
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY
CAMPUS MONTERREY

SCHOOL OF ENGINEERING AND INFORMATION TECHNOLOGIES
GRADUATE PROGRAMS

DOCTOR OF PHILOSOPHY
in

INFORMATION TECHNOLOGIES AND COMMUNICATIONS
MAJOR IN INTELLIGENT SYSTEMS

An Evolutionary Framework for Producing Hyper-heuristics for Solving
the 2D Irregular Bin Packing Problem

By

Eunice López Camacho

MAY 2012

An Evolutionary Framework for Producing
Hyper-heuristics for Solving the 2D Irregular Bin

Packing Problem

A dissertation presented by

Eunice López Camacho

Submitted to the
Graduate Programs in Electronics and Information Technologies

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Information Technologies and Communications
Major in Intelligent Systems

Thesis Committee:

Dr. Hugo Terashima Marin - ITESM, Campus Monterrey
Dr. Gabriela Ochoa - University of Nottingham

Dr. Peter Ross - Edinburgh Napier University
Dr. Eduardo Uresti Charre - ITESM, Campus Monterrey

Dr. Manuel Valenzuela Rendon - ITESM, Campus Monterrey

Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Monterrey

May 2012

Instituto Tecnológico y de Estudios Superiores de Monterrey
Campus Monterrey

School of Engineering and Information Technologies
Graduate Program

The committee members, hereby, certify that have read tbe dissertation presented by Eunice
López Camacho and that it is fully adequate in scope and quality as a partial requireraent for
the degree of Doctor of Philosophy in Information Technologies and Communications,
with a major in Intelligent Systems.

i

Copyright Declaration

I, hereby, declare that I wrote this dissertation entirely by myself and, that, it exclusively
describes my own research.

Eunice López Camacho
Monterrey, N.L. , México
May 2012

©2012 by Eunice López Camacho
A l l Rights Reserved

ii i

Dedication

To my husband Arturo
To my children Arturo, Pablo and Rebeca

To my parents Salomón and Felı́citas
Thanks for all your unconditional confidence, support, patience, and encouragement.

You were my main motivation for pushing through this work.

v

Acknowledgements

I would like to express my deepest gratitude to all those who have been side by side with
me. Many people have played an important role in the successful completion of the research
presented here. The number of people to whom I want to express my gratitude is incredible
large, since I have been supported in many different ways.

I would like to express my sincere thanks to my advisors and committee members who
have provided too much help and excellent guidance with the preparation of this work. Very
special thanks to Dr. Hugo Terashima, Dr. Gabriela Ochoa and Dr. Peter Ross. They devoted
much time guiding me. I would also like to thank to my fellow researchers: Dr. Juan Carlos
Gomez and Dr. Jose Carlos Ortiz.

My husband, Arturo Rodríguez, have supported me any time that I have needed, and
more. Without his love, help and advice, I would not have completed this dissertation. My
parents also have provided me a great support, especially during the time I did my research
stay. The love of my children was a great inspiration all over the time.

I thank Tecnológico de Monterrey to trust me and for gave me the opportunity to grow
as a professional. Special thanks to the Research Chair on Evolutionary Computing CAT-
144, the C O N A C Y T project grant 99695, the Mathematics Department and the Planning and
Organizational Development Department for all the support and confidence.

vii

An Evolutionary Framework for Producing
Hyper-heuristics for Solving the 2D Irregular Bin Packing

Problem
by

Eunice López Camacho

Abstract

This document presents a doctoral dissertation which is a requirement for the Ph.D.
degree in Information Technologies and Communications from Instituto Tecnológico y de
Estudios Superiores de Monterrey (ITESM), Campus Monterrey, major in Intelligent Systems
in the field of Hyper-heuristic Search for the Bin Packing Problem. This dissertation works
with an evolutionary framework that produces hyper-heuristics for solving several types of
bin packing problems introducing relevant improvements to the solution model.

The Bin Packing Problem is a particular case of the Cutting and Packing Problem, where
a set of pieces are placed into identical objects and the objective is to minimize the number
of objects needed. Given the NP-hard nature of this optimization problem, many heuris¬
tic approaches have been proposed. In this work a solution model is proposed, based on a
genetic algorithm, in which a hyper-heuristic is built as a rule or a high-level heuristic that
combines several low-level heuristics when building a solution from scratch. Therefore, the
hyper-heuristic takes advantage of the main strengths of the low-level heuristics to solve par¬
ticular kinds of problem instances. A hyper-heuristic is a list of several representative states
of the problem, each one labelled by a low-level heuristic. A problem instance to be solved
by a hyper-heuristic is first summarized by a numerical vector that carries some of its main
features. This vector is then compared with the hyper-heuristic representative states and the
correspondent heuristic is chosen to be applied. After one or several pieces are placed, the
problem state is updated. This process continues until the problem instance is completely
solved.

The main inputs of the evolutionary framework in order to produce a hyper-heuristic
are: (1) a vector-based way of representing the problem state; (2) a set of low-level heuristics;
and (3) a set of training problem instances. The research presented in this document improves
each of these elements.

First, a data mining based methodology was developed to select the best set of features
that can represent the state of the problem instances. This six-step methodology includes the
application of the k-means clustering technique and a Multinomial Logistic Regression model
to find a subset of features that best predict heuristic performance. This methodology does
not require intensive knowledge of the problem domain. Promising results were found when
comparing hyper-heuristics produced employing an intuitive representation and a representa¬
tion built with this methodology. Besides, there are some other solution approaches developed
for other combinatorial optimization problems that also require to represent instances with a
limited number of features. Therefore, the proposed methodology can be exported for other

ix

search space approaches.
Second, the Djang and Finch selection heuristic was properly adapted from the one-

dimensional to the two-dimensional Bin Packing Problem. This adaptation includes a time-
saving routine based on avoiding repetitive computations. With the pieces in decreasing order,
this heuristic starts filling an object until it is at least one-third full. Then it tries combinations
of one, two or three pieces that completely fills the object. If this is not possible, a small
waste is allowed and it is increased as necessary until there are not remaining pieces that fit.
Then, a new object is opened. Several experiments were conducted with the initial fraction of
the object that is full before trying combination of pieces. We found that filling the object up
to one-fourth, one-third and one-half produces effective heuristics that behaves differently in
different kinds of instances.

Third, the level of generality handled by the evolutionary framework was increased in
terms of the kind of instances solved. The solution model can be trained with one- and two-
dimension regular and irregular instances. Irregular instances include convex and concave
polygons. Once the hyper-heuristic is evolved, it is able to solved any instance from any
of these types with good results and without further parameter tuning. The framework was
tested with a large dataset of 1417 instances. One-dimensional instances were drawn from
the literature. An algorithm was designed for randomly producing two-dimensional instances
with concave pieces. Therefore, geometric functions had to be implemented for dealing with
concavities. Twenty hyper-heuristics were generated and tested. Broadly speaking, hyper-
heuristics were able to learn a combination of single heuristics that produce, at least, the same
result than the best single heuristic for each testing case.

Finally, an analysis was performed to find which feature values of the Bin Packing Pro¬
blem are more likely to lead to a good performance of heuristics and hyper-heuristics. With
the Principal Component Analysis technique, a two-dimensional map was built in which the
1417 instances were plotted. The more similar two instances are according to nine selected
features, the closer the two instances are plotted in the map. It is possible to find combination
of feature values that characterize each section of the map. By over imposing the performance
of heuristics and hyper-heuristics over the map, we can draw conclusions about the main re¬
lations among features and performance. Understanding the Bin Packing Problem structure
will help in the design of new solution approaches.

x

List of Figures

1.1 General scheme of the 1D Bin Packing Problem. 4
1.2 General scheme of the 2D Irregular Bin Packing Problem. 5
1.3 Simplified representation of a problem state. 7
1.4 General structure of the solution model studied. Fonts in italics explain the

main improvements to the solution model. 9

2.1 Basic and intermediate problem types for the C&P problem in Wäscher’s Ty-
pology [154]. 17

2.2 Interpretation of the D-function. 22
2.3 Generation of the NFP between a square (fixed polygon) and a triangle (orbit-

ing polygon). 23
2.4 (a) The orientation of A and B; (b) the slopes diagram; and (c) the NFP. . . . 23
2.5 Bottom-left heuristic for irregular pieces. 28
2.6 Positions to be considered in the Constructive Approach. 28
2.7 Positions to be considered in the Constructive Approach. An example with

two pieces already placed. 29
2.8 Constructive Approach Heuristic. 29
2.9 Rectangle with minimum area, located at the bottom-left corner and contain-

ing all pieces so far. 30
2.10 Candidate rectangles when locating a piece. 30
2.11 Two concave pieces that can not fit with a sliding operation. 31

3.1 Solution Model for Hyper-heuristic generation through GA. 46
3.2 A chromosome is a set of blocks. 48
3.3 A chromosome is a set of blocks. Each block represents a point in the hyper-

cube (space of states) labelled with a single heuristic. The solution process of
a problem using a hyper-heuristic consists of finding the closest single heuris-
tic at every solution stage. 48

3.4 General process of the genetic algorithm. 51
3.5 An example of the two-point crossover operator. 52
3.6 Representation of problem instances in a text file. 54
3.7 Origin of the coordinates of the pieces of a problem instance. 54

4.1 Degree of concavity. 62
4.2 A piece and its convex hull. 62
4.3 Procedure for selecting a point inside a shape. 64

xi

4.4 One convex and one non-convex polygon created by the developed algorithm. 64
4.5 (a) A convex problem instance. (b) 5 pieces were randomly selected to build

5 non-convex polygons. 65
4.6 Ray from point P to the right actually touches 4 times the shape boundaries.

The ray crosses the shape at vertex B. In contrast, the ray touches vertex A
only tangentially and does not cross the shape at this point. Therefore, the
count for crosses is 3. Since 3 is an odd number, we conclude that P is inside
the shape. 70

4.7 Piece AEFG is inside piece ABCDEFG. In this case, checking if all ver-
tices and edges midpoints ofAEFG are insideABCDEFGwill return false.
Only when a point very close to vertex E is found inside ABCDEFG, the
algorithm returns true to the question about if one of the pieces is inside the
other. In this case, reviewing intersection of these two pieces with Algorithm
1 will return false because none of the sides crosses another (although they
coincide). 72

4.8 Piece ABCDEFGH contains all area to the (a) left and (b) below a given
piece. 72

6.1 Matrix of normalized performance. 83
6.2 General idea for identifying those features related with heuristics performance.

First, instances are clustered according to heuristic performance and then fea-
tures are related with cluster membership. 86

6.3 Lineal mapping to the interval [0, 1] for feature measures. 89
6.4 Normalized performance of heuristics BF+BLI (h1) and BFD+CA (h2) related

with instances mean number of sides. 91
6.5 Normalized performance of heuristics BF+BLI (h1) and BFD+CA (h2) related

with the instance variance of the number of sides. 91
6.6 Average fitness of the whole population for all experiments conducted under

each representation scheme. 94

7.1 DJD1/3 in combination with CAD heuristic solves an instance of type C. This
solution needs one more object than the optimal solution in which there would
be zero waste. In this solution, fitness is 0.776 measured with equation 3.2 . . 104

7.2 Comparison of means for the 11 heuristics considered, using the Bonferroni
adjustment. DJD1/4 and DJD1/3 are the better heuristics and there is not sig-
nificant difference between them . 106

8.1 Number of pieces vs. computational time for the 397 one-dimensional instan-
ces. Six single heuristics. 127

8.2 Number of pieces vs. computational time for the 1020 two-dimensional ins-
tances. Six single heuristics. 128

8.3 Number of pieces vs. computational time for the 80 one-dimensional instan-
ces of types Trip60, Trip120, Trip249 and Trip501. Heuristic DJD1/3. The
line is the graph of the cubic polynomial which fits best all the points. 129

8.4 Number of pieces vs. computational time for the average of the hyper-heuristics
tested in each instance. 1D and 2D instances. 129

xii

9.1 An example of principal component analysis for a dataset of 2 variables. (a)
PCA identifies the two orthogonal directions (PC1 and PC2) along which the
data have the largest spread. (b) Observations plotted in one dimension using
their projections onto PC1. 133

9.2 (a) The 1417 instances plotted along PC1 and PC2. (b.1) The 397 instances
of the 1D BPP. (b.2) The 540 instances of the 2D BPP (convex). The 30
rectangular instances are all plotted almost in the same place inside the circle.
(b.3) The 480 instances of the 2D irregular BPP (non-convex). 135

9.3 PCA 2D-loading plot of the two first principal components. 136
9.4 Distribution of feature values across the PCA map (black shows maximum

value for each feature). Horizontal axis is for PC1 score, while vertical axis is
for PC2 score. 138

9.5 Performance of the 6 heuristics across all instances in the PCA map (black
shows maximum value). Horizontal axis is for PC1 score, while vertical axis
is for PC2 score. 139

9.6 Normalized performance of the 6 heuristics across all instances in the PCA
map (black shows maximum value). Horizontal axis is for PC1 score, while
vertical axis is for PC2 score. 140

9.7 Instances in each of the 8 clusters built based on the normalized performance.
Horizontal axis is for PC1 score, while vertical axis is for PC2 score. 141

9.8 Best heuristic. Color grey is for instances better solved by 1-piece heuristics
(FFD, Filler or BFD). Points in color black are instances better solved by the
DJD heuristics. 142

9.9 From all instances, only 28 were solved with fewer objects by the best hyper-
heuristic than any of the 6 heuristics (plotted with the letter b). Whilst in 9
cases, none hyper-heuristic could reach the best single heuristic result (plotted
with the letter w). In all the remaining cases, the best hyper-heuristic got the
same number of objects than the best heuristic for each case (gray dots). . . . 142

xiii

List of Tables

4.1 Description of problem instances. 59
4.2 Characteristics of the 1D problem instances 60
4.3 Characteristics of the convex 2D problem instances. 61
4.4 Characteristics of the non-convex 2D problem instances. 63

5.1 Representation of actions. 75
5.2 Number of extra objects for the testing set and compared against results of

the best single heuristics. Experiment I, for first and second independent runs.
Figures in last 10 columns average the performance of four heuristics. These
heuristics are indicated by the numbers under the selection heuristic name (see
Table 5.1). 77

5.3 Number of extra objects for the testing set and compared against results of the
best single heuristics. Experiment II. Figures in last 10 columns average the
performance of four heuristics. These heuristics are indicated by the numbers
under the selection heuristic name (see Table 5.1). 77

5.4 Number of extra objects for the testing set and compared against results of the
best single heuristics. Experiment III. Figures in last 10 columns average the
performance of four heuristics. These heuristics are indicated by the numbers
under the selection heuristic name (see Table 5.1). 78

5.5 Number of extra objects for the testing set and compared against the best
results of the best single heuristics. Experiment IV. Figures in last 10 columns
average the performance of four heuristics. These heuristics are indicated by
the numbers under the selection heuristic name (see Table 5.1). 78

5.6 Number of extra objects used by the hyper-heuristics in the testing set with
respect to the average obtained by the 40 single heuristics. 79

6.1 Representation 1 of the instance state. 82
6.2 Representation 2 of the instance state. 90
6.3 Number of extra objects delivered by hyper-heuristics using representation

scheme 2 compared with those using representation scheme 1. Experiments I
through IV. 93

6.4 Average number of extra objects obtained by hyper-heuristics using represen-
tation scheme 2 compared with those using representation scheme 1. 94

7.1 Average fitness for all the combinations of selection and placement heuristics
over the 540 instances. 104

xv

7.2 Average fitness obtained by all the selection heuristics when combined with
the CAD placement heuristic for each instance type. The best selection heuris-
tic for each instance type is in bold font. 105

7.3 Average computational time (in seconds) for all the combinations of selection
and placement heuristics over the 540 instances. 105

8.1 Number of instances associated to each cluster for all the instance types con-
sidered. The clusters are obtained according to the fitness of the six single
heuristics selected. 113

8.2 Cluster membership for the 1D and 2D instances. According to fitness of the
six single heuristics considered. 114

8.3 Representation of the instance state. 115
8.4 Hyper-heuristic generated in the first run of Experiment 1. 116
8.5 Number of extra objects obtained by hyper-heuristics and single heuristics

compared against results of the best single heuristic for each instance (per-
centage of cases). Zero values are displayed as blank cells. 117

8.6 Average number of extra objects delivered by the best hyper-heuristic, com-
pared against results of the best single heuristic for each instance. 118

8.7 Percentage of selection of each single heuristic when solving the testing set
with hyper-heuristics of Experiment 1. 119

8.8 Solving non-convex instances compared when solving their convex version.
Percentage of cases when non-convex instances require fewer, equal and more
objects than convex instances. Instances are solved by the best single heuristic
and by the best hyper-heuristic from experiments 1 through 4. 120

8.9 Percentage of single heuristic changes when solving all testing sets. 120
8.10 Average of heuristic changes according to the number of extra objects against

results of best single heuristic. 121
8.11 Average length of single heuristic sequences when applying our hyper-heuristic

solution model. 122
8.12 Percentage of sequences of single heuristic pairs when solving 1D instances

in all testing sets. 122
8.13 Percentage of sequences of single heuristic pairs when solving 2D convex

instances in all testing sets. 123
8.14 Percentage of sequences of single heuristic pairs when solving 2D non-convex

instances in all testing sets. 123
8.15 Average computational time (in seconds) per category of instances. 124
8.16 Average computational time (in seconds) per type of instances. 125

9.1 Loadings for the two main principal components of the data. Features 1
through 9 are those referred in Table 8.3. Figures with largest absolute va-
lues are in bold font. 135

xvi

List of Algorithms

1 Decide if two pieces intersects each other. 66
2 Decide if a point is inside a shape. 67
3 Decide if a shape is completely inside another shape. 68
4 Measures the distance in which two segments coincide. 69
5 Builds a piece containing all the area at the left of a given piece. 69
6 Computes the horizontal distance from a point to a given segment. Distance

is zero if the point is along the segment. Distance is positive if the point is in
the right of the segment. Otherwise it is negative. 71

7 Computes the distance that a given piece can be moved to the left without
overlapping other pieces and without exceeding the object limits. 71

8 The original DJD heuristic. 98
9 The proposed DJD algorithm. Trying pieces one by one. 100
10 The proposed DJD algorithm. Trying groups of 2 pieces. 100
11 The proposed DJD algorithm. Trying groups of 3 pieces. 101

xvii

Contents

Abstract ix

List of Figures xiii

List of Tables xvi

List of Algorithms xvii

1 Introduction 1
1.1 Problem Statement and Context 3
1.2 Motivation 5
1.3 Hypothesis and Research Questions 7
1.4 Solution Overview 8
1.5 Main Contributions 10
1.6 Scope and Limitations 11
1.7 Thesis Organization 12

2 Related Background 13
2.1 Cutting and Packing (C&P) Problems 13

2.1.1 Dyckhoff's Typology 14
2.1.2 Wäscher's Typology 15

2.2 Industrial Applications for the C&P Problem 16
2.2.1 Industrial Constraints 18

2.3 Packing and NP-Hardness 19
2.4 The Geometry for Placing Irregular Polygons 21

2.4.1 Pixel/raster Method 21
2.4.2 Direct Trigonometry 21
2.4.3 The No-Fit Polygon (NFP) 22
2.4.4 The Phi Function 24

2.5 Exact Solutions for the 2D C&P Problem 24
2.5.1 Linear Programming 24
2.5.2 Tree-Search Procedures 24

2.6 Heuristic Search for the 2D C&P Problem 25
2.6.1 Selection Heuristics 26
2.6.2 Placement Heuristics 27
2.6.3 Local Search Heuristics 31

xix

2.7 Meta-heuristic Search for the 2D C&P Problem 31
2.7.1 Evolutionary Computation (EC) . 32
2.7.2 Simulated Annealing . 34
2.7.3 Tabu Search . 34
2.7.4 Ant Colony Optimization (ACO) . 34
2.7.5 Greedy Randomized Adaptive Search Procedure (GRASP) 35
2.7.6 Agent-Based Approach . 35

2.8 Hyper-heuristic Search . 36
2.8.1 Heuristic Selection: Iterative Hyper-heuristics 37
2.8.2 Heuristic Selection: Constructive Hyper-heuristics 38
2.8.3 Heuristic Generation . 38

2.9 Hyper-heuristic Search for the 2D C&P Problem 39
2.9.1 Hyper-heuristics with Evolutionary Computation 39
2.9.2 Learning Classifier Systems . 39
2.9.3 Genetic Programming . 39
2.9.4 Genetic Algorithms . 40
2.9.5 Hyper-heuristics with Ant Colony Optimization 40
2.9.6 Hyper-heuristics with Hill Climbing 40

2.10 Hyper-heuristic Search for other Optimization
Problems . 41
2.10.1 Timetabling Problems . 41
2.10.2 Constraint Satisfaction Problems (CSP) 42

2.11 Meta-learning . 42
2.12 Summary . 43

3 Hyper-heuristic Solution Model 45
3.1 General Process for Generating Hyper-heuristics 46
3.2 Representation of Problem Instances . 47
3.3 Representation of Chromosomes in the GA 47
3.4 Fitness Function . 49
3.5 The GA Cycle . 50

3.5.1 Genetic Operators . 50
3.6 Rotation Scheme . 53
3.7 Codification of Problem Instances . 53
3.8 Summary . 53

4 Research Methodology and Experimental Setup 55
4.1 Methodology . 55
4.2 Problem Instances Testbed . 58

4.2.1 1D Instances . 58
4.2.2 Convex 2D Instances . 59
4.2.3 Non-convex 2D Instances . 60
4.2.4 Algorithm for Producing Random Instances that Include

Non-convex Pieces . 62
4.3 Algorithms Developed for Geometric Computation 64

xx

4.4 Summary . 70

5 Hyper-heuristics for 2D Irregular BPP (Convex) 73
5.1 Experimental Setup . 73

5.1.1 Set of heuristics . 73
5.1.2 Chromosomes . 73
5.1.3 Representation of problem instance state 74
5.1.4 Testbed Instances . 74

5.2 Experiments . 74
5.3 Results and Discussion . 76
5.4 Summary . 79

6 Defining a Problem-State Representation Scheme 81
6.1 Methodology for Developing a Representation Scheme 83
6.2 Developing a New Representation Scheme 86
6.3 Experiments . 91
6.4 Results and Discussion . 93
6.5 Summary . 94

7 An Effective Heuristic for the 2D Irregular BPP 97
7.1 The DJD Heuristic . 98
7.2 The Proposed DJD Heuristic for the 2D Irregular BPP 99
7.3 Experiments . 102

7.3.1 The Other Selection Heuristics and the Placement Heuristics 102
7.4 Results and Discussion . 103
7.5 Summary . 106

8 Hyper-heuristics for 1D and 2D Bin Packing Problems 109
8.1 Implementation . 110

8.1.1 Developing a Problem-state Representation for the Testbed
Instances . 111

8.2 Experimental Design . 114
8.3 Results and Discussion . 115

8.3.1 Comparison Against the Best Single Heuristic 116
8.3.2 Analyzing Results per Instance Category 118
8.3.3 Comparing Results for Convex and Non-convex Instances 119
8.3.4 Alternation of Single Heuristics . 120
8.3.5 Time Complexity . 122

8.4 Summary . 126

9 A Deeper Understanding of the BPP Structure 131
9.1 Principal Component Analysis (PCA) . 132
9.2 Experimental Setup . 133

9.2.1 Meta-data for the Bin Packing Problem 134
9.3 Results and Discussion . 134

9.3.1 Distribution of Features across the PCA Map 137

xxi

9.3.2 Distribution of Heuristic Performance Across the PCA Map 137
9.3.3 Clustering . 137
9.3.4 The Best Heuristic . 138
9.3.5 Hyper-heuristic Performance . 140

9.4 Summary . 143

10 Final Conclusions and Future Work 145
10.1 Dissertation Summary and General Discussion 145

10.1.1 Hyper-heuristics for Solving 2D Irregular Bin Packing Problems (con-
vex) . 145

10.1.2 Defining a Problem-State Representation Scheme 145
10.1.3 The DJD Heuristic as an Effective Heuristic for the 2D Irregular BPP 146
10.1.4 Hyper-heuristics for Solving 1D and 2D Irregular Bin Packing Pro-

blems (concave) . 146
10.1.5 A Knowledge Discovery Approach for Understanding how Features

Impact in Heuristic and Hyper-heuristic performance 147
10.1.6 General Discussion . 147

10.2 Main Contributions . 148
10.2.1 Hyper-heuristics for Solving 2D Irregular Bin Packing Problems (con-

vex) . 148
10.2.2 Defining a Problem-State Representation Scheme 148
10.2.3 The DJD Heuristic as an Effective Heuristic for the 2D Irregular BPP 148
10.2.4 Hyper-heuristics for Solving 1D and 2D Irregular Bin Packing Pro-

blems (concave) . 148
10.2.5 A Knowledge Discovery Approach for Understanding how Features

Impact in Heuristic and Hyper-heuristic performance 149
10.3 Future Direction . 149
10.4 Closing Remarks . 150

A Contributed Scientific Publications 151

Bibliography 165

xxii

Chapter 1

Introduction

The problem of finding an arrangement of pieces to cut or pack inside larger objects is known
as the Cutting and Packing (C&P) Problem. This problem has huge practical relevance
since it has a large number of practical applications. The two-dimensional Bin Packing
Problem (2D BPP) is a particular case of the C&P problem, which consists of finding an
arrangement of pieces inside the identical objects such that the number of objects required
to contain all pieces is minimum. The case of rectangular pieces is the most studied one;
although, there are many instances where irregular patterns arise, for example the metal, shoe
and garment manufacturing. There is not a polynomial-time algorithm to solve optimally the
2D BPP, that is why heuristics are developed to find a good, frequently suboptimal, solutions.

A heuristic (from Greek heuriskein, to find) is a practical rule or procedure that tries
to exploit problem-specific knowledge and usually comes from a logical idea with common
sense, although its goodness is not formally proved [9]. For many practical applications, an
optimal solution is not absolutely necessary. Sometimes, instead of a solution very close to
the optimum, it is preferred a good enough - soon enough - cheap enough solution [22]. An
approximation algorithm, as well as a heuristic, does not guarantee to find the best solution,
but a good enough solution instead in a time polynomially bounded. The difference between
a heuristic and an approximation algorithm is that the latter give us a guarantee as to how bad
solutions we can get. Normally specified as c times the optimal value [108].

Moreover, some heuristics are very problem-specific and their performance is rather
poor in a different instance domain. There is a spectrum which ranges from cheap but fragile
heuristics at one extreme and knowledge-intensive methods that can perform very well but
are hard to implement and maintain, at the other extreme. Nevertheless, even complex heuris-
tics may face problem instances where they perform badly. In general, some methods work
well for particular instances, but not for all of them. Hyper-heuristics is an emerging search
technology that is motivated, to a large extent, by the goal of raising the level of generality at
which optimization systems can operate [22]. Hyper-heuristics might be thought as heuristics
or algorithms to choose or generate heuristics. The idea behind hyper-heuristics is to discover
some combination of straightforward heuristics to solve a wide range of problems, taking ad-
vantage on the strength each heuristic may have in a particular kind of problems. Raising the
level of generality can be interpreted as building an optimization algorithm that tackles: (1) a
wider range of instances from the same problem still producing good enough solutions, and/or
(2) a wider spectrum of combinatorial problems with little implementation effort.

1

2 CHAPTER 1. INTRODUCTION

Terashima et al. [143] described a genetic-algorithm-based method that produces hyper-
heuristics to solve two-dimensional regular (rectangular) and irregular (convex polygonal) Bin
Packing problems. This solution model is the building block for this dissertation and it is
described in Chapter 3, while the implementation for the 2D BPP with convex polygons is
presented in Chapter 5. The genetic algorithm included in the model uses a variable-length
representation, producing hyper-heuristics after going through a learning process which in-
cludes training and testing phases. Such hyper-heuristics constructed by the evolutionary
procedure are sets of condition-action rules, where the condition is a numerical vector that
represent the state of the problem taking into account problem relevant features. The action
of every rule is one of the available low-level heuristics, and it is the heuristic to be applied.
After applying the corresponding heuristic, the problem of placing the remaining pieces is
again characterized by a vector and, maybe, another low-level heuristic is applied to reduce
the number of pieces remaining to be placed. This process continues until every piece is
placed solving the problem completely.

This doctoral dissertation looks deeper into this solution model, investigating four im-
portant aspects, which are developed in Chapters 6 to 9.

• Improvement of the numerical problem instance representation. Each instance to be
solved by the hyper-heuristic is characterized by a numerical vector that summarizes
some of its relevant features. Each numerical term of the vector quantifies an aspect
of the instance at hand, for example, number of pieces, percentage of small pieces or
average number of pieces sides, etc. According to this numerical vector, the hyper-
heuristic decides which low-level heuristic to apply every time. The 2D irregular BPP
may have many features and not all of them are relevant in the selection of a low-level
heuristic, so not all of them should be included in the problem state representation. An
adequate problem state representation scheme is critical for the good performance of the
hyper-heuristic. The procedure for designing the problem representation deserves atten-
tion. Moreover, this investigation creates a general methodology for building a problem
representation without much knowledge about the problem properties (see Chapter 6).

• Generalization of the solution model through the kind of problem instances that the
solver can handle. The model that constructs hyper-heuristics for the 2D BPP accepts
instances that are either rectangles or irregular convex polygons. After obtaining good
results with this kind of instances [143], the following natural step is to extend the
methodology to instances that include concave polygons (at least one internal angle
greater than 180 degrees). This involves additional geometric complexity increasing
the computational burden. To make the solution framework even more general, the 1D
BPP is included as well. So, hyper-heuristics generated are able to choose the best
single heuristics to any problem instance from 1D to 2D irregular (non-convex) without
human intervention. Chapter 8 develops this framework in detail.

• Analysis and improvement of the repository of low-level heuristics. The quality and
diversity of the low-level heuristics combined by a hyper-heuristic is crucial. On one
hand, we choose one of the single heuristics of the model and improved its performance
making an adaptation for the 2D case in such a way that is fast in execution and delivers
high quality solutions. This heuristic, called Djang and Finch (DJD), is designed for

1.1. PROBLEM STATEMENT AND CONTEXT 3

selecting which pieces are the next to be placed (Chapter 7). On the other hand, an
analysis of the repository of low-level heuristics is performed expecting to obtain a
better understanding of how the interaction of heuristics works during the resolution
of a problem instance. Sequence, frequency and alternation of heuristics are important
issues analyzed in Sections 8.3.2 and 8.3.4.

• Analysis of the structure of the Bin Packing Problem and its relation with heuristics
and hyper-heuristics performance. The BPP, specially the 2D irregular case, has a com-
plex structure, since it can be characterized by many features. Insights about which
combination of features have impact in heuristic and hyper-heuristic performance are
developed in Chapter 9, where the mathematical technique called Principal Component
Analysis is employed to visually assess multivariate data in two dimensions.

In the next section the problem is stated in a more specific and restricted way, describing
the specific problem under study along with the objectives that are sought for in this project.
Section 1.2 presents a more thorough explanation of what motivates this research. After, the
hypothesis that supports all this research is presented plus the research questions to which an
answer is being looked for. Following, an overview of the proposed solution is presented along
with the main contributions that this research project has provided. Scope and limitations of
this dissertation are presented next. Finally, a description of how the dissertation has been
organized is laid out.

1.1 Problem Statement and Context
The main problem to work with during the investigation is stated in this section. The Cutting
and Packing Problem is among the earliest problems in the literature of operational research.
Due to the extensive work done in this NP-problem, in 2006 Wäscher et al. [154] suggested
a complete typology which is an extension of Dychoff’s [48]. In the 1D BPP, there is an
unlimited supply of bins, each with capacity c > 0. A set of n items (each one of size si < c)
is to be packed into the bins. The task is to minimize the total number of bins used. In the
2D BPP, there is a set L = (a1, a2, . . . , an) of pieces to cut or pack and an infinite set of
identical rectangular larger elements (called objects) with dimensions x0 and y0. Then, the
2D BPP consists of finding an arrangement of pieces inside the objects such that the number
of objects required to contain all pieces is minimum. A feasible solution is an arrangement
of pieces without overlaps and with no piece outside the object limits. A problem instance or
instance I = (L, x0, y0) consists of a list of elements L and object dimensions x0 and y0. An
instance state is every intermediate phase in the solution process until all pieces are placed
and a solution for the instance is found. The problem is called 2D irregular BPP when pieces
are not rectangular [154].

A typical way of representing elements (and used in this research) is with a list of sets of
coordinates L = (c(a1), c(a2), ..., c(an)); where c(ai) is the set of coordinates in the Cartesian
plane corresponding to piece ai. A set of coordinates c(ai) is a set of points represented
by pairs (x, y). For example: c(ai) = {(xi1, yi1) , (xi2, yi2) , ..., (xiki

, yiki
)}, where ki is the

number of vertices of piece ai. Each piece coordinates has an arbitrary reference (see Section
3.7).

4 CHAPTER 1. INTRODUCTION

The term 2D regular Bin Packing Problem (2D regular BPP) is mainly used when all
pieces are rectangular (although circles and other regular shapes could fall under this name
too [154]). Otherwise, the problem is called 2D irregular Bin Packing Problem (2D irregular
BPP). The research presented in this dissertation is focused mainly on the 2D irregular BPP,
but it also considers the 1D BPP in Chapters 8 and 9.

The case of rectangular pieces is the most widely studied. However, the irregular case
is seen in a number of industries where parts with irregular shapes are cut from rectangular
materials. For example, in the shipbuilding industry, plate parts with free-form shapes for
use in the inner frameworks of ships are cut from rectangular steel plates, and in the apparel
industry, parts of clothes and shoes are cut from fabric or leather [109]. Other direct appli-
cations include the optimization of layouts within the wood, metal, plastics, carbon fibre and
glass industries.

For the 1D case, it is common to use the terms items and bins; whereas, for the 2D case,
a variety of terms have been used. The small elements have been named pieces, shapes or
items; and the large elements have been called objects, stock or sheets. In this investigation,
we use the terms items and bins regarding the 1D case, and pieces and objects when referring
to the 2D case.

This investigation considers pieces that are irregular polygons (sides and internal angles
may not be equal) with unrestricted number of sides. We call 2D irregular BPP (convex) to the
problem when all pieces are convex polygons (internal angles less than 180 degrees); when
including some concave polygons as pieces, the problem is called 2D irregular BPP (non-
convex) in this research. We assume the polygons are in standard form: no three consecutive
vertices are collinear [145]. Pieces may rotate orthogonally in their attempt to fit inside an
object. Cuts are infinitely thin. Figure 1.1 presents the 1D BPP, while Figure 1.2 shows an
instance of the 2D irregular BPP (non-convex) problem, in which pieces are packed into two
objects.

Figure 1.1: General scheme of the 1D Bin Packing Problem.

The Strip Packing Problem is a popular variant of the 2D Cutting and Packing problem
which has only one large rectangular object with fixed width, its length is variable and has to
be minimized after placing all the small pieces (some approaches and reviews in [44, 74, 23]).
A variation of this typical strip packing problem consists of nesting irregular pieces in one
large irregular object (examples in [93, 92, 155, 120]). The amount of research devoted to the
strip packing problem has been larger when compared to the research about the 2D irregular
BPP. We found that [109] studied a problem similar to our 2D irregular single bin size BPP
but using variable bin sizes, where the problem solution involves finding appropriate sizes
of material objects (bins) among given standard sizes in order to reduce waste. We found

1.2. MOTIVATION 5

Figure 1.2: General scheme of the 2D Irregular Bin Packing Problem.

only one study about, specifically, the 2D irregular single bin size bin packing problem where
Ponce-Pérez et al. [117] proposed a genetic algorithm based approach. They tested it with
one four-piece instance whose best result had some overlapping of pieces. As far as we know,
there are no other studies for the 2D irregular single bin size bin packing problem. Therefore,
all 2D irregular problem instances in the literature are intended for the strip packing problem;
and there are not 2D irregular BPP instances available. Also, since the strip packing problem
is similar to the 2D irregular BPP, many heuristic implementations may be similar; although,
results for both kind of problems are not comparable. Nevertheless the lack of research in the
2D irregular BPP, there exist many practical applications where irregular pieces are cut from
identical rectangular objects [109].

The main objective of this work is to increase the level of generality of a solution
model for the 2D irregular BPP based on an evolutionary hyper-heuristic approach. This main
objective has the following building blocks: (1) developing a general scheme for finding a
good representation of the problem state; (2) upgrading the model to solve instances with some
concave polygons as well as 1D instances without requiring parameter tuning after a hyper-
heuristic was developed; (3) improving the single heuristics repository and performing an
analysis of the single heuristics inside the hyper-heuristic model; and (4) developing insights
in the way that some features and combination of features impact heuristic and hyper-heuristic
performance.

1.2 Motivation
The motivation to reach this problem comes mainly from the practical relevance the Bin Pack-
ing Problem has, especially when it is about two dimensional irregular pieces. Section 2.2
details the most important practical applications. Moreover, in most cases it is still difficult
to outperform an experienced worker with a purely automatic algorithm, so that the irregular
problem has become an attractive research topic [76]. Any kind of improvement towards the

6 CHAPTER 1. INTRODUCTION

resolution of this problem would benefit to the practical and industrial areas in which these
type of problems appear.

On the other side, the motivation to utilize a hyper-heuristics approach comes from the
fact that higher level of generality is becoming a trend in optimization. There is a current
school of thought in meta-heuristic and search technology that states that one of the main
goals of the discipline over the next few years is to raise the level of generality at which
meta-heuristic and optimization systems can operate. For example, Burke et al. [20] con-
ducted an empirical study that ran the same high-level strategies (hyper-heuristics) with three
different domains: 1D bin packing, permutation flow shop and personnel scheduling. They
used a software framework for the development of cross-domain search methodologies called
Hyflex [21]. The term hyper-heuristic has been defined to broadly describe the process of
using (meta-)heuristics to choose (meta-)heuristics to solve the problem in hand. One of the
main motivations for studying hyper-heuristic approaches is that they should be cheaper to
implement and easier to use than problem specific special purpose methods and the goal is to
produce good quality solutions in this more general framework [22].

The No free lunch (NFL) theorem [156] establishes that all algorithms have the same
average performance when considering all possible problems. In other words, for any algo-
rithm, any elevated performance over one class of problems is exactly paid for in performance
over another class. An optimization problem, as defined by Wolpert and Mcready [156] is a
function which maps a search space X with an element of the space of possible cost values Y .
Both spaces, though huge, are finite according to the NFL statement. Their sizes are |X | and
|Y|. The size of the space of all possible functions is |Y||X |. It is worth noting that many (or
most) of this possible functions (problems) are trivial or unrealistic. For example, the instance
where all possible x ∈ X correspond to the same cost value y. Besides, most real instances
have the property that most points x ∈ X that are close to each other have corresponding
points y ∈ Y close to each other as well. The problems we humans are interested in have
some internal structure and some degree of predictability or continuity about them.

Intuitively, the NFL theorem illustrates that if knowledge of the problem is not incor-
porated into the algorithm, then there are no formal assurances that the algorithm will be
effective. Rather, effective optimization relies on a fortuitous matching between the problem
and the algorithm. It is very important to incorporate problem-specific knowledge into the
behavior of the algorithm. Based on the NFL theorem emerges the motivation to find a set of
heuristics that jointly (and complementarily) can perform well among a wide range of realis-
tic and interesting possible instances. Poli and Graff [115] argue why in most realistic fitness
functions there may be a free lunch for computer scientists developing hyper-heuristics.

Representation is a simplification of an instance state needed in several existing evolu-
tionary models for hyper-heuristic construction [128, 138, 139, 141, 143]. In those models,
the numerical representation is applied for complete instances to be solved (in BPP: where
no piece has been placed yet) as well as for instances partially solved (in BPP: where some
pieces have already been placed). For a given problem instance, a numerical representation
is computed in every intermediate state until it is completely solved (see Figure 1.3). Not all
features related to a problem can be taken into account. From the selection of these features
relies highly the performance of the hyper-heuristic, since the problem state is related with
the selection of single heuristics. In those models where an instance state representation has

1.3. HYPOTHESIS AND RESEARCH QUESTIONS 7

been required, feature selection has been done with domain knowledge of the particular pro-
blem. It is required to have a more general method for establishing an adequate problem state
representation.

Figure 1.3: Simplified representation of a problem state.

There is also the interest in analyzing the BPP structure. The BPP structure regards
those features that are able to characterize particular instances. We want to discover the BPP
structure by understanding those features that have a high impact in approximation algorithm
performance. Some feature values may influence some heuristics to be better than others. Si-
milar analysis have been done for other optimization problems, such as the Quadratic Assign-
ment Problem [134], the Early/Tardy Machine Scheduling Problem [135] and the Traveling
Salesperson Problem [85], but never for the Bin Packing Problem, as far as we know.

1.3 Hypothesis and Research Questions
The work is conducted under the hypothesis that utilizing hyper-heuristics is a way of in-
creasing the level of generality of a solution model. This is because utilizing hyper-heuristics
for the 2D irregular BPP will increase the range of problems in which a good solution can
be obtained. Also, there is the hypothesis that improving the representation scheme would
improve the hyper-heuristic performance. Furthermore, modifying (even reducing) the set
of heuristics employed in the model, the hyper-heuristics quality would be better. Only this
way, combining low-level heuristics into a hyper-heuristic would effectively take advantage
of each heuristic strength. We hypothesize that the number, nature and interaction of the low-
level heuristics do have an effect in the hyper-heuristic solution quality. We also hypothesize
that understanding better the BPP structure is important in a practical way. Knowledge about
which feature values have higher impact in which heuristics may be useful in the development
of new heuristic-combination techniques.

That is why, the following research questions are generated:

8 CHAPTER 1. INTRODUCTION

• Is it possible to improve the execution in the 2D BPP of the single heuristic called Djang
and Finch, even though it was initially designed for the 1D case?

• Is it possible to develop a general methodology for finding significant features for the
2D irregular BPP without domain knowledge?

• Which are the most important features of the 2D irregular BPP that characterize every
instance in such a way that it is possible to determine which is the best heuristic for
solving the instance?

• How is the performance of a hyper-heuristic solution model when the most significant
features are taken into account in the representation of the problem state?

• Is it possible to generalize a hyper-heuristic model to a wider range of instances includ-
ing those with non-convex polygons?

• Is it possible to generalize the hyper-heuristic model for other variants of the Bin Pack-
ing Problem (for example, 1D)?

• What sort of changes can be made in the set of selection and placement heuristics that
would enable the approach to work well for non-convex polygons too?

• How is the performance of a hyper-heuristic solution model when tackling the 2D irre-
gular BPP (non-convex)?

• How are the different heuristics used in the hyper-heuristic, in terms of frequency, se-
quence of heuristics and the time each heuristic is used before changing to another?

• Is it possible to obtain BPP domain knowledge through a multivariate data analysis such
as the Principal Component Analysis?

• Could we find some particular BPP features that make some heuristic more suitable
than others?

These questions guided the conducted research as answers to them were found and pro-
vided. Worth pointing out is that the list is not in the order answers were found.

1.4 Solution Overview
The general solution model is depicted in Figure 1.4. The hyper-heuristic generation frame-
work (rectangle in the middle) receives a set of single heuristics and a set of problem instances
as main input. After a training process with a genetic algorithm, our framework produces one
or several hyper-heuristics which consist of a set of rules that relate different instances states
with the better single heuristic to apply in every case. This dissertation works in four different
parts of this general framework (rectangles of text with font in italics in Figure 1.4).

First, instances are characterized by a numerical vector before going into the training
process of the solution model. Regarding this part of the general scheme, this investigation
develops a robust methodology to represent instances employing a numerical vector, leaving

1.4. SOLUTION OVERVIEW 9

Figure 1.4: General structure of the solution model studied. Fonts in italics explain the main
improvements to the solution model.

behind intuitive ways for selecting the most relevant features (Chapter 6). The main idea
consists in clustering the available instances according to heuristic performance. Then we
find which features may predict instances clusters. For clustering, the k-means algorithm
was employed while the Multinomial Logistic Regression technique was used for determining
which features can predict instance cluster. Multinomial Logistic Regression is used to predict
a categorical dependent variable (cluster), given a set of independent variables (features). The
most significant features in the Multinomial Logistic Regression model are as the most related
with heuristic performance. The proposed methodology was tested with the 2D irregular BPP
with convex polygons. The GA-based process for building hyper-heuristics was run with
two different representation schemes concluding that our developed representation shows a
significant improvement in performance with respect to a more conventional representation.

The second element from the framework that was analyzed was the heuristic repository.
Single heuristics are studied and one selection heuristic (Djang and Finch (DJD)) is selected
for further analysis and improvement. The DJD heuristic was originally designed for the 1D
BPP. In the two-dimensional case, not only is it the case that the piece’s size is important but
its shape also has a significant influence. Therefore, DJD as a selection heuristic has to be
paired with a placement heuristic to completely construct a solution to the underlying packing
problem. A successful adaptation of the DJD requires a routine to reduce computational costs,
which is also proposed and successfully tested in this paper. Results, on a wide variety of
instance types with convex polygons, are found to be significantly better than those produced
by more conventional selection heuristics (Chapter 7).

