution because it involves the development of a 

metaheuristic algorithm not previously applied to that problem. 

To obtain optimal or near optimal solutions for the crossdocking - JIT scheduling 

problem represents an improvement in the movement or distribution of the products, 

reducing in this way, transportation costs and inventory costs. 

Our solution approach to solve the NP-hard crossdocking - JIT scheduling problem is 

based on a combination of two metaheuristics, Reactive GRASP (RG) and Tabu 

Search (TS), abbreviated as RGTS. It is efficient and it offers good results with 

modest computational effort. It represents an excellent alternative to the approach 

studied in Li et al. (2004) for the same problem. The combination of these two 

metaheuristics, GRASP and Tabu Search, has been applied to other problems with 

also good results. 

Experiments showed that RG offers good solutions in very short times, but it can be 

improved in many cases by TS which is slower. 

On the other hand, the optimal workers allocation for a crossdocking - JIT scheduling 

problem is, obviously, harder to solve than its sub-problem, but it is more realistic 
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and interesting, as well. As this bigger problem is more complex than its sub-

problem, two versions of it were analyzed: a complete version and a reduced version. 

The reduced version obtains better results faster than the complete version; 

however, it is necessary to know the results from the alternative algorithm first in 

order to be able to use it. 

The alternative algorithm used to solve the optimal workers allocation for a 

crossdocking - JIT scheduling problem is very similar to the approach used for its 

sub-problem: a combination of the metaheuristics Reactive GRASP but now 

embedded in a Local Search algorithm (RGLS), and Tabu Search (TS). The whole 

algorithm is abbreviated as RGLSTS. 

Again, experiments showed that RGLS offers good solutions which can be improved 

in many cases by TS. These solutions are obtained with modest computational effort 

compared to the exact model. 

 

6.1 Future Work. 

 

Due to time limitations, only one fixed cost for teams of workers was used to make 

tests for the optimal workers allocation for the crossdocking - JIT scheduling problem 

(the cost per working day of each team of workers was the same for both sides of the 

crossdock). Some other tests might be done using different fixed costs for these 

teams in order to make an analysis of the impact of the workforce costs in the 

schedule of the jobs. 

Some other extensions that can be applied in the context of the present work are the 

following: 

• To have teams with different speeds 

• To have stochastic sick days for some members of the teams (equivalent to have 

stochastic failures for the machines) 
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• To have workers with different salaries (equivalent to have machines with 

different costs) 

• To have stochastic arrival times and/or processing times for the jobs 

• To have job-dependent early and tardy costs 

This research work can also be extended to some other relevant problems related to 

the transportation industry that make use of crossdocking. 

On the other hand, the codes of the algorithms developed in this project can be used 

for further researches that keep a relation with GRASP and Tabu Search methods 

due to their clarity in the writing, detailed design, and scalability. 
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Appendix 1 

 

Linear and Integer Programming 

 

The Optimization area is part of the Mathematical Programming that deals with the 

designed methods to obtain the best result (maximum or minimum) of an objective 

function through the appropriate selection of the decision variables, in a limited 

acting environment, and subject to operational and/or design constraints. 

A common formulation for an optimization problem can be seen as follows: 

min/max z = f(x) 

subject to: 

hi(x) ≤ bi, i = 1, …, m1 

hi(x) ≥ bi, i = m1+1, …, m1+m2 

hi(x) = bi, i = m1+m2+1, …, m1+m2+m3 

lj ≤ xj ≤ uj, j = 1, …, n 

In this formulation: 

• z = f(x) is the objective function 

• hi(x) ~ bi, i = 1, …, m = m1+m2+m3 are the functional constraints (the sign “~” can 

be “≤”, ”≥” or “=”) 

• lj ≤ xj ≤ uj, j = 1, …, n are the state constraints 

• bi, i = 1, …, m = m1+m2+m3 are known parameters 

• xj, j = 1, …, n are the unknown decision variables, so x is a vector of size n 

• lj and uj are the known lower and upper bounds of the decision variable j, 

respectively 
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If the objective function and the functional constraints are linear equations, then the 

problem is a Linear Programming (LP) problem. 

If all of the decision variables are non-negative and there are no inequality 

constraints in an LP problem it is said that the problem is in its standard form. In 

other words, the problem is a standard LP problem. 

It is possible to represent a standard LP problem using a matrix formulation as 

follows: 

min/max z = ctx 

subject to Ax = b 

where: 

• A is an m x n given matrix known as the technological coefficients matrix (m is the 

total number of constraints and n is the total number of variables) 

• b is a given vector of size m known as the capacities vector (some authors call it 

the right hand side vector or simply the rhs vector) 

• c is a given vector of size n known as the costs vector 

• x is the vector to find of size n known as the solution vector, x ∈ R+ (nonnegative 

real numbers) 

It is always possible to represent any non-standard LP problem in its standard form 

by adding slack variables to it and using some other transformations. 

A deeper explanation about Linear Programming can be found in Murty (1983). 

In the same context of optimization problems, there exists an interesting group of 

them called combinatorial optimization problems. In this kind of problems, some or all 

of the decision variables are integers and, generally, the solutions space is formed 

by subsets of integer numbers [Díaz et al. (1996)]. In other words, integer and 

combinatorial optimization deals with problems of maximizing or minimizing a 

function of many variables subject to integrality restrictions on some or all of the 

decision variables [Nemhauser & Wolsey (1999)]. If some decision variables of the 
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problem are continuous and some of them are integer then it is said that the problem 

is a Mixed-Integer Problem (MIP). A special case of the MIP is the Pure Integer 

Problem (PIP), where there are no continuous decision variables. 

A representation of an MIP problem using a matrix formulation would be as follows: 

min/max z = ctx + hty 

subject to Ax + Gy = b 

where: 

• A is an m x n given matrix 

• G is an m x p given matrix 

• b is a given vector of size m 

• c is a given vector of size n 

• h is a given vector of size p 

• x is a vector to find of size n, x ∈ Z+ (nonnegative integer numbers) 

• y is a vector to find of size p, y ∈ R+ (nonnegative real numbers) 

A representation of a PIP problem using a matrix formulation would be as follows: 

min/max z = ctx 

subject to Ax = b 

where: 

• A is an m x n given matrix 

• b is a given vector of size m 

• c is a given vector of size n 

• x is a vector to find of size n, x ∈ Z+ (nonnegative integer numbers) 

Sometimes, the integer variables are used to represent logical or belonging 

relationships and therefore are constrained equal to 0 or 1. In that case, the 0-1 MIP 
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(or 0-1 PIP) is obtained and x ∈ Z+ is replaced by x ∈ B (binary numbers). 

Most of the combinatorial optimization problems are NP-complete, which means that 

their complexity grows exponentially according to the problem instance. Then, it is 

possible to say that there is not an exact algorithm that solves them in a “reasonable” 

amount of time if the problem instance is “big”. 

There are many important real applications that can be stated as combinatorial 

optimization problems. Some of the most famous problems of this kind in the 

literature are: the Traveling Salesman Problem or TSP [Lawler et al. (1985)], the 

Knapsack Problem and the Bin Packing Problem [Coffman (1976), Baase (1991), 

Hochbaum (1997), Horowitz et al. (1998), Cormen et al. (2001)], among others. 
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Appendix 2 

 

Integer Programming Model for the Crossdocking - 

JIT Scheduling Problem Instance shown in Table 4.1 

 
min 
+ e1 + e2 + e3 + e4 + aE1 + aE2 + aE3 + 100 t1 + 100 t2 + 100 t3 + 100 t4 + 100 aT1 + 100 aT2 + 
100 aT3 
 
Subject to 
+ y11 + y12 = 1 
+ y21 + y22 = 1 
+ y31 + y32 = 1 
+ y41 + y42 = 1 
+ aY11 + aY12 = 1 
+ aY21 + aY22 = 1 
+ aY31 + aY32 = 1 
+ y11 + y21 - I121 - I211 <= 1 
+ y12 + y22 - I122 - I212 <= 1 
+ y11 + y31 - I131 - I311 <= 1 
+ y12 + y32 - I132 - I312 <= 1 
+ y11 + y41 - I141 - I411 <= 1 
+ y12 + y42 - I142 - I412 <= 1 
+ y21 + y31 - I231 - I321 <= 1 
+ y22 + y32 - I232 - I322 <= 1 
+ y21 + y41 - I241 - I421 <= 1 
+ y22 + y42 - I242 - I422 <= 1 
+ y31 + y41 - I341 - I431 <= 1 
+ y32 + y42 - I342 - I432 <= 1 
- y11 - y21 + 2 I121 + 2 I211 <= 0 
- y12 - y22 + 2 I122 + 2 I212 <= 0 
- y11 - y31 + 2 I131 + 2 I311 <= 0 
- y12 - y32 + 2 I132 + 2 I312 <= 0 
- y11 - y41 + 2 I141 + 2 I411 <= 0 
- y12 - y42 + 2 I142 + 2 I412 <= 0 
- y21 - y31 + 2 I231 + 2 I321 <= 0 
- y22 - y32 + 2 I232 + 2 I322 <= 0 
- y21 - y41 + 2 I241 + 2 I421 <= 0 
- y22 - y42 + 2 I242 + 2 I422 <= 0 
- y31 - y41 + 2 I341 + 2 I431 <= 0 
- y32 - y42 + 2 I342 + 2 I432 <= 0 
+ aY11 + aY21 - J121 - J211 <= 1 
+ aY12 + aY22 - J122 - J212 <= 1 
+ aY11 + aY31 - J131 - J311 <= 1 
+ aY12 + aY32 - J132 - J312 <= 1 
+ aY21 + aY31 - J231 - J321 <= 1 
+ aY22 + aY32 - J232 - J322 <= 1 
- aY11 - aY21 + 2 J121 + 2 J211 <= 0 
- aY12 - aY22 + 2 J122 + 2 J212 <= 0 
- aY11 - aY31 + 2 J131 + 2 J311 <= 0 
- aY12 - aY32 + 2 J132 + 2 J312 <= 0 
- aY21 - aY31 + 2 J231 + 2 J321 <= 0 
- aY22 - aY32 + 2 J232 + 2 J322 <= 0 
+ 10000 I121 + c1 - c2 <= 9988 
+ 10000 I122 + c1 - c2 <= 9988 
+ 10000 I131 + c1 - c3 <= 9994 
+ 10000 I132 + c1 - c3 <= 9994 
+ 10000 I141 + c1 - c4 <= 9999 
+ 10000 I142 + c1 - c4 <= 9999 
+ 10000 I211 - c1 + c2 <= 9994 
+ 10000 I212 - c1 + c2 <= 9994 
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+ 10000 I231 + c2 - c3 <= 9994 
+ 10000 I232 + c2 - c3 <= 9994 
+ 10000 I241 + c2 - c4 <= 9999 
+ 10000 I242 + c2 - c4 <= 9999 
+ 10000 I311 - c1 + c3 <= 9994 
+ 10000 I312 - c1 + c3 <= 9994 
+ 10000 I321 - c2 + c3 <= 9988 
+ 10000 I322 - c2 + c3 <= 9988 
+ 10000 I341 + c3 - c4 <= 9999 
+ 10000 I342 + c3 - c4 <= 9999 
+ 10000 I411 - c1 + c4 <= 9994 
+ 10000 I412 - c1 + c4 <= 9994 
+ 10000 I421 - c2 + c4 <= 9988 
+ 10000 I422 - c2 + c4 <= 9988 
+ 10000 I431 - c3 + c4 <= 9994 
+ 10000 I432 - c3 + c4 <= 9994 
+ 10000 J121 + aC1 - aC2 <= 9995 
+ 10000 J122 + aC1 - aC2 <= 9995 
+ 10000 J131 + aC1 - aC3 <= 9981 
+ 10000 J132 + aC1 - aC3 <= 9981 
+ 10000 J211 - aC1 + aC2 <= 9998 
+ 10000 J212 - aC1 + aC2 <= 9998 
+ 10000 J231 + aC2 - aC3 <= 9981 
+ 10000 J232 + aC2 - aC3 <= 9981 
+ 10000 J311 - aC1 + aC3 <= 9998 
+ 10000 J312 - aC1 + aC3 <= 9998 
+ 10000 J321 - aC2 + aC3 <= 9995 
+ 10000 J322 - aC2 + aC3 <= 9995 
+ c1 >= 11 
+ c2 >= 18 
+ c3 >= 14 
+ c4 >= 8 
- c2 + aC1 >= 2 
- c3 + aC1 >= 2 
- c4 + aC1 >= 2 
- c1 + aC2 >= 5 
- c2 + aC2 >= 5 
- c4 + aC2 >= 5 
- c1 + aC3 >= 19 
- c2 + aC3 >= 19 
- c3 + aC3 >= 19 
+ c1 + e1 - t1 = 14 
+ c2 + e2 - t2 = 19 
+ c3 + e3 - t3 = 16 
+ c4 + e4 - t4 = 11 
+ aC1 + aE1 - aT1 = 22 
+ aC2 + aE2 - aT2 = 28 
+ aC3 + aE3 - aT3 = 39 
 
INT y11 
INT y12 
INT y21 
INT y22 
INT y31 
INT y32 
INT y41 
INT y42 
INT aY11 
INT aY12 
INT aY21 
INT aY22 
INT aY31 
INT aY32 
INT I121 
INT I122 
INT I131 
INT I132 
INT I141 
INT I142 
INT I211 
INT I212 
INT I231 
INT I232 
INT I241 
INT I242 
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INT I311 
INT I312 
INT I321 
INT I322 
INT I341 
INT I342 
INT I411 
INT I412 
INT I421 
INT I422 
INT I431 
INT I432 
INT J121 
INT J122 
INT J131 
INT J132 
INT J211 
INT J212 
INT J231 
INT J232 
INT J311 
INT J312 
INT J321 
INT J322 

 

This MIP uses the letter “a” as a differentiator between variables related to the 

inbound area (lower-case letters) and variables related to the outbound area (upper-

case letters), except for the sequencing variables for the inbound and outbound area, 

Iijk and Jijk, respectively, which remained without changes. 
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Appendix 4 

 

Output of the RG Algorithm for the following 

Crossdocking - JIT Scheduling Problem Instance 

 

n  = 20 r p d P D
m  = 3 1 13 5 19 1 5 50
N  = 21 2 16 2 21 2 2 53
M  = 3 3 23 2 26 3 2 47
α  = 1 4 11 4 15 4 2 50
ß  = 100 5 27 2 29 5 4 28
G  = 10000 6 10 4 17 6 3 21

7 36 3 41 7 5 78
8 32 2 37 8 5 65
9 10 2 12 9 3 24

10 37 3 43 10 4 53
11 7 4 13 11 5 45
12 10 3 15 12 2 58
13 30 4 35 13 4 58
14 30 6 36 14 5 60
15 15 2 19 15 3 52
16 17 4 24 16 4 56
17 9 2 12 17 4 68
18 31 6 40 18 4 72
19 12 6 20 19 4 71
20 15 4 21 20 1 36

21 1 16  
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S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
2 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 0
3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0
6 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0
7 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0
8 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
10 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0
13 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 0
14 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0
16 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0
17 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
19 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0
20 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

K 1 =5 K 2 =2 K 3 =2 K 4 =2 K 5 =4 K 6=3 K 7 =5 K 8 =5 K 9 =3 K 10 =4 K 11 =5 K 12 =2 K 13 =4 K 14 =5 K 15 =3 K 16=4 K 17 =4 K 18 =4 K 19 =4 K 20 =1 K 21=1  
Solution 1 
 
Inbound area 
 
           i (si, ci, ei, ti) 
Machine 1: 11 (7, 11, 2, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1, 
0) 13 (30, 34, 1, 0) 18 (34, 40, 0, 0)  
Machine 2: 17 (9, 11, 1, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 5 (27, 29, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 19 (16, 22, 0, 2) 3 (24, 26, 0, 0) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
 
Outbound area 
 
           j (Sj, Cj, Ej, Tj) 
Machine 1: 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 4 (48, 50, 0, 0) 2 (51, 53, 0, 0) 12 (56, 58, 0, 
0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)  
Machine 2: 6 (19, 22, 0, 1) 20 (35, 36, 0, 0) 15 (49, 52, 0, 0) 13 (54, 58, 0, 0) 17 (64, 68, 
0, 0) 7 (73, 78, 0, 0)  
Machine 3: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 3 (40, 42, 5, 0) 1 (42, 47, 3, 0) 10 (47, 51, 2, 
0) 16 (51, 55, 1, 0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)  
 
Total penalty for crossdock: 725 
 
 
 
 
Solution 2 
 
Inbound area 
 
Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 3 (24, 26, 0, 
0) 13 (31, 35, 0, 0) 7 (38, 41, 0, 0)  
Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, 0, 
0) 10 (37, 40, 3, 0)  
Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 5 (27, 29, 0, 
0) 8 (32, 34, 3, 0) 18 (34, 40, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 5 (25, 29, 0, 1) 1 (41, 46, 4, 0) 10 (46, 50, 3, 
0) 2 (50, 52, 1, 0) 16 (52, 56, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)  
Machine 2: 20 (35, 36, 0, 0) 11 (40, 45, 0, 0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
Machine 3: 21 (15, 16, 0, 0) 3 (42, 44, 3, 0) 4 (44, 46, 4, 0) 15 (46, 49, 3, 0) 13 (49, 53, 5, 
0) 12 (53, 55, 3, 0) 14 (55, 60, 0, 0) 18 (68, 72, 0, 0)  
 
Total penalty for crossdock: 744 
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Solution 3 
 
Inbound area 
 
Machine 1: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 20 (20, 24, 0, 
3) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)  
Machine 2: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
 
Outbound area 
 
Machine 1: 9 (23, 26, 0, 2) 11 (40, 45, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 0) 8 (60, 65, 0, 
0) 18 (68, 72, 0, 0)  
Machine 2: 6 (20, 23, 0, 2) 20 (35, 36, 0, 0) 1 (43, 48, 2, 0) 4 (48, 50, 0, 0) 2 (51, 53, 0, 
0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)  
Machine 3: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 3 (45, 47, 0, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 
0) 12 (56, 58, 0, 0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
 
Total penalty for crossdock: 813 
 
 
 
 
Solution 4 
 
Inbound area 
 
Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
Machine 2: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 20 (20, 24, 0, 
3) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)  
 
Outbound area 
 
Machine 1: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 1 (43, 48, 2, 0) 4 (48, 50, 0, 0) 16 (52, 56, 0, 
0) 12 (56, 58, 0, 0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)  
Machine 2: 6 (20, 23, 0, 2) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
Machine 3: 9 (23, 26, 0, 2) 11 (40, 45, 0, 0) 15 (48, 51, 1, 0) 2 (51, 53, 0, 0) 14 (55, 60, 0, 
0) 19 (67, 71, 0, 0)  
 
Total penalty for crossdock: 814 
 
 
 
 
Solution 5 
 
Inbound area 
 
Machine 1: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 1 (15, 20, 0, 1) 20 (20, 24, 0, 3) 5 (27, 29, 0, 
0) 18 (34, 40, 0, 0)  
Machine 2: 11 (7, 11, 2, 0) 6 (11, 15, 2, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1, 
0) 13 (31, 35, 0, 0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 12 (12, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (19, 22, 0, 1) 20 (35, 36, 0, 0) 1 (45, 50, 0, 0) 16 (52, 56, 0, 0) 12 (56, 58, 0, 
0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)  
Machine 2: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 11 (40, 45, 0, 0) 15 (48, 51, 1, 0) 2 (51, 53, 0, 
0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)  
Machine 3: 5 (24, 28, 0, 0) 3 (45, 47, 0, 0) 4 (47, 49, 1, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
 
Total penalty for crossdock: 815 
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Appendix 5 

 

Output of the RGTS Algorithm for the Crossdocking - 

JIT Scheduling Problem Instance shown in Appendix 

4 

 
Solution 1 
 
Inbound area 
 
           i (si, ci, ei, ti) 
Machine 1: 11 (7, 11, 2, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1, 
0) 13 (30, 34, 1, 0) 18 (34, 40, 0, 0)  
Machine 2: 17 (9, 11, 1, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 5 (27, 29, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 19 (16, 22, 0, 2) 3 (24, 26, 0, 0) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
 
Outbound area 
 
           j (Sj, Cj, Ej, Tj) 
Machine 1: 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 
0) 12 (56, 58, 0, 0) 18 (68, 72, 0, 0)  
Machine 2: 6 (19, 22, 0, 1) 20 (35, 36, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 13 (54, 58, 0, 
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
Machine 3: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 3 (45, 47, 0, 0) 10 (49, 53, 0, 0) 14 (55, 60, 0, 
0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)  
 
Total penalty for crossdock: 715 
 
 
 
 
 
Solution 2 
 
Inbound area 
 
Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 7 (38, 41, 0, 0)  
Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, 0, 
0) 10 (37, 40, 3, 0)  
Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 3 (24, 26, 0, 
0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, 0, 
0) 13 (54, 58, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)  
Machine 2: 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 14 (55, 60, 0, 0) 7 (73, 78, 0, 
0)  
Machine 3: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 
0) 12 (56, 58, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0)  
 
Total penalty for crossdock: 616 
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Solution 3 
 
Inbound area 
 
Machine 1: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 16 (20, 24, 0, 
0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)  
Machine 2: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
 
Outbound area 
 
Machine 1: 9 (24, 27, 0, 3) 11 (40, 45, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 0) 8 (60, 65, 0, 
0) 18 (68, 72, 0, 0)  
Machine 2: 6 (20, 23, 0, 2) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 4 (48, 50, 0, 0) 2 (51, 53, 0, 
0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)  
Machine 3: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 1 (44, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 
0) 12 (56, 58, 0, 0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
 
Total penalty for crossdock: 811 
 
 
 
 
 
Solution 4 
 
Inbound area 
 
Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
Machine 2: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 16 (20, 24, 0, 
0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)  
 
Outbound area 
 
Machine 1: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 
0) 12 (56, 58, 0, 0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)  
Machine 2: 6 (20, 23, 0, 2) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
Machine 3: 9 (24, 27, 0, 3) 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 14 (55, 60, 0, 
0) 19 (67, 71, 0, 0)  
 
Total penalty for crossdock: 811 
 
 
 
 
 
Solution 5 
 
Inbound area 
 
Machine 1: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 1 (15, 20, 0, 1) 20 (20, 24, 0, 3) 5 (27, 29, 0, 
0) 18 (34, 40, 0, 0)  
Machine 2: 11 (7, 11, 2, 0) 6 (11, 15, 2, 0) 15 (15, 17, 2, 0) 2 (17, 19, 2, 0) 16 (19, 23, 1, 
0) 13 (31, 35, 0, 0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 12 (12, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (19, 22, 0, 1) 20 (35, 36, 0, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 0) 12 (56, 58, 
0, 0) 8 (60, 65, 0, 0) 18 (68, 72, 0, 0)  
Machine 2: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 
0) 14 (55, 60, 0, 0) 19 (67, 71, 0, 0)  
Machine 3: 5 (24, 28, 0, 0) 3 (45, 47, 0, 0) 4 (47, 49, 1, 0) 10 (49, 53, 0, 0) 13 (54, 58, 0, 
0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
 
Total penalty for crossdock: 814 
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Appendix 9 

 

Results of the RG and RGTS Algorithms for the 16 

Crossdocking - JIT Scheduling Problem Instances 

shown in Appendix 8 

 

The RG algorithm solution shown corresponds to its best RGTS algorithm solution for 

each problem instance. 

