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f o r Q u a n t u m - O p t i c a l C o h e r e n c e T o m o g r a p h y 

by 

Dorilián López Mago 

Abstract 

Time-domain Optical Coherence Tomography (OCT) is an imaging technique that provides 
information about the infernal structure of a sample. It makes use of classical light in conjunc-
tion with conventional interferometers. A quantum versión of OCT, called Quantum-Optical 
Coherence Tomography (QOCT), has been developed in previous years. QOCT uses entan-
gled photon pairs in conjunction with two-photon interferometers. QOCT improves depth 
resolution and offers more information about the optical properties of the sample. However, 
the current implementation of QOCT is not competitive with its classical counterpart because 
of the low efficiency of the current sources and detectors that are required for its implementa­
tion. 

We analyzed the feasibility of QOCT using a Michelson interferometer that can be 
adapted to the state of the art in entangled photon sources and detectors. Despite of its sim-
plicity, no current implementations of QOCT have been done with this interferometer. This 
thesis develops the theory of the two-photon Michelson interferometer applied in QOCT. It 
describes the elements that characterizes the coincidences interferogram and support the the­
ory with experimental measurements. 

We found that as long as the spectral bandwidth of the entangled photons is smaller than 
their central frequency, the Michelson interferometer can be successfully used for QOCT. In 
addition, we found that the degree of entanglement between the photons can be calculated 
from the coincidences interferogram. The two-photon Michelson interferometer provides an-
other possibility for QOCT with the advantages of simplicity, performance and adaptability. 
The resolution of the interferometer can be improved using ultrabroadband sources of entan­
gled photons, e.g. photonic fibers. In addition, we can study the implementation of photon-
number resolving detectors in order to remove the detection of coincidences that is used for 
detecting entangled photon pairs. 
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Chapter 1 

Introduction 

1.1 Motivation 
Optical imaging techniques such as optical coherence tomography (OCT) and confocal mi-
croscopy have found widespread applications in medicine. Compared to other imaging tech­
niques, e.g. magnetic resonance imaging, ultrasound and positrón emission tomography, they 
offer micrometer resolution, noninvasive imaging and real time measurements. 

The resolution of these optical systems is limited by the wave nature of light. The 
smallest feature that can be distinguished has a direct Fourier connection with the spectral 
properties of the light source. It is a consequence of the Heisenberg uncertainty principie, 
which imposes limits on the precisión of measurements. The Heisenberg uncertainty gives 
rise to the diffraction limit in microscopy and the coherence length in OCT. However, the 
Heisenberg limit can be overeóme using nonclassical states of light such as squeezed and 
entangled states. Nonclassical (quantum) sources of light have been developed over the past 
years and promise to enhance the performance of the optical imaging systems. 

This thesis studies the quantum versión of OCT, called Quantum-Optical Coherence 
Tomography (QOCT), which makes use of entangled photons. However, the current config-
uration of QOCT is far away to compete with its classical counterpart because of the low 
efficieney of the entangled-photon sources that can be used. With this in mind, we propose 
a new scheme for QOCT based on the standard Michelson interferometer. Besides its prac-
tical advantages, this configuration is compatible with current high-flux sources of entangled 
photons and state of the art detectors. We hope that our results motívate real applications of 
QOCT. 

1.2 Problem Statement and Context 
Optical coherence tomography is an interferometric imaging technique that provides cross-
sectional images of an object [1]. It has the properties of being a non-invasive and non-contact 
measurement technique which offers high-resolution images within a short acquisition time. 
OCT started as a method for finding faults in fiber optical cables and network components and 
has become a robust technology with applications in medicine [2, 3] and material thickness 
measurements [4, 5]. 

1 
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INTERFEROGRAM L(R) LENGTH 

Figure 1.1: Basic principie for Optical Coherence Tomography. (a) A low-coherence light 
source is used with a Michelson interferometer to record the interference of the reflected 
light from the sample. The interference pattern or interferogram I(T) depends on the time 
difference r between the reference arm and the sample arm. (b) Recorded interferogram as a 
function of the path-length difference between the interferometer arms. The thickness of the 
sample slab is the distance between the máxima of the interferogram which corresponds to 
the reflections from the surfaces of the sample. BS: beam splitter, D: detector, M: mirror. 

OCT can resolve a mínimum distance defined by the source coherence time. Axial 
resolution is enhanced by increasing the spectral bandwidth of the source. However, as the 
bandwidth is increased the effects of group-velocity dispersión become apparent. Sample 
dispersión tends to increase the coherence length and henee to degrade the resolution. In 
order to counteract the effects of dispersión, a priori knowledge of the dispersión is required. 

The development of nonclassical sources of light, such as entangled photons pairs, sug-
gested the idea of using such sources for OCT. Quantum-Optical Coherence Tomography 
raised as a consequence. QOCT combines the correlation properties of the entangled photons 
with the capabilities of OCT. It was proposed by Abouraddy ET AL. [6] in 2002 and experimen-
tally proved by Nasr ET AL. [7] a year later. Eventually, there have been several improvements 
in the theory and experimental implementations of QOCT. Furthermore, QOCT has opened 

Time-domain OCT is a form of low-coherence interferometry. It makes use of the co­
herence properties of classical light to effectively section a reflective sample with a resolution 
that is determined by the coherence time of the source. The coherence time is inversely pro-
portional to the source spectral bandwidth. Therefore, sources with a broad spectrum (e.g. 
superluminescent diodes, ultrashort pulsed lasers and photonic crystal fibers) are used to pro­
duce high-resolution images. 

The standard configuration of time-domain OCT consists of a Michelson interferometer 
with a scanning mechanism, as shown in Fig. 1.1a. One arm of the interferometer contains 
the sample to be explored and the other, the reference arm, introduces a time delay r . The 
interference of the reflected light from the sample with the light from the reference mirror, 
produces an interference pattern or interferogram I(T) that contains the information of the 
interna] structure of the sample (Fig. 1.1b). 

(a) Michelson interferometer (b) Interferogram 
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new methods that mimic the quantum properties using classical sources [8]. 
QOCT uses entangled photon pairs in conjunction with a two-photon interferometer 

which incorporates two photodetectors working in coincidences, rather than a single photode-
tector as in OCT. One photon travels to the sample and the other to a controllable delay time. 
The coincidences of photons arriving at the two detectors are recorded as a function of the 
delay time. The entanglement between the photons provides high correlations in frequency 
that cannot be achieved using classical sources. This feature enhances the resolution by a 
factor of two and makes the interferogram immune to the dispersión effects. 

The original versión of QOCT uses a Hong-Ou-Mandel (HOM) interferometer [9]. The 
HOM interferometer consists of a beam splitter where the two photons enter the beam splitter 
through sepárate input ports and the coincidences are recorded at the output ports (Fig. 1.2a). 
The intensity of the coincidences depends on the phase difference between the photons and 
becomes a mínimum at each position of the layers that constitute the sample. The mínimum 
is consequence of the bunching properties of the photons, which means that they tend to exit 
the beam splitter together through only one of the output ports. 

(a) Hong-Ou-Mandel interferometer (b) Concidence interferogram 

Length 

Figure 1.2: Original configuration of Quantum-Optical Coherence Tomography. (a) The 
Hong-Ou-Mandel interferometer uses a source of entangled photon pairs where both pho­
tons meet at a beam splitter through different input ports. At the output of the beam splitter, 
two detectors measure the coincidences rate C( r ) as a function of the time delay r . (b) The 
coincidences interferogram traces out a dip at each position of the layers. The peak at the mid-
dle of the sample is consequence of constructive interference between the reflected light in the 
second surface and the transmitted light from the first one. BS: beam splitter, D: detector, M: 
mirror, NLC: nonlinear crystal. 

The coincidences interferogram (Fig. 1.2b) contains the location of the internal layers 
of the sample, which is indicated by the minima. In addition, it provides information about 
the dispersión properties of médium, which is implicit in the central peak. This peak can be 
subtracted from the interferogram by averaging over the central frequency of the entangled 
photons. From the width of this peak, we can obtain the valué of the group velocity. This 
information is not available in OCT. 
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The source of entangled photons is implemented using the process of Spontaneous Para-
metric Down-Conversion (SPDC). SPDC originates inside a birefringent crystal with a nonlin-
ear susceptibility. A pump photon propagating inside the nonlinear crystal is spontaneously 
split into two photons. The direction of the down-converted photons can be controlled by 
adjusting the angle between the pump photons and the optics axis of the crystal. 

The HOM interferometer requires that the entangled photons be emitted noncollinearly 
(both photons propágate with different directions). This represents a challenge for alignment 
and balancing of the optical paths. The noncollinear configuration constraints the physical 
dimensions of the crystals and therefore it is customary to use nonlinear crystals with small 
dimensions. 

The intensity of SPDC is proportional to the interaction volume of the pump with the 
crystal. As a consequence of the noncollinear configuration, we are restricted to use crystals 
with small interaction volumes and henee low intensity in the production of entangled pho­
tons. The low intensity increases the acquisition time for the recording of the coincidences 
interferogram. As a comparison, the recording time of a single point in QOCT it is in the 
order of seconds while for OCT is in milliseconds. 

High intensity sources of entangled photons, such as periodically poled crystals [10] and 
photonic crystal fibers [11], produce collinearly propagating entangled photons. Therefore, 
the noncollinear configuration of the HOM interferometer is not compatible with this kind of 
sources. 

In principie, the implementation of coincidence detection for measuring nonclassical 
states is a practical issue rather than a requirement. Instead, it is possible to use photon number 
detectors [12] which are able to resolve the number of incident photons. The technology is 
still in development but it promises to eradicate the use of coincidence electronics. Again, the 
noncollinear configuration of the HOM interferometer is not suitable for this kind of detectors. 

In summary, the problem with QOCT is its noncollinear configuration which imposes 
several challenges and limitations. It is difficult to align and to couple with other optical 
components, limits the possible sources of entangled photons and its integration with novel 
detectors. 

1 . 3 S o l u t i o n O v e r v i e w 

We propose a new implementation of QOCT using a standard Michelson interferometer. The 
Michelson configuration is attractive because of its simplicity, robustness and integrability. 
Since the classical OCT uses a Michelson interferometer, it might be apparent that this config­
uration should be already used for QOCT, but currently neither implementations ñor proposals 
have yet been reported. 

It turns out that using the Michelson interferometer, the coincidence interferogram con­
tains more subtleties than the HOM interferogram. However, we found that by Fourier pro-
cessing the data we can extract the same information that can be achieved with the HOM 
interferometer. 

The configuration is shown in Fig. 1.3a. It uses a collinear source of entangled photons 
which are generated with the process of SPDC. The detection of the photon pairs is obtained 
using a coincidence detector. The recorded interferogram of a single reflective layer is shown 
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(a) Two-Photon Michelson interferometer (b) Coincidences interferogram 

Figure 1.3: (a) Configuration of QOCT using a two-photon Michelson interferometer. It uses 
collinear entangled photons generated with a nonlinear crystal pumped by a blue láser (407 
nm). The entangled photons enter the Michelson interferometer and the coincidences are 
monitored as a function of the delay r introduced by the reference arm. (b) Coincidences 
interferogram for a single reflective layer. The interferogram was calculated using Eq. (1.1). 
The black solid line is the second term in Eq. (1.1) which provides resolution enhancement 
by a factor of two. (c) The coincidences interferogram is produced by the superposition of 
the four possibilities in which the pair of photons can travel through the interferometer. Cases 
(iii) and (iv) produce the central región of the interferogram whereas cases (i) and (ii) are 
responsible for the doubling of the frequency of the fringes. 

in Fig. 1.3b. We found that the general expression of the coincidences interferogram C( r ) is 
given by four contributions 

(1.1) 

where r is the controllable delay time introduced by the reference arm. To understand the 
origin of the four terms refer to Fig. 1.3c. When the two photons arrive at the input port of 
the beam splitter, there are four possibilities for the output: both photons are transmitted (i), 
both are reflected (II), one is transmitted/reflected and the other is reflected/transmitted (III 
and IV). The superposition of these possibilities gives rise to the interference pattern in Eq. 
(1.1). M0 is the average number of coincidences. The second and third term are produced by 
the cases III and IV. M\ and M2 are envelope functions equivalent to the Fourier transform of 
the spectral density of the down-converted photons. The cases I and II produce the last term 
of the interferogram. 