Still working with the single heuristics part of the model, the number of single heuristics
in the heuristic repository was reduced dramatically from 40 (in the first implementation,
Chapter 5) to only six. This was done after discarding those heuristics that were not the best
in any of our testbed instances. Having only good heuristics in the repository, the speed in
which the genetic algorithm converges to a good hyper-heuristic increases. Also, in order to

10 CHAPTER 1. INTRODUCTION

improve our understanding of the single heuristics role when employing hyper-heuristics, an
analysis of the interaction among single heuristics in hyper-heuristic solutions is performed.
We found some interesting patterns about heuristic alternation when solving instances with
hyper-heuristics. These findings give us interesting ideas for further improve the solution
model. Statistical analysis is included to support our study (Sections 8.3.2 and 8.3.4).

The third aspect to be improved is regarding the kind of instances that the produced
hyper-heuristics can solve. The hyper-heuristic framework is tried with a more general testbed
of instances that goes from 1D to 2D instances with convex and non-convex polygons (Chapter
8). The idea is to find hyper-heuristics in the form of rules that automatically choose the best
heuristic to apply to a given instance of any kind. In the past, these problems had been
tackled separately by using a variety of methods and techniques because they exhibit different
properties. With our framework, once a hyper-heuristic has been evolved using a training set
of instances, it can be reused on any new instance of any kind producing competitive results,
and comparable against those provided by the best single heuristic per problem.

Finally, a knowledge discovery approach is used to reveal the problem features or combi-
nation of features that influence the performance of bin packing heuristics and hyper-heuristics.
Our instance testbed includes 1417 instances for this part of the dissertation. Using the Prin-
cipal Component Analysis method, the problem instances, characterized by 9 features, are
visualized in two dimensions. These 9 features were selected from a larger set of 23 by the
proposed methodology that selects the subset of features that are more strongly related with
algorithm performance. Different combinations of features characterize instances in each sec-
tion of the 2D graph produced by the Principal Component Analysis method, and heuristic
performance is over imposed over the 2D graph. This visualization approach reveals new
knowledge on the relationship between bin packing problem features and heuristic and hyper-
heuristic performance (Chapter 9).

1.5 Main Contributions
The main contribution of this work is to build a more robust and reliable framework to generate
hyper-heuristics that intelligently combine single heuristics to solve a wide range of instances
of the Bin Packing Problem. By doing this, the following are the given contributions:

• The design and implementation of an algorithm that produces random problem ins-
tances with irregular convex polygons. This algorithm requires several user-defined
parameters to control the irregularity of the produced random instances.

• An implementation of the proposed evolutionary framework to produce hyper-heuristics
for solving the 2D irregular BPP (convex). The analysis of the results of this first im-
plementation produced several suggestions for improving the framework.

• A robust six-step methodology to find the most relevant features of a problem that are
most related with heuristic performance. The features selected through this methodo-
logy will represent each problem instance state in the genetic algorithm process.

• A new way to represent an instance of the BPP in a numerical vector. Expertise is not
required to establish this new representation scheme.

1.6. SCOPE AND LIMITATIONS 11

• A design of a time-saving routine for the DJD heuristic, making this heuristic a fast and
effective algorithm for selecting the next pieces to be placed.

• An analysis of two important parameters of the DJD heuristic: the initial level of full-
ness and the allowed waste incremental; finding those values where the DJD heuristic
produces the best results.

• A review and improvement of the parameters employed in the genetic algorithm of the
solution model.

• The design and implementation of an algorithm that cuts a convex polygon into two new
shapes, one of which is a concave polygon. This algorithm is the basis for generating
random instances with concave polygons.

• An implementation of geometric functions required to deal with concavities.

• A solution framework able to generate hyper-heuristic for solving at the same time 1D
and 2D instances of the Bin Packing Problem.

• A deeper understanding about how the single heuristics interact in a hyper-heuristic so-
lution. We analyzed how the different single heuristics alternate when hyper-heuristics
solved different kinds of instances. The number of times that a given single heuristic is
applied before changing to another is analyzed as well.

• A deeper understanding of the BPP structure based on the Principal Component Anal-
ysis technique as a graphic tool. We visualize in two dimensions our instances testbed
which are characterized by a larger number of variables. This analysis finds relation-
ships between features and heuristic/hyper-heuristic performance. We expect that this
new knowledge will help in the design of new solution approaches for the BPP.

• A large part of the code programmed for this research was used further in a development
of a hyper-heuristic solution model for a multiobjective 2D Bin Packing Problem [64].

Along the development of this dissertation, there has been a set of published papers that
has also shown the contributions that this research has provided to the scientific community.
The complete list is presented in Appendix A.

1.6 Scope and Limitations
The proposed solution tackles the problem delimited in the problem statement section. Con-
clusions from this work are related with the Bin Packing Problem of one and two dimensions.
The Strip Packing Problem, another popular version of the C&P problem, is not touched
in this dissertation. One-dimensional problem instances were drawn from the literature and
present a variety of characteristics. Two-dimensional problem instances were built artificially
because of the lack of benchmark problems in the literature; nevertheless, these instances have
a wide range of characteristics as well. Allowed rotation for pieces is 90, 180 and 270 degrees.
All problem instances have identical object sizes and all 2D objects are squares. It is worth

12 CHAPTER 1. INTRODUCTION

noting that 2D instances does not allow curves or holes. We do not consider concave shapes
with more than one internal angle larger than 180 degrees. So, pieces with an entrance to an
interior area that fit exactly with pieces with a protuberance (see Figure 2.11) are discarded
from this investigation. As a consequence of this, all positions in the optimal solutions can be
achieved using sliding operations.

All single heuristics presented in this work are constructive and single-pass, which
means that they are algorithms that build solutions from scratch placing pieces one after an-
other and never revising a piece already placed. This kind of heuristics has the advantage of
being very fast, but their performance would be unfairly compared with (meta-)heuristics that
consider many positions before giving a solution. The idea is to build a hyper-heuristic that
successfully combine single heuristics to produce good solutions in only one pass.

Part of the available code was previously employed in the investigation reported in [52]
and [138]. The framework was done with the JAVA programming language.

1.7 Thesis Organization
This dissertation is organized in nine chapters. The following chapters present all the technical
details that are relevant to this research.

Chapter 2 talks about the state of the art regarding the tackled problem and presents some
related background relevant to the research, including topics about computational complex-
ity, geometry and hyper-heuristic approaches. Then, Chapter 3 explains in detail the solution
model this dissertation works with. Chapter 4 talks about the research methodology and the
experimental setup. It shows the main steps followed during the research process and presents
the problem instances in which the proposed contributions are tested. The testing instances
are described as well as the algorithm employed to randomly create 2D instances with some
concave pieces. Finally, some algorithms implemented for dealing with geometry are pre-
sented in this chapter. In Chapter 5 a first experimentation employing the solution model is
explained. Chapter 6 focuses in the problem-state representation and develops a novel way of
selecting relevant features of a given problem. Chapter 7 develops the adaptation to the 2D
BPP of the DJD heuristic. Chapter 8 extends the solution model making it capable of generat-
ing hyper-heuristics for 1D and 2D instances, including instances with non-convex polygons.
This chapter integrates improvements to the single heuristics repository and the problem state
representation scheme from previous chapters ensuring better quality hyper-heuristics. Chap-
ter 9 presents 2D maps where many instances are plotted to visually assess differences and
similarities among instances. By superimposing heuristic performance we are able to produce
insights into the BPP structure. Finally, Chapter 10 provides some conclusions related to the
work that was carried out throughout this research project. Some future guidelines and chal-
lenges are presented along with some possible ways to tackle them and improving obtained
results and performance.

Chapter 2

Related Background

The Bin Packing Problem is a particular case of the more general C&P problem. In this
chapter the C&P problem is described with emphasis in the two dimensional case. Although,
some review is devoted to the one-dimensional case, because this problem is solved in the
framework described in Chapter 8. The C&P problem has been theoretically tackled in the
last decades and the main approaches utilized for the 2D version are discussed showing that
the most recent approach, called hyper-heuristic, had not been applied to the 2D irregular
BPP (non-convex) until this investigation. This is a wide problem, with many variations, that
is why several typologies have been built.

The C&P problem is reviewed in Section 2.1 in which two different typologies are pre-
sented. Then, Section 2.2 shows the importance of studying the cutting problem because of
its numerous applications. Section 2.3 discusses the complexity of the problem. Some issues
about geometry are addressed in Section 2.4 while Sections 2.5, 2.6 and 2.7 talk about some
approaches for solving the 2D C&P problem found in the literature. Section 2.8 presents
the basics about the hyper-heuristic search approach; Section 2.9 goes deeper in how hyper-
heuristics has been applied to the 2D C&P problem and Section 2.10 shows some examples
of hyper-heuristics implemented in other combinatorial problems.

2.1 Cutting and Packing (C&P) Problems

With only a couple of exceptions, research in Cutting and Packing (C&P) problems started
after the middle of the twentieth century. According to Haessler in 1991 [66], the earliest
work appeared in the paper industry with the first known formulation stated, in 1939, by the
Russian economist Kantorovich [86], whose paper was translated into English in 1960. In
1940, Brooks et al. [19] wrote a mathematical paper about the dissection of rectangles into
squares. Another one of the earliest publications in the topic was from Gilmore and Gomory
[57], who introduced, in 1961, a delayed pattern generation technique for solving a one di-
mensional cutting problem using linear programming. Since then, scientific work has grown
rapidly through several disciplines. The same logic structure of the problem appears in areas
such as Computer Science, Mathematics, Logistics, Operational Research and Engineering.
That is why, there has been used a variety of terms according to specific applications. For
example:

13

14 CHAPTER 2. RELATED BACKGROUND

• Parts nesting in the ship-building industry [44].

• Marker layout problem in the garment industry [44].

• Memory allocation, Multiprocessor scheduling and Compaction problem [65] in the
computer industry.

• Floor planning in the VLSI (very-large-scale integration) industry [121].

• Coil Slitting [49].

• Container loading which is a three-dimensional problem [53] and it is similar to Pallet
loading, though in practical applications the two variants of the loading problem can be
distinguished by their constraints [74].

• Capital Budgeting and Change Making [49].

• Scheduling where dealing with a one-dimensional set of objects (jobs) that need to be
assigned to a finite set of containers (machines).

Jacquenot et al. [79] talks about a higher problem category: placement problems which
gather C&P problems as well as the layout problems. In a C&P problem, components are only
geometrically related to each other, whereas in a layout problem, components are geometri-
cally and functionally related to each other.

Also, according to different variations or characteristics of the Cutting and Packing pro-
blem, many terms have been used. For example, bin packing when there are several objects
in which a number of parts are to be packed; strip packing in the case in which a number of
parts are to be cut from an object of indefinite length. Knapsack problem is usually related to
the one dimensional problem. The assortment problem addresses the issue of choosing proper
dimensions for the large objects. Wäscher et al. [154] did an important effort of unifying all
these terms, clarifying the characteristics to apply to each (see section 2.1.2).

Due to the extensive work done in this and related problems, several typologies have
been proposed. Dyckhoff’s typology [48] was the one which ruled since 1990. In 2006
Wäscher et al. [154] suggested a more complete one. These typologies are described in
sections 2.1.1 and 2.1.2.

2.1.1 Dyckhoff’s Typology

Because C&P problems are found in many different application areas, Dyckhoff in 1990 [48]
built a systematic and comprehensive classification for an adequate exchange of solution ap-
proaches across disciplines. His purpose was to unify the different names and the different use
of notions in the literature and to concentrate further research on special types of problems.

The Dyckhoff’s classification integrates a system of 96 types of cutting and stock pro-
blems according to four main features and their subtypes as follows:

1. Dimensionality: One (1), Two (2), Three (3) or n (N).

2.1. CUTTING AND PACKING (C&P) PROBLEMS 15

2. The task: Either (B) use as many small figures as possible to fill all the large objects;
or (V) use as few of the large objects as possible to contain all of the small figures (B
stands for the German ‘Beladeproblem’ and V for the German ‘Verladeproblem’).

3. Assortment of large objects: One object (O), identical shapes (I) o different shapes (D).

4. Assortment of small figures: Few figures of different shapes (P), many figures of di-
fferent shapes (M), many figures of few of different and incongruent shapes (R) or
congruent shapes (for example, rectangles) (C).

For example, 3/B/O/P denotes all three-dimensional C&P problems where one large
object has to be packed with a selection out of a few small different items.

2.1.2 Wäscher’s Typology
Although Dyckhoff’s typology initially provided an excellent instrument for the organization
and categorization of existing and new literature; over the years some deficiencies of this
typology became evident, which created problems in dealing with recent developments and
prevented it from being accepted more generally. That is why Wäscher et al. thought about
an improved typology [154], which is partially based on Dyckhoff’s original ideas.

Problem types can generally be defined as elementary types or combined types. Five
criteria will be used here for the definition of combined problem types of C&P problems:

1. Dimensionality. The criterion of the number of the problem relevant dimensions is
adopted directly from Dyckhoff’s typology. But Wäscher et al. consider one, two and
three dimensions only; because in the literature, occasionally, problems with more than
three geometric dimensions are considered (e.g., Lins et al. in 2002 [97]). Problems of
this type (n > 3) are looked upon as variants, here.

2. Kind of assignment. This criterion has proved to be useful in the past. Wäscher’s
et al. kept it avoiding German notation. They used input minimization and output
maximization for types V and B respectively.

3. Assortment of small items. All small pieces are identical in size and shape (identical
small items); the small items can be grouped into relatively few classes (in relation
to the total number of items), for which the items are identical with respect to shape
and size (weakly heterogeneous assortment); or only very few elements are of identical
shape and size (strongly heterogeneous assortment).

4. Assortment of large objects. With respect to the assortment of the large objects there
are introduced two cases:
One large object. In this case the set of large objects consists of a single element which
can be further classified according to its dimensions:

(a) All dimensions fixed.

(b) One or more variable dimensions.

16 CHAPTER 2. RELATED BACKGROUND

And several large objects with all dimensions fixed:

(a) Identical large objects.

(b) Weakly heterogeneous assortment of large objects.

(c) Strongly heterogeneous assortment of large objects.

5. Shape of the small items. In the case of two- and three-dimensional problems: Regu-
lar small items (rectangles, circles, boxes, cylinders, balls, etc.) and Irregular (also
called: non-regular). Bennell and Oliveira [12] define a piece as irregular if it requires
a minimum of three parameters to identify it. For example, a circle needs just a single
parameter, the radius, and a rectangle needs two parameters, its length and width.

The two criteria kind of assignment and assortment of small items will be used in combi-
nation in order to define six basic problem types. For each basic problem type, the subsequent
application of the criterion assortment of large objects will provide intermediate problem
types. Figure 2.1 shows the names of the basic and intermediate problem types. Note that
basic types Identical Item Packing Problem and Open Dimension Problem are not further dif-
ferentiated. Further characterization of intermediate problem types with respect to the num-
ber of problem relevant dimensions (dimensionality) and –in the case of problems of two and
more dimensions– with respect to the shape of small items will provide refined (combined)
problem types. The resulting subcategories are characterized by adjectives which are added to
(the names of) the intermediate problem types (IPT) according to the following system: 1, 2,
3-dimensional {rectangular, circular, ..., irregular} IPT.

A problem instance which only exhibits the defining properties, but no additional con-
straints or characteristics could be interpreted as being (an instance of) a (first-level) standard
problem (type). First-level non-standard problems (problem types) are characterized by the
properties defining the respective problem category and additional constraints and/or charac-
teristics. Second-level standard problems are those first-level non-standard problems consid-
ered as well known standard problems for the scientific community.

The (two-dimensional) Strip Packing Problem is an Open Dimension Problem in which
a set of two dimensional small items has to be laid out on a rectangular large object; the width
of the large object is fixed, its length is variable and has to be minimized.

According to this typology proposed by Wäscher et al. [154], the target problem of the
present dissertation falls into the categories of two-dimensional, input (value) minimization,
weakly heterogeneous assortment of small items, identical large objects, and irregular (polyg-
onal) small items. The problem is considered as 2-dimensional irregular Single Bin Size
Bin Packing Problem (2D irregular SBSBPP, see Figure 2.1). In this document this same
problem is been denoted as 2D irregular BPP. The problem is offline, and therefore the list of
pieces to be packed is static and given in advance.

2.2 Industrial Applications for the C&P Problem
The reduction of production cost is one of the major issues in manufacturing industries. High
material utilization is of particular interest to industries with mass-production, since small

2.2. INDUSTRIAL APPLICATIONS FOR THE C&P PROBLEM 17

Figure 2.1: Basic and intermediate problem types for the C&P problem in Wäscher’s Typo-
logy [154].

improvements of the layout can result in large savings of material and considerably reduce
production cost [72, 77]. For example, in the garment industry, many pieces are cut using the
same layout. For pants manufacturing, each time a layout is used, sixty layers of cloth are cut
at the same time [95].

The following are the main industrial applications found in literature for the 2D problem:

• Metal industry. The sheet metal industry has to deal with regular as well as irregular
nesting problems [72]. In the steel industry, for example, the small items are called
product reels while the large objects are called raw reels. Usually raw reel widths are
considered to be fixed while length dimension is variable [87]. For profiling (sheet metal
cutting) within the steel-cutting industry, it is imperative that we are able to handle arcs,
concavities, and holes [23].

• Shipbuilding industry. Plate parts with free-form shapes for use in the inner frameworks
of ships are cut from rectangular steel plates [109].

• Garment industry. The textile industry usually utilizes coiled material and hence is
mainly concerned with the strip packing problem [72]. In this industry, pieces usu-
ally are concave, may contain arcs and may have high multiplicity (a small number of
different pieces, many times each).

18 CHAPTER 2. RELATED BACKGROUND

• Shoe industry. In this industry both, the object (natural leather) and the pieces are
irregular and mostly concave [40].

• Lumber industry. Here, most pieces to be cut are rectangles for making furniture [36].
The cutting task in the lumber industry is a two and a three dimensional problem [82].

• Glass industry. In this material, it is common the need to cut rectangles [27].

• Kiln planning for the ceramic industry. Capacity planning of tunnel kiln in ceramic and
porcelain industry has become more interesting as the energy saving issues is growing
concern of operations management. Here, pieces are mostly circles (i.e. plates, dishes)
with equal or different diameters [106].

• VLSI design. Very-large-scale integration (VLSI) is the process of creating integrated
circuits by combining thousands of transistor-based circuits into a single chip. One of
the problems related VLSI systems is its physical design which includes solving the
compaction problem. The goal is to minimize the area of the layout, while preserving
the design rules and not altering the function of the circuit [65].

• Reconstruction of strip shredded text documents (RSSTD) which is of great interest in
investigative sciences and forensics [118]. Techniques for the 2D irregular BPP could
be used in reconstruction of manually torn paper documents, where shape information
can be exploited to some degree.

Some of the most important applications of the C&P problem in one dimension include:
cutting linear elements like steel rod or marble shelf from standard lengths [91], vehicle load-
ing and scheduling (assign jobs of different lengths to machines) [56].

2.2.1 Industrial Constraints
Due to practical considerations, different industries work with different constraints and objec-
tives. Although the main objective is trim minimizing; in some cases, if there is a large area
of trim, this can be reused. That is, there are cases where not only the amount but also the dis-
tribution of the trim are important. Other consideration can be the prioritization of pieces or
precedence constraints. The following are some constraints in the two dimensional problem
specifically related to some industries:

• In the sheet metal industry, the non-homogeneous properties of metal such as grain
orientation limit the number of possible orientations of the items. If bending operations
follow, the parts can only be rotated at a specified angle [74].

• In the garment industry, the grain and pattern of the fabric means that the orientation
of the pieces is fixed (or a 180 degrees rotation is allowed). It is usual to have a few
different pieces to be cut many times. Since fabric is thin, many stock sheet are put one
over another and they are cut together to save cutting time. In many cases it may not be
possible to mirror the parts as the fabric has different properties at the other side [72].

2.3. PACKING AND NP-HARDNESS 19

• The manufacture of leather shoes involves ensuring that the direction of certain compo-
nents lies along lines of tightness and assigning parts to graded quality regions. Region
grading conforms to a grading system commonly used in shoemaking, which ranges
from grade 1 to 5. Leather is a natural material and can show variations in strength and
flexibility depending on direction [40]. There is also a problem caused by imperfect or
unusable areas on the stock-sheet.

• In the lumber cutting industry orientation may be important due to the grain of the wood
[44]. Also, rectangles must be cut from stock sheets using guillotine or edge-to-edge
cuts made parallel to the edges of the stock sheet [107]. Guillotinable means that the
parts can be obtained by straight cut through the remaining layout only.

In spite of these differences all these problems have the common requirement of finding
a feasible layout of the pieces on the stock-sheet.

For the one-dimensional case (i.e. Scheduling) precedence constraints are not uncom-
mon [53]. When the one-dimensional Bin Packing Problem is applied to loading vehicles a
conflict may occur where some (flammable, explosive or toxic substances cannot be placed in
the same vehicle [56].

2.3 Packing and NP-Hardness
One of the most important conventions in complexity theory is the definition of problem
classes. Combinatorial problems can be stated as decision problems where a solution corre-
sponds to a correct yes or no response. An optimization problem is where some value needs to
be minimized or maximized. According to the algorithm complexity, the following problem
classes can be distinguished:

• Class P. A problem is assigned to the P (polynomial time) class if there exists at least
one algorithm to solve that problem, such that the number of steps of the algorithm
is bounded by a polynomial in n, where n is the length of the input. There is a wide
agreement that a problem has not been well-solved until a polynomial time algorithm
is known for it [55]. The membership in this class means, theoretically, that even large
problem instances can be solved with exact routines. Increases in problem size normally
have a small impact on the computation time. However, the solution of large problems
might become impractical using conventional computer systems. Thus, it may be still
worthwhile to search for approximation algorithms that are of lower polynomial order.

• Class NP. A problem is in NP (nondeterministic polynomial time) class if there is a
‘guess-and-check’ algorithm for suggested solutions. The nondeterministic phase con-
sists in guessing a solution. Following, there is a deterministic phase which verify the
solution proposed. To verify a solution consists in checking if it satisfies the problem
criteria. Although problems in this class are easy to verify, they are not easy to solve.
By this definition, the class NP contains the class P. The nondeterministic phase for a
problem in class P would do nothing, and then, in the deterministic phase a polynomial
algorithm would solve it. So, for problems in class NP, it is possible to create an al-
gorithm then invents a proposed solution, verifies it. We expect that doing this a large

20 CHAPTER 2. RELATED BACKGROUND

number of times would end in a good solution [9]. A problem P reduces to a problem
Q if any algorithm that solvesQ also solves problem P provided an appropriate conver-
sion is found. T is a polynomial reduction or transformation from P to Q if and only if:
a) T is executed in time polynomially bounded; b) for every instance x of P , T (x) is an
instance of Q; and, c) for every instance T (x) of Q, x is an instance of P . Polynomial
reductions are the most important ones in this context. A problem P polynomially re-
duces to Q, if a polynomial time algorithm for Q implies the existence of a polynomial
time algorithm for P .

• Class NP-hard. Problems to which all members of NP polynomially reduce are re-
ferred to as NP-hard. A NP-hard problem is not always a NP problem. Thus, a poly-
nomial time algorithm for a NP-hard problem, would produce an algorithm for every
member of NP at the same time. However, this is not expected to happen since there is
a general idea of P 6= NP . Many optimization problems are known to be NP-hard. A
problem is said to be NP-hard in the strong sense (or strongly NP-hard), if it remains so
even when all of its numerical parameters are bounded by a polynomial in the length of
the input. For the 1D BPP, for example, numerical parameters are the pieces sizes. It is
proved that a strongly NP-hard problem cannot be solved by a pseudo-polynomial time
algorithm. An algorithm runs in pseudo-polynomial time if its running time is polyno-
mial in the numeric value of the input (which is exponential in the length of the input in
terms of its number of digits).

• Class NP-complete. Problems that are in class NP-hard and also in class NP are called
NP-complete. As all the members of class NP-complete are decision problems, it does
not contain optimization problems in the strict sense. Optimization problems are NP-
hard, but have analogue decision problems which are NP-complete.

As stated in section 2.1.2, the C&P problem is an optimization problem with many
variations. The 1D BPP, for example, is known to be NP-hard, because the decision version
of the Bin Packing Problem is a polynomial time transformation (reduction) from the NP-
complete problems called PARTITION and 3-PARTITION [55]. The PARTITION problem
consists of deciding whether a given set of integers can be partitioned into two disjoint subsets
that have the same sum. The 3-PARTITION problem is to decide whether a given set of
integers can be partitioned into disjoint triples that all have the same sum denoted by B. It is
a restriction that the size of each element of the given set is strictly between B/4 and B/2.
Reduction of the 1D BPP from the PARTITION problem can be explained as follows: Given
items of size a1, ..., an, make an instance of Bin Packing with items of the same size and bins
of size

∑
ai/2. There is a solution for Bin Packing that uses 2 bins if and only if there is a

solution for the PARTITION problem.
In the case of the two-dimensional variations of the C&P problem, the open dimension

problem is NP-hard even for rectangular pieces. The proof consists of reducing the PAR-
TITION problem to the regular open dimension problem: for an instance (a1, a2, ..., an) of
PARTITION, we build rectangular pieces of height 1 and width ai (i = 1, ..., n). We put the
blocks in a container of height 2. The length is going to be minimized. PARTITION has
a solution if and only if the blocks can be compacted to the length

∑
ai/2 [95]. Another

variation of the C&P is the two-dimensional identical item packing problem (for rectangles),

2.4. THE GEOMETRY FOR PLACING IRREGULAR POLYGONS 21

which is claimed to be NP-hard although it has not been proved [16]. Besides, geometrical
complexity is introduced when considering convex and non-convex polygons and it has been
shown that even compacting to a local optimum can require an exponential number of moves
[96]. For the irregular case, as far as we know, there are neither algorithms with known worst
case behavior bounds nor algorithms computing optimal solution in any way. In practice, only
experimental evaluation and comparison is possible [17].

A problem is referred as intractable if it is so hard that no polynomial time algorithm
can possibly solve it [55], that is why, the C&P problem is, in general, intractable. More-
over, majority of the C&P problem variations are strongly NP-hard, thus, unlikely to admit
pseudopolynomial-time algorithms [17].

2.4 The Geometry for Placing Irregular Polygons
Despite its relevance to industry, research publications regarding irregular pieces are relatively
low when compared to other cutting and packing problems. One explanation offered is the
perceived difficulty and substantial time investment of developing a geometric tool box to as-
sess computer generated solutions [11]. In this section, there are described the main geometric
methodologies employed in packing irregular polygons. Determining which is the most ap-
propriate approach to implement is not just a matter of how well they perform, but also how
difficult they are to implement robustly.

2.4.1 Pixel/raster Method
Raster methods are approaches that divide the continuous stock sheet into discrete areas, hence
reducing the geometric information to coding data by a grid represented by a matrix. The
simplest coding scheme uses the value of 1 to code the existence of a piece, and the value of
0 to denote an empty space. Other coding schemes includes different values to the frontier
and the interior of the pieces [11]. Advantages of this method is that calculating distances
and feasibility is easy. Also, this method of representing pieces can manage non-convex and
complex pieces as easily as simple polygons. However, disadvantages are that the method is
memory intensive and cannot represent exactly pieces with non-orthogonal edges.

2.4.2 Direct Trigonometry
When representing the pieces as polygons the amount of information is proportional to the
number of vertices and does not depend on the absolute size of the pieces. There exist well
known tests for line intersection and point inclusion.

For line intersection, the D-function gives the relative position of a point P with respect
to an oriented edge AB (see Figure 2.2). The D-function can be defined as follows:

DABP = (XA −XB) (YA − YP)− (YA − YB) (XA −XP) (2.1)

Depending if DABP is negative or positive, the point P is on the left or the right side of
the edge AB. The definition of left and right is as follows: if an observer would stand at point
A looking in the direction of B, point P would be at the observer’s left or right. If DABP = 0,

22 CHAPTER 2. RELATED BACKGROUND

the point P is on the supporting line of edge AB. This way, the D-function is an efficient
tool for characterizing the relationship between two edges, an so, for detecting if a pair of
polygons intersect [11].

Figure 2.2: Interpretation of the D-function.

2.4.3 The No-Fit Polygon (NFP)
The NFP is a geometry tool that has practically become a prerequisite for solving irregular
packing problems; it gives the set of non-overlapping placements for a given pair of polygons
[76]. The first application of no-fit polygon techniques within the field of cutting and packing
was presented by Art in 1966, although the term shape envelop was used [7]. It was ten years
later that the term no-fit polygon was introduced by Adamowicz and Albano who approached
the irregular stock cutting problem by using no-fit polygons to pack shapes together using
their minimum enclosing rectangles [2] . The term configuration space obstacle is often used
to denote the NFP within the field of engineering and robot motion planning but the term has
also been used with respect to cutting and packing [24]. Utilizing the no-fit polygon makes it
unnecessary to check for overlapping pieces [29]. Whilst the generation of the no-fit polygon
is academically challenging, it is a tool and not a solution [24].

The NFP of two polygons A and B, denoted as NFPAB is the resulting polygon from a
sliding operation between A and B where each has a specific role within the operation. Both
polygons have fixed orientation. A has a fixed position where the origin is assumed to be at
(0, 0), B is the tracing polygon that moves around the perimeter of A to perform the sliding
operation. The NFP is defined by placing B in a touching position with A and marking the
locus of a reference point on B as it traces around the boundary of A. The tracing motion
is performed in such a way that A and B always touch, but never overlap. The locus of the
reference point forms a closed path that is NFPAB [11]. Figure 2.3 illustrates an example of
NFPAB. Clearly while A is fixed at (0, 0), if B is placed so that the reference point is inside
NFPAB then A and B overlap and if the reference point is on the boundary then A and B
touch.

While both polygons are convex, the concept of the NFP and its realization are quite
simple. First, the different roles of each polygon are recognized, and as a result the edges of
the polygons must have different orientations (Figure 2.4a). We will adopt the convention that
polygon A (fixed polygon) is counterclockwise and polygon B (orbiting polygon) is clock-
wise. Second, a slope diagram is built (Figure 2.4b); and finally, the order of the edges of
the NFP of two convex polygons is equivalent to sorting the edges of both polygons in slope
order (Figure 2.4c). This method results in the shape and orientation of the NFP but not its

2.4. THE GEOMETRY FOR PLACING IRREGULAR POLYGONS 23

Figure 2.3: Generation of the NFP between a square (fixed polygon) and a triangle (orbiting
polygon).

position. In order to use the NFP to determine overlap, an origin from which the position of
each polygon is measured must exist. This position is determined with respect reference point
of the orbiting polygon.

Figure 2.4: (a) The orientation of A and B; (b) the slopes diagram; and (c) the NFP.

For nonconvex polygons, there exist three core approaches in the cutting and packing
literature [11]; (a) the orbiting algorithm; (b) Minkowski sums; and (c) decomposition into
star shaped polygons or convex polygons. While the no-fit polygon is a powerful geometric
technique, there are several issues that limit its scalability for industrial applications. No-
fit polygon techniques are notorious for the large quantity of degenerate cases that must be
handled to make it completely robust [23]. A significant drawback of this approach is the
non-trivial task of developing a robust NFP generator for general nonconvex polygons [12].
However, alternative methodologies have been proposed [13, 24]. Examples of this type of
procedure implemented for the strip packing problem are found in [77, 62, 46, 30, 24].

24 CHAPTER 2. RELATED BACKGROUND

2.4.4 The Phi Function
The phi-function is a recent innovation in dealing with the geometric issues for nesting pro-
blems [11]. The phi-function for cutting and packing were conceived and applied by Stoyan
et al. [136]. It is a mathematical expression that represents the mutual position of two objects.
Specifically the value of the phi-function is greater than zero if the objects are separated, equal
to zero if their boundaries touch and less than zero if they overlap. When the phi-function is
normalized its value is the Euclidean distance between the two objects. Stoyan et al. derive
the phi-function for primary objects; these are circles, rectangles, regular polygons, convex
polygons and the compliment of these shapes. Shapes that are not primary objects can be
represented as a union or intersection of the primary objects. As far as we know, there does
not exist a robust algorithmic procedure for generating the phi-function for irregular pieces.
Therefore, this is a promising research area. It is expected that the use of the phi-function will
be spread as long as more powerful tools are developed [11].

2.5 Exact Solutions for the 2D C&P Problem
A variety of approaches have been done. For relatively small instances of the 2D C&P pro-
blem, exact algorithms can be applied in a reasonable time.

2.5.1 Linear Programming
As far as we know, the only method optimal in some sense for the irregular case has been
proposed by Adamowicz [1]. Solution is obtained by iterative application of a two-stage
procedure. The first is a linear programming problem; its solution minimize linear objective
function subject to linear constraints. The second, geometrical stage, checks if the set of
elements can be allocated feasibly satisfying geometrical constraints. If the solution does not
exist, then new linear constraints resulting from the information obtained in the second step
are generated for the new iteration. There are geometrical constraints of two types: absolute,
that bound locations on the stock area; and relative, defined in relation to the other elements.
This procedure searches in the space of all possible locations of elements maximizing number
of elements allocated.

However, this approach is so complex that experimental program is either not com-
pletely usable or implements very simplified version of the method [17]. The computational
complexity of the geometrical phase grows exponentially in the number of objects and orien-
tations due to the search of candidate allocations, thus this method is rather a theoretical one
[17].

2.5.2 Tree-Search Procedures
According to Hifi [68] branch-and-bound is a well-known technique for solving combinato-
rial search problems. Its basic scheme is to reduce the problem search space by dynamically
pruning unsearched areas which cannot yield better results than already found. The branch-
and-bound method searches a finite space S, implicitly given as a set, in order to find one state
s∗ ∈ S which is optimal for a given objective function f . Generally, this approach proceeds

2.6. HEURISTIC SEARCH FOR THE 2D C&P PROBLEM 25

by developing a tree in which each node represents a part of the state space S. The root node
represents the entire state space S. Nodes are branched into new nodes which means that a
given part S ′ of the state space is further split into a number of subsets, the union of which
is equal to S ′. Hence, the optimal solution over S ′ is equal to the optimal solution over one
of the subsets and the value of the optimal solution over S ′ is the minimum (or maximum) of
the optima over the subsets. The decomposition process is repeated until the optimal solution
over the part of the state space is reached.

With this principle, Viswanathan et al. [150] developed a best-first tree search algorithm
based on Wang’s [151] bottom-up approach that guarantees optimal solutions for the rectan-
gular two-dimensional placement problem (output maximization). Later, Hifi [68] evolved
several exact algorithms for the guillotine rectangular strip cutting & packing problem (input
minimization) based on Viswanathan’s algorithms.

Algorithms for finding exact solutions for some very particular problem instances are
discussed in [89]. These algorithms use the backtracking principle (also called depth-first
search). One of the instances solved is the problem of packing 45 identical Y-pentominoes
into a square leaving no waste. A pentomino is a polygon composed of five congruent squares.
The Y-pentomino is non-convex and is called this way because it resembles vaguely letter Y.

2.6 Heuristic Search for the 2D C&P Problem

For many real-world problems, an exhaustive search for solutions is not a practical propo-
sition. The search space may be far too big, or there may not even be a convenient way to
enumerate the search space. For example, there may be elaborate constraints that give the
space of feasible solutions a very complex shape. The term heuristic is sometimes used to re-
fer to a whole search algorithm and is sometimes used to refer to a particular decision process
sitting within some repetitive control structure [22]. Many heuristic approaches have been
adopted to solve the irregular C&P problem. For example, for irregular shaped parts, pre-
vious methods approximate the parts using a bounding rectangle, but this results in material
waste [4]. It has always been common to allow configurations with overlapping pieces in the
solution space and to penalize these in the evaluation function. However, depending on the
severity of the penalty this relaxation results in a tendency to converge to infeasible solutions
or to seek out feasible solutions at the expense of overall quality [10].

It is not uncommon that C&P approaches for the Bin Packing variant present at least
two phases: first, the selection of the next piece to be placed and the corresponding object
to place it; and second, the actual placement of the selected piece in a position inside the
object according to given criteria. Some approaches consider a third phase as a local search
mechanism. First two approaches are done while working with partial solutions because
heuristics constructs a layout piece by piece. In the case of a single-pass construction heuristic,
the approach can often produce reasonable quality solutions with little computational cost
[12]. In addition, feasibility is embedded into the heuristic since each piece is placed in
a feasible position on the stock sheet and not moved. A key characteristic of local search
approaches is the process of iteratively making small changes to a complete solution.

26 CHAPTER 2. RELATED BACKGROUND

2.6.1 Selection Heuristics
Regarding the selection criteria, most researchers have focused upon exploring different ways
of finding good permutation of pieces. Okano [109] obtains an ordering of pieces with respect
to their areas and the similarities among them. Dowsland et al. [46] use eight static orderings,
which have the common strategy of trying to place the difficult-to-place pieces first. Dynamic
selection permits all pieces to be available to be placed next [12], for example, Bennell and
Song [14] use beam search. This approach searches the breadth first tree, and prunes the tree
at each level according to two evaluation functions.

Here are some of the selection heuristics found in the literature for the one and two-
dimensional BPP that are implemented through this dissertation.

1. First Fit (FF).- Considers the opened objects in turn in a fixed order and place the
item in the first one where it fits. This is a very straightforward greedy approximation
algorithm. The algorithm processes the items in arbitrary order. For the 1D case, this
algorithm achieves an approximation factor of 2. This is due to the observation that at
any given time, it is impossible for 2 bins to be at most half full. The reason is that if
two bins are at most half full, they would be able to merge. Thus if we have B bins
and optimum value OPT , therefore B ≤ 2OPT [148]. Recently, Xia and Tan [157]
presented improved bounds for this algorithm showing that the absolute performance
ratio of FF is at most 12/7.

2. First Fit Decreasing (FFD).- Sorts pieces in decreasing order, and the largest one is
placed according to FF. It has been shown to use no more than 11/9OPT + 1 bins in
the 1D case [158].

3. First Fit Increasing (FFI).- Sorts pieces in increasing order, and the smallest one is
placed according to FF. As FF, this algorithm also achieves an approximation factor of
2 for the 1D case.

4. Filler.- Sorts the unplaced pieces in decreasing order and places as many pieces as
possible within the open objects. If no single piece could be placed, it opens a new
object.

5. Next Fit (NF).- Uses the current object to place the next piece, otherwise open a new
one and place the piece there.

6. Next Fit Decreasing (NFD).- Sorts the pieces in decreasing order, and the largest one
is placed according to NF.

7. Best Fit (BF).- Places the item in the opened object where it best fits, that is, in the
object that leaves minimum waste.

8. Best Fit Decreasing (BFD).- Same as the previous one, but sorting the pieces in de-
creasing order. It has the same worst-case performance than FFD since it uses no more
than 11/9OPT + 1 bins in the 1D case [158].

9. Worst Fit (WF).- Places the item in the opened object where it worst fits (that is, with
the largest available room).

2.6. HEURISTIC SEARCH FOR THE 2D C&P PROBLEM 27

10. Djang and Fitch (DJD).- Places items in an object, taking items by decreasing size,
until the object is at least one-third full. Then, it initializes w = 0, a variable indicating
the allowed waste, and looks for combinations of one, two, or three items producing a
waste up to w. If any combination fails, it increases w by one twentieth of the object.
Chapter 7 deals deeper with this heuristic varying the initial portion of the object that is
full before trying combination of pieces.

Some of these heuristics are also described by Ross et al. [128] and Hopper et al. [75].

2.6.2 Placement Heuristics
The placement procedure for irregular pieces has attracted more researchers than the explo-
ration of the selection criteria. Once the piece and object are selected, the placement heuristic
states the way the piece is located inside the object. Given a piece and an object, two different
placement heuristics could arrive to different conclusions about if the piece can or cannot be
located inside the object or about the pieces final coordinates.

There are several techniques to generate potential placement positions for the next piece
to be placed, and many of them are based on building the no-fit polygon. That is why a
description of the NFP is given in section 2.4.3. After generating the possible placement
positions, it is necessary to have some criteria for choosing the best position. In the research
area of 2D cutting and packing problems the most commonly used method for packing regular
and irregular pieces involves the bottom-left class of heuristics. These methods involve simply
placing the input list of pieces into the bottom-leftmost location on the packing sheet [3]. In
our implementation, we use these four placement heuristics that do not depend on the NFP:

1. Bottom-Left (BLI).- This is the best known heuristic of its type, and a modification
to the bottom-left heuristic used for rectangular pieces presented in [138]. The piece
starts at the top right corner of the object and it slides down and left with a sequence of
movements until no other movement is possible (see Figure 2.5). If the final position
does not overlap the object boundaries, the piece is placed in that position. The heuristic
does not allow a piece to skip around another placed piece. The good performance
of this heuristic greatly depends on the initial ordering of the pieces as reported by
Dowsland et al. [45, 46]. Its advantage lies in its speed and simplicity.

2. Constructive Approach (CA).- This heuristic is based on the work presented by Hifi
and M’Hallah [70]. The heuristic starts by placing the first piece at the bottom and left
of the object. Then, the next piece is placed in one of the five positions: (x̄, 0), (0, ȳ),
(x, ȳ), (x̄, ȳ) and (x̄, y), where x̄, x, ȳ, and y are the maximum and minimum coordi-
nates in x and y in relation to the first piece (see Figures 2.6 and 2.7). Given that some
positions might coincide, each position appears only once in the list. For each posi-
tion in the list, the next piece slides vertically and horizontally following down and left
movements as shown in Figure 2.8. Positions with overlapping pieces or exceeding the
object dimensions are discarded. All others are considered as candidate positions, and
the one that places the piece deepest (bottom and left) is chosen. In the implementation
by Hifi and M’Hallah [69], some special cases are discarded such as when a hole is
formed. But, in our implementation of the heuristic, the four corners of the object were

28 CHAPTER 2. RELATED BACKGROUND

Figure 2.5: Bottom-left heuristic for irregular pieces.

also added as candidate positions. Using the corners as a departure point to slide the
piece bottom and left, can make it possible to reach into certain gaps between pieces,
gaps that would not be reachable if only the five initial positions are considered. The
approach uses simple geometric operators, avoiding more sophisticated computations
such as the convex hull.

3. Constructive-Approach (Minimum Area) (CAA).- This is a modification of the pre-
vious heuristic. The variation consists of selecting the best position from the list based
on which one yields the bounding rectangle with minimum area, containing all pieces,
and that fits in the bottom left corner of the object. The rectangle is shown in Figure 2.9

Figure 2.6: Positions to be considered in the Constructive Approach.

2.6. HEURISTIC SEARCH FOR THE 2D C&P PROBLEM 29

Figure 2.7: Positions to be considered in the Constructive Approach. An example with two
pieces already placed.

Figure 2.8: Constructive Approach Heuristic.

30 CHAPTER 2. RELATED BACKGROUND

and its area is computed with the product of the maximum horizontal coordinate and
the maximum vertical coordinate of all pieces already placed plus the new piece to be
located in the proposed position. Figure 2.10 shows the rectangle with minimum area
for two different proposed positions for a single piece. This criterion was chosen based
on the idea of selecting a point with which all pieces, not only the last piece, are deepest
(bottom and left).

Figure 2.9: Rectangle with minimum area, located at the bottom-left corner and containing
all pieces so far.

Figure 2.10: Candidate rectangles when locating a piece.

4. Constructive-Approach (Maximum Adjacency) (CAD).- The idea behind this heuris-
tic is based on the approach suggested by Uday et al. [147]. However, when the first
piece is to be placed, our implementation considers only the four corners of the object.
For the subsequent pieces, the possible points are the same as those as in the construc-
tive approach (CA, listed as our second placement heuristic), described above. Each
position in the list is evaluated twice: first, the piece starts in that position and its adja-
cency (that is, the common boundary between its perimeter and the placed pieces and
the object edges) is computed. Then, the piece is slid down and left and the adjacency
is computed again. The position with the largest adjacency is selected as the position of
the new piece.

These four placement heuristic implemented in this research involves sliding. The BLI
heuristic slides all pieces from the top-right part of the object, while the remaining three
heuristics start sliding from a set of different positions. Some placement positions that may
not be reached by sliding but could be reached by dropping are not considered in this inves-
tigation. Positions like the one in the example of Figure 2.11 could only be achieved with

2.7. META-HEURISTIC SEARCH FOR THE 2D C&P PROBLEM 31

our constructive approach heuristics having the exact fitting position in the list of candidate
positions described in C A heuristic above.

Figure 2.11: Two concave pieces that can not fit with a sliding operation.

2.6.3 Local Search Heuristics
Once a solution is found, further improvements can be found if a local search mechanism
is applied to generate new input orderings [23]. The issue here is encountered in defining
a neighborhood search strategy that can deal with the infinite solution space inherent in the
irregular C&P problem [10].