 

Instance 1 
RG algorithm 
 
Inbound area 
 
           i (si,ci,ei,ti) 
Machine 1: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28, 
34, 0, 0)  
Machine 2: 10 (1, 4, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)  
 
Outbound area 
 
           j (Sj, Cj, Ej, Tj) 
Machine 1: 3 (23, 26, 0, 0) 9 (30, 32, 0, 0) 2 (51, 54, 0, 0) 6 (64, 68, 0, 0)  
Machine 2: 7 (26, 29, 0, 0) 1 (56, 58, 0, 0) 8 (72, 77, 0, 0)  
Machine 3: 5 (14, 15, 0, 0) 11 (25, 27, 0, 0) 4 (44, 46, 0, 0) 10 (63, 68, 0, 0)  
 
Total penalty for crossdock: 104 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28, 
34, 0, 0)  
Machine 2: 10 (1, 4, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0)  
 
Outbound area 
 
Machine 1: 3 (23, 26, 0, 0) 9 (30, 32, 0, 0) 2 (51, 54, 0, 0) 6 (64, 68, 0, 0)  
Machine 2: 7 (26, 29, 0, 0) 1 (56, 58, 0, 0) 8 (72, 77, 0, 0)  
Machine 3: 5 (14, 15, 0, 0) 11 (25, 27, 0, 0) 4 (44, 46, 0, 0) 10 (63, 68, 0, 0)  
 
Total penalty for crossdock: 104 
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Instance 2: 
RG algorithm 
 
Inbound area 
 
Machine 1: 2 (2, 6, 0, 0) 3 (16, 19, 0, 0) 10 (19, 25, 0, 0) 9 (28, 33, 0, 0) 11 (33, 39, 0, 0)  
Machine 2: 7 (5, 11, 0, 0) 5 (16, 22, 0, 0) 4 (24, 29, 0, 0) 6 (33, 35, 0, 0) 12 (36, 38, 0, 0)  
Machine 3: 1 (16, 18, 1, 0) 8 (18, 24, 0, 0) 15 (24, 26, 0, 0) 13 (26, 28, 0, 0) 14 (33, 39, 0, 
0)  
 
Outbound area 
 
Machine 1: 4 (36, 39, 1, 0) 6 (39, 40, 0, 0) 5 (40, 42, 2, 0) 2 (42, 44, 0, 0) 12 (53, 54, 0, 
0) 9 (57, 58, 0, 0) 7 (60, 65, 0, 0) 8 (65, 69, 0, 0) 14 (76, 81, 0, 0)  
Machine 2: 10 (38, 43, 0, 0) 11 (50, 55, 0, 0) 3 (65, 69, 0, 0) 1 (73, 76, 4, 0) 13 (76, 81, 0, 
0)  
 
Total penalty for crossdock: 8 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 2 (2, 6, 0, 0) 3 (16, 19, 0, 0) 10 (19, 25, 0, 0) 9 (28, 33, 0, 0) 11 (33, 39, 0, 0)  
Machine 2: 7 (5, 11, 0, 0) 5 (16, 22, 0, 0) 4 (24, 29, 0, 0) 6 (33, 35, 0, 0) 12 (36, 38, 0, 0)  
Machine 3: 1 (16, 18, 1, 0) 8 (18, 24, 0, 0) 15 (24, 26, 0, 0) 13 (26, 28, 0, 0) 14 (33, 39, 0, 
0)  
 
Outbound area 
 
Machine 1: 4 (36, 39, 1, 0) 6 (39, 40, 0, 0) 5 (40, 42, 2, 0) 2 (42, 44, 0, 0) 12 (53, 54, 0, 
0) 9 (57, 58, 0, 0) 7 (60, 65, 0, 0) 8 (65, 69, 0, 0) 14 (76, 81, 0, 0)  
Machine 2: 10 (38, 43, 0, 0) 11 (50, 55, 0, 0) 3 (65, 69, 0, 0) 1 (73, 76, 4, 0) 13 (76, 81, 0, 
0)  
 
Total penalty for crossdock: 8 
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Instance 3: 
RG algorithm 
 
Inbound area 
 
Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 3 (24, 26, 0, 
0) 13 (31, 35, 0, 0) 7 (38, 41, 0, 0)  
Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, 0, 
0) 10 (37, 40, 3, 0)  
Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 5 (27, 29, 0, 
0) 8 (32, 34, 3, 0) 18 (34, 40, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 5 (25, 29, 0, 1) 1 (41, 46, 4, 0) 10 (46, 50, 3, 
0) 2 (50, 52, 1, 0) 16 (52, 56, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)  
Machine 2: 20 (35, 36, 0, 0) 11 (40, 45, 0, 0) 17 (64, 68, 0, 0) 7 (73, 78, 0, 0)  
Machine 3: 21 (15, 16, 0, 0) 3 (42, 44, 3, 0) 4 (44, 46, 4, 0) 15 (46, 49, 3, 0) 13 (49, 53, 5, 
0) 12 (53, 55, 3, 0) 14 (55, 60, 0, 0) 18 (68, 72, 0, 0)  
 
Total penalty for crossdock: 744 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 20 (19, 23, 0, 2) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 7 (38, 41, 0, 0)  
Machine 2: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 16 (18, 22, 2, 0) 14 (30, 36, 0, 
0) 10 (37, 40, 3, 0)  
Machine 3: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 3 (24, 26, 0, 
0) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (18, 21, 0, 0) 9 (22, 25, 0, 1) 20 (35, 36, 0, 0) 3 (45, 47, 0, 0) 10 (49, 53, 0, 
0) 13 (54, 58, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0)  
Machine 2: 11 (40, 45, 0, 0) 1 (45, 50, 0, 0) 2 (51, 53, 0, 0) 14 (55, 60, 0, 0) 7 (73, 78, 0, 
0)  
Machine 3: 21 (15, 16, 0, 0) 5 (24, 28, 0, 0) 4 (47, 49, 1, 0) 15 (49, 52, 0, 0) 16 (52, 56, 0, 
0) 12 (56, 58, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0)  
 
Total penalty for crossdock: 616 
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Instance 4: 
RG algorithm 
 
Inbound area 
 
Machine 1: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 24 (7, 12, 0, 0) 27 (12, 14, 1, 0) 22 (14, 19, 0, 0) 
12 (19, 25, 0, 0) 20 (26, 32, 4, 0) 32 (32, 34, 4, 0) 30 (34, 37, 2, 0) 21 (37, 40, 0, 1) 4 
(40, 45, 0, 2) 16 (46, 52, 0, 0)  
Machine 2: 23 (1, 6, 3, 0) 1 (6, 11, 0, 0) 26 (11, 15, 0, 0) 3 (15, 17, 0, 0) 11 (20, 22, 0, 0) 
9 (24, 29, 0, 0) 14 (32, 36, 0, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49, 53, 0, 1)  
Machine 3: 25 (0, 3, 2, 0) 5 (3, 8, 0, 0) 17 (8, 14, 0, 1) 7 (14, 17, 0, 0) 19 (17, 20, 2, 0) 
28 (20, 25, 0, 0) 6 (31, 36, 0, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29 (49, 51, 0, 0)  
 
Outbound area 
 
Machine 1: 27 (37, 38, 0, 0) 24 (49, 52, 0, 0) 20 (53, 54, 0, 0) 13 (56, 61, 0, 0) 22 (61, 66, 
0, 0) 30 (67, 72, 0, 0) 9 (74, 78, 0, 0)  
Machine 2: 11 (22, 24, 0, 0) 32 (43, 47, 0, 0) 17 (51, 56, 3, 0) 34 (56, 58, 0, 0) 18 (58, 59, 
1, 0) 29 (59, 61, 0, 0) 15 (64, 65, 0, 0) 3 (66, 68, 0, 0) 6 (68, 70, 0, 0) 28 (71, 73, 0, 0) 2 
(78, 82, 0, 0)  
Machine 3: 25 (26, 29, 0, 0) 4 (42, 43, 0, 0) 21 (50, 51, 0, 0) 12 (53, 57, 1, 0) 23 (57, 62, 
0, 1) 10 (66, 71, 0, 0) 33 (72, 76, 0, 0) 5 (81, 84, 0, 0)  
Machine 4: 16 (41, 43, 0, 0) 7 (51, 53, 0, 0) 19 (56, 58, 0, 0) 31 (60, 61, 0, 0) 8 (62, 64, 0, 
0) 14 (66, 68, 0, 0) 26 (69, 72, 0, 0) 1 (76, 81, 0, 0)  
 
Total penalty for crossdock: 724 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 24 (7, 12, 0, 0) 27 (12, 14, 1, 0) 22 (14, 19, 0, 0) 
12 (19, 25, 0, 0) 20 (27, 33, 3, 0) 30 (33, 36, 3, 0) 21 (36, 39, 0, 0) 4 (39, 44, 0, 1) 16 
(46, 52, 0, 0)  
Machine 2: 23 (1, 6, 3, 0) 1 (6, 11, 0, 0) 26 (11, 15, 0, 0) 3 (15, 17, 0, 0) 11 (20, 22, 0, 0) 
9 (24, 29, 0, 0) 14 (30, 34, 2, 0) 32 (34, 36, 2, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49, 
53, 0, 1)  
Machine 3: 25 (0, 3, 2, 0) 5 (3, 8, 0, 0) 17 (8, 14, 0, 1) 7 (14, 17, 0, 0) 19 (17, 20, 2, 0) 
28 (20, 25, 0, 0) 6 (31, 36, 0, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29 (49, 51, 0, 0)  
 
Outbound area 
 
Machine 1: 27 (37, 38, 0, 0) 20 (53, 54, 0, 0) 34 (54, 56, 2, 0) 13 (56, 61, 0, 0) 22 (61, 66, 
0, 0) 30 (67, 72, 0, 0) 9 (74, 78, 0, 0)  
Machine 2: 11 (22, 24, 0, 0) 32 (43, 47, 0, 0) 24 (49, 52, 0, 0) 17 (54, 59, 0, 0) 29 (59, 61, 
0, 0) 15 (64, 65, 0, 0) 3 (66, 68, 0, 0) 6 (68, 70, 0, 0) 28 (71, 73, 0, 0) 2 (78, 82, 0, 0)  
Machine 3: 25 (26, 29, 0, 0) 4 (42, 43, 0, 0) 21 (50, 51, 0, 0) 12 (54, 58, 0, 0) 18 (59, 60, 
0, 0) 31 (60, 61, 0, 0) 10 (66, 71, 0, 0) 33 (72, 76, 0, 0) 5 (81, 84, 0, 0)  
Machine 4: 16 (41, 43, 0, 0) 7 (51, 53, 0, 0) 19 (54, 56, 2, 0) 23 (56, 61, 0, 0) 8 (62, 64, 0, 
0) 14 (66, 68, 0, 0) 26 (69, 72, 0, 0) 1 (76, 81, 0, 0)  
 
Total penalty for crossdock: 423 
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Instance 5: 
RG algorithm 
 
Inbound area 
 
Machine 1: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32, 
0, 0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 14 (45, 51, 3, 0)  
Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 5 (20, 22, 0, 0) 19 (23, 27, 0, 
0) 23 (29, 33, 0, 0) 30 (34, 39, 0, 0) 4 (39, 45, 2, 0) 3 (45, 48, 3, 0)  
Machine 3: 18 (10, 16, 0, 0) 6 (18, 20, 0, 0) 22 (23, 25, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37, 
0, 0) 26 (40, 46, 0, 0)  
Machine 4: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 17 (19, 24, 0, 0) 7 (27, 33, 0, 0) 11 (33, 36, 0, 
0) 2 (37, 41, 0, 0) 25 (42, 47, 0, 0)  
 
Outbound area 
 
Machine 1: 14 (25, 26, 0, 0) 8 (51, 54, 0, 0) 13 (55, 58, 0, 0) 4 (61, 62, 0, 0) 25 (63, 67, 0, 
0) 5 (74, 79, 0, 0)  
Machine 2: 1 (38, 40, 0, 0) 22 (51, 56, 0, 0) 11 (58, 61, 0, 0) 17 (62, 67, 0, 0) 12 (72, 75, 
0, 0) 18 (89, 94, 0, 0)  
Machine 3: 7 (32, 33, 0, 0) 29 (51, 55, 0, 0) 3 (56, 61, 0, 0) 27 (62, 65, 0, 0) 24 (66, 71, 0, 
0) 6 (79, 82, 0, 0)  
Machine 4: 28 (39, 43, 0, 0) 16 (52, 57, 0, 0) 20 (61, 66, 0, 0) 23 (69, 70, 0, 0) 2 (75, 80, 
0, 0)  
Machine 5: 21 (48, 52, 0, 0) 15 (54, 59, 0, 0) 19 (60, 63, 2, 0) 10 (63, 67, 0, 0) 26 (69, 72, 
0, 0) 9 (80, 85, 0, 0)  
 
Total penalty for crossdock: 211 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32, 
0, 0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 14 (45, 51, 3, 0)  
Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 5 (20, 22, 0, 0) 19 (23, 27, 0, 
0) 23 (29, 33, 0, 0) 30 (34, 39, 0, 0) 4 (39, 45, 2, 0) 3 (45, 48, 3, 0)  
Machine 3: 18 (10, 16, 0, 0) 6 (18, 20, 0, 0) 22 (23, 25, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37, 
0, 0) 26 (40, 46, 0, 0)  
Machine 4: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 17 (19, 24, 0, 0) 7 (27, 33, 0, 0) 11 (33, 36, 0, 
0) 2 (37, 41, 0, 0) 25 (42, 47, 0, 0)  
 
Outbound area 
 
Machine 1: 14 (25, 26, 0, 0) 8 (51, 54, 0, 0) 13 (55, 58, 0, 0) 4 (61, 62, 0, 0) 25 (63, 67, 0, 
0) 5 (74, 79, 0, 0)  
Machine 2: 1 (38, 40, 0, 0) 22 (51, 56, 0, 0) 11 (58, 61, 0, 0) 17 (62, 67, 0, 0) 12 (72, 75, 
0, 0) 18 (89, 94, 0, 0)  
Machine 3: 7 (32, 33, 0, 0) 29 (51, 55, 0, 0) 3 (56, 61, 0, 0) 27 (62, 65, 0, 0) 24 (66, 71, 0, 
0) 6 (79, 82, 0, 0)  
Machine 4: 28 (39, 43, 0, 0) 16 (52, 57, 0, 0) 20 (61, 66, 0, 0) 23 (69, 70, 0, 0) 2 (75, 80, 
0, 0)  
Machine 5: 21 (48, 52, 0, 0) 15 (54, 59, 0, 0) 19 (60, 63, 2, 0) 10 (63, 67, 0, 0) 26 (69, 72, 
0, 0) 9 (80, 85, 0, 0)  
 
Total penalty for crossdock: 211 
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Instance 6: 
RG algorithm 
 
Inbound area 
 
Machine 1: 14 (3, 7, 0, 0) 5 (11, 13, 0, 0) 13 (16, 20, 0, 0) 26 (22, 24, 0, 0) 16 (27, 32, 0, 
0) 15 (39, 43, 0, 0) 18 (47, 50, 1, 0) 7 (50, 54, 0, 0)  
Machine 2: 24 (7, 11, 0, 0) 10 (15, 18, 0, 0) 22 (18, 23, 0, 0) 20 (26, 29, 0, 0) 2 (35, 39, 0, 
0) 25 (40, 42, 0, 0) 31 (43, 49, 2, 0) 27 (49, 54, 0, 0)  
Machine 3: 28 (4, 7, 0, 0) 8 (12, 18, 0, 0) 32 (18, 22, 0, 0) 30 (23, 28, 0, 0) 3 (33, 39, 0, 
0) 11 (42, 48, 0, 0) 19 (49, 55, 0, 0)  
Machine 4: 12 (7, 9, 0, 0) 21 (12, 15, 0, 0) 9 (18, 22, 0, 0) 4 (23, 26, 0, 0) 23 (29, 31, 0, 
0) 29 (36, 38, 0, 0) 17 (40, 46, 0, 0) 6 (47, 51, 1, 0) 1 (52, 56, 0, 0)  
 
Outbound area 
 
Machine 1: 27 (25, 26, 0, 0) 23 (39, 42, 0, 0) 22 (47, 50, 0, 0) 30 (63, 68, 0, 0) 13 (69, 73, 
0, 0) 25 (73, 75, 0, 0) 3 (81, 85, 0, 0)  
Machine 2: 18 (22, 23, 0, 0) 9 (36, 38, 0, 0) 29 (46, 48, 0, 0) 11 (54, 55, 0, 0) 15 (63, 65, 
0, 0) 20 (66, 71, 1, 0) 24 (71, 74, 0, 0) 16 (75, 79, 0, 0)  
Machine 3: 17 (25, 27, 0, 0) 21 (44, 47, 0, 0) 33 (51, 56, 0, 0) 1 (65, 70, 0, 0) 26 (71, 74, 
0, 0) 2 (75, 80, 0, 0)  
Machine 4: 28 (27, 28, 0, 0) 12 (45, 48, 0, 0) 6 (54, 58, 0, 0) 14 (66, 70, 0, 0) 8 (71, 75, 0, 
0) 19 (81, 86, 0, 0)  
Machine 5: 10 (27, 29, 0, 0) 31 (46, 49, 0, 0) 32 (58, 60, 0, 0) 4 (66, 71, 0, 0) 5 (71, 76, 0, 
0) 7 (88, 91, 0, 0)  
 
Total penalty for crossdock: 5 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 14 (3, 7, 0, 0) 5 (11, 13, 0, 0) 13 (16, 20, 0, 0) 26 (22, 24, 0, 0) 16 (27, 32, 0, 
0) 15 (39, 43, 0, 0) 18 (47, 50, 1, 0) 7 (50, 54, 0, 0)  
Machine 2: 24 (7, 11, 0, 0) 10 (15, 18, 0, 0) 22 (18, 23, 0, 0) 20 (26, 29, 0, 0) 2 (35, 39, 0, 
0) 25 (40, 42, 0, 0) 31 (43, 49, 2, 0) 27 (49, 54, 0, 0)  
Machine 3: 28 (4, 7, 0, 0) 8 (12, 18, 0, 0) 32 (18, 22, 0, 0) 30 (23, 28, 0, 0) 3 (33, 39, 0, 
0) 11 (42, 48, 0, 0) 19 (49, 55, 0, 0)  
Machine 4: 12 (7, 9, 0, 0) 21 (12, 15, 0, 0) 9 (18, 22, 0, 0) 4 (23, 26, 0, 0) 23 (29, 31, 0, 
0) 29 (36, 38, 0, 0) 17 (40, 46, 0, 0) 6 (47, 51, 1, 0) 1 (52, 56, 0, 0)  
 
Outbound area 
 
Machine 1: 27 (25, 26, 0, 0) 23 (39, 42, 0, 0) 22 (47, 50, 0, 0) 30 (63, 68, 0, 0) 13 (69, 73, 
0, 0) 25 (73, 75, 0, 0) 3 (81, 85, 0, 0)  
Machine 2: 18 (22, 23, 0, 0) 9 (36, 38, 0, 0) 29 (46, 48, 0, 0) 11 (54, 55, 0, 0) 15 (63, 65, 
0, 0) 20 (66, 71, 1, 0) 24 (71, 74, 0, 0) 16 (75, 79, 0, 0)  
Machine 3: 17 (25, 27, 0, 0) 21 (44, 47, 0, 0) 33 (51, 56, 0, 0) 1 (65, 70, 0, 0) 26 (71, 74, 
0, 0) 2 (75, 80, 0, 0)  
Machine 4: 28 (27, 28, 0, 0) 12 (45, 48, 0, 0) 6 (54, 58, 0, 0) 14 (66, 70, 0, 0) 8 (71, 75, 0, 
0) 19 (81, 86, 0, 0)  
Machine 5: 10 (27, 29, 0, 0) 31 (46, 49, 0, 0) 32 (58, 60, 0, 0) 4 (66, 71, 0, 0) 5 (71, 76, 0, 
0) 7 (88, 91, 0, 0)  
 
Total penalty for crossdock: 5 
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Instance 7: 
RG algorithm 
 
Inbound area 
 
Machine 1: 25 (9, 12, 0, 0) 17 (38, 41, 0, 0) 15 (49, 54, 0, 0) 28 (64, 66, 0, 0) 7 (76, 80, 0, 
0) 26 (87, 92, 0, 0)  
Machine 2: 6 (13, 19, 0, 0) 18 (49, 51, 0, 0) 1 (59, 62, 0, 0) 30 (71, 73, 0, 0) 5 (81, 86, 0, 
0) 24 (88, 92, 0, 0)  
Machine 3: 21 (31, 36, 0, 0) 11 (49, 52, 0, 0) 9 (62, 64, 0, 0) 23 (69, 74, 0, 0) 12 (84, 88, 
0, 0) 3 (91, 95, 0, 0)  
Machine 4: 29 (8, 10, 0, 0) 13 (32, 35, 1, 0) 27 (50, 52, 0, 0) 19 (63, 65, 0, 0) 16 (75, 78, 
0, 0) 2 (87, 90, 0, 0)  
Machine 5: 20 (17, 19, 0, 0) 14 (41, 43, 0, 0) 8 (57, 61, 0, 0) 4 (65, 71, 0, 0) 10 (81, 83, 0, 
0) 22 (90, 92, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (46, 47, 0, 0) 28 (73, 76, 0, 0) 19 (93, 98, 0, 0) 25 (106, 111, 0, 0) 20 (116, 
119, 0, 0) 24 (124, 126, 0, 0)  
Machine 2: 27 (58, 59, 0, 0) 1 (85, 86, 0, 0) 8 (97, 99, 0, 0) 17 (111, 112, 0, 0) 3 (117, 120, 
0, 0) 7 (125, 130, 0, 0)  
Machine 3: 4 (66, 69, 0, 0) 21 (89, 94, 0, 0) 16 (102, 107, 0, 0) 5 (114, 118, 0, 0) 30 (120, 
123, 0, 0)  
Machine 4: 12 (35, 37, 0, 0) 18 (71, 73, 0, 0) 13 (90, 94, 0, 0) 2 (102, 105, 0, 0) 26 (112, 
117, 0, 0) 9 (118, 122, 0, 0) 10 (128, 131, 0, 0)  
Machine 5: 14 (59, 62, 0, 0) 22 (92, 93, 0, 0) 29 (97, 101, 0, 0) 15 (113, 116, 0, 0) 23 (117, 
120, 0, 0) 11 (124, 127, 0, 0)  
 
Total penalty for crossdock: 1 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 25 (9, 12, 0, 0) 17 (38, 41, 0, 0) 15 (49, 54, 0, 0) 28 (64, 66, 0, 0) 7 (76, 80, 0, 
0) 26 (87, 92, 0, 0)  
Machine 2: 6 (13, 19, 0, 0) 18 (49, 51, 0, 0) 1 (59, 62, 0, 0) 30 (71, 73, 0, 0) 5 (81, 86, 0, 
0) 24 (88, 92, 0, 0)  
Machine 3: 21 (31, 36, 0, 0) 11 (49, 52, 0, 0) 9 (62, 64, 0, 0) 23 (69, 74, 0, 0) 12 (84, 88, 
0, 0) 3 (91, 95, 0, 0)  
Machine 4: 29 (8, 10, 0, 0) 13 (32, 35, 1, 0) 27 (50, 52, 0, 0) 19 (63, 65, 0, 0) 16 (75, 78, 
0, 0) 2 (87, 90, 0, 0)  
Machine 5: 20 (17, 19, 0, 0) 14 (41, 43, 0, 0) 8 (57, 61, 0, 0) 4 (65, 71, 0, 0) 10 (81, 83, 0, 
0) 22 (90, 92, 0, 0)  
 
Outbound area 
 
Machine 1: 6 (46, 47, 0, 0) 28 (73, 76, 0, 0) 19 (93, 98, 0, 0) 25 (106, 111, 0, 0) 20 (116, 
119, 0, 0) 24 (124, 126, 0, 0)  
Machine 2: 27 (58, 59, 0, 0) 1 (85, 86, 0, 0) 8 (97, 99, 0, 0) 17 (111, 112, 0, 0) 3 (117, 120, 
0, 0) 7 (125, 130, 0, 0)  
Machine 3: 4 (66, 69, 0, 0) 21 (89, 94, 0, 0) 16 (102, 107, 0, 0) 5 (114, 118, 0, 0) 30 (120, 
123, 0, 0)  
Machine 4: 12 (35, 37, 0, 0) 18 (71, 73, 0, 0) 13 (90, 94, 0, 0) 2 (102, 105, 0, 0) 26 (112, 
117, 0, 0) 9 (118, 122, 0, 0) 10 (128, 131, 0, 0)  
Machine 5: 14 (59, 62, 0, 0) 22 (92, 93, 0, 0) 29 (97, 101, 0, 0) 15 (113, 116, 0, 0) 23 (117, 
120, 0, 0) 11 (124, 127, 0, 0)  
 
Total penalty for crossdock: 1 
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Instance 8: 
RG algorithm 
 
Inbound area 
 
Machine 1: 6 (10, 16, 0, 0) 26 (24, 28, 0, 0) 17 (33, 38, 0, 0) 22 (38, 43, 0, 0) 38 (44, 46, 
3, 0) 34 (56, 62, 0, 0)  
Machine 2: 1 (6, 12, 0, 0) 15 (18, 24, 0, 0) 37 (26, 28, 0, 0) 31 (31, 37, 0, 0) 5 (37, 39, 0, 
0) 10 (41, 47, 0, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)  
Machine 3: 35 (5, 7, 0, 0) 28 (13, 15, 0, 0) 7 (21, 26, 0, 0) 9 (28, 33, 1, 0) 30 (33, 36, 0, 
0) 16 (37, 39, 0, 0) 39 (39, 41, 0, 0) 8 (42, 46, 0, 0) 14 (48, 51, 0, 0) 23 (57, 62, 0, 0)  
Machine 4: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 20 (33, 37, 0, 
0) 13 (37, 39, 0, 0) 18 (41, 45, 0, 0) 11 (47, 52, 0, 0)  
Machine 5: 24 (10, 14, 0, 0) 29 (24, 30, 0, 0) 12 (32, 35, 0, 0) 4 (36, 38, 0, 0) 3 (38, 42, 1, 
0) 25 (42, 46, 2, 0) 27 (52, 55, 0, 0) 33 (59, 65, 0, 0)  
 
Outbound area 
 
Machine 1: 15 (42, 43, 0, 0) 21 (53, 56, 0, 0) 19 (63, 67, 1, 0) 28 (67, 72, 0, 0) 7 (75, 77, 
0, 0) 25 (79, 84, 0, 0) 20 (100, 105, 0, 0)  
Machine 2: 24 (44, 45, 0, 0) 18 (55, 58, 0, 0) 14 (64, 65, 0, 0) 34 (66, 70, 0, 0) 26 (72, 75, 
0, 0) 36 (78, 80, 0, 0) 30 (80, 85, 0, 0) 1 (90, 95, 0, 0)  
Machine 3: 27 (36, 37, 0, 0) 12 (46, 49, 0, 0) 4 (61, 65, 0, 0) 17 (67, 72, 0, 0) 8 (75, 79, 0, 
0) 11 (79, 81, 0, 0) 37 (84, 89, 0, 0)  
Machine 4: 10 (33, 34, 0, 0) 6 (45, 49, 0, 0) 2 (56, 61, 0, 0) 16 (64, 69, 0, 0) 33 (71, 76, 0, 
0) 5 (77, 81, 0, 0) 29 (81, 82, 0, 0) 9 (83, 85, 0, 0) 32 (86, 91, 0, 0)  
Machine 5: 3 (43, 44, 0, 0) 31 (53, 56, 0, 0) 35 (62, 64, 1, 0) 13 (64, 69, 0, 0) 22 (71, 76, 
0, 0) 38 (79, 84, 0, 0) 23 (86, 89, 0, 0)  
 
Total penalty for crossdock: 9 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 6 (10, 16, 0, 0) 26 (24, 28, 0, 0) 17 (33, 38, 0, 0) 22 (38, 43, 0, 0) 38 (44, 46, 
3, 0) 34 (56, 62, 0, 0)  
Machine 2: 1 (6, 12, 0, 0) 15 (18, 24, 0, 0) 37 (26, 28, 0, 0) 31 (31, 37, 0, 0) 5 (37, 39, 0, 
0) 10 (41, 47, 0, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)  
Machine 3: 35 (5, 7, 0, 0) 28 (13, 15, 0, 0) 7 (21, 26, 0, 0) 9 (28, 33, 1, 0) 30 (33, 36, 0, 
0) 16 (37, 39, 0, 0) 39 (39, 41, 0, 0) 8 (42, 46, 0, 0) 14 (48, 51, 0, 0) 23 (57, 62, 0, 0)  
Machine 4: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 20 (33, 37, 0, 
0) 13 (37, 39, 0, 0) 18 (41, 45, 0, 0) 11 (47, 52, 0, 0)  
Machine 5: 24 (10, 14, 0, 0) 29 (24, 30, 0, 0) 12 (32, 35, 0, 0) 4 (36, 38, 0, 0) 3 (38, 42, 1, 
0) 25 (42, 46, 2, 0) 27 (52, 55, 0, 0) 33 (59, 65, 0, 0)  
 