We found that the second term in Eq. (1.1) is equivalent to the interferogram produced 
by the HOM interferometer. Notice that the envelope MI(2T) has a smaller coherence length 
compared to M 2 ( r ) . In fact, Mi provides an enhancement in resolution by a factor of two. In 
addition, the second term is spectrally separated from the other contributions and henee we 
can Fourier process the interferogram to filter out that term. Fig. 1.4 shows our experimental 
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(a) Coincidences interferogram (b) Fourier transform 

Length(iam) Frequency 

Figure 1.4: Experimental results. (a) Recorded coincidences interferogram. (b) Fourier trans­
form of the coincidences interferogram where we have subtracted the average coincidences 
rate. The Fourier spectrum shows the elements predicted by Eq. (1.1). Filtering the zero 
frequency component, we obtain the black solid line in (a), which is the second term in Eq. 
(1.1). As shown in (a), the coherence length of the filtered interferogram is reduced from 55 
to 27 /im, which is an enhancement in resolution by a factor of « 2 . 

results that corrobórate our theory. 
This means that we can use the Michelson interferometer to implement QOCT but with 

the additional effort of Fourier processing the interferogram. This imposes a restriction in 
the implementation of this method. It requires that the spectral bandwidth of the entangled 
photons must be smaller than their central frequency. However, this is a minor problem since 
this requirement is generally satisfied. 

1 . 4 M a i n C o n t r i b u t i o n s 

This thesis provides the theoretical background for the implementation of QOCT using a 
Michelson interferomter. The main contributions of this thesis are: 

• The characterization of the coincidences interferogram with the two-photon Michelson 
interferometer using entangled photons. 

• We show that the degree of entanglement between the generated photons can be mea-
sured using the coincidences interferogram. 

• The conditions and procedure for the implementation of Quantum-Optical Coherence 
Tomography with the Michelson interferometer. 

• Experimental measurements that prove our theoretical description. 

The findings of this research can be found in the articles: 

• D. Lopez-Mago and L. Novotny, "Coherence measurements with the two-photon Michel­
son interferometer," Phys. Rev. A, submitted. 
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• D. Lopez-Mago and L. Novotny, "Axial Quantum-Optical Coherence Tomography with 
the Michelson interferometer," to be submitted to Optics Letters. 

In addition to this research, I have studied the statistical properties of paraxial beams. 
The outcome of that research is found in the following journal papers: 

• "Higher-order moments and overlaps of rotationally symmetric beams," Miguel A. Ban-
dres, Dorilián Lopez-Mago and Julio C. Gutiérrez-Vega; J. Opt. 12, 015706 (2010). 

• "Higher-order moments and overlaps of Cartesian beams," Miguel A. Bandres, Dorilián 
Lopez-Mago and Julio C. Gutiérrez-Vega; J. Opt. 12, 015706 (2010). 

and conference proceedings 

• Lopez-Mago, D., Bandres, M. A., Gutierrez-Vega, J. C , "Propagation characteristics of 
Cartesian Parabolic-Gaussian beams," Proceedings of SPIE Vol. 7789, 77890Q (2010). 

• Lopez-Mago, D., Bandres, M. A., Gutierrez-Vega, J. C , "Propagation of Whittaker-
Gaussian beams," Proceedings of SPIE Vol. 7430, 743013 (2009). 

• Burnham, D. R., Reece, P , López Mago, D., et al., "Dynamics of airborne tweezing," 
Proceedings of SPIE Vol. 7038, 70381P (2008). 

where the last proceeding carne from a collaborative project with the University of Dundee, 
in Scotland. However, this thesis only focuses on the second part of my research work. 

1 . 5 T h e s i s O r g a n i z a t i o n 

The thesis covers the fundamental principies of parametric down-conversion and quantum in­
terference in the Chapter 2. Chapter 3 covers the interference of down-converted photons in 
the two-photon Michelson interferometer and shows experimental results. Chapter 4 explores 
the implementation of the two-photon Michelson interferometer in QOCT and shows the pro-
cedure for recovering the information of the layers and compare the results with the HOM 
interferometer. Chapter 5 provides the conclusions and future work. 



Chapter 2 

Theoretical Background 

The quantum theory of light is the most accurate description of nature to date. It explained 
the blackbody radiation problem and with its development has successfully described sponta-
neous emission, photon-atom interactions, photodetection and nonclassical radiation. A good 
understanding of light phenomena requires knowledge of basic quantum theory in combina-
don with the current state of the art in photonics technologies. The purpose of this chapter is 
to give a review of the underlying concepts and methods used in this thesis work. For further 
details refer to references [13, 14, 15, 16]. 

2.1 Basics of Nonlinear Optics 
The response of a médium to an applied optical field is mediated by the electric polarization 
of the médium. The electric polarization, defined as the dipole moment per unit volume, is 
a function of the strength of the optical field. In linear optics, the polarization P(T) depends 
linearly on the electric field where e 0 is the electric permittivity of free 

space and the constant of proportionahty x is known as the linear susceptibility. JNonlinear 
optics deals with the nonlinear response of the polarization. In this sense, the polarization is 
expressed as a power series expansión in the electric field: 

(2.1) 

which is a generalizaron of the linear case. The constants of proportionality x^ and x^ are 
known as the second-order and third-order nonlinear susceptibilities, respectively. In general, 
the susceptibilities are not scalars. They depend on the vector properties of E. Therefore, 
the susceptibilities become tensors, where x ^ is a second-rank tensor (xlf), IS a third-
rank tensor (XIJK)> and so on. In Eq. 2.1 we assumed that the médium is dispersionless and 
lossless which justifies that PNL(L.) depends on the instant valué of E. The typical valúes for 
the nonlinear susceptibilities are orders of magnitude smaller than the linear susceptibility. In 
order to observe nonlinear optical phenomena it is customary to use high intensity sources 
such as lasers. 

The wave equation for a nonlinear médium is [15]: 

(2.2) 

8 
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where N is the linear refractive index and C is the speed of light in vacuum. If we compare 
the previous equation with the equation of a driven oscillator, the term D2PNL/DT2 acts as a 
driving forcé which generates electromagnetic radiation. Then, the nonlinear terms produce 
electromagnetic fields with different oscillation frequencies from those of the applied electric 
field E. Let us review an example to illustrate the variety of nonlinear effects. 

Consider that an optical field incident upon a nonlinear médium is composed of two 
frequencies UI and U2 (Fig. 2.1a). The electric field is written in the form 

(2.3) 

where ce . means complex conjúgate of the previous terms. Then, taking up to the second-
order susceptibility in Eq. (2.1), the nonlinear polarization is given by 

(2.4) 

The first two terms genérate electromagnetic fields at frequencies 2U¡\ and 2UI2. This is known 
as second-harmonic generation (SHG). The next two terms produce radiation at frequencies 
U¡I + U>2 and U\ — lo2, which are known as sum-frequeney generation (SFG) and difference-
frequeney generation (DFG), respectively. The last term does not produce radiation, however 
it generates a static electric field across the nonlinear médium, known as optical rectification. 

(a) Stimulated emissions (B) Spontaneous Parametric 
Down-Conversion 

Nonlinear médium Nonlinear médium 

Figure 2.1: Second-order Nonlinear Processes. (a) When an electromagnetic field interaets 
with a nonlinear médium having a nonlinear susceptibility x^2K the resulting electromagnetic 
field contains second harmonics (2UJI,2LO2), sum-frequeney (U)I +uj2) and difference-frequeney 
(lüi — <jü2) components. (b) In Spontaneous Parametric Down-Conversion a pump photon with 
frequency (ujp) is spontaneously split into two photons with frequencies w¿ and US. The down-
converted photons satisfy energy conservation UIS + w¿ = UIP. 

The process of difference-frequeney generation found many of its practical applications 
in the amplification of signáis. For example, in optical parametric amplification a láser with 
frequency UIP is used to pump a nonlinear crystal. At the same time, a small signal wave with 
frequency US is introduce into the médium. The frequency US is smaller than the frequency of 
the pump. Then, by means of DFG a second wave is generated at frequency This 
new optical field is called the idler wave. The idler wave stimulates the generation of fields 
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at the signal frequency (us ). The new signal waves repeat the process. Henee, the 
generation of the idler wave reinforces the generation of the signal wave, and viceversa. The 
signal wave is exponentially amplified along the nonlinear médium in conjunction with the 
idler wave. 

What makes the process of DFG of particular interest in this work, is the possibility of 
producing an entangled two-photon state. In parametric amplification, we stimulate the emis-
sion by introducing the signal wave together with the pump. However, even without the signal 
wave, there is the possibility that a spontaneous process creates the signal and idler fields (Fig. 
2.1b). In the terminology of photons, it is not possible to say which photon becomes the idler 
and which photon becomes the signal. This indistinguishability generates the entanglement 
between the two photons. This spontaneous process is known as Spontaneous Parametric 
Down-Conversion (SPDC) and is reviewed in section 2.3. Before that, let us introduce the 
ideas behind quantum entanglement. 

2 . 2 I n t r o d u c t i o n t o Q u a n t u m E n t a n g l e m e n t 

Entanglement refers to the phenomenon where two or more particles are linked in a way that 
the measurement of one instantly changes the quantum state of the other, no matter how far 
away they are. Entanglement appeared at the early stage of quantum mechanics. Einstein, 
Podolsky and Rosen [17] published a seminal paper criticizing the interpretation of quantum 
mechanics about the wave function. In that paper they proposed a thought ("Gedanken") 
experiment to probé that quantum mechanics is incomplete. They proposed that there must 
be some hidden variables which are not being taking into account. Later, John Bell showed 
that the predictions of hidden variable theories are in conflict with the predictions of quantum 
mechanics [18]. Bell developed an inequality (known as Bell's inequality) which is based 
on statistical measurements. Bell's inequality allowed to test the predictions of quantum me­
chanics versus hidden variable theories. It turned out that the experimental results agree with 
the quantum mechanical predictions. 

Detector 1 measures V ™ — — — P h o t o n 2 collapses to H 
i Correlation 
: , , measurements 

Correlations 

Figure 2.2: Example of polarization-entangled photons. Two photons are entangled in polar­
ization when the detection of one photon changes the polarization state of the second photon. 
In this example, the entangled photons are anti-correlated. 
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A simple example to illustrate the idea of entanglement is shown in Fig. 2.2. There 
are several kinds of entangled systems. They can be atoms, ions, molecules, etc. In this 
particular example, we consider entanglement between photons. The entangled photons can 
be generated by particle collisions or by atomic transitions. The source generates two pho­
tons propagating in opposite directions. Detectors DI and D2 measure the polarization of 
the photons traveling to the left and to the right, respectively. By looking at the results of 
each detector, we can tell that the state of the photon is a superposition of horizontal (H) and 
vertical (V) polarizations. In terms of quantum mechanics, the state of each photon is written 
as \IP) = (\H) + \ V))/Y/2. If we measured the correlations, we would find that the photons 
are anti-correlated which means that whenever we get vertical polarization in DI we get hor­
izontal polarization in D2. The state of the system is the superposition of the states HV and 

where the subindexes 1 and 2 refer to the detectors DI and D2, respectively. The previous 
equation is what Einstein criticized about quantum mechanics. Eq. (2.5) implies that if DI 
measures V polarization, the state of the second photon collapses to H even when this photon 
has not been detected by D2. In other words, the detection of photon 1 changes the polariza­
tion state of photon 2 and viceversa. It was probed by Bell's inequality measurements that the 
quantum state given in Eq. (2.5) agrees with the experimental results, excluding all the hidden 
variables theories. 

The first experiments that demonstrated the validity of quantum mechanics were done 
using polarization entanglement[19, 20, 21], The most famous is the experiment of Aspect et 
al. [20] which is equivalent to the example given in Fig. 2.2. In this experiment, two photons 
were created in an atomic cascade of calcium. Due to the angular momentum conservation, 
the photons are emitted in opposite directions and with orthogonal polarizations. The quantum 
state of the system is equivalent to Eq. (2.5) but with a different phase. 

The important concepts in quantum entanglement are superposition and indistinguisha-
bility. When the possible outcomes of a process are indistinguishable, the quantum state is 
constructed by the superposition of each state that represents an outcome. For example, in 
Aspect's experiment, there is no way to tell the polarization and direction of each photon. 
This indistinguishability produces the superposition shown in Eq. (2.5). 