Some of the local search heuristics applied to the 2D C&P problem are:

1. Hill climbing. This algorithm applies operators to the current solution to find a neighbor
of increased quality. If an improved neighbor is found, it is adopted as the current
solution and the search continues. If the neighbor is not an improvement on the current
solution, it is discarded and the search continues with other neighbors. The best solution
is returned at the end of the search [23]. A particular case of this kind of local search
is called 2-exchange search procedure, which is an improvement algorithm responsible
for guiding the search through the solution space. This algorithm moves to a neighbor
solution by exchanging a pair of pieces in the current sequence. Parameter Δ controls
the size of the neighborhood, allowing only exchanges between pieces within a distance
of Δ [62].

2. Tabu search. From a solution at hand, the process generates a given number of neigh¬
bors and moves to the best solution in this subset of the neighborhood. This best solution
is then used to generate the next set of neighbors and the cycle continues. The use of a
tabu list means that we will not revisit recently seen solutions within a given list length
[23].

2.7 Meta-heuristic Search for the 2D C&P Problem
A meta-heuristic is a heuristic method for solving a very general class of computational pro¬
blems by combining user-given black-box procedures -usually heuristics themselves- in a
hopefully efficient way. The name combines the Greek prefix meta (beyond, here in the sense
of higher level) and heuristic. Meta-heuristics are generally applied to problems for which
there is no satisfactory problem-specific algorithm or heuristic; or when it is not practical to
implement such a method. Most commonly used meta-heuristics are targeted to combinatorial
optimization problems.

32 CHAPTER 2. RELATED BACKGROUND

Meta-heuristic techniques are often very effective, however, there can be some reluc-
tance to use them for money-critical problems. In practice, experience suggests that people
often prefer to use very simple and readily understandable search methods even if those meth-
ods deliver relatively inferior results [126].

Many approaches for the C&P problem are proposed in the literature involving meta-
heuristic search principles. Here are some of them related with the two-dimensional case,
including some specific implementations. They are classified by kind of meta-heuristic tech-
nique utilized.

2.7.1 Evolutionary Computation (EC)
Evolutionary Computation includes a set of searching techniques typically used for optimizing
combinatorial problems. Those techniques evolve a population through an iterative process.
Finally, the best individual (and sometimes all of them) of the evolved population is considered
the solution of the problem. The main evolutionary techniques include genetic algorithms
(GA), genetic programming (GP) and learning classifier systems (LCS).

Among the main criticisms of bio-inspired algorithms in particular, and of stochastic
based problem solving techniques in general, is the fact that they involve some randomness
and unpredictability [127].

Genetic Algorithms

Genetic algorithms [59, 71] are meta-heuristic search procedures based on the mechanics of
natural genetics and selection. They have been used for complex optimization problems with
a large search space. The search is guided towards improvement applying the principle known
as survival of the fittest. This is achieved by extracting the most desirable individuals from a
generation of solutions and combining them to form the next generation. The quality of each
solution is measured by a fitness function. It is intended that the higher the fitness value of an
individual, the higher its reproduction probability. The motivation is to continue this process
through a number of generations in order to reach convergence on optimal or near-optimal
solutions.

Each point in the solution space is encoded in a string called chromosome. Each value of
the chromosome is called a gen or bit, and the value it has is the allele. The classic approach
uses binary coding where the parameters are represented by strings of 0’s and 1’s. Although
representation with longer alphabets or real values have been implemented.

The genetic algorithm paradigm has attracted considerable attention as a promising
approach for optimizing functions of continuous variables, but then there have been several
applications to problems of a combinatorial nature. What is often found is that GAs have
fairly poor performance for combinatorial problems if implemented in a naı̈ve way, and most
reported work has involved somewhat ad hoc adjustments to the basic method [122].

Since 1985, there have been GA implementations to the C&P context [74]. The GA
manipulates the encoded solutions, which are then evaluated by a decoding algorithm trans-
forming the packing sequence into the corresponding physical layout. Turton and Hopper
[146] in 1997 did a review of the applications of GAs to packing problems. Genetic represen-
tation of the solution of the problem is vital to the performance of the genetic algorithm. One

2.7. META-HEURISTIC SEARCH FOR THE 2D C&P PROBLEM 33

of the most classical representations is the permutation [54, 81]. In several approaches, as in
[103], the GA holds a population of solutions and each individual is assigned a fitness value,
which indicates the quality of the solution the chromosome represents.

Naı̈ve Evolution

The basic idea behind naı̈ve evolution (NE) is the same as for the genetic algorithm. However,
no crossover operator is applied to manipulate the search space [137]. Only the mutation
operator is used for the generation of the next population. A naı̈ve evolution algorithm can
be used to test the efficiency of the crossover operator in a genetic algorithm. Hopper and
Turton [73] made a comparison among several meta-heuristic methods for the rectangular
case. Their outcomes of the two evolutionary methods (GA and NE) are very similar with the
NE algorithm performing slightly better for some problems (up to 2%).

Object-Based Evolutionary Algorithm (OBEA)

Most of the evolutionary algorithms implemented so far for the nesting problem search in a
one-dimensional space [121]. Kanchitpol and Dagli [121] proposed in 1998 a set of object-
based mechanisms and object-based evolutionary operators to perform effectively on a two-
dimensional space without restricting search alternatives. The representation of each indi-
vidual is done through a collection of locations of the pieces which is also a solution of
the problem. The implementation is conducted using grid representation where no overlap-
ping is allowed. Some of the operators used are: translation, rotation, rectangular-rotation,
touch-point, piece-sliding, relocation, relocate-away, point-mutation, area-mutation, point-
crossover and area-crossover. The last two operators recombine two layouts. The translation
operator, for example, is performed on a piece in a region by moving the piece one unit at a
time towards preset gravitational forces. Details of all operators are explained in [121].

Genetic Programming (GP)

Bounsaythip and Maouche [18] propose an evolutionary method to solve a garment shape
nesting and placing problem. They use a hierarchical representation of the problem which is
similar to representation used in genetic programming [116]. In their tree code, shapes are
linked one to another by a layout operator (rotation, adjacency). Shapes can be viewed as
operands. A layout of a total set of shapes is represented by a chromosome which contains
trees as genes. Each tree represents a strip of layout, since the total set of shapes is partitioned
into several strips. The crossover is the tree crossover now becoming classical in genetic
programming. The mutation alters an operator in a tree or deletes a shape from a tree or
permutes at random two single shapes within the same tree.

So far, not many researchers approach the irregular shape nesting problems with evo-
lutionary algorithms. One main difficulty is to find an appropriate encoding of the problem
[18].

34 CHAPTER 2. RELATED BACKGROUND

2.7.2 Simulated Annealing
Simulated annealing (SA) [88] is a search method based on hill climbing in that better states
are always accepted. However, worse states are also accepted, with some probability. This
allows the algorithm to jump out of local minima so that more of the search space can be
explored.

In 1999, Burke and Kendall presented a new method to pack convex polygons into bins
by using simulated annealing and by utilizing the No Fit Polygon [29]. They showed that
simulated annealing out performs hill climbing. The concept of a polygon type has been
introduced. They implemented several neighborhood functions to explore the search space:

• Collect: Randomly selects a polygon and then scans through the remaining polygons
and moves all polygons of the same type so that they are next to each other. The idea
behind this function is that polygons of the same type will fit well together when packed.

• Next Door: Picks a polygon at random and swaps it with its next door neighbor. The
motivation behind this function is to make small changes in the neighborhood in the
hope that the search space will be systematically explored, leading to a good quality
solution.

• Random: Selects two polygons at random and swaps them.

Later, in 2006, Gomes and Oliveira proposed an hybrid algorithm that includes Simu-
lated Annealing and Linear Programming to solve the Irregular Strip Packing problem [63].
With these solution model, they got new best known results for all the benchmark instances
used in the computational tests.

2.7.3 Tabu Search
Tabu Search (TS) appears to have been less popular (compared with GAs) in the solution of
packing problems. This may be because of the infinite neighborhoods implied by a contin-
uous stock sheet [10]. In Bennell and Dowsland’s implementation in 2001 [10] developed a
neighborhood search and use compaction routines to improve local optima, ruling out simu-
lated annealing as the underlying algorithm as it tends only to visit high–quality local optima
toward the end of the search. Their approach used tabu thresholding, which searches the solu-
tion space by moving one piece to a different position in the stock sheet. Solutions containing
overlap are permitted and penalized in the cost function.

2.7.4 Ant Colony Optimization (ACO)
ACO is a multi-agent meta-heuristic for combinatorial optimization and other problems. It
is inspired by the capability of real ants to find the shortest path between their nest and a
food source. The key to this ability lies in the fact that ants leave a pheromone trail behind
while walking. Other ants can smell this pheromone, and follow it. When a colony of ants is
presented with two possible paths, each ant initially chooses one randomly, resulting in 50%
going over each path. It is clear, however, that the ants using the shortest path will be back

2.7. META-HEURISTIC SEARCH FOR THE 2D C&P PROBLEM 35

faster. So, immediately after their return there will be more pheromone on the shortest path,
influencing other ants to follow this path. After some time, this results in the whole colony
following the shortest path [47].

With ACO, agents (ants) solve difficult problems using single heuristics and communi-
cating between them by signals left on the environment (pheromones) which store information
of the solutions found and its quality [42]. ACO consists of:

1. Pheromones (for guiding ants trough solution space).

2. Pheromone Update (to encode good solutions in the pheromones).

3. Pheromone Evaporation (to make bad solutions less probable).

In 1999, E. Burke and G. Kendall [28] implemented the ACO with regards to the nesting
problem. Using the Traveling Salesman Problem (TSP) ant system as a model, an ant system
has been developed for the nesting problem using the no fit polygon. Each polygon can be
viewed as a city in the TSP and these are fully connected so that there is an edge between each
polygon and every other.

2.7.5 Greedy Randomized Adaptive Search Procedure (GRASP)

Gomes and Oliveira [61] proposed a GRASP (Greedy Randomized Adaptive Search Pro-
cedure) [114] approach to tackle the nesting problem. The idea behind this approach is to
represent a solution by a sequence of pieces and perform the search over this representation,
exchanging pairs of pieces in the sequence. A low level placement heuristic is needed for gen-
erating the cutting patterns (layouts), one for each particular sequence of pieces. This means
that the search is conducted through a solution space of different sequences of pieces. The
GRASP algorithm is an iterative process, where each iteration consists of a constructive phase
and a local search procedure. The constructive phase is based on a greedy heuristic that builds
a feasible solution, whose neighborhood is then explored by the local search procedure. At
the end, the result is the best solution found over all of the iterations.

2.7.6 Agent-Based Approach

Halavati et al. [67] present a population based approach for optimizing arrangement of irre-
gular shapes. In this approach, each shape is coded as an agent and the agents’ reproductions
and grouping policies results in arrangements of the objects in positions with least wasted
area between them. Agents try to make friendship relations with each other while the relation
describes their relative positions. Once a group of friend agents is formed and the group has
one agent from each shape, the friendships patterns describe the arrangement of their shapes.
Based on the quality of the final arrangement, the friendship patterns are duplicated and some
of the relations become permanent. Using this iterative approach, the quantity of the good
groups increases gradually and more and more acceptable solutions appear.

Agent-based approaches are very uncommon for the 2D Cutting and Packing problem.

36 CHAPTER 2. RELATED BACKGROUND

2.8 Hyper-heuristic Search
Hyper-heuristics are a recent development. The aim of research in hyper-heuristics is to dis-
cover new methods of solving difficult practical optimization problems, that are fast and are
capable of delivering very good quality results for a wide range of problems.

Some of the reasons meta-heuristics (section 2.7), although effective, are not so popular
in industrial domains include [126]:

• Meta-heuristics search techniques involve parameter choices that are critical for the
technique performance. For many users those choices are not clear. Besides, such
algorithms often involve probabilistic choices, that produce different solutions each run.
This fact may make the procedure somewhat incompressible for some users.

• Development and implementation tend to be resource intensive, and each solution gen-
eration can be relatively slow.

• There is little knowledge or understanding of the average- or worst- case behavior of
some of these techniques. So, there is not warranty of performance.

• Even if the technique generates a good-looking solution, it can be hard to understand
how the solution was arrived at. Is is often important to a group of people to feel that a
proposed solution is intuitively acceptable.

That is, meta-heuristics are problem-specific solution methods, which require knowl-
edge and experience about the problem domain and properties. They can be developed and
deployed only by experts who have the sufficient knowledge and experience on the problem
domain and the meta-heuristic search method [15].

Research on hyper-heuristics is an attempt to respond to such legitimate criticisms. That
is why a hyper-heuristic model has to have a clear and simple general form [126]. The idea
is to use evolutionary methods to discover a novel non-evolutionary deterministic algorithm,
based on simple and familiar heuristics, that has good worst-case performance across a range
of problems and is fast in execution [127]. However, Özcan et al. [112] talk about a nonde-
terministic strategy that schedules the next heuristic based on some probability distribution.
More complicated and viable hyper-heuristics can be designed by making use of a learning
mechanism that obtains a feedback from the previous choices to select the right heuristic at
each step [112].

In combinatorial optimization, there is a trend to find more general solvers capable of
solving many different instances efficiently; for example, Burke et al. [20] conducted an
empirical study that ran the same high-level strategies (hyper-heuristics) with three different
domains: 1D bin packing, permutation flow shop and personnel scheduling.

Hyper-heuristics methods do not search directly the solution space; they do it indirectly
through the exploration of the space of heuristics and/or their combinations. This space is
named the associated space. Experimental results reveal that the size of the associated space
significantly affects the performance of the overall method [149]. Each member of the associ-
ated space is a combination of low level heuristics which represent a solution to the problem
in hand. This indirect encoding has two main advantages:

2.8. HYPER-HEURISTIC SEARCH 37

• The associated space maps to solutions that are on average of a high quality. For exam-
ple, a random sample of solutions in the associated space would be expected to have a
superior quality than a random sample from the original solution space This was tested
by Vazquez et al. [149] using a production scheduling problem.

• The structure of the associated problem is, in general, simpler than that of the original
problem, and therefore the searching task is easier.

Hyper-heuristics lie in between (1) machine learning and (2) optimization. Therefore,
hyper-heuristics approaches can be classified according to (1) the source of the feedback and
(2) the nature of the search space.

Three types of feedback can be distinguish: online learning (learning occurs while solv-
ing the problem) , offline learning (learning occurs with a training set of instances) and no
learning.

Regarding the nature of the search space, two types of hyper-heuristics can be distin-
guished: heuristic selection (methodologies for choosing or selecting existing heuristics) and
heuristic generation (methodologies for generating new heuristics from components of exist-
ing heuristics) [26]. Among the heuristic selection hyper-heuristics, there are the improving
ones, also known as iterative or perturbation hyper-heuristics, and the constructive hyper-
heuristics [149]. An iterative hyper-heuristic receives as an input a base solution and at every
iteration a low level heuristic is applied in order to produce a hopely better new solution; while
a constructive hyper-heuristic is a high level heuristic that suggests a sequence of low level
heuristics to be applied in succession in order to build a solution from scratch.

According to this classification of the hyper-heuristic approaches, the following defini-
tion can be stated: A hyper-heuristic is a search method or learning mechanism for selecting
or generating heuristics to solve computational search problems [26].

Each of the different heuristic search spaces can be combined with the different sources
of feedback. Moreover, hybrid approaches are starting to emerge [26].

2.8.1 Heuristic Selection: Iterative Hyper-heuristics
An iterative hyper-heuristic receives as an input an initial base solution so and at every itera-
tion a low level heuristic is applied in order to produce a new solution s′. If s′ is better than
so it becomes the new base for future iterations. If it is worse, it may either be discarded or
still become the new base with a certain chance or some criteria. The mechanism to choose
the low level heuristic to be applied next and the policy to accept or reject non-improving
solutions are what differentiate most of the proposed iterative hyper-heuristics.

An iteration of a hyper-heuristic can be subdivided into two parts: heuristic selection and
move acceptance. Cowling et al. [39] proposed three types of low level heuristic selection
mechanisms to be used in hyper-heuristics; which are Simple, Greedy and Choice Function.
There are three types of Single heuristic selection mechanisms. Simple Random mechanism
chooses a low level heuristic at a time randomly. Random Descent mechanism chooses a low
level heuristic randomly and applies it repeatedly as long as it produces improving results.
Random Permutation Descent is similar to Random Descent except that first we choose a
random permutation of the low-level heuristics N1, N2, . . . , Nη, and when application of a

38 CHAPTER 2. RELATED BACKGROUND

low-level heuristic does not result in any improvement, we cycle round to the next heuristic in
this permutation. Greedy method calls each low level heuristic at each iteration and chooses
the one that produces the most improving solution. Choice Function is the most complex one.
In this, a choice function F is introduced to decide on the choice of low-level heuristic to be
called next. For each low-level heuristic the choice function F aims to measure how likely
that low-level heuristic is to be effective, based upon the current state of knowledge of the
region of the solution space currently under exploration. Cowling et al. [39] described four
different methods for using the choice function. In the first (Straight Choice) method, they
simply choose, at each iteration, the low-level heuristic which yields the best value of F . In
the second (Ranked Choice) method they rank the low-level heuristics according to F and
evaluate the changes in objective function value caused by a fixed proportion of the highest
ranking heuristics, applying the heuristic which yields the best solution. The third (Roulette
Choice) method assumes that for all low-level heuristics, F is always greater than zero. At
each iteration a low-level heuristic Ni is chosen with probability which is proportional to
F (Ni)/

∑
i F (Ni). Ranked Choice and Roulette Choice are analogous to the rank-based

selection and the roulette wheel selection from the genetic algorithms literature [59].
For each of these low level heuristic selection mechanisms two simple acceptance crite-

ria are defined [39]. These are AM, where all moves are accepted and OI where only improv-
ing moves are accepted. For the AM versions of Random Descent and Random Permutation
Descent, one move which makes the current solution worse will be carried out before moving
on to a new neighborhood. The AM and OI versions of the Greedy approach are then identical
to each other [39].

The hyper-heuristic will continue iterating until a stopping criterion is met, which can
be a time limit [39].

2.8.2 Heuristic Selection: Constructive Hyper-heuristics

A constructive hyper-heuristic is a high level heuristic that suggests a sequence of low level
heuristics to be applied in succession in order to build a solution from scratch. The task is,
then, to find the best sequence.

Burke et al. [31] consider a hybrid framework in which the output of the constructive
hyper-heuristic is used as input to the local search hyper-heuristic.

2.8.3 Heuristic Generation

This hyper-heuristic approach aims to generate new heuristics from a set of potential heuristic
components. In the work by Burke et al. [25] this novel class of hyper-heuristics is discussed,
in which genetic programming is the most widely used methodology. In this approach, human
designed heuristics are broken down into their constituent parts, and a grammar is used to
capture the structure of how the constituents relate to each other. The constituent parts, along
with the grammar, are used to construct a search space. By the evolutionary process, new
heuristics are formed and evaluated.

2.9. HYPER-HEURISTIC SEARCH FOR THE 2D C&P PROBLEM 39

2.9 Hyper-heuristic Search for the 2D C&P Problem
Hyper-heuristic search in the two-dimensional C&P problems can be summarized in the fol-
lowing approaches. All of them focus on constructive hyper-heuristics. Three different visions
of constructive hyper-heuristics can be found:

1. The hyper-heuristic as a high level heuristic that suggests a sequence of low level heuris-
tics to be applied in succession in order to build a solution from scratch. Implementa-
tions for the regular 2D C&P are in [6, 42].

2. A variant of this concept of constructive hyper-heuristic is implemented in [139, 140,
143] where there exists a rule or a function to decide which heuristic applied given
the current state of the problem. So, here the sequence of low-level heuristics is not
determined in advance.

3. Another concept of constructive hyper-heuristic is proposed by Burke et al. [27], whose
hyper-heuristic evolve a single heuristic for the instance at hand. They do not consider
a sequence of single heuristics.

The hyper-heuristic could be developed through different meta-heuristic approach, as it
is described in the following subsections.

2.9.1 Hyper-heuristics with Evolutionary Computation
Evolutionary techniques are the search algorithms most utilized for building hyper-heuristics
for the 2D C&P problem.

2.9.2 Learning Classifier Systems
Learning classifier system (LCS) is an evolutionary technique combined with reinforcement
learning and other heuristics to produce adaptive systems. The technique has been applied to
a wide variety of domains. Terashima et al. [139] in 2005 present a method for combining
concepts of hyper-heuristics and learning classifier systems for solving 2D regular (rectan-
gular) Bin Packing Problems. In this work, the hyper-heuristic is formed using a XCS-type
Learning Classifier System [35] which learns a solution procedure when solving individual
problems. The XCS evolves a behavior model which determines the possible actions (selec-
tion and placement heuristics) for given states of the problem. When tested with a collection
of different problems, the method finds very competitive results for most cases.

2.9.3 Genetic Programming
Recently, Hyde [78] and Burke et al. [27] employ genetic programming as a hyper-heuristic
to search the space of heuristics that it is possible to construct from a set of building blocks.
A heuristic in this hyper-heuristic system is a function that rates each possible allocation for
each piece pending of been placed. The allocation with higher score indicates which piece
will be placed next and where. The output of the genetic programming algorithm is the best

40 CHAPTER 2. RELATED BACKGROUND

heuristic found which is applied to the solution space to produce a solution. Their model is
for the two-dimensional strip packing problem, where the pieces are rectangles. This is called
hyper-heuristic because it operates at a higher level of abstraction to previous meta-heuristic
approaches, by operating on a space of heuristics and not directly on a space of solutions.

2.9.4 Genetic Algorithms

In 2005, Terashima et al. [140] developed a hyper-heuristic solution model using a GA with
fixed-length chromosome that has several groups with four parameters each. They proved
their model with the 2D regular BPP finding very competitive results for most cases, when
tested with a collection of different problems. The testbed is composed of problems used in
other similar studies in the literature.

Later, a hyper-heuristic model is build using a non-traditional GA, with variable length
chromosomes. Because of this, the GA employed seems like a messy-GA [43, 60]. This
model was tested in regular (rectangular) [138] and irregular [143] pieces. Up to date, this has
been the only hyper-heuristic model applied in irregular 2D BPP. In Chapter 5 a more detailed
description is given.

2.9.5 Hyper-heuristics with Ant Colony Optimization

The first attempt to combine hyper-heuristics with an ACO algorithm is done by Cuesta-
Cañada et al. [42] in 2005. The resulting algorithm was applied to the two-dimensional
Bin Packing Problem, and encouraging results were obtained when solving classic instan-
ces taken from the literature. In this work, they use the term single heuristic to denote the
combination of five variables: Quantity, Rotation, Item Order, Bin Selection Heuristic and
Placement Heuristic. Each of these five variables can manage several values. The term hyper-
heuristic describes the sequential combination of at most five single heuristics. That is, a
hyper-heuristic is represented with a twenty-five cells array (five cells for each one of the five
heuristics). They implemented 25 pheromone matrices, each one representing the transition
between two consecutive variables. Each matrix had a number of rows equal to the number
of possible values for that variable, and a number of columns equal to the number of possible
values of the next variable. A entry in row i and column j encodes: provided value i of current
variable is selected, select value j of next variable with probability Phν(i, j). A path is a route
from a point in the first matrix, going to a point of every matrix from then. A single group of
ants working simultaneously its entire paths is called an iteration. When an iteration finishes,
the quality of each path is updated, updating this way the probabilities for each possible path.

2.9.6 Hyper-heuristics with Hill Climbing

The hyper-heuristic developed by Araya et al. [6] in 2008 manages a sequence of greedy
low-level heuristics, each element of the sequence placing a given number of objects. Fol-
lowing the sequence of low-level heuristics construct the solution for a given instance. A
hill-climbing algorithm is performed on this sequence by testing a different move (adding,
removing, replacing a low-level heuristic) in each iteration. If the new sequence is better, it

2.10. HYPER-HEURISTIC SEARCH FOR OTHER OPTIMIZATION PROBLEMS 41

replaces the current one. In order to escape local minima, they perform several restarts. Their
model is applied for the rectangular two-dimensional strip packing problem.

2.10 Hyper-heuristic Search for other Optimization
Problems

The following are NP-hard combinatorial problems as well as the C&P problem. It can be
observed that the approaches applied to these problems have similarities to those applied to
the C&P problem.

2.10.1 Timetabling Problems
Timetabling problems are real world constraint optimization problems. These problems have
been intensively studied with the hyper-heuristic approach. Timetabling problems require
assignment of time slots (periods) and possibly some other resources to a set of events, subject
to a set of constraints. Numerous researchers deal with different types of timetabling problems
based on different types of constraints utilizing variety of approaches. Employee timetabling,
course timetabling and examination timetabling are the research fields that attract the most
attention [15]. Personnel scheduling, rostering, labor scheduling are other terms to describe
the same or similar problems.

One of the first hyper-heuristic approaches for this problem was done by Terashima et
al. [142], although their combination of choices of heuristics was not called hyper-heuristic
yet. They build the timetable sequentially, dividing the task into two phases. In the first phase,
a certain strategy is chosen, and also a heuristic for choosing which exam to consider next,
and a heuristic for deciding which time slot to put it in. After a certain condition is met, the
second phase starts; this also applies a certain strategy and a pair of heuristics. They used a
GA which chromosome encodes: (a) choices of strategy and heuristics in phase 1; (b) when
to switch: either after placing α exams, or after placing the largest N% of exams; (c) choices
of strategy and heuristics used in phase 2.

Bilgin et al. [15], for example, developed an iterative hyper-heuristic that chooses a
heuristic to apply to a candidate solution of the problem at hand, at each step. In their paper,
seven heuristic selection methods and five different acceptance criteria are analyzed empir-
ically. The thirty-five hyper-heuristics generated by coupling all heuristic selection meth-
ods and all acceptance criteria with each other, are evaluated on a set of twenty-one exam
timetabling benchmark problem instances. Their experimental results denote that no combi-
nation of heuristic selection and move acceptance strategy can dominate over the others on all
of the benchmark functions used.

Burke et al. [33] developed a case-based heuristic selection approach that collects and
reuses previous experience of the heuristics that were employed successfully within particular
situations onto current similar situations in timetabling. Although authors do not called this
a hyper-heuristic approach, their aim is to develop intelligent systems that can guess at which
heuristic will work well on which problem, and thus is capable of dealing with any problem
efficiently. This is, indeed, very similar to the hyper-heuristic idea. They also developed a
knowledge discovery process for finding out the relevant problem features and their weights.

42 CHAPTER 2. RELATED BACKGROUND

Their motivation behind Case Based Reasoning is that humans often solve new problems by
reemploying knowledge that has been collected from previous experience.

2.10.2 Constraint Satisfaction Problems (CSP)
Terashima et al. [141] present a GA-based method that produces general hyper-heuristics
for the dynamic variable ordering within Constraint Satisfaction Problems. The GA uses a
variable-length representation, which evolves combinations of condition-action rules produc-
ing hyper-heuristics after going through a learning process which includes training and testing
phases. Such hyper-heuristics, when tested with a large set of benchmark problems, produce
encouraging results for most of the cases. This is actually the same hyper-heuristic construc-
tion model than the one explained in detail in Chapter 3 applied for the CSP.

2.11 Meta-learning
Within the field of machine learning, the term meta-learning has been associated with the idea
of, given a new dataset, automatically selecting the best learning algorithm for the problem
at hand. Meta-learning ideas have traditionally being applied to learning algorithms to solve
classification problems, where the goal is to relate performance of algorithms to characteristics
or measures of classification datasets.

This task is also known as the Algorithm Selection Problem, which was first described
by J. R. Rice in 1976 [123]. The problem is formally defined as: learning a mapping from
feature space to algorithm performance space, and acknowledged the importance of selecting
the right features to characterize the hardness of problem instances [132]. This definition
includes three main elements:

1. Problem space. All possible instances of the problem. The problem can be character-
ized by a large number of independent features, that may be relevant for the algorithm
selection and performance.

2. Algorithm Space. The algorithm or heuristic repository.

3. Performance Measure. The criteria used to evaluate the performance of a given algo-
rithm with a problem instance.

From the definition of the Algorithm Selection Problem, there are three main aspects
that must be considered in order to find an adequate way of solving problem instances based
on a set of characteristics: (1) The selection of the set features, (2) The selection of the set of
algorithms that together allow to solve the largest number of instances, and (3) The selection
of an efficient mapping mechanism that permits to select the best algorithm for each instance
[41].

Smith-Miles presented a framework for the generalization of algorithm selection and
meta-learning ideas to algorithms focused on other tasks such as sorting, forecasting, con-
straint satisfaction and optimization [133]. There have been surprisingly few attempts to gen-
eralize the relevant meta-learning ideas to optimization, although several approaches can be

2.12. SUMMARY 43

found in the related area of constraint satisfaction [94]. In the work by Smith-Miles [134],
meta-learning ideas are used for modeling the relationship between instance characteristics
and algorithm performance for the quadratic assignment problem. The study considered a
set of 28 problem instances and three meta-heuristic algorithms. Both unsupervised and su-
pervised neural network models were used to learn the relationships in the meta-dataset and
automate the algorithm selection process. The unsupervised model, self-organization maps
[90], was used to select the best algorithm by creating visual explorations of the performance
of different algorithms under various conditions describing the complexity of the problem
instances. Given the limited size of the data, this is a preliminary study, but it demonstrates
the relevance of meta-learning ideas to the optimization domain. In a later study, Smith-Miles
[135] found correlations between problem features and the effectiveness of scheduling heuris-
tics using a large collection of instances in a production scheduling problem.

Other authors have followed up this type of study in optimization. For example, Kanda
et al. [85] described each instance of the traveling salesperson problem by meta-features
that capture characteristics of the problem that affect the performance of the optimization
algorithms.

2.12 Summary
In this chapter, the 2D irregular BPP has been defined as a NP-hard problem and as a particular
case of the C&P problem named 2-dimensional irregular Single Bin Size Bin Packing Problem
(2D irregular SBSBPP) according to the typology of Wäscher et al. [154]. This is an attractive
research topic due to its complexity and practical implications. Main solution approaches to
NP-hard combinatorial problems are reviewed, making emphasis in those applied to the 2-
dimensional C&P problem. The 1D BPP is described as well, since it is also tackled in this
dissertation. Specifically a recent approach, called hyper-heuristics, is described in detail as
an algorithm that operates at a higher level of abstraction compared with the previous state
of art. Research done in hyper-heuristics for the BPP and other optimization problems is
reviewed. Finally, a review of some meta-learning ideas is performed focusing in those works
that have attempted to explain algorithm performance based on problem attributes. This last
section describes the theoretic background for the research presented in Chapter 9.

In summary, this chapter presents all the related background relevant to the contribution
of the present dissertation. The next chapter presents the details of the evolutionary framework
proposed for solving the Bin Packing Problem.

Chapter 3

Hyper-heuristic Solution Model

This chapter presents in detail the solution model based on hyper-heuristic construction.
As we will see, this hyper-heuristic generator algorithm is not problem dependent, since
it has been adapted to several variants of the C&P problem: one-dimensional [128], two-
dimensional regular [138] and two-dimensional irregular (convex) [143]; as well as to other
optimization problem: the Constraint Satisfaction Problem (CSP) [141]. Our approach differs
from meta-heuristics and other approaches in that instead of controlling simpler heuristics for
one or a narrow set of problems, a hyper-heuristic is a re-usable method that chooses between
a wider range of heuristic approaches to robustly tackle a wide range of problems.

The fully explanation of this solver is necessary because it is taken as a basis for this
research.

Terashima et al. [138] and Farı́as [52] present a genetic algorithm based method that
produces general hyper-heuristics that solve two-dimensional cutting and packing problems.
They support their idea in the work by Ross et al. [128]. The GA uses a variable-length repre-
sentation, which evolves combinations of condition-action rules producing hyper-heuristics
after going through a learning process which includes training and testing phases. Such hyper-
heuristics, when tested with a large set of benchmark problems, produce outstanding results
(optimal and near-optimal) for most of the cases. The testbed is composed of problems used in
other similar studies in the literature. Some additional instances of the testbed were randomly
generated.

Then, we applied the same solution model for the convex polygon version of the 2D BPP,
obtaining encouraging results [98, 143]. As far as we know, this is the first hyper-heuristic
model applied to irregular pieces of the 2D BPP. This research is described in Chapter 5. This
solution model was later implemented with a wider range of instances, a new representation
scheme and a revised heuristic repository in Chapter 8.

The main reasons for which this solution model was chosen as the building block for
this dissertation, are the promising results that this evolutionary framework produced when
applied with some variations of the BPP [128, 138, 143] and the observation that some aspects
can still be improved.

According to the classification of hyper-heuristic approaches suggested by Burke et al.
[26], our developed solution model falls into the category of heuristic selection because the
hyper-heuristics produced select the best single heuristic to be applied (rather than generate
a new heuristic). Also, we are dealing with an offline learning hyper-heuristic: the idea is to

45

46 CHAPTER 3. HYPER-HEURISTIC SOLUTION MODEL

gather knowledge in the form of rules or programs, from a set of training instances, that would
hopefully generalize to the process of solving unseen instances [26].

3.1 General Process for Generating Hyper-heuristics
The hyper-heuristic, defined as a set of rules, is the result of an evolutionary process using a
variable-length chromosome GA. This hyper-heuristic framework operates at a higher level of
abstraction since it has no knowledge of the problem domain. On one hand, it communicates
with the instances states of the specific problem through simplified numerical representations.
On the other hand, it only has access to a set of low-level heuristics that it can call upon, but
with no knowledge as to the purpose or function of a given low-level heuristic (see Figure
1.4 from Chapter 1). The GA search space consists of all possible set of matchings between
problem state representations with subsets of low-level heuristics.

The general process of our solution model starts evaluating individual heuristics, each
single heuristic is applied to all problem instances, and the best heuristic per instance is
recorded for later comparison. The available problem instances are divided into a training
and a testing set. Then the GA is used with the training set only, until a termination criterion
is met and a general hyper-heuristic has been evolved. All instances in both the testing and
training sets are then solved with this general hyper-heuristic and results are compared with
those obtained by single heuristics. The complete process is shown in Figure 3.1.

Figure 3.1: Solution Model for Hyper-heuristic generation through GA.

Hyper-heuristics are sometimes described as heuristics that search a space of heuris-
tics. In this research, each chromosome in the evolutionary process is a recipe for how to
apply a number of heuristics in order to construct a solution. The evolutionary search process
itself searches a space of particular ways of combining heuristics. Thus, the reader might
regard either the chromosomes themselves, or the whole search process itself, as being hyper-
heuristics. In this research we choose to refer to the chromosomes as being hyper-heuristics,
and trust that this will not cause undue confusion.

The key idea in our constructive approach is to build a complete solution by deciding
what to do at each stage, including the initial stage. Here, what to do means using some
chosen heuristic to place a piece and thus extend the solution. Each stage is described by

3.2. REPRESENTATION OF PROBLEM INSTANCES 47

some kind of simplified representation of the problem state. We hypothesize that if two states
are very similar then we would want to do the same thing in either state. The hyper-heuristic
have the following general form.

UNTIL the solution is complete:

1. calculate the vector P that describes the current problem state;

2. find the nearest representative vector R to P ;

3. execute the heuristic associated with R, thus changing the current state.

In order to implement this, we need several ingredients:

• we need to choose a vector-based way of representing the problem state;

• we need to choose a set of heuristics than can be used;

• we do not know how many representative vectors we need or what their values should
be or which heuristics to associate with each of them. So we need a search method that
can do this for us.

These ingredients are described below.

3.2 Representation of Problem Instances
Each instance to be solved by the hyper-heuristic is characterized by a numerical vector that
summarizes some of its relevant features (see Figure 1.3 from Chapter 1). Each numerical
term of the vector quantifies an aspect of the instance at hand. For example, for the 2D irregu-
lar BPP, the average size of the pieces to be placed could be an important feature. According to
this numerical vector, the hyper-heuristic decides which single heuristic to apply every time.
The numerical representation is applied for complete instances to be solved (where no piece
has been placed yet) as well as for instances partially solved (where some pieces have already
been placed). That is, for a given problem instance, numerical representation is computed in
every intermediate state until it is completely solved. An instance state is every intermediate
phase in the solution process until all pieces are placed and a solution for the instance is found.

3.3 Representation of Chromosomes in the GA
We employ a GA with variable-length individuals. Each chromosome is composed of a series
of blocks. Each block includes several numbers. All numbers in a block, except the last
one, represent an instance state which is the numerical vector mentioned above (Figure 3.2).
The label is the last number, which identifies a single heuristic. A chromosome consists of a
number of points in a simplified state space, each point being labelled with a single heuristic
(Figure 3.3). An individual solves a problem instance as follows: given an instance and
having computed its numerical representation (P), find the closest block in the chromosome
(with Euclidean distance) and apply the single heuristic recorded on the label. This will place

48 CHAPTER 3. HYPER-HEURISTIC SOLUTION MODEL

one or several items or pieces and will produce a new problem-state representation (P ′). The
process is repeated until all pieces are placed and a complete solution has been constructed. A
chromosome therefore represents a complete recipe for solving a problem, using this simple
algorithm: until the problem is solved, (a) determine the current problem state P , (b) find
the nearest point to it, (c) apply the heuristic attached to the point, and (d) update the state.
The GA’s task is to find a chromosome that is capable of obtaining good solutions for a wide
variety of problems; the chromosome is the hyper-heuristic that we seek.

Figure 3.2: A chromosome is a set of blocks.

h1

h3

h4

h7

h3

h9

feature 2

feature 1

feature 3

P

P’

P’’

Figure 3.3: A chromosome is a set of blocks. Each block represents a point in the hypercube
(space of states) labelled with a single heuristic. The solution process of a problem using a
hyper-heuristic consists of finding the closest single heuristic at every solution stage.

Figure 3.3 shows all possible three-feature representations as a cube in a three dimen-
sional space. Every dimension x, y and z represents a different problem feature. With a given
set of instances, not every feature combination may be possible; so, not every point in the
feature space may represent a valid state in a particular implementation. For example, it is
not very likely that the features percentage of small items and average of items sizes have
large values at the same time. A hyper-heuristic links several points from the representation
space with specific heuristics from the heuristic repository H . Note that not every heuristic
in H is in the hyper-heuristic, but a single heuristic could be connected with more than one
point in the representation space. Also, the model permits the points defined in the hyper-
heuristic to lie outside but close to the representation space. This means that if the problem
state is on one of the cube’s faces, the nearest heuristic could be outside of the cube. Since
the hyper-heuristic is evolved using a variable-length GA, the number of labelled points at the
representation space is not determined in advance.

3.4. FITNESS FUNCTION 49

3.4 Fitness Function

The quality of a solution, produced by any pair of selection and placement heuristics for a
given instance, is based on the percentage of usage for each object, which is given by:

(3.1)

where Aj is the area of piece j , n is the number of pieces inside the object and A O is the
total object area. Once the fractional utilization is computed for each object, the quality of the
solution is given by:

(3.2)

where N o is the total number of objects used and Ui is the fractional utilization for each object
i . Note that each Ui ≤ 1. This measure of fitness rewards objects that are filled completely or
nearly so, and avoids the problem of too many ties among different heuristics that occur when
quality is simply the number of objects used.

It is necessary to compute the fitness produced by each individual combination of selec¬
tion and placement heuristics, for each instance. The best heuristic combination and its result,
for each specified instance i are stored (let us call it B S H i) . These results are prepared before
running the G A .

Now, each chromosome solves some instances and its fitness is computed as the average
difference between the solution quality obtained by the chromosome with respect to the result
given by the best single heuristic for every particular instance. The fitness is an average given
by:

(3.3)

where BSHk is the best quality solution obtained by a single heuristic for the k-th assigned
instance, Q k is the quality solution obtained by the hyper-heuristic for the k-th assigned ins
tance and m is the number of instances solved so far. B S H k and Qk are computed using
Equation 3.2.

After each generation l, a new problem is assigned to each individual in the population
and its fitness is recomputed as follows:

(3.4)

where fl—1 is the fitness for individual in the previous generation; m is the number of problems
this individual has seen so far; f n e w is the fitness obtained by individual for the new problem
and computed with the fitness function given by equation 3.3. Note that f could be negative
if the hyper-heuristic has poor performance. Then, we expect that the evolutionary process
removes this poor-quality chromosome.

50 CHAPTER 3. HYPER-HEURISTIC SOLUTION MODEL

3.5 The GA Cycle

The steps of the GA cycle are:

1. Generate initial population. Each individual is comprised of a series of blocks from
10 to 15 inclusive. The number of blocks is chosen according to a discrete uniform
distribution. The number of elements of each block depends on the number of features
chosen for representing each problem instance state. The elements of each block, except
the last one, are real random numbers between −2 and 3, with a Gaussian distribution
with mean 0.5 and standard deviation 0.5 and truncated accordingly. The last number
of each block is an integer from 0 to |H| − 1 ; where |H| is the number of the available
single heuristics.

2. Randomly assign 5 problems from the training set to each chromosome and compute
the chromosome’s fitness based on these problems (with Equation 3.3).

3. Apply selection, crossover and mutation operators to produce two offspring. We se-
lect two different individuals at each cycle, each individual selected is the best from a
randomly chosen pair of chromosomes (tournament size 2). In the model proposed by
Ross [128], one of the individuals was chosen by tournament of size 2, while the other
was selected randomly. In this research, we increased the selective pressure in which
both individuals come from a tournament. Genetic operators are described below. After
crossover and mutation, the number of blocks in any chromosome may vary.

4. Randomly assign 5 problems to each new individual and obtain its fitness (with Equa-
tion 3.3).

5. Replace the two worst individuals with the new offspring provided they are of better
fitness.

6. Assign a new problem to every individual in the new population and update fitness (with
Equation 3.4).

7. Repeat from step 3 until a termination criterion is reached. In our implementation, the
termination criterion is a reached number of generations.

Figure 3.4 shows the genetic algorithm general process for producing hyper-heuristics.

3.5.1 Genetic Operators

In this investigation we used two crossover and three mutation operators. These operators
were taken from the previous implementation of the solution model for the 1D BPP [128] and
the 2D regular BPP [52, 138]. The probability for applying each type of crossover or mutation
operator was suggested by some early testing in the investigation for the 1D case [128].

3.5. THE GA CYCLE 51

Figure 3.4: General process of the genetic algorithm.

Crossover Operators

Both of the following crossover operators employed have the same probability of being cho-
sen.

1. One-point crossover. This operator works at block level, and it is very similar to the
normal one-point crossover. This operator exchanges 10% of blocks between parents,
meaning that the first child obtains 90% of information from the first parent, and 10%
from the second one, and vice-versa. This operator shuffles blocks. The blocks passed
from a parent to an offspring are not in consecutive order. The 90% of the number of
blocks is computed for each individual and the result is truncated to obtain an integer.
This is the reason why the number of blocks in the two offspring may vary slightly.

This operator is somewhat different comparing with the version implemented for the
1D case [128], where each block of the first parent has a 90% chance of being passed
to the first child and a 10% of being passed to the second child and vice-versa. If the
decisions about which offspring will keep block are independent, then the number of
blocks in the new individuals varies.

2. Two-point crossover. This operator is very similar to the normal two-point crossover.

52 CHAPTER 3. HYPER-HEURISTIC SOLUTION MODEL

For each individual, we first select two blocks and then a point inside each block is cho-
sen. Since the number of blocks in each chromosome is variable, the cut points in each
parent are chosen independently. However the points selected inside each correspond-
ing block are forced to be the same for both parents, to avoid changing the meaning
of any numbers; so that the recombination produces an exact number of blocks. The
blocks and points are chosen using a uniform distribution. The first block selected in
each chromosome is always in the first half of the individual length and the second se-
lected block is any block after the first one. The number of blocks in the two offspring
may be different from the number of blocks of their parents and it is not adjusted.

Figure 3.5 shows an example of this procedure. Parent 1 has four blocks and parent 2
has three blocks. Blocks 2 and 4 are selected from the first parent while blocks 1 and 2
are selected from the second parent. Internal points b and c are chosen. Note that this
internal points in the blocks are the same for the first and second blocks respectively for
both parents.

Figure 3.5: An example of the two-point crossover operator.

There is an exception for this type of crossover operator. If one parent has a length of up
to two blocks, then the individual is completely removed and recreated randomly with
a number of blocks from 10 to 15 inclusive. The other selected individual for crossover
is copied exactly. The idea is to penalize chromosomes with a very small number of
blocks.

Mutation Operators

After the GA has decided to mutate, these three mutation operators have probabilities of 0.25,
0.25 and 0.50 respectively. The first two operators are most disruptive, and they are jointly
chosen with the same probability than the third.

1. Add-block mutation. Randomly generates a new block and adds it at the end of the
chromosome. As an exception, this operator removes a block instead of adding one
when the individual length is 20 blocks (or more). The idea is to keep the number of
rules (blocks) in each chromosome as a manageable number. In early experimentations,
we observed that the number of rules employed to solve a given instance tends to be
small: fewer than 10 rules in most of the cases. Tables 8.9 and 8.10 show the number of
changes of single heuristics when solving instances. Therefore, these tables serve as a

3.6. ROTATION SCHEME 53

reference that we do not need too many blocks in a chromosome to have a good-quality
hyper-heuristic, at least when dealing with our instance testbed.

2. Remove-block mutation. Randomly selects and eliminates a block within the chromo-
some. An exception occurs when the chromosome length is less than 6 blocks. In this
case, the operator adds a block instead of removing one.