Outbound area 
 
Machine 1: 15 (42, 43, 0, 0) 21 (53, 56, 0, 0) 19 (63, 67, 1, 0) 28 (67, 72, 0, 0) 7 (75, 77, 
0, 0) 25 (79, 84, 0, 0) 20 (100, 105, 0, 0)  
Machine 2: 24 (44, 45, 0, 0) 18 (55, 58, 0, 0) 14 (64, 65, 0, 0) 34 (66, 70, 0, 0) 26 (72, 75, 
0, 0) 36 (78, 80, 0, 0) 30 (80, 85, 0, 0) 1 (90, 95, 0, 0)  
Machine 3: 27 (36, 37, 0, 0) 12 (46, 49, 0, 0) 4 (61, 65, 0, 0) 17 (67, 72, 0, 0) 8 (75, 79, 0, 
0) 11 (79, 81, 0, 0) 37 (84, 89, 0, 0)  
Machine 4: 10 (33, 34, 0, 0) 6 (45, 49, 0, 0) 2 (56, 61, 0, 0) 16 (64, 69, 0, 0) 33 (71, 76, 0, 
0) 5 (77, 81, 0, 0) 29 (81, 82, 0, 0) 9 (83, 85, 0, 0) 32 (86, 91, 0, 0)  
Machine 5: 3 (43, 44, 0, 0) 31 (53, 56, 0, 0) 35 (62, 64, 1, 0) 13 (64, 69, 0, 0) 22 (71, 76, 
0, 0) 38 (79, 84, 0, 0) 23 (86, 89, 0, 0)  
 
Total penalty for crossdock: 9 
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Instance 9: 
RG algorithm 
 
Inbound area 
 
Machine 1: 21 (4, 9, 1, 0) 15 (9, 15, 0, 0) 28 (18, 24, 0, 0) 9 (27, 30, 0, 0) 7 (31, 36, 1, 0) 
2 (36, 42, 0, 0) 14 (44, 47, 0, 0) 41 (52, 56, 0, 0)  
Machine 2: 20 (6, 12, 0, 0) 42 (15, 18, 0, 0) 19 (18, 22, 0, 0) 39 (22, 25, 0, 0) 10 (28, 33, 
0, 0) 23 (33, 38, 3, 0) 24 (38, 41, 0, 0) 11 (45, 51, 0, 0)  
Machine 3: 30 (6, 9, 2, 0) 1 (9, 12, 0, 0) 13 (12, 17, 0, 0) 4 (18, 24, 0, 0) 8 (26, 31, 0, 0) 
16 (35, 40, 0, 0) 6 (43, 45, 0, 0) 5 (45, 51, 0, 0) 26 (55, 57, 0, 0)  
Machine 4: 31 (5, 10, 1, 0) 18 (10, 13, 0, 0) 27 (14, 16, 0, 0) 33 (19, 22, 0, 0) 36 (25, 29, 
0, 0) 35 (30, 34, 0, 0) 25 (35, 39, 1, 0) 40 (39, 44, 0, 1) 12 (45, 51, 0, 0) 29 (56, 59, 0, 0)  
Machine 5: 34 (7, 10, 0, 0) 38 (10, 13, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28, 0, 0) 17 (32, 36, 
0, 0) 22 (37, 43, 0, 0) 3 (50, 55, 0, 0)  
 
Outbound area 
 
Machine 1: 20 (30, 31, 0, 0) 18 (39, 40, 0, 0) 43 (48, 49, 0, 0) 2 (55, 59, 0, 0) 24 (59, 61, 
1, 0) 41 (61, 66, 0, 0) 4 (70, 72, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0)  
Machine 2: 9 (36, 38, 0, 0) 31 (44, 46, 0, 0) 7 (53, 55, 0, 0) 32 (55, 59, 0, 0) 34 (59, 60, 2, 
0) 21 (60, 63, 0, 0) 19 (66, 67, 0, 0) 12 (70, 73, 0, 0) 33 (83, 86, 0, 0)  
Machine 3: 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 37 (46, 49, 0, 0) 10 (53, 55, 0, 0) 22 (55, 58, 
0, 0) 23 (60, 64, 0, 0) 6 (64, 69, 0, 0) 3 (72, 74, 0, 0) 13 (81, 83, 0, 0)  
Machine 4: 39 (35, 36, 0, 0) 14 (42, 45, 0, 0) 29 (48, 49, 0, 0) 17 (53, 58, 1, 0) 30 (58, 62, 
1, 0) 11 (62, 63, 0, 0) 16 (64, 69, 0, 0) 5 (73, 75, 0, 0) 8 (87, 92, 0, 0)  
Machine 5: 35 (31, 32, 0, 0) 25 (39, 44, 0, 0) 1 (52, 55, 0, 0) 40 (58, 63, 0, 0) 27 (63, 66, 
0, 0) 38 (72, 75, 0, 0) 42 (89, 93, 0, 0)  
 
Total penalty for crossdock: 114 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 21 (4, 9, 1, 0) 15 (9, 15, 0, 0) 28 (18, 24, 0, 0) 9 (27, 30, 0, 0) 17 (32, 36, 0, 
0) 2 (36, 42, 0, 0) 14 (44, 47, 0, 0) 41 (52, 56, 0, 0)  
Machine 2: 20 (6, 12, 0, 0) 42 (15, 18, 0, 0) 19 (18, 22, 0, 0) 39 (22, 25, 0, 0) 10 (28, 33, 
0, 0) 23 (33, 38, 3, 0) 24 (38, 41, 0, 0) 11 (45, 51, 0, 0)  
Machine 3: 30 (6, 9, 2, 0) 1 (9, 12, 0, 0) 13 (12, 17, 0, 0) 4 (18, 24, 0, 0) 8 (26, 31, 0, 0) 
16 (35, 40, 0, 0) 6 (43, 45, 0, 0) 5 (45, 51, 0, 0) 26 (55, 57, 0, 0)  
Machine 4: 31 (5, 10, 1, 0) 18 (10, 13, 0, 0) 27 (14, 16, 0, 0) 33 (19, 22, 0, 0) 36 (25, 29, 
0, 0) 35 (30, 34, 0, 0) 25 (35, 39, 1, 0) 40 (39, 44, 0, 1) 12 (45, 51, 0, 0) 29 (56, 59, 0, 0)  
Machine 5: 34 (7, 10, 0, 0) 38 (10, 13, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28, 0, 0) 7 (32, 37, 0, 
0) 22 (37, 43, 0, 0) 3 (50, 55, 0, 0)  
 
Outbound area 
 
Machine 1: 20 (30, 31, 0, 0) 18 (39, 40, 0, 0) 43 (48, 49, 0, 0) 2 (55, 59, 0, 0) 24 (59, 61, 
1, 0) 41 (61, 66, 0, 0) 4 (70, 72, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0)  
Machine 2: 9 (36, 38, 0, 0) 31 (44, 46, 0, 0) 7 (53, 55, 0, 0) 32 (55, 59, 0, 0) 21 (60, 63, 0, 
0) 19 (66, 67, 0, 0) 12 (70, 73, 0, 0) 33 (83, 86, 0, 0)  
Machine 3: 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 37 (46, 49, 0, 0) 10 (53, 55, 0, 0) 22 (55, 58, 
0, 0) 23 (60, 64, 0, 0) 6 (64, 69, 0, 0) 3 (72, 74, 0, 0) 13 (81, 83, 0, 0)  
Machine 4: 39 (35, 36, 0, 0) 14 (42, 45, 0, 0) 29 (48, 49, 0, 0) 17 (54, 59, 0, 0) 30 (59, 63, 
0, 0) 16 (64, 69, 0, 0) 5 (73, 75, 0, 0) 8 (87, 92, 0, 0)  
Machine 5: 35 (31, 32, 0, 0) 25 (39, 44, 0, 0) 1 (52, 55, 0, 0) 40 (56, 61, 2, 0) 34 (61, 62, 
0, 0) 11 (62, 63, 0, 0) 27 (63, 66, 0, 0) 38 (72, 75, 0, 0) 42 (89, 93, 0, 0)  
 
Total penalty for crossdock: 111 
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Instance 10: 
RG algorithm 
 
Inbound area 
 
Machine 1: 27 (1, 3, 0, 0) 29 (10, 13, 0, 0) 1 (23, 27, 0, 0) 23 (28, 33, 0, 0) 12 (44, 49, 0, 
0) 18 (52, 55, 0, 0)  
Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (20, 25, 0, 0) 10 (25, 31, 0, 0) 22 (32, 37, 0, 0) 
16 (46, 50, 0, 0)  
Machine 3: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 32 (21, 27, 0, 0) 28 (27, 33, 0, 0) 24 (41, 47, 1, 0) 
13 (51, 57, 0, 0)  
Machine 4: 17 (8, 13, 0, 0) 8 (19, 25, 0, 0) 20 (27, 33, 0, 0) 25 (41, 47, 0, 0) 26 (49, 51, 0, 
0)  
Machine 5: 15 (6, 10, 0, 0) 30 (13, 18, 2, 0) 7 (23, 26, 0, 0) 31 (27, 29, 0, 0) 19 (29, 31, 0, 
0) 4 (31, 36, 0, 0) 2 (44, 46, 0, 0) 21 (48, 51, 0, 0) 11 (52, 57, 0, 0)  
 
Outbound area 
 
Machine 1: 24 (25, 26, 0, 0) 17 (46, 48, 0, 0) 27 (55, 56, 0, 0) 33 (57, 59, 0, 0) 12 (59, 61, 
0, 0) 23 (63, 66, 0, 0) 19 (67, 70, 0, 0) 32 (96, 100, 0, 0)  
Machine 2: 1 (47, 52, 0, 0) 9 (57, 62, 0, 0) 35 (65, 69, 0, 0) 8 (82, 84, 0, 0)  
Machine 3: 28 (38, 41, 0, 0) 31 (51, 55, 0, 0) 7 (59, 61, 0, 0) 16 (63, 67, 0, 0) 3 (70, 75, 0, 
0) 29 (94, 98, 0, 0)  
Machine 4: 21 (39, 40, 0, 0) 22 (53, 57, 0, 0) 20 (59, 64, 0, 0) 4 (65, 70, 0, 0) 30 (87, 91, 
0, 0)  
Machine 5: 34 (18, 19, 0, 0) 5 (45, 47, 0, 0) 26 (54, 56, 0, 0) 13 (60, 61, 0, 0) 2 (66, 69, 0, 
0) 10 (92, 97, 0, 0)  
Machine 6: 14 (35, 37, 0, 0) 11 (53, 54, 0, 0) 25 (58, 60, 0, 0) 6 (61, 66, 0, 0) 15 (68, 73, 
0, 0) 18 (89, 90, 0, 0)  
 
Total penalty for crossdock: 3 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 27 (1, 3, 0, 0) 29 (10, 13, 0, 0) 1 (23, 27, 0, 0) 23 (28, 33, 0, 0) 12 (44, 49, 0, 
0) 18 (52, 55, 0, 0)  
Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (20, 25, 0, 0) 10 (25, 31, 0, 0) 22 (32, 37, 0, 0) 
16 (46, 50, 0, 0)  
Machine 3: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 32 (21, 27, 0, 0) 28 (27, 33, 0, 0) 24 (41, 47, 1, 0) 
13 (51, 57, 0, 0)  
Machine 4: 17 (8, 13, 0, 0) 8 (19, 25, 0, 0) 20 (27, 33, 0, 0) 25 (41, 47, 0, 0) 26 (49, 51, 0, 
0)  
Machine 5: 15 (6, 10, 0, 0) 30 (13, 18, 2, 0) 7 (23, 26, 0, 0) 31 (27, 29, 0, 0) 19 (29, 31, 0, 
0) 4 (31, 36, 0, 0) 2 (44, 46, 0, 0) 21 (48, 51, 0, 0) 11 (52, 57, 0, 0)  
 
Outbound area 
 
Machine 1: 24 (25, 26, 0, 0) 17 (46, 48, 0, 0) 27 (55, 56, 0, 0) 33 (57, 59, 0, 0) 12 (59, 61, 
0, 0) 23 (63, 66, 0, 0) 19 (67, 70, 0, 0) 32 (96, 100, 0, 0)  
Machine 2: 1 (47, 52, 0, 0) 9 (57, 62, 0, 0) 35 (65, 69, 0, 0) 8 (82, 84, 0, 0)  
Machine 3: 28 (38, 41, 0, 0) 31 (51, 55, 0, 0) 7 (59, 61, 0, 0) 16 (63, 67, 0, 0) 3 (70, 75, 0, 
0) 29 (94, 98, 0, 0)  
Machine 4: 21 (39, 40, 0, 0) 22 (53, 57, 0, 0) 20 (59, 64, 0, 0) 4 (65, 70, 0, 0) 30 (87, 91, 
0, 0)  
Machine 5: 34 (18, 19, 0, 0) 5 (45, 47, 0, 0) 26 (54, 56, 0, 0) 13 (60, 61, 0, 0) 2 (66, 69, 0, 
0) 10 (92, 97, 0, 0)  
Machine 6: 14 (35, 37, 0, 0) 11 (53, 54, 0, 0) 25 (58, 60, 0, 0) 6 (61, 66, 0, 0) 15 (68, 73, 
0, 0) 18 (89, 90, 0, 0)  
 
Total penalty for crossdock: 3 
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Instance 11: 
RG algorithm 
 
Inbound area 
 
Machine 1: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 40 (20, 23, 0, 0) 13 (26, 31, 0, 0) 12 (38, 41, 0, 
0) 9 (44, 49, 0, 0) 10 (54, 59, 0, 0)  
Machine 2: 26 (6, 8, 0, 0) 18 (9, 14, 0, 0) 35 (14, 20, 0, 0) 4 (23, 29, 0, 0) 36 (31, 36, 0, 
0) 33 (39, 45, 0, 0) 29 (45, 48, 0, 0) 21 (49, 52, 0, 0) 31 (58, 61, 0, 0)  
Machine 3: 25 (6, 8, 1, 0) 5 (10, 12, 2, 0) 28 (14, 20, 0, 0) 39 (23, 28, 0, 0) 15 (28, 31, 0, 
0) 14 (36, 42, 0, 0) 1 (44, 48, 0, 0) 6 (52, 54, 0, 0)  
Machine 4: 16 (5, 11, 4, 0) 24 (11, 14, 0, 0) 7 (20, 22, 0, 0) 20 (27, 31, 0, 0) 38 (38, 42, 0, 
0) 11 (43, 46, 0, 0) 22 (48, 52, 0, 0) 17 (55, 58, 0, 0)  
Machine 5: 23 (5, 7, 0, 0) 3 (8, 12, 0, 0) 32 (14, 18, 0, 0) 2 (23, 29, 0, 0) 27 (33, 38, 0, 0) 
19 (43, 49, 0, 0) 30 (52, 55, 0, 0) 34 (58, 61, 0, 0)  
 
Outbound area 
 
Machine 1: 33 (12, 13, 0, 0) 14 (41, 42, 0, 0) 1 (49, 50, 0, 0) 7 (50, 54, 0, 0) 15 (61, 66, 0, 
0) 35 (68, 73, 0, 0) 10 (79, 82, 0, 0)  
Machine 2: 41 (34, 35, 0, 0) 2 (46, 49, 0, 0) 28 (52, 55, 0, 0) 40 (62, 66, 0, 0) 31 (69, 71, 
0, 0) 22 (77, 81, 0, 0) 37 (95, 100, 0, 0)  
Machine 3: 8 (38, 40, 0, 0) 18 (47, 50, 2, 0) 4 (50, 51, 0, 0) 13 (53, 56, 0, 0) 34 (63, 66, 0, 
0) 5 (67, 69, 0, 0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 43 (82, 86, 0, 0)  
Machine 4: 42 (27, 29, 0, 0) 32 (45, 46, 0, 0) 19 (51, 56, 0, 0) 36 (65, 68, 0, 0) 21 (69, 71, 
0, 0) 27 (73, 75, 0, 0) 38 (92, 97, 0, 0)  
Machine 5: 3 (28, 30, 0, 0) 25 (43, 46, 0, 0) 11 (47, 52, 0, 0) 6 (56, 59, 0, 0) 26 (66, 71, 0, 
0) 17 (77, 78, 0, 0)  
Machine 6: 23 (35, 36, 0, 0) 20 (48, 50, 0, 0) 29 (52, 54, 0, 0) 16 (60, 62, 0, 0) 24 (66, 68, 
0, 0) 39 (71, 72, 0, 0) 9 (87, 90, 0, 0)  
 
Total penalty for crossdock: 10 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 40 (20, 23, 0, 0) 13 (26, 31, 0, 0) 12 (38, 41, 0, 
0) 9 (44, 49, 0, 0) 10 (54, 59, 0, 0)  
Machine 2: 26 (6, 8, 0, 0) 18 (9, 14, 0, 0) 35 (14, 20, 0, 0) 4 (23, 29, 0, 0) 36 (31, 36, 0, 
0) 33 (39, 45, 0, 0) 29 (45, 48, 0, 0) 21 (49, 52, 0, 0) 31 (58, 61, 0, 0)  
Machine 3: 25 (7, 9, 0, 0) 5 (9, 11, 3, 0) 24 (11, 14, 0, 0) 28 (14, 20, 0, 0) 39 (23, 28, 0, 
0) 15 (28, 31, 0, 0) 14 (36, 42, 0, 0) 1 (44, 48, 0, 0) 6 (52, 54, 0, 0)  
Machine 4: 16 (9, 15, 0, 0) 7 (20, 22, 0, 0) 20 (27, 31, 0, 0) 38 (38, 42, 0, 0) 11 (43, 46, 0, 
0) 22 (48, 52, 0, 0) 17 (55, 58, 0, 0)  
Machine 5: 23 (5, 7, 0, 0) 3 (8, 12, 0, 0) 32 (14, 18, 0, 0) 2 (23, 29, 0, 0) 27 (33, 38, 0, 0) 
19 (43, 49, 0, 0) 30 (52, 55, 0, 0) 34 (58, 61, 0, 0)  
 
Outbound area 
 
Machine 1: 33 (12, 13, 0, 0) 14 (41, 42, 0, 0) 1 (49, 50, 0, 0) 7 (50, 54, 0, 0) 15 (61, 66, 0, 
0) 35 (68, 73, 0, 0) 10 (79, 82, 0, 0)  
Machine 2: 41 (34, 35, 0, 0) 2 (46, 49, 0, 0) 18 (49, 52, 0, 0) 28 (52, 55, 0, 0) 40 (62, 66, 
0, 0) 31 (69, 71, 0, 0) 22 (77, 81, 0, 0) 37 (95, 100, 0, 0)  
Machine 3: 8 (38, 40, 0, 0) 4 (50, 51, 0, 0) 13 (53, 56, 0, 0) 34 (63, 66, 0, 0) 5 (67, 69, 0, 
0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 43 (82, 86, 0, 0)  
Machine 4: 42 (27, 29, 0, 0) 32 (45, 46, 0, 0) 19 (51, 56, 0, 0) 36 (65, 68, 0, 0) 21 (69, 71, 
0, 0) 27 (73, 75, 0, 0) 38 (92, 97, 0, 0)  
Machine 5: 3 (28, 30, 0, 0) 25 (43, 46, 0, 0) 11 (47, 52, 0, 0) 6 (56, 59, 0, 0) 26 (66, 71, 0, 
0) 17 (77, 78, 0, 0)  
Machine 6: 23 (35, 36, 0, 0) 20 (48, 50, 0, 0) 29 (52, 54, 0, 0) 16 (60, 62, 0, 0) 24 (66, 68, 
0, 0) 39 (71, 72, 0, 0) 9 (87, 90, 0, 0)  
 
Total penalty for crossdock: 4 
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Instance 12: 
RG algorithm 
 
Inbound area 
 
Machine 1: 39 (6, 9, 0, 0) 33 (11, 16, 0, 0) 29 (19, 23, 0, 0) 45 (23, 29, 0, 0) 41 (32, 35, 0, 
0) 32 (38, 44, 0, 0) 9 (48, 51, 0, 0) 7 (51, 54, 0, 0) 26 (54, 58, 1, 0) 25 (58, 63, 0, 0) 54 
(64, 68, 0, 0)  
Machine 2: 6 (6, 11, 0, 0) 44 (12, 17, 0, 0) 43 (18, 24, 0, 0) 49 (25, 27, 0, 0) 48 (31, 35, 0, 
0) 8 (35, 40, 0, 0) 2 (46, 51, 2, 0) 3 (51, 57, 2, 0) 35 (57, 62, 1, 0) 52 (62, 67, 0, 0)  
Machine 3: 11 (2, 8, 0, 0) 42 (11, 15, 0, 0) 56 (15, 20, 1, 0) 22 (20, 23, 0, 1) 14 (23, 29, 0, 
3) 20 (33, 37, 0, 0) 36 (46, 49, 0, 0) 37 (49, 55, 0, 0) 15 (56, 61, 1, 0) 19 (61, 64, 0, 2)  
Machine 4: 17 (4, 6, 0, 0) 55 (8, 12, 0, 0) 10 (13, 15, 0, 0) 31 (15, 20, 2, 0) 13 (20, 24, 0, 
0) 23 (25, 30, 0, 0) 30 (33, 38, 0, 0) 46 (42, 48, 0, 0) 4 (50, 55, 0, 0) 51 (55, 61, 1, 0) 1 
(61, 63, 0, 2) 38 (63, 66, 0, 3)  
Machine 5: 53 (3, 8, 0, 0) 21 (9, 13, 0, 0) 34 (13, 15, 1, 0) 16 (15, 21, 3, 0) 50 (21, 27, 0, 
1) 28 (31, 35, 0, 0) 24 (38, 43, 0, 0) 47 (46, 50, 2, 0) 27 (50, 52, 2, 0) 12 (52, 54, 2, 0) 40 
(54, 59, 3, 0) 18 (59, 61, 0, 0) 5 (61, 67, 0, 1)  
 
Outbound area 
 
Machine 1: 43 (30, 31, 0, 0) 54 (59, 62, 1, 0) 24 (62, 67, 3, 0) 23 (67, 69, 2, 0) 20 (69, 73, 
1, 0) 46 (73, 77, 0, 0) 47 (78, 83, 0, 0) 1 (90, 92, 0, 0) 34 (96, 98, 0, 0)  
Machine 2: 9 (37, 40, 0, 0) 12 (61, 62, 0, 0) 26 (65, 66, 0, 0) 5 (67, 72, 0, 1) 35 (73, 78, 0, 
0) 16 (79, 84, 0, 0) 40 (86, 88, 0, 0) 44 (93, 96, 0, 0)  
Machine 3: 14 (13, 14, 0, 0) 21 (54, 55, 0, 0) 27 (61, 65, 1, 0) 49 (65, 67, 4, 0) 25 (67, 70, 
2, 0) 36 (70, 74, 2, 0) 22 (74, 78, 0, 0) 37 (78, 82, 0, 0) 53 (85, 90, 0, 0) 17 (95, 100, 0, 
0)  
Machine 4: 10 (16, 17, 0, 0) 56 (54, 58, 0, 0) 6 (62, 67, 9, 0) 30 (67, 72, 0, 2) 39 (72, 77, 
0, 0) 52 (78, 80, 0, 0) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 48 (91, 94, 0, 0)  
Machine 5: 11 (32, 33, 0, 0) 45 (58, 59, 0, 0) 4 (63, 64, 0, 0) 51 (65, 66, 0, 0) 15 (66, 70, 
2, 0) 55 (70, 71, 2, 0) 3 (71, 76, 1, 0) 19 (76, 78, 1, 0) 28 (78, 83, 0, 0) 42 (89, 94, 0, 0) 
41 (102, 103, 0, 0)  
Machine 6: 32 (47, 48, 0, 0) 57 (58, 62, 3, 0) 18 (62, 67, 5, 0) 38 (67, 70, 4, 0) 13 (70, 74, 
3, 0) 2 (74, 76, 1, 0) 31 (76, 80, 0, 0) 8 (80, 84, 0, 0) 50 (85, 90, 0, 0) 7 (98, 103, 0, 0)  
 
Total penalty for crossdock: 1671 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 11 (2, 8, 0, 0) 55 (8, 12, 0, 0) 44 (12, 17, 0, 0) 29 (19, 23, 0, 0) 45 (23, 29, 0, 
0) 41 (32, 35, 0, 0) 24 (38, 43, 0, 0) 9 (47, 50, 1, 0) 7 (50, 53, 1, 0) 51 (53, 59, 3, 0) 25 
(59, 64, 0, 1) 54 (64, 68, 0, 0)  
Machine 2: 17 (4, 6, 0, 0) 6 (6, 11, 0, 0) 33 (11, 16, 0, 0) 43 (18, 24, 0, 0) 49 (25, 27, 0, 
0) 48 (31, 35, 0, 0) 8 (35, 40, 0, 0) 47 (47, 51, 1, 0) 3 (51, 57, 2, 0) 15 (57, 62, 0, 0) 52 
(62, 67, 0, 0)  
Machine 3: 42 (10, 14, 1, 0) 31 (14, 19, 3, 0) 22 (19, 22, 0, 0) 50 (22, 28, 0, 2) 20 (33, 37, 
0, 0) 46 (42, 48, 0, 0) 37 (49, 55, 0, 0) 35 (55, 60, 3, 0) 5 (60, 66, 0, 0)  
Machine 4: 39 (6, 9, 0, 0) 10 (13, 15, 0, 0) 16 (15, 21, 3, 0) 13 (21, 25, 0, 1) 23 (25, 30, 0, 
0) 30 (33, 38, 0, 0) 36 (46, 49, 0, 0) 4 (50, 55, 0, 0) 26 (55, 59, 0, 0) 1 (59, 61, 0, 0) 38 
(61, 64, 0, 1)  
Machine 5: 53 (3, 8, 0, 0) 21 (9, 13, 0, 0) 34 (13, 15, 1, 0) 56 (15, 20, 1, 0) 14 (20, 26, 0, 
0) 28 (31, 35, 0, 0) 32 (38, 44, 0, 0) 2 (45, 50, 3, 0) 27 (50, 52, 2, 0) 12 (52, 54, 2, 0) 40 
(54, 59, 3, 0) 18 (59, 61, 0, 0) 19 (61, 64, 0, 2)  
 