After Bell's inequality [18], new criteria to test quantum entanglement were developed 
[22, 23, 24, 25]. Instead of deriving a Bell-type inequality, let us explain the simplest math-
ematical test. The general idea is to show that the combined quantum state of the system 
cannot be written as the product of the individual state of each particle. Suppose that a source 
generates photon pairs with the following quantum state: 

It is straightforward to show that the state can be factored as I*) = (|//)i + |V)i)/%/2(|//) 2 + 
| V)2)/\¡2. Therefore, the state | is separable or not entangled. An example of an entangled 
state was given by Eq. (2.5). In this case, we can see that the state cannot be factored. Then, 
the state is said to be inseparable or entangled. In the context of indistinguishability, the prod­
uct state (2.6) means that is possible to tell the polarization of each photon before a measure-
ment is done (notice that the two photons have diagonal polarization \D) = (\H)+ \V))/Y/2). 

VH 
(2.5) 

(2.6) 
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It is important to make the distinction that, entanglement refers not to the partióles themselves, 
but to a certain property or degree of freedom. For example, we can have two polarization-
entangled photons having separable frequency states. Therefore, the indistinguishability is 
not associated to the partióles, but to a property of the system. 

For the case of photons, is possible to genérate entanglement in polarization, spatial 
mode and energy. It is even possible to produce entanglement on each degree of freedom[26]. 
The general state of an entangled two-photon system is [27]: 

2.3 Spontaneous Parametric Down-Conversion 
The process of Spontaneous Parametric Down-Conversion is a nonlinear effect which pro­
duces pair of photons highly correlated in time of emission, frequency and momentum. It was 
predicted by the quantum mechanical description of optical parametric amplification [15J and 
was known as parametric luminescence or optical parametric noise[28J. The first to study the 
statistics of down-converted photons was Zel'dovich and Klyshko[29] in 1969. A year later, 
SPDC was experimentally demonstrated by Burnham and Weinberg [30]. The correlation 
properties make the two photons very attractive for testing quantum entanglement[16]. After 
the work of Burnham and Weinberg, entanglement in SPDC was demonstrated in many de­
grees of freedom, e.g. polarization, energy, linear momentum and orbital angular momentum[31 ] 

The basic principies in the SPDC process can be understood by energy and momentum 
conservation (Fig. 2.3). When a nonlinear médium with a second-order susceptibility is 

(a) SPDC process (b) Energy and momentum conservation 

Figure 2.3: Spontaneous Parametric Down-Conversion. (a) A pump photon with frequency 
UJP propagating inside a nonlinear crystal is spontaneously down-converted in two photons UJA 

and U>I. (b) Energy and momentum diagrams of a single SPDC process. The process conserves 
energy and momentum, which implies that the frequencies of the photons satisfy US + UI = TOP 

and their wavevectors K S + K¿ = K„. 

(2.7) 

where the \A) and \F3) are orthonormal vectors in the Hilbert space of photon 1, and I7) and 
\5) likewise for photon 2. Then, the state cannot be factored into the product |X)i |£)2-

SPDC is one of the most versatile tools to genérate photon entanglement in many degrees 
of freedom. SPDC is of quantum mechanical nature and in the next sections we'll review its 
properties. 
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pumped by a láser, with a small probability (in the order of 10~ 1 2 ) , a pump photon is split 
into two photons, which are called signal and idler, respectively. The process conserves the 
energy and momentum of the original photon, which implies the following relations in the 
frequencies (UJ) and propagation vectors (k) of the photons: 

(b)Type II SPDC 

Phase-Matching Trajectory of the Polarization in the 
Condition emissions Transverse Plañe 

Figure 2.4: Types of Geometries in Spontaneous Parametric Down-Conversion. (a) Type I 
SPDC. The down-converted photons have parallel polarization but orthogonal to the pump 
photons. The propagation directions form two concentric cones. (b) Type II SPDC. The 
down-converted photons have orthogonal polarization and their propagation directions form 
two cones symmetrically tilted with respect to the direction of the pump photons. 

SPDC the photons have the same polarization but orthogonal to the pump. The directions of 

(2.8) 
(2.9) 

where P, S and I stand for pump, signal and idler. The second equation is known as the phase-
matching condition and determines the spatial and spectral distribution of the down-converted 
photons. In materials with normal dispersión, Eqs. (2.8) and (2.9) cannot be satisfied simul-
taneously. This problem is overeóme by using anisotropic crystals, where the refractive index 
N depends on the polarization of the photons. According to the polarization of the down-
converted photons, there are two types of SPDC which are shown in Fig. 2.4. In Type I 

(a) Type I SPDC 

Phase-Matching Trajectory of the Polarization in the 
Condition emissions Transverse Plañe 
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emission of the down-converted photons form two collinear cones. The cones are collinear 
with the optics axis defined by the pump. In the degenerate case, when the two photons have 
the same frequency, the cones overlap. In Type II SPDC the down-converted photons have 
orthogonal polarization and one of them has the same polarization than the pump photon. The 
trajectories of the photons define two cones whose axis are tilted with respect to the pump. 
The tilt lays in the plañe defined by the pump and the optics axis of the anisotropic crystal. In 
the transverse plañe, the two photons are always emitted in opposite directions, except for the 
particular case where they propágate collinearly with respect to the pump photon. 

The magnitude of the wavevector inside the crystal is |k| = N(UJ)U/C, where c is the 
speed of light in vacuum. The phase-matching condition in Eq. (2.9) can be rewritten as: 

(2.11) 

where 9 is the angle between the optics axis and the wave vector. The limiting valúes of 
NE(UJ, 9) are NE(U, 9 = 0) = NO{U) (where NO is the index of refraction for the ordinary mode) 
and NE(U}, 9 = 90) = NE(TÜ). The crystal is uniaxial positive if NE > NO and uniaxial negative 
if NE < NO- The valúes of NO and NE for a given frequency can be found in the literature[32]. 
However, their valúes can be approximated by the Sellmeier's equations [32, 33]: 

2.3.1 Geometrical interpretation 

For a fixed frequency, the dispersión relation |k| = N(K)U¡/C is the equation of a surface in the 
k-space, known as the k-surface. Each mode has its respective k-surface. The intersection of 
the wavevector k with the k-surfaces determines the valúes of NO and NE. To visualize this 

(2.10) 

where the direction of the photons are indicated by the unitary vectors p,s , and i. The theory 
of anisotropic crystals can be found in many references. For the purposes of the thesis, the 
case of uniaxial crystals is reviewed. For biaxial crystals, refer to Born and Wolf [14]. 

An uniaxial crystal supports two orthogonal propagation modes, the extraordinary and 
ordinary mode. The ordinary mode has refractive index NO{U) and polarization perpendicular 
to the plañe of the optical axis of the crystal. The extraordinary mode has a polarization laying 
in the plañe of the optics axis and has a refractive index which also depends on the direction 
of propagation. The extraordinary index of refraction has the following dispersión relation: 

(2.12) 

where the coefficients A,B, C and D are experimentally calculated. The manufacturer of 
the crystal provides the valúes of the coefficients [34]. Using the previous equations, we can 
calcúlate the angles and frequencies that satisfy the phase-matching condition. Practically, 
we also need to take into account the refraction from air to crystal and the internal refraction 
from the crystal to air in order to calcúlate the angles of observation. Appendix A shows the 
numerical valúes that were calculated in this work. There is a geometrical solution to the 
problem, which is useful to understand the symmetries of the two types of SPDC. 
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idea, refer to Fig. 2.5, where we can see the plañe (k,, kx) for negative and positive uniaxial 
crystals. The optics axis of the crystal is the direction of kz. The surfaces intersect this plañe 
in an ellipse and a circle. The circle corresponds to the ordinary mode and the ellipse to the 
extraordinary mode. Consider that the wave vector have a direction u forming an angle 0 with 
respect to the optics axis. The intersection of u with the circle gives the valué of |k Q | and 
the intersection with the ellipse gives the valué of |k e | . With this interpretation, we see that 
for a fixed frequency, the refractive index of the extraordinary mode change with the angle 
of propagation. The two modes share the same index of refraction when the wave propagates 
parallel to the optics axis. Using this interpretation, we can now observe how to satisfy the 

(a) NEGATIVE UNIAXIAL CRYSTAL (b) POSITIVE UNIAXIAL CRYSTAL 

kz kz 

Figure 2.5: ¿-Surfaces in uniaxial crystals. An electromagnetic wave propagating inside an 
uniaxial crystal has two propagation modes. The propagation plañe is defined by the optics 
axis of the crystal and the propagation direction u. The ordinary mode has polarization or­
thogonal to the propagation plañe whereas the extraordinary mode has parallel polarization. 
The intersection of the line with direction u with the fr-surfaces defines the valúes of the re­
fractive indexes na and ne for the extraordinary and ordinary modes, respectively. (a) In a 
negative uniaxial crystal ne < n0. (b) In a positive uniaxial crystal ne > nQ. 

phase-matching condition. Refer to Fig. 2.6. It is convenient to choose the polarization of the 
pump in the extraordinary mode. In this way, we can control the angle of emission by rotating 
the crystal. Since we can control the angle between the optics axis and the pump, the solution 
for |k p | is found by the intersection with the /c-surface. For the down-converted photons, we 
trace the fc-surface of each one in the same plañe. The origin of one of the surfaces is placed 
at the end of k p . The solution of the phase-matching equation is given by the intersection of 
the two surfaces. In Type I SPDC the k-surface is given by the ordinary mode which form a 
circle in the (kz, kx) planes. We can see that the intersection of the two circles in Fig. 2.6a 
produces two solutions which are symmetrically oriented with respect to the pump beam. If 
we consider the complete space, we have spheres instead of circles for the /c-surfaces. The 
intersection of the circles define the two cones shown in Fig. 2.4a. For Type II, one of the 
k-surfaces corresponds to the extraordinary mode. In this case, the intersection of the ellipse 
with the circle produces two solutions which are asymmetric with respect to the pump (Fig. 
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2.6b). In the same way, if we consider the 3D-space, the intersection of the ellipsoid with the 
sphere form the two tilted cones shown in Fig. 2.4b. 

(a) Type I SPDC (b) Type II SPDC 

KX 

Figure 2.6: Geometrical interpretation of the phase-matching condition. The solution of 
the phase-matching condition is the intersection of the A-surfaces produced by the down-
converted photons. (a) In Type I SPDC the solution is the intersection of two circles, which 
in the 3D-space form the concentric cones in Fig. 2.4a. (b) In type II SPDC the solution cor-
responds to the intersection of an ellipse and a circle which produces the tilted cones shown 
in Fig. 2.4b. 

2.3.2 Quantum Mechanical Description of SPDC 

A first approach to study the process of SPDC is to consider the interaction Hamiltonian with 
the signal and idler fields having two possible modes [13]: 

(2.13) 

where H.c. stands for Hermitian conjúgate of the previous terms. and are the annihi-
lation operator for the signal and idler fields, respectively. The constants g\, g2 are related to 
the second-order susceptibility \ ^ and the properties of the pump. The pump is treated as a 
classical field. In the interaction picture, the quantum state evolves as 

(2.14) 

The efficiency of photon generation is proportional to r/J 2 = \gi,2T\, where r is the interaction 
time of the process. Generally, the efficiency is in the order of ~ 1 0 " 1 2 (one photon pair is 
generated for each 10 1 2 photons). Expanding the exponential in Eq. (2.14) and taking the 
initial state as the vacuum, the state becomes 

(2.15) 
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This final state, means that, if we measure one of the photons and find that is in the mode a, 
the other photon is in the mode 7 and this happens with probability r¡\. The same argument 
holds for the second term. The modes a and (3 are orthogonal as well as the modes 7 and 5. 
For example, if we consider that the mode a = H (so 6 = V) and 7 = V (5 = H), we arrive 
at the entangled state given in Eq. (2.5). 

In general, the process of SPDC produces entanglement in the energy degree of freedom. 
The polarization entanglement is usually engineered by using additional elements (which 
means that the state becomes entangled in two degrees of freedom). For the frequency de­
gree of freedom, the state in Eq. (2.15) can be written as 

(2.16) 

2.4 One-photon and two-photon interference 
The double-slit experiment by Thomas Young started the study of interference. Despite its 
long history, interference still remains to challenge our understanding. Feynman referred to 
interference as the only mystery of quantum mechanics. The Feynman's rules of interference 
are [35]: 

1. The probability P of a particular outcome from the interaction of a particle with an ap-
paratus is given by the square of the absolute valué of a complex probability AMPLITUDE 

P = Probability. 
/ = Probability amplitude, 
P = | / | 2 . (2.17) 

2. When the same outcome can occur in INDISTINGUISHABLE alternative ways, the probability 
amplitude is the sum of the probability amplitudes for each way considered separately. 
There is interference. For example: 

We proceed to apply the rules of interference for optical experiments. In optical ex-
periments, light coming from several sources is allowed to come together and mix, and the 

where the energy conservation Eq. (2.8) implies that ¡ :t is clear that Eq. (2.16) vnere me energy conservauon nq. tz.e 
epresents a frequency-entangled state. 