3. Normal mutation. Randomly selects a position inside a random block. If the selected
position is the last one, then replace that value with a random integer selected from 0 to
|H| − 1; where |H| is the number of the available single heuristics. Otherwise, replace
the selected value with a new number between −2 and 3, generated with a normal
distribution with mean 0.5 and standard deviation 0.5 and truncated accordingly.

3.6 Rotation Scheme
The rotation scheme is another issue to be analyzed. In the first implementation of the model
(described in Chapter 5 and [143]), we ran preliminary studies to determine a rotation scheme
used in the investigation of convex instances. The first one rotates each piece by multiples of
90 degrees, that is, 0, 90, 180 and 270. The second approach rotates each piece in multiples
of 5 degrees. Interestingly, this second approach showed a very marginal improvement com-
pared to the first approach, and had the disadvantage of the extra computational cost. This
could be due to the fact that pieces are presented to the solver in the same orientation that cor-
responds to the optimal solution and non-orthogonal rotation does not help. Besides, another
disadvantage of the second approach is that sometimes precision was lost because of round-
ing the coordinates after rotation. That is why the first rotation approach is used throughout
current research.

3.7 Codification of Problem Instances
Each problem instance is represented in the hyper-heuristic framework as a text file. The
first line is the number of pieces while the second line shows the object dimensions. From
the third line and on, each piece is represented by its vertices coordinates which are ordered
counterclockwise (Figure 3.6). Coordinates origin is the bottom-left corner of an orthogonal
rectangle enclosing the piece (Figure 3.7).

3.8 Summary
In this chapter, the hyper-heuristic solution model based on an evolutionary framework has
been presented in detail since it is the basis of the dissertation. The next chapter explains
the research methodology employed in this investigation as well as the origin of our testbed
instances and some geometric functions developed for solving irregular instances.

54 CHAPTER 3. HYPER-HEURISTIC SOLUTION MODEL

Figure 3.6: Representation of problem instances in a text file.

Figure 3.7: Origin of the coordinates of the pieces of a problem instance.

Chapter 4

Research Methodology and Experimental
Setup

Previous chapters developed the related background (Chapter 2) and described in detail the
hyper-heuristic solution model which is the building block of this dissertation (Chapter 3). At
this point, the state of the art has been presented completely. Now, this chapter develops the
main steps followed during the research process. Working problem instances and algorithms
implemented for geometric computations are presented as well, since they are employed in the
several experiments carried out in the different research stages. The following five chapters
(5, 7, 6, 8 and 9) develop the own scientific contribution to the field.

4.1 Methodology
The steps followed in order to fulfill the objectives are listed below. These activities are
organized in a timely manner approximately.

1. Background and state of the art. A research was conducted about the problem to be
tackled and related issues. This literature review was done extensively at the begin-
ning of the doctoral studies and updated periodically to keep the background up to date
during the dissertation period.

(a) Research about the C&P problem, its variants, relevance and solution approaches
up to date. We focus then in the 1D and 2D BPP.

(b) Investigate about the geometry and placement heuristics involved when allocating
concave polygons.

(c) Research about search approaches in general and hyper-heuristics approaches in
particular.

After this startup, research questions and objectives could be established in order to
contribute to some progress to the research area.

2. Perform a first implementation of the solution model to the 2D irregular BPP (convex
polygons).

55

56 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

(a) Implement some placement heuristics for irregular pieces.

(b) Program and implement geometric functions for dealing with irregular convex
polygons.

(c) Design and program an algorithm to generate instances with convex polygons in
order to generate own instances with known optimum.

(d) Gather a set of instances for experimentation purposes. This was done generating
some new instances.

(e) Develop the instance representation scheme, choosing some features regarding
irregular shapes.

(f) Design and perform several types of experiments, to evaluate the quality of the
hyper-heuristics generated.

(g) Analyze the results and draw conclusions.

(h) Write an article with the findings and conclusions [143].

3. Research about instance representation. This is a detailed research on one critical aspect
of the solution model developed. It focuses on the characteristics of the instances.

(a) Make a deeper literature review about the instances representation schemes.

(b) Develop a methodology for finding out what are the most relevant features of a
given problem.

(c) Apply the methodology in the 2D irregular BPP, with instances including convex
polygons.

(d) Evaluate the representation found for the 2D irregular BPP, replicating the experi-
ments from the first implementation of the model ([143] and Chapter 5).

(e) Compare the results with those from the first implementation of the model.

(f) Write an article with the findings and conclusions [99, 101].

4. Adapt the DJD heuristic to the 2D Bin Packing Problem. We achieved an effective
implementation of one of the selection heuristics considered.

(a) Make a deeper literature research about the DJD heuristic. Here we found that
several papers [104, 105, 144] refer the article “Philipp A. Djang and Paul R.
Finch. Solving One Dimensional Bin Packing Problems. Journal of Heuristics,
1998” as the first source presenting the DJD heuristic. Nevertheless, it seems that
this article does not belong to that journal. Kos and Duhovnik [91] cited the article
as submitted to the Journal of Heuristics. Other publications [128, 129] does not
mention any journal, and some others [22, 126] refer to a link which is not active
any more. The point is that, despite our efforts, we could not find the original
source of the DJD heuristic.

(b) Design and program functions for keeping track of the pieces already revised when
applying of the DJD heuristic.

4.1. METHODOLOGY 57

(c) Make preliminary experiments for choosing a good value for two parameters of
the DJD heuristic: initial fullness of the objects and incremental of allowed waste.

(d) Solve a set of test instances with several selection heuristics including some vari-
ants of the DJD.

(e) Analyze the results and draw conclusions.

(f) Write an article with the findings and conclusions.

5. Construct a hyper-heuristic model for several kinds of the BPP, since 1D to the 2D
irregular BPP (non-convex). The model developed previously [143] will expand its
scope to be more general.

(a) Establish the repository of low-level heuristics adequate to handle concave poly-
gons.

(b) Program and implement geometric functions for dealing with concavities.

(c) Design and program an algorithm to generate instances that include concave poly-
gons in order to generate own instances with known optimum.

(d) Gather a set of instances for experimentation purposes. This was done by selecting
some benchmark instances and generating some new instances as well.

(e) Develop the instance representation scheme, applying the methodology developed
previously in this dissertation.

(f) Design and perform several types of experiments, to evaluate the model and to
measure the robustness of the algorithm.

(g) Analyze the results and draw conclusions.

(h) Write an article with the findings and conclusions [100].

6. Perform a low-level heuristic analysis. This is a detailed analysis about another critical
aspect of the solution model developed. Now, the focus is on the characteristics of the
low-level heuristics. To make this analysis, the hyper-heuristic model developed in the
previous step is taken as a basis.

(a) When solving instances with a generated hyper-heuristic, perform an analysis
about the utilization of every low-level heuristic, in terms of sequence, frequency
and time each heuristic is used before changing to another.

(b) Write about the findings and conclusions.

7. Work towards a deeper understanding of the Bin Packing Problem structure.

(a) Explore some graphical techniques to visually assess similarities and differences
among the testbed instances. Principal Component Analysis was the chosen tech-
nique. The Self-organizing map, sometimes called a Kohonen map was another
method considered in a preliminary phase of this research.

(b) Build and analyze some graphs. Distribute feature values and heuristic/hyper-
heuristic performances all over the map.

58 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

(c) Draw some conclusions about relations between features and heuristic/hyper-heuristic
performance.

(d) Write an article with the findings and conclusions.

8. Thesis document. A thesis document that integrates all the research done is written,
revised and defended.

(a) Write the thesis document.

(b) Revision of the thesis document.

(c) Prepare the dissertation presentation.

A short research leave at Nottingham University with the Automated Scheduling, Op-
timization and Planning (ASAP) Research Group was done in the Summer of 2010. During
this research leave, the main topic of study was the heuristic DJD (point 3 of the methodo-
logy) which findings are reported in Chapter 7. Also, a brief study was performed with the
objective of discovering homogeneous subsets over a huge set of 1D BPP instances and then,
evolve specialized heuristics for each subset. This brief research was supported by the idea
that heuristics can be evolved to be specialists on a particular sub-problem, or general enough
to work on all sub-problems. However there is a trade-off between performance and gener-
alization [34]. After making 8 classes of 300 1D BPP instances with the k-means clustering
algorithm, specialized heuristics were evolved for each class using Genetic Programming.
Results were not as good as expected, that is why this experimentation did not go further.

4.2 Problem Instances Testbed
Our experimental testbed is comprised of a total of 1418 instances which are summarized in
Table 4.1. These instances are classified into three main categories: 1D instances, convex 2D
instances and non-convex 2D instances, which are described in next three sections.

Along this large set of experimental instances, there is a huge variety of feature va-
lues, beginning with the difference in dimensionality. For example, there are instances whose
pieces have an average size of 1/30 of the object, while other instances have huge pieces (av-
eraging almost 2/3 of object size). The optimum number of objects (or best known results) go
from 2 to 373.

4.2.1 1D Instances
The 397 one-dimensional problem instances were drawn from the literature. Their charac-
teristics are listed in Table 4.2. Pieces sizes are measured as fraction of one bin. The first
eight types of 1D instances are from Scholl et al. [130], where we chose one out of every
four instances in Scholl’s data bases 1 and 2. Wäscher instances [153] have different number
of pieces each1. The last four types of 1D instances are triplets from Falkenauer [50] whose
optimal solutions have exactly 3 items per bin with zero waste. The instances that are triplets

1Among the 17 Wäscher instances, obtained from http://paginas.fe.up.pt/∼esicup/tiki-index.php, there are
two instances with the same name, but they have different values, indeed.

4.2. PROBLEM INSTANCES TESTBED 59

Table 4.1: Description of problem instances.
1D Convex 2D Non Convex 2D

Type num. of num. of Type num. of num. of Type num. of num. of
instances pieces instances pieces instances pieces

DB1 n1 45 50 Conv A 30 30 NConv A 30 35 - 50
DB1 n2 45 100 Conv B 30 30 NConv B 30 40 - 52
DB1 n3 45 200 Conv C 30 36 NConv C 30 42 - 60
DB1 n4 45 500 Conv D 30 60 NConv F 30 35 - 45
DB2 n1 30 50 Conv E 30 60 NConv H 30 42 - 60
DB2 n2 30 100 Conv F 30 30 NConv L 30 35 - 45
DB2 n3 30 200 Conv G 30 36 NConv M 30 45 - 58
DB2 n4 30 500 Conv H 30 36 NConv O 30 33 - 43
Wäscher 17 57 - 239 Conv I 30 60 NConv S 30 17 - 20
Trip60 20 60 Conv J 30 60 NConv T 30 30 - 40
Trip120 20 120 Conv K 30 54 NConv U 30 20 - 33
Trip249 20 249 Conv L 30 30 NConv V 30 15 - 18
Trip501 20 501 Conv M 30 40 NConv W 30 24 - 28

Conv N 30 60 NConv X 30 25 - 39
Conv O 30 28 NConv Y 30 40 - 50
Conv P 30 56 NConv Z 30 60
Conv Q 30 60
Conv R 30 54
Fu 1 12

Total 397 Total 541 Total 480

originally have item sizes rounded to one decimal place. These instances were scaled to a
factor of 10, because our implementation works only with integers for the sizes of the items.

4.2.2 Convex 2D Instances
We have 540 two-dimensional instances containing only convex polygonal pieces that were
randomly generated in previous work [143] with an algorithm which is a modification of the
one used to produce random instances with rectangular pieces before [138]. The generated
pieces are convex irregular polygons with a number of sides between 3 and 8. The algorithm
starts by generating in a random fashion an initial number of rectangles, specified by a given
parameter. The next step is to divide up the rectangles into a number of pieces, until the total
number of pieces is completed. The parameters needed to create an instance are the number
of objects, their dimensions, the number of pieces in each object, the minimum side in a
piece, the maximum ratio between the largest and smallest side (it determines the irregularity
or rectangularity factor), and the initial number of rectangles. For more details about this
algorithm see [98].

A total of 540 instances were generated within 18 different types. Their characteristics
are listed in Table 4.3. This testbed includes 30 rectangular instances (type Conv I). All the
2D convex instances, except type Conv G, have an optimum with zero waste; that is, in the
optimum solution, all objects must be filled up to 100%. Objects for all instances are squares
of dimensions 1000 × 1000. Most of the cases, optimum solution has the same number of
pieces per objects, except in types Conv C, Conv K, Conv P and Conv R (more details in [98]).

We also added a problem instance called Fu from the literature [54]. The instance was
scaled by a factor of 10 and was assigned the object size of 300× 300, so its dimensions will
be more compatible with the dimensions of the generated instances for graphical displays.
This instance was included in the investigation reported in Chapters 5 and 6.

60 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

Table 4.2: Characteristics of the 1D problem instances
Average Piece size Optimal

piece standard (number of
size deviation objects)

minimum 0.106 0.011 6
total average 0.359 0.128 81.4

maximum 0.669 0.322 373
Average of instances per type

DB1 n1 0.485 0.199 26.6
DB1 n2 0.487 0.202 51.8
DB1 n3 0.489 0.203 102.7
DB1 n4 0.488 0.202 254.0
DB2 n1 0.199 0.060 10.5
DB2 n2 0.201 0.062 20.7
DB2 n3 0.199 0.061 40.2
DB2 n4 0.198 0.060 99.8
Wäscher 0.255 0.062 unknown
Trip60 0.333 0.077 20

Trip120 0.333 0.075 40
Trip249 0.333 0.075 83
Trip501 0.333 0.074 167

This instance set contains a wide variety of feature values (see Table 4.3). Among
the 2D instances, the average piece size ranges from 1/30 to 1/3 of the object size and the
average rectangularity can be anywhere between 0.35 and 1.0. Rectangularity is a quantity
that represents the proportion between the area of a piece and the area of a horizontal rectangle
containing it. The lower the rectangularity, the more irregular the pieces are. As one can see
in Table 4.3, instances of type Conv I have a rectangularity value of 1 which means that all of
these instances are rectangular.

4.2.3 Non-convex 2D Instances

The 480 new 2D instances containing some non-convex polygons were randomly produced
for this investigation with the algorithm described in the next section. The first half of non-
convex instances were generated splitting at least five pieces from each instance from types
Conv A, Conv B, Conv C, Conv F, Conv H, Conv L, Conv M and Conv O, respectively. Convex
pieces from these instances were randomly selected and then split into two pieces: one convex
and one non-convex polygon. The other half of the non-convex instances were produced by
creating new convex instances and then splitting some of the pieces into non-convex polygons.
Objects for all instances are squares of dimensions 1000×1000. Instances properties are listed
in Table 4.4. Pieces sizes are measured as fraction of one object. Concavity degree and ratio
(area of piece)/(area of convex hull) are properties explained below.

According to Wang [152], the degree of concavity is defined as the concaveness of the

4.2. PROBLEM INSTANCES TESTBED 61

Table 4.3: Characteristics of the convex 2D problem instances.
Average Piece size Average Percentage Percentage of Optimal

piece standard rectan- of right orthogonal (number of
size deviation gularity angles sides objects)

minimum 0.033 0.003 0.35 11 34 2
total average 0.154 0.100 0.68 42 65 5.9

maximum 0.354 0.280 1 100 100 15
Average of instances per type

Conv A 0.100 0.069 0.70 42 68 3
Conv B 0.333 0.162 0.87 67 84 10
Conv C 0.167 0.124 0.68 36 63 6
Conv D 0.050 0.036 0.57 23 51 3
Conv E 0.050 0.035 0.41 12 38 3
Conv F 0.067 0.050 0.59 29 57 2
Conv G 0.332 0.156 0.87 67 83 ≤ 15
Conv H 0.333 0.158 0.86 67 83 12
Conv I 0.053 0.017 1 100 100 3
Conv J 0.067 0.034 0.83 68 83 4
Conv K 0.154 0.150 0.63 34 60 6
Conv L 0.100 0.075 0.51 23 50 3
Conv M 0.125 0.102 0.55 28 55 5
Conv N 0.033 0.024 0.62 32 60 2
Conv O 0.250 0.223 0.57 27 58 7
Conv P 0.143 0.173 0.49 18 43 8
Conv Q 0.250 0.053 0.89 51 76 15
Conv R 0.167 0.153 0.63 36 62 9

Fu 0.096 0.003 0.76 63 77 2

largest internal angle and it can be computed by DC = B
A

(see Figure 4.1). For 1D items
and 2D convex polygons (including rectangles), the degree of concavity is equal to 1. The
degree of concavity for a concave polygon is more than one and it is computed with its largest
internal angle. The concavities we are dealing with are constructed by a triangle.

The convex hull of a given set S of points in the plane, is the smallest convex polygon
that contains all of the points of S. The convex hull may be easily visualized by imagining
an elastic band stretched open to encompass the given object; when released, it will assume
the shape of the required convex hull. The convex hull of a given polygon is defined as the
convex hull of all its vertices. The convex hull of a convex polygon is the polygon itself. The
convex hull of a non-convex polygon has a greater area than the non-convex polygon (Figure
4.1). So, the relation (area of piece)/(area of convex hull) is less than one only when dealing
with non-convex polygons.

62 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

B

A

Figure 4.1: Degree of concavity.

Convex-hull

Piece

Figure 4.2: A piece and its convex hull.

4.2.4 Algorithm for Producing Random Instances that Include
Non-convex Pieces

Our algorithm for producing instances that include non-convex pieces takes as an input a
problem instance with convex pieces, then randomly selects some convex polygons and split
each one of them into two pieces: one convex and one non-convex polygon. This algorithm
was designed to produce the 480 non-convex instances of our experimental testbed. Our
implementation requires integers as the pieces coordinates because our solver is programmed
this way. Nevertheless, edge lengths are not required to be integers.

We also have designed an algorithm for randomly generate problem instances with con-
vex pieces [143], which can be run to produce the convex instances this algorithm needs.
Besides the problem instance as the main input, the following parameters or restrictions are
useful to control the irregularity of the new pieces:

• Number of pieces selected to split.

• Minimum length of any edge of the new pieces.

• Maximum internal angle of the new non-convex polygons (this will determine the con-
caveness).

• Minimum internal angle of any new piece.

• Maximum ratio between the largest and smallest edge of any new piece.

4.2. PROBLEM INSTANCES TESTBED 63

Table 4.4: Characteristics of the non-convex 2D problem instances.
Average Piece size Average Percentage Percentage of Average of Average of Optimal

piece standard rectan- of right orthogonal concavity ratio area / (number of
size deviation gularity angles sides degree convex hull objects)

minimum 0.044 0.036 0.38 6 27 1.004 0.834 2
total average 0.160 0.135 0.59 26 50 1.13 0.930 5.9

maximum 0.333 0.314 0.84 60 74 1.56 0.987 12
Average of instances per type

Nconv A 0.074 0.062 0.60 28 52 1.12 0.935 3
Nconv B 0.214 0.158 0.69 38 58 1.22 0.923 10
Nconv C 0.123 0.111 0.59 25 49 1.11 0.939 6
Nconv F 0.051 0.045 0.53 20 46 1.10 0.940 2
Nconv H 0.245 0.163 0.73 46 64 1.15 0.944 12
Nconv L 0.076 0.065 0.47 16 41 1.10 0.941 3
Nconv M 0.099 0.092 0.50 20 46 1.07 0.956 5
Nconv O 0.186 0.190 0.51 19 46 1.10 0.940 7
Nconv S 0.106 0.097 0.45 10 33 1.16 0.918 2
Nconv T 0.293 0.239 0.60 26 51 1.24 0.916 10
Nconv U 0.197 0.161 0.55 17 44 1.19 0.888 5
Nconv V 0.306 0.236 0.62 27 54 1.09 0.936 5
Nconv W 0.155 0.097 0.78 53 69 1.12 0.931 4
Nconv X 0.097 0.072 0.66 32 53 1.17 0.895 3
Nconv Y 0.135 0.129 0.61 25 51 1.09 0.943 6
Nconv Z 0.200 0.234 0.54 19 45 1.09 0.940 12

The last two restrictions will affect the irregularity and rectangularity factor. The outline
of the algorithm is as follows:

1. Randomly choose a convex piece to be split and select two points Q 6= R with integer
coordinates somewhere on the boundary of the shape.

This is done by selecting two different edges from the original piece and choosing a
point inside each one of them. To ensure that a point on the edge E with vertices
(x1, y1) and (x2, y2) has integer coordinates the following process is done: First, choose
an integer value x in the range x1 to x2, then find the coordinate y on edge E with
horizontal coordinate x. If the correspondent y value is not integer, try again choosing
a new x. When the algorithm has failed 100 times to find a random point with integer
coordinates on edge E, it selects one out of the two vertices of the edge. Finding a point
with integer coordinates over an edge may be difficult or impossible for some sloping
edges. In such cases, a vertex is selected.

2. Randomly choose a point P inside the piece.

Here is the process to choose a point inside a shape (Figure 4.3):

(a) Select a point on a random edge.

(b) From the selected point draw a ray that crosses the shape in either vertical or
horizontal direction. If both directions are possible, select randomly.

(c) Select a point on the ray such that it is inside the shape.

The cut QPR separates the original shape into a convex shape and a non-convex shape
(Figure 4.4), unless P falls on the line segment QR. In this case, the algorithm will
choose three new points P , Q and R.

64 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

Figure 4.3: Procedure for selecting a point inside a shape.

Figure 4.4: One convex and one non-convex polygon created by the developed algorithm.

3. Check that these two new shapes satisfy the desired restrictions, including the fact that
we actually obtain a convex and a non-convex shape. If this is the case, replace the
original selected piece by the two new pieces. If not, start the algorithm again.

Finally, the algorithm randomizes the order of all the pieces to prevent that the two parts
of a split piece end in consecutive positions in the list of pieces. Figure 4.5 shows how a
30-piece instance whose optimum is 3 objects has been transformed into a 35-piece instance
with 5 nonconvex pieces using the developed algorithm.

4.3 Algorithms Developed for Geometric Computation
Some algorithms for dealing with irregular shapes were developed and implemented for this
investigation. The algorithms presented in this section are the building blocks of the placement
heuristics (Section 2.6.2). Although most of them are based on basic geometrical concepts,
particular cases and exceptions deserve special care. Besides, the easiest-to-solve cases should
be reviewed first in order to avoid unnecessary computations. For example, when checking
whether a point is inside a shape, a quick computation to determine is the point is above (or
below) the top or (the bottom) of the piece will discard many cases. Trivial cases like this one
are the most frequent scenario when applying the placement heuristics of this dissertation.

Some considerations to take into account are:

1. All coordinates of every piece are given counterclockwise.

2. The function that reviews if two segments have an intersection returns false if they be-
long to the same line, even if one segment touch the other by one of their ends or if they

4.3. ALGORITHMS DEVELOPED FOR GEOMETRIC COMPUTATION 65

Figure 4.5: (a) A convex problem instance. (b) 5 pieces were randomly selected to build 5
non-convex polygons.

overlap. In other words, our definition of intersection of segments refers to segments
that crosses but are not coincident. Note that this definition implies that reviewing for
intersection of two segments that are exactly the same, the function will return false
(Note: For reviewing if two shapes intersect, intersection is reviewed for all sides of
both shapes. Adjacent sides from non-overlapping adjacent pieces (sharing an edge)
are not intersecting).

3. The function that reviews if a point is inside a segment returns true if the point is one of
the ends of the segment. When the sum of the distances from the point to the two ends
of the segment is equal to the segment length, then we consider that the point belongs
to the segment.

To know whether two pieces intersects each other, a routine that checks intersection for
each pair of sides from both pieces was implemented (Algorithm 1). Initially, a revision is
done to confirm that the orthogonal rectangles that circumscribe both pieces intersect. This
way we discard the easiest non-intersection cases. This test does not work if one piece is
completely inside the other, in which case no edges intersect but the pieces do intersect. That
is why this algorithm is always followed by Algorithm 3 that reviews if one piece is completely
inside another.

The Algorithm 2 determines whether a point is inside a shape. In case the point is along
an edge of the piece or one of its vertices, then the algorithm will return false. The basic idea is
to trace a ray from the point to any fixed direction. If the ray cuts the shape an odd number of
times, then the point is inside the shape; otherwise it is outside. If the ray touches a vertex of
the shape; it is important to determine if the ray touches the shape tangentially or if it actually
crosses the shape (see Figure 4.6). This is done employing the D-function (equation 2.1).

66 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

Algorithm 1 Decide if two pieces intersects each other.
Input: A list of coordinates of two pieces P1 and P2.
Output: A boolean value indicating whether the two pieces intersects each other.

if lowest end of P1 is above upper end of P2 OR lowest end of P2 is above upper end of P1

then
return false

if leftmost end of P1 is right of the rightmost end of P2 OR leftmost end of P2 is right of
the rightmost end of P1 then

return false

for all edges e1 of P1 do
for all edges e2 of P2 do

if Intersects(e1, e2) then
return true

return false

The Algorithm 2 is employed in the procedure to determine is a piece is completely
inside another piece which is developed in Algorithm 3. Initially, a revision is done to confirm
that the orthogonal rectangles that circumscribe both pieces intersect and the actual pieces do
not intersect (part 1). If both pieces do not intersect, we find the orthogonal rectangle that
circumscribe both pieces at the same time. If the area of this rectangle is less than the sum of
areas of both pieces, it means unequivocally that one piece is inside the another (part 2). If
the point in the middle of piece 1 is inside piece 1, then we check if this point is inside piece
2. The same is checked for the middle point of piece 2 (part 3). If this is not the case, then,
all vertices and edge midpoints from both pieces are checked to know if they are inside the
other piece. Checking vertices and edges midpoints is not an infallible test. It is possible to
find a case where all vertices edges midpoints of the inside shape are all along the contour of
the larger piece. See for example Figure 4.7. That is why, two points close to each vertex (one
for each of the edges) is also tested (part 4). Finally, it is convenient to check whether the two
pieces are not equal and in the same position (part 5).

The Algorithm 4 returns the distance in which two segments coincide. This algorithm
constitutes the basis for implementing the heuristic called Constructive Approach with Maxi-
mum Adjacency in which adjacency is computed between an object with all its placed pieces
and a new piece to be placed in several candidate positions.

The algorithm 5 builds a piece that holds all the area in the object that is left of a given
piece (see Figure 4.8a). A similar procedure is done to build a piece containing all the area
below a given piece (see Figure 4.8b).

The algorithm 6 computes the distance by which a point can reach horizontally a seg-
ment. An analogous procedure finds a vertical distance from a point to a segment.

Algorithms 5 and 6 are needed for Algorithm 7 which computes the distance that a given
piece can be moved to the left avoiding collision against other pieces in the object and without
exceeding the object limits. A similar procedure was implemented in this investigation to find
how much a given piece can be moved down. The implementation of this algorithm is basic

4.3. ALGORITHMS DEVELOPED FOR GEOMETRIC COMPUTATION 67

Algorithm 2 Decide if a point is inside a shape.

Require: A list of coordinates of a piece and a point (x, y).

Ensure: A boolean value indicating whether the point is or not inside the piece.

if x ≤ the piece lowest part OR x ≥ the piece upper part then

return false

if y ≤ the piece leftmost part OR y ≥ the piece rightmost part then

return false

for all vertices of the piece do

if the point (x, y) is equal to the vertex then

return false

for all sides of the piece do

if the point (x, y) is along the side then

return false

Create the point (M , y), where M is a very large number.

for all sides of the piece do

if the side of the piece intersects the segment (x, y) to (M , y) then

counter ++

for all vertices i of the piece do

if the vertex belong to the segment (x, y) to (M , y) then

D 1 ← D function (segment, vertex i — 1) [see Equation 2.1]

D 2 ←D function (segment, vertex i + 1)

if D1 and D2 have different signs then

counter ++

if counter is odd then

return true

else

return false

68 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

Algorithm 3 Decide if a shape is completely inside another shape.

Require: The two pieces P1 and P 2 .

Ensure: A boolean value indicating whether one of the pieces is inside the other.

Part 1

if lowest end of P 1 is above upper end of P 2 OR lowest end of P 2 is above upper end of P 1

then

return false

if leftmost end of P1 is right of the rightmost end of P2 OR leftmost end of P2 is right of

the rightmost end of P1 then

return false

if the 2 pieces intersect each other then

return false

[see Algorithm 1]

Part 2

[At this point we only have pieces that do not intersect each other]

y m a x ← max(maximum P 1 y-coordinate, maximum P 2 y-coordinate)

y m i n ← min(minimum P 1 y-coordinate, minimum P 2 y-coordinate)

x m a x ← max(maximum P1 x-coordinate, maximum P 2 x-coordinate)

x m i n ← min(minimum P 1 x-coordinate, minimum P 2 x-coordinate)

if (ymax — y m m) (x m a x — x m i m) < (area of P 1 + area of P2) then

return true

Part 3

y 1 ← average(maximum P 1 y-coordinate, minimum P 1 y-coordinate)

x 1 ← average(maximum P 1 x-coordinate, minimum P 1 x-coordinate)

y 2 ← average(maximum P 2 y-coordinate, minimum P 2 y-coordinate)

x 2 ← average(maximum P 2 x-coordinate, minimum P 2 x-coordinate)

if point (x 1, y 1) is inside P 1 and P 2 or point (x 2, y 2) is inside P1 and P 2 then

return true

Part 4

for all vertices and edge

if inside P2 then

return true

for all vertices and edge

if inside P1 then

return true

Part 5

if P1 is equal to P2 and in the same position then

return true

else

return false

midpoints and points near each vertex of P1 do

midpoints and points near each vertex of P2 do

4.3. ALGORITHMS DEVELOPED FOR GEOMETRIC COMPUTATION 69

Algorithm 4 Measures the distance in which two segments coincide.
Require: The two finite segments S1 and S2.
Ensure: The distance in which S1 and S2 coincide.

if lowest end of S1 is above upper end of S2 OR lowest end of S2 is above upper end of S1

then
return 0

if leftmost end of S1 is right of the rightmost end of S2 OR leftmost end of S2 is right of
the rightmost end of S1 then

return 0
if slope of S1 6= slope of S2 then

return 0
if y-intercept of S1 6= y-intercept of S2 then

return 0 [segments are parallel]
if S1 and S2 are both horizontal then
p1 ← rightmost point out of the leftmost ends of S1 and S2.
p2 ← leftmost point out of the rightmost ends of S1 and S2.
return distance from p1 to p2

else
p1 ← upper point out of the lowest ends of S1 and S2.
p2 ← lowest point out of the upper ends of S1 and S2.
return distance from p1 to p2

Algorithm 5 Builds a piece containing all the area at the left of a given piece.
Require: A piece P .
Ensure: A piece whose area is the same that the left area of P .

Find (x1, y1), the vertex at the top of P which is leftmost. [point A in Figure 4.8a]
Find (x2, y2), the vertex at the bottom of P which is leftmost. [point D in Figure 4.8a]
return The piece comprised by the following vertices:

(x1, y1)
(0, y1)
(0, y2)
(x2, y2) and
all vertices in P between (x2, y2) and (x1, y1)

70 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

Figure 4.6: Ray from point P to the right actually touches 4 times the shape boundaries. The
ray crosses the shape at vertex B. In contrast, the ray touches vertex A only tangentially and
does not cross the shape at this point. Therefore, the count for crosses is 3. Since 3 is an odd
number, we conclude that P is inside the shape.

for bottom-left moves that take place in all placement heuristics.

4.4 Summary
This chapter presented some methodological issues related with this dissertation. Testbed
instances were described here and they are employed in the experiments presented in the
following five chapters. Some geometric algorithms are described as well. The next chapter
presents an implementation of the solution model for the 2D irregular BPP that includes only
convex polygons.

4.4. SUMMARY 71

Algorithm 6 Computes the horizontal distance from a point to a given segment. Distance is
zero if the point is along the segment. Distance is positive if the point is in the right of the
segment. Otherwise it is negative.
Require: A point (x, y) and a segment defined by points (x1,y1) and (x 2, y 2).
Ensure: The horizontal distance from (x, y) to the segment defined by (x i , y i) and (x 2, y 2).

if (y < y i and y < y2) or (y > y i and y > y2) then
return 'The point does not reach horizontally the segment'

if (y = y 1 and y = y 2) and (x > x 1 and x > x 2) then
return min(x — x 1 , x — x 2)

if (y = y 1 and y = y 2) and (x < x 1 and x < x 2) then
return — min(xi — x, x2 — x)

if (y = y1 and y = y2) then
return 0

else
return x — x1 + (x1 — x2)(y1 — y)/(y1 — y2)

Algorithm 7 Computes the distance that a given piece can be moved to the left without over
lapping other pieces and without exceeding the object limits.
Require: A piece P and the other pieces that are inside the same object.
Ensure: The distance that P can be moved to the left.

Build piece P ' whose area is the same that area at the left of P [Algorithm 5 and Figure
4.8a].
Find the set S containing all pieces in the object that intersect or are inside P ' but do not
intersect nor are inside P .
m — minimum x-coordinate of P
if S is empty then

return m
for all vertices i of P do

for all edges j of all pieces in the object do
if vertex i reaches edge j projecting to the left then

d — distance from vertex i to edge j [Algorithm 6]
if d < m then

m — d
return m

72 CHAPTER 4. RESEARCH METHODOLOGY AND EXPERIMENTAL SETUP

Figure 4.7: Piece AEFG is inside piece ABCDEFG. In this case, checking if all vertices
and edges midpoints of AEFG are inside ABCDEFG will return false. Only when a point
very close to vertexE is found insideABCDEFG, the algorithm returns true to the question
about if one of the pieces is inside the other. In this case, reviewing intersection of these two
pieces with Algorithm 1 will return false because none of the sides crosses another (although
they coincide).

Figure 4.8: Piece ABCDEFGH contains all area to the (a) left and (b) below a given piece.

Chapter 5

Hyper-heuristics for 2D Irregular BPP
(Convex)

In this chapter we describe how the developed model explained in Chapter 3 was applied
to the 2D Irregular BPP with convex polygons [98, 143]. Results from this chapter may be
taken as preliminary, since research presented in the Chapters 6, 7 and 8 make significant
improvements to the main elements of the solution model.

5.1 Experimental Setup
This section describes how the elements of the evolutionary framework were implemented in
this first implementation.

5.1.1 Set of heuristics

In a one-dimensional packing problem, the related heuristics refer to the way the pieces are
selected and the bins in which they will be packed. For a two-dimensional problem (regular
and irregular), additional difficulty is introduced by defining the exact location of the figures,
that is, where a particular figure should be placed inside the object. That is why, in this
investigation two kinds of heuristics were considered: one kind for selecting the figures and
objects, and the other for placing the figures into the objects. The ten selection heuristics used
are detailed in section 2.6.1. The four placement heuristics utilized are based on the bottom-
left heuristics and the constructive approach presented by Hifi and M’Hallah [70]. The full
description is in section 2.6.2. Some of these heuristics were taken from the literature, others
were adapted, and some other variations were developed.

5.1.2 Chromosomes

Each chromosome in the GA (Section 3.5) is composed by several blocks and each block had
nine numbers in this particular implementation. The label (action) is the ninth number, which
identifies a particular pairing of a selection heuristic and a placement heuristic. The action
was selected from all possible combinations of selection and placement heuristics. There are

73

74 CHAPTER 5. HYPER-HEURISTICS FOR 2D IRREGULAR BPP (CONVEX)

40 combinations shown in Table 5.1. This hyper-heuristic generation routine was performed
considering the possibility of rotating the items 0, 90, 180 or 270 degrees.

The objective function employed in this implementation is computed as explained in
Section 3.4.

5.1.3 Representation of problem instance state
For this irregular case, the first three numbers out of the eight that summarizes the problem
state are related to rectangularity, a quantity that represents the proportion between the area
of a piece and the area of a horizontal rectangle containing it. The first number represents
the fraction of remaining pieces with high rectangularity, in the range of 0.9 to 1 inclusive.
The second corresponds to those of medium rectangularity, in the range 0.5 to 0.9. The third
corresponds to low rectangularity, from 0 to 0.5. The fourth and fifth numbers are related to
the area of pieces, indicating the fraction of large and small pieces respectively. Large items
are those whose area is larger than 1/4 of the object. Small pieces are those larger than 1/10
but less or equal to 1/4 of the object total area. Fraction of pieces whose area is less or equal
to 1/10 is not represented in the problem state. The sixth and seventh numbers are related to
the height of pieces, indicating the fraction of tall and short pieces respectively. Tall items are
those whose vertical dimension is longer than the half of the vertical dimension of the object.
Short pieces are those taller than 1/4 but less or equal to 1/2 of the object total height. The
eighth number represents the fraction of the total items that remain to be packed. The features
selected for representing instances states are listed in Table 6.1 in Chapter 6.

5.1.4 Testbed Instances
The problem instances considered are described in section 4.2.2. Instance characteristics are
listed in Tables 4.1 and 4.3.

5.2 Experiments
All problem instances (541) were solved with the 40 combinations of selection and placement
heuristics. For each instance, the best heuristic, its fitness and the number of objects are
recorded. Then, the GA process (Figure 3.1) is run to generate hyper-heuristics.

In order to test the overall performance of the model when tackling irregular problems,
various experiments were designed:

• Experiment I.- First, instances are divided into two groups: training and testing sets.
Training set is formed of instance types Conv A to Conv I plus the Fu instance totaling
271 instances. The best individual generated by the evolving process within the pro-
posed model is the hyper-heuristic chosen to run the rest of the instances comprising
the testing set (instance types Conv J to Conv R). To validate the consistency of the mo-
del, two complete and independent runs were performed, from which hyper-heuristics
HH1a and HH2b were obtained. Each was tested with the testing set and then compared
with those results obtained by each of the 40 single heuristics (each is a combination of
selection and placement heuristic) in the same set.

5.2. EXPERIMENTS 75

Table 5.1: Representation of actions.

Action Selection Placement
1 First Fit (FF) BLI - Bottom Left (Irregular)
2 CA - Constructive
3 CAA - Constructive - Minimum Area
4 CAD - Constructive - Maximum Adjacency
5 First Fit Decreasing (FFD) BLI - Bottom Left (Irregular)
6 CA - Constructive
7 CAA - Constructive - Minimum Area
8 CAD - Constructive - Maximum Adjacency
9 First Fit Increasing (FFI) BLI - Bottom Left (Irregular)

10 CA - Constructive
11 CAA - Constructive - Minimum Area
12 CAD - Constructive - Maximum Adjacency
13 Filler + FFD BLI - Bottom Left (Irregular)
14 CA - Constructive
15 CAA - Constructive - Minimum Area
16 CAD - Constructive - Maximum Adjacency
17 Next Fit (NF) BLI - Bottom Left (Irregular)
18 CA - Constructive
19 CAA - Constructive - Minimum Area
20 CAD - Constructive - Maximum Adjacency
21 Next Fit Decreasing (NFD) BLI - Bottom Left (Irregular)
22 CA - Constructive
23 CAA - Constructive - Minimum Area
24 CAD - Constructive - Maximum Adjacency
25 Best Fit (BF) BLI - Bottom Left (Irregular)
26 CA - Constructive
27 CAA - Constructive - Minimum Area
28 CAD - Constructive - Maximum Adjacency
29 Best Fit Decreasing (BFD) BLI - Bottom Left (Irregular)
30 CA - Constructive
31 CAA - Constructive - Minimum Area
32 CAD - Constructive - Maximum Adjacency
33 Worst Fit (WF) BLI - Bottom Left (Irregular)
34 CA - Constructive
35 CAA - Constructive - Minimum Area
36 CAD - Constructive - Maximum Adjacency
37 Djang and Finch (DJD) BLI - Bottom Left (Irregular)
38 CA - Constructive
39 CAA - Constructive - Minimum Area
40 CAD - Constructive - Maximum Adjacency

76 CHAPTER 5. HYPER-HEURISTICS FOR 2D IRREGULAR BPP (CONVEX)

• Experiment II.- This experiment is similar to Experiment Type I, except that the train-
ing and testing sets are interchanged.

• Experiment III.- This experiment takes the Fu instance and 15 instances from each
problem type (from Conv A to Conv R) to form the training set with 271 instances. The
remaining instances form the testing set.

• Experiment IV.- It is the same as Experiment Type III, except that the training and
testing sets are swapped.

For each of the experiments II, III and IV one hyper-heuristic was generated. Expe-
riments were conducted with population size of 100, crossover probability of 1.0, mutation
probability of 0.05, for 500 generations [143]. These parameters are very close to the chosen
in the implementation of the model for the regular case of the 2D BPP [52, 138].

5.3 Results and Discussion
Tables 5.2 to 5.5 presents the main results when solving testing sets with the hyper-heuristics
generated in each of the experiments, as reported in [143] 1. Figures in cells indicate the
percentage of problems solved that employs a particular number of extra objects (left column)
when compared against results provided by the best single heuristic for each case. Figures in
last 10 columns average the performance of the four combinations of heuristics for which the
selection heuristic is in common.

The resulting hyper-heuristics in Experiment I show better results than those produced
by the single heuristics. Hyper-heuristic HHa solved 87.0% with the same number of objects
as the best single heuristic. In the remaining 13% of the instances the hyper-heuristic required
just one additional object. The closest combination is DJD with 43.5%. Moreover, in a
good percentage of cases all the single heuristics use more than one object, and in fact, all of
them have instances using more than five additional objects. The performance in both hyper-
heuristics is very similar, despite the fact that they are formed of rather different blocks. In
general, the training instances in this experiment seem to be less irregular than those in the
testing set (as it can be inferred from Table 4.3).

Experiment II is the opposite to Experiment I. In other words, the training set in this
experiment is composed of more irregular pieces, and then tested with less irregular pieces.
Table 5.3 shows results for this experiment. It can be observed that the hyper-heuristic pro-
duced solves 86.7% of the instances with the same number of objects. For 0.4% of the cases,
only one instance, it needs one object less.

For Experiments III and IV, the training and testing sets had similarities in their instances
given that the problem types were evenly divided, leaving half of the instances in the training
set, and the other half in the testing set. This explains, in average, a very similar performance
in the hyper-heuristics produced by these experiments. The results are shown in Tables 5.4
and 5.5.

1Results for single heuristics in Tables 5.2 to 5.5 were recomputed after fixing a bug in the programming
code for the selection heuristics. Therefore, results in this document differ from those in previous work reported
in [143]. The original programming code for selection heuristics was originally taken from the code used in the
work [138].

5.3. RESULTS AND DISCUSSION 77

Table 5.2: Number of extra objects for the testing set and compared against results of the
best single heuristics. Experiment I, for first and second independent runs. Figures in last
10 columns average the performance of four heuristics. These heuristics are indicated by the
numbers under the selection heuristic name (see Table 5.1).

Selection Heuristics
Extra HHa HHb FF FFD FFI Filler NF NFD BF BFD WF DJD
Obj. 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40

0 87.0 90.4 10.2 38.4 0.3 39.2 1.4 4.0 9.4 39.4 3.1 43.5
1 13.0 9.6 25.7 31.9 20.7 31.8 14.2 13.4 25.7 30.9 20.6 30.7
2 24.1 11.9 14.0 12.2 8.9 12.5 23.2 12.1 18.8 11.2
3 16.0 7.9 17.0 8.1 9.7 11.0 15.6 7.5 18.1 6.9
4 10.0 6.6 16.0 5.4 9.9 11.7 11.6 5.9 14.9 4.3
5 5.9 1.1 11.5 1.1 8.2 9.5 5.6 1.9 9.4 1.6

> 5 8.1 2.2 20.5 2.2 47.7 37.9 8.8 2.1 15.3 1.8

Table 5.3: Number of extra objects for the testing set and compared against results of the best
single heuristics. Experiment II. Figures in last 10 columns average the performance of four
heuristics. These heuristics are indicated by the numbers under the selection heuristic name
(see Table 5.1).

Selection Heuristics
Extra HH FF FFD FFI Filler NF NFD BF BFD WF DJD
Obj. 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40

-1 0.4
0 86.7 14.9 41.0 7.7 40.8 7.5 9.9 14.9 41.0 8.9 53.8
1 10.0 34.2 25.9 24.6 26.3 19.5 21.5 33.7 26.3 26.8 24.7
2 2.6 15.0 15.7 19.6 15.0 15.5 14.4 16.5 15.3 18.2 12.2
3 0.4 15.2 10.2 6.9 10.1 8.3 7.5 15.8 10.1 14.4 6.5
4 14.4 5.3 13.5 5.5 6.2 7.1 12.4 5.4 15.7 2.6
5 4.9 1.3 16 1.6 6.1 5.2 5.3 1.3 11.5 0.2

> 5 1.3 0.6 11.8 0.6 37.0 34.5 1.6 0.6 4.5

78 CHAPTER 5. HYPER-HEURISTICS FOR 2D IRREGULAR BPP (CONVEX)

Table 5.4: Number of extra objects for the testing set and compared against results of the best
single heuristics. Experiment III. Figures in last 10 columns average the performance of four
heuristics. These heuristics are indicated by the numbers under the selection heuristic name
(see Table 5.1).