Outbound area 
 
Machine 1: 12 (61, 62, 0, 0) 24 (64, 69, 1, 0) 20 (69, 73, 1, 0) 46 (73, 77, 0, 0) 47 (78, 83, 
0, 0) 40 (86, 88, 0, 0) 42 (89, 94, 0, 0) 7 (98, 103, 0, 0)  
Machine 2: 21 (54, 55, 0, 0) 57 (61, 65, 0, 0) 26 (65, 66, 0, 0) 49 (66, 68, 3, 0) 15 (68, 72, 
0, 0) 55 (72, 73, 0, 0) 35 (73, 78, 0, 0) 28 (78, 83, 0, 0) 53 (85, 90, 0, 0) 1 (90, 92, 0, 0)  
Machine 3: 45 (58, 59, 0, 0) 27 (62, 66, 0, 0) 25 (66, 69, 3, 0) 23 (69, 71, 0, 0) 38 (71, 74, 
0, 0) 22 (74, 78, 0, 0) 37 (78, 82, 0, 0) 50 (85, 90, 0, 0) 17 (95, 100, 0, 0)  
Machine 4: 9 (37, 40, 0, 0) 6 (61, 66, 10, 0) 30 (66, 71, 0, 1) 39 (71, 76, 1, 0) 31 (76, 80, 
0, 0) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 48 (91, 94, 0, 0) 34 (96, 98, 0, 0)  
Machine 5: 56 (54, 58, 0, 0) 54 (60, 63, 0, 0) 4 (63, 64, 0, 0) 51 (65, 66, 0, 0) 5 (66, 71, 0, 
0) 36 (71, 75, 1, 0) 2 (75, 77, 0, 0) 19 (77, 79, 0, 0) 16 (79, 84, 0, 0)  
Machine 6: 14 (13, 14, 0, 0) 10 (16, 17, 0, 0) 43 (30, 31, 0, 0) 11 (32, 33, 0, 0) 32 (47, 48, 
0, 0) 18 (63, 68, 4, 0) 3 (68, 73, 4, 0) 13 (73, 77, 0, 0) 52 (78, 80, 0, 0) 8 (80, 84, 0, 0) 
44 (93, 96, 0, 0) 41 (102, 103, 0, 0)  



 96

Total penalty for crossdock: 858 

Instance 13: 
RG algorithm 
 
Inbound area 
 
Machine 1: 22 (12, 15, 0, 0) 4 (19, 21, 0, 0) 28 (21, 23, 1, 0) 16 (23, 26, 0, 0) 32 (34, 39, 
0, 0) 8 (53, 59, 0, 0)  
Machine 2: 9 (2, 4, 0, 0) 21 (15, 18, 0, 0) 3 (18, 22, 4, 0) 24 (22, 24, 0, 0) 26 (24, 27, 0, 
0) 12 (32, 38, 0, 0) 6 (47, 50, 0, 0)  
Machine 3: 1 (13, 16, 0, 0) 29 (20, 26, 0, 0) 5 (31, 33, 0, 0) 7 (42, 47, 0, 0) 27 (57, 60, 0, 
0)  
Machine 4: 25 (10, 13, 0, 0) 11 (20, 26, 0, 0) 34 (27, 29, 0, 0) 23 (35, 39, 0, 0) 15 (47, 52, 
0, 0)  
Machine 5: 20 (6, 10, 0, 0) 2 (17, 22, 2, 0) 18 (22, 28, 0, 0) 10 (33, 37, 0, 0) 14 (47, 51, 0, 
0) 19 (58, 60, 0, 0)  
Machine 6: 33 (13, 19, 0, 0) 30 (20, 26, 0, 0) 17 (27, 29, 0, 0) 13 (36, 42, 0, 0) 31 (55, 57, 
0, 0)  
 
Outbound area 
 
Machine 1: 9 (32, 33, 0, 0) 8 (61, 63, 0, 0) 25 (68, 70, 0, 0) 12 (71, 75, 0, 0) 10 (89, 93, 0, 
0)  
Machine 2: 28 (23, 24, 0, 0) 30 (46, 49, 0, 0) 31 (68, 70, 0, 0) 15 (70, 75, 0, 0) 2 (83, 88, 
0, 0) 11 (98, 103, 0, 0)  
Machine 3: 19 (39, 40, 0, 0) 23 (61, 66, 0, 0) 4 (70, 72, 0, 0) 14 (78, 83, 0, 0) 20 (90, 95, 
0, 0)  
Machine 4: 1 (38, 42, 0, 0) 13 (62, 67, 0, 0) 16 (70, 74, 0, 0) 24 (80, 85, 0, 0) 29 (92, 97, 
0, 0)  
Machine 5: 7 (41, 44, 0, 0) 22 (64, 65, 0, 0) 27 (69, 73, 0, 0) 32 (84, 86, 0, 0)  
Machine 6: 17 (9, 10, 0, 0) 3 (42, 43, 0, 0) 26 (62, 67, 0, 0) 5 (70, 71, 0, 0) 18 (74, 75, 0, 
0) 21 (79, 83, 0, 0) 6 (94, 95, 0, 0)  
 
Total penalty for crossdock: 7 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 22 (12, 15, 0, 0) 4 (19, 21, 0, 0) 28 (21, 23, 1, 0) 16 (23, 26, 0, 0) 32 (34, 39, 
0, 0) 8 (53, 59, 0, 0)  
Machine 2: 9 (2, 4, 0, 0) 21 (15, 18, 0, 0) 3 (18, 22, 4, 0) 24 (22, 24, 0, 0) 26 (24, 27, 0, 
0) 12 (32, 38, 0, 0) 6 (47, 50, 0, 0)  
Machine 3: 1 (13, 16, 0, 0) 29 (20, 26, 0, 0) 5 (31, 33, 0, 0) 7 (42, 47, 0, 0) 27 (57, 60, 0, 
0)  
Machine 4: 25 (10, 13, 0, 0) 11 (20, 26, 0, 0) 34 (27, 29, 0, 0) 23 (35, 39, 0, 0) 15 (47, 52, 
0, 0)  
Machine 5: 20 (6, 10, 0, 0) 2 (17, 22, 2, 0) 18 (22, 28, 0, 0) 10 (33, 37, 0, 0) 14 (47, 51, 0, 
0) 19 (58, 60, 0, 0)  
Machine 6: 33 (13, 19, 0, 0) 30 (20, 26, 0, 0) 17 (27, 29, 0, 0) 13 (36, 42, 0, 0) 31 (55, 57, 
0, 0)  
 
Outbound area 
 
Machine 1: 9 (32, 33, 0, 0) 8 (61, 63, 0, 0) 25 (68, 70, 0, 0) 12 (71, 75, 0, 0) 10 (89, 93, 0, 
0)  
Machine 2: 28 (23, 24, 0, 0) 30 (46, 49, 0, 0) 31 (68, 70, 0, 0) 15 (70, 75, 0, 0) 2 (83, 88, 
0, 0) 11 (98, 103, 0, 0)  
Machine 3: 19 (39, 40, 0, 0) 23 (61, 66, 0, 0) 4 (70, 72, 0, 0) 14 (78, 83, 0, 0) 20 (90, 95, 
0, 0)  
Machine 4: 1 (38, 42, 0, 0) 13 (62, 67, 0, 0) 16 (70, 74, 0, 0) 24 (80, 85, 0, 0) 29 (92, 97, 
0, 0)  
Machine 5: 7 (41, 44, 0, 0) 22 (64, 65, 0, 0) 27 (69, 73, 0, 0) 32 (84, 86, 0, 0)  
Machine 6: 17 (9, 10, 0, 0) 3 (42, 43, 0, 0) 26 (62, 67, 0, 0) 5 (70, 71, 0, 0) 18 (74, 75, 0, 
0) 21 (79, 83, 0, 0) 6 (94, 95, 0, 0)  
 
Total penalty for crossdock: 7 
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Instance 14: 
RG algorithm 
 
Inbound area 
 
Machine 1: 12 (14, 16, 0, 0) 23 (18, 21, 0, 0) 22 (21, 23, 3, 0) 30 (30, 36, 0, 0) 39 (41, 45, 
0, 0) 44 (52, 56, 0, 0) 25 (62, 64, 0, 0)  
Machine 2: 15 (16, 19, 0, 0) 1 (21, 27, 0, 0) 40 (30, 36, 0, 0) 18 (39, 45, 0, 0) 37 (52, 54, 
0, 0) 19 (59, 64, 0, 0) 4 (67, 71, 0, 0)  
Machine 3: 6 (9, 15, 0, 0) 14 (18, 23, 0, 0) 2 (25, 29, 0, 0) 26 (31, 33, 0, 0) 34 (35, 38, 0, 
0) 41 (45, 49, 0, 0) 42 (52, 55, 3, 0) 45 (63, 69, 0, 0)  
Machine 4: 49 (10, 14, 0, 0) 8 (18, 23, 0, 0) 29 (26, 32, 0, 0) 21 (34, 39, 0, 0) 24 (45, 49, 
0, 0) 31 (58, 60, 0, 0) 7 (65, 70, 0, 0)  
Machine 5: 28 (6, 8, 0, 0) 33 (16, 19, 0, 0) 5 (23, 29, 0, 0) 13 (31, 37, 0, 0) 47 (43, 47, 0, 
0) 20 (54, 59, 0, 0) 9 (64, 69, 0, 0)  
Machine 6: 11 (13, 17, 0, 0) 43 (17, 22, 2, 0) 16 (29, 34, 0, 0) 35 (37, 39, 0, 0) 46 (50, 53, 
0, 0) 32 (58, 64, 0, 0) 17 (69, 75, 0, 0)  
Machine 7: 50 (15, 21, 0, 0) 48 (23, 25, 0, 0) 3 (30, 32, 0, 0) 10 (32, 36, 0, 0) 36 (43, 47, 
0, 0) 27 (55, 59, 0, 0) 38 (63, 68, 1, 0)  
 
Outbound area 
 
Machine 1: 35 (28, 29, 0, 0) 8 (47, 50, 0, 0) 6 (55, 60, 0, 0) 60 (69, 72, 0, 0) 38 (76, 81, 0, 
0) 40 (84, 86, 0, 0) 39 (94, 99, 0, 0)  
Machine 2: 55 (34, 37, 0, 0) 45 (51, 52, 0, 0) 18 (57, 59, 0, 0) 31 (68, 73, 0, 0) 52 (75, 78, 
1, 0) 27 (78, 79, 0, 0) 15 (79, 84, 0, 0) 56 (88, 90, 0, 0) 14 (97, 101, 0, 0)  
Machine 3: 28 (29, 30, 0, 0) 51 (49, 51, 0, 0) 1 (55, 56, 0, 0) 3 (65, 69, 0, 0) 9 (75, 80, 0, 
0) 57 (81, 84, 0, 0) 24 (88, 93, 0, 0)  
Machine 4: 46 (23, 24, 0, 0) 22 (46, 48, 0, 0) 19 (54, 56, 0, 0) 41 (61, 66, 0, 0) 29 (72, 77, 
0, 0) 36 (77, 78, 0, 0) 59 (78, 82, 0, 0) 33 (88, 90, 0, 0) 49 (97, 101, 0, 0)  
Machine 5: 48 (35, 37, 0, 0) 54 (50, 53, 0, 0) 30 (61, 66, 0, 0) 20 (75, 79, 0, 0) 26 (80, 82, 
0, 0) 4 (85, 87, 0, 0) 2 (94, 98, 0, 0)  
Machine 6: 34 (41, 42, 0, 0) 43 (53, 55, 0, 0) 11 (61, 63, 0, 0) 13 (69, 73, 0, 0) 17 (77, 80, 
0, 0) 47 (80, 85, 0, 0) 16 (89, 94, 0, 0)  
Machine 7: 5 (16, 17, 0, 0) 37 (45, 46, 0, 0) 53 (54, 58, 0, 0) 7 (65, 66, 0, 0) 42 (74, 78, 0, 
0) 25 (78, 83, 0, 0) 21 (88, 91, 0, 0)  
Machine 8: 50 (22, 23, 0, 0) 32 (47, 49, 0, 0) 44 (54, 58, 0, 0) 58 (68, 71, 0, 0) 10 (76, 80, 
0, 0) 23 (81, 85, 0, 0) 12 (90, 92, 0, 0)  
 
Total penalty for crossdock: 10 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 12 (14, 16, 0, 0) 23 (18, 21, 0, 0) 22 (21, 23, 3, 0) 30 (30, 36, 0, 0) 39 (41, 45, 
0, 0) 44 (52, 56, 0, 0) 25 (62, 64, 0, 0)  
Machine 2: 15 (16, 19, 0, 0) 1 (21, 27, 0, 0) 40 (30, 36, 0, 0) 18 (39, 45, 0, 0) 37 (52, 54, 
0, 0) 19 (59, 64, 0, 0) 4 (67, 71, 0, 0)  
Machine 3: 6 (9, 15, 0, 0) 14 (18, 23, 0, 0) 2 (25, 29, 0, 0) 26 (31, 33, 0, 0) 34 (35, 38, 0, 
0) 41 (45, 49, 0, 0) 42 (52, 55, 3, 0) 45 (63, 69, 0, 0)  
Machine 4: 49 (10, 14, 0, 0) 8 (18, 23, 0, 0) 29 (26, 32, 0, 0) 21 (34, 39, 0, 0) 24 (45, 49, 
0, 0) 31 (58, 60, 0, 0) 7 (65, 70, 0, 0)  
Machine 5: 28 (6, 8, 0, 0) 33 (16, 19, 0, 0) 5 (23, 29, 0, 0) 13 (31, 37, 0, 0) 47 (43, 47, 0, 
0) 20 (54, 59, 0, 0) 9 (64, 69, 0, 0)  
Machine 6: 11 (13, 17, 0, 0) 43 (17, 22, 2, 0) 16 (29, 34, 0, 0) 35 (37, 39, 0, 0) 46 (50, 53, 
0, 0) 32 (58, 64, 0, 0) 17 (69, 75, 0, 0)  
Machine 7: 50 (15, 21, 0, 0) 48 (23, 25, 0, 0) 3 (30, 32, 0, 0) 10 (32, 36, 0, 0) 36 (43, 47, 
0, 0) 27 (55, 59, 0, 0) 38 (63, 68, 1, 0)  
 
Outbound area 
 
Machine 1: 35 (28, 29, 0, 0) 8 (47, 50, 0, 0) 6 (55, 60, 0, 0) 60 (69, 72, 0, 0) 38 (76, 81, 0, 
0) 40 (84, 86, 0, 0) 39 (94, 99, 0, 0)  
Machine 2: 55 (34, 37, 0, 0) 45 (51, 52, 0, 0) 18 (57, 59, 0, 0) 31 (68, 73, 0, 0) 52 (75, 78, 
1, 0) 27 (78, 79, 0, 0) 15 (79, 84, 0, 0) 56 (88, 90, 0, 0) 14 (97, 101, 0, 0)  
Machine 3: 28 (29, 30, 0, 0) 51 (49, 51, 0, 0) 1 (55, 56, 0, 0) 3 (65, 69, 0, 0) 9 (75, 80, 0, 
0) 57 (81, 84, 0, 0) 24 (88, 93, 0, 0)  
Machine 4: 46 (23, 24, 0, 0) 22 (46, 48, 0, 0) 19 (54, 56, 0, 0) 41 (61, 66, 0, 0) 29 (72, 77, 
0, 0) 36 (77, 78, 0, 0) 59 (78, 82, 0, 0) 33 (88, 90, 0, 0) 49 (97, 101, 0, 0)  
Machine 5: 48 (35, 37, 0, 0) 54 (50, 53, 0, 0) 30 (61, 66, 0, 0) 20 (75, 79, 0, 0) 26 (80, 82, 
0, 0) 4 (85, 87, 0, 0) 2 (94, 98, 0, 0)  
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Machine 6: 34 (41, 42, 0, 0) 43 (53, 55, 0, 0) 11 (61, 63, 0, 0) 13 (69, 73, 0, 0) 17 (77, 80, 
0, 0) 47 (80, 85, 0, 0) 16 (89, 94, 0, 0)  
Machine 7: 5 (16, 17, 0, 0) 37 (45, 46, 0, 0) 53 (54, 58, 0, 0) 7 (65, 66, 0, 0) 42 (74, 78, 0, 
0) 25 (78, 83, 0, 0) 21 (88, 91, 0, 0)  
Machine 8: 50 (22, 23, 0, 0) 32 (47, 49, 0, 0) 44 (54, 58, 0, 0) 58 (68, 71, 0, 0) 10 (76, 80, 
0, 0) 23 (81, 85, 0, 0) 12 (90, 92, 0, 0)  
 
Total penalty for crossdock: 10 
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Instance 15: 
RG algorithm 
 
Inbound area 
 
Machine 1: 37 (0, 6, 0, 0) 77 (9, 11, 0, 0) 90 (12, 15, 0, 0) 26 (16, 20, 2, 0) 16 (20, 26, 0, 
0) 32 (30, 36, 0, 0) 19 (38, 40, 0, 0) 87 (42, 47, 1, 0) 74 (47, 49, 1, 0) 51 (49, 54, 0, 0) 82 
(59, 62, 0, 0) 89 (65, 70, 1, 0)  
Machine 2: 56 (5, 7, 0, 0) 69 (10, 13, 0, 0) 43 (16, 18, 0, 0) 6 (20, 26, 0, 0) 71 (30, 33, 1, 
0) 45 (33, 38, 0, 0) 62 (40, 43, 0, 0) 78 (45, 48, 0, 0) 53 (48, 52, 0, 0) 83 (54, 59, 0, 0) 47 
(64, 68, 0, 0)  
Machine 3: 13 (8, 12, 0, 0) 4 (12, 14, 0, 0) 44 (17, 22, 0, 0) 18 (23, 27, 0, 0) 25 (31, 34, 1, 
0) 81 (34, 40, 0, 0) 84 (43, 49, 0, 0) 22 (49, 53, 0, 0) 65 (58, 64, 0, 0) 63 (70, 73, 0, 0)  
Machine 4: 34 (2, 4, 0, 0) 24 (8, 12, 0, 0) 14 (12, 17, 0, 0) 58 (20, 22, 0, 0) 11 (23, 25, 0, 
0) 17 (27, 29, 0, 0) 60 (33, 35, 0, 0) 35 (35, 38, 0, 0) 9 (41, 47, 0, 0) 20 (47, 53, 0, 0) 46 
(56, 59, 0, 0) 54 (63, 66, 0, 0)  
Machine 5: 8 (5, 8, 0, 0) 29 (10, 13, 0, 0) 88 (16, 22, 0, 0) 5 (22, 24, 0, 0) 76 (26, 28, 0, 
0) 31 (33, 36, 0, 0) 52 (37, 43, 0, 0) 72 (46, 48, 0, 0) 73 (48, 52, 0, 0) 68 (55, 60, 0, 0) 50 
(64, 67, 0, 0)  
Machine 6: 70 (4, 6, 0, 0) 28 (9, 13, 0, 0) 55 (14, 19, 0, 0) 57 (20, 22, 0, 0) 41 (23, 26, 0, 
0) 33 (32, 35, 0, 0) 61 (35, 41, 0, 0) 15 (44, 46, 0, 0) 2 (47, 51, 0, 0) 12 (51, 57, 0, 0) 75 
(61, 66, 0, 0)  
Machine 7: 86 (5, 8, 0, 0) 67 (11, 15, 0, 0) 64 (18, 22, 0, 0) 49 (22, 24, 0, 0) 79 (27, 32, 0, 
0) 7 (33, 35, 0, 0) 38 (36, 42, 0, 0) 85 (45, 50, 0, 0) 59 (51, 53, 0, 0) 66 (59, 61, 0, 0) 1 
(65, 68, 0, 0)  
Machine 8: 36 (6, 12, 0, 0) 30 (12, 15, 0, 0) 3 (17, 21, 1, 0) 23 (21, 23, 0, 0) 39 (24, 26, 0, 
0) 27 (29, 35, 0, 0) 80 (36, 39, 0, 0) 48 (42, 45, 1, 0) 10 (45, 47, 2, 0) 42 (47, 51, 2, 0) 21 
(56, 58, 0, 0) 40 (62, 66, 0, 0)  
 
Outbound area 
 
Machine 1: 31 (37, 38, 0, 0) 37 (50, 52, 0, 0) 53 (55, 57, 0, 0) 43 (59, 64, 0, 0) 14 (65, 69, 
0, 0) 57 (70, 75, 0, 0) 81 (78, 80, 0, 0) 55 (81, 83, 0, 0) 56 (85, 89, 0, 0) 78 (90, 94, 0, 0) 
35 (96, 100, 0, 0)  
Machine 2: 33 (39, 42, 0, 0) 64 (51, 55, 0, 0) 32 (59, 62, 0, 0) 36 (64, 67, 0, 0) 13 (69, 74, 
0, 0) 34 (78, 81, 0, 0) 17 (84, 87, 0, 0) 21 (89, 93, 0, 0) 11 (96, 100, 0, 0)  
Machine 3: 71 (43, 47, 0, 0) 59 (51, 53, 0, 0) 4 (58, 61, 0, 0) 10 (64, 66, 0, 0) 79 (66, 70, 
0, 0) 12 (71, 76, 0, 0) 69 (78, 80, 0, 0) 45 (80, 85, 0, 0) 48 (87, 92, 0, 0) 42 (93, 95, 0, 0) 
9 (101, 104, 0, 0)  
Machine 4: 76 (47, 51, 0, 0) 7 (54, 57, 0, 0) 28 (61, 66, 0, 0) 16 (68, 72, 0, 0) 61 (76, 80, 
0, 0) 39 (80, 84, 0, 0) 24 (86, 90, 0, 0) 23 (91, 96, 0, 0) 75 (105, 110, 0, 0)  
Machine 5: 88 (47, 49, 0, 0) 6 (54, 58, 0, 0) 1 (62, 63, 0, 0) 8 (65, 70, 0, 0) 41 (73, 77, 0, 
0) 47 (78, 83, 0, 0) 65 (85, 89, 0, 0) 40 (91, 96, 0, 0) 70 (108, 110, 0, 0)  
Machine 6: 26 (29, 32, 0, 0) 74 (48, 52, 0, 0) 29 (55, 57, 0, 0) 51 (61, 66, 0, 0) 54 (68, 70, 
0, 0) 18 (73, 78, 1, 0) 62 (78, 80, 0, 0) 67 (81, 85, 0, 0) 25 (88, 92, 0, 0) 3 (92, 94, 0, 0) 
84 (98, 102, 0, 0)  
Machine 7: 22 (46, 48, 0, 0) 2 (54, 59, 0, 0) 73 (63, 66, 0, 0) 60 (67, 72, 0, 0) 72 (76, 80, 
0, 0) 85 (82, 85, 0, 0) 80 (88, 93, 0, 0) 82 (96, 98, 0, 0)  
Machine 8: 68 (43, 45, 0, 0) 83 (51, 54, 0, 0) 19 (58, 59, 0, 0) 77 (63, 67, 0, 0) 52 (69, 74, 
0, 0) 66 (76, 80, 0, 0) 87 (80, 81, 0, 0) 46 (84, 88, 0, 0) 89 (89, 91, 0, 0) 63 (92, 96, 0, 0)  
Machine 9: 27 (17, 18, 0, 0) 86 (47, 52, 0, 0) 30 (56, 59, 0, 0) 5 (63, 64, 0, 0) 50 (65, 68, 
0, 0) 15 (69, 73, 0, 0) 58 (76, 80, 0, 0) 44 (80, 82, 0, 0) 38 (84, 88, 0, 0) 20 (89, 91, 0, 0) 
49 (91, 96, 0, 0)  
 