(2.18) 

3. If an experiment is performed which is capable of determining whether one or another 
alternative is actually taken, the probability of the event is the sum of the probabilities 
for each alternative. The interference is Iost. 

P = PL + P2- (2.19) 
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resulting light intensity is measured at various positions. The interference is characterized by 
the phase difference between the sources. However, according to Feynman's rules of interfer­
ence, the interference is lost when the different pathways of the light are distinguishable. 

The principies of quantum optical interference can be generalized as follows [36]. Con­
sider two fields produced by the sources SA and SB, as shown in Fig. 2.7. A detector DI 
is used repeatedly to measure the probability PI{x\) of detecting a photon in a short time 
interval as a function of position x\. From the source SA (SB) to detector DI the photon 
acquires a phase 4>A\ (4>BI)- Then, the probability AMPLITUDE of the photon coming from SA 
(SB) is /A(<PAI) (ÍB{BI)). If the sources are indistinguishable, according to the Feynman's 
rules of interference, we sum the probabilities amplitudes JA and FS and the resulting proba­
bility is P = \/A(<PAI) + /B(<ABI)|2- The interference is characterized by the phase difference 
<f>Ai — <PBI- On the other hand, if we can tell from which source the photon comes, the in­
terference is lost and the resulting probability is P = \¡A{(t>A\)\2 + \ Í B { 4 > B \ ) \ 2 • Because 
the probability depends on the second power of the optical field and on the detection of one 
photon at a time, this kind of experiments are called second-order or one-photon interference. 

(a) One-photon interference (b) Two-photon interference 

Figure 2.7: (a) One-photon interference. Detector D measures the probability of detecting 
a photon as a function of position x. (b) Two-photon interference. Detectors DI and D2 
measure the probability of detecting one photon in x\ and a second photon in x 2 . 

Two photodetectors DI and D2 working in coincidences measure the JOINT probability 
^ 2 ( ^ 1 , ^ 2 ) of detecting one photon at position x\ and a second photon at x 2 . In this case, 
the probability F 2 depends on the fourth power of the field, and henee we cali this kind of 
experiments fourth-order or two-photon interference. The interference is characterized by the 
phase differences 4>AI — 4>B\ and 4>A2 — 4>B2-

We remark that the quantum interference is not the interference between particles (pho­
tons in this case). In one-photon interference, only the probability amplitudes of the same 
photon interfere with each other. In the case of two-photon interference, the probability am­
plitudes of the photon pairs interfere with each other. 

The central component in all the interference experiments is the optical beam splitter. 
In the classical wave picture, the effect of the beam splitter can be understood as the splitting 
of the incoming wave into a reflected and a transmitted partial wave. Each of these waves 
contains half the energy (Fig. 2.8a). However, the process of splitting becomes conceptually 

SA 0 A 1 

S a - a 

0 A 2 4~D1~| X1 

CE] x 
1 0 B 1 

S b < P b • • £ D 2 ] x 2 
S b 0 b 2 
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difficult in the photon picture. 

(a) The wave picture (b) The photon picture 

Figure 2.8: Wave and photon pictures of the 50:50 beam splitter. (a) In the wave picture an 
incident electromagnetic wave is split in two electromagnetic waves containing half its energy. 
(b) In the photon picture an incident photon is split into two "virtual" photons. The probability 
of detecting a virtual photon is 1/2. However, detecting one of the virtual photons caneéis the 
probability of detecting the other virtual photon. 

Let us represent a monochromatic photon with angular frequency CJ entering the beam 
splitter through the input port A as \u, a) (Fig. 2.8b). The beam splitter transforms an initial 
quantum state |V^)in = |w, a) into 

(2.20) 

where r, t are the reflection and transmission coefficients (for a perfect 50:50 beam splitter, 
The states epresents the output ports C and D, 

respectively. This means that with a probability of \r\ the photon can be found in C and with 
probability J Í | 2 the photon can be found in D. 

2.4.1 The one-photon Michelson interferometer 

Let us review the one-photon Michelson interferometer in the context of quantum mechan-
ics (Fig. 2.9). Consider a photon wavepacket state written as a weighted superposition of 
monochromatic modes 

with )eing the probability amplitude of the state \ui). The spectral density 

(2.21) 

is normalized has a central frequency u and bandwidth at full 
width at half máximum (FWHM). 

The beam splitter transforms each monochromatic mode according to the Eq. (2.20). 
\u, D) evolves along path 1 and acquires a phase exp After exiting the beam splitter 
through output port B becomes In the same way, \u, c) acquires 
a phase EX.P(IU!i2j and at the output port B 
state after the Michelson interferometer is 

Then, the wavepacket 

(2.22) 
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where r = ti — t\. For simplicity we discarded the label of the spatial mode b. 
A photodetector works by photon absorption which doesn't distinguish between the dif-

ferent frequency components (we are assuming a perfect photodetector, in reality, the ab­
sorption efficiency depends on the frequency). Therefore, the probability P of detecting a 

(2.23) 

(2.24) 

with 7 m a x and / m i n being the máximum and minimum intensities of the fringes. For illustra-
tion, we consider a spectral density with a Gaussian distribution. The resulting interference 
pattern is shown in Fig. 2.9b. 

(a) One-photon Michelson interferometer (b) Interference pattern 

-Lc 0 Lc 
Path-length difference x 

Figure 2.9: (a) Schematic of the one-photon Michelson interferometer. M: mirror, x: path-
length difference between the interferometer arms, A-D: ports of the beam splitter. We assume 
that the spectral density <Í>(U/) of the source has a Gaussian distribution. (b) Interference 
pattern. V: visibility, LC: coherence length, DC: average intensity. The coherence length is 
the distance where the visibility of the fringes decreases half of its máximum. 

wavepacket state is 

moaes mar enier me pnoioaerector. 
The probability of detecting the state 2.22 is 

In the derivation we used the orthogonality condition The function 
corresponds to the rouner transtorm oí me spectral density. 

The interferogram P{R) features two contributions: a DC term and an interference term. 
The DC term is the average number of single counts or average intensity. The interference 
term produces fringes with oscillation frequency ZJ which are modulated by T(T). Practically, 
we can relate r to the path-length difference hrough T ~ X /C where L\ and L2 

are the lengths of the interferometer arms and C is the speed of light. The half width at half 
máximum OFT(X) defines the coherence length RHE coherence length 
depends on the shape of <P(WJ, however, as a rule of thumb ln expenments, 1 [X) 
is the visibility V of the fringes, given by 
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2.4.2 The Hong-Ou-Mandel interferometer 

Let us review the two-photon Hong-Ou-Mandel (HOM) interferometer [9]. The HOM inter­
ferometer, shown in Fig. 2.10, involves a pair of down-converted photons entering a beam 
splitter from two sepárate input ports. Because of the involvement of two photons, there are 
four possibilities for the output of the beam splitter: both are transmitted, both are reflected, 
and one is transmitted while the other is reflected (Fig. 2.10b). The first two possibilities 
are indistinguishable, resulting in the addition of their probability amplitudes. However, be-
cause of the 7R-phase difference given when both photons are reflected, the amplitude addition 
leads to destructive interference, and the two cases completely cancel each other when their 
amplitudes are the same. 

(a) Hong-Ou-Mandel interferometer (b) Four possible scenarios 

Figure 2.10: (a) Schematic of the Hong-Ou-Mandel interferometer. Two down-converted 
photons enters a beam splitter through input ports A and B. Two photodetectors, Di and D2 

working in coincidences measure the coincidences counts C(T) as a function of the time delay 
T introduced in the reference arm. (b) The photon pairs have four possibilities to exit the beam 
splitter. The superposition of these possibilities produces the interference in the coincidences 
rate. 

As a first approach, consider that the initial state is tp)in = \uj,a)\ui,b), where \ui,a) 
and \u, b) are monochromatic photons entering the beam splitter through the input port A and 
B, respectively. The beam splitter transforms each monochromatic mode according to the 
transformation given in Eq. (2.20). The resulting output state is 

The first two terms are the cases i and ii in Fig. 2.10b. The last two terms are the cases iii and 
iv and they contribute to the coincidences. Since they are indistinguishable, the probability of 
detecting a coincidence is P = \r2 + t2\2. For a 50:50 beam splitter r = i/y/2 and t = l/y/2 
and P = 0. 

In practice, the down-converted photons are never monochromatic. Let us represent the 
multimode two-photon state as the coherence superposition 

(2.25) 

(2.26) 
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where <P(uji,U2) is a weighting function peaked at U¡i = LO2 = OJP/2, UJV is the frequency of 
the pump source and LJI + UJ2 = COP. We assume a monochromatic pump láser. Eq. 2.26 is 
the generalization of Eq. (2.16). The reference arm introduces a time delay r and \UJ, a) ac-
quires a phase exp(iwr). In the same manner as before, the beam splitter transforms the state 
\UJ, a)\UJP — OJ, B) as given in Eq. 2.25. Keeping the terms that contribute to the coincidences 
and considering the phase delay in the input port A, the output state is 

The next chapter analyzes the characteristics of the two-photon Michelson interferometer. 

(2.27) 

We use the fact that 
thal is modulated by spectral filters in front of the detectors. This approximatiori 

Then, we assume 

IS vhere is valid when the bandwidth oí the down-converted photons 
the bandwidth of the filters. We assume that the transmissivity F(UJ) of the filters is symmetric, 
center at UJP/2 and having a normalized Gaussian distribution, that is 

(2.29) 

with i>eing the standard deviation and the full width at half máx­
imum. Finally, substituting n Eq. (2.28) and considering a 50:50 
beam splitter I and the coincidences rate or fourth-order interferogram 
becomes 

The interferogram is shown in Fig. 2.11 which contains a dip when r = 0. The dip is known 
as the HOM dip and was experimentally demonstrated by Hong ET AL. [9]. Compared to the 
Michelson interferogram, the HOM interferogram contains two important characteristics: 

• Because of the frequency correlations, the interferogram doesn't contain fringes. In 
addition, as we will see in Chapter 4, the interferogram is not affected by frequency 
dispersión. 

• The coherence length of the dip is half the coherence length of the Michelson inter­
ferogram. This means that the HOM interferogram produces an enhancement in axial 
resolution by a factor of 2. 

(2.30) 
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Hong-Ou-Mandel dip 

Figure 2.11: Coincidences interferogram for the HOM interferometer. The interferogram 
traces out a dip when both photons travel the same optical path length (r = 0). The coher­
ence length (FWHM/2) of the HOM dip is half the coherence length given in a Michelson 
interferometer. 



Chapter 3 

The Two-Photon Michelson 
Interferometer 

This chapter describes the properties of the two-photon Michelson interferometer. We start 
discussing the working principies by considering a monochromatic approach. Then, we ex-
tend the theory to include the spectral properties of the SPDC process. Finally, we show 
experimental results that prove our theoretical predictions. 

The two-photon Michelson interferometer is shown in Fig. 3.1a. It makes use of a source 
of photon pairs. At the output of the interferometer, we measure the two-photon state by using 
a second beam splitter and two photodetectors working in coincidences. The introduction 
of the second beam splitter decreases the coincidences rate by half, but doesn't change the 
interference pattern. Interference in the coincidences rate occurs because of the different 
ways the photon pairs can propágate through the interferometer. 

Consider that a pair of photons enter the beam splitter through the input port A. The 
photon pairs can exit the Michelson interferometer by four different ways: both photons are 
transmitted and then reflected, both photons are reflected and then transmitted or one pho­
ton is transmitted/reflected and the second photon is reflected/transmitted (Fig. 3.1b). The 
indistinguishability of these scenarios gives rise to interference in the coincidence counts. 

Consider the input state given by the product of two monochromatic modes | ^ ) i n = 
1̂ 2). The photon pairs enter the beam splitter through the input port A. After the interfer­

ometer, each monochromatic mode becomes \u) —>• ríexp(¿w¿i) + ¿rexp(¿wÍ2) where ti is 
the time required to travel the reference arm whereas t2 is the time required to travel the fixed 
arm, r and t are the reflection and transmission coefficients of the beam splitter, respectively. 
The final state 

(3.1) 

is equivalent to the four scenarios given in Fig. 3.1b. This approximation, however, is not 
suitable for differentiating between entangled and separable states. 

