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The Impact of Statistical Word Alignment Quality and 
Structure in Phrase Based Statistical Machine Translation 

by 

Statistical Word Alignments represent lexical word-to-word translations between source and 
target language sentences. They are considered the starting point for many state of the art Sta­
tistical Machine Translation (SMT) systems. In phrase-based systems, word alignments are 
loosely linked to the translation model. Despite the improvements reached in word alignment 
quality, there has been a modest improvement in the end-to-end translation. Until recently, 
little or no attention was paid to the structural characteristics of word-alignments (e.g. un­
aligned words) and their impact in further stages of the phrase-based S M T pipeline. A better 
understanding of the relationship between word alignment and the entailing processes wil l 
help to identify the variables across the pipeline that most influence translation performance 
and can be controlled by modifying word alignment's characteristics. 

In this dissertation, we perform an in-depth study of the impact of word alignments 
at different stages of the phrase-based statistical machine translation pipeline, namely word 
alignment, phrase extraction, phrase scoring and decoding. Moreover, we establish a multi­
variate prediction model for different variables of word alignments, phrase tables and transla­
tion hypotheses. Based on those models, we identify the most important alignment variables 
and propose two alternatives to provide more control over alignment structure and thus im­
prove SMT. Our results show that using alignment structure into decoding, via alignment 
gap features yields significant improvements, specially in situations where translation data is 
limited. 

During the development of this dissertation we discovered how different characteristics 
of the alignment impact Machine Translation. We observed that while good quality align­
ments yield good phrase-pairs, the consolidation of a translation model is dependent on the 
alignment structure, not quality. Human-alignments are more dense than the computer gen­
erated counterparts, which trend to be more sparse and precision-oriented. Trying to emulate 
human-like alignment structure resulted in poorer systems, because the resulting translation 
models trend to be more compact and lack translation options. On the other hand, more trans­
lation options, even if they are noisier, help to improve the quality of the translation. This 
is due to the fact that translation does not rely only on the translation model, but also other 
factors that help to discriminate the noise from bad translations (e.g. the language model). 
Lastly, when we provide the decoder with features that help it to make "more informed deci­
sions" we observe a clear improvement in translation quality. This was specially true for the 
discriminative alignments which inherently leave more unaligned words. The result is more 
evident in low-resource settings where having larger translation lexicons represent more trans­
lation options. Using simple features to help the decoder discriminate translation hypotheses, 
clearly showed consistent improvements. 

Francisco Javier Guzman Herrera 
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Chapter 1 

Introduction 

In the second half of the twentieth century, as people looked for computer assistance in several 
intellectual tasks, human attention turned to the automation of natural language processing. 
Translating documents between any two languages by a computer was one of the first and 
most relevant goals of this field. The aim was to reduce the expensive and time consuming 
human translations. Moreover, the dramatic increase in the quantity of produced content, 
which has been witnessed in the last couple of decades, has set the role of machine translation 
(MT) as a crucial tool for equal information access. 

While no current machine translation system is capable of successfully imitating the 
behavior of a human translator, various types of existing systems do help to reduce language 
barriers. The recent availability of vast amount of human-generated translations and powerful 
computers, has enabled the development of new research directions in Machine Translation. 
This is specially the case for statistical methods (Brown et al., 1990), which allow the anal­
ysis of parallel text corpora and the automatic construction of machine translation systems. 
Statistical Machine Translation (SMT) has proven to be very effective, this is a reason why it 
has become the predominant paradigm in the research community. 

Although the earlier word-based generative Statistical Machine Translation systems 
(Brown et al., 1993) are no longer used, their by-products (word alignments, lexica, fertil­
ity tables) constitute the base for many of the newer models. This is specially the case for 
word alignments, which represent the correspondences between the source and target words 
of a sentence pair and are used indirectly for estimating the translation model in phrase-based 
(Och, 2003; Koehn et al., 2003; Marcu and Wong, 2002) and hierarchical (Chiang, 2005) 
systems. 

Statistical Word Alignment is the task of finding the correspondences between words in 
a source language sentence and the words in a target language sentence. The alignment A of 
this pair is simply a set of these correspondences. 

In recent years, the increasing availability of human generated word alignments, has 
made possible the assessment of alignment quality, using metrics such as Alignment Error 
Rate (AER), F-score (Och and Ney, 2003), etc. As a result, there have been several ef­
forts to improve the performance of word alignments. Moreover, those annotated alignments 
have also enabled the development of discriminative word alignment models (Ittycheriah and 
Roukos, 2005; Blunsom and Cohn, 2006; Niehues and Vogel, 2008; Lambert et al., 2009) 
which are tuned towards these quality metrics. 