Total penalty for crossdock: 14 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 37 (0, 6, 0, 0) 77 (9, 11, 0, 0) 90 (12, 15, 0, 0) 26 (16, 20, 2, 0) 16 (20, 26, 0, 
0) 32 (30, 36, 0, 0) 19 (38, 40, 0, 0) 87 (42, 47, 1, 0) 74 (47, 49, 1, 0) 51 (49, 54, 0, 0) 82 
(59, 62, 0, 0) 89 (65, 70, 1, 0)  
Machine 2: 56 (5, 7, 0, 0) 69 (10, 13, 0, 0) 43 (16, 18, 0, 0) 6 (20, 26, 0, 0) 71 (30, 33, 1, 
0) 45 (33, 38, 0, 0) 62 (40, 43, 0, 0) 78 (45, 48, 0, 0) 53 (48, 52, 0, 0) 83 (54, 59, 0, 0) 47 
(64, 68, 0, 0)  
Machine 3: 13 (8, 12, 0, 0) 4 (12, 14, 0, 0) 44 (17, 22, 0, 0) 18 (23, 27, 0, 0) 25 (31, 34, 1, 
0) 81 (34, 40, 0, 0) 84 (43, 49, 0, 0) 22 (49, 53, 0, 0) 65 (58, 64, 0, 0) 1 (65, 68, 0, 0)  
Machine 4: 34 (2, 4, 0, 0) 24 (8, 12, 0, 0) 14 (12, 17, 0, 0) 58 (20, 22, 0, 0) 11 (23, 25, 0, 
0) 17 (27, 29, 0, 0) 60 (33, 35, 0, 0) 35 (35, 38, 0, 0) 9 (41, 47, 0, 0) 20 (47, 53, 0, 0) 46 
(56, 59, 0, 0) 54 (63, 66, 0, 0)  
Machine 5: 70 (4, 6, 0, 0) 29 (10, 13, 0, 0) 88 (16, 22, 0, 0) 5 (22, 24, 0, 0) 76 (26, 28, 0, 
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0) 31 (33, 36, 0, 0) 52 (37, 43, 0, 0) 48 (43, 46, 0, 0) 72 (46, 48, 0, 0) 73 (48, 52, 0, 0) 50 
(64, 67, 0, 0)  
Machine 6: 8 (5, 8, 0, 0) 28 (9, 13, 0, 0) 55 (14, 19, 0, 0) 57 (20, 22, 0, 0) 41 (23, 26, 0, 
0) 33 (32, 35, 0, 0) 38 (36, 42, 0, 0) 15 (44, 46, 0, 0) 2 (47, 51, 0, 0) 12 (51, 57, 0, 0) 75 
(61, 66, 0, 0)  
Machine 7: 86 (5, 8, 0, 0) 67 (11, 15, 0, 0) 64 (18, 22, 0, 0) 49 (22, 24, 0, 0) 79 (27, 32, 0, 
0) 7 (33, 35, 0, 0) 61 (35, 41, 0, 0) 85 (45, 50, 0, 0) 21 (56, 58, 0, 0) 66 (59, 61, 0, 0) 63 
(70, 73, 0, 0)  
Machine 8: 36 (6, 12, 0, 0) 30 (12, 15, 0, 0) 3 (17, 21, 1, 0) 23 (21, 23, 0, 0) 39 (24, 26, 0, 
0) 27 (29, 35, 0, 0) 80 (36, 39, 0, 0) 10 (45, 47, 2, 0) 42 (47, 51, 2, 0) 59 (51, 53, 0, 0) 68 
(55, 60, 0, 0) 40 (62, 66, 0, 0)  
 
Outbound area 
 
Machine 1: 31 (37, 38, 0, 0) 37 (50, 52, 0, 0) 53 (55, 57, 0, 0) 43 (59, 64, 0, 0) 14 (65, 69, 
0, 0) 57 (70, 75, 0, 0) 81 (78, 80, 0, 0) 55 (81, 83, 0, 0) 56 (85, 89, 0, 0) 78 (90, 94, 0, 0) 
84 (98, 102, 0, 0)  
Machine 2: 64 (51, 55, 0, 0) 32 (59, 62, 0, 0) 36 (64, 67, 0, 0) 60 (67, 72, 0, 0) 34 (78, 81, 
0, 0) 17 (84, 87, 0, 0) 21 (89, 93, 0, 0) 11 (96, 100, 0, 0)  
Machine 3: 71 (43, 47, 0, 0) 88 (47, 49, 0, 0) 4 (58, 61, 0, 0) 10 (64, 66, 0, 0) 79 (66, 70, 
0, 0) 12 (71, 76, 0, 0) 69 (78, 80, 0, 0) 45 (80, 85, 0, 0) 48 (87, 92, 0, 0) 42 (93, 95, 0, 0) 
9 (101, 104, 0, 0)  
Machine 4: 27 (17, 18, 0, 0) 76 (47, 51, 0, 0) 7 (54, 57, 0, 0) 77 (63, 67, 0, 0) 16 (68, 72, 
0, 0) 61 (76, 80, 0, 0) 39 (80, 84, 0, 0) 65 (85, 89, 0, 0) 23 (91, 96, 0, 0) 75 (105, 110, 0, 
0)  
Machine 5: 33 (39, 42, 0, 0) 74 (48, 52, 0, 0) 6 (54, 58, 0, 0) 1 (62, 63, 0, 0) 8 (65, 70, 0, 
0) 41 (73, 77, 0, 0) 47 (78, 83, 0, 0) 24 (86, 90, 0, 0) 40 (91, 96, 0, 0) 82 (96, 98, 0, 0)  
Machine 6: 26 (29, 32, 0, 0) 59 (51, 53, 0, 0) 29 (55, 57, 0, 0) 51 (61, 66, 0, 0) 54 (68, 70, 
0, 0) 18 (73, 78, 1, 0) 62 (78, 80, 0, 0) 67 (81, 85, 0, 0) 25 (88, 92, 0, 0) 3 (92, 94, 0, 0) 
35 (96, 100, 0, 0)  
Machine 7: 22 (46, 48, 0, 0) 2 (54, 59, 0, 0) 73 (63, 66, 0, 0) 13 (69, 74, 0, 0) 72 (76, 80, 
0, 0) 85 (82, 85, 0, 0) 80 (88, 93, 0, 0) 70 (108, 110, 0, 0)  
Machine 8: 68 (43, 45, 0, 0) 83 (51, 54, 0, 0) 19 (58, 59, 0, 0) 28 (61, 66, 0, 0) 52 (69, 74, 
0, 0) 66 (76, 80, 0, 0) 87 (80, 81, 0, 0) 46 (84, 88, 0, 0) 89 (89, 91, 0, 0) 63 (92, 96, 0, 0)  
Machine 9: 86 (47, 52, 0, 0) 30 (56, 59, 0, 0) 5 (63, 64, 0, 0) 50 (65, 68, 0, 0) 15 (69, 73, 
0, 0) 58 (76, 80, 0, 0) 44 (80, 82, 0, 0) 38 (84, 88, 0, 0) 20 (89, 91, 0, 0) 49 (91, 96, 0, 0)  
 
Total penalty for crossdock: 13 
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Instance 16: 
RG algorithm 
 
Inbound area 
 
Machine 1: 71 (2, 5, 0, 0) 56 (7, 10, 0, 0) 64 (13, 19, 0, 0) 86 (19, 24, 0, 0) 2 (36, 41, 0, 
0) 35 (44, 50, 0, 0) 3 (51, 56, 0, 0) 48 (64, 70, 0, 0) 81 (73, 76, 0, 0)  
Machine 2: 53 (3, 5, 0, 0) 77 (6, 8, 0, 0) 33 (13, 16, 0, 0) 10 (17, 20, 0, 0) 72 (24, 28, 0, 
0) 32 (37, 42, 0, 0) 28 (45, 49, 1, 0) 16 (49, 55, 0, 0) 62 (57, 61, 0, 0) 73 (65, 67, 0, 0) 61 
(67, 69, 3, 0)  
Machine 3: 26 (5, 11, 0, 0) 47 (15, 20, 0, 0) 25 (21, 26, 0, 0) 6 (31, 34, 0, 0) 24 (39, 42, 0, 
0) 39 (46, 52, 0, 0) 66 (52, 57, 0, 0) 60 (63, 67, 0, 0) 69 (69, 73, 0, 0)  
Machine 4: 37 (5, 10, 0, 0) 54 (13, 19, 1, 0) 7 (19, 21, 0, 0) 89 (24, 29, 0, 0) 27 (38, 44, 0, 
0) 18 (46, 52, 0, 0) 20 (53, 56, 0, 0) 70 (56, 62, 0, 0) 45 (67, 71, 0, 0) 9 (75, 80, 0, 0)  
Machine 5: 83 (5, 8, 0, 0) 63 (9, 15, 0, 0) 38 (17, 23, 0, 0) 22 (34, 37, 0, 0) 42 (42, 44, 0, 
0) 91 (46, 52, 0, 0) 51 (52, 58, 0, 0) 8 (64, 66, 0, 0) 57 (69, 71, 0, 0) 13 (75, 81, 0, 0)  
Machine 6: 14 (3, 8, 0, 0) 23 (11, 13, 0, 0) 76 (15, 21, 0, 0) 41 (30, 36, 0, 0) 68 (40, 45, 3, 
0) 36 (45, 51, 2, 0) 50 (51, 53, 0, 0) 84 (56, 62, 0, 0) 88 (65, 68, 0, 0) 30 (71, 73, 0, 0)  
Machine 7: 52 (2, 7, 0, 0) 67 (12, 14, 0, 0) 31 (15, 18, 0, 0) 1 (18, 21, 0, 0) 15 (21, 25, 0, 
0) 19 (31, 33, 0, 0) 85 (38, 44, 4, 0) 29 (44, 49, 3, 0) 17 (49, 53, 3, 0) 43 (56, 58, 0, 0) 82 
(61, 63, 0, 0) 34 (67, 70, 0, 0) 44 (77, 81, 0, 0)  
Machine 8: 79 (5, 7, 0, 0) 65 (8, 11, 0, 0) 75 (15, 17, 0, 0) 58 (17, 21, 2, 0) 87 (30, 33, 0, 
0) 55 (42, 44, 0, 0) 74 (45, 47, 0, 0) 46 (48, 50, 0, 0) 11 (50, 54, 0, 0) 80 (56, 59, 1, 0) 5 
(67, 70, 0, 0) 90 (72, 74, 0, 0)  
Machine 9: 59 (5, 8, 0, 0) 49 (14, 20, 0, 0) 21 (30, 32, 0, 0) 40 (41, 43, 0, 0) 92 (46, 48, 0, 
0) 78 (48, 53, 0, 0) 93 (54, 57, 0, 0) 12 (60, 66, 0, 0) 4 (69, 72, 0, 0)  
 
Outbound area 
 
Machine 1: 81 (27, 28, 0, 0) 27 (48, 49, 0, 0) 90 (58, 60, 0, 0) 21 (67, 69, 0, 0) 51 (71, 73, 
0, 0) 71 (76, 78, 0, 0) 23 (83, 84, 0, 0) 12 (85, 89, 0, 0) 60 (89, 94, 2, 0) 78 (94, 96, 0, 0) 
72 (96, 100, 0, 0) 73 (107, 109, 0, 0)  
Machine 2: 25 (45, 46, 0, 0) 43 (58, 62, 0, 0) 28 (69, 74, 0, 0) 30 (77, 78, 0, 0) 44 (80, 85, 
0, 0) 40 (88, 91, 0, 0) 85 (92, 97, 0, 0) 20 (108, 111, 0, 0)  
Machine 3: 65 (41, 43, 0, 0) 39 (57, 61, 0, 0) 86 (66, 70, 0, 0) 1 (76, 79, 0, 0) 67 (83, 86, 
0, 0) 70 (88, 90, 0, 0) 14 (91, 95, 1, 0) 35 (95, 98, 0, 0) 48 (101, 106, 0, 0)  
Machine 4: 33 (36, 37, 0, 0) 52 (54, 58, 0, 0) 2 (67, 68, 0, 0) 94 (71, 72, 0, 0) 66 (75, 77, 
0, 0) 57 (78, 81, 0, 0) 87 (84, 85, 0, 0) 59 (88, 90, 3, 0) 13 (90, 92, 2, 0) 22 (92, 97, 0, 0) 
80 (98, 102, 0, 0) 29 (113, 117, 0, 0)  
Machine 5: 6 (37, 39, 0, 0) 18 (53, 54, 0, 0) 76 (66, 70, 0, 0) 56 (72, 77, 0, 0) 91 (78, 82, 
0, 0) 8 (85, 90, 0, 0) 3 (90, 95, 1, 0) 47 (95, 98, 0, 0) 55 (98, 99, 0, 0) 64 (103, 108, 0, 0) 
19 (114, 117, 0, 0)  
Machine 6: 89 (23, 24, 0, 0) 24 (50, 52, 0, 0) 7 (60, 62, 0, 0) 58 (71, 73, 0, 0) 11 (78, 80, 
0, 0) 88 (83, 85, 0, 0) 15 (88, 90, 0, 0) 92 (92, 96, 0, 0) 34 (96, 99, 0, 0) 31 (104, 109, 0, 
0)  
Machine 7: 9 (28, 29, 0, 0) 32 (52, 54, 0, 0) 46 (60, 62, 0, 0) 37 (69, 71, 0, 0) 54 (74, 78, 
0, 0) 75 (82, 87, 0, 0) 42 (88, 92, 3, 0) 16 (92, 96, 1, 0) 10 (96, 99, 0, 0) 62 (104, 107, 0, 
0)  
Machine 8: 77 (30, 31, 0, 0) 41 (50, 51, 0, 0) 50 (59, 62, 0, 0) 69 (69, 71, 0, 0) 68 (73, 76, 
0, 0) 4 (78, 83, 0, 0) 84 (86, 90, 0, 0) 63 (90, 95, 1, 0) 79 (95, 98, 0, 0) 36 (100, 104, 0, 
0) 82 (108, 111, 0, 0)  
Machine 9: 74 (21, 23, 0, 0) 45 (45, 48, 0, 0) 61 (59, 64, 0, 0) 17 (71, 73, 0, 0) 49 (77, 79, 
0, 0) 5 (82, 87, 1, 0) 26 (87, 89, 5, 0) 93 (89, 91, 3, 0) 83 (91, 93, 2, 0) 38 (93, 98, 0, 0) 
53 (103, 106, 0, 0)  
 
Total penalty for crossdock: 48 
 
 
RGTS algorithm 
 
Inbound area 
 
Machine 1: 71 (2, 5, 0, 0) 56 (7, 10, 0, 0) 23 (11, 13, 0, 0) 64 (13, 19, 0, 0) 86 (19, 24, 0, 
0) 2 (36, 41, 0, 0) 40 (41, 43, 0, 0) 92 (45, 47, 1, 0) 29 (47, 52, 0, 0) 51 (52, 58, 0, 0) 81 
(73, 76, 0, 0)  
Machine 2: 53 (3, 5, 0, 0) 77 (6, 8, 0, 0) 33 (13, 16, 0, 0) 10 (17, 20, 0, 0) 72 (24, 28, 0, 
0) 32 (37, 42, 0, 0) 28 (45, 49, 1, 0) 16 (49, 55, 0, 0) 62 (57, 61, 0, 0) 60 (63, 67, 0, 0)  
Machine 3: 26 (5, 11, 0, 0) 47 (15, 20, 0, 0) 89 (24, 29, 0, 0) 6 (31, 34, 0, 0) 22 (34, 37, 0, 
0) 27 (38, 44, 0, 0) 39 (46, 52, 0, 0) 66 (52, 57, 0, 0) 73 (65, 67, 0, 0) 61 (67, 69, 3, 0) 69 
(69, 73, 0, 0)  
Machine 4: 37 (5, 10, 0, 0) 54 (13, 19, 1, 0) 7 (19, 21, 0, 0) 21 (30, 32, 0, 0) 24 (39, 42, 0, 
0) 18 (45, 51, 1, 0) 3 (51, 56, 0, 0) 70 (56, 62, 0, 0) 88 (65, 68, 0, 0) 57 (69, 71, 0, 0) 13 
(75, 81, 0, 0)  
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Machine 5: 83 (5, 8, 0, 0) 38 (17, 23, 0, 0) 42 (42, 44, 0, 0) 91 (45, 51, 1, 0) 50 (51, 53, 0, 
0) 8 (64, 66, 0, 0) 45 (67, 71, 0, 0) 9 (75, 80, 0, 0)  
Machine 6: 52 (2, 7, 0, 0) 63 (9, 15, 0, 0) 76 (15, 21, 0, 0) 41 (30, 36, 0, 0) 68 (42, 47, 1, 
0) 36 (47, 53, 0, 0) 20 (53, 56, 0, 0) 84 (56, 62, 0, 0) 48 (64, 70, 0, 0) 30 (71, 73, 0, 0)  
Machine 7: 14 (3, 8, 0, 0) 67 (12, 14, 0, 0) 31 (15, 18, 0, 0) 1 (18, 21, 0, 0) 15 (21, 25, 0, 
0) 19 (31, 33, 0, 0) 35 (43, 49, 1, 0) 17 (49, 53, 3, 0) 93 (53, 56, 1, 0) 43 (56, 58, 0, 0) 82 
(61, 63, 0, 0) 34 (67, 70, 0, 0) 44 (77, 81, 0, 0)  
Machine 8: 79 (5, 7, 0, 0) 65 (8, 11, 0, 0) 75 (15, 17, 0, 0) 58 (17, 21, 2, 0) 87 (30, 33, 0, 
0) 55 (42, 44, 0, 0) 74 (45, 47, 0, 0) 46 (48, 50, 0, 0) 11 (50, 54, 0, 0) 80 (56, 59, 1, 0) 5 
(67, 70, 0, 0) 90 (72, 74, 0, 0)  
Machine 9: 59 (5, 8, 0, 0) 49 (14, 20, 0, 0) 25 (21, 26, 0, 0) 85 (42, 48, 0, 0) 78 (48, 53, 0, 
0) 12 (60, 66, 0, 0) 4 (69, 72, 0, 0)  
 
Outbound area 
 
Machine 1: 90 (58, 60, 0, 0) 21 (67, 69, 0, 0) 94 (71, 72, 0, 0) 71 (76, 78, 0, 0) 4 (78, 83, 
0, 0) 23 (83, 84, 0, 0) 42 (88, 92, 3, 0) 13 (92, 94, 0, 0) 78 (94, 96, 0, 0) 72 (96, 100, 0, 
0) 53 (103, 106, 0, 0)  
Machine 2: 89 (23, 24, 0, 0) 25 (45, 46, 0, 0) 41 (50, 51, 0, 0) 28 (69, 74, 0, 0) 66 (75, 77, 
0, 0) 30 (77, 78, 0, 0) 44 (80, 85, 0, 0) 40 (88, 91, 0, 0) 85 (91, 96, 1, 0) 10 (96, 99, 0, 0)  
Machine 3: 39 (57, 61, 0, 0) 1 (76, 79, 0, 0) 67 (83, 86, 0, 0) 84 (86, 90, 0, 0) 14 (91, 95, 
1, 0) 35 (95, 98, 0, 0) 48 (101, 106, 0, 0)  
Machine 4: 52 (54, 58, 0, 0) 43 (58, 62, 0, 0) 2 (67, 68, 0, 0) 51 (71, 73, 0, 0) 57 (78, 81, 
0, 0) 15 (88, 90, 0, 0) 59 (90, 92, 1, 0) 22 (92, 97, 0, 0) 80 (98, 102, 0, 0) 73 (107, 109, 0, 
0) 29 (113, 117, 0, 0)  
Machine 5: 74 (21, 23, 0, 0) 45 (45, 48, 0, 0) 24 (50, 52, 0, 0) 18 (53, 54, 0, 0) 86 (66, 70, 
0, 0) 56 (72, 77, 0, 0) 91 (78, 82, 0, 0) 12 (85, 89, 0, 0) 3 (90, 95, 1, 0) 47 (95, 98, 0, 0) 
55 (98, 99, 0, 0) 64 (103, 108, 0, 0) 82 (108, 111, 0, 0) 19 (114, 117, 0, 0)  
Machine 6: 81 (27, 28, 0, 0) 9 (28, 29, 0, 0) 7 (60, 62, 0, 0) 68 (73, 76, 0, 0) 88 (83, 85, 0, 
0) 8 (85, 90, 0, 0) 93 (90, 92, 2, 0) 92 (92, 96, 0, 0) 34 (96, 99, 0, 0) 62 (104, 107, 0, 0)  
Machine 7: 33 (36, 37, 0, 0) 6 (37, 39, 0, 0) 32 (52, 54, 0, 0) 61 (59, 64, 0, 0) 37 (69, 71, 
0, 0) 17 (71, 73, 0, 0) 54 (74, 78, 0, 0) 11 (78, 80, 0, 0) 87 (84, 85, 0, 0) 60 (88, 93, 3, 0) 
16 (93, 97, 0, 0) 31 (104, 109, 0, 0)  
Machine 8: 77 (30, 31, 0, 0) 50 (59, 62, 0, 0) 69 (69, 71, 0, 0) 75 (82, 87, 0, 0) 63 (88, 93, 
3, 0) 83 (93, 95, 0, 0) 79 (95, 98, 0, 0)  
Machine 9: 65 (41, 43, 0, 0) 27 (48, 49, 0, 0) 46 (60, 62, 0, 0) 76 (66, 70, 0, 0) 58 (71, 73, 
0, 0) 49 (77, 79, 0, 0) 5 (83, 88, 0, 0) 70 (88, 90, 0, 0) 26 (91, 93, 1, 0) 38 (93, 98, 0, 0) 
36 (100, 104, 0, 0) 20 (108, 111, 0, 0)  
 
Total penalty for crossdock: 33 
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Appendix 11 

 

Results of the RGLS and RGLSTS Algorithms for the 

first 14 Optimal Workers Allocation for the 

Crossdocking - JIT Scheduling Problem Instances 

shown in Appendix 8 

 

The RGLS algorithm solution shown corresponds to its best RGLSTS algorithm 

solution for each problem instance. 

Instance 1 
RGLS algorithm 
Current center point: ( 5, 6 ) 
Current center point: ( 4, 5 ) 
Current center point: ( 3, 4 ) 
Current center point: ( 2, 3 ) 
Current center point: ( 2, 2 ) 
Current center point: ( 2, 1 ) 
 
Inbound area 
 
           i (si,ci,ei,ti) 
Machine 1: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28, 
34, 0, 0)  
Machine 2: 10 (1, 4, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0) 
 
Outbound area 
 
           j (Sj, Cj, Ej, Tj) 
Machine 1: 5 (14, 15, 0, 0) 3 (21, 24, 2, 0) 11 (24, 26, 1, 0) 7 (26, 29, 0, 0) 9 (30, 32, 0, 
0) 4 (44, 46, 0, 0) 2 (51, 54, 0, 0) 1 (56, 58, 0, 0) 10 (59, 64, 4, 0) 6 (64, 68, 0, 0) 8 (72, 
77, 0, 0) 
 
Total penalty for scheduling: 111 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 10 (1, 4, 0, 0) 9 (6, 9, 1, 0) 8 (9, 15, 1, 0) 2 (15, 17, 0, 1) 7 (28, 34, 0, 0)  
Machine 2: 6 (1, 3, 0, 0) 4 (4, 6, 0, 0) 3 (6, 11, 2, 0) 5 (11, 16, 0, 0) 1 (22, 24, 0, 0) 
 
Outbound area 
 
Machine 1: 5 (14, 15, 0, 0) 3 (21, 24, 2, 0) 11 (24, 26, 1, 0) 7 (26, 29, 0, 0) 9 (30, 32, 0, 
0) 4 (44, 46, 0, 0) 2 (51, 54, 0, 0) 1 (56, 58, 0, 0) 10 (59, 64, 4, 0) 6 (64, 68, 0, 0) 8 (72, 
77, 0, 0) 
 
Total penalty for scheduling: 111 
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Machines cost: $3000, Scheduling cost: $111, Total cost: $3111 
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Instance 2: 
RGLS algorithm 
 
Current center point: ( 8, 7 ) 
Current center point: ( 7, 6 ) 
Current center point: ( 6, 5 ) 
Current center point: ( 5, 4 ) 
Current center point: ( 4, 3 ) 
Current center point: ( 3, 2 ) 
Current center point: ( 2, 1 ) 
 
Inbound area 
 
Machine 1: 2 (2, 6, 0, 0) 1 (14, 16, 3, 0) 3 (16, 19, 0, 0) 8 (19, 25, 0, 1) 15 (25, 27, 0, 1) 
13 (27, 29, 0, 1) 9 (29, 34, 0, 1) 12 (34, 36, 2, 0) 11 (36, 42, 0, 3)  
Machine 2: 7 (5, 11, 0, 0) 5 (14, 20, 2, 0) 10 (20, 26, 0, 1) 4 (26, 31, 0, 2) 6 (33, 35, 0, 0) 
14 (35, 41, 0, 2) 
 
Outbound area 
 
Machine 1: 6 (36, 37, 3, 0) 4 (37, 40, 0, 0) 5 (40, 42, 2, 0) 2 (42, 44, 0, 0) 10 (44, 49, 0, 
6) 12 (49, 50, 4, 0) 11 (50, 55, 0, 0) 9 (55, 56, 2, 0) 7 (56, 61, 4, 0) 3 (61, 65, 4, 0) 8 
(65, 69, 0, 0) 14 (69, 74, 7, 0) 1 (74, 77, 3, 0) 13 (77, 82, 0, 1) 
 
Total penalty for scheduling: 1936 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 2 (2, 6, 0, 0) 1 (14, 16, 3, 0) 3 (16, 19, 0, 0) 8 (19, 25, 0, 1) 15 (25, 27, 0, 1) 
4 (27, 32, 0, 3) 6 (33, 35, 0, 0) 12 (35, 37, 1, 0) 11 (37, 43, 0, 4)  
Machine 2: 7 (5, 11, 0, 0) 5 (14, 20, 2, 0) 10 (20, 26, 0, 1) 13 (26, 28, 0, 0) 9 (28, 33, 0, 
0) 14 (33, 39, 0, 0) 
 
Outbound area 
 
Machine 1: 4 (32, 35, 5, 0) 5 (35, 37, 7, 0) 6 (37, 38, 2, 0) 10 (38, 43, 0, 0) 2 (43, 45, 0, 
1) 11 (48, 53, 2, 0) 12 (53, 54, 0, 0) 9 (54, 55, 3, 0) 7 (55, 60, 5, 0) 3 (60, 64, 5, 0) 8 
(64, 68, 1, 0) 14 (68, 73, 8, 0) 1 (73, 76, 4, 0) 13 (76, 81, 0, 0) 
 
Total penalty for scheduling: 1148 
 
Machines cost: $3000, Scheduling cost: $1148, Total cost: $4148 
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Instance 3: 
RGLS algorithm 
 
Current center point: ( 10, 11 ) 
Current center point: ( 9, 10 ) 
Current center point: ( 8, 9 ) 
Current center point: ( 7, 8 ) 
Current center point: ( 6, 7 ) 
Current center point: ( 5, 6 ) 
Current center point: ( 4, 5 ) 
Current center point: ( 3, 4 ) 
Current center point: ( 3, 3 ) 
Current center point: ( 3, 2 ) 
 
Inbound area 
 
Machine 1: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 19 (15, 21, 0, 1) 3 (24, 26, 0, 0) 14 (30, 36, 0, 
0) 7 (38, 41, 0, 0)  
Machine 2: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 15 (16, 18, 1, 0) 2 (18, 20, 1, 0) 20 (20, 24, 0, 
3) 5 (27, 29, 0, 0) 18 (34, 40, 0, 0) 
 