Selection Heuristics
Extra HH FF FFD FFI Filler NF NFD BF BFD WF DJD
Obj. 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40

0 91.1 12.2 40.6 3.8 40.3 4.4 6.8 11.9 40.4 5.8 47.9
1 7.8 29.8 26.6 22.3 27.5 17.5 17.6 29.4 27.5 24.1 28.1
2 1.1 19.6 15.0 16.6 14.9 12.1 13.1 19.4 14.5 18.0 12.3
3 15.4 8.9 10.9 8.7 8.2 8.5 16.0 8.6 15.8 6.4
4 13.2 5.8 16.5 5.2 8.0 9.9 13.0 5.6 16.1 3.4
5 5.7 1.5 14.2 1.9 7.3 7.6 6.0 1.9 11.0 1.0

> 5 4.0 1.6 15.7 1.6 42.5 36.6 4.3 1.5 9.2 0.9

Table 5.5: Number of extra objects for the testing set and compared against the best results of
the best single heuristics. Experiment IV. Figures in last 10 columns average the performance
of four heuristics. These heuristics are indicated by the numbers under the selection heuristic
name (see Table 5.1).

Selection Heuristics
Extra HH FF FFD FFI Filler NF NFD BF BFD WF DJD
Obj. 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40

0 87.8 12.9 38.7 4.2 39.7 4.5 7.1 12.5 40.0 6.1 49.4
1 10.7 30.2 31.2 23.1 30.5 16.1 17.3 30.0 29.7 23.3 27.4
2 1.1 19.5 12.6 17.0 12.4 12.3 13.8 20.3 12.9 19.0 11.1
3 15.9 9.2 13.0 9.6 9.8 10.0 15.3 9.0 16.6 7.1
4 11.2 6.0 13.0 5.7 8.1 8.9 11.0 5.7 14.5 3.4
5 5.1 0.9 13.3 0.8 7.0 7.1 4.9 1.3 9.9 0.7

> 5 5.4 1.3 16.5 1.3 42.2 35.8 6.1 1.3 10.6 0.8

5.4. SUMMARY 79

Table 5.6 summarizes with a single value, the performance of each hyper-heuristic for
each experiment carried out. On average, using the hyper-heuristic reduces by more than
one object the solution given by the average heuristic for each instance. The hyper-heuristics
produced in Experiment I were the ones showing the best performance. Results for experiment
II are not as good as the previous experiment. It seems that training with irregular instances
first, and then testing with more rectangular problems is not so advantageous.

Table 5.6: Number of extra objects used by the hyper-heuristics in the testing set with respect
to the average obtained by the 40 single heuristics.

Extra Objects
Experiment I, 1st -1.63
Experiment I, 2nd -1.66

Experiment II -1.11
Experiment III -1.41
Experiment IV -1.37

Looking at the results it is clear in all cases that the method to create hyper-heuristics
and the hyper-heuristics themselves are efficient, at least with respect to the number of objects
used for each instance. The GA-based procedure has found hyper-heuristics composed of a
set of rules which associate the problem state to a combination of selection and placement
heuristics.

5.4 Summary
In this chapter, the implementation of the solution model is applied to the 2D irregular BPP
(convex). It is important to get a better feeling of the real advantages or the proposed approach,
and the practical implications of using it. For example, the computational cost of applying a
generated hyper-heuristic to a problem is only slightly higher than the time used by any of the
single heuristics, which run in just a few seconds. However, the performance of the model
may be improved with some changes. This is done in the following chapters.

In particular in the next chapter, attention is paid to the representation of instance states
(explained in Section 3.2) in order to reduce the domain knowledge required to produce a
good representation scheme.

Chapter 6

Defining a Problem-State Representation
Scheme

One interpretation of hyper-heuristic is based on the idea of a high level heuristic that should
decide which single low-level heuristic to apply, depending on the given problem state which
is summarized by a numerical vector called representation [126]. This idea of hyper-heuristic
has been applied for solving the 1D and 2D Bin Packing Problem (BPP) [128, 129, 138,
139, 143], as well as the Constraint Satisfaction Problem (CSP) [141]. Other approaches
have used representation of instances (and/or instance-states) based on selecting some relevant
features. For example, the hyper-heuristic model that uses Case-based Reasoning for Course
Timetabling Problems [113].

This chapter focuses on the way of selecting relevant features for a meaningful repre-
sentation scheme. Much of the performance of a hyper-heuristic model may depend on the
choice of representation of the problem state and the choice of the particular set of heuristics
used [126]. Smith-Miles et al. [135] showed the dependence of algorithm performance on
features measures. They employed the Early/Tardy Machine Scheduling Problem to find that
some features can predict heuristic performance and that some other features do not seem to
influence heuristic performance at all. In this chapter, we propose a new general methodology
for feature selection using data mining. Then, we tested the generated methodology producing
a new representation scheme for the 2D irregular BPP which is solved by our hyper-heuristic
approach (presented in Chapter 3). The basic assumption is that similar problem states would
be associated with the same single heuristic. The objective is to characterize instances into
homogeneous classes and relate them with the best single heuristic for each class. The idea be-
hind hyper-heuristics is to associate each heuristic with the problem conditions under which
it flourishes and hence apply different heuristics to different parts or phases of the solution
process. That is why this work attempts to find the key features of a problem that makes
instances suitable for one heuristic or another.

For the 2D irregular BPP, a hyper-heuristic solution model has been applied with encour-
aging results (Chapter 5) in which some of the features selected for the state representation
were taken from the 2D regular (rectangular) BPP [138] whose representation was influenced
for the one-dimensional case as well [128]. Problems known to be hard have certain char-
acteristics [37]. In 1D BPP, for example, the hard benchmark problems involve items whose
weights are typically a significant fraction of the bin capacity, for example at least 20% of bin

81

82 CHAPTER 6. DEFINING A PROBLEM-STATE REPRESENTATION SCHEME

Table 6.1: Representation 1 of the instance state.

Feature Description
Fraction of remaining pieces in the instance:

1 with high rectangularity, in the range (0.9, 1].
2 with medium rectangularity, in the range (0.5, 0.9].
3 with low rectangularity, in the range (0, 0.5].
4 whose area is larger than 1/4 of the object area.
5 whose area is larger than 0.1 and up to 0.25 of the object area.
6 taller than the half of the object area.
7 taller than 0.25 and up to 0.5 of the object total height.
8 that remain to be packed.

capacity, so that there will be no more than five items per bin but there will be a very large
number of items so that the difficulty arises when trying to find the subsets of items that are to
reside in each bin. If there were many very small items, those items could be used essentially
as sand to fill up space wasted when large items were packed [126]. This makes much sense
in the 1D-BBP. In the 2D case, not only the size is important but also the shape; and in the 2D
irregular BPP, some features linked with irregularity appear. Some of these features may be
relevant in the representation of the problem state, some others may not. Which features are
the most appealing for the representation of the problem state may not be obvious.

The solution model from Chapter 3 and its particular implementation from Chapter 5
are taken as experimental environment. In that chapter, eight features related to the problem
domain were selected by intuition to represent an instance state (see Table 6.1). This is called
Representation 1 in this chapter research. The features were selected by analyzing various
parameters present in irregular 2D pieces, such as rectangularity, area, length, height and the
percentage of remaining pieces to be packed. Rectangularity is a quantity that represents the
proportion between the area of a piece and the area of a horizontal rectangle containing it.

The main part of this chapter is Section 6.1 which presents the description of a proposed
methodology for feature selection. Section 6.2 applies the proposed methodology to develop
a representation scheme for the 2D irregular BPP, which is called Representation 2. At this
point, preliminary experiments lead us to revise some parameters of the GA. Therefore, we
performed again the experiments with the Representation 1, to make the results comparable.
The GA parameters were kept equal for experiments with both representations. The only
difference was the representation employed. Sections 6.3 and 6.4 presents the experimental
evaluation and the discussion of results.

6.1. METHODOLOGY FOR DEVELOPING A REPRESENTATION SCHEME 83

6.1 Methodology for Developing a Representation Scheme
This section explains the proposed methodology for developing a representation scheme which
uses data mining techniques to determine the feature set. Data mining is the process of find
ing hidden patterns in large amounts of data. One of its main applications has been scientific
discovery. The proposed methodology is then applied to the 2D irregular BPP in next section.

The proposed methodology comprises six steps:
Step 1. Solve each instance with each single heuristic from the heuristic repository H

and compute a measure of performance.
Step 2. Register the performance of all heuristics for each instance as a vector in R)H

where | H | is the size of the heuristics repository H .
For a given instance, q is the vector of performance for the | H | heuristics,

whose length is given by the square root of the dot product of a vector by itself:

(6.1)

(6.2)

Normalize this vector, dividing by its length (to get length of one). Normalized perfor¬
mance q* is given by

(6.3)

Note that q* is a unit vector. Unit vectors are used to indicate direction. They aim in the
direction of the best heuristic for each instance (see Figure 6.1).

Normalized performance removes the effect of easy or hard instances in the measure
of performance. For the following example and explanation, an easy instance will be an
instance that obtains high scores according to the defined measure of performance, while a
hard instance is the one that obtains lower scores. Note that this practical working definition
differs from the concept of hardness in computational complexity. Nevertheless, we found the
necessity of looking for terms that describe instances with high or low performance.

Figure 6.1: Matrix of normalized performance.

Example. Let q a and qb be the performance vector for two given instances evaluated
with H = 6 heuristics. Let

84 CHAPTER 6. DEFINING A PROBLEM-STATE REPRESENTATION SCHEME

qa = [0.906 0.906 1.000 0.918 0.918 0.922 J with length |qa| = 2.275, and
q b = [0.604 0.614 0.613 0.616 0.619 0.617] with length |qb| = 1.503.
The third heuristic is the best for instance Ia as it produces the maximum performance

(1.000), meaning that all objects could be filled at 100%. For instance Ib, the fifth heuristic
is the best (performance = 0.619), following by the sixth heuristic (performance = 0.617). In
this example, all six heuristics produce higher performance in Ia compared to Ib. For these
heuristics, instance [Ia is easier than instance Ib. The vectors of normalized performance are:

[0.398 0.398 0.439 0.403 0.403 0.405], and
[0.402 0.408 0.408 0.410 0.412 0.410].

With vectors qa* and qb* we still can see which heuristics produce the best and worst
results for a particular instance, but we cannot distinguish which instance produces the higher
absolute performance.

The normalized performance of a heuristic in instance Ia is relative because it depends
on the performance of the other heuristics in H in the same instance I a .

It is a good idea to normalize because of the following explanation: The unnormalized
vector of performance is absolute: for an easy instance, most heuristics may have high per¬
formance; for a hard instance, most heuristics may have low performance. If we compare the
unnormalized (absolute) performance of instances Ia and Ib when solved by heuristic h i , we
can see which of the instances is better solved by heuristic h i . As in the example above, lets
suppose Ia is much easier than Ib so that every heuristic in H has a better performance in Ia
than in Ib. The higher performance of a particular heuristic h i in Ia compared wih Ib does not
tell us nothing about the particular ability of h i in instances Ia and Ib. But, if we compare the
normalized performance of h i in Ia and Ib, we can see in which instance heuristic h i does
better compared with what the other heuristics can do in the same instances. In conclusion, if
we know that normalized performance of h i is higher in Ia than in any other instance, we also
know h i is particular capable in instance I a. This methodology is about finding those features
that make heuristics particular capable of solving some kinds of instances.

Step 3. Classify all instances into homogeneous clusters according to their normalized
performance measure for all heuristics. The number of clusters is a parameter to be chosen.
There are many clustering techniques that are based on statistical and AI techniques. One
of these is the k-means technique which is a widely used clustering algorithm known for
its observed speed and its simplicity [8]. Given a set of n data points, the algorithm uses a
local search approach to partition the points into k clusters, k < n. A set of k initial cluster
centers is chosen arbitrarily. Each point is then assigned to the center closest to it, and the
centers are recomputed as centers of mass of their assigned points. This is repeated until the
process stabilizes. It can be shown that no partition occurs twice during the course of the
algorithm, and so the algorithm is guaranteed to terminate [8]. The objective is to minimize
total intra-cluster variance, or, the squared error function.

(6.4)

where there are k clusters S i , i = 1, 2,...k, and μi is the centroid or mean point of all
the points x j e S i . Chiang and Mirkin [38] reviewed several approaches for selecting the
right number of clusters for the k-means technique.

6.1. METHODOLOGY FOR DEVELOPING A REPRESENTATION SCHEME 85

There are other alternatives for grouping instances, Jain et al. [80] present a taxonomy
of clustering techniques.

Step 4. Determine a set of problem features or measures that may be relevant to the
ability of the heuristics to solve each instance. For example, in BPP, average size of pieces
may be related on how hard an instance is. Next steps will prune the list to keep just the more
relevant features.

Step 5. Determine pairs or sets of equivalent features. It may happen that some couple
or small sets of features are highly correlated (positive or negative) since they carry almost
the same information. In this case, we can say we have equivalent features. The Pearson
correlation coefficient [125] measures linear dependence between a pair of variables and it is
an immediate way to perform this (although other measures of association exist [83]). For
example, in the 2D irregular BPP average area of pieces and percentage of small pieces
may be strong and negatively correlated. This can happen for pairs or even for small sets of
features where all features in the set are highly correlated with all the others. For every pair
or set of equivalent features it is possible to choose just one of them which would act as the
representative of the other(s) and delete the others reducing the total set of features.

Step 6. Among the set of the problem features, select a subset which better predicts
the instances clusters. This selection could be done through Multinomial Logistic Regression
(MLR) [58]. MLR is a statistical method that extends the (binary) logistic regression when the
categorical dependent outcome has more than two levels. This method can be used to assess
the influence of explanatory variables (problem features) on the nominal response variable
(cluster). The MLR model has to be run with all the features as independent variables. Those
variables with lower p-values will be the most significant ones. That is, the features which
better predict. Since instances in each cluster tend to have better performance in the same
single heuristics, those features that are more related with the clusters will be the same features
that influence instances to be better solved for one heuristic or another.

Previous step is especially important if prediction is going to by MLR, because high
correlation among independent variables, called multicollinearity, is undesirable because it
makes unstable the model coefficient estimates. In 2008 appeared an application of binary
logistic regression in the hyper-heuristic search process [32] where Burke et al. used this
technique as an aid to predict if the incoming heuristic (or sequence of heuristics) should not
perform well (or even generate an infeasible solution) saving the computational time of cal-
culating the exact objective value of the resulting solution. As far as we know, this is the only
application of logistic regression in hyper-heuristic research, but it is done for a totally diffe-
rent purpose. In this report, Burke et al. use another data mining technique for classification
and prediction, namely the Multi-Layer Perception (MLP) neural network performing slightly
better than the binary logistic regression model.

Figure 6.2 summarizes this procedure as it relates features with heuristic performance
with clustering as an intermediate phase.

The features selected by the last step are the ones most suitable to be used in the problem
representation.

However, this approach may present the following drawbacks: (1) every instance is
solved by the same heuristic from start to end. Though, this approach does not evaluate the
performance of heuristics solving partial states of instances. For example, an heuristic could
be bad for solving a whole instance but could be very good for placing the last pieces. And,

86 CHAPTER 6. DEFINING A PROBLEM-STATE REPRESENTATION SCHEME

Figure 6.2: General idea for identifying those features related with heuristics performance.
First, instances are clustered according to heuristic performance and then features are related
with cluster membership.

(2) the developed approach does not measure the impact of successive application of different
single heuristics. There might be some heuristic that performs badly on many problems but
happens to be vital for obtaining good solutions for a small number of problems, but only
when used in combination with some other heuristic as well. For tackling these drawbacks,
the evolutionary process may play an important role. That is why, this is the process that
constructs the hyper-heuristic. In our model, is the GA the one that would discover if some
single heuristics are good only for some sort of instances states. Also, we would expect
that the GA evaluate better those hyper-heuristics which involve successful combination of
heuristics. In conclusion, we can consider the methodology described in this section as an aid
for finding out good features to use in the problem state representation for the evolutionary
model.

6.2 Developing a New Representation Scheme
In order to test the data-mining based methodology, the 2D irregular BPP is chosen. We ap-
plied the six steps from previous section in the same 541 instances and 40 single heuristics
used in [143] (which are described in Chapter 5). In our particular experimental environment,
the performance measure of each heuristic over each instance was computed with equation
3.2, which ranges from values greater than 0 and up to 1. Heuristics performance for each
instance was seen as a vector in a 40-dimensional space. Every vector was normalized. We
applied the k-means algorithm for clustering the 541 available instances into five groups ac-
cording to their normalized heuristic performance.

We applied the k-means algorithm for clustering the 541 available instances of the 2D
irregular BPP into five homogeneous groups according to their normalized heuristic perfor-
mance. The number of instances in each cluster is: 61, 124, 165, 144 and 47. The algorithm
was stopped after the 50th iteration1.

Nineteen numerical features were computed for each instance:
1The k-means algorithm was performed in the software SPSS for Windows, release 10.0.1

(http://www.spss.com/).

6.2. DEVELOPING A NEW REPRESENTATION SCHEME 87

1. Number of pieces.

2. Mean number of sides for the instance pieces.

3. Variance of the number of sides of all instance pieces.

4. Mean area for the instance pieces (area for each piece is measure in fraction of the
object total area).

5. Variance of the area of all instance pieces.

6. Mean height for the instance pieces (height for each piece is measured as a fraction
of the object height with the difference between its maximum and minimum y coordi-
nates).

7. Variance of the height of all instance pieces.

8. Mean width for the instance pieces (width for each piece is measured as a fraction of the
object width with the difference between its maximum and minimum x coordinates).

9. Variance of the width of all instance pieces.

10. Mean rectangularity for the instance pieces.

11. Variance of the rectangularity of all instance pieces.

12. Mean ratio (largest side)/(smallest side) for the instance pieces.

13. Variance of the ratio (largest side)/(smallest side) of all instance pieces.

14. Percentage of large pieces (whose area is greater than 1/2 of the object total area).

15. Percentage of small pieces (whose area is less than or equal to 1/4 of the object total
area).

16. Percentage of right internal angles (respect a to the total angles of all pieces of the
instance).

17. Percentage of vertical/horizontal sides (respect a to the total sides of all pieces of the
instance).

18. Percentage of high rectangularity pieces (items which rectangularity is greater than 0.9).

19. Percentage of low rectangularity pieces (items which rectangularity is less than or equal
to 0.5).

Before linking cluster membership with the problem features, a correlation analysis was
performed to detect pairs or sets of features highly related, and thus equivalent. The criteria
chosen was an absolute value of correlation index at least of 0.9. Five sets of equivalent
features were found:

88 CHAPTER 6. DEFINING A PROBLEM-STATE REPRESENTATION SCHEME

• Features 4 and 15 (mean area of instance pieces and percentage of small pieces) had a
correlation index of -0.975. Mean area is eliminated in order to keep the feature which
was actually used in previous work [143].

• Mean and variance of the ratio (largest side)/(smallest side) of all instance pieces (fea-
tures 12 and 13) were highly correlated (0.943). We keep mean since it is more intuitive
than variance.

• Features 10, 17 and 19. A group of three equivalent features was found: mean rectan-
gularity, percentage of vertical/horizontal sides and percentage of low rectangularity
pieces. Features 10 and 17 had a correlation of 0.968, whether features 10 and 19 were
negatively correlated (-0.977) similar than features 17 and 19 (-0.927).

• A group of four equivalent features was found: 10, 16, 17 and 18 (mean rectangu-
larity, percentage of right internal angles, percentage of vertical/horizontal sides and
percentage of high rectangularity pieces). This four size group presented high positive
correlation between every possible pair.

Previous group and this one shared features 10 and 17. From these two, we chose to
keep percentage of vertical/horizontal sides (feature 17). So, features 10, 16, 18 and 19
were taken away.

• Features 2 and 19 (mean number of sides and percentage of pieces with low rectangu-
larity) has a correlation index of -0.909. Percentage of pieces with low rectangularity
(feature 19) was already eliminated. Besides, mean number of sides may be more intu-
itive.

Six features were eliminated from the analysis (4, 10, 13, 16, 18 and 19), since they
carried what we could call redundant information. The remaining 13 features were used to
predict instance cluster through MLR2. This model predicts correctly the cluster of 80.0%
of the instances. This is, by far, greater than 23.67% which is the corresponding by chance
(accuracy rate is obtained by squaring and summing the proportion of cases in each group
(612 + 1242 + 1642 + 1442 + 472)/5412). So, the selected features are indeed related with
normalized heuristic performance. Nine out of the 13 features used in the model were signi-
ficatively related with cluster membership (p-value < 0.05). We selected seven from this set.
This features can predict to some extent the way single heuristics behave at instances of the
2D irregular BPP. That is why these features (or their equivalents) are the suggested relevant
features to be consider in a representation of the problem state.

Most of these features can be measured in a numerical scale, rather continuous or dis-
crete. Whatever the case may be, practical instances fall in a limited range of values for each
characteristic. In this sense, every feature of the problem has an interesting (or practical) range
or interval of possible values. The set of instances we count on to develop the analysis must
cover this interesting range.

All selected features are not in the same order of magnitude. For example, one feature is
measured in a percentage (from 0 to 1), while another feature is measured in thousands of units

2Multinomial Logistic Regression was performed in the software SPSS for Windows, release 10.0.1
(http://www.spss.com/).

6.2. DEVELOPING A NEW REPRESENTATION SCHEME 89

and fall in the interval (0,∞). This fact has an implication: the hyper-heuristic search space
becomes wider and more complex and the hyper-heuristic would not be scale-invariant as
proposed by Ross [127], capable of being applied to problems of very different sizes without
extra implementation effort. Some of the hyper-heuristic capability of generalization may
be compromised by this change in relevant features. The numerical vector representing the
problem state could have elements very different in magnitude perturbing distance calculation.
We considered three possible actions to deal with this: (1) to perform a lineal mapping to a
fixed scale to all feature values used in the instance state representation. For example, making
each possible feature value to fall in the scale from 0 to 1, thus all the numerical vector
have values in [0, 1]; (2) to use standardized features (with mean 0 and standard deviation of
1). Standardization can be done utilizing mean and variance of every feature for the whole
set of experimenting instances. (3) to make the distance from the vector of the problem
state representation to the hyper-heuristic blocks a weightened one. Instead of developing a
search process for finding weights as in [113], weights could be directly calculated as inversely
proportional with features variance or magnitude, since otherwise, most variable features and
also larger features would tend to contribute more to the distance calculation. In summary,
if some scale correction is not performed, just one or few features would have a significant
impact in the distance calculation.

The first scale correction option was chosen. Every feature value was scaled to the
interval [0, 1]. Features that are percentages are naturally in that scale. In every other feature a
lineal mapping was done taking as reference the minimum and maximum value of the feature
in a set of experimenting instances (see Figure 6.3). Note that not only complete instances are
to be represented by the numerical vector, but also every intermediate state. A feature value
of an intermediate state could fall in the neighborhood out the range [0, 1]. That is why the
hyper-heuristic model considers labeling points outside this interval.

Figure 6.3: Lineal mapping to the interval [0, 1] for feature measures.

In order to conform the new representation scheme for the instance state, we added an
eighth feature regarding the fraction of the instance total items that remain to be packed, so
the GA learning process can have a sense of how advanced is the solution of a given instance
(this is also done in [143], see Table 6.1). So, the representation scheme for the 2D irregular
BPP which is the result of the proposed methodology is shown in Table 6.2. The first seven
features in the Table 6.2 are ordered from the most to the less significative according to the
MLR model. The number of features selected is the same for representation scheme 1 and 2
for a fair comparison.

90 CHAPTER 6. DEFINING A PROBLEM-STATE REPRESENTATION SCHEME

Table 6.2: Representation 2 of the instance state.

Feature Description
1 Number of pieces.
2 Mean number of sides of remaining pieces.
3 Variance of the number of sides of remaining instance pieces.
4 Fraction of remaining pieces in the instance

whose area is up to 1/4 of the object area.
5 Variance of the rectangularity of remaining pieces.
6 Variance of the width of the remaining pieces.
7 Variance of the area of the remaining pieces.
8 Fraction of the instance total items remaining.

Petrovic and Qu [113] found that, with five features in the case representation, the sys-
tem has the highest performance. Our number of selected features is close to theirs. In Petro-
vic research, with five features, adjusting the weights of features may not provide much im-
provement on the system performance, so no weights are needed. Their explanation goes
in the direction that there are more complex features, and the similarity measure may have
enough information for comparison. Another explanation may be that the features are much
more important than their weights in the similarity measure if the features are elaborated
enough. Their experimental results showed that the feature selection is more important than
their weights. Our hyper-heuristic model does not considers feature weights and Petrovic
results about weights [113] says to us, that we are in the right direction.

Analyzing one of the most relevant features, Mean number of sides of remaining pieces,
related with performance of heuristics BF+BLI (h1) and BFD+CA (h2) (see Table 5.1), we
found out that the larger the mean number of sides the better idea to use heuristic h1 and
the worse idea to use heuristic h2. This is shown in Figure 6.4. Absolute performance for
all single heuristics is better as mean number of sides increases (correlation indexes between
heuristic performance and mean number of sides go from 0.53 to 0.79 along the 40 heuristics).
Mean number of sides goes from 3.2 to 4.1; so, it seems easier to place four-sided pieces than
triangles. Nevertheless, heuristic h2 decreases its normalized performance as mean number
of sides increases. This means that, heuristic h2, although increases its absolute performance
while mean number of sides increases (like all others heuristics), this performance does not
improve as much as other heuristics do, making heuristic h2, in general, less adequate for
solving instances with higher mean number of sides.

The opposite happens to the same two heuristic comparing their normalized performance
with the feature variance of the number of sides (see Figure 6.5). In this case, it is the nor-
malized performance of heuristic h1 the one that decreases, while heuristic h2 improves its
relative performance (relative against the other heuristics) as the variance of the number sides
increases. That is, h2 is, in general, more adequate for solving instances with higher variance
of the number of sides.

6.3. EXPERIMENTS 91

Figure 6.4: Normalized performance of heuristics BF+BLI (h1) and BFD+CA (h2) related
with instances mean number of sides.

Figure 6.5: Normalized performance of heuristics BF+BLI (h1) and BFD+CA (h2) related
with the instance variance of the number of sides.

This is what can be said when analyzing this feature alone. It is expected some in-
teraction effect among several feature values, and this justifies the use of an evolutionary
computation based approach for developing a set of rules for heuristic selection.

6.3 Experiments

This section compares the quality of the hyper-heuristics generated when instances states are
summarized employing representation schemes 1 and 2 (Tables 6.1 and 6.2). The first one
is developed based on a series of parameters related to the problem domain and selected by
intuition. The second one uses data mining techniques to determine the feature set.

The problem instances considered are described in Section 4.2.2. As well as in our first
model implementation (Chapter 5), we also added a problem from the literature named Fu
[54]. We have a total of 541 irregular problem instances. Instance characteristics are listed in
Tables 4.1 and 4.3. Number of pieces per instance are in the range from 12 to 60.

In this investigation ten selection heuristics and four different placement heuristics were

92 CHAPTER 6. DEFINING A PROBLEM-STATE REPRESENTATION SCHEME

employed. All possible combinations of selection and placement heuristics conform the single
heuristic repository H , that is the set of possible actions available to solve an instance (see
Table 5.1). Here, |H| = 40. Chromosome representation is the same as in Chapter 5 and
the fitness function employed to measure chromosome quality is computed as explained in
Section 3.4. The available problem instances are divided into a training and a testing set. The
GA is used with the training set only, until a termination criterion is met and a general hyper-
heuristic has been evolved. All instances in both sets are then solved with this hyper-heuristic.

Two experiments were conducted sorting the 541 available instances in two balanced
training and testing sets and other two experiments swapped training and testing sets (full
description in Section 5.2). Four experiments overall. For each of the four experiments with
each representation scheme (1 and 2), two GA processes were run. For each complete run the
best two individuals of all over the process were selected as hyper-heuristics. That is, four
hyper-heuristics were obtained for every representation scheme in each of the four experi-
ments. Overall, sixteen hyper-heuristics were employed to measure the effectiveness of each
representation scheme.

We changed some GA parameters with respect previous work with the hyper-heuristic
model (presented in Section 5.2). After some preliminary experimentation, population size
was reduced from 100 to 30. Since the GA is steady-state and two members of the popula-
tion are changed at a time, the reduction of the population size helps the population to evolve
faster. Crossover probability was kept in 1.0. Preliminary experiments showed that a mu-
tation probability of 0.1 produced better results than the previous probability of 0.05. The
diversity of the search space was explored by doing two replicas for each of the four expe-
riments and increasing the mutation rate. So now, in 80 generations we have good chances
of finding a high rated individual in contrast with 500 generations used in [143]. These new
parameters represent a huge reduction of the number of evaluations of the fitness function to
one-twentieth. Experiments with both representation schemes were performed with these new
parameters.

We chose the chromosome with highest fitness of all over the process as the hyper-
heuristic we seek. In [143], the highest fitness chromosome of the very last generation had
been chosen, based on the idea that the final generation is the best generation and the one with
more accurate fitness chromosomes since they are older (evaluated more times). We want a
chromosome to be good at solving many problems. When a chromosome is created, it is ap-
plied to just five randomly-chosen problems in order to obtain an initial fitness. Then, at each
cycle of the algorithm, a new problem is given to each of the chromosomes to solve. This pro-
cedure is a trade-off between accuracy and speed [128]. The longer a chromosome survives
in a population the more accurate its fitness becomes, which raises the question of how to rate
a young chromosome (with therefore a poor estimate) against an older chromosome (with an
improved estimate) if the fitness of the younger one is better?. In [128] several methods were
tried to attempt to give higher credit to older and therefore more accurate chromosomes; how-
ever, these trials rather surprisingly indicated that age of chromosome was not an important
factor. This may be due to the fact that the fitness of every chromosome computed through
the GA process is an unbiased estimator of its true fitness (true fitness is the one that would
had been computed solving all instances of training set), because every individual is evaluated
with a random sample of instances. This means that if a young individual is better rated than
an older one; actually it is more probable that the former is better than the latter when solving

6.4. RESULTS AND DISCUSSION 93

Table 6.3: Number of extra objects delivered by hyper-heuristics using representation scheme
2 compared with those using representation scheme 1. Experiments I through IV.

Training Sets Testing Sets
I II III IV I II III IV

≤ −4 10.0
−3 0.4 1.1 0.4 2.6 1.1 1.5
−2 3.3 1.1 7.0 3.0 0.4 1.1 8.1 3.0
−1 14.0 45.6 40.2 11.9 11.9 25.8 38.5 10.7
0 72.3 41.5 52.0 80.4 74.4 66.1 51.5 81.9
1 10.0 0.7 0.4 2.2 13.0 6.3 0.7 3.0
2 0.4 0.7

a great number of instance problems; even though the distance between the estimated fitness
and the true fitness is likely to be greater in a younger chromosome. The population average
fitness tends to be higher generation over generation; but the best individual fitness of each
generation, which also has an upward tendency, behave in a more random fashion. It is not
unusual to find a very high rated individual in earlier generations. That is why, we discarded
any attempt to make any special concessions to elder chromosomes in present research.

6.4 Results and Discussion

Each hyper-heuristic generated was used to solve the training and testing sets of instances of
the experiment where it comes from. Results are shown in Table 6.3. Figures in cells indicate
the percentage of problems solved by hyper-heuristics with representation 2 that employs a
particular number of extra objects (left column) when compared against results provided by
the previous representation scheme. For example, when solving the training set instances
of Experiment II, hyper-heuristics developed using representation scheme 2 required at least
4 objects less in 10.0% of instances when comparing with hyper-heuristics developed using
representation scheme 1. In previous experimentations, it has been confirmed that solving an
instance with a hyper-heuristic is faster than solving it with each of the single heuristics and
then choosing the best result, as well as that the method to create hyper-heuristics and the
hyper-heuristics themselves are efficient with respect to the number of objects used [143].

Table 6.4 summarizes the results for all experiments. Comparing the average number
of objects employed, the proposed new representation scheme uses 0.446 and 0.217 fewer
objects for the training and testing sets respectively, averaging over results of the 16 hyper-
heuristics. In Table 6.4 most numbers are negative, meaning that representation 2 deliver
in average fewer objects than representation 1. We found out that the number of objects
employed by hyper-heuristics is statistically lower with representation scheme 2 than with
representation scheme 1 (p-value < 0.001). The sample size was 541 instances.

Figure 6.6 shows the average fitness of the whole population for the eight GA processes
run for each representation scheme. Although at the initial generations average fitness tend to

94 CHAPTER 6. DEFINING A PROBLEM-STATE REPRESENTATION SCHEME

Table 6.4: Average number of extra objects obtained by hyper-heuristics using representation
scheme 2 compared with those using representation scheme 1.

Exp. Training Testing
I -0.104 0.037
II -0.959 -0.203
III -0.525 -0.534
IV -0.196 -0.166

Avrg -0.446 -0.217

be equal, representation scheme 2 generates better average individuals, in later generations.

Figure 6.6: Average fitness of the whole population for all experiments conducted under each
representation scheme.

For each instance we computed the average number objects employed by the 16 hyper-
heuristics generated for each representation scheme and then subtract the number of objects
employed by the instance’s best single heuristic. Then, we found the difference from the
results of representation 1 against those from representation 2 and compare these differences
to zero performing a t-test (statistic T = −15.07, p-value < 0.001). The sample size was 541.
We concluded that the number of extra objects (compared with the best single heuristic for
each instance) employed by hyper-heuristics is statistically lower with representation scheme
2 than with representation scheme 1.

6.5 Summary
We have proposed a way to define a numerical vector representation for an instance of a
given problem. The idea is to find a set of features able to predict to some extent heuris-
tic performance for a training set of problem instances. Applying this methodology to the 2D

6.5. SUMMARY 95

irregular BPP we found a group of features to conform the representation scheme. We showed
that building hyper-heuristics with the proposed representation scheme produces considerable
better results than employing the representation scheme used in [143] (Chapter 5). The de-
veloped methodology could be applied to any optimization approach that needs to represent
or summarize instances states through numerical vectors. For example, the Case-based rea-
soning approach [113] or hyper-heuristics approaches where a number of features is used to
categorize instances for choosing an adequate heuristic [128, 129, 138, 139, 141].

Next chapter studies deeply the DJD heuristic (formerly introduced in Section 2.6.1) and
implements a time-saving routine when it is used for solving 2D instances.

Chapter 7

An Effective Heuristic for the 2D
Irregular BPP

This chapter proposes an adaptation, to the two-dimensional irregular bin packing problem of
the Djang and Finch heuristic (DJD), originally designed for the one-dimensional bin packing
problem. This heuristic selects the next pieces to be placed. In the two-dimensional case,
not only is it the case that the piece’s size is important but its shape also has a significant
influence. Therefore, DJD as a selection heuristic has to be paired with a placement heuristic
to completely construct a solution to the underlying packing problem. We found a simple
but successful placement procedure that produces outstanding results when coupled with the
proposed selection heuristic (the Constructive Approach (Maximum Adjacency) (CAD) from
section 2.6.2). A successful adaptation of the DJD requires a routine to reduce computational
costs, which is proposed and successfully tested in this dissertation. Results, on a wide va-
riety of instance types with convex polygons, are found to be significantly better than those
produced by more conventional selection heuristics. The proposed heuristic is not only fast in
execution, but it also produces excellent results.

For testing the procedure, we employed randomly generated instances. As stated in sec-
tion 1.1, as far as we know, there are no previous studies for, specifically, the 2D irregular
single bin size bin packing problem. Therefore, there are not 2D irregular BPP instances
available in the literature. All 2D irregular problem instances available are intended for the
strip packing problem. Although problems statements for the 2D irregular BPP and the strip
packing problem are similar, results are not comparable. This means that this dissertation and
derived papers present the first results regarding the performance of single-pass constructive
heuristics for the 2D irregular BPP. Nevertheless the brief research in the 2D irregular BPP,
there exist many practical applications where irregular pieces are cut from identical rectangu-
lar objects (such as in shipbuilding industry where free-form shapes are cut from rectangular
steel plates [109]).

The chapter proceeds as follows. The next section describes the DJD heuristic, which is
the building block for our approach. Section 7.2 describes the implementation details of the
heuristic. Sections 7.3 and 7.4 give the experimental details and results respectively. Finally,
section 7.5 presents a summary of the chapter.

97

98 CHAPTER 7. AN EFFECTIVE HEURISTIC FOR THE 2D IRREGULAR BPP

7.1 The DJD Heuristic
The proposed approach is based on the DJD heuristic, which is a selection heuristic designed
for the 1D case. In its original version, as explained by [129], the DJD heuristic puts items
into a bin, taking items largest-first until that bin is at least one third full. It then tries to find
one, or two, or three items that completely fill the bin. If there is no such combination it tries
again, but looking instead for a combination that fills the bin to within 1 unit of its capacity.
If that fails, it tries to find a combination that fills the bin to within 2 units of its capacity; and
so on. This process is outlined in the pseudo code of the Algorithm 8. This routine is to be
performed as long as there are pieces to place. DJD is a single-pass constructive heuristic.
A popular variation of DJD is called DJT (Djang and Finch, more tuples) which considers
combinations of up to five items rather than three items.

Algorithm 8 The original DJD heuristic.
Require: A list of pieces in descending order; size of objects.
Ensure: All pieces placed in objects.
waste = 0; w = 1 [increment of allowed waste]

while there are pieces to place do
Fill the last open object until is at least one third full
Register in memory every piece that does not fit

Try pieces one by one
if a piece could be placed then

reset waste = 0 and start again trying pieces one by one

Try groups of 2 pieces
if a pair of pieces could be placed then

reset waste = 0 and start again trying pieces one by one

Try groups of 3 pieces
if a group of 3 pieces could be placed then

reset waste = 0 and start again trying pieces one by one

if no piece could be placed trying all possible 1, 2 or 3-piece groups
AND waste < object free area then
waste = waste+ w

else
open a new object

In [104, 128, 129], DJD and its variation DJT have been implemented for the 1D BPP
as a part of procedures (hyper-heuristics) that learn to combine heuristics for solving the
underlying problem. In these approaches, the idea is to automatically apply different heuristics
to different states of the construction process. In this scenario, DJD and DJT were reported as
the best heuristics considered. Also, the DJD heuristic was adapted to solve the problem of

7.2. THE PROPOSED DJD HEURISTIC FOR THE 2D IRREGULAR BPP 99

scheduling transportation events for minimizing the number of vehicles used, while satisfying
the customer demand [144]. Kos and Duhovnik [91] describe the same heuristic but named it
as Exact Fit in an approach for rod cutting optimization with remnants utilization.

Although the DJD heuristic, exactly as stated, works well in many problems known to
be hard, it fails in other types of problem. For example, consider a very easy problem in which
the bins have capacity 1000 and there are 10,000 items each of weight 1. Packing these items
will need only 10 bins. However, DJD will first fill a bin until it contains 334 items (just over
one-third) and then add just three more items into the bin, so the bin will contain 337 items.
Thus, 30 bins will be needed (337 × 29 = 9773) [126], a solution far from optimality. The
obvious remedy to this situation is to keep trying to place item combinations until no single
item can be placed. Although, in the case when items are so small compared with the bin
free space, there is no advantage in trying every combination of items, since no combination
would result in zero waste.

For the 2D regular case, where pieces to be placed are rectangles, DJD and DJT have
been adapted and implemented as a selection heuristic [138, 139]. However, the authors did
not report, in this case, a routine for improving the running times. This is essential in the
2D case, because simply comparing the area of a 1, 2 or 3-piece combination against the
free area of the object does not imply that the pieces can actually be placed. Indeed, several
groups of pieces may need to be tried before a given combination of pieces can be placed.
Moreover, the same pieces may be tested several times in different combinations before the
algorithm is successful in placing a 1, 2 or 3-piece group. Besides, to determine whether or
not a piece can be placed in a given object is the most time-consuming task when solving a
2D Bin Packing Problem. The placement task requires even more running time when pieces
are irregular. For the 2D irregular BPP, where pieces to be placed are convex polygons, DJD
has been implemented as a member of a heuristic repository in a hyper-heuristic approach
[143]; but the performance of DJD was not analyzed, nor reported separately. Furthermore,
the authors did not report a routine for improving the running times. To our knowledge, DJT
has not been implemented for the 2D irregular BPP. In this chapter, DJD is adapted to and
thoroughly analyzed when solving a variety of instances of the 2D irregular BBP. Moreover,
a routine for reducing redundant computation is proposed and successfully tested.

7.2 The Proposed DJD Heuristic for the 2D Irregular BPP

The DJD algorithm for the 2D case works as a selection heuristic, but it alone does not solve
the problem completely. DJD has to be paired with a placement heuristic which will determine
the exact position of each piece inside an object.

In the 2D adaptation of the heuristic, DJD puts pieces into an object, taking them by
decreasing size, until that object is at least one third full. It then tries to find one, or two, or
three pieces that completely fill the object. If there is no such combination it tries again, but
looks instead for a combination that fills the bin to within w of its capacity. If that fails, it
tries to find such a combination that fills the object to within 2w of its capacity; and so on. In
the 1D case, the waste incremental suggested is 1 unit. Depending on the order of magnitude
of the object and pieces sizes, in 2D it would not be feasible to manage a 1-unit incremental.
Therefore, the incremental should be selected according to the total object area. For the 2D

100 CHAPTER 7. AN EFFECTIVE HEURISTIC FOR THE 2D IRREGULAR BPP

adaptation of the heuristic, the processes of reviewing groups of one, two or three pieces are
modified to optimize running time. These processes mentioned in Algorithm 8 are described
in Algorithms 9, 10 and 11 respectively.

Algorithm 9 The proposed DJD algorithm. Trying pieces one by one.
for all pieces in decreasing order of size do

if object free size — size of piece > waste then
break

if size of piece > object free size OR piece has failed to fit then
continue

Try to place the piece in last open object
if the piece could be placed then

return
else

register in memory that the piece does not fit

Algorithm 10 The proposed DJD algorithm. Trying groups of 2 pieces.
for all pieces in decreasing order of size do

if object free size — size of piece — size of greatest piece > waste then
break

if the piece has failed to fit OR piece's size + smallest piece's size > free space then
continue

Try to place the piece in last open object
if the piece could not be placed then

register it in memory
else {select a second piece}

for all possible second pieces in decreasing order of size do
if object free size — size of the 2 pieces > waste then

break
if the pair of pieces or any piece has failed to fit OR 2 pieces' size > free space then

continue
Try to place the second piece in last open object
if the piece could be placed then

return
else

unplace first piece A N D register that the pair of pieces does not fit

Every time a combination of 1, 2 and 3 pieces is placed, the checking process starts
all over again in the same object (resetting the allowed waste to 0). When no more pieces
can be placed in an object, a new object is opened. The DJD heuristic works in one open
object at a time, there is no need to review previous opened objects. Order is important in 2D
packing, groups with the same pieces are revised considering all possible orderings. A piece
combination that cannot be placed in a particular order could be placed in another piece order.

7.2. THE PROPOSED DJD HEURISTIC FOR THE 2D IRREGULAR BPP 101

Algorithm 11 The proposed DJD algorithm. Trying groups of 3 pieces.
for all pieces in decreasing order of size do

if object free size — size of piece — size of the 2 greatest pieces > waste then
break

if the piece has failed to fit OR piece's size + 2 smallest pieces' size > free space then
continue

Try to place the piece in last open object
if the piece could not be placed then

register it in memory
else {select a second piece}

for all possible second pieces in decreasing order of size do
if object free size — size of the 2 pieces — size of greatest piece > waste then

break
if the piece or the pair of pieces has failed to fit OR
size of the 2 pieces + size of smallest piece > object free size then

continue
Try to place the second piece in last open object
if the piece could not be placed then

unplace first piece A N D register that the pair of pieces does not fit
else {select a third piece}

for all possible third pieces in decreasing order of size do
if object free size — size of the 3 pieces > waste then

break
if any piece, or pair or 3-piece group of pieces have failed to fit OR
size of the 3 pieces > object free size then

continue
Try to place the third piece in last open object
if the piece could be placed then

return
else

unplace first 2 pieces A N D register that the 3-piece group does not fit

102 CHAPTER 7. AN EFFECTIVE HEURISTIC FOR THE 2D IRREGULAR BPP

As it can be seen in Algorithms 9, 10 and 11, when DJD checks one, two or three-piece
groups, first it compares the pieces’ areas against the maximum waste allowed and against
the available object area. Only then, does DJD try to place them. For the 2D BPP, checking
if a piece could or could not be placed is computationally expensive. Pieces should be in
descending order when the DJD heuristic starts, allowing the For cycles to break at some
point when reviewing pieces; thus, reducing many comparisons (see Algorithms 9, 10 and
11).

In order to reduce the computational effort, for each object, a record of what pieces have
been tried so far as a first member of a 1, 2 or 3-pieces group is kept, so the algorithm does
not try again the same piece in a different piece group. Additionally, a record is kept of all
ordered pairs of pieces that failed to be placed in a particular object either as a 2-piece group
or as the first 2 pieces of a 3-piece group. These pairs of pieces are, therefore, not tried again
in the same order. Finally, all ordered 3-piece groups that fail to fit in an object are recorded
as well. These records help to reduce an important amount of redundant computation.