The interference pattern depends on the correlation between the two photons. If the 
two photons are not entangled, the interference pattern is the product of two single-photon 
interferograms (refer to Fig. 2.9). If the photons are entangled, the interference pattern refiects 
the degree of entanglement. Therefore, by recording the interferogram we can measure the 
degree of entanglement between the photon pairs. 

24 
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(a) Two-Photon Michelson interferometer (b) Four different scenarios 

Figure 3.1: (a) The two-photon Michelson interferometer. The interferometer uses a source 
of photon pairs. The detection of the photon pairs is implemented by two photodetectors, 
Di and D2 working in coincidences. The coincidences rate C(T) is a function of the delay 
time r introduced by the reference arm. (b) The interference of the coincidences rate occurs 
because the photon pairs can exit the interferometer by four different ways: both photons are 
transmitted and then reflected (i), both are reflected and then transmitted (ii) or one photon is 
transmitted/reflected and the second photon is reflected/transmitted (cases iii and iv). 

Let us distinguish between separable and entangled states. The join state of two photons 
CAN HP WRITTPN AS 

where is the joint probability amplitude. The joint spectral density 

(3.2) 

2 is the probability of detecting one photon with frequency UJI and the second pho­
ton with frequency LÜ2. If < can be factored into sepárate functions of UJ\ and UO2 the 
state \ip) is separable, otherwise it is entangled. 

A separable state can be expressed as the product of two photons 
and the joint spectral density becomes <3>(OJI, CÜ2) = QI(LÜI)<&2(LÜ2). Un the contrary, an en­
tangled state cannot be factored and $(TT>i, UI2) is a function which depends on the correlation 
between cui and W 2- In the plañe (UJI , OJ2) the joint spectral density is symmetric for a separable 
state and asymmetric for an entangled state (Fig. 3.2). 

Let us now to consider the multi-mode representation of the SPDC process. For the 
purpose of this work, we consider degenerate Type I down-converted photons in collinear 
propagation. The ioint spectral density of the down-converted photons depends on 
the pump spectral density and the physical properties of the crystal. In what 
follows, P(uj) has a FWHM bandwidth Aup and central frequency cop. The joint probability 
amplitude 4 tas been calculated by Ou [ 16] as 

(3.3) 

(3.4) 

with h(uji,üj2luji) being the phase-matching function (sinc(X) = s in(X) /X) and AK = 
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Figure 3.2: Joint spectral density for a separable (a) and entangled (b) two-photon state. In 
this example, the entangled photons are anti-correlated. 

[ne(ui3)oj3 — n0{uji)uii — n0(uj2)oj2\/c is the phase matching condition for an uniaxial crys­
tal with extraordinary and ordinary index of refraction, N E and n0, respectively, and L is the 
length of the crystal. Notice that 5(u>i + uj2 — W 3 ) comes from the energy conservation. After 
integrating over the delta function in Eq. (3.3), the joint spectral density can be written as 

(3.5) 

where H(OJI,UJ2) = \h(ui, W 2 , + ^ 2 ) | 2 - The function is equivalent to a bandpass function 
with bandwidth ALÜH and central frequency L¿H — u¡p/2. A W # is typically very broad, in 
the order of 1 0 1 2 ~ 1 3 Hz. We will show that the degree of entanglement is proportional to 
7 = A W / f / A W P . Therefore, the degree of entanglement is in general higher when using a 
CW láser than a pulsed láser (since A W P U ' S E < ^ > > Aojp '). 

Figure 3.3 shows the joint spectral density of Type I down-converted photons. We as-
sume that the spectrum of the pump photons P ( W ) is Gaussian. For a narrow pump bandwidth 
the spectrum is concentrated along the line u\ + LÚ2 — ZJp, on the other hand, for a large pump 
bandwidth the spectrum is smeared out and the degree of entanglement is considerably re-
duced. 

In experiments, the detection of photon pairs is accomplished by two photodetectors 
working in coincidences. Optical bandpass filters are introduced in front of the detectors 
to reduce the background noise. However, the filters also modify the joint spectral density 
by selecting a región in the plañe (CÜ1,CJ2)- Consider that F I ( W I ) and ^ 2 ( ^ 2 ) are the spectral 
transmissivities of the filters in detection paths 1 and 2, respectively. The joint spectral density 
i_ _ 

(3.7) 

Then, we assume that in the región defined by the bandpass filters, the phase matching func­
tion H RÍ 1. This is valid if Aujf < AU¡H, where Alüf is the bandwidth of the filters at 

becomes 
(3.6) 

Let us write the state of the down-converted photons substituting Eq. (3.3) into Eq. (3.2) 
and inteeratine o ver u)o. which produces 
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Joint spectral density Pump spectral density 

FWHM. This assumption is satisfied in most of the experiments that used CW lasers as the 
pump source. For pulsed lasers, however, we need to calculated the phase matching function. 
Furthermore, the filter bandwidth is larger than the linewidth of the pump láser, which yields 

Figure 3.3: Joint spectral density for type I down-converted photons is 
proportional to the pump spectral density P(OJ) and the phase matching function 
of the crystal. The degree of entanglement is related to the ratio when 
and iré the bandwidths of the pump láser and the phase matching function, respectively. 

We consider that the bandpass filters have the following normalized 
spectral transmissivity 

(3.8) 

where the central frequency vlaking use of the symmetry of the bandpass filters 
allows us to rewrite the joint spectral density in the 

compact form 

Thus, the joint spectral density and henee the degree of entanglement can be controlled with 
two experimental parameters: the bandwidth of the pump láser and the bandwidth of the 
bandpass filters. 

We proceed to analyze the complete coincidence interferogram C(T) of the two-photon 
Michelson interferometer by taking into account the spectral distribution. The output state in 
Eq. (3.1) can be generalized as 

(3.9) 

(3.10) 

where r = Í 2 — ¿i is the time difference between the interferometer arms (introduced by the 
reference arm). As mentioned before, when the state is separable the coincidence interfero­
gram can be written as 

(3.11) 
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where T (r) is the Fourier transform of <Í>(ÍJ) [refer to Eq. (2.23)]. This separable state can be 
easily understood in terms of statistical independence. The probability of detecting photon 1 
AND photon 2 is PI n P2 = P 1 P 2 , where PI and P2 are the probabilities of detecting photon 
1 and photon 2, respectively. In this case PI = P2 = 1 + T ( T ) COS(CJT). For the case of the 
down-converted photons 

(3.12) 

, (3.13) 

3 . 1 Experimental Results 
To experimentally confirm Eq.(3.13), we measured the fourth-order interferogram with two 
different pairs of filters. Our experiments used a 100 mW diode láser with nominal wave-
length of 407 nm and coherence length of 200 /zm. The láser pumps a BBO nonlinear crystal 
whose optical axis is oriented at 3.6 degrees with respect to the propagation direction of the 
láser (refer to appendix A). This configuration produces Type I collinearly propagating down-
converted photons pairs with degenerate center wavelengths of 814 nm [37]. After the crystal, 
the pump láser is suppressed with a combination of a polarizing beam splitter and a longpass 
filter. The down-converted photons are sent into a Michelson interferometer and the output is 
analyzed by means of coincidence detection (Fig. 3.5). 

We adjust the path-length difference between the interferometer arms to zero by using 
a white-light source with a coherence length of 50 /im. The path-length of one of the inter­
ferometer arms can be adjusted by translating the end mirror with a piezo motor. The latter 

Then, we make use of the approximation given in Eq. (3.9) to obtain the final result 

where 
The coincidences interferogram in Eq. (3.13) features four contnbutions. The DC term 

CQ is given by the average number of coincidences. The second term corresponds to the 
interference of two monochromatic modes. This term is equivalent to the HOM dip explained 
in section 2.4.2. The third term accounts for the interference of two photons going through 
different arms (cases III and IV in Fig. 3.1b). The last term originates from the interference of 
both photons traveling along the same path (cases / and II in Fig. 3.1b). 

Let us now to illustrate Eq. (3.13) by considering three different cases: 

Completely entangled state This case corresponds when 7 —> 0 0 or equivalent when the 
coherence length L F of the down-converted photons is L F « LP, where L P is the 
coherence length of the pump [Fig. 3.4a]. 

Partially entangle state This is the intermedíate case when L F ~ L P and is a superposition 
of a completely entangled state and a separable state [Fig. 3.4b]. 

Separable state In this case 7 —>• 0 which happens when L F » L P [Fig. 3.4c]. 
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Path-length difference / (LF+LP) 

Figure 3.4: Examples of interference patterns for three different cases. The gray shade indi-
cates fringes with frequency uiF and the darker shade fringes with frequency 2uiF. (a) The co­
herence length LF of the down-converted photons is much smaller than the coherence length 
Lp of the pump. In this case the down-converted photons are completely entangled. (b) In 
the intermediate case when LF ~ LP the interference pattern is a superposition of a complete 
entangle state and a separable state. (c) The state becomes separable when LF » Lp. 

has a step size of 20 nm. In the experiment, we synchronize the translation of the mirror with 
the acquisition of photon coincidences. Our coincidence counting procedure has a time-bin 
resolution of 4 ps. An electronic delay of 100 ns has been introduced in one of the detection 
channels in order to shift the central position of the coincidences peak. For all measurements 
we used an acquisition time of T = 10 seconds and counted all coincidences in a time win-
dow r = 3 ns. Background counts were subtracted using the relation ABT/T, where A and 
B are the single photon counts of detector A and B, and r and T are the time window and the 
acquisition time, respectively. 

In our theoretical calculations we assumed that the spectrum of the pump láser is Gaus­
sian with a central wavelength of 407 nm and a FWHM of 0.36 nm, which produces a coher­
ence length LP ~ 200 pm, in agreement with the specifications of the láser. The bandwidth 
of the down-converted photons is limited by bandpass filters that are placed in front of the 
detectors. For the first experiment, the filters have a bandwidth of 10 nm centered at 810 nm 
(the center wavelength is not exactly at the degenerate wavelength of 814nm, however, be-
cause Aup > Aup we can still assume that the phase matching function H ss 1 in the región 
defined by the filters). For the second experiment, we use bandpass filters with bandwidths 
of about 200 nm. In this case, the factor 7 and the degree of entanglement increase, which is 
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Figure 3.5: Schematic of the experiment. BBO: /3-barium borate crystal, PBS: polarizing 
beam splitter, LPF: long pass filters, BS: beam splitter, M: mirror, APD: avalanche photodi-
ode, BPF: band pass filters. 

clearly noticeable in the interferogram. 
Fig. 3.6a shows the measurements of the fourth-order interferogram using the 10 nm 

filters. The frequency bandwidth selected by the filters gives rise to a coherence length of 
LF = 55 /im. The inset shows a close-up of the fringes in two different regions. In the center 
región the oscillations feature a wavelength of 720 nm (visibility of 0.99). On the other hand, 
for a path-length difference of 200 íim, the period reduces to 333 nm (visibility of 0.11). 
The corresponding theoretical calculations based on Eq. (3.13) are shown in Fig. 3.6b. The 
theory yields an oscillation frequency of ZJp for short path-length differences and 2üJp for 
path-length differences larger than the coherence length. Slight differences between theory 
and experiment are due to the hysteresis and finite step size of the piezo motor used for mirror 
translation (the average step size is 20nm, which generates a path-length difference of 40nm 
for each step). Nevertheless, there is good agreement between theory and the experiment. 

Fig. 3.7a shows the experimental fourth-order interferogram using bandpass filters with 
a 200 nm bandwidth. The filters produce a coherence length of roughly Lp = 3.3¿im. In the 
center región, the fringes have a period of 563 nm and a visibility of 0.99. When the path-
length difference becomes equal to 60 /im, the wavelength reduces to 141 nm and the visibility 
reduces to 0.19. The theoretical calculations are shown in Fig. 3.7b. The slight frequency 
mismatch is again due to the precisión of the piezo motor. Also, background noise from the 
pump láser slightly reduces the visibility of the experimentally recorded fringes. Overall, 
there is good agreement between theory and experiment. Clearly, the degree of entanglement 
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Figure 3.6: (a) Measurements of the coincidences interferogram using 10 nm (FWHM) band­
pass filters. The filters produce a coherence length Lp = 55 ¡im. The periodicity of the 
fringes is 720 nm and 333 nm when the path-length difference is 0 and 200 fim, respectively. 
The theoretical calculations are shown in (b). The coherence length of the pump photons is 
LP = 200 /im. 

in this experiment is stronger than in the previous one. Since the frequency bandwidth of the 
filters is increased, the valué of 7 increases compared to the first experiment (remember that 
the frequency bandwidth A w F OC A \ F where A \ F is the wavelength bandwidth). In other 
words, the área of the joint spectral density selected with the 200 nm bandpass filters is more 
asymmetric (c.f. Fig. 3.2) than the joint spectral density recorded with 10 nm bandpass filters. 