Outbound area 
 
Machine 1: 6 (20, 23, 0, 2) 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 3 (45, 47, 0, 0) 10 (47, 51, 2, 
0) 2 (51, 53, 0, 0) 13 (53, 57, 1, 0) 12 (57, 59, 0, 1) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0) 7 
(73, 78, 0, 0)  
Machine 2: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 20 (35, 36, 0, 0) 1 (41, 46, 4, 0) 4 (46, 48, 2, 
0) 15 (48, 51, 1, 0) 16 (51, 55, 1, 0) 14 (55, 60, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0) 
 
Total penalty for scheduling: 922 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 17 (9, 11, 1, 0) 4 (11, 15, 0, 0) 15 (15, 17, 2, 0) 19 (17, 23, 0, 3) 3 (24, 26, 0, 
0) 14 (30, 36, 0, 0) 7 (38, 41, 0, 0)  
Machine 2: 11 (7, 11, 2, 0) 12 (11, 14, 1, 0) 1 (14, 19, 0, 0) 16 (19, 23, 1, 0) 13 (31, 35, 0, 
0) 8 (35, 37, 0, 0) 10 (37, 40, 3, 0)  
Machine 3: 9 (10, 12, 0, 0) 6 (12, 16, 1, 0) 2 (16, 18, 3, 0) 20 (18, 22, 0, 1) 5 (27, 29, 0, 
0) 18 (34, 40, 0, 0) 
 
Outbound area 
 
Machine 1: 6 (18, 21, 0, 0) 5 (24, 28, 0, 0) 11 (40, 45, 0, 0) 15 (45, 48, 4, 0) 4 (48, 50, 0, 
0) 2 (50, 52, 1, 0) 13 (52, 56, 2, 0) 12 (56, 58, 0, 0) 8 (60, 65, 0, 0) 19 (67, 71, 0, 0) 7 
(73, 78, 0, 0)  
Machine 2: 21 (15, 16, 0, 0) 9 (23, 26, 0, 2) 20 (35, 36, 0, 0) 1 (40, 45, 5, 0) 3 (45, 47, 0, 
0) 10 (47, 51, 2, 0) 16 (51, 55, 1, 0) 14 (55, 60, 0, 0) 17 (64, 68, 0, 0) 18 (68, 72, 0, 0) 
 
Total penalty for scheduling: 629 
 
Machines cost: $5000, Scheduling cost: $629, Total cost: $5629 



 107

Instance 4: 
RGLS algorithm 
 
Current center point: ( 16, 17 ) 
Current center point: ( 15, 16 ) 
Current center point: ( 14, 15 ) 
Current center point: ( 13, 14 ) 
Current center point: ( 12, 13 ) 
Current center point: ( 11, 12 ) 
Current center point: ( 10, 11 ) 
Current center point: ( 9, 10 ) 
Current center point: ( 8, 9 ) 
Current center point: ( 7, 8 ) 
Current center point: ( 6, 7 ) 
Current center point: ( 5, 6 ) 
Current center point: ( 4, 5 ) 
Current center point: ( 3, 4 ) 
Current center point: ( 3, 3 ) 
 
Inbound area 
 
Machine 1: 25 (0, 3, 2, 0) 23 (3, 8, 1, 0) 1 (8, 13, 0, 2) 22 (13, 18, 1, 0) 19 (18, 21, 1, 0) 
28 (21, 26, 0, 1) 20 (27, 33, 3, 0) 30 (33, 36, 3, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29 
(49, 51, 0, 0)  
Machine 2: 5 (2, 7, 1, 0) 24 (7, 12, 0, 0) 26 (12, 16, 0, 1) 3 (16, 18, 0, 1) 11 (20, 22, 0, 0) 
9 (24, 29, 0, 0) 14 (30, 34, 2, 0) 32 (34, 36, 2, 0) 21 (36, 39, 0, 0) 4 (39, 44, 0, 1) 16 (46, 
52, 0, 0)  
Machine 3: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 17 (7, 13, 0, 0) 27 (13, 15, 0, 0) 7 (15, 18, 0, 1) 
12 (19, 25, 0, 0) 6 (31, 36, 0, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49, 53, 0, 1) 
 
Outbound area 
 
Machine 1: 27 (37, 38, 0, 0) 4 (42, 43, 0, 0) 17 (49, 54, 5, 0) 13 (54, 59, 2, 0) 29 (59, 61, 
0, 0) 30 (65, 70, 2, 0) 33 (70, 74, 2, 0) 9 (74, 78, 0, 0) 5 (81, 84, 0, 0)  
Machine 2: 11 (22, 24, 0, 0) 16 (40, 42, 1, 0) 32 (42, 46, 1, 0) 24 (46, 49, 3, 0) 7 (49, 51, 
2, 0) 20 (51, 52, 2, 0) 19 (52, 54, 4, 0) 23 (54, 59, 2, 0) 22 (59, 64, 2, 0) 14 (64, 66, 2, 0) 
10 (66, 71, 0, 0) 1 (76, 81, 0, 0)  
Machine 3: 25 (26, 29, 0, 0) 21 (50, 51, 0, 0) 34 (52, 54, 4, 0) 12 (54, 58, 0, 0) 18 (59, 60, 
0, 0) 31 (60, 61, 0, 0) 8 (61, 63, 1, 0) 15 (63, 64, 1, 0) 3 (64, 66, 2, 0) 6 (66, 68, 2, 0) 26 
(68, 71, 1, 0) 28 (71, 73, 0, 0) 2 (78, 82, 0, 0) 
 
Total penalty for scheduling: 958 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 25 (0, 3, 2, 0) 5 (3, 8, 0, 0) 17 (8, 14, 0, 1) 22 (14, 19, 0, 0) 28 (20, 25, 0, 0) 
20 (27, 33, 3, 0) 30 (33, 36, 3, 0) 18 (36, 41, 0, 0) 2 (43, 49, 1, 0) 29 (49, 51, 0, 0)  
Machine 2: 23 (1, 6, 3, 0) 1 (6, 11, 0, 0) 26 (11, 15, 0, 0) 3 (15, 17, 0, 0) 19 (17, 20, 2, 0) 
11 (20, 22, 0, 0) 9 (24, 29, 0, 0) 14 (30, 34, 2, 0) 32 (34, 36, 2, 0) 21 (36, 39, 0, 0) 4 (39, 
44, 0, 1) 16 (46, 52, 0, 0)  
Machine 3: 15 (1, 5, 0, 0) 13 (5, 7, 0, 1) 24 (7, 12, 0, 0) 27 (12, 14, 1, 0) 7 (14, 17, 0, 0) 
12 (19, 25, 0, 0) 6 (31, 36, 0, 0) 10 (36, 42, 0, 0) 8 (45, 49, 0, 0) 31 (49, 53, 0, 1) 
 
Outbound area 
 
Machine 1: 27 (37, 38, 0, 0) 4 (42, 43, 0, 0) 17 (50, 55, 4, 0) 13 (55, 60, 1, 0) 31 (60, 61, 
0, 0) 14 (65, 67, 1, 0) 30 (67, 72, 0, 0) 9 (74, 78, 0, 0) 5 (81, 84, 0, 0)  
Machine 2: 11 (22, 24, 0, 0) 16 (41, 43, 0, 0) 32 (43, 47, 0, 0) 21 (50, 51, 0, 0) 7 (51, 53, 
0, 0) 20 (53, 54, 0, 0) 19 (54, 56, 2, 0) 23 (56, 61, 0, 0) 22 (61, 66, 0, 0) 10 (66, 71, 0, 0) 
28 (71, 73, 0, 0) 1 (76, 81, 0, 0)  
Machine 3: 25 (26, 29, 0, 0) 24 (49, 52, 0, 0) 34 (52, 54, 4, 0) 12 (54, 58, 0, 0) 18 (58, 59, 
1, 0) 29 (59, 61, 0, 0) 8 (62, 64, 0, 0) 15 (64, 65, 0, 0) 3 (65, 67, 1, 0) 6 (67, 69, 1, 0) 26 
(69, 72, 0, 0) 33 (72, 76, 0, 0) 2 (78, 82, 0, 0) 
 
Total penalty for scheduling: 434 
 
Machines cost: $6000, Scheduling cost: $434, Total cost: $6434 
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Instance 5: 
RGLS algorithm 
 
Current center point: ( 15, 15 ) 
Current center point: ( 14, 14 ) 
Current center point: ( 13, 13 ) 
Current center point: ( 12, 12 ) 
Current center point: ( 11, 11 ) 
Current center point: ( 10, 10 ) 
Current center point: ( 9, 9 ) 
Current center point: ( 8, 8 ) 
Current center point: ( 7, 7 ) 
Current center point: ( 6, 6 ) 
Current center point: ( 5, 5 ) 
Current center point: ( 4, 4 ) 
Current center point: ( 4, 3 ) 
 
Inbound area 
 
Machine 1: 18 (10, 16, 0, 0) 17 (19, 24, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37, 0, 0) 26 (40, 46, 
0, 0) 14 (46, 52, 2, 0)  
Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 19 (23, 27, 0, 0) 23 (29, 33, 
0, 0) 11 (33, 36, 0, 0) 2 (37, 41, 0, 0) 25 (42, 47, 0, 0)  
Machine 3: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32, 0, 
0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 3 (45, 48, 3, 0)  
Machine 4: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 6 (18, 20, 0, 0) 5 (20, 22, 0, 0) 22 (23, 25, 0, 
0) 7 (27, 33, 0, 0) 30 (34, 39, 0, 0) 4 (41, 47, 0, 0) 
 
Outbound area 
 
Machine 1: 14 (25, 26, 0, 0) 1 (38, 40, 0, 0) 16 (49, 54, 3, 0) 3 (54, 59, 2, 0) 27 (59, 62, 3, 
0) 25 (62, 66, 1, 0) 24 (66, 71, 0, 0) 5 (74, 79, 0, 0) 9 (80, 85, 0, 0)  
Machine 2: 7 (32, 33, 0, 0) 29 (44, 48, 7, 0) 21 (48, 52, 0, 0) 8 (52, 55, 0, 1) 13 (55, 58, 0, 
0) 11 (58, 61, 0, 0) 4 (61, 62, 0, 0) 17 (62, 67, 0, 0) 26 (69, 72, 0, 0) 2 (75, 80, 0, 0) 18 
(89, 94, 0, 0)  
Machine 3: 28 (39, 43, 0, 0) 22 (46, 51, 5, 0) 15 (51, 56, 3, 0) 19 (56, 59, 6, 0) 20 (59, 64, 
2, 0) 10 (64, 68, 0, 1) 23 (69, 70, 0, 0) 12 (72, 75, 0, 0) 6 (79, 82, 0, 0) 
 
Total penalty for scheduling: 438 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 18 (10, 16, 0, 0) 17 (19, 24, 0, 0) 21 (26, 32, 1, 0) 15 (32, 37, 0, 0) 26 (40, 46, 
0, 0) 14 (46, 52, 2, 0)  
Machine 2: 9 (10, 12, 0, 0) 13 (12, 14, 0, 0) 12 (15, 20, 0, 0) 19 (23, 27, 0, 0) 23 (29, 33, 
0, 0) 11 (33, 36, 0, 0) 2 (37, 41, 0, 0) 4 (41, 47, 0, 0)  
Machine 3: 27 (4, 9, 0, 0) 10 (12, 18, 0, 0) 24 (19, 22, 0, 0) 28 (26, 30, 0, 0) 20 (30, 32, 0, 
0) 16 (32, 35, 0, 2) 1 (36, 41, 0, 0) 3 (45, 48, 3, 0)  
Machine 4: 8 (10, 14, 0, 0) 29 (15, 17, 0, 0) 6 (18, 20, 0, 0) 5 (20, 22, 0, 0) 22 (23, 25, 0, 
0) 7 (27, 33, 0, 0) 30 (34, 39, 0, 0) 25 (42, 47, 0, 0) 
 
Outbound area 
 
Machine 1: 16 (44, 49, 8, 0) 15 (49, 54, 5, 0) 20 (54, 59, 7, 0) 27 (59, 62, 3, 0) 25 (62, 66, 
1, 0) 24 (66, 71, 0, 0) 6 (79, 82, 0, 0)  
Machine 2: 14 (25, 26, 0, 0) 1 (38, 40, 0, 0) 21 (48, 52, 0, 0) 8 (52, 55, 0, 1) 13 (55, 58, 0, 
0) 11 (58, 61, 0, 0) 4 (61, 62, 0, 0) 17 (62, 67, 0, 0) 23 (69, 70, 0, 0) 12 (72, 75, 0, 0) 2 
(75, 80, 0, 0) 9 (80, 85, 0, 0) 18 (89, 94, 0, 0)  
Machine 3: 7 (32, 33, 0, 0) 28 (39, 43, 0, 0) 22 (46, 51, 5, 0) 29 (51, 55, 0, 0) 3 (55, 60, 1, 
0) 19 (60, 63, 2, 0) 10 (63, 67, 0, 0) 26 (69, 72, 0, 0) 5 (74, 79, 0, 0) 
 
Total penalty for scheduling: 338 
 
Machines cost: $7000, Scheduling cost: $338, Total cost: $7338 
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Instance 6: 
RGLS algorithm 
 
Current center point: ( 16, 17 ) 
Current center point: ( 15, 16 ) 
Current center point: ( 14, 15 ) 
Current center point: ( 13, 14 ) 
Current center point: ( 12, 13 ) 
Current center point: ( 11, 12 ) 
Current center point: ( 10, 11 ) 
Current center point: ( 9, 10 ) 
Current center point: ( 8, 9 ) 
Current center point: ( 7, 8 ) 
Current center point: ( 6, 7 ) 
Current center point: ( 5, 6 ) 
Current center point: ( 4, 5 ) 
Current center point: ( 3, 4 ) 
Current center point: ( 3, 3 ) 
 
Inbound area 
 
Machine 1: 12 (7, 9, 0, 0) 8 (11, 17, 1, 0) 32 (17, 21, 1, 0) 26 (21, 23, 1, 0) 4 (23, 26, 0, 
0) 20 (26, 29, 0, 0) 3 (32, 38, 1, 0) 17 (38, 44, 2, 0) 6 (44, 48, 4, 0) 27 (48, 53, 1, 0) 1 
(53, 57, 0, 1)  
Machine 2: 24 (7, 11, 0, 0) 5 (11, 13, 0, 0) 13 (14, 18, 2, 0) 9 (18, 22, 0, 0) 30 (23, 28, 0, 
0) 23 (29, 31, 0, 0) 29 (36, 38, 0, 0) 25 (40, 42, 0, 0) 11 (42, 48, 0, 0) 18 (48, 51, 0, 0) 7 
(51, 55, 0, 1)  
Machine 3: 14 (0, 4, 3, 0) 28 (4, 7, 0, 0) 21 (12, 15, 0, 0) 10 (15, 18, 0, 0) 22 (18, 23, 0, 
0) 16 (27, 32, 0, 0) 2 (35, 39, 0, 0) 15 (39, 43, 0, 0) 31 (43, 49, 2, 0) 19 (49, 55, 0, 0) 
 
Outbound area 
 
Machine 1: 27 (25, 26, 0, 0) 10 (27, 29, 0, 0) 29 (46, 48, 0, 0) 33 (49, 54, 2, 0) 6 (54, 58, 
0, 0) 4 (60, 65, 6, 0) 13 (65, 69, 4, 0) 25 (69, 71, 4, 0) 5 (71, 76, 0, 0) 19 (81, 86, 0, 0)  
Machine 2: 28 (27, 28, 0, 0) 9 (36, 38, 0, 0) 12 (44, 47, 1, 0) 22 (47, 50, 0, 0) 11 (54, 55, 
0, 0) 15 (60, 62, 3, 0) 14 (62, 66, 4, 0) 20 (66, 71, 1, 0) 8 (71, 75, 0, 0) 16 (75, 79, 0, 0) 
3 (81, 85, 0, 0)  
Machine 3: 18 (22, 23, 0, 0) 17 (25, 27, 0, 0) 23 (39, 42, 0, 0) 21 (43, 46, 1, 0) 31 (46, 49, 
0, 0) 32 (56, 58, 2, 0) 30 (58, 63, 5, 0) 1 (63, 68, 2, 0) 26 (68, 71, 3, 0) 24 (71, 74, 0, 0) 
2 (75, 80, 0, 0) 7 (88, 91, 0, 0) 
 
Total penalty for scheduling: 256 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 28 (4, 7, 0, 0) 24 (7, 11, 0, 0) 8 (12, 18, 0, 0) 32 (18, 22, 0, 0) 26 (22, 24, 0, 
0) 20 (26, 29, 0, 0) 29 (36, 38, 0, 0) 17 (38, 44, 2, 0) 6 (44, 48, 4, 0) 27 (48, 53, 1, 0) 1 
(53, 57, 0, 1)  
Machine 2: 5 (11, 13, 0, 0) 13 (14, 18, 2, 0) 22 (18, 23, 0, 0) 30 (23, 28, 0, 0) 23 (29, 31, 
0, 0) 2 (35, 39, 0, 0) 25 (40, 42, 0, 0) 11 (42, 48, 0, 0) 18 (48, 51, 0, 0) 7 (51, 55, 0, 1)  
Machine 3: 14 (3, 7, 0, 0) 12 (7, 9, 0, 0) 21 (12, 15, 0, 0) 10 (15, 18, 0, 0) 9 (18, 22, 0, 0) 
4 (23, 26, 0, 0) 16 (27, 32, 0, 0) 3 (33, 39, 0, 0) 15 (39, 43, 0, 0) 31 (43, 49, 2, 0) 19 (49, 
55, 0, 0) 
 
Outbound area 
 
Machine 1: 17 (25, 27, 0, 0) 23 (39, 42, 0, 0) 21 (43, 46, 1, 0) 29 (46, 48, 0, 0) 33 (51, 56, 
0, 0) 1 (59, 64, 6, 0) 14 (64, 68, 2, 0) 26 (68, 71, 3, 0) 5 (71, 76, 0, 0) 7 (88, 91, 0, 0)  
Machine 2: 18 (22, 23, 0, 0) 10 (27, 29, 0, 0) 9 (36, 38, 0, 0) 12 (44, 47, 1, 0) 22 (47, 50, 
0, 0) 11 (54, 55, 0, 0) 32 (58, 60, 0, 0) 20 (62, 67, 5, 0) 13 (67, 71, 2, 0) 8 (71, 75, 0, 0) 
16 (75, 79, 0, 0) 3 (81, 85, 0, 0)  
Machine 3: 27 (25, 26, 0, 0) 28 (27, 28, 0, 0) 31 (46, 49, 0, 0) 6 (54, 58, 0, 0) 30 (58, 63, 
5, 0) 15 (63, 65, 0, 0) 4 (65, 70, 1, 0) 24 (70, 73, 1, 0) 25 (73, 75, 0, 0) 2 (75, 80, 0, 0) 
19 (81, 86, 0, 0) 
 
Total penalty for scheduling: 238 
 
Machines cost: $6000, Scheduling cost: $238, Total cost: $6238 
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Instance 7: 
RGLS algorithm 
 
Current center point: ( 15, 15 ) 
Current center point: ( 14, 14 ) 
Current center point: ( 13, 13 ) 
Current center point: ( 12, 12 ) 
Current center point: ( 11, 11 ) 
Current center point: ( 10, 10 ) 
Current center point: ( 9, 9 ) 
Current center point: ( 8, 8 ) 
Current center point: ( 7, 7 ) 
Current center point: ( 6, 6 ) 
Current center point: ( 5, 5 ) 
Current center point: ( 4, 4 ) 
Current center point: ( 3, 3 ) 
Current center point: ( 2, 2 ) 
 
Inbound area 
 
Machine 1: 25 (9, 12, 0, 0) 6 (13, 19, 0, 0) 21 (31, 36, 0, 0) 14 (41, 43, 0, 0) 18 (47, 49, 2, 
0) 15 (49, 54, 0, 0) 8 (57, 61, 0, 0) 9 (62, 64, 0, 0) 28 (64, 66, 0, 0) 23 (69, 74, 0, 0) 7 
(76, 80, 0, 0) 5 (81, 86, 0, 0) 2 (86, 89, 1, 0) 22 (89, 91, 1, 0) 26 (91, 96, 0, 4)  
Machine 2: 29 (8, 10, 0, 0) 20 (17, 19, 0, 0) 13 (32, 35, 1, 0) 17 (38, 41, 0, 0) 11 (47, 50, 
2, 0) 27 (50, 52, 0, 0) 1 (59, 62, 0, 0) 19 (63, 65, 0, 0) 4 (65, 71, 0, 0) 30 (71, 73, 0, 0) 
16 (75, 78, 0, 0) 10 (81, 83, 0, 0) 12 (84, 88, 0, 0) 24 (88, 92, 0, 0) 3 (92, 96, 0, 1) 
 
Outbound area 
 
Machine 1: 12 (35, 37, 0, 0) 27 (58, 59, 0, 0) 4 (66, 69, 0, 0) 28 (73, 76, 0, 0) 21 (89, 94, 
0, 0) 8 (97, 99, 0, 0) 2 (102, 105, 0, 0) 25 (105, 110, 1, 0) 15 (110, 113, 3, 0) 5 (113, 117, 
1, 0) 3 (117, 120, 0, 0) 30 (120, 123, 0, 0) 11 (124, 127, 0, 0) 10 (128, 131, 0, 0)  
Machine 2: 6 (46, 47, 0, 0) 14 (59, 62, 0, 0) 18 (71, 73, 0, 0) 1 (85, 86, 0, 0) 13 (87, 91, 3, 
0) 22 (91, 92, 1, 0) 19 (92, 97, 1, 0) 29 (97, 101, 0, 0) 16 (101, 106, 1, 0) 17 (106, 107, 5, 
0) 26 (107, 112, 5, 0) 20 (112, 115, 4, 0) 23 (115, 118, 2, 0) 9 (118, 122, 0, 0) 24 (123, 125, 
1, 0) 7 (125, 130, 0, 0) 
 
Total penalty for scheduling: 535 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 25 (9, 12, 0, 0) 6 (13, 19, 0, 0) 21 (31, 36, 0, 0) 14 (41, 43, 0, 0) 18 (47, 49, 2, 
0) 15 (49, 54, 0, 0) 8 (57, 61, 0, 0) 9 (62, 64, 0, 0) 28 (64, 66, 0, 0) 23 (69, 74, 0, 0) 7 
(76, 80, 0, 0) 5 (81, 86, 0, 0) 2 (86, 89, 1, 0) 22 (89, 91, 1, 0) 26 (91, 96, 0, 4)  
Machine 2: 29 (8, 10, 0, 0) 20 (17, 19, 0, 0) 13 (32, 35, 1, 0) 17 (38, 41, 0, 0) 11 (47, 50, 
2, 0) 27 (50, 52, 0, 0) 1 (59, 62, 0, 0) 19 (63, 65, 0, 0) 4 (65, 71, 0, 0) 30 (71, 73, 0, 0) 
16 (75, 78, 0, 0) 10 (81, 83, 0, 0) 12 (84, 88, 0, 0) 24 (88, 92, 0, 0) 3 (92, 96, 0, 1) 
 
Outbound area 
 
Machine 1: 12 (35, 37, 0, 0) 27 (58, 59, 0, 0) 4 (66, 69, 0, 0) 28 (73, 76, 0, 0) 21 (89, 94, 
0, 0) 8 (95, 97, 2, 0) 29 (97, 101, 0, 0) 2 (102, 105, 0, 0) 25 (105, 110, 1, 0) 5 (110, 114, 
4, 0) 20 (114, 117, 2, 0) 3 (117, 120, 0, 0) 30 (120, 123, 0, 0) 11 (124, 127, 0, 0) 10 (128, 
131, 0, 0)  
Machine 2: 6 (46, 47, 0, 0) 14 (59, 62, 0, 0) 18 (71, 73, 0, 0) 1 (85, 86, 0, 0) 13 (88, 92, 2, 
0) 22 (92, 93, 0, 0) 19 (93, 98, 0, 0) 16 (101, 106, 1, 0) 26 (106, 111, 6, 0) 17 (111, 112, 0, 
0) 15 (112, 115, 1, 0) 23 (115, 118, 2, 0) 9 (118, 122, 0, 0) 24 (123, 125, 1, 0) 7 (125, 130, 
0, 0) 
 
Total penalty for scheduling: 529 
 
Machines cost: $4000, Scheduling cost: $529, Total cost: $4529 
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Instance 8: 
RGLS algorithm 
 
Current center point: ( 20, 19 ) 
Current center point: ( 19, 18 ) 
Current center point: ( 18, 17 ) 
Current center point: ( 17, 16 ) 
Current center point: ( 16, 15 ) 
Current center point: ( 15, 14 ) 
Current center point: ( 14, 13 ) 
Current center point: ( 13, 12 ) 
Current center point: ( 12, 11 ) 
Current center point: ( 11, 10 ) 
Current center point: ( 10, 9 ) 
Current center point: ( 9, 8 ) 
Current center point: ( 8, 7 ) 
Current center point: ( 7, 6 ) 
Current center point: ( 6, 5 ) 
Current center point: ( 5, 4 ) 
Current center point: ( 4, 3 ) 
 