According to the placement procedures considered, when a piece cannot be placed in
an object at a given time, there is a slight possibility that it can actually be placed later when
one or more pieces had been placed. Considering this possibility in the implementation would
increase the algorithm running time. If time is not a constraint, the option would be to keep
a record of pieces that fail to fit just until one piece or group is placed, and then clean up the
records.

7.3 Experiments
This section describes how the DJD is tested against seven other selection heuristics combined
with four different placement heuristics.

We employ the 540 problem instances described in Section 4.2.2 which are 2D irregular
BPP (convex), except the Fu instance since it was always solved with 2 objects by every single
heuristic. The quality measure is computed as in equation 3.2.

7.3.1 The Other Selection Heuristics and the Placement Heuristics
The selection heuristics used for comparison against DJD are:

1. First Fit (FF)

2. First Fit Decreasing (FFD)

3. First Fit Increasing (FFI)

4. Filler + FFD

5. Best Fit (BF)

6. Best Fit Decreasing (BFD)

7. Worst Fit (WF)

7.4. RESULTS AND DISCUSSION 103

These seven heuristics are all the single-pass selection heuristics that we could get from
the literature for the offline BPP, in which the list of pieces to be packed is static and given in
advance. Description of each heuristic is found in Section 2.6.1. Notice that the first part of
DJD, when an object is filled until one-third, corresponds to the FFD heuristic.

Once a piece and an object are selected, the placement heuristic states the way in which
the piece is located inside the object. Two different placement heuristics could arrive to di-
fferent conclusions as to whether a piece can or cannot be placed inside the object, and about
the piece’s final coordinates. We consider four placement heuristics that work in combination
with the selection heuristics:

1. Bottom-Left (BL)

2. Constructive Approach (CA)

3. Constructive Approach (Minimum Area) (CAA)

4. Constructive Approach (Maximum Adjacency) (CAD)

Explanation of each placement heuristic is found in section 2.6.2. For the last listed
three placement heuristics: CA, CAA and CAD, the algorithm rotates each piece by multiples
of 90 degrees and chooses the rotation that is better according to each heuristic criterion. For
the first heuristic, BL, no rotation is considered, since BL does not choose among several
possible positions as the other three placement heuristics do.

Our empirical study explored all combinations of selection and placement heuristics
with each of the available instances.

7.4 Results and Discussion
The value of the waste incrementalw is an important choice in the DJD heuristic. As observed
experimentally in our instance set, if the waste incremental is set to w = 1, many 1-unit
increments occur during the solution construction at a high computational cost without placing
any single piece. We empirically found that a waste incremental of one-twentieth of the total
object area is a good balance between fast and good solutions. Increments lower than w =
1/20 of the object total size have a high computational cost, without a significant improvement
in fitness, while increments higher than w = 1/20 of the object size lead to inferior results.

We explored the phenomenon of a piece that cannot fit into an object and it later fits
(when there are one or more pieces in the object). This is rare for placement heuristics CA,
CAA and CAD. Therefore, in this case, trying to fit pieces after they have failed to be placed,
increases the running time. Results may be slightly better (or worse) in some cases, but
generally speaking, the small improvement does not pay the huge excess of processing time
(although this would depend on the particular application). For the BL placement heuristic this
phenomenon is less rare. Hence, when using BL in combination with any selection heuristics,
a record of pieces that fail to be placed is kept until a piece is successfully placed. After that,
the records are cleaned.

We explored different initial levels of fullness before trying to place combinations of
pieces within an allowed waste, namely, 1/4, 1/3, 1/2 and 2/3. DJD heuristics with these

104 CHAPTER 7. AN EFFECTIVE HEURISTIC FOR THE 2D IRREGULAR BPP

levels are referred to as DJD1/4, DJD1/3, DJD1/2 and DJD2/3, respectively. Along with the 7
selection heuristics described above, we have 11 different selection heuristics overall.

All instances were solved with all heuristics (11 selection heuristics × 4 placement
heuristics = 44 ways to solve a given instance). Figure 7.1 shows the solution of an instance
type C with the selection heuristic DJD1/3 and the placement heuristic CAD.

Figure 7.1: DJD1/3 in combination with CAD heuristic solves an instance of type C. This
solution needs one more object than the optimal solution in which there would be zero waste.
In this solution, fitness is 0.776 measured with equation 3.2

Table 7.1 shows the average fitness for every possible combination of selection and
placement heuristics along the 540 instances. Two variants of the DJD heuristic, DJD1/3 and
DJD1/4, outperformed the other selection heuristics tried. The best combination of selection
and placement heuristic is DJD1/3 + CAD, closely followed by DJD1/4 + CAD. The placement
heuristic CAD is clearly the best no matter which selection heuristic it is paired with. For the
different variations of the DJD tried, DJD1/4 is the best when used along with the BL and CA
placement heuristics and DJD1/3 is the best when used along with the CA, CAA and CAD
placement heuristics. Therefore, we found that the one-third of the object capacity for the
initial fullness before trying different combinations of pieces, as stated by the original version
of the DJD for 1D BPP, is also suitable for the 2D irregular BPP.

Table 7.1: Average fitness for all the combinations of selection and placement heuristics over
the 540 instances.

Selection Heuristics
Placement FF FFD FFI Filler BF BFD WF DJD DJD DJD DJD Average
Heuristics 1/4 1/3 1/2 2/3

BL 0.347 0.422 0.302 0.426 0.348 0.423 0.306 0.485 0.472 0.435 0.429 0.400
CA 0.439 0.563 0.352 0.569 0.437 0.564 0.385 0.583 0.583 0.566 0.563 0.510

CAA 0.436 0.560 0.350 0.567 0.438 0.562 0.373 0.574 0.576 0.561 0.562 0.505
CAD 0.501 0.648 0.383 0.650 0.501 0.650 0.421 0.682 0.683 0.653 0.649 0.584

Average 0.431 0.548 0.347 0.553 0.431 0.550 0.371 0.581 0.578 0.554 0.551 0.500

For the problem instances from A to R, the CAD heuristic produced better average per-
formance when combined with all the selection heuristics. Table 7.2 shows the average fitness
obtained by all the selection heuristics with the CAD placement heuristic. Results are reported

7.4. RESULTS AND DISCUSSION 105

Table 7.2: Average fitness obtained by all the selection heuristics when combined with the
CAD placement heuristic for each instance type. The best selection heuristic for each instance
type is in bold font.

Selection Heuristics
Instance FF FFD FFI Filler BF BFD WF DJD DJD DJD DJD

Type 1/4 1/3 1/2 2/3

A 0.486 0.600 0.371 0.601 0.491 0.600 0.379 0.598 0.596 0.605 0.599
B 0.606 0.753 0.460 0.753 0.611 0.754 0.549 0.929 0.929 0.756 0.753
C 0.515 0.704 0.381 0.701 0.506 0.709 0.421 0.751 0.763 0.723 0.702
D 0.411 0.578 0.338 0.576 0.410 0.579 0.362 0.574 0.566 0.576 0.573
E 0.301 0.412 0.230 0.411 0.298 0.411 0.224 0.393 0.399 0.403 0.406
F 0.393 0.493 0.279 0.496 0.388 0.493 0.297 0.491 0.493 0.493 0.494
G 0.592 0.707 0.448 0.707 0.601 0.708 0.520 0.814 0.814 0.708 0.707
H 0.603 0.747 0.458 0.746 0.622 0.747 0.518 0.928 0.928 0.746 0.746
I 0.598 0.619 0.573 0.624 0.598 0.619 0.577 0.621 0.619 0.626 0.627
J 0.543 0.661 0.457 0.664 0.538 0.662 0.462 0.652 0.659 0.660 0.665
K 0.541 0.709 0.385 0.713 0.526 0.710 0.447 0.706 0.718 0.700 0.708
L 0.349 0.485 0.278 0.494 0.347 0.485 0.290 0.512 0.499 0.502 0.489
M 0.417 0.579 0.307 0.580 0.406 0.582 0.337 0.573 0.589 0.584 0.58
N 0.446 0.495 0.290 0.503 0.445 0.495 0.371 0.493 0.493 0.497 0.499
O 0.537 0.791 0.409 0.791 0.545 0.787 0.432 0.823 0.812 0.791 0.81
P 0.481 0.661 0.358 0.664 0.483 0.662 0.396 0.678 0.678 0.663 0.657
Q 0.672 0.942 0.483 0.943 0.670 0.972 0.558 0.967 0.977 1 0.946
R 0.533 0.724 0.390 0.726 0.538 0.726 0.442 0.771 0.753 0.725 0.723

Average 0.501 0.648 0.383 0.650 0.501 0.650 0.421 0.682 0.683 0.653 0.649

Table 7.3: Average computational time (in seconds) for all the combinations of selection and
placement heuristics over the 540 instances.

Selection Heuristics
Placement WF BF FF FFI FFD BFD Filler DJD DJD DJD DJD Average
Heuristics 1/4 1/3 1/2 2/3

BL 0.01 0.02 0.01 0.02 0.02 0.02 0.04 1.12 0.93 0.68 0.32 0.29
CA 0.41 0.76 0.83 0.85 1.20 1.18 5.77 10.04 9.72 7.83 6.61 4.11

CAA 0.44 0.81 0.80 0.86 1.12 1.22 5.45 9.89 9.54 7.89 6.62 4.06
CAD 0.47 0.95 0.94 0.90 1.33 1.42 6.18 12.52 12.37 10.4 9.02 5.14

Average 0.33 0.63 0.64 0.66 0.92 0.96 4.36 8.40 8.14 6.70 5.64 3.40

for the CAD placement heuristic only as it produced the best performance. Type I and J are
the only instance types where DJD2/3 outperformed all others, and type I instances are the
only ones where all pieces are regular (rectangles). Apart from type I , type J instances have
the highest percentage of right angles. It seems that DJD2/3 goes well along with rectangles.
All type Q instances are solved to optimally by DJD1/2 using CAD placement heuristic, and
73% of Q instances were solved to optimally by DJD1/3 + CAD. Optimum solutions of all
type Q instances have exactly four pieces in each of 15 objects. Several instances of types B,
H and O are also solved to optimally by several variations of DJD.

Computation times, measured in seconds, are shown in Table 7.3. The first seven se-
lection heuristics are listed in Table 7.3 from fastest to slowest (left to right). We ran the
algorithms on an Intel Core Duo 2.33 GHz PC. All the combinations of selection and place-
ment heuristics produced results within reasonable time (below 10 seconds). However, the
DJD variants have longer running times. It was observed experimentally, for DJD1/3 + CAD,
that there is an average computational time reduction of 80% when compared to the case
where no record is kept at all.

106 CHAPTER 7. AN EFFECTIVE HEURISTIC FOR THE 2D IRREGULAR BPP

In order to assess the statistical significance of the results, we conducted the hypothesis
testing procedure called one-way repeated measures, ANOVA. We employed the solution of
each available instance with the eleven different selection heuristics (including the four vari-
ations of the DJD heuristic) in combination with the CAD placement heuristic. Considering
a sample size of 540 instances, we rejected the hypothesis that observed differences were due
to chance in at least a pair of heuristics (p-value < 0.0001, the Greenhouse-Geisser correction
was used because the assumption of sphericity has not been met). So, at least one heuristic is
significantly different from the others. In order to determine which heuristics may be consid-
ered to be of similar performance and which not, we performed multiple pairwise comparisons
with the Bonferroni adjustment and a significance level of 0.05. Figure 7.2 ranks the eleven
selection heuristics considered and connects those that perform equivalently according to the
Bonferroni procedure. The FFI heuristic produced the overall lowest fitness, and it is signif-
icantly different from the other heuristics. From lowest to highest fitness, the next heuristic
is WF; then, BF and FF form a group of similar heuristics since their fitness is not signifi-
cantly different. Two variations of the DJD heuristic (DJD2/3 and DJD1/2) along with FFD,
Filler and BFD perform in a similar way along the set of considered instances. The heuristics
DJD1/4 and DJD1/3 are the best, and are significantly different from the rest. Although DJD1/3

performs slightly better than DJD1/4, this difference is not statistically significant.

Figure 7.2: Comparison of means for the 11 heuristics considered, using the Bonferroni ad-
justment. DJD1/4 and DJD1/3 are the better heuristics and there is not significant difference
between them

7.5 Summary
This chapter of the present dissertation proposed an adaptation, to the 2D irregular Bin Pack-
ing Problem, of the Djang and Finch heuristic originally designed for the one-dimensional
bin packing problem. Four variants of the DJD heuristic (with initial fullness of 1/4, 1/3, 1/2
and 2/3, before combinations of pieces are tried to be placed within an allowed waste) were
explored and compared with several alternative selection heuristics in the literature. Several
placement heuristics were explored and the Constructive Approach with Maximum Adja-
cency (CAD) was found to outperform the others in this study. Also, the value of the waste
incremental is an important choice in the DJD heuristic. We found, empirically, that a waste
incremental of one-twentieth of the total object area represents a good balance between fast
and good solutions.

7.5. SUMMARY 107

An empirical study was conducted over 540 irregular convex instances of different types
and a wide range of characteristics. The proposed DJD heuristic was found to statistically
outperform the alternative selection heuristics. Moreover, the computational time, although
longer for the DJD variants is still within reasonable bounds, which was achieved by a routine
keeping appropriate records to reduce the amount of redundant computation. The extra time
employed may be due to the extra number of attempts to place pieces. The DJD variants
with 1/4 and 1/3 initial fullness levels were the best performing. Therefore, the one-third of
the object capacity for the initial fullness before trying different combinations of pieces, as
stated by the original version of the DJD for the one-dimensional case, is also suitable in two
dimensions.

The proposed DJD heuristic can be considered as a midpoint between the other very fast
single-pass heuristics reviewed in this chapter and other even more complex approaches, like
the proposed by Bennell and Song, in which many parallel partial solutions can be generated
and compared [14].

In next chapter, a solution approach based on hyper-heuristics is proposed for the 1D
BPP and several kinds of 2D BPP (including concave polygons).

Chapter 8

Hyper-heuristics for 1D and 2D Bin
Packing Problems

This chapter proposes an evolutionary hyper-heuristic framework that is useful for solving
1D and 2D BPP. In the past, these problems had been tackled separately by using a variety
of methods and techniques because they exhibit different properties. The proposed model
was applied to one-dimensional BPP [128], and later adapted separately to the 2D regular
[138] and 2D irregular (convex) packing problems [143]. Now, we integrate these problems
into only one framework and extend the hyper-heuristic solution model to instances includ-
ing non-convex polygons increasing the level of geometrical complexity and computational
burden. Our new framework produces hyper-heuristics that can solve a wide range of 1D
and 2D BPP instances with good results and without any additional adjustment to solve ei-
ther 1D instances or 2D irregular instances. With our framework, once a hyper-heuristic has
been evolved using a training set of instances, it can be reused on any new instance of any
kind producing competitive results, and comparable against those provided by the best single
heuristic per problem. We found some interesting patterns about heuristic alternation when
solving instances with hyper-heuristics.

In this chapter, we consider the following three problems in Wäscher, Haussner and
Schumann’s typology [154]:

1. The 1D single bin size bin packing problem,

2. The 2D regular single bin size bin packing problem

3. The 2D irregular single bin size bin packing problem.

In the 1D BPP, there is an unlimited supply of bins, each with capacity c > 0. A set
of n items (each one of size si < c) is to be packed into the bins, the task is to minimize the
total number of bins used. The 2D BPP is fully described in the Problem Statement Section of
this dissertation (Section 1.1). It is common that heuristic approaches for the 2D Bin Packing
Problem present at least two phases: first, the selection of the next piece to be placed and
the corresponding object to place it; and second, the actual placement of the selected piece in
a position inside the object according to a given criteria. Some approaches consider a third
phase as a local search mechanism. For the 1D BPP, the second phase (placement procedure)
is not necessary.

109

110 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

Section 8.1 refers to some adjustments made to our solution model to suit our wider
range of problems. This section also includes the process of selecting relevant features for the
representation scheme. Then, Section 8.2 explains all details regarding the experimentation
process. Later, Section 8.3 presents main results showing how single heuristics behave in this
solution model.

8.1 Implementation
The solution model is presented in detail in Chapter 3. In this section some particular issues
of the implementation are discussed.

Set of Heuristics.- The following six heuristic approaches were employed. Heuristics
are criteria to select the next piece to be placed and the corresponding object to place it. The
1D and 2D cases of the BPP share the same selection heuristics. For the 2D BPP, additionally
a placement heuristic has to be applied to find a solution.

1. First Fit Decreasing (FFD)

2. Filler + FFD

3. Best Fit Decreasing (BFD)

4. Djang and Finch with initial fullness of 1/4 (DJD1/4)

5. Djang and Finch with initial fullness of 1/3 (DJD1/3)

6. Djang and Finch with initial fullness of 1/2 (DJD1/2)

Description of each heuristic is found in Section 2.6.1. All of these are single-pass con-
structive heuristics for the offline BPP. In preliminary experimentations (reported in Chapter
7), it has been found that DJD1/4, DJD1/3 and DJD1/2, though similar, present a different be-
havior in different types of problem instances. For example, 2D instances with huge pieces
are generally better solved by DJD1/4. The three types of convex instances with the largest
pieces (Conv B, Conv G and Conv H, see Table 4.3) are best solved by DJD1/4 (see Table 7.2).
On the other hand, it is preferable to solve 2D regular instances (type Conv I) with DJD1/2,
rather than DJD1/4 and DJD1/3 (see Table 7.2). In this investigation, we set w = 1/20 of the
object or bin size as suggested in Chapter 7.

The heuristic Constructive Approach with Maximum Adjacency (CAD) was employed
for finding the actual placement of the selected piece in a position inside the object for all the
2D instances. This is the only placement heuristic used and was chosen because of its good
performance (see Section 7.4). This means that our heuristic repositoryH is now comprised of
6 single heuristics, which represents a huge reduction from the size of 40 handled in previous
implementations (reported in Chapters 5 and 6). Chosen heuristics were selected from a larger
set, because they produced the best single-heuristic results in a preliminary study. This ensures
the quality of the single heuristic repository.

Previous studies had included in their heuristic repository every possible combination of
several selection and placement heuristics considered, without performing any quality filter;

8.1. IMPLEMENTATION 111

so, a very long list of heuristics comprises the heuristic repository [138, 143]. In those investi-
gations, after the hyper-heuristics were built, most of the single heuristics were not employed
when solving a large set of instances. The presence of bad-quality heuristics may delay the
evolutionary process because it starts with an initial population with many bad-quality hyper-
heuristics.

Chromosomes.- In initial population, number of blocks per chromosome is from 10 to
15 according to a uniform distribution. In this particular implementation, each block has 11
numbers: 10 for the representation of the instance state and the last one is a label, which
identifies a single heuristic (selected from the 6 possible selection heuristics). The single
heuristic is the corresponding action for a given state.

Instances Testbed.- In this investigation, the available 1417 testing instances were em-
ploying (see Section 4.2). The Fu instance from Table 4.1 was not employed here since it was
always solved with 2 objects by every single heuristic.

Fitness function.- The objective function employed in this implementation is computed
as explained in Section 3.4.

Codification of Problem Instances.- Each problem instance is codified as a text file.
This process is explained in Section 3.7. 1D items are handled as 2D rectangles with a fixed
width.

Representation of the Instance State.- The 10 features selected for representing every
instance state were extracted employing the methodology explained in Chapter 6. This process
is presented below. Previous implementations utilized only 8 features while now more features
were significantly related with heuristic performance. It seems natural to increase this number
now that we integrate 1D and 2D non-convex instances, though.

8.1.1 Developing a Problem-state Representation for the Testbed
Instances

Each instance to be solved by the hyper-heuristic is characterized by a numerical vector that
summarizes some of its relevant features. The most relevant features for our testbed instances
are those related with single heuristic performance. A data-mining based methodology for
establishing an adequate problem-state representation was proposed and explained in Chapter
6 [99, 101]. The general methodology comprises six steps that we applied as follows:

Step 1. Each instance is solved with each of the six single heuristics and its performance
is computed with Equation 3.2.

Step 2. The single heuristics performance in each instance is considered as a vector in
<6, where 6 is the size of the heuristics repository. We normalized this vector, dividing by its
length (to get length of one). Unit vectors are used to indicate direction, that is, they aim in
the direction of the better heuristic for each instance.

Step 3. All instances were grouped into homogeneous clusters according to their nor-
malized performance measure for the 6 single heuristics. We chose the k-means clustering
technique. In this procedure the number of clusters has to be provided by the user, however
there exist some approaches for selecting a good number of clusters [38]. In our research, the
number of clusters was chosen according to the Hartigan criteria, described by Chiang and
Mirkin [38]; so, instances were grouped into eight homogeneous clusters depending on their

112 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

fitness in the six single heuristics. With the number of clusters chosen, 30 random initializa
tions were run, and we decided to use the seed that produces clusters which minimize the total
intra-cluster variance, or, the squared error function, given by:

where there are k clusters Si, i = 1, 2 , . . . ,k, and μi is the centroid or mean point of all
the points Xj e Si. Table 8.1 reports the number of instances associated to each cluster
(cluster membership) for each instance type. Table 8.2 summarizes the cluster membership
according to dimensionality and convexity. Instances in the same cluster have similar behavior
when solved by the six heuristics considered. Note that many instance types are splitted into
different clusters.

Step 4. This step consists of finding instance features that may be relevant to the ability
of the heuristics to solve each instance [99]. Twenty three numerical features were computed
for each instance. The first 19 are the same features listed in Section 6.2, where the methodo
logy was applied for the first time. In the solution model implementation of this chapter, the
following four features related with concavities are also included:

20. Percentage of non-convex pieces.

21. Average of the largest internal angle of all instance pieces.

22. Mean of the degree of concavity of the instance pieces (defined in Section 4.2.3).

23. Average of the proportion (area of piece)/(area of convex hull) for all instance pieces
(defined in Section 4.2.3).

A l l items in 1D instances have only one dimension (height), so, their width has a vari
ance of zero, meanwhile 2D instances will have a width variance greater than zero. For 1D
instances, the area is computed assuming all items and bins have a fixed width, which means
that area is proportional to height. A l l 1D items and 2D rectangles have rectangularity of 1.

Step 5. It may happen that some couple or small sets of features are highly correlated
(positive or negative) since they carry almost the same information. Therefore, we deleted fea
tures 16, 17, 18 and 19 from the list of Step 4 and kept feature 10 (mean rectangularity) since
this feature has an absolute Pearson correlation coefficient of at least 0.95 with the previous
four features. The features deleted are related with horizontal/vertical edges, right angles and
rectangularity which can be summarized computing the mean rectangularity. Besides, features
21 and 23 (related with concaveness) were deleted because they have an absolute Pearson cor¬
relation coefficient of at least 0.95 with feature 20 (percentage of non-convex pieces). Finally,
from the 23-feature list generated in Step 4, we keep 17 features.

Step 6. Among the set of the 17 problem features, we selected a subset which better
predicts the instances clusters. This selection was done through Multinomial Logistic Regres
sion (MLR) [58]. The M L R model was run with all the features as independent variables and
the cluster membership as the dependent variable. Taking all our testbed instances, we found
9 significant features. Instances in each cluster tend to have better performance in the same

(8.1)

8.1. IMPLEMENTATION 113

Table 8.1: Number of instances associated to each cluster for all the instance types considered.
The clusters are obtained according to the fitness of the six single heuristics selected.

Cluster
Type C1 C2 C3 C4 C5 C6 C7 C8 Total
DB1 n1 41 4 45
DB1 n2 39 6 45
DB1 n3 34 11 45
DB1 n4 36 9 45
DB2 n1 16 6 1 6 1 30
DB2 n2 21 3 2 4 30
DB2 n3 13 3 3 11 30
DB2 n4 12 2 3 13 30
Waescher 12 5 17
Trip60 3 17 20
Trip120 1 19 20
Trip249 20 20
Trip501 20 20
Conv A 25 5 30
Conv B 3 11 10 6 30
Conv C 11 2 2 9 2 1 1 2 30
Conv D 25 3 1 1 30
Conv E 17 1 4 3 5 30
Conv F 25 5 30
Conv G 5 13 5 5 2 30
Conv H 5 14 7 4 30
Conv I 24 6 30
Conv J 28 1 1 30
Conv K 21 3 1 3 2 30
Conv L 18 2 3 2 3 2 30
Conv M 17 2 1 4 2 2 2 30
Conv N 26 4 30
Conv O 11 1 5 10 2 1 30
Conv P 16 4 10 30
Conv Q 12 5 3 8 2 30
Conv R 6 7 2 12 1 2 30
NConv A 25 1 2 2 30
NConv B 1 12 6 7 4 30
NConv C 9 4 2 12 2 1 30
NConv F 20 10 30
NConv H 13 6 8 3 30
NConv L 16 3 2 2 1 6 30
NConv M 9 1 5 13 2 30
NConv O 9 5 7 7 1 1 30
NConv S 15 1 2 7 2 3 30
NConv T 13 8 1 5 3 30
NConv U 7 5 3 9 4 2 30
NConv V 24 2 2 2 30
NConv W 16 2 2 7 2 1 30
NConv X 20 1 2 1 2 1 3 30
NConv Y 10 3 4 13 30
NConv Z 15 8 1 5 1 30
Total 720 120 69 169 253 18 34 34 1417

114 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

Table 8.2: Cluster membership for the 1D and 2D instances. According to fitness of the six
single heuristics considered.

Cluster 1D Convex 2D Non Convex 2D Total
C1 224 209 287 720
C2 14 58 48 120
C3 4 29 36 69
C4 85 43 41 169
C5 69 103 81 253
C6 1 17 18
C7 19 15 34
C8 19 15 34

Total 397 480 540 1417

single heuristics. We assume that this goes both ways, thus, those features that are more re-
lated with the clusters will also mostly influence instances to be better solved for one heuristic
or another.

The nine significant features comprise the numerical representation. We added a tenth
feature regarding the fraction of the instance total items that remain to be packed, so the GA
learning process can have a sense of how advanced is the solution of a given instance (see
Table 8.3). We performed a linear mapping to a fixed scale to all feature values used in the
instance state representation making each possible feature value to fall inside the range from
0 to 1, so each numerical term has the same weight.

This numerical representation is capable of discriminating among the different cate-
gories of instances. When looking at features 4, 7 and 9 of the ten-value numerical represen-
tation of a given instance (see Table 8.3), it is possible to know what category of instance we
have at hand. For example, only 1D instances have variance of width = 0; while a 2D regular
instance has the following values: variance of width 6= 0, mean of rectangularity = 1 and
mean of degree of concavity = 1.

8.2 Experimental Design

Two experiments were conducted sorting the 1417 available instances in two balanced train-
ing and testing sets and other two experiments swapped training and testing sets. Four expe-
riments overall. The experiments are described below:

• Experiment 1. The training set is formed from the following instance types from Table
4.1: DB1 n1 through DB1 n4, Wäscher, Conv A through Conv I and types NConv A
through NConv O, totaling 707 instances. The rest of instance types comprises the
testing set for this experiment.

• Experiment 2. This experiment is similar to Experiment 1, except that the training and
testing sets are interchanged.

8.3. RESULTS AND DISCUSSION 115

Table 8.3: Representation of the instance state.

Feature Description
1 Number of pieces.
2 Mean area of remaining pieces.
3 Variance of the area of remaining instance pieces.
4 Mean of the rectangularity of remaining pieces.
5 Variance of the rectangularity of remaining pieces.
6 Mean of the height of the remaining pieces.
7 Variance of the width of the remaining pieces.
8 Fraction of remaining pieces in the instance

whose area is above 1/2 of the object area.
9 Mean of the degree of concavity of the remaining pieces.

10 Fraction of the instance total items remaining.

• Experiment 3. In this experiment every second instance from the testbed is selected.
Therefore, half of instances of every available type are in the training set, totaling 709
instances. The rest of instances comprises the testing set for this experiment.

• Experiment 4. It is the same as Experiment 3, except that the training and testing sets
are swapped.

Experiments were conducted with population size of 30, crossover probability of 1.0,
mutation probability of 0.10, for 80 generations. These parameters worked well for the re-
search presented in [99] and Chapter 6. Now, we increase the number of replicas for each
experiment. For each of the four experiments, five GA processes were run. Overall, 20 hyper-
heuristics were employed to measure the effectiveness of the model. For each complete run
the two individuals with highest fitness were employed to solve the whole testing set and the
best was selected as the hyper-heuristic of the run. The fitness of every individual of a GA
run is an estimate since it is computed solving a sample of problem instances; that is why, to
have a better sense of which individual may be best, we solve the whole testing set with the
two best individuals from each GA run.

8.3 Results and Discussion
This section presents main results and some analysis in order to understand how the hyper-
heuristic model works.

The hyper-heuristics generated have an average of 11.2 blocks. Since our heuristic
repository has 6 single heuristics, some of them appear several times in a eleven-block hyper-
heuristic. Besides, we note that every hyper-heuristic generated employed a combination of 2
to 5 single heuristics when solving a whole testing set. The six single heuristics considered
were employed by at least one of the hyper-heuristics generated along the experiments.

116 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

Table 8.4: Hyper-heuristic generated in the first run of Experiment 1.

Feature
(Block) 1 2 3 4 5 6 7 8 9 10 Action

1 1.03 1.33 0.8 0.49 0.64 0.22 0.81 0.43 0.91 0.65 0 (FFD)

2 -0.08 0.16 0.77 0.17 0.43 0.74 -0.34 0.37 0.92 0.3 1 (Filler)

3 1.06 0.89 0.4 -0.36 0.7 0.51 -0.03 0.84 1.39 0.36 2 (BFD)

4 0.34 0.91 0.56 0.27 0.41 0.93 0.87 0.82 0.91 0 2 (BFD)

5 1.08 1.25 0.83 1.26 0.51 0.04 0.49 0.02 0.7 0.91 0 (FFD)

6 0.57 0.1 0.46 0.52 0.67 0.39 0.87 0.44 -0.61 0.43 3 (DJD1/4)

7 0.52 0.8 1.14 0.34 0.52 0.33 0.8 1.05 0.17 -0.42 4 (DJD1/3)

8 0.7 1.08 0.87 -0.23 0.52 -0.59 0.89 0.23 0.55 0.31 2 (BFD)

As an example, Table 8.4 shows the hyper-heuristic generated by the first run of Exper-
iment 1. It has 8 blocks and may employ up to 5 different single heuristics (actions) when
solving a given problem instance. Features number 1 to 10 are described in Table 8.3. In
this example, when the hyper-heuristic is used to solve the Experiment 1 testing set, it only
employs two different actions: heuristics 1 and 3 (Filler and DJD1/4). This is because the
other blocks represent problem states that were not reached by the instances solved. Most
of the 710 problem instances were solved employing a combination of heuristics 1 and 3,
and only 39 solutions of 2D instances were constructed employing one single heuristic. Even
though, an actual representation of a problem state has values only inside the range from 0 to
1, we permit values to fall outside the range from 0 to 1 in a hyper-heuristic (see Table 8.4),
which means that some points labelled with single heuristics could lie right outside the unit
hypercube shown in Figure 3.3.

8.3.1 Comparison Against the Best Single Heuristic

Each hyper-heuristic generated was used to solve the testing set of instances of the experiment
where it comes from. Results are shown in Table 8.5. Figures in cells indicate the percentage
of problems that employs a particular number of extra objects (left column) when compared
against results provided by the best single heuristic for each instance. We present results
averaging the 5 runs of each experiment as well as the results for the best hyper-heuristic
per experiment. For example, when solving the testing set instances of Experiment 1, the
average performance of five hyper-heuristics beats the best single heuristic in 0.6% of the
testing cases, while the best hyper-heuristic per instance required one object less in 2.7% of
instances (comparing with the best result obtained for any of the six single heuristics). For
Experiment 2, the best hyper-heuristic produces the same results that the best single heuristic
100% of times; which means that solving each testing instance with the 5 hyper-heuristics
generated and then choosing the best result, or employing the 6 single heuristics and selecting
the best, will need the same number of objects. For Experiment 1, however, it is slightly better
to use the best of the 5 hyper-heuristics generated.

8.3. RESULTS AND DISCUSSION 117

Table 8.5: Number of extra objects obtained by hyper-heuristics and single heuristics com
pared against results of the best single heuristic for each instance (percentage of cases). Zero
values are displayed as blank cells.

Experiment 1
Extra Hyper-heuristics Single heuristics

objects Average Best FFD Filler BFD DJD1/2

≤ - 2 0.7
- 1 0.6 2.7
0 86.2 94.9 62.1 63.0 64.5 96.1 93.0 72.0
1 13.2 1.7 23.0 22.0 20.7 3.9 6.6 14.8
2 3.9 4.1 3.8 0.4 2.8
3 1.1 1.1 1.1 0.8
≥ 4 9.9 9.9 9.9 9.6

Experiment 2
Extra Hyper-heuristics Single heuristics

objects Average Best FFD Filler BFD DJD1/2

≤ - 2
- 1
0 92.6 100 70.2 69.4 70.6 96.3 95.8 72.8
1 7.4 21.1 21.8 20.5 3.5 4.2 19.5
2 6.2 6.2 6.4 0.1 6.1
3 2.4 2.4 2.4 1.6

≥ 4 0.1 0.1 0.1
Experiment 3
Extra Hyper-heuristics Single heuristics

objects Average Best FFD Filler BFD DJD1/4 DJD1/3 DJD1/2

≤ - 2 0.3
- 1 0.8
0 94.6 96.9 66.1 66.1 67.2 96.0 94.1 72.2
1 5.4 2.0 21.6 21.6 20.3 3.8 5.6 17.1
2 5.4 5.4 5.5 0.1 0.3 4.8
3 2.0 2.0 2.0 1.3

≥ 4 4.9 4.9 4.9 4.7
Experiment 4
Extra Hyper-heuristics Single heuristics

objects Average Best FFD Filler BFD DJD1/4 DJD1/3 DJD1/2

≤ - 2 0.1
- 1 0.8
0 91.7 97.9 66.1 66.3 67.8 96.3 94.6 72.6
1 5.1 1.1 22.4 22.1 20.9 3.7 5.2 17.2
2 1.6 4.8 4.9 4.7 0.1 4.1
3 0.6 1.6 1.6 1.6 1.1

≥ 4 1.1 5.1 5.1 5.1 4.9

118 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

In Table 8.6, we report the average number of extra objects delivered by the best hyper-
heuristic per experiment, compared against the number of objects employed by the best single
heuristic for each instance. For experiments 1, 3 and 4, the best hyper-heuristic for 1D instan-
ces deliver fewer objects than the correspondent best single heuristic (numbers are negative
for 1D instances). On average, the best hyper-heuristic of the 5 runs solved 1D instances em-
ploying 0.028 objects less than the best of the 6 single heuristics. While, for the 2D case, the
best hyper-heuristic employs an average of 0.003 and 0.005 objects more for instances with
convex and non-convex pieces respectively.

Table 8.6: Average number of extra objects delivered by the best hyper-heuristic, compared
against results of the best single heuristic for each instance.

Experiment 1D Convex 2D Non Convex 2D
1 -0.090 0.007 -0.008
2 0 0 0
3 -0.005 0.011 0.008
4 -0.015 -0.007 0.021

Average -0.028 0.003 0.005

For most cases, the best hyper-heuristic requires the same number of objects than the
best single heuristic (higher percentages in Table 8.5 are in the 0-object row). Therefore, we
employed the non-parametric Mann-Whitney U statistical test for means comparison of extra
objects between 1D and 2D cases. We want to know if the hyper-heuristic model perfor-
mance is different for 1D and 2D instances. For Experiment 1, the extra number of objects
delivered by the best hyper-heuristic is statistically different for 1D and for 2D instances (p-
value = 0.001). For the rest of the experiments, the difference is not significant between
1D and 2D BPP. When we perform a comparison of means test between results for convex
and non-convex 2D instances, we found that there is a significant difference only in Experi-
ment 4 (p-value = 0.016). In conclusion, most of the experiments show that hyper-heuristics
performance is not statistically different for the distinct categories of BPP considered.

8.3.2 Analyzing Results per Instance Category
There is a correspondence between the category of problem instances and the single heuristics
more often employed. This is what we expected because different categories of instances
have different numerical representations; so, the hyper-heuristics suggests different single
heuristics to apply. In Table 8.7 we illustrate this fact averaging all the runs of Experiment 1.
For 1D instances, the Filler heuristic was employed 29.1% of the times, while this heuristic
was chosen only 7.5% of the times when solving 2D convex instances. We ran a test of
contingency table with the χ2 statistic to verify this, concluding that usage of single heuristics
is indeed related to instance category (p-value < 0.001). Also, there is a significant difference
in the employment of single heuristics between the two types of 2D instances considered
(convex and non-convex). We arrive at the same conclusion when considering the other three
experiments.

8.3. RESULTS AND DISCUSSION 119

Table 8.7: Percentage of selection of each single heuristic when solving the testing set with
hyper-heuristics of Experiment 1.

1D Convex 2D Non Convex 2D
FFD 21.6 3.1 2.1
Filler 29.1 7.5 15.3
BFD 8.9 9.5
DJD1/4 43.2 63.7 60.7
DJD1/3 4.5 15.6 12.1
DJD1/2 1.7 1.3 0.3

This analysis shows that we have found hyper-heuristics that are able to solve properly
different kind of problem instances without a human hand to choose different single heuristics
for different cases. It is worth mentioning that the heuristic DJD1/4 was the most used in
solving all the instance types, which suggests that this is a very effective and robust heuristic.

8.3.3 Comparing Results for Convex and Non-convex Instances

There are 240 convex instances in the testbed that have also their non-convex version. They
are instances types Conv A, Conv B, Conv C, Conv F, Conv H, Conv L, Conv M and Conv
O from Table 4.1. Their respective non-convex version have exactly the same pieces, except
for those that were split to generate concaveness (see algorithm from section 4.2.4 and Figure
4.5). Therefore, optimum solutions of the non-convex instances have the same number of
objects than their respective convex instances, all with objects filled up to 100%. For the 240
convex instances, the number of pieces goes from 28 to 40. The number of pieces chosen to
be split in each of these convex instances goes from 5 to 24. We want to compare how single
heuristics and hyper-heuristics solve problem instances that have several pieces in common.
These results are summarized in Table 8.8. Values in cells indicate percentage of instances
where the best single heuristic (or the best hyper-heuristic) have employed fewer, equal or
more objects to solve the non-convex version compared with the number of objects employed
to solve each convex instance. For example, the best single heuristic per instance employed the
same number of objects in 65% of the 240 non-convex instances than the number of objects
employed for their respective convex version. In 0.4% of the instances (which means only
one case), the best single heuristic solved a non-convex instance employing fewer objects
than its convex version. In the rest of the cases, approximately one-third, solving the non-
convex instance requires more objects than solving the convex instance. Either instances are
solved by the best single heuristic or by the best hyper-heuristic of any experiment, results
are basically the same: in about one-third of the cases, solving a problem instance with split
pieces requires more objects than solving the original instance. This may be due to the fact
that our general-purpose methodology is not intended to match a piece with the concavity of
other piece where it fits. We are dealing with a combination of fast single-pass constructive
heuristics which means that all pieces have only one opportunity to couple with the pieces
that perfectly complements them.

120 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

Table 8.8: Solving non-convex instances compared when solving their convex version. Per-
centage of cases when non-convex instances require fewer, equal and more objects than con-
vex instances. Instances are solved by the best single heuristic and by the best hyper-heuristic
from experiments 1 through 4.

Best single Best hyper-heuristic
heuristic Exp 1 Exp 2 Exp 3 Exp 4

Fewer objects 0.4 1.3 0.8 1.3 0.4
Same number of objects 65 64 63 64 63

More objects 34 35 37 35 37

8.3.4 Alternation of Single Heuristics

When a hyper-heuristic solves a given problem instance, it computes the problem state after
every heuristic application. Each heuristic application places exactly 1 piece, except DJD1/4,
DJD1/3 and DJD1/2 that may place 1, 2 or 3 pieces. Most of the times, successive compu-
tations of problem states are similar, since the application of one or few heuristics does not
change much the problem state leading to the same block in the chromosome (see Figures
3.2 and 3.3). Therefore, it is common to choose the same heuristic several times sequentially.
Moreover, several blocks may have the same heuristic, as it happens in the hyper-heuristic
shown in Table 8.4. Therefore, it is possible to select the same single heuristic even when
changing blocks in the hyper-heuristic solution process. Averaging all our experiments, 46.9%
of instances with up to 50 pieces were solved using one single heuristic; and 27.6% of these
instances have only one change of single heuristic when building the solution. This means that
one heuristic was employed for placing the first pieces and then, another heuristic was chosen
to finish placing the rest of the pieces. 10.0% of instances with 50 pieces or less involved 2
heuristic changes when solved by a hyper-heuristic. By contrast, there are few instances that
were solved with up to 20 heuristic changes. Table 8.9 shows the results of the analysis of
heuristic alternation. Note that several heuristic changes may imply that the hyper-heuristic is
returning to single heuristics previously employed in the same problem instance.

Table 8.9: Percentage of single heuristic changes when solving all testing sets.

Heuristic Number of pieces All
changes up to 50 51 - 100 101 - 200 201 - 500 instances

0 46.9 48.7 34.6 33.4 45.4
1 27.6 28.0 38.7 37.2 29.3
2 10.0 7.7 8.9 9.7 9.2
3 8.4 7.4 7.6 6.6 7.9
4 2.8 3.2 3.1 4.6 3.1
≥ 5 4.4 4.9 7.1 8.5 5.1

8.3. RESULTS AND DISCUSSION 121

We are interested in exploring whether the quality of solutions is related with the num¬
ber of heuristic changes performed during the solution process. Table 8.10 summarize results
for all experiments to show this. Hyper-heuristics perform an average of 2.7 heuristic changes
while solving instances that require one object less than the best single heuristic. The same
hyper-heuristics make 1.1 heuristic changes when solving instances whose solution is the
same that the best single heuristic. For those cases where hyper-heuristics solutions require
more objects, more heuristic changes are done. This is, hyper-heuristics perform more heuris¬
tic changes with the best solutions found as well as with the worse solutions found. This
makes sense when we consider that a hyper-heuristic that makes few heuristic changes will
produce a solution similar to one of the single heuristics. Hyper-heuristics find different solu¬
tions when they dare to combine a greater number of single heuristics. In general, with more
changes between single heuristics, a better solution may emerge (with the risk of producing a
worse solution, though).

Table 8.10: Average of heuristic changes according to the number of extra objects against
results of best single heuristic.

Extra objects against Number of pieces All
best single heuristic up to 50 51 - 100 101-200 201 - 500 instances

≤ - 2 2.3 2.3
-1 2.4 3.3 4.0 2.6 2.7
0 1.1 1.0 1.2 1.2 1.1
1 1.6 1.7 2 2.4 1.8
2 5.3 1.5 3.6 4.1 3.2
3 1.5 5.8 4.9 3.5 4.5
≥ 4 4.0 5.3 8.2 8.2

Table 8.11 shows how long are the sequences of the same single heuristic before chang¬
ing to another heuristic. For example, in instances with up to 50 pieces, these sequences have
an average length of 16.9. This means that the same heuristic is applied an average of 16.9
times after the hyper-heuristic changes to another single heuristic. For further research, we
plan to test the use of the same single heuristic a user-given number of times before recom¬
puting the problem state. This may reduce even more the time of computation keeping good
results.

Also, we analyzed which sequences of single heuristics were performed during our expe
riments. That is, which heuristics tend to follow which others. For example, for 1D instances,
23.1% of all heuristic changes were about heuristic D J D 1 / 3 followed by D J D 1 / 4 (see Table
8.12). D J D 1 / 4 is the first heuristic in 40.8% of all heuristic changes. Tables 8.13 and 8.14
show the corresponding results for 2D convex and non-convex instances respectively.

Notice that Tables 8.12, 8.13 and 8.14 are highly asymmetric matrices. For instances
from all types, heuristic BFD almost exclusively goes before and after heuristics D J D 1 / 4 and
D J D 1 / 3 . This means that heuristic BFD almost never makes pair with heuristics FFD, Filler
and D J D 1 / 2 (see Tables 8.12, 8.13 and 8.14). Moreover, heuristics FFD, Filler and BFD never
follow each other when solving 2D instances. These three heuristics place a piece one at a

122 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

Table 8.11: Average length of single heuristic sequences when applying our hyper-heuristic
solution model.

Number Average length of
of pieces heuristics runs
up to 50 16.9
51 - 100 31.8

101 - 200 83.6
201 - 500 205.3

All instances 41.8

Table 8.12: Percentage of sequences of single heuristic pairs when solving 1D instances in all
testing sets.

From To heuristic
heuristic FFD Filler BFD DJD1/4 DJD1/3 DJD1/2 Total

FFD 0.1 0.8 2.0 2.9
Filler 8.6 0.7 9.3
BFD 0.6 1.8 0.6 3.0

DJD1/4 1.5 6.7 5.7 10.7 16.2 40.8
DJD1/3 4.4 6.9 1.1 23.1 0.4 35.9
DJD1/2 0.3 7.5 0.4 8.2
Total 6.5 14.0 6.8 33.2 22.3 17.3 100

time, while the remaining heuristics (DJD1/4, DJD1/3 and DJD1/2) place groups of 1, 2 or 3
pieces. That is, 1-piece heuristics always alternate with the DJD heuristics.