1 



2 CHAPTER 1. INTRODUCTION 

Despite the improvements reached in alignment quality, there has been a modest im­
provement in the performance of end-to-end translation. Some authors (Fraser and Marcu, 
2007) have found that A E R and translation quality (as measured by the B L E U metric (Pap-
ineni et al., 2002)) do not correlate well. Moreover, it has been observed that under certain 
situations, lower alignment quality can lead to improvements in translation quality (Vilar and 
Ney, 2006). However, little attention has been given to the fact that in phrase-based systems, 
word alignments undergo a series of steps (e.g. heuristic-based phrase extraction) which result 
in a loose link between the word-alignment and the phrase-based translation models. 

For phrase-based SMT, there have been few efforts to understand how alignment quality 
affects the translation models (Ayan and Dorr, 2006; Lopez and Resnik, 2006). Until recently 
(Guzman et al., 2009; Lambert et al., 2009), little or no attention was paid to the structural 
characteristics of word alignments (e.g. unaligned words, number of links, etc.) and their 
impact in further stages of the phrase-based S M T pipeline. As a result, the role of word 
alignment on phrase-based systems has been only partially understood. 

A better understanding of the relationship between word alignment and the entailing 
processes wi l l help to identify the variables across the pipeline that most influence translation 
performance and can be controlled by modifying word alignment's characteristics. Addition­
ally, it wil l allow to develop better alignment assessment metrics, enabling for word alignment 
developments to carry through the pipeline. By doing so, it wil l help to close the gap between 
word alignment and translation performance. In summary, the better the understanding of the 
processes, the better the resulting translation quality. 

In this document, we advocate for the analysis of alignment structure as one important 
contributor to Machine Translation performance. To that end, we perform an in-depth deep 
study of the impact of the characteristics of statistical word alignments at different stages of 
the phrase-based Statistical Machine Translation pipeline, namely word alignment, phrase ex­
traction, phrase scoring and decoding. Moreover, we estimate multivariate prediction models 
for different variables phrase tables and translation hypotheses using alignment structure and 
other alignment variables as predictors. These models describe how variations in characteris­
tics of word alignments wi l l affect a phrase-based translation model and how those variations 
in the model wi l l influence translation. Finally, we use the knowledge obtained from those 
models to propose alternatives for better alignment training, decoding and ultimately transla­
tion quality. 

The remainder of this chapter is structured as follows: In Section 1.1, we provide a 
closer look to the problem of discrepancies between word alignment quality and translation 
quality that have been observed in previous studies. In Section 1.2, we present our initial 
hypothesis and a set of research questions. Next, in Section 1.2 we present a summary of 
the contributions of this dissertation, followed by the proposed methodology in 1.4. Later 
in Section 1.5 we state the limitations of this work. Finally in Section 1.6 we provide the 
organization of the body of this dissertation. 

1.1 General Problem Statement 

Statistical word alignments serve as a starting point for the Statistical Machine Translation 
(SMT) pipeline. Improving their quality has been a major focus of research in the S M T 
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community. One of the first attempts to bring attention to this matter was (Och and Ney, 
2003) where they evaluated several word alignments produced by different aligners. To that 
end, they proposed metric A E R which remained as the standard for reporting improvements 
in alignments. What followed then, was a series of developments from several teams aiming 
for better alignment quality. In this section, we introduce different works that have analyzed 
statistical word alignment quality and its impact in Machine Translation. First, we present the 
work that focused in describing Machine Translation quality in terms of alignment quality. 
Then, we present studies aiming to explain the effects of alignment quality in the phrase-
based M T pipeline. Finally, we present some recent studies which aimed to describe the 
effects of alignment structure in Machine Translation. 

1.1.1 Alignment Quality vs. Translation Quality 
The increasing availability of human annotated data has made possible to develop supervised 
or discriminative algorithms that maximize the alignment quality as prescribed by A E R . Many 
of such methods emerged and continue to emerge (Ittycheriah and Roukos, 2005; Blunsom 
and Cohn, 2006; Niehues and Vogel, 2008; Lambert et al., 2009) achieving good results in 
alignment quality. Despite the ever increasing alignment quality achieved by several systems, 
end-to-end translation quality improvements derived from such increasing quality remained 
small in the best of cases. This was first pointed out by Fraser and Marcu (2007), who ob­
served that S M T translation quality as measured by B L E U metric (Papineni et al., 2002), 
did not correlate well with A E R . In their study, they performed several regression tests and 
concluded that there were several flaws with the A E R (e.g. the inclusion of possible links), 
that prevented achieving a good correlation between A E R and B L E U . As a consequence, they 
encouraged the use of variations of the F-measure (instead of A E R ) that could be tuned to 
favor precision or recall to achieve a better correlation. Since their results were sensitive to 
the different language pairs they studied (i.e. French-English, Arabic-English and Romanian-
English), they proposed to tune the modified F metric accordingly to obtain better correlation 
with B L E U . Although this study was indeed revealing, the proposed solution to the under­
lying problem is too cumbersome to implement in day-to-day developments. It also falls 
short to take into account other structural characteristics of the alignment (which could ex­
plain the variation across the language pairs). One of the recommendations they made, which 
was quickly adopted across the community, was to report a translation quality assessment in 
addition to word alignment quality. 