Inbound area 
 
Machine 1: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 7 (21, 26, 0, 0) 37 (26, 28, 0, 0) 9 (28, 33, 1, 0) 
20 (33, 37, 0, 0) 16 (37, 39, 0, 0) 18 (40, 44, 1, 0) 38 (44, 46, 3, 0) 27 (52, 55, 0, 0) 33 
(59, 65, 0, 0)  
Machine 2: 1 (6, 12, 0, 0) 28 (13, 15, 0, 0) 29 (24, 30, 0, 0) 12 (31, 34, 1, 0) 30 (34, 37, 0, 
1) 13 (37, 39, 0, 0) 39 (39, 41, 0, 0) 10 (41, 47, 0, 0) 14 (48, 51, 0, 0) 34 (56, 62, 0, 0)  
Machine 3: 35 (5, 7, 0, 0) 6 (10, 16, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 17 (31, 36, 2, 
0) 5 (36, 38, 1, 0) 3 (38, 42, 1, 0) 25 (42, 46, 2, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)  
Machine 4: 24 (10, 14, 0, 0) 15 (18, 24, 0, 0) 26 (24, 28, 0, 0) 31 (29, 35, 2, 0) 4 (35, 37, 
1, 0) 22 (37, 42, 1, 0) 8 (42, 46, 0, 0) 11 (47, 52, 0, 0) 23 (57, 62, 0, 0) 
 
Outbound area 
 
Machine 1: 27 (36, 37, 0, 0) 24 (44, 45, 0, 0) 21 (52, 55, 1, 0) 4 (55, 59, 6, 0) 14 (59, 60, 
5, 0) 19 (60, 64, 4, 0) 34 (64, 68, 2, 0) 33 (68, 73, 3, 0) 8 (73, 77, 2, 0) 29 (77, 78, 4, 0) 
25 (78, 83, 1, 0) 9 (83, 85, 0, 0) 23 (86, 89, 0, 0) 1 (90, 95, 0, 0)  
Machine 2: 10 (33, 34, 0, 0) 3 (43, 44, 0, 0) 12 (46, 49, 0, 0) 18 (55, 58, 0, 0) 35 (60, 62, 
3, 0) 13 (62, 67, 2, 0) 28 (67, 72, 0, 0) 22 (72, 77, 0, 1) 36 (77, 79, 1, 0) 38 (79, 84, 0, 0) 
37 (84, 89, 0, 0) 20 (100, 105, 0, 0)  
Machine 3: 15 (42, 43, 0, 0) 6 (45, 49, 0, 0) 31 (51, 54, 2, 0) 2 (54, 59, 2, 0) 16 (59, 64, 5, 
0) 17 (64, 69, 3, 0) 26 (69, 72, 3, 0) 7 (72, 74, 3, 0) 5 (74, 78, 3, 0) 11 (78, 80, 1, 0) 30 
(80, 85, 0, 0) 32 (86, 91, 0, 0) 
 
Total penalty for scheduling: 272 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 2 (7, 9, 0, 0) 40 (13, 15, 0, 0) 7 (21, 26, 0, 0) 37 (26, 28, 0, 0) 9 (28, 33, 1, 0) 
20 (33, 37, 0, 0) 16 (37, 39, 0, 0) 18 (40, 44, 1, 0) 38 (44, 46, 3, 0) 27 (52, 55, 0, 0) 33 
(59, 65, 0, 0)  
Machine 2: 1 (6, 12, 0, 0) 28 (13, 15, 0, 0) 15 (18, 24, 0, 0) 29 (24, 30, 0, 0) 12 (32, 35, 0, 
0) 4 (35, 37, 1, 0) 13 (37, 39, 0, 0) 39 (39, 41, 0, 0) 10 (41, 47, 0, 0) 14 (48, 51, 0, 0) 34 
(56, 62, 0, 0)  
Machine 3: 35 (5, 7, 0, 0) 6 (10, 16, 0, 0) 32 (21, 25, 0, 0) 36 (25, 30, 0, 0) 17 (31, 36, 2, 
0) 5 (36, 38, 1, 0) 3 (38, 42, 1, 0) 25 (42, 46, 2, 0) 21 (49, 53, 0, 0) 19 (57, 63, 0, 0)  
Machine 4: 24 (10, 14, 0, 0) 26 (23, 27, 1, 0) 31 (27, 33, 4, 0) 30 (33, 36, 0, 0) 22 (37, 42, 
1, 0) 8 (42, 46, 0, 0) 11 (47, 52, 0, 0) 23 (57, 62, 0, 0) 
 
Outbound area 
 
Machine 1: 27 (36, 37, 0, 0) 24 (44, 45, 0, 0) 21 (52, 55, 1, 0) 2 (55, 60, 1, 0) 4 (60, 64, 1, 
0) 14 (64, 65, 0, 0) 34 (65, 69, 1, 0) 33 (69, 74, 2, 0) 8 (74, 78, 1, 0) 25 (78, 83, 1, 0) 9 
(83, 85, 0, 0) 23 (86, 89, 0, 0) 1 (90, 95, 0, 0)  
Machine 2: 10 (33, 34, 0, 0) 3 (43, 44, 0, 0) 12 (46, 49, 0, 0) 18 (54, 57, 1, 0) 28 (57, 62, 
10, 0) 19 (62, 66, 2, 0) 17 (66, 71, 1, 0) 22 (71, 76, 0, 0) 36 (76, 78, 2, 0) 29 (78, 79, 3, 
0) 38 (79, 84, 0, 0) 37 (84, 89, 0, 0) 20 (100, 105, 0, 0)  
Machine 3: 15 (42, 43, 0, 0) 6 (45, 49, 0, 0) 31 (53, 56, 0, 0) 16 (57, 62, 7, 0) 35 (62, 64, 
1, 0) 13 (64, 69, 0, 0) 26 (69, 72, 3, 0) 7 (72, 74, 3, 0) 5 (74, 78, 3, 0) 11 (78, 80, 1, 0) 
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30 (80, 85, 0, 0) 32 (86, 91, 0, 0) 
 
Total penalty for scheduling: 63 
 
Machines cost: $7000, Scheduling cost: $63, Total cost: $7063 
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Instance 9: 
RGLS algorithm 
 
Current center point: ( 21, 22 ) 
Current center point: ( 20, 21 ) 
Current center point: ( 19, 20 ) 
Current center point: ( 18, 19 ) 
Current center point: ( 17, 18 ) 
Current center point: ( 16, 17 ) 
Current center point: ( 15, 16 ) 
Current center point: ( 14, 15 ) 
Current center point: ( 13, 14 ) 
Current center point: ( 12, 13 ) 
Current center point: ( 11, 12 ) 
Current center point: ( 10, 11 ) 
Current center point: ( 9, 10 ) 
Current center point: ( 8, 9 ) 
Current center point: ( 7, 8 ) 
Current center point: ( 6, 7 ) 
Current center point: ( 5, 6 ) 
Current center point: ( 5, 5 ) 
Current center point: ( 4, 4 ) 
Current center point: ( 4, 3 ) 
 
Inbound area 
 
Machine 1: 20 (2, 8, 4, 0) 34 (8, 11, 0, 1) 38 (11, 14, 0, 1) 42 (15, 18, 0, 0) 4 (18, 24, 0, 
0) 36 (25, 29, 0, 0) 35 (30, 34, 0, 0) 16 (35, 40, 0, 0) 40 (40, 45, 0, 2) 12 (45, 51, 0, 0) 26 
(55, 57, 0, 0)  
Machine 2: 21 (4, 9, 1, 0) 1 (9, 12, 0, 0) 27 (13, 15, 1, 0) 19 (15, 19, 3, 0) 28 (19, 25, 0, 
1) 8 (26, 31, 0, 0) 7 (31, 36, 1, 0) 23 (36, 41, 0, 0) 6 (43, 45, 0, 0) 5 (45, 51, 0, 0) 29 
(56, 59, 0, 0)  
Machine 3: 31 (4, 9, 2, 0) 18 (9, 12, 1, 0) 13 (12, 17, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28, 0, 
0) 10 (28, 33, 0, 0) 25 (35, 39, 1, 0) 2 (39, 45, 0, 3) 14 (45, 48, 0, 1) 3 (50, 55, 0, 0)  
Machine 4: 30 (6, 9, 2, 0) 15 (9, 15, 0, 0) 33 (19, 22, 0, 0) 39 (22, 25, 0, 0) 9 (27, 30, 0, 
0) 17 (32, 36, 0, 0) 24 (36, 39, 2, 0) 22 (39, 45, 0, 2) 11 (45, 51, 0, 0) 41 (52, 56, 0, 0) 
 
Outbound area 
 
Machine 1: 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 25 (39, 44, 0, 0) 37 (45, 48, 1, 0) 10 (48, 50, 
5, 0) 22 (50, 53, 5, 0) 32 (53, 57, 2, 0) 24 (57, 59, 3, 0) 11 (59, 60, 3, 0) 27 (60, 63, 3, 0) 
19 (63, 64, 3, 0) 6 (64, 69, 0, 0) 3 (72, 74, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0) 42 (89, 
93, 0, 0)  
Machine 2: 35 (31, 32, 0, 0) 9 (36, 38, 0, 0) 14 (42, 45, 0, 0) 43 (46, 47, 2, 0) 7 (47, 49, 6, 
0) 17 (49, 54, 5, 0) 21 (54, 57, 6, 0) 23 (57, 61, 3, 0) 41 (61, 66, 0, 0) 4 (70, 72, 0, 0) 38 
(72, 75, 0, 0) 13 (81, 83, 0, 0) 8 (87, 92, 0, 0)  
Machine 3: 20 (30, 31, 0, 0) 39 (35, 36, 0, 0) 18 (39, 40, 0, 0) 31 (44, 46, 0, 0) 29 (47, 48, 
1, 0) 1 (48, 51, 4, 0) 2 (51, 55, 4, 0) 34 (55, 56, 6, 0) 40 (56, 61, 2, 0) 30 (61, 65, 0, 2) 
16 (65, 70, 0, 1) 12 (70, 73, 0, 0) 5 (73, 75, 0, 0) 33 (83, 86, 0, 0) 
 
Total penalty for scheduling: 1482 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 31 (3, 8, 3, 0) 30 (8, 11, 0, 0) 38 (11, 14, 0, 1) 42 (15, 18, 0, 0) 28 (18, 24, 0, 
0) 36 (25, 29, 0, 0) 35 (30, 34, 0, 0) 16 (35, 40, 0, 0) 40 (40, 45, 0, 2) 12 (45, 51, 0, 0) 26 
(55, 57, 0, 0)  
Machine 2: 21 (4, 9, 1, 0) 1 (9, 12, 0, 0) 13 (12, 17, 0, 0) 4 (18, 24, 0, 0) 9 (27, 30, 0, 0) 
17 (32, 36, 0, 0) 2 (36, 42, 0, 0) 6 (43, 45, 0, 0) 11 (45, 51, 0, 0)  
Machine 3: 34 (7, 10, 0, 0) 18 (10, 13, 0, 0) 27 (14, 16, 0, 0) 37 (17, 23, 0, 0) 32 (25, 28, 
0, 0) 10 (28, 33, 0, 0) 23 (33, 38, 3, 0) 24 (38, 41, 0, 0) 14 (42, 45, 2, 0) 5 (45, 51, 0, 0) 
41 (52, 56, 0, 0)  
Machine 4: 20 (3, 9, 3, 0) 15 (9, 15, 0, 0) 19 (15, 19, 3, 0) 33 (19, 22, 0, 0) 39 (22, 25, 0, 
0) 8 (26, 31, 0, 0) 7 (31, 36, 1, 0) 25 (36, 40, 0, 0) 22 (40, 46, 0, 3) 3 (50, 55, 0, 0) 29 
(56, 59, 0, 0) 
 
Outbound area 
 
Machine 1: 37 (45, 48, 1, 0) 43 (48, 49, 0, 0) 22 (50, 53, 5, 0) 10 (53, 55, 0, 0) 32 (55, 59, 
0, 0) 24 (59, 61, 1, 0) 34 (61, 62, 0, 0) 11 (62, 63, 0, 0) 27 (63, 66, 0, 0) 19 (66, 67, 0, 0) 
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4 (70, 72, 0, 0) 3 (72, 74, 0, 0) 36 (74, 78, 0, 0) 15 (84, 86, 0, 0) 8 (87, 92, 0, 0)  
Machine 2: 35 (31, 32, 0, 0) 39 (35, 36, 0, 0) 9 (36, 38, 0, 0) 18 (39, 40, 0, 0) 14 (42, 45, 
0, 0) 17 (45, 50, 9, 0) 1 (50, 53, 2, 0) 7 (53, 55, 0, 0) 2 (55, 59, 0, 0) 41 (59, 64, 2, 0) 16 
(64, 69, 0, 0) 38 (72, 75, 0, 0) 13 (81, 83, 0, 0)  
Machine 3: 20 (30, 31, 0, 0) 26 (31, 32, 0, 0) 28 (36, 37, 0, 0) 25 (39, 44, 0, 0) 31 (44, 46, 
0, 0) 29 (47, 48, 1, 0) 40 (48, 53, 10, 0) 30 (53, 57, 6, 0) 21 (57, 60, 3, 0) 23 (60, 64, 0, 
0) 6 (64, 69, 0, 0) 12 (70, 73, 0, 0) 5 (73, 75, 0, 0) 33 (83, 86, 0, 0) 42 (89, 93, 0, 0) 
 
Total penalty for scheduling: 656 
 
Machines cost: $7000, Scheduling cost: $656, Total cost: $7656 
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Instance 10: 
RGLS algorithm 
 
Current center point: ( 16, 18 ) 
Current center point: ( 15, 17 ) 
Current center point: ( 14, 16 ) 
Current center point: ( 13, 15 ) 
Current center point: ( 12, 14 ) 
Current center point: ( 11, 13 ) 
Current center point: ( 10, 12 ) 
Current center point: ( 9, 11 ) 
Current center point: ( 8, 10 ) 
Current center point: ( 7, 9 ) 
Current center point: ( 6, 8 ) 
Current center point: ( 5, 7 ) 
Current center point: ( 4, 6 ) 
Current center point: ( 4, 5 ) 
Current center point: ( 4, 4 ) 
Current center point: ( 4, 3 ) 
 
Inbound area 
 
Machine 1: 15 (6, 10, 0, 0) 29 (10, 13, 0, 0) 8 (18, 24, 1, 0) 10 (24, 30, 1, 0) 19 (30, 32, 0, 
1) 4 (32, 37, 0, 1) 2 (44, 46, 0, 0) 16 (46, 50, 0, 0) 18 (52, 55, 0, 0)  
Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (17, 22, 3, 0) 7 (22, 25, 1, 0) 31 (25, 27, 2, 0) 
20 (27, 33, 0, 0) 24 (41, 47, 1, 0) 26 (49, 51, 0, 0) 11 (52, 57, 0, 0)  
Machine 3: 27 (1, 3, 0, 0) 17 (8, 13, 0, 0) 30 (13, 18, 2, 0) 1 (23, 27, 0, 0) 28 (27, 33, 0, 
0) 25 (41, 47, 0, 0) 21 (48, 51, 0, 0)  
Machine 4: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 32 (21, 27, 0, 0) 23 (27, 32, 1, 0) 22 (32, 37, 0, 0) 
12 (44, 49, 0, 0) 13 (51, 57, 0, 0) 
 
Outbound area 
 
Machine 1: 34 (18, 19, 0, 0) 14 (35, 37, 0, 0) 17 (46, 48, 0, 0) 31 (51, 55, 0, 0) 27 (55, 56, 
0, 0) 33 (57, 59, 0, 0) 20 (59, 64, 0, 0) 23 (64, 67, 0, 1) 4 (67, 72, 0, 2) 8 (82, 84, 0, 0) 
10 (92, 97, 0, 0)  
Machine 2: 28 (38, 41, 0, 0) 5 (45, 47, 0, 0) 22 (50, 54, 3, 0) 9 (54, 59, 3, 0) 6 (59, 64, 2, 
0) 2 (64, 67, 2, 0) 19 (67, 70, 0, 0) 3 (70, 75, 0, 0) 18 (89, 90, 0, 0) 29 (94, 98, 0, 0)  
Machine 3: 24 (25, 26, 0, 0) 21 (39, 40, 0, 0) 1 (47, 52, 0, 0) 11 (52, 53, 1, 0) 26 (53, 55, 
1, 0) 25 (55, 57, 3, 0) 7 (57, 59, 2, 0) 13 (59, 60, 1, 0) 12 (60, 62, 0, 1) 16 (62, 66, 1, 0) 
35 (66, 70, 0, 1) 15 (70, 75, 0, 2) 30 (87, 91, 0, 0) 32 (96, 100, 0, 0) 
 
Total penalty for scheduling: 931 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 15 (6, 10, 0, 0) 29 (10, 13, 0, 0) 30 (13, 18, 2, 0) 8 (18, 24, 1, 0) 23 (24, 29, 4, 
0) 19 (29, 31, 0, 0) 22 (32, 37, 0, 0) 2 (44, 46, 0, 0) 16 (46, 50, 0, 0) 13 (51, 57, 0, 0)  
Machine 2: 6 (3, 8, 0, 0) 14 (8, 13, 0, 0) 3 (17, 22, 3, 0) 7 (22, 25, 1, 0) 31 (25, 27, 2, 0) 
20 (27, 33, 0, 0) 24 (41, 47, 1, 0) 26 (49, 51, 0, 0) 11 (52, 57, 0, 0)  
Machine 3: 27 (1, 3, 0, 0) 17 (8, 13, 0, 0) 32 (21, 27, 0, 0) 28 (27, 33, 0, 0) 25 (41, 47, 0, 
0) 21 (48, 51, 0, 0)  
Machine 4: 5 (0, 3, 0, 0) 9 (9, 15, 0, 0) 1 (21, 25, 2, 0) 10 (25, 31, 0, 0) 4 (31, 36, 0, 0) 
12 (44, 49, 0, 0) 18 (52, 55, 0, 0) 
 
Outbound area 
 
Machine 1: 34 (18, 19, 0, 0) 24 (25, 26, 0, 0) 28 (38, 41, 0, 0) 17 (46, 48, 0, 0) 31 (51, 55, 
0, 0) 7 (55, 57, 4, 0) 20 (57, 62, 2, 0) 23 (62, 65, 1, 0) 4 (65, 70, 0, 0) 29 (94, 98, 0, 0)  
Machine 2: 14 (35, 37, 0, 0) 21 (39, 40, 0, 0) 5 (45, 47, 0, 0) 9 (47, 52, 10, 0) 11 (52, 53, 
1, 0) 22 (53, 57, 0, 0) 12 (57, 59, 2, 0) 6 (59, 64, 2, 0) 2 (64, 67, 2, 0) 19 (67, 70, 0, 0) 3 
(70, 75, 0, 0) 18 (89, 90, 0, 0) 10 (92, 97, 0, 0)  
Machine 3: 1 (47, 52, 0, 0) 26 (52, 54, 2, 0) 27 (54, 55, 1, 0) 25 (55, 57, 3, 0) 33 (57, 59, 
0, 0) 13 (59, 60, 1, 0) 16 (60, 64, 3, 0) 35 (64, 68, 1, 0) 15 (68, 73, 0, 0) 8 (82, 84, 0, 0) 
30 (87, 91, 0, 0) 32 (96, 100, 0, 0) 
 
Total penalty for scheduling: 51 
 
Machines cost: $7000, Scheduling cost: $51, Total cost: $7051 
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Instance 11: 
RGLS algorithm 
 
Current center point: ( 20, 22 ) 
Current center point: ( 19, 21 ) 
Current center point: ( 18, 20 ) 
Current center point: ( 17, 19 ) 
Current center point: ( 16, 18 ) 
Current center point: ( 15, 17 ) 
Current center point: ( 14, 16 ) 
Current center point: ( 13, 15 ) 
Current center point: ( 12, 14 ) 
Current center point: ( 11, 13 ) 
Current center point: ( 10, 12 ) 
Current center point: ( 9, 11 ) 
Current center point: ( 8, 10 ) 
Current center point: ( 7, 9 ) 
Current center point: ( 6, 8 ) 
Current center point: ( 5, 7 ) 
Current center point: ( 4, 6 ) 
Current center point: ( 4, 5 ) 
Current center point: ( 4, 4 ) 
Current center point: ( 4, 3 ) 
 
Inbound area 
 
Machine 1: 26 (6, 8, 0, 0) 3 (8, 12, 0, 0) 5 (12, 14, 0, 0) 35 (14, 20, 0, 0) 2 (22, 28, 1, 0) 
15 (28, 31, 0, 0) 27 (33, 38, 0, 0) 38 (38, 42, 0, 0) 19 (43, 49, 0, 0) 30 (52, 55, 0, 0) 31 
(58, 61, 0, 0)  
Machine 2: 23 (5, 7, 0, 0) 18 (9, 14, 0, 0) 28 (14, 20, 0, 0) 39 (22, 27, 1, 0) 20 (27, 31, 0, 
0) 33 (38, 44, 1, 0) 9 (44, 49, 0, 0) 6 (52, 54, 0, 0) 34 (58, 61, 0, 0)  
Machine 3: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 24 (13, 16, 0, 2) 40 (20, 23, 0, 0) 13 (26, 31, 0, 
0) 14 (36, 42, 0, 0) 1 (44, 48, 0, 0) 21 (49, 52, 0, 0) 17 (55, 58, 0, 0)  
Machine 4: 25 (6, 8, 1, 0) 16 (8, 14, 1, 0) 32 (14, 18, 0, 0) 7 (20, 22, 0, 0) 4 (23, 29, 0, 0) 
36 (31, 36, 0, 0) 12 (38, 41, 0, 0) 11 (42, 45, 1, 0) 29 (45, 48, 0, 0) 22 (48, 52, 0, 0) 10 
(54, 59, 0, 0) 
 
Outbound area 
 
Machine 1: 42 (27, 29, 0, 0) 8 (38, 40, 0, 0) 25 (43, 46, 0, 0) 4 (46, 47, 4, 0) 11 (47, 52, 0, 
0) 29 (52, 54, 0, 0) 13 (54, 57, 0, 1) 36 (58, 61, 7, 0) 15 (61, 66, 0, 0) 35 (68, 73, 0, 0) 17 
(77, 78, 0, 0) 43 (82, 86, 0, 0) 37 (95, 100, 0, 0)  
Machine 2: 33 (14, 15, 0, 2) 41 (34, 35, 0, 0) 14 (41, 42, 0, 0) 2 (42, 45, 4, 0) 18 (45, 48, 
4, 0) 7 (48, 52, 2, 0) 28 (52, 55, 0, 0) 6 (56, 59, 0, 0) 40 (60, 64, 2, 0) 26 (64, 69, 2, 0) 
31 (69, 71, 0, 0) 39 (71, 72, 0, 0) 27 (73, 75, 0, 0) 10 (79, 82, 0, 0) 38 (92, 97, 0, 0)  
Machine 3: 3 (28, 30, 0, 0) 23 (35, 36, 0, 0) 32 (45, 46, 0, 0) 20 (47, 49, 1, 0) 1 (49, 50, 0, 
0) 19 (51, 56, 0, 0) 16 (59, 61, 1, 0) 34 (61, 64, 2, 0) 24 (64, 66, 2, 0) 5 (66, 68, 1, 0) 21 
(68, 70, 1, 0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 22 (77, 81, 0, 0) 9 (87, 90, 0, 0) 
 
Total penalty for scheduling: 540 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 26 (6, 8, 0, 0) 3 (8, 12, 0, 0) 5 (12, 14, 0, 0) 32 (14, 18, 0, 0) 7 (20, 22, 0, 0) 
2 (22, 28, 1, 0) 15 (28, 31, 0, 0) 14 (36, 42, 0, 0) 19 (43, 49, 0, 0) 6 (52, 54, 0, 0) 17 (55, 
58, 0, 0) 31 (58, 61, 0, 0)  
Machine 2: 23 (5, 7, 0, 0) 25 (7, 9, 0, 0) 18 (9, 14, 0, 0) 39 (22, 27, 1, 0) 20 (27, 31, 0, 0) 
27 (33, 38, 0, 0) 33 (38, 44, 1, 0) 9 (44, 49, 0, 0) 21 (49, 52, 0, 0) 34 (58, 61, 0, 0)  
Machine 3: 8 (6, 10, 1, 0) 37 (10, 13, 0, 0) 28 (14, 20, 0, 0) 40 (20, 23, 0, 0) 13 (26, 31, 0, 
0) 12 (38, 41, 0, 0) 1 (44, 48, 0, 0) 30 (52, 55, 0, 0)  
Machine 4: 16 (5, 11, 4, 0) 24 (11, 14, 0, 0) 35 (14, 20, 0, 0) 4 (23, 29, 0, 0) 36 (31, 36, 0, 
0) 38 (38, 42, 0, 0) 11 (42, 45, 1, 0) 29 (45, 48, 0, 0) 22 (48, 52, 0, 0) 10 (54, 59, 0, 0) 
 
Outbound area 
 
Machine 1: 3 (28, 30, 0, 0) 23 (35, 36, 0, 0) 11 (44, 49, 3, 0) 18 (49, 52, 0, 0) 29 (52, 54, 
0, 0) 40 (58, 62, 4, 0) 34 (62, 65, 1, 0) 36 (65, 68, 0, 0) 35 (68, 73, 0, 0) 27 (73, 75, 0, 0) 
22 (77, 81, 0, 0) 43 (82, 86, 0, 0)  
Machine 2: 41 (34, 35, 0, 0) 14 (41, 42, 0, 0) 7 (44, 48, 6, 0) 20 (48, 50, 0, 0) 28 (50, 53, 
2, 0) 13 (53, 56, 0, 0) 16 (60, 62, 0, 0) 26 (62, 67, 4, 0) 5 (67, 69, 0, 0) 31 (69, 71, 0, 0) 
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39 (71, 72, 0, 0) 9 (87, 90, 0, 0) 37 (95, 100, 0, 0)  
Machine 3: 33 (14, 15, 0, 2) 42 (27, 29, 0, 0) 8 (38, 40, 0, 0) 25 (42, 45, 1, 0) 32 (45, 46, 
0, 0) 2 (46, 49, 0, 0) 1 (49, 50, 0, 0) 4 (50, 51, 0, 0) 19 (51, 56, 0, 0) 6 (56, 59, 0, 0) 15 
(61, 66, 0, 0) 24 (66, 68, 0, 0) 21 (68, 70, 1, 0) 12 (70, 71, 0, 0) 30 (72, 74, 0, 0) 17 (77, 
78, 0, 0) 10 (79, 82, 0, 0) 38 (92, 97, 0, 0) 
 