3.1.1 Conclusions 

We have analyzed the two-photon Michelson interferometer with entangled down-converted 
photons. The fourth-order interferogram is given in terms of the pump spectral density and 
bandwidth of the bandpass filters [Eq. (3.13)]. We showed that the degree of entanglement 
increases with the ratio 7 = AUJF/AUJP, where AU)P and AUF are the spectral bandwidths of 
the pump láser and bandpass filters, respectively. 

We emphasize that 7 is not a parameter that can be used to discard hidden variables 
theories as such as the Bell's inequality. However, it can be used to compare the degree of 
entanglement between different experiments. Another important comment, the Michelson 
interferometer cannot be used for proving nonlocal behavior or for measuring a Bell-type 
inequality. The reason is that the two photons have the same propagation mode and therefore, 
if we apply a projection, both photons are affected simultaneously. In order to measure a 
Bell-type inequality, both photons should be emitted in different directions and each of them 
introduced in an interferometer [38]. Furthermore, in our analysis we consider that all the four 
scenarios shown in Fig. 3. Ib are measured in the coincidences. We can adjust the time window 
of the coincidences detector in order to discard the cases when signal and idler photons travel 
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Figure 3.7: (a) Measurements of the coincidences interferogram using 200 nm bandpass fil­
ters which produces a coherence length of 3.3 um. The measurements are shown in (a) and 
theoretical calculations in (b). Compared to the first experiment, the degree of entanglement 
in the second experiment is higher. 

through different directions (cases iii and iv in Fig. 3.1). By doing this, the interferogram 
only include the superposition of the cases i and ii when both photons travel together which 
produces an interference pattern similar to the example in Fig. 3.4a but with better visibility 
[39]. Appendix A shows an experiment where we increase the path-length difference in order 
to distinguish the different pathways of the down-converted photons. 

We experimentally measured the complete fourth-order interferogram and the results 
agreé with the theoretical predictions. The next chapter shows how to use the two-photon 
Michelson interferometer for QOCT. As we will show, the second term or bunching term in 
Eq. (3.13) is identical to the results obtained with the standard configuration of QOCT using 
a HOM interferometer [6, 7], that is, dispersión cancelation and enhancement of resolution by 
a factor of two. Clearly, from Eq. (3.13) the bunching term is spectrally separated from the 
other contributions and henee, we can filter out the other elements by Fourier processing the 
coincidences interferogram. 



Chapter 4 

Quantum-Optical Coherence 
Tomography 

This chapter studies the implementation of QOCT using the two-photon Michelson interfer­
ometer with down-converted photons. We start introducing the mathematical description of 
the classical OCT and the standard QOCT with the HOM interferometer. Then, we introduce 
the theory of QOCT using the two-photon Michelson interferometer and discuss its advan-
tages and limitations with numerical simulations. Then, we show the results of our proof of 
principie experiments. 

Let us start with a brief discussion of the principies underlying OCT. The basic configuration 
of OCT is shown in Fig. 4.1a. OCT makes use of a classical light source with a short coher­
ence time and implements a standard Michelson interferometer to measure the interference 
pattern of the reflected light from a sample located in one of the interferometer arms. The 
reflection from the sample is represented by a transfer function s(u>) which contains all the 
information regarding the internal layers. For an incident monochromatic plañe wave with 
angular frequency u, 

where r(z, u) is the complex reflection coefficient from a layer at position z and tp(z, ui) is the 
phase accumulated by the wave while traveling through the sample to the depth z. We assume 
that the médium is homogeneous, isotropic and there is not absorption. 

The source is characterized by a power spectral density P(UJp + Q), where O is the 
angular frequency deviation about the central frequency uip. The source has a bandwidth 
Aujp at FWHM. For simplicity, we assume that P is a symmetric function. The reference arm 
introduces a variable delay time r while the sample is located at the second arm. The intensity 
/ at the output of the interferometer is measured using a photodetector. The delay r is swept 
and the interference pattern or interferogram I(T) is recorded. Considering a sample with a 
transfer function given by Eq. (4.1), the interferogram becomes proportional to 

4.1 Comparison of OCT and QOCT 

(4.1) 

(4.2) 

33 
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where the average intensity T0 and the interference term F(r) are given by 

(4.3) 

(4.4) 

Notice that Eq. (4.2) is equivalent to Eq. 2.23 when the sample is replaced by a mirror. The av­
erage intensity r0 includes a factor of unity given by the self-interference of the light reflected 
from the reference arm and a factor \s(u¡p + Ü) | 2 from the sample path. The cross-interference 
term comes from the product of both contributions. This term can also be expressed as the 
convolution of the sample reflection with the temporal coherence function of the source which 
defines the resolution of OCT. 

Figure 4.1: (a) Implementation of Optical Coherence Tomograhpy. (b) Implementation of 
Quantum-Optical Coherence Tomography using a Hong-Ou-Mandel interferometer. 

We now turn to the case of QOCT, which is illustrated in Fig. 4. Ib. QOCT implements a 
HOM interferometer with a source of non-collinear entangled photons. The entangled photons 
are generated by spontaneous parametric down-conversion. We assume that the nonlinear 
crystal is pumped by a monochromatic láser with angular frequency LOP and that the joint 
probability amplitude 4>(LÜI, W 2) of the down-converted photons is symmetric with respect to 
the central frequency to0 = OJp/2. Therefore, cf) can be expressed as function of the frequency 
deviation Ü about the central frequency UIQ, i.e. <J>(LJI,ufy) —> <p(0,). The spectral density 
$(Í2) = |</>(^)|2 is normalized such that J díK>(í)) = 1. For simplicity, both photons have 
the same polarization and spatial mode, which corresponds to SPDC of type I. The initial state 
of the down-converted photons is written as 

(4.5) 

The HOM interferometer is modified by placing the sample in one of the interferometer 
arms. The delay R is swept and the coincidences C( r ) are monitored. The coincidences of 
photons arriving at the two detectors are recorded within a time window determined by the 
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Notice that the unity background factor present in Eq. (4.3) for OCT is absent in A 0 , which fa-
vors the signal to noise ratio (SNR). Moreover, the QOCT cross-interference term A (r) probes 
the sample at two frequencies, UJP + Q and uip — fi, in a multiplicative fashion. In addition, as 
we will see, A(r) generates terms that are independent of the sample dispersión. Finally, the 
factor of 2 by which the cross-interference term in Eq. (4.6) is scaled, in comparison to that in 
Eq. (4.2) for OCT, leads to an enhancement of resolution in QOCT. The enhancement is result 
of the quantum entanglement between the down-converted photons. A factorable state with 
identical bandwidth does not yield neither the factor of two enhancement ñor the dispersión 
cancelation. 

4.1.1 Numerical simulations 

We proceed to genérate numerical simulations of the interferogram for both applications. For 
that purpose, the sample model S(UJ) can be idealized as a discrete summation 

(4.9) 

where the summation index extends over the layers that constitute the sample. This is a 
customary approximation for many biological samples that are naturally layered, as well as 
for other samples that are artificially layered such as semiconductor devices. For simplicity, 
we assume that the dispersión profile of the médium between all layers is identical, so that 

coincidences circuit. For a sample described by S(UJ), as provided in Eq. 4.1, the coincidences 
rate C ( r ) is proportional to 

C( r ) oc A 0 - Re{A(2r)}, (4.6) 

where the self-interference term A 0 and the cross-interference term A(r) are 

(4.7) 

(4.8) 

: is the wave number at angular frequency ui, Zj is 
is the freauency dependent 

to second order 
the depth of the jth layer from the sample surface 
refractive index and c is the speed of light in vacuum. Expanding 
in 

wherí is the inverse of the group velocity and rep-
resents the group velocity dispersión (CVD). The cross-interference term in OCT |Eq.(4.4)] 
can be written as 

(4.11) 

where comes from reflection from the JTH layer after suffering GVD over a distance 
2ZJ, the subscript D indicates dispersión and the superscript (OJ) indicates that the dispersión 



CHAPTER 4. QUANTUM-OPTICAL COHERENCE TOMOGRAPHY 36 

with <í>(r) being the inverse Fourier transform of $(Í2). Notice that the first contribution 
represents reflection from each layer without GVD. This term provides the information of 
the depth and reflectance of the layers that constitute the sample. The second contribution 
represents cross terms coming from interference between reflections from each pair of layers. 
These cross terms are dispersed due to propagation through the inter-layer distances ZJ — ZK, 
and they carrier information about the sample dispersión that is not accessible via OCT. 

Let us now show numerical comparison between OCT and QOCT. We consider two 
cases in order to emphasize the main differences, which are resolution enhancement and dis­
persión cancelation. In the first example the sample is a glass slab with refractive index 
N = 1.6. We neglect the dispersión of the glass. The aim is to show the resolution enhance­
ment in QOCT. In the second example, the glass slab is buried at some depth in a highly 
dispersive médium. In this case the goal is to prove the dispersión cancelation in QOCT. For 
the purposes of our calculations, we choose amplitude reflection coefficients rj=0.5 and r 2 = 
0.7 and thickness D = 150 /mi. For both OCT and QOCT we assume that the source has 
a central wavelength A0 = 2TTC/LJ0 = 8 1 4 nm and a Gaussian spectral distribution with a 
bandwidth of 10 nm which corresponds to a coherence length of about 55 /;,m. For QOCT 
this can be realized using a /3-barium borate crystal pumped by a source with central wave­
length of 407 nm. For the second example, the slab is at DI =2 mm below the dispersive 
médium and we assume that the dispersión profile of the surrounded médium is characterized 
by ¡3' = 5 x 10~ 9 s/m (V0 = 1//3' = 2 X 10 8 m/s) and /i" = 88 x 10~ 2 5 s 2/m. The reason to 
simúlate this particular case, is because in ophthalmologic imaging, for example, the structure 
of interest is located behind a large body of dispersive ocular media. 

Figures 4.2a and 4.2c show the result of the first example. As expected, the QOCT 
resolution is a factor of two superior to that achievable in OCT. The peak between the two dips 
is a result of quantum interference between the probability amplitudes arising from reflection 
from the two different surfaces. The dips are result of quantum interference between the 
probability amplitudes arising from reflection from each layer independently. The width of 
the middle peak is determined by the dispersión of the médium between the two surfaces 
and not by the surrounded médium. Therefore, the dispersión of the región between the two 

is included from the initial surface of the sample to the jth layer. The quantity is the 
Fresnel transformation of '(Q) with dispersión coefficient [14] 

The resolution of OCT is therefore limited to samples with negligible GVD over the depth of 
interest. 

For the case of QOCT, the discrete versión of the cross-interference term A(r) is given 
by the sum of two contributions 

(4.13) 
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surfaces may be determined by measuring the broadening of the middle peak in comparison 
with the two dips. 

Figures 4.2b and 4.2d show the calculations of the second example. Because of disper­
sión, the coherence length for the OCT interferogram increases. On the other hand, QOCT 
remains unaffected and yields dispersion-canceled dips at locations corresponding to reflec-
tion from the two surfaces. The dispersión cancelation occurs for all even powers of the 
expansión of (3(LO). 

Delay uox/2 (microns) Delay uox/2 (microns) 

Figure 4.2: (a),(b) Numerical simulation of the intensity I(r) versus the delay (scaled by half 
the group velocity v0 /2) for a two-layer sample for OCT. In (b) the sample is buried at 2 mm 
below the surface of a dispersive material, (c), (d) Coincidences rate Cir) for QOCT using 
the same sample conditions. Notice the enhancement in resolution by a factor of 2 and the 
dispersión cancelation because of the entanglement between signal and idler photons. 

In order to recover the useful information from the QOCT interferogram, we can average 
A ( T ) with respect to the central frequency OÜQ such that the exponential function in the second 
contribution average to zero [refer to Eq. (4.13)]. The terms from the first contribution are not 
affected by the average and henee the information concerning the position and reflectance of 
the internal layers is obtained. 

In summary the advantages of QOCT in comparison with OCT are: 

1. greater signal to noise ratio, refer to Eq. (4.7), 

2. resolution enhancement by a factor of two for the same source bandwidth, refer to Eq. 
(4.6), 



CHAPTER 4. QUANTUM-OPTICAL COHERENCE TOMOGRAPHY 38 

3. interference terms that are insensitive to even-order dispersión of the médium, refer to 
Eq. (4.13) 

4. interference terms that are sensitive to dispersión of the médium, providing information 
of the dispersive properties of the médium, Eq. (4.13). 