Similarly, other studies revealed mismatches between B L E U and A E R . Vilar and Ney 
(2006) had observed that improvements in translation quality could be achieved by degrading 
alignment quality. For instance, alignments that were modified by hand to take into account 
specific linguistic phenomena of German, scored lower A E R but helped to improve translation 
quality in the long run. Although some of the conclusions from this study might seem flawed 
given its premise (i.e. lower A E R gives better B L E U ) there are some interesting remarks 
that are worth mentioning. First, they back up the use of A E R as a alignment quality metric. 
Second, they point out that the mismatch between alignment quality and translation quality 
is due to the mismatch between alignment and translation models. This is one of the first 
acknowledgements that there might be something in between alignment and translation that 
could be accountable for the disparity. 
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The main criticism that can be raised to these previous studies is that they regard the 
S M T pipeline as a "black-box" where there is one input (i.e. alignment quality) and one 
output (i.e. translation quality). That assumption ignores the series of processes that occur 
after a word alignment is obtained, which oversimplifies the current situation. For example, 
in phrase-based translation, those entailing processes are model estimation and decoding. 

1.1.2 Alignment Quality and the SMT Pipeline 
The first studies to analyze in detail the impact of alignment quality in the model estimation 
and decoding phases are (Ayan and Dorr, 2006; Lopez and Resnik, 2006). 

Ayan and Dorr (2006) presented an in-depth analysis of the quality of the alignments as 
well its effect in resulting phrase tables. Their analysis compared several types of alignments, 
their quality, and the translations from the resulting phrase tables in different scenarios. They 
also took into account the indirect effects of alignment structure through lexical weightings. 
They also performed an extensive analysis on the length of phrases used by the decoder and 
the phrase-table coverage. In their study, they shed light on the behavior of different types of 
alignments. For example, they realized that recall oriented alignments (which trend to have 
more links) yield smaller phrase tables. Similarly, precision oriented alignments, which are 
sparser, yield larger phrase tables. Furthermore, they analyzed different phrase extraction 
configurations based on the structure of phrase pairs (i.e. tight vs. loose phrases). In their 
view, loose phrases refer to phrase-pairs whose either source or target boundary words (either 
beginning or end of phrase) are unaligned. Tight phrases are the opposite. In addition, they 
proposed the Consistent Phrase Error Rate Metric (CPER) which is similar to A E R but oper­
ates at the phrase level. C P E R compares the phrase table extracted from an alignment to the 
one generated by a hand alignment. However, the underlying assumption, that the extracted 
phrases from the hand aligned data using the current phrase extraction algorithms is perfect, 
could be challenged. 

While being one of the most complete studies done to analyze the S M T pipeline, they do 
not directly analyze structural characteristics of the alignments that impact the configuration 
of a phrase-table such as the number of unaligned words or number of links. Instead, these 
alignment variables get obfuscated inside of quality measurements such as precision or recall. 
Therefore many of their conclusions could be challenged (e.g. more links in the alignment 
equals fewer extracted phrase pairs in the phrase table). However, they are the first to suggest 
that the characteristics in the alignment play a crucial role in the upcoming stages of the S M T 
pipeline. 

In a different study, Lopez and Resnik (2006) analyze variations in the translation search 
space of the decoder by having alignments of gradually degraded quality. Their alignments 
are all obtained using the same aligner (GIZA++) and training data. However, they achieve 
variations in quality (precision, recall, F-score) by segmenting the data into chunks of varying 
sizes to obtain noisy alignments. While their study proposes an interesting methodology for 
evaluating the impact of alignments in the configuration of a decoder's search space, features 
and weightings; their conclusions are limited by the initial setup of the experiment. In that 
sense, what they end up measuring is not the effect of quality (F-score, precision or recall) 
into the decoder variables but rather the effect of training sizes in the latter (alignment quality 
being a result of that). 
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1.1.3 Impact of Alignment Quality and Alignment Structure on Trans­
lation Quality 

Later studies (Guzman et al., 2009; Lambert et al., 2009) have brought closer attention to the 
structure of word alignment and their implications in following stages of the S M T pipeline. 
For instance Lambert et al. (2009), analyze the effect of the number of links of different types 
of alignments including its repercussions on the size of phrase tables and the ambiguity of 
the translation model. They also propose new structural metrics for alignments such as link 
length, distortion and crossings. 