Total penalty for scheduling: 231 
 
Machines cost: $7000, Scheduling cost: $231, Total cost: $7231 
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Instance 12: 
RGLS algorithm 
 
Current center point: ( 28, 29 ) 
Current center point: ( 27, 28 ) 
Current center point: ( 26, 27 ) 
Current center point: ( 25, 26 ) 
Current center point: ( 24, 25 ) 
Current center point: ( 23, 24 ) 
Current center point: ( 22, 23 ) 
Current center point: ( 21, 22 ) 
Current center point: ( 20, 21 ) 
Current center point: ( 19, 20 ) 
Current center point: ( 18, 19 ) 
Current center point: ( 17, 18 ) 
Current center point: ( 16, 17 ) 
Current center point: ( 15, 16 ) 
Current center point: ( 14, 15 ) 
Current center point: ( 13, 14 ) 
Current center point: ( 12, 13 ) 
Current center point: ( 11, 12 ) 
Current center point: ( 10, 11 ) 
Current center point: ( 9, 10 ) 
Current center point: ( 8, 9 ) 
Current center point: ( 7, 8 ) 
Current center point: ( 6, 7 ) 
Current center point: ( 6, 6 ) 
Current center point: ( 6, 5 ) 
 
Inbound area 
 
Machine 1: 11 (2, 8, 0, 0) 10 (13, 15, 0, 0) 31 (15, 20, 2, 0) 14 (20, 26, 0, 0) 28 (31, 35, 0, 
0) 46 (42, 48, 0, 0) 27 (52, 54, 0, 0) 1 (57, 59, 2, 0) 25 (59, 64, 0, 1)  
Machine 2: 53 (3, 8, 0, 0) 42 (11, 15, 0, 0) 22 (19, 22, 0, 0) 50 (22, 28, 0, 2) 20 (33, 37, 0, 
0) 9 (46, 49, 2, 0) 37 (49, 55, 0, 0) 35 (55, 60, 3, 0) 5 (60, 66, 0, 0)  
Machine 3: 17 (4, 6, 0, 0) 21 (9, 13, 0, 0) 56 (15, 20, 1, 0) 13 (20, 24, 0, 0) 23 (25, 30, 0, 
0) 8 (35, 40, 0, 0) 47 (48, 52, 0, 0) 12 (54, 56, 0, 0) 51 (56, 62, 0, 0) 52 (62, 67, 0, 0)  
Machine 4: 6 (6, 11, 0, 0) 33 (11, 16, 0, 0) 29 (19, 23, 0, 0) 49 (25, 27, 0, 0) 48 (31, 35, 0, 
0) 32 (38, 44, 0, 0) 7 (51, 54, 0, 0) 26 (54, 58, 1, 0) 19 (58, 61, 1, 0) 38 (61, 64, 0, 1)  
Machine 5: 39 (6, 9, 0, 0) 34 (14, 16, 0, 0) 43 (18, 24, 0, 0) 41 (32, 35, 0, 0) 24 (38, 43, 0, 
0) 2 (46, 51, 2, 0) 3 (51, 57, 2, 0) 15 (57, 62, 0, 0) 18 (62, 64, 0, 3)  
Machine 6: 55 (8, 12, 0, 0) 44 (12, 17, 0, 0) 16 (17, 23, 1, 0) 45 (23, 29, 0, 0) 30 (33, 38, 
0, 0) 36 (46, 49, 0, 0) 4 (50, 55, 0, 0) 40 (57, 62, 0, 0) 54 (64, 68, 0, 0) 
 
Outbound area 
 
Machine 1: 9 (37, 40, 0, 0) 12 (61, 62, 0, 0) 27 (62, 66, 0, 0) 5 (66, 71, 0, 0) 55 (71, 72, 1, 
0) 13 (72, 76, 1, 0) 22 (76, 80, 0, 2) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 50 (85, 90, 0, 0) 44 
(93, 96, 0, 0)  
Machine 2: 43 (30, 31, 0, 0) 56 (52, 56, 2, 0) 57 (56, 60, 5, 0) 24 (60, 65, 5, 0) 18 (65, 70, 
2, 0) 6 (70, 75, 1, 0) 2 (75, 77, 0, 0) 19 (77, 79, 0, 0) 31 (79, 83, 0, 3) 40 (86, 88, 0, 0) 
42 (89, 94, 0, 0) 41 (102, 103, 0, 0)  
Machine 3: 14 (13, 14, 0, 0) 32 (47, 48, 0, 0) 54 (58, 61, 2, 0) 26 (61, 62, 4, 0) 49 (62, 64, 
7, 0) 15 (64, 68, 4, 0) 38 (68, 71, 3, 0) 39 (71, 76, 1, 0) 52 (76, 78, 2, 0) 28 (78, 83, 0, 0) 
8 (83, 87, 0, 3) 48 (91, 94, 0, 0) 7 (98, 103, 0, 0)  
Machine 4: 10 (16, 17, 0, 0) 21 (54, 55, 0, 0) 4 (63, 64, 0, 0) 30 (67, 72, 0, 2) 36 (72, 76, 
0, 0) 46 (76, 80, 0, 3) 47 (80, 85, 0, 2) 1 (90, 92, 0, 0) 17 (95, 100, 0, 0)  
Machine 5: 11 (32, 33, 0, 0) 45 (55, 56, 3, 0) 51 (56, 57, 9, 0) 23 (57, 59, 12, 0) 25 (59, 62, 
10, 0) 20 (62, 66, 8, 0) 3 (66, 71, 6, 0) 35 (71, 76, 2, 0) 37 (76, 80, 2, 0) 16 (80, 85, 0, 1) 
53 (85, 90, 0, 0) 34 (96, 98, 0, 0) 
 
Total penalty for scheduling: 2409 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 11 (2, 8, 0, 0) 10 (13, 15, 0, 0) 31 (15, 20, 2, 0) 14 (20, 26, 0, 0) 28 (31, 35, 0, 
0) 46 (42, 48, 0, 0) 47 (48, 52, 0, 0) 27 (52, 54, 0, 0) 26 (54, 58, 1, 0) 25 (58, 63, 0, 0)  
Machine 2: 53 (3, 8, 0, 0) 42 (11, 15, 0, 0) 16 (15, 21, 3, 0) 50 (21, 27, 0, 1) 20 (33, 37, 0, 
0) 32 (38, 44, 0, 0) 37 (49, 55, 0, 0) 35 (55, 60, 3, 0) 5 (60, 66, 0, 0)  
Machine 3: 17 (4, 6, 0, 0) 21 (9, 13, 0, 0) 56 (15, 20, 1, 0) 13 (20, 24, 0, 0) 23 (25, 30, 0, 
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0) 8 (35, 40, 0, 0) 2 (48, 53, 0, 0) 51 (53, 59, 3, 0) 19 (59, 62, 0, 0) 52 (62, 67, 0, 0)  
Machine 4: 6 (6, 11, 0, 0) 33 (11, 16, 0, 0) 29 (19, 23, 0, 0) 49 (25, 27, 0, 0) 48 (31, 35, 0, 
0) 9 (48, 51, 0, 0) 7 (51, 54, 0, 0) 12 (54, 56, 0, 0) 1 (57, 59, 2, 0) 18 (59, 61, 0, 0)  
Machine 5: 39 (6, 9, 0, 0) 34 (14, 16, 0, 0) 43 (18, 24, 0, 0) 41 (32, 35, 0, 0) 24 (38, 43, 0, 
0) 3 (51, 57, 2, 0) 15 (57, 62, 0, 0) 54 (64, 68, 0, 0)  
Machine 6: 55 (8, 12, 0, 0) 44 (12, 17, 0, 0) 22 (19, 22, 0, 0) 45 (23, 29, 0, 0) 30 (33, 38, 
0, 0) 36 (46, 49, 0, 0) 4 (50, 55, 0, 0) 40 (55, 60, 2, 0) 38 (60, 63, 0, 0) 
 
Outbound area 
 
Machine 1: 9 (37, 40, 0, 0) 27 (60, 64, 2, 0) 26 (64, 65, 1, 0) 51 (65, 66, 0, 0) 5 (66, 71, 0, 
0) 55 (71, 72, 1, 0) 13 (72, 76, 1, 0) 31 (76, 80, 0, 0) 33 (80, 82, 0, 0) 29 (83, 84, 0, 0) 50 
(85, 90, 0, 0) 44 (93, 96, 0, 0)  
Machine 2: 43 (30, 31, 0, 0) 57 (58, 62, 3, 0) 4 (62, 63, 1, 0) 6 (63, 68, 8, 0) 23 (68, 70, 1, 
0) 46 (70, 74, 3, 0) 22 (74, 78, 0, 0) 28 (78, 83, 0, 0) 40 (86, 88, 0, 0) 42 (89, 94, 0, 0) 41 
(102, 103, 0, 0)  
Machine 3: 14 (13, 14, 0, 0) 32 (47, 48, 0, 0) 54 (58, 61, 2, 0) 12 (61, 62, 0, 0) 15 (62, 66, 
6, 0) 38 (66, 69, 5, 0) 49 (69, 71, 0, 0) 39 (71, 76, 1, 0) 19 (76, 78, 1, 0) 52 (78, 80, 0, 0) 
8 (80, 84, 0, 0) 48 (91, 94, 0, 0) 7 (98, 103, 0, 0)  
Machine 4: 10 (16, 17, 0, 0) 21 (54, 55, 0, 0) 18 (56, 61, 11, 0) 24 (61, 66, 4, 0) 30 (66, 71, 
0, 1) 2 (71, 73, 4, 0) 35 (73, 78, 0, 0) 47 (78, 83, 0, 0) 1 (90, 92, 0, 0) 17 (95, 100, 0, 0)  
Machine 5: 11 (32, 33, 0, 0) 56 (54, 58, 0, 0) 45 (58, 59, 0, 0) 3 (59, 64, 13, 0) 20 (64, 68, 
6, 0) 25 (68, 71, 1, 0) 36 (71, 75, 1, 0) 37 (75, 79, 3, 0) 16 (79, 84, 0, 0) 53 (85, 90, 0, 0) 
34 (96, 98, 0, 0) 
 
Total penalty for scheduling: 298 
 
Machines cost: $11000, Scheduling cost: $298, Total cost: $11298 
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Instance 13: 
RGLS algorithm 
 
Current center point: ( 17, 16 ) 
Current center point: ( 16, 15 ) 
Current center point: ( 15, 14 ) 
Current center point: ( 14, 13 ) 
Current center point: ( 13, 12 ) 
Current center point: ( 12, 11 ) 
Current center point: ( 11, 10 ) 
Current center point: ( 10, 9 ) 
Current center point: ( 9, 8 ) 
Current center point: ( 8, 7 ) 
Current center point: ( 7, 6 ) 
Current center point: ( 6, 5 ) 
Current center point: ( 5, 4 ) 
Current center point: ( 4, 3 ) 
Current center point: ( 4, 2 ) 
 
Inbound area 
 
Machine 1: 9 (2, 4, 0, 0) 1 (12, 15, 1, 0) 4 (15, 17, 4, 0) 2 (17, 22, 2, 0) 28 (22, 24, 0, 0) 
18 (24, 30, 0, 2) 10 (32, 36, 1, 0) 13 (36, 42, 0, 0) 14 (47, 51, 0, 0) 31 (55, 57, 0, 0)  
Machine 2: 22 (12, 15, 0, 0) 3 (18, 22, 4, 0) 11 (22, 28, 0, 2) 5 (31, 33, 0, 0) 23 (35, 39, 0, 
0) 6 (47, 50, 0, 0) 19 (58, 60, 0, 0)  
Machine 3: 25 (10, 13, 0, 0) 21 (15, 18, 0, 0) 29 (18, 24, 2, 0) 26 (24, 27, 0, 0) 34 (27, 29, 
0, 0) 32 (34, 39, 0, 0) 15 (47, 52, 0, 0) 27 (57, 60, 0, 0)  
Machine 4: 20 (6, 10, 0, 0) 33 (11, 17, 2, 0) 30 (17, 23, 3, 0) 24 (23, 25, 0, 1) 16 (25, 28, 
0, 2) 17 (28, 30, 0, 1) 12 (32, 38, 0, 0) 7 (42, 47, 0, 0) 8 (53, 59, 0, 0) 
 
Outbound area 
 
Machine 1: 28 (23, 24, 0, 0) 9 (32, 33, 0, 0) 19 (37, 38, 2, 0) 1 (38, 42, 0, 0) 3 (42, 43, 0, 
0) 30 (46, 49, 0, 0) 22 (50, 51, 14, 0) 26 (51, 56, 11, 0) 25 (56, 58, 12, 0) 27 (58, 62, 11, 
0) 13 (62, 67, 0, 0) 4 (67, 69, 3, 0) 5 (69, 70, 1, 0) 15 (70, 75, 0, 0) 14 (78, 83, 0, 0) 32 
(84, 86, 0, 0) 10 (88, 92, 1, 0) 29 (92, 97, 0, 0)  
Machine 2: 17 (9, 10, 0, 0) 7 (41, 44, 0, 0) 8 (58, 60, 3, 0) 23 (60, 65, 1, 0) 31 (65, 67, 3, 
0) 16 (67, 71, 3, 0) 18 (71, 72, 3, 0) 12 (72, 76, 0, 1) 21 (76, 80, 3, 0) 24 (80, 85, 0, 0) 2 
(85, 90, 0, 2) 20 (90, 95, 0, 0) 6 (95, 96, 0, 1) 11 (98, 103, 0, 0) 
 
Total penalty for scheduling: 1290 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 9 (2, 4, 0, 0) 1 (13, 16, 0, 0) 2 (16, 21, 3, 0) 28 (21, 23, 1, 0) 18 (23, 29, 0, 1) 
10 (32, 36, 1, 0) 13 (36, 42, 0, 0) 14 (47, 51, 0, 0) 31 (55, 57, 0, 0)  
Machine 2: 22 (12, 15, 0, 0) 4 (15, 17, 4, 0) 30 (17, 23, 3, 0) 11 (23, 29, 0, 3) 5 (31, 33, 0, 
0) 23 (35, 39, 0, 0) 6 (47, 50, 0, 0)  
Machine 3: 25 (10, 13, 0, 0) 21 (15, 18, 0, 0) 29 (18, 24, 2, 0) 26 (24, 27, 0, 0) 34 (27, 29, 
0, 0) 32 (34, 39, 0, 0) 15 (47, 52, 0, 0) 27 (55, 58, 2, 0) 19 (58, 60, 0, 0)  
Machine 4: 20 (6, 10, 0, 0) 33 (12, 18, 1, 0) 3 (18, 22, 4, 0) 24 (22, 24, 0, 0) 16 (24, 27, 0, 
1) 17 (27, 29, 0, 0) 12 (32, 38, 0, 0) 7 (42, 47, 0, 0) 8 (53, 59, 0, 0) 
 
Outbound area 
 
Machine 1: 28 (23, 24, 0, 0) 9 (32, 33, 0, 0) 1 (38, 42, 0, 0) 3 (42, 43, 0, 0) 30 (46, 49, 0, 
0) 26 (51, 56, 11, 0) 25 (56, 58, 12, 0) 27 (58, 62, 11, 0) 13 (62, 67, 0, 0) 31 (67, 69, 1, 0) 
5 (69, 70, 1, 0) 16 (70, 74, 0, 0) 18 (74, 75, 0, 0) 14 (78, 83, 0, 0) 2 (83, 88, 0, 0) 10 (88, 
92, 1, 0) 29 (92, 97, 0, 0)  
Machine 2: 17 (9, 10, 0, 0) 19 (39, 40, 0, 0) 7 (41, 44, 0, 0) 8 (56, 58, 5, 0) 23 (58, 63, 3, 
0) 22 (63, 64, 1, 0) 15 (64, 69, 6, 0) 4 (69, 71, 1, 0) 12 (71, 75, 0, 0) 21 (75, 79, 4, 0) 24 
(79, 84, 1, 0) 32 (84, 86, 0, 0) 20 (89, 94, 1, 0) 6 (94, 95, 0, 0) 11 (98, 103, 0, 0) 
 
Total penalty for scheduling: 580 
 
Machines cost: $6000, Scheduling cost: $580, Total cost: $6580 
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Instance 14: 
RGLS algorithm 
 
Current center point: ( 25, 30 ) 
Current center point: ( 24, 29 ) 
Current center point: ( 23, 28 ) 
Current center point: ( 22, 27 ) 
Current center point: ( 21, 26 ) 
Current center point: ( 20, 25 ) 
Current center point: ( 19, 24 ) 
Current center point: ( 18, 23 ) 
Current center point: ( 17, 22 ) 
Current center point: ( 16, 21 ) 
Current center point: ( 15, 20 ) 
Current center point: ( 14, 19 ) 
Current center point: ( 13, 18 ) 
Current center point: ( 12, 17 ) 
Current center point: ( 11, 16 ) 
Current center point: ( 10, 15 ) 
Current center point: ( 9, 14 ) 
Current center point: ( 8, 13 ) 
Current center point: ( 7, 12 ) 
Current center point: ( 6, 11 ) 
Current center point: ( 5, 10 ) 
Current center point: ( 5, 9 ) 
Current center point: ( 5, 8 ) 
Current center point: ( 5, 7 ) 
Current center point: ( 5, 6 ) 
Current center point: ( 5, 5 ) 
Current center point: ( 5, 4 ) 
 
Inbound area 
 
Machine 1: 28 (6, 8, 0, 0) 50 (15, 21, 0, 0) 1 (21, 27, 0, 0) 40 (29, 35, 1, 0) 34 (35, 38, 0, 
0) 39 (41, 45, 0, 0) 46 (50, 53, 0, 0) 42 (53, 56, 2, 0) 19 (59, 64, 0, 0) 7 (65, 70, 0, 0)  
Machine 2: 11 (12, 16, 1, 0) 8 (16, 21, 2, 0) 22 (21, 23, 3, 0) 16 (29, 34, 0, 0) 21 (34, 39, 
0, 0) 24 (45, 49, 0, 0) 20 (54, 59, 0, 0) 25 (62, 64, 0, 0) 9 (64, 69, 0, 0) 17 (69, 75, 0, 0)  
Machine 3: 49 (10, 14, 0, 0) 33 (14, 17, 2, 0) 43 (17, 22, 2, 0) 2 (25, 29, 0, 0) 3 (30, 32, 0, 
0) 13 (32, 38, 0, 1) 47 (43, 47, 0, 0) 37 (52, 54, 0, 0) 31 (58, 60, 0, 0) 38 (63, 68, 1, 0)  
Machine 4: 12 (14, 16, 0, 0) 14 (18, 23, 0, 0) 5 (23, 29, 0, 0) 30 (30, 36, 0, 0) 35 (37, 39, 
0, 0) 36 (43, 47, 0, 0) 44 (52, 56, 0, 0) 32 (58, 64, 0, 0) 4 (67, 71, 0, 0)  
Machine 5: 6 (9, 15, 0, 0) 15 (15, 18, 1, 0) 23 (18, 21, 0, 0) 48 (23, 25, 0, 0) 29 (25, 31, 1, 
0) 26 (31, 33, 0, 0) 10 (33, 37, 0, 1) 18 (39, 45, 0, 0) 41 (45, 49, 0, 0) 27 (55, 59, 0, 0) 45 
(63, 69, 0, 0) 
 
Outbound area 
 
Machine 1: 35 (28, 29, 0, 0) 34 (41, 42, 0, 0) 8 (47, 50, 0, 0) 43 (53, 55, 0, 0) 6 (55, 60, 0, 
0) 7 (63, 64, 2, 0) 58 (64, 67, 4, 0) 29 (67, 72, 5, 0) 27 (72, 73, 6, 0) 38 (73, 78, 3, 0) 15 
(78, 83, 1, 0) 40 (83, 85, 1, 0) 4 (85, 87, 0, 0) 24 (88, 93, 0, 0) 49 (97, 101, 0, 0)  
Machine 2: 46 (23, 24, 0, 0) 48 (35, 37, 0, 0) 32 (47, 49, 0, 0) 45 (51, 52, 0, 0) 19 (54, 56, 
0, 0) 1 (56, 57, 0, 1) 18 (57, 59, 0, 0) 30 (61, 66, 0, 0) 31 (68, 73, 0, 0) 9 (73, 78, 2, 0) 
59 (78, 82, 0, 0) 47 (82, 87, 0, 2) 56 (88, 90, 0, 0) 12 (90, 92, 0, 0) 39 (94, 99, 0, 0)  
Machine 3: 5 (16, 17, 0, 0) 28 (29, 30, 0, 0) 37 (45, 46, 0, 0) 51 (49, 51, 0, 0) 53 (54, 58, 
0, 0) 11 (61, 63, 0, 0) 3 (64, 68, 1, 0) 60 (68, 71, 1, 0) 42 (71, 75, 3, 0) 10 (75, 79, 1, 0) 
25 (79, 84, 0, 1) 57 (84, 87, 0, 3) 33 (87, 89, 1, 0) 16 (89, 94, 0, 0) 14 (97, 101, 0, 0)  
Machine 4: 50 (22, 23, 0, 0) 55 (34, 37, 0, 0) 22 (46, 48, 0, 0) 54 (50, 53, 0, 0) 44 (54, 58, 
0, 0) 41 (61, 66, 0, 0) 13 (66, 70, 3, 0) 20 (70, 74, 5, 0) 36 (74, 75, 3, 0) 52 (75, 78, 1, 0) 
17 (78, 81, 0, 1) 26 (81, 83, 0, 1) 23 (83, 87, 0, 2) 21 (88, 91, 0, 0) 2 (94, 98, 0, 0) 
 
Total penalty for scheduling: 1359 
 
 
RGLSTS algorithm 
 
Inbound area 
 
Machine 1: 28 (6, 8, 0, 0) 50 (15, 21, 0, 0) 1 (21, 27, 0, 0) 30 (29, 35, 1, 0) 34 (35, 38, 0, 
0) 36 (43, 47, 0, 0) 42 (52, 55, 3, 0) 27 (55, 59, 0, 0) 19 (59, 64, 0, 0) 7 (65, 70, 0, 0)  
Machine 2: 11 (13, 17, 0, 0) 8 (18, 23, 0, 0) 16 (29, 34, 0, 0) 21 (34, 39, 0, 0) 24 (45, 49, 
0, 0) 20 (54, 59, 0, 0) 25 (62, 64, 0, 0) 9 (64, 69, 0, 0) 17 (69, 75, 0, 0)  
Machine 3: 49 (10, 14, 0, 0) 33 (14, 17, 2, 0) 43 (17, 22, 2, 0) 2 (25, 29, 0, 0) 3 (30, 32, 0, 
0) 13 (32, 38, 0, 1) 47 (43, 47, 0, 0) 37 (52, 54, 0, 0) 31 (58, 60, 0, 0) 38 (63, 68, 1, 0)  
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Machine 4: 12 (14, 16, 0, 0) 23 (18, 21, 0, 0) 22 (21, 23, 3, 0) 5 (23, 29, 0, 0) 40 (30, 36, 
0, 0) 35 (37, 39, 0, 0) 39 (41, 45, 0, 0) 41 (45, 49, 0, 0) 46 (50, 53, 0, 0) 32 (58, 64, 0, 0) 
4 (67, 71, 0, 0)  
Machine 5: 6 (9, 15, 0, 0) 15 (15, 18, 1, 0) 14 (18, 23, 0, 0) 48 (23, 25, 0, 0) 29 (25, 31, 1, 
0) 26 (31, 33, 0, 0) 10 (33, 37, 0, 1) 18 (39, 45, 0, 0) 44 (52, 56, 0, 0) 45 (63, 69, 0, 0) 
 
Outbound area 
 
Machine 1: 5 (16, 17, 0, 0) 35 (28, 29, 0, 0) 34 (41, 42, 0, 0) 32 (47, 49, 0, 0) 54 (50, 53, 
0, 0) 19 (53, 55, 1, 0) 6 (55, 60, 0, 0) 29 (61, 66, 11, 0) 58 (66, 69, 2, 0) 60 (69, 72, 0, 0) 
42 (72, 76, 2, 0) 52 (76, 79, 0, 0) 15 (79, 84, 0, 0) 40 (84, 86, 0, 0) 21 (88, 91, 0, 0) 39 
(94, 99, 0, 0)  
Machine 2: 46 (23, 24, 0, 0) 28 (29, 30, 0, 0) 48 (35, 37, 0, 0) 8 (47, 50, 0, 0) 45 (51, 52, 
0, 0) 43 (53, 55, 0, 0) 1 (55, 56, 0, 0) 18 (57, 59, 0, 0) 41 (60, 65, 1, 0) 7 (65, 66, 0, 0) 9 
(66, 71, 9, 0) 38 (71, 76, 5, 0) 10 (76, 80, 0, 0) 47 (80, 85, 0, 0) 4 (85, 87, 0, 0) 33 (87, 
89, 1, 0) 16 (89, 94, 0, 0) 14 (97, 101, 0, 0)  
Machine 3: 55 (34, 37, 0, 0) 53 (54, 58, 0, 0) 30 (60, 65, 1, 0) 3 (65, 69, 0, 0) 25 (69, 74, 
9, 0) 17 (74, 77, 3, 0) 59 (77, 81, 1, 0) 57 (81, 84, 0, 0) 56 (88, 90, 0, 0) 12 (90, 92, 0, 0) 
49 (97, 101, 0, 0)  
Machine 4: 50 (22, 23, 0, 0) 37 (45, 46, 0, 0) 22 (46, 48, 0, 0) 51 (49, 51, 0, 0) 44 (54, 58, 
0, 0) 11 (61, 63, 0, 0) 13 (64, 68, 5, 0) 31 (68, 73, 0, 0) 20 (73, 77, 2, 0) 36 (77, 78, 0, 0) 
27 (78, 79, 0, 0) 26 (79, 81, 1, 0) 23 (81, 85, 0, 0) 24 (88, 93, 0, 0) 2 (94, 98, 0, 0) 
 
Total penalty for scheduling: 268 
 
Machines cost: $9000, Scheduling cost: $268, Total cost: $9268 
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