8.3.5 Time Complexity

We ran the experiments of this chapter on a 1.66 GHz PC with 1.98 GB of RAM. Solving an
instance with a hyper-heuristic is faster than solving it with each of the single heuristics and
then choosing the best result. Once the hyper-heuristic is generated, it solves each instance in
21 seconds on average (see Table 8.15). Although the process for generate the hyper-heuristic
is much slower, since it requires to solve many instances. With the initial population, 5 instan-
ces are given to each of the 30 individuals. Later, only the 2 new offspring receive 5 instances,
all other 28 chromosomes solve only one new instance to update its fitness. We perform
30×5 = 150 evaluations in the first generation and 2×5+28×1 = 38 evaluations in each of
the following 79 generations. That is, a GA run involves 150 + 79× 38 = 3152 evaluations.
If each evaluation is done in 21 seconds on average, the total time for all evaluations is 18.4
hours which is about the time that we observed experimentally for each GA run. Besides the
application of the single heuristics in training instances, the GA employs some computational
resources in computing the numerical representation state every time a heuristic places pieces

8.3. RESULTS AND DISCUSSION 123

Table 8.13: Percentage of sequences of single heuristic pairs when solving 2D convex instan-
ces in all testing sets.

From To heuristic
heuristic FFD Filler BFD DJD1/4 DJD1/3 DJD1/2 Total

FFD 2.6 0.2 3.8 6.6
Filler 4.7 4.6 9.3
BFD 0.8 2.7 3.5

DJD1/4 7.1 12.6 2.9 8.0 19.0 49.6
DJD1/3 0.6 4.3 6.7 10.5 0.5 22.6
DJD1/2 2.2 5.6 0.5 8.3
Total 9.9 16.9 9.6 24.2 16.0 23.3 100

Table 8.14: Percentage of sequences of single heuristic pairs when solving 2D non-convex
instances in all testing sets.

From To heuristic
heuristic FFD Filler BFD DJD1/4 DJD1/3 DJD1/2 Total

FFD 2.6 0.2 3.1 5.9
Filler 3.7 6.3 0.5 10.5
BFD 0.9 1.9 2.8

DJD1/4 6.1 9.9 3.5 9.4 19.3 48.2
DJD1/3 0.8 5.9 5.2 10.5 0.5 22.9
DJD1/2 1.8 0.1 0.1 7.4 0.5 9.9
Total 8.7 15.9 8.8 25.1 18.3 23.4 100

when solving a problem instance.
The six single heuristics considered solve instances with a huge variety of time length.

For example, the fastest single heuristic, FFD, solves 1D instances in 0.2 seconds per case, in
average; while DJD1/4 is the most time consuming heuristic averaging 24.8 seconds per 1D
instance (see Table 8.15). The best single heuristic may be different for each case. Moreover,
for many cases the smallest number of objects is got by several of the six heuristics. We
averaged the recorded time employed by all single heuristics that got the smallest number of
objects per instance. Table 8.15 shows that best single heuristics employ more time than the
average heuristic. For example, for 1D instances, the best of the single heuristics employed
21.1 seconds per case.

The last two columns of Table 8.15 regard hyper-heuristics. Each instance from our
testbed belonged to a testing set in two out of the four experiments performed. For example,
the first instance of the set was in the training set of experiments 1 and 3; so, it belongs
to experiments 2 and 4 testing sets (see Section 8.2). Hyper-heuristics were tested solving
instances in the testing sets only. Five runs were performed for each experiment, meaning
that 10 hyper-heuristics solved each instance. The next to the last column from Table 8.15

124 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

Table 8.15: Average computational time (in seconds) per category of instances.

FFD Filler BFD DJD1/4 DJD1/3 DJD1/2 Simple heuristics Hyper-heuristics

Average Best Average Best

1D 0.2 29.3 5.1 24.8 24.0 24.1 17.9 21.1 21.9 21.8
Convex 2D 2.5 14.2 2.5 18.5 18.5 18.4 12.4 12.8 20.7 20.7
Non Convex 2D 2.9 9.2 3.5 18.3 18.3 18.3 11.8 12.9 20.6 20.6
Total 2.0 16.7 3.6 20.2 20.0 20.0 13.7 15.1 21.0 21.0

average the 10 hyper-heuristic used to solve each problem instance, while the last column
average the time employed only for those hyper-heuristics that got the smallest number of
objects found by hyper-heuristics (for each case, several of the 10 hyper-heuristics may have
obtained the lowest number of objects). It is worth noting that time obtained by the average
hyper-heuristic is very similar to the time obtained by the best hyper-heuristic per case, and
both times are larger than those obtained by any of the single heuristics. Hyper-heuristics
compute the numerical state after each application of a heuristic. This may explain why
hyper-heuristics employ more time than any of the single heuristics. Nevertheless, Table 8.5
shows that results from an average hyper-heuristic are better than average results from single
heuristics. Table 8.16 shows the averages of computational time per instance type.

Number of pieces is indeed related with the computational time employed when solving
a problem instance with any of the 6 heuristics. Figures 8.1 and 8.2 plot the number of pieces
against the computational time for 1D instances and 2D instances respectively. In the three
graphs regarding the DJD heuristics for the 1D instances, there are two hard instances from
type Wäscher with sizes 228 and 239 pieces that employed a large amount of time for being
solved compared with other 1D instances of similar size.

Even though we observe that the larger the instance, the more time required to solved,
this relation is not perfect. There are some other variables that may matter. For example, the
pieces size, the variability of pieces size, the number of pieces sides and the irregularity of
the pieces may have an impact in the execution time. For the 1D instances from types Trip60,
Trip120, Trip249 and Trip501 all these factors remain almost constant; because the optimum
solution of these instances employ exactly 3 items per bin, which means that pieces sizes are
similar across all the 80 instances from these types. Besides, the 1D instances do not present
variability in shapes nor irregularity issues. Figure 8.3 plots the number of pieces against
the computational time of the DJD1/3 heuristic for each instance. A cubic polynomial with
intercept in the origin (Time = 0.0018x3−0.5533x2 +37.506x, where x = number of pieces)
fits very good the points in the plot (R2 = 0.9991). We tried a quadratic polynomial obtaining
good results, but not as good as the results from cubic polynomial, though.

Figure 8.4 plots the number of pieces against the computational time employed by the
average of the hyper-heuristics used in each of the instances. The outlier in the 2D graph
corresponds to a 45-piece instance from the type NConv F with many small pieces, since its
optimum is only 2 objects with zero waste. There are other instances with these characteris-
tics, but the hyper-heuristics did not employ in them such a long time.

8.3. RESULTS AND DISCUSSION 125

Table 8.16: Average computational time (in seconds) per type of instances.

FFD Filler BFD DJD1/4 DJD1/3 DJD1/2 Simple heuristics Hyper-heuristics
Average Best Average Best

DB1 n1 0.0 0.0 0.0 0.1 0.2 0.1 0.1 0.1 0.7 0.7
DB1 n2 0.1 0.1 0.1 0.5 0.5 0.5 0.3 0.3 1.1 1.1
DB1 n3 0.2 1.2 0.5 2.6 2.7 2.6 1.6 1.9 3.4 3.4
DB1 n4 0.5 106.7 39.3 115.3 108.7 109.1 79.9 90.8 99 98.1
DB2 n1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.7 0.7
DB2 n2 0.1 0.2 0.1 0.3 0.3 0.3 0.2 0.2 0.9 0.9
DB2 n3 0.2 1.3 0.2 1.2 1.2 1.2 0.9 1 2.3 2.3
DB2 n4 0.6 105.7 2.3 61.6 61 60.7 48.6 56.2 54.3 54.4
Wäscher 0.5 0.8 0.4 21.8 21.8 21.8 11.2 11.8 26.7 26.6
Trip60 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5
Trip120 0.0 0.3 0 0.2 0.2 0.2 0.2 0.2 0.8 0.8
Trip249 0.1 4.5 0.2 3.1 3.1 3.1 2.4 3.1 4.3 4.1
Trip501 0.2 172.4 7.2 109.5 109.5 110.6 84.9 109.5 84.4 85.1
Conv A 0.9 2.9 0.9 9.0 9.0 8.9 5.3 5.3 7.7 7.7
Conv B 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.7 0.7
Conv C 1.0 1.7 1.3 3.8 3.9 3.9 2.6 3 6.2 6.3
Conv D 8.3 43.1 7.1 59.9 59.8 59.8 39.7 39.5 61.8 61.9
Conv E 8.9 81.7 8.3 54.8 54.9 54.9 43.9 43.3 58.5 57.9
Conv F 1.2 7.2 1.3 12.3 12.4 12.4 7.8 7.8 12.8 12.8
Conv G 0.2 0.2 0.2 0.9 0.9 0.9 0.5 0.8 1.4 1.4
Conv H 0.2 0.1 0.2 0.3 0.3 0.3 0.2 0.3 0.8 0.8
Conv I 0.8 2.5 0.7 6.4 6.4 6.4 3.9 3.9 13.0 13.0
Conv J 2.6 11.3 2.6 25.3 25.3 25.2 15.4 15.4 28.2 28.2
Conv K 1.6 4.7 1.5 8.0 8.1 8.0 5.3 5.5 10.8 10.7
Conv L 1.2 5.2 1.2 7.4 7.4 7.4 5.0 5.8 10.2 10.4
Conv M 2.2 5.1 2.5 9.7 9.6 9.6 6.4 7.3 15.2 15.2
Conv N 5.8 69.2 5.9 86.1 86 85.9 56.5 56.5 93.4 93.4
Conv O 0.5 0.2 1.0 1.2 1.2 1.2 0.9 1.1 1.5 1.5
Conv P 4.5 12.9 6.1 21.3 21.3 21.4 14.6 15.8 27.2 26.3
Conv Q 1.5 1.2 1.2 7.6 7.6 7.6 4.4 5.9 0.9 0.8
Conv R 3.5 5.4 3.8 17.9 18.2 17.9 11.1 12.7 23.3 23.1
Nconv A 3.9 16.8 3.3 33.4 33.4 33.4 20.7 20.9 28.1 28.3
Nconv B 2.5 3.4 3.1 16.7 16.8 16.7 9.9 14.1 21.4 21.4
Nconv C 5.5 14.1 5.3 22.4 22.4 22.4 15.3 15 30.1 29.9
Nconv F 3.7 28.3 3.7 49.6 49.8 49.8 30.8 30.8 48.8 48.8
Nconv H 2.0 2.7 2.7 17.5 17.5 17.7 10.0 17.4 20.3 19.9
Nconv L 4.3 24.3 4 39.3 39.2 39.1 25 24.2 36.6 37.1
Nconv M 5.8 22 5.9 34.1 34 34.1 22.6 26.8 43.0 43.1
Nconv O 2.2 2.5 3.9 9.9 9.9 9.9 6.4 7.5 12.0 12.1
Nconv S 0.7 2.1 0.9 3.0 3.0 3.0 2.1 2.2 4.4 4.3
Nconv T 0.9 0.5 2.4 1.8 1.8 1.8 1.5 1.6 2.1 2.1
Nconv U 1.4 2.2 2 7.1 7.1 7.1 4.5 4.9 9.2 9.2
Nconv V 0.2 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.8 0.8
Nconv W 0.6 1.0 0.5 1.8 1.8 1.8 1.3 1.4 3.7 3.8
Nconv X 2.6 8.3 2.1 14.8 14.8 14.8 9.6 9.5 16.8 16.8
Nconv Y 4.0 10.7 4.3 18.7 18.7 18.7 12.5 12.8 25.0 24.7
Nconv Z 6.5 8.2 12.4 22.8 22.8 22.8 15.9 16.8 27.0 27.0

126 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

8.4 Summary
In this research we applied an evolutionary approach to find a rule (hyper-heuristic) that com-
bines single heuristics in such a way that it is able to solve efficiently a wide range of 1D and
2D Bin Packing Problem instances with good results and without parameter tuning. Among
the 2D instances, there are rectangles, convex and non-convex polygons. Although all these
are packing problems they are of very different nature. As a main conclusion, the research re-
ported in this chapter has shown that the proposed evolutionary approach is able to generalize
a solution procedure to a range of problem types.

For some of the instances, hyper-heuristics achieve better results than the best of the sin-
gle heuristics showing that combination of single heuristics may outperform any of the single
heuristics considered separately. These cases justify the existence of hyper-heuristics beyond
any simple heuristic, since for some applications, any reduction in material is extremely valu-
able. Although, the most frequent case is the hyper-heuristic that produces the same result
than the best single heuristic. This is also beneficial, as the choice of best heuristic varies
from instance to instance, so the hyper-heuristics are definitely preferable to selecting any one
heuristic for all problem instances.

We found that hyper-heuristics tend to choose different single heuristics for different
kinds of instances. This is a sign that the evolutionary process has found that distinct instances
states are more suitable to be solved with different single heuristics.

Next chapter uses a knowledge discovery approach, to seek insights into the relation-
ships between problem structure and the effectiveness of heuristics and hyper-heuristics.

8.4. SUMMARY 127

Figure 8.1: Number of pieces vs. computational time for the 397 one-dimensional instances.
Six single heuristics.

128 CHAPTER 8. HYPER-HEURISTICS FOR 1D AND 2D BIN PACKING PROBLEMS

Figure 8.2: Number of pieces vs. computational time for the 1020 two-dimensional instances.
Six single heuristics.

8.4. SUMMARY 129

Figure 8.3: Number of pieces vs. computational time for the 80 one-dimensional instances of
types Trip60, Trip120, Trip249 and Trip501. Heuristic DJD1/3. The line is the graph of the
cubic polynomial which fits best all the points.

Figure 8.4: Number of pieces vs. computational time for the average of the hyper-heuristics
tested in each instance. 1D and 2D instances.

Chapter 9

A Deeper Understanding of the BPP
Structure

The goal of the investigation presented in this chapter is to gain a deeper understanding of the
structure of the bin packing problem and how this structure impacts upon algorithm perfor-
mance. A knowledge discovery approach is used to reveal the problem features or combina-
tion of features that influence the performance of bin packing heuristics and hyper-heuristics.
This research is inspired in some ideas related to the meta-learning field (see Section 2.11).

Using the Principal Component Analysis method, the problem instances, characterized
by 9 features, are visualized in two dimensions. These 9 features were selected from a larger
set of 23 by a method that selects the subset of features that are more strongly related with
algorithm performance. Different combinations of features characterize instances in each
section of the 2D graph produced by the Principal Component Analysis method, and heuristic
performance is over imposed over the 2D graph. This visualization approach reveals new
knowledge on the relationship between bin packing problem features and heuristic and hyper-
heuristic performance.

In previous experiments, we made 2D scatter plots for all possible pairs of variables and
did not find clear patterns for heuristic performance. The PCA plots involve 9 variables at
the same time and some patterns may be seen. This chapter proposes using Principal Com-
ponent Analysis (PCA) for visualizing n-dimensional data related to bin packing problems.
The goal is to improve our understanding of the problem structure and its relationship with
algorithm performance. PCA is a mathematical algorithm that reduces the dimensionality of
the data while retaining most of the variation in the dataset. It accomplishes this reduction by
converting a set of observations into a set of values of uncorrelated variables called principal
components. This transformation is defined in such a way that the first principal component
has as high a variance as possible (that is, accounts for as much of the variability in the data
as possible), and each succeeding component in turn has the highest variance possible under
the constraint that it be orthogonal to (uncorrelated with) the preceding components. Obser-
vations can then be plotted, making it possible to visually assess similarities and differences
between observations and determine whether observations can be grouped [124]. In this study,
PCA graphs are used to visually assess the problem feature combinations that are mostly re-
lated with an improved algorithm performance. The ultimate goal is to inform the design of
effective heuristics and hyper-heuristics (heuristic combination rules) for bin-packing.

131

n
132 CHAPTER 9. A DEEPER UNDERSTANDING OF THE BPP STRUCTURE

A large testbed is employed with 1417 instances including 1D and 2D bin packing pro¬
blems (convex and non-convex) and for every instance a set of features is computed. The
mapping of all instances through PCA is presented in Section 9.3.

9.1 Principal Component Analysis (PCA)
PCA is a useful multivariate statistical technique that has found application in fields such
as face recognition and image compression. It is a common technique for finding patterns
in high dimensional data [131]. The general idea behind PCA has been rediscovered and
renamed several times. For example, it is called the Karhunen Loeve method in electrical
engineering, empirical orthogonal functions in geophysical areas, proper orthogonal decom¬
position in applied mathematics, and factor analysis in many other fields [159]. Moreover,
PCA is often used as a clustering technique [5, 102].

PCA identifies new variables, called the principal components, which are linear com
binations of the original variables. For visualization purposes, the first two (or three) com¬
ponents are usually chosen as new axis for plotting all observations. However, as much in¬
formation will typically be lost in two- or three-dimensional visualizations, it is important to
systematically try different combinations of components. Each component can then be inter¬
preted as the direction which maximizes the variance of the observations when projected onto
the component. As the principal components are uncorrelated, they may represent different
aspects of the observations. The computation of the principal components for a dataset is
based on linear algebra operations. If data are standardized (with zero average and standard
deviation of one unit), the principal components are normalized eigenvectors of the covari-
ance matrix of the instances and ordered according to how much of the variation present in
the data they contain.

Suppose that x is a vector of p random variables. Although PCA does not ignore co-
variances and correlations, it concentrates on variances [84]. The main idea is to look for a
linear function α'1x of the elements of x having maximum variance, where α1 is a vector of p
constants α11, α12, • • • , α1p and' denotes transpose, so that

/

α1x = α11x1 + α12x2 • • • + α1pxp

 :

Next, look for a linear function α'2x, uncorrelated with α'1x having maximum variance,
and so on, so that at the kth stage a linear function α'kx is found that has maximum vari
ance subject to being uncorrelated with α'1x, α'2x, ••• , α'k-1x. The vector α1 maximizes
v a r [α ' 1 x] = α ' 1 Σ α 1 , subject to = 1; where Σ is the covariance matrix. The sta
dard approach is to use the technique of Lagrange multipliers [84]. It is shown that a 1 is the
eigenvector corresponding to the largest eigenvalue of and var(a'1x) = a'1Σ a 1 = λ1,
the largest eigenvalue.

As a brief example, let us consider a 2-variable dataset plotted in Figure 9.1, in which
the four larger points are special observations in some way. The vector showing the first
principal component (PC1) goes through the cloud of points in the direction where the points
are most spread. The second and last principal component (PC2) is orthogonal to the first.
The projection of the observations over the PC1 is shown in Figure 9.1b. The closeness of the
four larger points is partially preserved in this dimensionality reduction from two dimensions

9.2. EXPERIMENTAL SETUP 133

to one. For 3D data, the plane through the data where the points are most spread is built by
the first two principal components. This is the plane that minimizes the sum of squares of the
orthogonal distances from all points to the plane. A two-dimensional visualization of the 3D
data is the orthogonal projection of the points over the plane.

Figure 9.1: An example of principal component analysis for a dataset of 2 variables. (a) PCA
identifies the two orthogonal directions (PC1 and PC2) along which the data have the largest
spread. (b) Observations plotted in one dimension using their projections onto PC1.

9.2 Experimental Setup
This section is brief since the set of heuristics, hyper-heuristics, instances and problem fea-
tures employed for the analysis were described in previous sections.

The following six selection heuristic approaches were employed:

1. First Fit Decreasing (FFD).

2. Filler.

3. Best Fit Decreasing (BFD).

4. Djang and Finch with initial fullness of 1/4 (DJD1/4).

5. Djang and Finch with initial fullness of 1/3 (DJD1/3).

6. Djang and Finch with initial fullness of 1/2 (DJD1/2).

These are the same heuristics employed in Chapter 8 and described in Section 2.6. For
the 2D BPP, the heuristic Constructive Approach with Maximum Adjacency (CAD) was em-
ployed for finding the actual placement of the selected piece in a position inside the object for
all the 2D instances.

Our experimental testbed comprises 1417 instances with different types and features,
which are summarized in Tables 4.1 through 4.4. The Fu instance from Table 4.1 was not
employed here since it was always solved with 2 objects by every single heuristic.

134 CHAPTER 9. A DEEPER UNDERSTANDING OF THE BPP STRUCTURE

9.2.1 Meta-data for the Bin Packing Problem
A critical part of the proposed analysis is the identification of suitable features of the problem
instances that might explain algorithm performance. Especially, the 2D BPP is a source of
many possible features. Twenty three numerical features were computed for each instance (as
in Section 8.1.1). The first 19 are the same features listed in Section 6.2. The last 4, related
with concavities, are listed in Section 8.1.1.

In Chapter 6 we proposed a general methodology for selecting the most relevant fea-
tures that can predict algorithm performance [99]. Given a set of problem features, a subset
of features that are related with heuristic performance is found. This methodology was de-
veloped to select a subset of the most relevant features, but does not give information about
the relationship of each feature and heuristic performance. In this chapter we attempt to find
these relationships.

The methodology proposed in [99], recommends that highly correlated features are
pruned as an early step, as they carry redundant information. The method also requires nor-
malizing the algorithm performance. This is explained in Section 6.1 and computed with
Equation 6.3.

In this methodology, normalized performance is then used for clustering all instances.
Values for normalized performance show which heuristics are better and which heuristics are
worse for a given instance and do not show how easy or hard a problem instance is. Clustering
results are highly dependent on the proper choice of clustering variables [5]. So, the clusters
built using normalized performance group those instances that are better solved by the same
heuristics, either they are easy or hard.

When the proposed methodology was applied to all our testbed instances and the 23
features computed, nine different features related to heuristic performance were found (see
Table 6.2) [100]. These nine features were chosen for the numerical representation of the
evolutionary process in Chapter 8 (along with a tenth feature regarding the percentage of
remaining pieces to be placed of the current instance). The same nine features are also chosen
for the PCA analysis of this chapter, since it was shown that they are related with algorithm
performance (the tenth feature is not relevant when dealing only with complete instances as it
is the case of this particular chapter). Now, we want to find out if these nine features are related
with hyper-heuristic performance. The basic question is about what feature values have those
instances that are the most suitable to be solved better by the hyper-heuristics generated.

9.3 Results and Discussion
This section describes the main analysis done with the available data. We performed the PCA
considering the 1417 instances and the 9 previously selected variables (Table 8.3) with the R
programming language [119]. Initially, we standardized every variable (average of zero and
standard deviation of 1), to ensure magnitude consistency. The first two principal components
explain 42.7% and 22.3% of the variance respectively. That is, 65% of the data variation is
captured by the plot in Figure 9.2a. The third principal component explains 11% of the dataset
variance while the remaining 6 principal components explain jointly the remaining 24%. We
select the first two principal components to plot all the dataset (Figure 9.2a). The three graphs
below (Figure 9.2b.1, 9.2b.2 and 9.2b.3) show where the instances of the three main categories

9.3. RESULTS AND DISCUSSION 135

(1D, convex 2D and non-convex 2D) are located. The 540 2D convex instances include 30
rectangular cases which are concentrated in the circle of Figure 9.2b.2. In these plots, close
points represent instances that are similar according to the 9 variables.

Figure 9.2: (a) The 1417 instances plotted along PC1 and PC2. (b.1) The 397 instances of the
1D BPP. (b.2) The 540 instances of the 2D BPP (convex). The 30 rectangular instances are all
plotted almost in the same place inside the circle. (b.3) The 480 instances of the 2D irregular
BPP (non-convex).

Each principal component is a linear combination of the 9 variables. The coefficients
(called loadings) for each of the 2 main principal components are shown in Table 9.1. Usually,
loadings with the largest absolute value give a meaning for the new variables PC1 and PC2.

Table 9.1: Loadings for the two main principal components of the data. Features 1 through 9
are those referred in Table 8.3. Figures with largest absolute values are in bold font.

1 2 3 4 5 6 7 8 9
Feature Number Mean Variance Mean rec- Variance of Mean Variance % of Concavity

of pieces area of area tangularity rectangularity height of width huge pieces degree
PC1 -0.34 -0.42 -0.15 -0.44 0.42 0.18 0.34 -0.36 0.19
PC2 0.15 -0.34 -0.63 0.17 -0.13 -0.13 -0.42 -0.42 -0.22

When the standardized variables are multiplied by each vector of loadings we obtain
the PC1 and PC2 scores, which are the horizontal and vertical coordinates for each instance

136 CHAPTER 9. A DEEPER UNDERSTANDING OF THE BPP STRUCTURE

plotted on Figure 9.2. Let x be the vector of the nine standardized variables for a given
instance, and α1 and α2 be the vectors of loadings for PC1 and PC2 respectively. For example,
a 2D regular instance has

x′ =
[
−0.25 −1.12 −0.97 1.28 −1.3 −0.54 −0.95 −0.57 −0.5

]
. Then,

x′α1 =
[
−0.25 −1.12 · · · −0.5

]
−0.34
−0.42
· · ·

0.19

 = −0.72

is the horizontal coordinate (PC1 score) for the given instance. The vertical coordinate is
given by x′α2. Loadings are plotted in Figure 9.3. These plots represent the original variables
in the 2D space. Remember that the PC are obtained as linear combinations of the original
variables. The loading of a single variable indicates how much this variable participates in
defining the PC. Variables contributing very little to the PCs have small loading values and
are plotted around the center of the plot. The nine features are distributed along the graph in
the direction where

Figure 9.3: PCA 2D-loading plot of the two first principal components.

The variables variance of rectangularity (0.42) and variance of width (0.34) have a
positive projection onto the first component. In consequence, the largest positive values of
PC1 refer to instances with high variability of shapes and pieces width. We used the same
width for all the 1D items, so 1D instances have the minimum possible value for the variance
of width (zero). The variance of width measures variability in piece sizes only for the 2D
cases. Variables number of pieces (−0.34), mean area (−0.42), mean rectangularity (−0.44)
and percentage of huge pieces (−0.36) have a negative projection onto the first component.
Instances with many items and large regular pieces have negative values of PC1. Therefore,
PC1 separates almost perfectly the 1D instances (plotted in the left side, see Figure 9.2b.1)
from the 2D instances (plotted in the right side, see Figures 9.2b.2 and 9.2b.3).

9.3. RESULTS AND DISCUSSION 137

On the other principal component, PC2, the variable variance of area (−0.63) has the
highest negative projection. This variable measures variability in item sizes for both: 1D
and 2D data. The loading is negative (−0.63). Then, the greater the variability of size, the
lower the value of PC2, which means that instances with huge variety of items sizes tend to
be plotted lower in Figure 9.2a. The variables mean area (−0.34), variance of width (−0.42)
and percentage of huge pieces (−0.42) have also a negative projection onto PC2. Therefore,
instances with largest items tend to be plotted lower in the graphs of Figure 9.2. All 2D regular
instances have high positive values for PC2, and they are plotted in the upper part of the graph
(inside the circle in Figure 9.2b.2).

9.3.1 Distribution of Features across the PCA Map

The distribution of the most representative input variables (features) can be visually explored
using the graphs shown in Figure 9.4. Each section of the graphs can be characterized by a
combination of different feature values. For example, the bottom-left part of the graph has
instances with high number of pieces (black points in the bottom-left part of the first plot of
Figure 9.4), high mean area, high variance of area, high mean rectangularity, low variance of
rectangularity (clear points in the central plot of Figure 9.4).

9.3.2 Distribution of Heuristic Performance Across the PCA Map

The performance of the six single heuristics is computed with Equation 3.2 and it is mapped
in each of the subplots on Figure 9.5. The pattern of gray and black points is almost the same
for the 6 subplots showing that easy instances (black points) obtain high performance measure
whatever the heuristic. Points in the left are 1D instances and they obtain higher measures of
performance. Hardest instances are in the top-right part of the graph, where clearer points are
located. These instances have the highest values for PC1 and PC2 scores. According to our
analysis, the higher the PC1 and PC2 scores, the hardest the instance.

Figure 9.6 shows the normalized performance (computed with Equation 6.3). Black
points correspond to those instances that are better solved by a particular heuristic compared
to the others. Different color patterns can now be found across the 6 subplots. For example,
heuristics DJD1/4 and DJD1/3 have particularly low performance for instances in the bottom-
left of the map (very clear dots), when compared with the performance of the other four
heuristics. This analysis suggests that those instances with low values of x′α1 and x′α2 are
not especially suitable for heuristics DJD1/4 and DJD1/3. This observation should be taken
into account when designing heuristic selection techniques.

9.3.3 Clustering

All our testbed instances were grouped into 8 clusters according to their normalized perfor-
mance of the 6 heuristics [100] (see Section 8.1.1 and Tables 8.1 and 8.2). The clustering was
done with the k-means algorithm which minimizes the variance of the heuristic performance
within instances in each cluster. Broadly speaking, instances with the same best heuristic and
the same worst heuristic were grouped in the same cluster.

138 CHAPTER 9. A DEEPER UNDERSTANDING OF THE BPP STRUCTURE

Figure 9.4: Distribution of feature values across the PCA map (black shows maximum value
for each feature). Horizontal axis is for PC1 score, while vertical axis is for PC2 score.

Using the analysis in Figure 9.2, instances of the 8 clusters are plotted in Figure 9.7. The
clusters were built based only on heuristic performance. And the principal components were
computed based only on the 9 selected features. However, instances for most clusters seem
to be somewhat concentrated for each of the subplots of Figure 9.7. For example, all of the
instances plotted in the bottom-left part of Figure 9.2a belong to the same cluster (first subplot
of Figure 9.7), since no one of the other 7 subplots in Figure 9.7 have points in the bottom-left
part. Instances in the same cluster have approximately the same best and worst heuristics. As
instances in the same cluster tend to be close in the PCA map; they also have similar features.
This is a confirmation that features are indeed correlated with algorithm performance.

9.3.4 The Best Heuristic
If we take the number of objects as the measure of performance for the heuristics, more
than one heuristic will be the best in 96% of the cases. The quality measure of Equation

9.3. RESULTS AND DISCUSSION 139

Figure 9.5: Performance of the 6 heuristics across all instances in the PCA map (black shows
maximum value). Horizontal axis is for PC1 score, while vertical axis is for PC2 score.

3.2 distinguishes between solutions with the same number of objects because it rewards those
solutions with filled objects or nearly so. This makes sense, because empty space concentrated
in one or few objects is more likely to be useful later. That is why, Equation 3.2 is considered
as a better measure of performance by some researches [143, 24, 51]. Nevertheless, with this
measure several ties still occur for 58% of our 1417 instances. Preliminary analysis showed
that most of these ties occur among the three 1-piece heuristics (FFD, Filler or BFD) as well
as among the three DJD heuristics. Figure 9.8 superimposes a color (grey or black) in the plot
from Figure 9.2a indicating whether a 1-piece heuristic or a DJD heuristic was the best. This
time we discarded 16.4% of the instances because at least one of the 1-piece heuristics got the
best quality measure in a tie with at least one of the DJD heuristics. 15.2% of the instances
are better solved by a 1-piece heuristic, while a DJD heuristic was the best for the remaining
68.3% of the cases. This suggests that the DJD heuristics are very effective. In Figure 9.8a
pattern arises, especially in the left, where grey points are concentrated (in the oval). These
are 1D instances (see Figure 9.2b.1). For a given value of PC2 (x′α2), the larger the value of
PC1 (x′α1), the more likely a 1-piece heuristic will succeed. For 1D instances, PC1 is related
with the size of the items. That is, for small items 1-piece heuristics seem to be better. On
the top-right part of Figure 9.8 there is also a concentration of grey points (rectangle). Higher
values of PC2 are related with regular and small pieces. This section of the plot is mainly for
2D convex instances (see Figure 9.2b.2).

140 CHAPTER 9. A DEEPER UNDERSTANDING OF THE BPP STRUCTURE

Figure 9.6: Normalized performance of the 6 heuristics across all instances in the PCA map
(black shows maximum value). Horizontal axis is for PC1 score, while vertical axis is for
PC2 score.

9.3.5 Hyper-heuristic Performance

Employing the evolutionary framework described in Chapter 8, 20 hyper-heuristics were built
with different training and testing sets selected from our testbed. Each particular instance was
included in the testing set of 10 different runs. Thereafter, the best hyper-heuristic for each
instance is selected. Figure 9.9 marks with letters b and w those instances whose best hyper-
heuristic obtained a different result (better or worse respectively) compared against the result
of the best of the six heuristics. These cases are not spread along the cloud from Figure 9.2a.
Rather, they are concentrated in only few sections. We are interested on which characteristics
have those sections of the graph to understand which features of the BPP are able to explain
hyper-heuristic performance. Moreover, the best and worst cases are mixed in these sections,
which means that this particular PCA analysis is able to show which instances are likely to be
solved different by the hyper-heuristic compared with the best single heuristic, but does not
distinguish between solving cases with fewer or more objects. The concentration of fifteen b’s
and three w’s in the rectangle of Figure 9.9 corresponds only to 1D instances and they have
the higher values of PC1 and PC2 for 1D instances (see Figure 9.2b.1). For those loadings
in Table 9.1 that regards 1D, mean area (-0.42) has the highest impact in PC1 and variance
of area (-0.63) in PC2. Both loadings are negative. So, 1D instances with small items with
similar sizes characterize the zone in the rectangle of Figure 9.9. Instances here are likely to
be solved with a different number of bins by hyper-heuristics than by the best heuristic. In

9.3. RESULTS AND DISCUSSION 141

Figure 9.7: Instances in each of the 8 clusters built based on the normalized performance.
Horizontal axis is for PC1 score, while vertical axis is for PC2 score.

fact, 10 of the b’s in the rectangle represent instances with 501 items whose optimum has 3
items per bin (type Trip501 in Tables 4.1 and 4.2). Which means that hyper-heuristics found
a better result for half of the Trip501 instances than any of the 6 heuristics. The other 1D
cases in the rectangle are instances of DB2 and Trip249, all with smaller items than the 1D
average. The b’s and w’s outside the rectangle are for convex and non-convex instances. Most
of them have PC2 near 0 (inside the circle). That is, we have x′α2 ≈ 0 in many 2D instances
for which the hyper-heuristics produce different results than the best single heuristics. We
have found that the particular combination of features given by x′α2 has an effect in hyper-
heuristic performance. Maybe, other hyper-heuristic methods should be tried for those 2D
instances that do not hold −threshold < x′α2 < threshold to try to find different results
than the single heuristics.

For some instances, hyper-heuristics achieve better results than the best single heuris-
tic for that instance. These cases support the use of hyper-heuristics, since for some appli-
cations, any reduction in material is extremely valuable. For most instances, the evolved
hyper-heuristic produces the same quality than the best single heuristic. This is also ben-
eficial, however, as the choice of best heuristic varies from instance to instance. Using a
hyper-heuristic may be, therefore, preferable than selecting a single heuristic for all problem
instances [100]. After the hyper-heuristic is evolved, the computational cost of applying a ge-
nerated hyper-heuristic to a problem is lower than the time used in solving with all heuristics
and then choosing the best result [143].

142 CHAPTER 9. A DEEPER UNDERSTANDING OF THE BPP STRUCTURE

Figure 9.8: Best heuristic. Color grey is for instances better solved by 1-piece heuristics (FFD,
Filler or BFD). Points in color black are instances better solved by the DJD heuristics.

Figure 9.9: From all instances, only 28 were solved with fewer objects by the best hyper-
heuristic than any of the 6 heuristics (plotted with the letter b). Whilst in 9 cases, none
hyper-heuristic could reach the best single heuristic result (plotted with the letter w). In all
the remaining cases, the best hyper-heuristic got the same number of objects than the best
heuristic for each case (gray dots).

9.4. SUMMARY 143

9.4 Summary
The analysis presented in this chapter constitutes a first step into the multivariate nature of the
BPP characterization. Understanding why some instances are more suitable for some heuris-
tics and hyper-heuristics is well worth the effort. Therefore, we expect this understanding will
help in the design of better solution approaches in the future.

We have considered a large dataset which makes the analysis reliable and robust. The
dataset contains a wide range of feature values. We found that PCA can help us to character-
ize the BPP and relate some feature combinations with algorithm performance. For example,
heuristics DJD1/4 and DJD1/3, although very effective, have a particularly unsuited for instan-
ces with low values of both x′α1 and x′α2 (where x is the vector of standardized features and
α1 and α2 are the loading vectors from Table 9.1). The BPP has a complex structure. There
are not simple rules relating features and algorithm performance. It may be necessary to con-
sider feature combinations and interaction among features in order to have a clearer insight
into performance prediction. This contrasts with other combinatorial optimization problems.
For example, in the constraint satisfaction problem, a couple of well selected features (density
and tightness) are enough to predict which of two heuristics will be the best [110].

Chapter 10

Final Conclusions and Future Work

This chapter summarizes what has been presented throughout this dissertation document, em-
phasizing on the most important details, the main contributions and the direction that this
research would take in the future of intelligent algorithm selection.

10.1 Dissertation Summary and General Discussion
An evolutionary framework that produces hyper-heuristics for solving the Bin Packing Pro-
blem is proposed. A basic implementation of the solution model is performed for the 2D
Irregular BPP (convex). Afterwards, the main elements of the framework are analyzed and
improved. A following implementation of the model was conducted at the same time that the
range of tackled instances is increased to include concave shapes and 1D instances. Finally, a
knowledge discovery approach is employed to find insights into the BPP structure.

10.1.1 Hyper-heuristics for Solving 2D Irregular Bin Packing Problems
(convex)

A first implementation of the solution model is applied for the 2D irregular BPP that includes
only convex polygons. Averaging all GA runs, in 88.6% of the instances, the hyper-heuristic
found the same result than the best single heuristic (average from Tables 5.2 to 5.5). Taking
into account that the best single heuristic may be different for each instance, this result is an
indication that the hyper-heuristic is able to learn and select the best heuristic for most of
the cases. In one run, the hyper-heuristic beats the best heuristic in 0.4% of the cases (Table
5.3). Besides, the average hyper-heuristic gets 1.44 fewer objects against the average single
heuristic (Table 5.6).

After this model was run and tested, several changes in the main elements of the frame-
work were proposed.

10.1.2 Defining a Problem-State Representation Scheme
A methodology was proposed for selecting the most meaningful features to comprised the
state representation. The general idea for identifying those features related with heuristics

145

146 CHAPTER 10. FINAL CONCLUSIONS AND FUTURE WORK

performance is based on clustering instances according to heuristic performance and then
features able to predict with cluster membership are selected.

We replicated experiments from the first implementation of the model (Chapter 5, Sec-
tion 10.1.1), with all elements equal (single heuristic repository, instances testbed), except for
the problem state representation scheme. Some GA parameters were adjusted before replicat-
ing experiments with both representations.

Averaging the four experiments, we get the following results for the training instan-
ces: In 35.1% of the instances, hyper-heuristics built with the new representation scheme
performed better than those evolved with the previous representation scheme. In 65.6% of
the instances both representations performed the same, while in the remaining 3.3% of the
instances the new hyper-heuristics could not reach the results gotten by the previous hyper-
heuristics. For the testing instances, the percentages are 25.5%, 68.5% and 6.0% for better,
equal and worse performance respectively, when employing the representation scheme built
with the proposed methodology (average from Table 6.3). Another interesting finding is about
the population average fitness of the GA runs. Employing the new representation scheme, the
fitness of the whole population was higher (Figure 6.6).

10.1.3 The DJD Heuristic as an Effective Heuristic for the 2D Irregular
BPP

The most effective heuristic employed in the first implementation of the model was studied
deeper and a time-saving routing was implemented. In the original implementation, several
unnecessary computations were performed trying to place the same piece in the same object
several times. These cases occur when the piece was paired with different other pieces. The
main idea was to keep in memory those results when a piece was already tried to be placed in
a given object with exactly the same placed pieces. There is an average computational time
reduction of 80% when compared to the case where no record is kept at all. We also explored
different initial levels of fullness before trying to place combinations of pieces within an
allowed waste, namely, 1/4, 1/3, 1/2 and 2/3. Initial fullness of 1/4 and 1/3 variations are
the most effective and there is no significant difference between both (Figure 7.2).

10.1.4 Hyper-heuristics for Solving 1D and 2D Irregular Bin Packing
Problems (concave)

In this second implementation of the model, we had a reviewed heuristic repository and a
more robust way for defining the representation scheme. Besides, we also reviewed the GA
parameters. But the main change performed was the capability of the model to handle concave
instances as well as 1D instances. That is why, we claim that this is a more general evolu-
tionary framework. Results from the hyper-heuristics generated are compared against the best
single heuristic for each case. Averaging the four experiments conducted for the testing ins-
tances, in 91.3% of the instances, the average hyper-heuristic gets the same result than the
best single heuristic (average from Table 8.5). This number can be compared with the 88.6%
from the first implementation (Section 10.1.1). In one run, the average hyper-heuristic beats
the best heuristic in 0.6% of the cases for this run.

10.1. DISSERTATION SUMMARY AND GENERAL DISCUSSION 147

10.1.5 A Knowledge Discovery Approach for Understanding how Fea-
tures Impact in Heuristic and Hyper-heuristic performance

Principal Component Analysis was employed to plot in 2D all our 1417 testbed instances.
With this dimensionality reduction technique, it was possible to build two variables that re-
tain about 2/3 of the variation of the data originally defined with 9 variables. The variables
chosen to characterize the BPP were the 9 features selected for the representation scheme in
Section 8.5, since it was shown that they are indeed related with heuristic performance. We
found some interesting relations between features and heuristic performance. For example,
some sections of the plot, characterized by particular combinations of features, are particu-
larly unsuited to be solved by heuristics DJD1/3 and DJD1/4 (Figure 9.6), even though these
two heuristics are the best when compared with 9 other selection heuristics (Figure 7.2).

10.1.6 General Discussion

Terashima-Marı́n et al. [138] proposed in 2006 an evolutionary model that produces hyper-
heuristics for the 2D regular BPP. This solution model got promising results. Therefore, it
was generalized to the 2D irregular BPP in this dissertation. We obtained encouraging ini-
tial results at the same time that some improvements were proposed and successfully tested.
Thereby, this investigation contributes with an evolutionary framework that produces good
quality hyper-heuristics for solving several types of Bin Packing Problems: 1D and regular
and irregular 2D (including convex and concave polygons). Besides increasing the level of
generality of the model in terms of the kind of instances handled, the model is now more
robust, since the most relevant features are chosen for state representation and the quality of
the instance repository was improved. We hypothesize that these improvements are the rea-
sons why the GA process converges faster (comparing the 500 generations of a 100-individual
population from our first implementation of the model (Chapter 5) with the 80 generations of
a 30-individual population from the most recent implementation of the model (Chapter 8)).

The most common result among the hyper-heuristics produced and tested is the same
than the best single heuristic result per case. This is an indication that the hyper-heuristics can
learn which is the best heuristic for each instance. For some cases the hyper-heuristic even
obtains a solution that employs fewer objects than the best single heuristic. For real world
applications these cases justify the existence of the hyper-heuristic since a small reduction
of material could be translated into large savings of economical costs, especially when the
layout is to be performed many times, as in the shoe and garment industry. Unfortunately, the
hyper-heuristics produced could not reach the best heuristic result in few cases.

Each of the hyper-heuristics produced can be considered as other possible heuristic. If
there is enough time for finding a solution, the general recommendation is to solve the instance
at hand with every single heuristic plus one or several hyper-heuristics. Then choose the best
result. The time required to solve any instance from our testbed goes from a few seconds
to a couple of minutes. Hyper-heuristics do not employ more time than the most effective
single heuristics (Table 8.16). Therefore, if time is limited and we need to choose only one
heuristic to find a solution, a good decision is to employ a hyper-heuristic to do so. Heuristics
and hyper-heuristics considered are single pass (never revise a piece already placed) which
makes them faster than other solution algorithms. In conclusion, the proposed hyper-heuristic

148 CHAPTER 10. FINAL CONCLUSIONS AND FUTURE WORK

generation framework is to be used mainly when time is a constraint.

10.2 Main Contributions
The overall main contribution of this dissertation is the building of an evolutionary framework
suitable to combine heuristics for solving several types of BPP. One of the main advantages
of the developed framework is that this hyper-heuristic approach is problem independent and
can be easily utilized by non-experts as well. By developing this framework, the following
contributions were developed.

10.2.1 Hyper-heuristics for Solving 2D Irregular Bin Packing Problems
(convex)

As far as we know, this is the first heuristic-combination approach for solving the 2D irregu-
lar BPP. Moreover, there are so few studies about the 2D irregular BPP, so this dissertation
presents one of the first solution approaches for the irregular version of the 2D BPP. Some
of the heuristics presented were adapted from the regular (rectangular) version or from other
versions of the C&P problem (such as the Strip Packing Problem). An algorithm for randomly
generating 2D irregular instances with convex polygons was designed and programmed.

10.2.2 Defining a Problem-State Representation Scheme
We present a new way of devising a representation for problem states. The proposed methodo-
logy can be applied to any solution approach that requires summarize instance states through
numerical vectors, such as Case-based reasoning. The proposed robust methodology for fea-
ture selection does not require much knowledge domain. Besides, the notion of normalized
performance was first introduced in this research to measure the suitability of single heuristics
to solve particular instances.