It should be pointed out that the current sources of down-converted photons are weak 
so that the experiments require long integration times for reliable detection. We emphasize 
that high efficiency sources of down-converted photons opérate in a collinear fashion, and 
therefore the two-photon Michelson configuration, which is the topic of the next section, 
promises to improve the performance of QOCT. 

4.2 QOCT with the two-photon Michelson interferometer 
We proceed to study the application of QOCT using the two-photon Michelson interferom­
eter which was studied in the previous chapter. In this case, the sample is located in one of 
the interferometer arms and the coincidences are recorded as a function of the time delay r 
introduced in the reference arm (Fig. 4.3). We use the same assumptions for the joint spectral 
density of the down-converted photons, with the difference that they propágate collinearly. 

Figure 4.3: Quantum-Optical Coherence Tomography with the two-photon Michelson inter­
ferometer. 

The resulting coincidences interferogram is a generalization of Eq. (3.13), which is 
given by the superposition of four contributions 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 
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This interferogram is more complicated than the HOM interferogram. The four contributions 
come from the different pathways that the photon pairs can take through the interferometer 
(refer to Fig. 3.1). The self-interference term M 0 is the average number of coincidences. 
From its definition is equivalent to To for the case of OCT [Eq. (4.3)]. The second contri­
bution Mi, (which we cali the bunching term in the previous chapter) is actually equal to the 
cross-interference term A(r) for the case of QOCT with the HOM interferogram [Eq. (4.8)]. 
M2 is produced by the cases when the signal and idler photons travel separately through the 
interferometer. Since each photon has central frequency u0 the fringes coming from the inter­
ference of these cases oscillate with frequency íj 0. The last contribution A/3 is produced by 
the cases when both photons travel together through the interferometer. In this case the bunch 
of the two photons result in fringe oscillations with twice the frequency of a single photon 2LÜ0 

(which is equal to the pump frequency). 
This interferogram by itself doesn't provide more information than the interferogram 

given by the single photon Michelson interferometer in the classical OCT. On the contrary, the 
interference pattern results more complicated to analyze because the fringes oscillate at two 
frequencies UQ and 2UJ0. This could be the reason that this interferometer had not been applied 
in QOCT. However, as we can see from Eq. (4.14), the contribution given by M\ is frequency 
isolated from the other terms and therefore we can Fourier process the interferogram to filter 
out this term. As we mentioned, M\(T) is equal to the cross-interference term A(r) in the 
HOM interferogram and therefore it contains all the properties that we emphasized previously. 
With this in mind, we proceed to genérate numerical simulations of the interferogram given 
by the two-photon Michelson interferometer and show the post-processing process in order to 
recover the information of the sample structure. For illustration, we genérate the interferogram 
taking the same parameters as used in the first example of the previous cases. So, we consider 
a 150 fim glass slab surrounded by air. 

The coincidence interferogram is shown in Fig. 4.4a. The fringes oscillate at two differ­
ent frequencies wo and 2UJO- However, it is not clear in the interferogram because of the scale 
of the abscissas. But, by Fourier transforming the interferogram, as show in Fig. 4.4b, it is 
clear that the interferogram follows the behavior given by Eq. (4.14). The solid line in Fig. 
4.4a is the term 2Re{Mi(2r)}. It is clear that this term is equivalent to the term —Re{A(2r)} 
in QOCT [Eq. (4.6)], which contains the location of the layers and information regarding the 
inter-layers dispersión. In Fig. 4.4b we have subtracted the average coincidences. In order 
to obtain the term 2Re{Mi (2T)} we implement a low-pass filter center at the zero frequency. 
The bandwidth Aw/ is larger than the bandwidth of Mi(u). The frequency bandwidth of 
M i ( 2 r ) is twice the bandwidth Aw of the joint spectral density $(Í2). Therefore, the band­
width of the numerical filter should be mínimum 2Au but not large enough to take frequency 
components from the other terms. 

Let us now discuss the procedure to extract the location of the layers from the coinci­
dences interferogram. As we can see from Eq. (4.13), the second term which contains the 
inter-layers information oscillates with respect to fj0 = n(u0)uj()/c. After filtering the interfer­
ogram, in order to obtain the location of the layers, we can average over the central frequency 
LÚQ until the second term vanishes. For illustration, we show in Fig. 4.5 the behavior of the 
interferogram when we change the central frequency. Clearly, the location of the layers is 
unaffected by the averaging process. As expected, the central peak oscillates with respect to 
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Delay uox/2 (microns) Frequency components 

Figure 4.4: (a) Numerical simulations of the coincidences rate for the two-photon Michelson 
interferometer. (b) Fourier transform of the coincidences interferogram showing the elements 
in Eq. (4.14). The black solid line in (a) results from filtering the zero frequency component 
in (b). 

We can implement this property for studying turbulent media. Since the positions of the 
layers are unaffected by varying (30, we can trace the interferogram of a turbulent médium in 
several occasions and only the middle peaks will disappeared after averaging the interfero-
grams. This is a research topic to be developed eventually. 

4.2.1 Proof-of-principles experiments 

We now show our proof-of-principles experiments to demónstrate the previous ideas. We 
perform two experiments, in the first one we use the same configuraron as shown in Fig. 
3.5. We measured the interference pattern using a mirror in the sample arm. The goal of 
this experiment is to show the post-processing process. We used 10 nm bandpass filters in 
front of each detector, and since the bandwidth of the filters is smaller than the bandwidth 
of the down-converted photons, we can approximate the function $ ( 0 ) by the transmissivity 
F(Q) of the filters, as explained in the previously. The resulting coincidences interferogram 
with the filtering process is shown in Fig. 4.6. We can see that the solid line shows a sinc 
behavior, which is result of the uniform distribution of the bandpass filters. Remember that in 
Eq.(4.13) the first term contains the inverse Fourier transform of the spectral density, which in 
this case the inverse Fourier transform of the uniform distribution is equal to a sinc function. 
Fig. 4.6b shows the Fourier transform of the interferogram where we have subtracted the 
average coincidences. In order to obtain the bunching term we filter the spectral content at the 
zero frequency. Notice that resulting filtered interferogram in Fig. 4.6a contains the resolution 
enhancement as expected. 

In a second experiment, we used as a sample a glass cover slip with a thickness of about 
100 microns. In order to increase the reflectivity of the surfaces, we deposited on each of 
them a 10 nm gold layer. The resulting interferogram is shown in Fig. 4.7 together with the 
interferogram after the filtering process. The filtered interferogram is shown after subtracting 
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Figure 4.5: Recovering the location of the layers. The peaks indicating the position of the 
layers in the coincidences interferogram are unaffected by changing the propagation constant 
¡30 = n(u!0)üj0/c. The solid Une shows the average after varying the /3 0 . The central peak 
oscillates with respect to (30 whereas the layer positions remain constant. 

the average coincidences rate and taking the absolute valué. The important things to notice are 
the reduced coherence length and the peak between the surfaces. As we explained before, the 
central peak comes from the superposition of the reflections from both surfaces. The width of 
this peak is sensitive to the dispersión of the médium and can be subtracted by averaging over 
LJQ. The side peaks are due to the sinc functions imposed by the bandpass filters. The side 
peaks become a problem for locating the peaks that correspond to the location of the layers. 
We can use filters with a Gaussian transmissivity in order to eliminate this side peaks. The 
filtered interferogram clearly shows the expected behavior. 

4.2.2 Conclusions 

We have presented the conditions for applying the two-photon Michelson interferogram for 
QOCT. We derived the resulting coincidences interferogram [Eq. 4.14] and shown that the 
interferogram can be Fourier processed in order to obtain the same information as the HOM 
interferometer. In comparison with the HOM interferometer, the Michelson interferometer 
offers practical advantages such as robustness and simplicity with the cost of numerical pro-
cessing. However, the numerical processing is straightforward implemented using Fourier 
analysis. We shown that as long as the spectral bandwidth of the down-converted photons is 
smaller than their central frequency, the two-photon Michelson interferometer can be success-
fully used for QOCT. A disadvantage of our configuration is to filter out the pump láser after 
the nonlinear crystal. However, since the polarization of the pump photons is orthogonal to 
the polarization of the down-converted photons, we can use polarizing elements to eliminate 
the pump láser. 

We mentioned that in order to recover the location of the layers from the coincidences 
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interferogram, we can average over the central frequency of the down-converted photons. 
The central frequency LÜ0 may be changed by varying the pump frequency u>p = 2LO0. This 
technique faces practical problems for the HOM interferometer since the angle of emission of 
the down-converted photons from a nonlinear crystal depends on the frequency of the pump. 
Our proposal of QOCT with the Michelson interferometer is superior in this aspect because 
we can use sources where the emission is always collinear regardless of the pump frequency, 
e.g. photonic fibers. 
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(a) Coincidences interferogram 

-55 -27 0 27 55 
Delay cx/2 (p.m) 

(b) Fourier transform 
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Frequency components 

Figure 4.6: Proof of principie experiment. (a) Coincidences interferogram for single reflec-
tive layer. The black solid line results from filtering the zero frequency component from the 
Fourier space (b). 
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Path-length difference 

Figure 4.7: (a) Coincidences interferogram of a glass cover slip. We deposit a thin layer of 
gold on each surface of the glass cover slip i n order to increase the reflectivity of the surfaces. 
From the interferogram, we can observe that at the position of the layers the fringes oscillate 
at OJ0 and they oscillate at 2ÜJ0 at the middle of the sample. We used an piezo motor average 
step size of 22.6 nm (as explained in Appendix A), equivalent to a free-space thickness of 
160 /im. If we consider a glass refractive index n = 1.5, the cover slip has a thickness of 
about 106 ¡ira. (b) Filtered interferogram. We did the same procedure as in Fig. 4.6. We 
Fourier transform the interferogram and take the zero-frequency components. We show the 
result of the filtering process subtracting the average concidences rate and taking the absolute 
valué. As expected, the filtered interferogram shows the position of the layers with a reduced 
coherence length. In addition, we can observe a central peak, coming from the interference of 
reflections on both surfaces. 



Chapter 5 

Conclusions and future work 

The thesis developed the theory for the implementation of Quantum-Optical Coherence To­
mography with the two-photon Michelson interferometer instead of the standard implemen­
tation with the Hong-Ou-Mandel interferometer. We showed the basic principies of the two-
photon Michelson interferometer when the source is given either by separable states or entan­
gled states. We found that the resulting interferogram with entangled down-converted photons 
can be numerically processed in order to recover the same information that can be achieved 
using the HOM interferometer. Our results provide a new configuration for QOCT that, in 
comparison with the HOM interferometer, is easier to implement and can be adapted for the 
future generations of entangled sources and detectors. 

There are several research áreas that can be explored using this conñguration where 
the HOM interferometer faces several difficulties. For example, we can use collinear Type II 
down-converted photons in order to explore polarization-sensitive samples. The type II down-
converted photons can be generated using periodically poled nonlinear crystals which emit in 
a collinear fashion by default. Our theory should be modified by considering polarization. 

Since the coincidences interferogram provides information about the degree of entan­
glement, we can use this interferometer in order to measure the degree of entanglement with 
sources that, because of its configuration, the emission of the entangled photons is collinear, 
e. g. we can study the spectral properties of photonics fiber. The use of photonics fibers for 
the generation of entangled photons is a current research topic. The spectral properties of 
the emitted photons are determined by the physical properties and the geometry of the fiber. 
There are several parameters that shape the spectrum and therefore we can explore the joint 
spectral density using the two-photon Michelson interferometer. 

We can use the entangled properties of the down-converted photons in order to study 
turbulent media. A turbulent media is characterized by a refractive index spectrum that varíes 
from point to point. As we shown in Chapter 4, the coincidences interferogram is immune 
to sample dispersión and therefore we can recover the position of the internal layers of the 
sample by averaging several measurements. 

Another interesting feature, is the oscillating peak that appears between two layers. The 
physics is similar to a standing wave, the length of which is determined by the separation of the 
adjacent layers. This behavior is not present in classical OCT. We could genérate a physical 
model of the sample analogous to the standing wave and obtain the oscillation modes. This 
could provide an elegant method to recover the sample structure. 

45 
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Figure 5.1: Experimental proposal. Each down-converted photon is sent into a Michelson 
interferometer. The coincidences interferogram C(r 1 , r 2 ) is a two-dimensional function de-
pending on the delays T\ and r 2 introduced by the interferometers. A Bell-type inequality can 
be calculated from C(TÍ , T 2 ) . 

Finally, we can extend our theory to develop a Bell inequality measurement for the 
non-collinear down-converted photons in the energy degree of freedom. Most of the Bell in­
equality measurements are done with the polarization degree of freedom. In order to measure 
the degree of entanglement using energy entangled photons, it is customary to implement a 
Franson experiment [38] where both signal and idler photons are sent into a Mach-Zehnder 
interferometer. Then, by means of post-selection (refer to Appendix A), they measure a type 
of Bell inequality and therefore the degree of entanglement. However, this is not the degree of 
entanglement coming from the source, this is now the degree of entanglement for a different 
quantum state that has been modified by the interferometers. I propose to implement a differ­
ent experiment that doesn't require postselection and can be use to reconstruct the complete 
joint spectral density. 

In order to understand the idea, notice that in the classical Michelson interferometer, the 
interferogram I(R) contains in the interference term the information of the spectral density 
$(u;), which can be reconstructed by processing the Fourier transform of I(T). For the case 
of non-collinear down-converted photons, we can send each photon to a Michelson interfer­
ometer and measure the coincidences (Fig. 5.1). Each interferometer introduces a delay r. 
The coincidences interferogram is then a function of both delays C(T\, T 2 ) . We can trace the 
space T i , r 2 and then by means of a two-dimensional Fourier transform we can recover the 
complete joint spectral density $(UJI, w 2). The collinear configuration is a special case when 
the two interferometers overlap and then T\ = r 2. After obtaining ^{UI\,U)2) we can measure 
the degree of entanglement using the Schmidt decomposition [24]. 

In conclusión, this thesis work demonstrates a novel and elegant procedure for realizing 
Quantum-Optical Coherence Tomography with the advantages of simplicity, performance and 
adaptability. 



Appendix A 

Instrumentation and experimental 
implementation 

This appendix reviews the details for the experimental implementation. 

A.l Determination of the pump láser 

The efficiency for generating down-converted photons is proportional to the nonlinear suscep-
tibility which depends on the pump frequency. In addition, the máximum efficiency of the 
photodetectors that were used in our experiments is 80 % for 700 nm and drop off below 10 
% for 1000 nm. The efficiency is important since the efficiency of the coincidence detection 
is the product of both photodetectors. Therefore, the choice of the láser pump is limited by 
the efficiency requirements. 

It is customary to genérate down-converted photons in the near infrared to opérate de-
tectors with high efficiency. To obtain near-infrared down-converted photons the best pump 
láser is a UV láser. In our experiments we use a 407 nm diode láser with produces 814 nm 
down-converted photons. At this wavelength the efficiency of the photodetectors is about 60 
%. Therefore, the efficiency of a coincidence is 36 %. 

A.2 Solving the phase-matching condition 

We use a ,3-barium borate (BBO) nonlinear crystals cut for type-I parametric down-conversion 
to produce down-converted photons with linear polarizations parallel to each other but orthog-
onal to the p u m p láser. The B B O crystal that was used in the experiments is cut at 30.4° with 
respect to the normal of the frontal face of the crystal. The polarization of the 407 nm pump 
láser is oriented for the extraordinary mode of the B B O crystal which emits down-converted 
photons forming a conical angle of 6 o . For the purpose of this thesis, however, we need to 
rotate the crystal in order to genérate collinear down-converted. In order to calcúlate the angle 
of incidence, we need first to solve the phase-matching condition given in Eq. (2.10) for the 
collinear emission, which turns out to be 

(A . l ) 
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where uQ = up/2 is the angular frequency of the degenerate down-converted photons which 
is half the frequency of the pump photons. ne and n0 are the extraordinary and ordinary 
refractive index of the crystal. The extraordinary refractive index depends on the angle 9 
between the propagation direction of the pump and the optics axis of the crystal. The refractive 
index n e for a birefringent crystal is equal to 

(A.2) 

A.3 Histogram of the coincidences 

We use two single photon counting avalanche photodiodes (SPC-APD) working in coinci­
dences. The efficieney is about 60 % at 814 nm wavelength. The active área is 180 /mi diam­
eter. It is very important to keep the photodetectors from receiving ambient light, because they 
can be destroyed (máximum counts per second is 10 millions). To avoid the background noise, 
we connect the A P D with optical fibers. We use mult imode optical fibers (NA = 0.275 and 
diameter of 62.5 / /m). In order to couple the light into the fiber we use lens with ARA = 0.25 
and focal lens of 11 mm. 

The valúes of 
[32, 33] 

anc .vere calculated using the Sellmeir equations for the B B O crystal 

(A.3) 

(A.4) 

where is the wavelength at free space ind is given in ¡im. With the pump 
wavelength 407 nm and the wavelength of the down-converted photons A 0 = 814 
nm, we obtain n B (U.4U7J = 1.567, n o ( 0 . 4 0 7 J = 1.691 and n 0 ( U . 8 1 4 ) = 1.660. Using 
these valúes with Eq. (A.2) and solving Eq. ( A . l ) , we calcúlate that the refractive index 

for pump and down-converted photons becomes 

= 1.66014 

= 28.675°. 

(A.5) 

(A.6) 

where si refers to signal-idler. However, 9 is the angle of propagation inside the nonlinear 
crystal. We can use Snell law : is the angle of incidence vhere 
and transmission with respect to the normal of the crystal face. The angle 8^ is given by 

1.725 where a = 30.4 is the optics axis of the crystal. Then, the incidence 
angle is t 

We mount the crystal in a rotatory base in order to tilt the angle of incidence. Because of 
the length of the crystal (5 mm), the output of the down-converted photons is vertically shifted 
about 100 / im. After the interference process, the light is coupled to mul t imode fibers which 
are connected to the photodetectors. Since the circular área of the core of the mult imode fiber 
has a diameter of 62.5 /zm, the shift has to be corrected when coupling the light into the fibers 
by translating the position of the fiber or the focusing lenses. 
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When a single photon is detected, the A P D sends a TTL pulse of 2.5 V (mínimum) high 
using a 5 0 0 load and 15 ns wide. The pulses are sent into the electronic coincidence detector 
(PicoHarp 300). We introduce a time delay between the pulses by extending one of the cable 
that connects to the coincidence detector. By doing that, we shift the center of the coincidence 
histogram and with this we can detect the four scenarios that are shown in Fig. 3.1b. Without 
the delay, one of the cases iii or iv in Fig. 3.1b is discarded because the detector does not 
measure negative delay times. 

For the coincidences we use a t ime resolution of 4 ps, and a time window of r = 3 ns. 
For each step of the piezo motor, we measure the coincidences during T = 10 seconds in order 
to increase the signal to noise ratio. A typical coincidences histogram is shown in Fig. A . l a . 
In order to obtain the interferogram, for each histogram we intégrate the coincidences between 
the 3 ns time window. We implement a Labview program to synchronize the piezo motor with 
the coincidence detector. At the same time, we measure the single counts interferogram on 
each photodetector in order to subtract the accidental counts, which is given by the equation 
ABT/T where A and B are the single photon counts of detectors A and B (it is equivalent to 
the área under the coincidences peak). 

We perform an interesting experiment to distinguish over the different scenarios shown 
in Fig. 3.1b. We increase the path-length difference to 60 cm between the interferometer arms 
in order to introduce a t ime delay of 2 ns. The histogram for this configuration is shown in 
Fig. A. Ib. The center of the histogram is at 32 ns because we introduce about 10 m of cable 
to delay one of the T T L pulses generated by the photodetectors. Notice that the central peak 
is about twice the intensity of the side peaks because is given by the cases when both photons 
are reflected and when both photons are transmitted. Because they travel together, the t ime 
difference between them is 0. Then, the side peaks correspond to the cases when one photon 
is reflected and the other transmitted. 

As we mentioned in Chapter 3 , the post-selection technique introduces a path-length 
difference large enough to sepárate the four scenarios and then selects the central peak. By 
doing this, the coincidences interferogram is given by the superposition of both photons being 
reflected plus both photons being transmitted. Therefore, the coincidences interferogram is 
equal to a single photon interferogram with fringes oscillating at twice its central frequency, 
similar to Fig. 3.4a but with máx imum visibility of 1. 

A.4 Alignment and balancing of the optical paths 

There are two principal requirements for the construction of the two-photon Michelson in­
terferometer: alignment and length balancing of the two optical paths. Alignment is difficult 
because the beam cannot be viewed without an expensive low-intensity light detector array 
and since the acquisition t ime is slow (10 seconds), it is not possible to sean the reference arm 
to find the equal path-length position. 

Alignment is achieved by introducing a 633 nm helium-neon láser in the optical pathway 
of the down-converted photons. The optical pathway is guided using apernares. The location 
of the apertures is optimized by maximizing the single counts. After optimizing the apernares 
with the He-Ne láser, we proceed to genérate the down-converted photons using the nonlinear 
crystal. Since the polarization of the pump láser is vertical, the plañe of the optics axis should 
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Figure A. 1: (a) His togram of coincidences for down-converted photons. The histogram shows 
the number of coincidences as a function of the time delay between the two photons. The 
coincidences peak indicates that the photons are emitted simultaneously. The position of the 
peak is shifted at 32.7 ns by introducing about 10 meters of delay in the coincidence circuit. 
(b) Histogram of the coincidences when the path-length difference of the interferometer arms 
is about 60 cm, which introduces a t ime delay between signal and idler photons of about 2 ns 
when they travel different optical pathways. 

be in the vertical position as well. To confirm the orientation of the optics axis of the crystal, 
we can visualize a thin line through the crystal and rotate the crystal until we observe two 
Unes. When the separation between the two lines is máximum, the plañe of the optics axis is 
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perpendicular to both lines. It is very important to perfectly align the plañe of the optics axis 
with the polarization of the pump láser because if there is an angle between then, part of the 
p u m p láser is projected in the horizontal polarization. After the crystal we use a polarizing 
beam splitter (PBS) to filter out the pump láser, and therefore if part of the pump láser become 
horizontally polarized, it won ' t be filter out by the PBS. This misalignment between the optics 
axis and the polarization of the pump beam is one of the main sources of noise in this kind of 
experiment. 

After the alignment with the He-Ne láser and the orientation of the crystal, we proceed 
to optimize the generation of down-converted photons. We start by pumping the crystal at 
normal incidence. Eventually, we slowly tilt the crystal about the incidence angle that was 
calculated previously = 2.86°) and monitored the single counts in one detector until 
reaching the máximum. Then, we do the same procedure with the second photodetector. 
Finally, we optimize the coincidences by aligning the fibers. Remember that we have to 
correct the vertical displacement introduced by the internal refraction. 

When the coincidences are maximized, the interferometer will be aligned. But since 
the coherence length of the He-Ne láser is in the order of centimeters, the optical paths are 
unlikely to be balanced. Remember that the coherence length of the down-converted photons 
is in the order of microns. The paths of the interferometer are balanced exchanging the láser 
by a broad spectral light source. We use a super-luminescence diode with a coherence length 
of 50 microns. The light is collimated with a lens to ensure good spatial coherence and 
collimation. Fringes are observed when the optical paths of the interferometer are balanced 
to within 50 microns. The balancing was achieved manually since the translation stage of the 
reference mirror has a resolution of about 10 microns. 

The interferogram was achieved by implementing a piezo motor to the reference mirror. 
The piezo motor has an average step size of 20 nm. Since the piezo motor is activated by a 
TTL pulse, we coordínate the translation of the piezo motor with the coincidence detection 
with a Labview program that we implemented. Because of the hysteresis of the piezo motor, 
the average step size is not equal when the mirror is moving forward or backwards. Therefore, 
we have to calíbrate the piezo motor before the measurements . In order to calíbrate the piezo 
motor, we can use the interference fringes produced by the He-Ne láser. Since the coherence 
length of the He-Ne is large, the fringes are very well defined. We measured an average step 
size of 17.5 nm and 22.6 n m for the forward and backward direction respectively. 

A.5 Experimental implementation 

The complete experimental arrangement is shown in Fig. A.2. Description of each component 
can be found in Table A. 1 and pictures of the experiment are shown in Figures A .3 , A.4 and 
A.5 . 
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Figure A.2: Experimental arrangement. Refer to table A. l for the details of the components . 
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Figure A.4: Alignment procedure. The He-Ne láser is used for the alignment of the two-
photon Michelson interferometer. For balancing the interferometer arms, a SLED with a 
coherence length of about 50 / im is implemented. 
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Figure A . 5 : Two-photon Michelson interferometer. 
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