10.2.3 The DJD Heuristic as an Effective Heuristic for the 2D Irregular
BPP

The definition of the algorithm for the 2D version of the DJD heuristics leads to effective
solutions with less computational cost. We also conducted an analysis of two important pa-
rameters of the DJD heuristic: the initial level of fullness and the allowed waste incremental;
finding those values where the DJD heuristic gets the best results.

10.2.4 Hyper-heuristics for Solving 1D and 2D Irregular Bin Packing
Problems (concave)

A framework that produces rules for combining single heuristics was proposed for solving
1D BPP instances as well as 2D regular and irregular BPP cases. Some new measures for
irregularity in convex and concave pieces were defined for this dissertation. As no benchmark

10.3. FUTURE DIRECTION 149

instances were available for testing the framework, an algorithm for randomly generating
instances with concave polygons was designed and programmed. A review and improvement
of the parameters employed in the genetic algorithm of the solution model was performed as
well.

10.2.5 A Knowledge Discovery Approach for Understanding how Fea-
tures Impact in Heuristic and Hyper-heuristic performance

A methodology for exploring features and heuristic performance was proposed and applied
for the BPP. As far as we know, this is the first time that the Principal Component Analysis
technique is used for analyzing the BPP structure. We found some feature value combinations
where the hyper-heuristics get different results than the best single heuristics.

10.3 Future Direction
Some ideas for further research are presented here:

• We are interested in testing the proposed methodology for feature selection (Chapter 6)
in other problems and approaches in which a characterization of instances is needed.
For example, the case-based reasoning approach applied to timetabling problems [33].
When doing this, other clustering techniques may be tried as well as other models for
predicting a nominal variable based on several numerical variables (features).

• In this dissertation, all features employed in instance representation were related to the
pieces to be placed. But, one or several features of the instance state representation
could actually describe the state of the open objects. This is because the suitability of
one heuristic for solving an instance state may depend not only on the remaining pieces,
but also, on the state of the objects partially filled. For example, in a new instance to
be solved, all objects are empty; in contrast with an instance with few pieces remaining
where several objects may have some free areas with different sizes and shapes. As
far as we know, none of the works which have dealt with numerical representation of
instances states for bin packing [128, 138, 139, 143] have considered this issue. For
example, one numerical term in the representation vector could refer to the number of
open objects available to choose from, or to the open objects percent of free area.

• The adaptation of the DJD heuristic to the 2D Bin Packing Problem was tested in regular
and convex instances (Chapter 7). It would be interesting to analyze the DJD heuristic
performance in instances with concave polygons.

• On one hand, many of the hyper-heuristics produced by our framework employ the
same single heuristic to solve all instances. Maybe because hyper-heuristics contain the
same action in all their blocks or maybe because some actions are not reachable by the
states of the testing instances. On the other hand, those hyper-heuristics that beat the
performance of all single heuristics are those which combine several single heuristics
in the solution process. That is why it is a good idea to try penalizing the fitness of a
chromosome that uses only one heuristic, by some small amount.

150 CHAPTER 10. FINAL CONCLUSIONS AND FUTURE WORK

• When solving testing instances, the same single heuristic is applied to place many pieces
before changing to another heuristic. For future work, we recommend trying the same
single heuristic several times before recomputing the instance state for choosing another
hyper-heuristic block. This will reduce computational time.

• Some other methodological elements can be introduced to further testing of the solu-
tion model; such as, k-fold validation and comparison against random generated hyper-
heuristics.

• The proposed framework can be tested when solving the BPP with some common con-
straints; for example, the requirement of guillotinable cuts, different rotation allowed
for different shapes or object stocks of different material quality.

• In the future, we would like to focus on characterizing the BPP with different sets of
features.

• The analysis in Chapter 9 was done employing a large set of instances from different
types of BPP. Extra analysis considering these types of BPP separately may lead to
some interesting findings.

• Other ways for mapping in 2D data characterized by a larger number of features may
be explored in the future. For example, the Self-organizing maps [90].

• We would like to develop a hyper-heuristic solution approach based on selecting a single
heuristic for a given instance according to its place in the PCA map produced in Chapter
9. The idea is to develop a hyper-heuristic represented by a matrix [111].

• The PCA analysis for finding relations among features and heuristic performance could
be applied to other optimization problems.

10.4 Closing Remarks
It is advisable that future work related to hyper-heuristic search takes into account these clos-
ing remarks.

It is important to carefully choose the set of features to describe the problem structure.
They have to be able to characterize instance and problem structure as well as differentiate al-
gorithm performance [135]. Furthermore, features must avoid redundancy and show different
aspects of the problem structure. For example, in the Bin Packing Problem, it is possible to
have different features related to the size of the items, such as average item area, percentage
of small items, etc. We must expect some level of independence among the different features
considered.

Finally, a brief note about the use of the term hyper-heuristic. A different perspective
to the framework proposed is the following. We could have named hyper-heuristic the evo-
lutionary process, since it can be considered as a heuristic that searches a space of heuristic
combinations. Then, every chromosome would be called a generated heuristic able to solve
the problem in a deterministic way. So, in this case we would be dealing with a hyper-heuristic
of the kind of heuristic generation instead of the kind of heuristic selection.

Appendix A

Contributed Scientific Publications

List of scientific publications that the conducted research produced.

• L Ó P E Z - C A M A C H O , E. , T E R A S H I M A - M A R I N , H . , R O S S , P. A N D O C H O A , G . Evolv
ing General Heuristic Combination Rules for Various Types of Bin Packing Problems
(To be submitted).

• L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R Í N , H . A N D O C H O A , G. An Effective
Heuristic for the Two-dimensional Irregular Bin Packing Problem Annals of Opera
tions Research (Under review).

• L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R Í N , H . , O C H O A , G . A N D C O N A N T - P A B L O S ,

S. E. Towards a deeper understanding of the bin packing problem structure Interna
tional Journal of Production Economics. Special Issue in Cutting and Packing (Under
review).

• L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R Í N , H . A N D C O N A N T - P A B L O S , S. E. The

impact of the bin packing problem structure in hyper-heuristic performance. In GECCO
'12: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Compu
tation (2012) (to appear).

• L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R I N , H . A N D R O S S , P. A hyper-heuristic for
solving one and two-dimensional bin packing problems. In GECCO '11: Proceedings
of the 13th Annual Conference on Genetic and Evolutionary Computation (2011), Na-
talio Krasnogor (Ed.), A C M , New York, NY, USA, pp. 257-258.
DOI=10.1145/2001858.2002003

• L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R Í N , H . , A N D R O S S , P. Defining a problem-
state representation with data mining within a hyper-heuristic model which solves 2D
irregular bin packing problems. In Advances in Artificial Intelligence IBERAMIA
(2010), Á. F. Kuri-Morales and G. R. Simari, Eds., vol. 6433 of Lecture Notes in Com
puter Science, Springer, pp. 204-213. Best Student Paper Award.

151

152 APPENDIX A. CONTRIB UTED SCIENTIFIC PUBLICATIONS

• L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R Í N , H . , R O S S , P. A N D V A L E N Z U E L A - R E N -

D Ó N , M . Problem-state representations in a hyper-heuristic approach for the 2D irre
gular BPP. In GECCO '10: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (2010), A C M , New York, NY, USA, pp. 297-298.
DOI=10.1145/1830483.1830539

• T E R A S H I M A - M A R Í N , H . , R O S S , P . , F A R Í A S Z Á R A T E , C. J., L Ó P E Z - C A M A C H O , E . ,

A N D V A L E N Z U E L A - R E N - D Ó N , M . Generalized hyper-heuristics for solving 2D regular
and irregular packing problems. Annals of Operations Research 179 (2010), 369-392.
DOI=10 .1007 /S10479-008-0475-2

Bibliography

[1] A D A M O W I C Z , M . The optimal two-dimensional allocation of irregular multiply-
connected shapes with linear, logical and geometric constraints. Tech. Rep.
AD0703723, New York Univ. Bronx Lab. for Electroscience research, 1979.

[2] A D A M O W I C Z , M . , A N D A L B A N O , A . Nesting two-dimensional shapes in rectangular
modules. Computer-Aided Design 8, 1 (January 1976), 27-33.

[3] A L L E N , S. D. , B U R K E , E . K . , A N D K E N D A L L , G. A hybrid placement strategy for the
three-dimensional strip packing problem. European Journal of Operational Research
209, 3 (2011), 219-227.

[4] A N A N D , S., M C C O R D , C., S H A R M A , R., A N D B A L A C H A N D E R , T. An integrated
machine vision based system for solving the nonconvex cutting stock problem using
genetic algorithms. Journal of Manufacturing Systems 18, 6 (1999), 396-415.

[5] A N Z A N E L L O , M . J., A N D F O G L I A T T O , F. S. Selecting the best clustering variables for
grouping mass-customized products involving workers' learning. International Journal
of Production Economics 130 (January 2011), 268-276.

[6] A R A Y A , I., N E V E U , B . , A N D R I F F , M . - C . An efficient hyperheuristic for strip-
packing problems. In Adaptive and Multilevel Metaheuristics, C. Cotta, M . Sevaux,
and K. Srensen, Eds., vol. 136 of Studies in Computational Intelligence. Springer, 2008,
pp. 61-76.

[7] A R T , R. C. An approach to the two dimensional irregular cutting stock problem. IBM
Cambridge Scientific Centre, Report 36-Y08. (1966).

[8] A R T H U R , D. , A N D V A S S I L V I T S K I I , S. How slow is the k-means method? In SCG
'06: Proceedings of the twenty-second annual Symposium on Computational Geometry
(New York, NY, USA, 2006), A C M , pp. 144-153.

[9] B A A S E , S., A N D G E L D E R , A . V. Algoritmos Computacionales, Introduction al
análisis y diseño. Addison Wesley, tercera edición, 2000.

[10] B E N N E L L , J. A . , A N D D O W S L A N D , K . A . Hybridising tabu search with optimisation
techniques for irregular stock cutting. Management Science 47, 8 (August 2001), 1160¬
1172.

153

154 BIBLIOGRAPHY

[11] B E N N E L L , J. A . , A N D O L I V E I R A , J. F. The geometry of nesting problems: A tutorial.
European Journal of Operational Research 184, 2 (January 2008), 397-415.

[12] B E N N E L L , J. A . , A N D O L I V E I R A , J. F. A tutorial in irregular shape packing problems.
Journal of the Operational Research Society 60, S1 (February 2009), S93-S105.

[13] B E N N E L L , J. A . , A N D S O N G , X . A comprehensive and robust procedure for obtain
ing the nofit polygon using minkowski sums. Computers & Operations Research 35
(January 2008), 267-281.

[14] B E N N E L L , J. A . , A N D S O N G , X . A beam search implementation for the irregular
shape packing problem. Journal ofHeuristics 16, 2 (2010), 167-188.

[15] B I L G I N , B . , Ö Z C A N , E . , A N D K O R K M A Z , E . E. An experimental study on hyper-
heuristics and exam timetabling. In Proceedings of the 6th International Conference
on Practice and Theory of Automated Timetabling (2006), pp. 123-140.

[16] B I R G I N , E . G. , L O B A T O , R. D. , A N D M O R A B I T O , R. An effective recursive parti¬
tioning approach for the packing of identical rectangles in a rectangle. Journal ofthe
Operational Research Society (2009).

[17] B L A Z E W I C Z , J., D R O Z D O W S K I , M . , S O N I E W I C K I , B . , A N D W A L K O W I A K , R. Two-

dimensional cutting problem - basic complexity results and algorithms for irregular
shapes, 1989.

[18] B O U N S A Y T H I P , C. , A N D M A O U C H E , S. Irregular shape nesting and placing with
evolutionary approach. In IEEE International Conference on Systems, Man and Cyber
netics (1997), vol. 4, pp. 3425-3430.

[19] B R O O K S , R., S M I T H , C. A . B . , S T O N E , A . , A N D T U T T E , W. T. The dissection of
rectangles into squares. Duke Mathematical Journal 7 (1940), 312-340.

[20] B U R K E , E. K . , C U R T O I S , T., H Y D E , M . R., K E N D A L L , G. , O C H O A , G . , P E T R O -

V I C , S., R O D R I G U E Z , J. A . V., A N D G E N D R E A U , M . Iterated local search vs. hyper-
heuristics: Towards general-purpose search algorithms. In IEEE Congress on Evolu¬
tionary Computation (2010), pp. 1-8.

[21] B U R K E , E. K . , C U R T O I S , T., H Y D E , M . R., O C H O A , G. , A N D V Á Z Q U E Z

R O D R I G U E Z , J. A . HyFlex: A Benchmark Framework for Cross-domain Heuristic
Search. ArXiv e-prints (July 2011).

[22] B U R K E , E. K . , H A R T , E . , K E N D A L L , G. , N E W A L L , J., R O S S , P., A N D S C H U L E N -

B U R G , S. Hyper-heuristics: An emerging direction in modern research technolology.
In Handbook of Metaheuristics (2003), Kluwer Academic Publishers, pp. 457-474.

[23] B U R K E , E. K . , H E L L I E R , R. S. R., K E N D A L L , G. , A N D W H I T W E L L , G. A new

bottom-left-fill heuristic algorithm for the two-dimensional irregular packing problem.
Operations Research 54, 3 (2006), 587-601.

BIBLIOGRAPHY 155

[24] B U R K E , E . K . , H E L L I E R , R. S. R., K E N D A L L , G. , A N D W H I T W E L L , G. Complete
and robust no-fit polygon generation for the irregular stock cutting problem. European
Journal of Operational Research 179, 1 (May 2007), 27-49.

[25] B U R K E , E. K . , H Y D E , M . R., K E N D A L L , G. , O C H O A , G. , Ö Z C A N , E . , A N D W O O D

W A R D , J. Exploring hyper-heuristic methodologies with genetic programming. In
Collaborative Computational Intelligence. Springer-Verlag, 2009.

[26] B U R K E , E. K . , H Y D E , M . R., K E N D A L L , G. , O C H O A , G. , Ö Z C A N , E . , A N D W O O D

W A R D , J. A Classification of Hyper-heuristic Approaches, vol. 146 of International
Series in Operations Research & Management Science. Springer US, 2010, pp. 449¬
468.

[27] B U R K E , E . K . , H Y D E , M . R., K E N D A L L , G . , A N D W O O D W A R D , J. A genetic pro¬
gramming hyper-heuristic approach for evolving two dimensional strip packing heuris¬
tics. Tech. Rep. NOTTCS-TR-2008-2, School of Computer Science and Information
Technology. University of Nottingham., 2008.

[28] B U R K E , E . K . , A N D K E N D A L L , G. Applying ant algorithms and the no fit polygon to
the nesting problem. In Australian Joint Conference on Artificial Intelligence (London,
U K , 1999), Springer-Verlag, pp. 453-464.

[29] B U R K E , E. K . , A N D K E N D A L L , G. Applying simulated annealing and the no fit
polygon to the nesting problem. In Proceedings of the World Manufacturing Congress
(1999), pp. 27-30.

[30] B U R K E , E . K . , A N D K E N D A L L , G. Implementation and performance improvement
of the evaluation of a two dimensional bin packing problem using the no fit polygon.
Tech. rep., University of Nottingham, 1999. Report ASAP99001.

[31] B U R K E , E. K . , K E N D A L L , G. , S O U B E I G A , E . , C O S T A , E . , M A R Í N - B L Á Z Q U E Z ,

J., A N D R O S S , P. Constructive and local-search based hyperheuristics: A case for
hybridisation?

[32] B U R K E , E . K . , L I , J., A N D Q U , R. Data mining: an aid towards more efficient
hyper-heuristic search. In 7th International Conference on the Practice and Theory of
Automated Timetabling (PATAT2008) (2008).

[33] B U R K E , E. K . , P E T R O V I C , S., A N D Q U , R. Case-based heuristic selection for
timetabling problems. Journal of Scheduling 9, 2 (2006), 115-132.

[34] B U R K E , E . K . , W O O D W A R D , J., H Y D E , M . R., A N D K E N D A L L , G. Automatic
heuristic generation with genetic programming: Evolving a jack-of-alltrades or a mas¬
ter of one. In Genetic and EvolutionaryComputation Conference, GECCO 07 (2007),
pp. 7-11.

[35] B U T Z , M . , A N D W I L S O N , S. An algorithmic description of X C S . In Advances
in Learning Classifier Systems, P. Luca Lanzi, W. Stolzmann, and S. Wilson, Eds.,

156 BIBLIOGRAPHY

vol. 1996 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2001,
pp. 267-274.

[36] C A R N I E R I , C. , A N D M E N D O Z A , G. A . A fractional algorithm for optimal cutting of
lumber into dimension parts. Annals of Operations Research 95 (2000), 83-92.

[37] C H E E S E M A N , P., K A N E F S K Y , B . , A N D T A Y L O R , W. M . Where the really hard pro
blems are. In Proceedings of the 12th International Joint Conferences on Artificial
Intelligence (IJCAI) (Sidney, Australia, 1991), pp. 331-337.

[38] C H I A N G , M . , A N D M I R K I N , B . Experiments for the number of clusters in k-means.
In Progress in Artificial Intelligence, J. Neves, M . F. Santos, and J. M . Machado, Eds.,
vol. 4874 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007, ch. 33, pp. 395-405.

[39] C O W L I N G , P. I., K E N D A L L , G . , A N D S O U B E I G A , E. A hyperheuristic approach to
scheduling a sales summit. In PATAT '00: Selected papers from the Third International
Conference on Practice and Theory of Automated Timetabling III (London, U K , 2001),
vol. 2079, Springer-Verlag, pp. 176-190.

[40] C R I S P I N , A . J., C L A Y , P., T A Y L O R , G. E . , B A Y E S , T., A N D R E E D M A N , D. Ge

netic algorithms applied to leather lay plan material utilization. In Proceedings of the
Institution of Mechanical Engineers (2003), vol. 217, 12, ProQuest Science Journals,
p. 1753.

[41] C R U Z - R E Y E S , L . , G Ó M E Z - S A N T I L L Á N , C. , P É R E Z - O R T E G A , J., L A N D E R O , V.,

Q U I R O Z , M . , A N D O C H O A , A . Algorithm selection: From meta-learning to hyper-
heuristics. In Intelligent Systems, V. M . Koleshko, Ed. InTech, 2012, ch. 4, pp. 77-102.

[42] C U E S T A - C A N A D A , A . , G A R R I D O , L . , A N D T E R A S H I M A - M A R Í N , H . Building
hyper-heuristics through ant colony optimization for the 2D bin packing problem. In
KES (4) (2005), R. Khosla, R. J. Howlett, and L . C. Jain, Eds., vol. 3684 of Lecture
Notes in Computer Science, Springer, pp. 654-660.

[43] D E B , K . , A N D G O L D B E R G , D. E. mGA in C: A messy genetic algorithm in C, 1991.

[44] D O W S L A N D , K . A . , A N D D O W S L A N D , W. B . Solution approaches to irregular nesting
problems. European Journal of Operational Research 84 (1995), 506-521.

[45] D O W S L A N D , K . A . , D O W S L A N D , W. B . , A N D B E N N E L L , J. A . Jostling for position:
local improvement for irregular cutting patterns. Journal of the Operational Research
Society 49, 6 (1998), 647-658.

[46] D O W S L A N D , K . A . , V A I D , S., A N D D O W S L A N D , W. B . An algorithm for polygon
placement using a bottom-left strategy. European Journal of Operational Research
141, 2 (September 2002), 371-381.

[47] D U C A T E L L E , F., A N D L E V I N E , J. Ant colony optimisation for bin packing and cutting
stock problems. In In Proceedings of the UK Workshop on Computational Intelligence
(2001).

BIBLIOGRAPHY 157

[48] D Y C H O F F , H . A typology of cutting and packing problems. European Journal of
Operational Research 44 (1990), 145-159.

[49] E L M A G H R A B Y , A . S., A B D E L H A F I Z , E . , A N D H A S S A N , M . F. An intelligent
approach to stock cutting optimization. In Proceedings of ISCA 13th international con
ference on computer applications in industry and engineering (CAINE-2000) (USA,
2000), pp. 90-93.

[50] FALKENAUER, E. A Hybrid Grouping Genetic Algorithm for Bin Packing. Journal of
Heuristics 2, 1 (1996), 5-30.

[51] F A L K E N A U E R , E . , A N D D E L C H A M B R E , A . A genetic algorithm for bin packing and
line balancing. In Proceedings of the 1992 IEEE International Conference on Robotics
and Automation (1992), pp. 1186-1192.

[52] F A R Í A S - Z Á R A T E , C. J. Hiperheurísticas mediante un algoritmo genético con longitud
variable para resolver problemas de corte de material en dos dimensiones. Master's
thesis, Tecnológico de Monterrey, May 2006. Advisor: Dr. Hugo Terashima-Marin.

[53] F E K E T E , S. P., K Ó H L E R , E . , A N D T E I C H , J. Higher-dimensional packing with order
constraints. SIAM Journal on Discrete Mathematics (2006), 1056-1078.

[54] F U J I T A , K . , A K A G J I , S., A N D K I R O K A W A , N . Hybrid approach for optimal nesting
using a genetic algorithm and a local minimisation algorithm. In Proceedings of the
19th Annual ASME Design Automation Conference, Part 1 (of 2) (Albuquerque, N M ,
USA, 1993), vol. 65, pp. 477-484.

[55] G A R E Y , M . R., A N D J O H N S O N , D. S. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, New York, 1979.

[56] G E N D R E A U , M . , L A P O R T E , G . , A N D S E M E T , F. Heuristics and lower bounds for
the bin packing problem with conflicts. Computers & Operations Research 31 (March
2004), 347-358.

[57] GILMORE, P. C. , AND GOMORY, R. E. A linear programming approach to the cutting-
stock problem. Operations Research 9, 6 (1961), 849-859.

[58] GLONEK, G. F. V., AND M c C U L L A G H , P. Multivariate logistic models. Journal of
the Royal Statistical Society. Series B (Methodological) 57, 3 (1995), 533-546.

[59] G O L D B E R G , D. E. Genetic Algorithms in Search, Optimization and Machine Learn
ing. Addison Wesley, 1989.

[60] GOLDBERG, D. E . , DEB, K . , AND KORB, B . Messy genetic algorithms: motivation,
analysis and first results. Complex Systems 3 (1989), 493-530.

[61] GOMES, A . M . , A N D O L I V E I R A , J. F. A GRASP approach to the nesting problem. In
Proceedings of Metaheuristics International Conference (MIC) (July 2001), pp. 47-52.

158

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

BIBLIOGRAPHY

G O M E S , A . M . , A N D O L I V E I R A , J. F. A 2-exchange heuristic for nesting problems.
European Journal of Operational Research 141 (2002), 359-370.

G O M E S , M . A . , A N D O L I V E I R A , J. F. Solving irregular strip packing problems by
hybridising simulated annealing and linear programming. European Journal of Oper-
ational Research 171, 3 (2006), 811-829.

G O M E Z , J. C., A N D T E R A S H I M A - M A R Í N , H . Approximating multi-objective hyper-
heuristics for solving 2D irregular cutting stock problems. In Proceedings of the 9th
Mexican International Conference on Artificial Intelligence Conference on Advances
in Soft Computing: Part II (Berlin, Heidelberg, 2010), MICAI'10, Springer-Verlag,
pp. 349-360.

G O O D M A N , E . , T E T E L B A U M , A . , A N D K U R E I C H I K , V. A genetic algorithm approach
to compaction, bin packing, and nesting problems, 1994.

H A E S S L E R , R. W., A N D S W E E N E Y , P. E. Cutting stock problems and solution proce
dures. European Journal of Operational Research 54, 2 (September 1991), 141-150.

H A L A V A T I , R., S H O U R A K I , S. B . , N O R O O Z I A N , M . , A N D Z A D E H , S. H . Optimi¬
zing allocation of two dimensional irregular shapes using an agent based approach. In
Proceedings of World Academy of Science, Engineering and Technology (2005), vol. 6,
pp. 241-244.

HIFI , M . Exact algorithms for the guillotine strip cutting/packing problem. Computers
& Operations Research 25, 11 (1998), 925-940.

HIFI , M . , A N D M ' H A L L A H , R. A best-local position procedure-based heuristic for
two-dimensional layout problems. Studia Informatica Universalis, International Jour¬
nal on Informatics 2, 1 (2002), 33-56.

HIFI , M . , A N D M ' H A L L A H , R. A hybrid algorithm for the two-dimensional layout
problem: the cases of regular and irregular shapes. International Transactions in Op¬
erational Research 10 (2003), 195-216.

H O L L A N D , J. Adaptation in Natural and Artificial Systems. The University of Michi
gan Press, 1975.

H O P P E R , E . Two-dimensional packing utilising evolutionary algorithms and other
meta-heuristic methods. PhD thesis, School of Engineering, University of Wales, 2000.

H O P P E R , E. , A N D T U R T O N , B . C. H . An empirical investigation of meta-heuristic
and heuristic algorithms for a 2D packing problem. European Journal of Operational
Research 128 (2000), 34-57.

H O P P E R , E . , A N D T U R T O N , B . C. H . A review of the application of meta-heuristic
algorithms to 2D strip packing problems. Artificial Intelligence Review 16, 4 (2001),
257-300.

BIBLIOGRAPHY 159

[75] H O P P E R , E . , A N D T U R T O N , B . C. H . An empirical study of meta-heuristics applied
to 2D rectangular bin packing - part II. Stud. Inform. Univ. 2, 1 (2002), 93-106.

[76] H U - Y A O , L . , A N D Y U A N - J U N , H . Algorithm for 2D irregular-shaped nesting problem
based on the nfp algorithm and lowest-gravity-center principle. Journal of Zhejiang
University SCIENCE A 7, 4 (2006), 570-576.

[77] H U - Y A O , L . , A N D Y U A N - J U N , H . NFP-based nesting algorithm for irregular shapes.
In Symposium on Applied Computing (New York, NY, USA, 2006), A C M Press,
pp. 963-967.

[78] H Y D E , M . R. A genetic programming hyper-heuristic approach to automated packing.
PhD thesis, School of Computer Science, Univeristy of Nottingham, 2010.

[79] J A C Q U E N O T , G. , B E N N I S , F., M A I S O N N E U V E , J.-J., A N D W E N G E R , P. 2D multi-
objective placement algorithm for free-form components. In Proceedings of ASME
2009 International Design Engineering Technical Conferences & Computers and In¬
formation in Engineering Conference (December 2009).

[80] J A I N , A . K . , M U R T Y , M . N . , A N D F L Y N N , P. J. Data clustering: a review. ACM
Computing Surveys 31, 3 (September 1999), 264-323.

[81] J A K O B S , S. On genetic algorithms for the packing of polygons. European Journal of
Operational Research 88, 1 (January 1996), 165-181.

[82] J A L I F F , D. , A N D D A G N I N O , A . An object-oriented tool-kit for building CSP decision
support systems. In IEEE (1995), pp. 3201-3206.

[83] J O E , H . Relative entropy measures of multivariate dependence. Journal of the Ameri
can Statistical Association 84, 405 (1989), 157-164.

[84] J O L L I F F E , I. T. Principal Component Analysis, second ed. Springer, October 2002.

[85] K A N D A , J., C A R V A L H O , A . , H R U S C H K A , E . , A N D S O A R E S , C. Selection of algo¬
rithms to solve traveling salesman problems using meta-learning. International Journal
of Hybrid Intelligent Systems 8 (August 2011), 117-128.

[86] K A N T O R O V I C H , L . V. Mathematical methods of organising and planning production.
Management Science 6 (1960), 366-422.

[87] K A R E L A H T I , J. Solving the cutting stock problem in the steel industry. Master's thesis,
Helsinki University of Technology, 2002. Advisor: professor Harri Ehtamo.

[88] K I R K P A T R I C K , S., G E L A T T , C. D. , A N D V E C C H I , M . P. Optimization by simulated
annealing. Science 220 (1983), 671-680.

[89] K N U T H , D. E. Dancing links, 2000.

[90] K O H O N E N , T., S C H R O E D E R , M . R., A N D H U A N G , T. S., Eds. Self-Organizing Maps,
3rd ed. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

160

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

BIBLIOGRAPHY

KOS, L . , AND DUHOVNIK, J. Rod cutting optimization with store utilization. In
International Design Conference (Dubrovnik, Croatia, May 2000), pp. 313-318.

LAMOUSIN, H . , AND WAGGENSPACK, J. Nesting of two-dimensional irregular parts
using a shape reasoning heuristic. Computer-Aided Design 29, 3 (March 1997), 221¬
238.

LAMOUSIN, H . J., JR, AND DOBSON, G. T. Nesting of complex 2-D parts within
irregular boundaries. Journal of Manufacturing Science and Engineering 118,4 (1996),
615-622.

L E Y T O N - B R O W N , K . , N U D E L M A N , E . , A N D S H O H A M , Y. Learning the empirical
hardness of optimization problems: The case of combinatorial auctions. In Principles
and Practice of Constraint Programming - CP 2002, P. Van Hentenryck, Ed., vol. 2470
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2002, pp. 91-100.

L i , Z . , AND MILENKOVIC, V. A compaction algorithm for non-convex polygons and
its application. In SCG '93: Proceedings of the ninth annual symposium on Computa
tional geometry (New York, NY, USA, 1993), A C M , pp. 153-162.

LI , Z . , AND MILENKOVIC, V. Compaction and separation algorithms for non-convex
polygons and their applications. European Journal of Operations Research 84 (1995),
539-561.

LINS, L . , LINS, S., AND MORABITO, R. An n-tet graph approach for non-guillotine
packings of n-dimensional boxes into an n-container. European Journal of Operational
Research 141, 2 (September 2002), 421-439.

L Ó P E Z - C A M A C H O , E . Hiperheurísticas para resolver el problema de empacado irre¬
gular de material en dos dimensiones. Master's thesis, Tecnológico de Monterrey, May
2007. Advisor: Dr. Hugo Terashima-Marin.

L Ó P E Z - C A M A C H O , E. , T E R A S H I M A - M A R I N , H . , A N D ROSS, P. Defining a problem-
state representation with data mining within a hyper-heuristic model which solves
2D irregular bin packing problems. In Advances in Artificial Intelligence IBERAMIA
(2010), Á. F. Kuri-Morales and G. R. Simari, Eds., vol. 6433 of Lecture Notes in Com
puter Science, Springer, pp. 204-213.

L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R I N , H . , A N D R O S S , P. A hyper-heuristic
for solving one and two-dimensional bin packing problems. In 13th annual conference
companion on Genetic and evolutionary computation (New York, NY, USA, 2011),
GECCO '11, A C M , pp. 257-258.

L Ó P E Z - C A M A C H O , E . , T E R A S H I M A - M A R I N , H . , R O S S , P., A N D V A L E N Z U E L A -

R E N D Ó N , M . Problem-state representations in a hyper-heuristic approach for the 2D
irregular BPP. In GECCO 10: Proceedings ofthe 12th annual conference on Genetic
and evolutionary computation (New York, NY, USA, 2010), A C M , pp. 297-298.

BIBLIOGRAPHY 161

[102] L U S S , R., A N D D ' A S P R E M O N T , A . Clustering and feature selection using sparse
principal component analysis. CoRR (2007).

[103] M A H M O U D , A . F., S A M I A , M . , E I D , S., A N D B A H N A S A W I , A . Genetic algorithms
for solving 2D cutting stock problem, 2004.

[104] M A R I N - B L Á Z Q U E Z , J. G . , A N D S C H U L E N B U R G , S. Multi-step environment learning
classifier systems applied to hyper-heuristics. In Conference on Genetic and Evolution
ary Computation. Lecture Notes in Computer Science (New York, NY, USA, 2006),
A C M , pp. 1521-1528.

[105] M A R I N - B L Á Z Q U E Z , J. G . , A N D S C H U L E N B U R G , S. A hyper-heuristic framework
with xcs: learning to create novel problem-solving algorithms constructed from simpler
algorithmic ingredients. In Proceedings of the 2003-2005 international conference
on Learning classifier systems (Berlin, Heidelberg, 2007), IWLCS'03-05, Springer-
Verlag, pp. 193-218.

[106] N A Z E M I , J. Kiln Planning, A Cutting Stock Approach. SSRN eLibrary (2005).

[107] N I C K L A S , L . D. , A T K I N S , R. W., S E T I A , S. K . , A N D W A N G , P. Y. A parallel solution
to the cutting stock problem for a cluster of workstations. In HPDC '96: Proceedings
ofthe 5th IEEE International Symposium on High Performance Distributed Computing
(Washington, DC, USA, 1996), IEEE Computer Society, p. 521.

[108] N I L S S O N , C. Heuristics for the traveling salesman problem. Tech. rep., Linkoping
University, Sweden, 2003.

[109] O K A N O , H . A scanline-based algorithm for the 2D free-form bin packing problem.
Journal of the Operations Research Society of Japan 45, 2 (June 2002), 145-161.

[110] O R T I Z - B A Y L I S S , J. C. , Ö Z C A N , E . , P A R K E S , A . J., A N D T E R A S H I M A - M A R Í N , H .

Mapping the performance of heuristics for constraint satisfaction. In IEEE Congress
on Evolutionary Computation'10 (2010), pp. 1-8.

[111] O R T I Z - B A Y L I S S , J. C. , T E R A S H I M A - M A R Í N , H . , Ö Z C A N , E . , A N D P A R K E S , A . J.

On the idea of evolving decision matrix hyper-heuristics for solving constraint satisfac
tion problems. In GECCO '11: Proceedings of the 13th annual conference on Genetic
and evolutionary computation (New York, NY, USA, 2011), A C M , pp. 255-256.

[112] Ö Z C A N , E. , B I L G I N , B . , A N D K O R K M A Z , E . E. A comprehensive analysis of hyper-
heuristics. Intelligent Data Analysis 12, 1 (2008), 3-23.

[113] P E T R O V I C , S., A N D Q U , R. Case-based reasoning as a heuristic selector in hyper-
heuristic for course timetabling problems. In Proceedings of the 6th International Con¬
ference on Knowdelge-based Intelligent Information Engineering Systems and Applied
Technologies (KES) (2002), vol. 82, pp. 336-340.

[114] P I T S O U L I S , L . S., M A U R I C I O , A N D R E S E N D E , G. C. Greedy randomized adaptive
search procedures. In Handbook of Applied Optimization (2002), Oxford University
Press, pp. 168-183.

162 BIBLIOGRAPHY

[115] P O L I , R., A N D G R A F F , M . There is a free lunch for hyper-heuristics, genetic pro¬
gramming and computer scientists. In EuroGP 09: Proceedings ofthe 12th Euro¬
pean Conference on Genetic Programming (Berlin, Heidelberg, 2009), L . Vanneschi,
S. Gustafson, A . Moraglio, I. De Falco, and M . Ebner, Eds., vol. 5481 of LNCS,
Springer-Verlag, pp. 195-207.

[116] P O L I , R., L A N G D O N , W. B . , A N D M C P H E E , N . F. A field guide to ge
netic programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, March 2008.

[117] P O N C E - P É R E Z , A . , P É R E Z - G A R C Í A , A . , A N D A Y A L A - R A M Í R E Z , V. Bin-packing
using genetic algorithms. In Proceedings of the 15th International Conference on
Electronics, Communications and Computers (Washington, DC, USA, 2005), IEEE
Computer Society, pp. 311-314.

[118] P R A N D T S T E T T E R , M . , A N D R A I D L , G. R. Combining forces to reconstruct strip
shredded text documents, 2008.

[119] R D E V E L O P M E N T C O R E T E A M . R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN
3-900051-07-0.

[120] R A M E S H , A N D R A M E S H . A generic approach for nesting of 2-D parts in 2-D sheets
using genetic and heuristic algorithms. Computer-Aided Design 33,12 (October 2001),
879-891.

[121] R A T A N A P A N , K . , A N D D A G L I , C. H . An object-based evolutionary algorithm: The
nesting solution, 1998.

[122] R E E V E S , C. Hybrid genetic algorithms for bin-packing and related problems. Annals
of Operations Research 63 (1996), 371-396.

[123] R I C E , J. R. The algorithm selection problem. Advances in Computers 15 (1976),
65-118.

[124] R I N G N E R , M . What is principal component analysis? Nature Biotechnology 26, 3
(March 2008), 303-304.

[125] R O D G E R S , J. L . , A N D N I C E W A N D E R , W. A . Thirteen ways to look at the correlation
coefficient. The American Statistician 42, 1 (1988), 59-66.

[126] R O S S , P. Hyper-heuristics. In Search Methodologies: Introductory Tutorials in Opti
mization and Decision Support Techniques, E. K. Burke and G. Kendall, Eds. Springer,
New York, 2005, pp. 529-556.

[127] R O S S , P., A N D M A R I N - B L Á Z Q U E Z , J. G. Constructive hyper-heuristics in class
timetabling. IEEE Congress on Evolutionary Computation 2 (September 2005), 1493¬
1500.

http://lulu.com
http://www.gp-field-guide.org.uk

BIBLIOGRAPHY 163

[128] R O S S , P., M A R Í N - B L Á Z Q U E Z , J. G . , S C H U L E N B U R G , S., A N D H A R T , E . Learning
a procedure that can solve hard bin-packing problems: A new GA-based approach to
hyper-heuristics. In Conference on Genetic and Evolutionary Computation. Lecture
Notes in Computer Science (2003), vol. 2724, Springer-Verlag, pp. 1295-1306.

[129] R O S S , P., S C H U L E N B U R G , S., M A R Í N - B L Á Z Q U E Z , J. G. , A N D H A R T , E . Hyper-
heuristics: Learning to combine simple heuristics in bin-packing problems. In Confer¬
ence on Genetic and Evolutionary Computation. Lecture Notes in Computer Science
(San Francisco, C A , USA, 2002), Morgan Kaufmann Publishers Inc., pp. 942-948.

[130] S C H O L L , A . , K L E I N , R., A N D J ü R G E N S , C. Bison: A fast hybrid procedure for
exactly solving the one-dimensional bin packing problem. Computers & Operations
Research 24 (July 1997), 627-645.

[131] S M I T H , L . I. A tutorial on principal components analysis. Tech. rep., Cornell Univer
sity, USA, February 26 2002.

[132] S M I T H - M I L E S , K . , A N D L O P E S , L . Measuring instance difficulty for combinatorial
optimization problems. Computers & Operations Research 39, 5 (2012), 875-889.

[133] S M I T H - M I L E S , K . A . Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys 41 (2008), 6:1 - 6:25.

[134] S M I T H - M I L E S , K . A . Towards insightful algorithm selection for optimisation using
meta-learning concepts. In IEEE World Congress on Computational Intelligence. IEEE
International Joint Conference on Neural Networks. IJCNN (2008), IEEE, pp. 4118¬
4124.

[135] S M I T H - M I L E S , K . A . , J A M E S , R. J., G I F F I N , J. W., A N D T U , Y. In Learning and In
telligent Optimization, T. Stützle, Ed. Springer-Verlag, Berlin, Heidelberg, 2009, ch. A
Knowledge Discovery Approach to Understanding Relationships between Scheduling
Problem Structure and Heuristic Performance, pp. 89-103.

[136] S T O Y A N , Y. , T E R N O , J., S C H E I T H A U E R , G . , G I L , N . , A N D R O M A N O V A , T. Phi-

functions for primary 2D-objects. Stud. Inform. Univ. 2, 1 (2002), 1-32.

[137] S U G I H A R A , K . Measures for performance evaluation of genetic algorithms (extended
abstract). In Proceedings of the 3rd Joint Conference on Information Sciences (JCIS
(1997), pp. 172-175.

[138] T E R A S H I M A - M A R Í N , H . , F A R Í A S - Z Á R A T E , C. J., R O S S , P., A N D V A L E N Z U E L A -

R E N D Ó N , M . A GA-based method to produce generalized hyper-heuristics for the
2D-regular cutting stock problem. In Conference on Genetic and Evolutionary Com
putation. Lecture Notes in Computer Science (New York, NY, USA, 2006), A C M Press,
pp. 591-598.

[139] T E R A S H I M A - M A R Í N , H . , F L O R E S - Á L V A R E Z , E . J., A N D R O S S , P. Hyper-heuristics
and classifier systems for solving 2D-regular cutting stock problems. In Conference

164 BIBLIOGRAPHY

on Genetic and Evolutionary Computation. Lecture Notes in Computer Science (New
York, NY, USA, 2005), A C M , pp. 637-643.

[140] T E R A S H I M A - M A R Í N , H . , M O R Á N - S A A V E D R A , A . , A N D R O S S , P. Forming hyper-
heuristics with GAs when solving 2D-regular cutting stock problems. In Congress on
Evolutionary Computation (2005), IEEE, pp. 1104-1110.

[141] T E R A S H I M A - M A R Í N , H . , O R T I Z - B A Y L I S S , J. C. , R O S S , P., A N D V A L E N Z U E L A -

R E N D Ó N , M . Hyper-heuristics for the dynamic variable ordering in constraint satisfac¬
tion problems. In GECCO 08: Proceedings of the 10th annual conference on Genetic
and evolutionary computation (New York, NY, USA, 2008), A C M , pp. 571-578.

[142] T E R A S H I M A - M A R Í N , H . , A N D R O S S , P. Evolution of constraint satisfaction strategies
in examination timetabling. In Proceedings of the Genetic and Evolutionary Compu¬
tation Conference (GECCO) (San Mateo, CA, 1999), W. Banzhaf, J. Daida, A . Eiben,
M . Garzon, V. Honavar, M . Jakiela, and R. Smith, Eds., Morgan Kaufmann, pp. 635¬
642.

[143] T E R A S H I M A - M A R Í N , H . , R O S S , P., F A R Í A S - Z Á R A T E , C. J., L Ó P E Z - C A M A C H O , E . ,

A N D V A L E N Z U E L A - R E N D Ó N , M . Generalized hyper-heuristics for solving 2D regular
and irregular packing problems. Annals of Operations Research 179 (2010), 369-392.

[144] T E R A S H I M A - M A R Í N , H . , T A V E R N I E R - D E L O Y A , J. M . , A N D V A L E N Z U E L A -

R E N D Ó N , M . Scheduling transportation events with grouping genetic algorithms and
the heuristic DJD. In MICAI2005: Advances in Artificial Intelligence (2005), A. Gel-
bukh, l . De Albornoz, and H. Terashima-Marín, Eds., vol. 3789 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 185-194.

[145] T O U S S A I N T , G. T. A simple linear algorithm for intersecting convex polygons. The
Visual Computer 1 (1985), 118-123.

[146] T U R T O N , B . , A N D H O P P E R , E . Application of genetic algorithms to packing problems
- a review. In Proceedings of the Second On-line World Conference of Soft Computing
in Engineering Design and Manufacturing (1997), Springer Verlag, pp. 279-288.

[147] U D A Y , A . , G O O D M A N , E . D. , A N D D E B N A T H , A . A . Nesting of irregular shapes
using feature matching and parallel genetic algorithms. In Genetic and Evolutionary
Computation Conference. Late Breaking Papers (2001), E. D. Goodman, Ed., pp. 429¬
434.

[148] V A Z I R A N I , V. V. Approximation Algorithms. Springer, March 2004.

[149] V Á Z Q U E Z - R O D R Í G U E Z , J., P E T R O V I C , S., A N D S A L H I , A . An investigation of
hyper-heuristic search spaces. CEC 2007. IEEE Congress on Evolutionary Compu¬
tation (September 2007), 3776-3783.

[150] V I S W A N A T H A N , K . V., A N D B A G C H I , A . Best-first search methods for constrained
two-dimensional cutting stock problems. Operations Research 41, 4 (1993), 768-776.

BIBLIOGRAPHY 165

[151] W A N G , P. Y. Two algorithms for constrained two-dimensional cutting stock problems.
Operations Research 31, 3 (1983), 573-586.

[152] W A N G , W. X . Binary image segmentation of aggregates based on polygonal approx
imation and classification of concavities. Pattern Recognition 31, 10 (1998), 1503¬
1524.

[153] W ä S C H E R , G . , A N D G A U , T. Heuristics for the integer one-dimensional cutting stock
problem: A computational study. OR Spectrum 18 (1996), 131-144.

[154] WäSCHER, G. , H A U S N E R , H . , A N D S C H U M A N N , H . An improved typology of cut
ting and packing problems. European Journal of Operational Research. Forthcom
ing Special Issue on Cutting, Packing and Related Problems 183, 3 (December 2007),
1109-1130.

[155] W H E L A N , P. F., A N D B A T C H E L O R , B . G . Development of a vision system for the
flexible packing of random shapes. In Machine Vision Applications, Architectures, and
Systems Integration, Proc. SPIE (1992), pp. 223-232.

[156] W O L P E R T , D. H . , A N D M A C R E A D Y , W. G . No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation 1 (1997), 67-82.

[157] X I A , B . , A N D T A N , Z . Tighter bounds of the first fit algorithm for the bin-packing
problem. Discrete Applied Mathematics 158, 15 (2010), 1668 - 1675.

[158] Y U E , M . A simple proof of the inequality FFD(L) < 11/9OPT(L), for all L, for the
FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica 7, 4 (1991), 321¬
331.

[159] Z H A O , X . , M A R R O N , J. S., A N D W E L L S , M . T. The functional data analysis view of
longitudinal data. Statistica Sinica 14, 3 (2004), 789-808.