Likewise, the work we presented in (Guzman et al., 2009) analyzes several alignment 
characteristics and their impact on the extracted phrase pairs. In this study we observed that 
alignment structure has a large impact on the phrase-translation model. For instance, we 
discovered that the number of unaligned words in an alignment has an important effect in the 
size and configuration of the phrase-table. Furthermore, we showed that the distribution of 
unaligned words inside a phrase pair (also known as gaps) and the distribution of unaligned 
words in the alignment are highly correlated and is not affected by the heuristic extraction. 
Additionally, by performing a manual evaluation of Chinese-English phrase pairs, we made 
two interesting observations: First, better quality alignments (i.e. human annotated data) yield 
better human perceived quality phrase pairs. Secondly, phrase pairs with a higher proportion 
of unaligned words show lower human perceived quality. Also, by including a set of features 
to the decoder that take into account the number of gaps inside a phrase-pair, we were able to 
obtain significant improvement in translation quality. 

In this dissertation we extend those studies and focus on describing how alignment struc­
ture impacts Machine Translation. For instance, we use a myriad of measures for alignment 
structure that represent alignment sparsity (Guzman et al., 2009; Lambert et al., 2009)) and 
distortion (Lambert et al., 2010). We also analyze variables that comprehend the coverage and 
model ambiguity of a translation model (Ayan and Dorr, 2006) and other characteristics. F i ­
nally, based on our observations, we propose new alignment metrics and design new decoding 
features as suggested by Lopez and Resnik (2006) based on the alignment structure. 

1.2 Hypothesis and Research Questions 
The main hypothesis of this study can be summarized in the following way: 

Alignment structure has a large impact on the characteristics of the resulting translation 
model. Hence, it should also have a large impact on Machine Translation performance. 
Thus, by controlling the impact of alignment structure we wil l be able to improve Ma­
chine Translation performance. 

By dissecting this hypothesis, we can identify three parts: 

1. The impact of alignment structure on the translation model 
The first part of our hypothesis states that alignment structure determines greatly the 
characteristics of the resulting translation model. In other words, we hold that transla­
tion models are dependent upon the alignment structure. 



6 CHAPTER 1. INTRODUCTION 

2. The impact of alignment structure of the translation model on M T performance 
The second part of our hypothesis states that alignment structure differences yield dif­
ferent translation models that result in differences in translation quality. 

3. Providing means to control alignment structure will result in improvements in M T 
performance 
The last part states that by controlling alignment structure, we wi l l be able to improve 
machine translation quality. 

Following our hypothesis, there are several questions that arise and need to be answered 
as we progress in our study. 

— Which variables describing word alignments, translation models and translation hy­
potheses that we are going to include in this study? 

— Which are the structural variables that are most important to our translation model? 
Which ones are more important to translation quality? Do the importance of the vari­
ables describing translation quality vary depending on the translation task? 

— Which model or multivariate technique should be used to build our model? Should it 
be linear only or should we use higher order modeling? Should we allow for latent 
variables? 

— How do we control alignment structure for Machine Translation? 

— Which type of multivariate analysis better suits our scenario? 

— How are we going to deal with undesired effects in multivariate analysis such as collinear-
ity? 

— How do we compare predictive models? How do we evaluate their robustness? 

1.3 Contributions 
In this dissertation, we perform an in-depth study of the impact the structure of word align­
ments at different stages of the phrase-based Statistical Machine Translation pipeline, i.e. 
phrase extraction, phrase scoring and in decoding. We present different multivariate models 
that highlight the impact of alignment structure on phrase-based translation model esti­
mation . Furthermore we test their robustness against unseen data from different language 
pairs. By using a multivariate approach (as opposed to simple correlation analysis) we take 
into account the effects of several variables simultaneously. 

Moreover, we also establish a multivariate model including different phrase tables and 
first-best translation hypotheses, that predict how variations in the translation model pre­
dict translation quality. Highlighting the importance of the translation model and the align­
ment structure associated with it. 

Finally, we identify the most important structural alignment features that influence trans­
lation quality and use the information to provide better alignment training and translation 
modeling which ultimately results in better translation quality. 
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1.4 Methodology 
In this section, we briefly summarize the methodology used in this dissertation. It is divided 
into four parts, each reflecting the contents of a chapter of this dissertation. 

1.4.1 Exploratory Analysis 
In Chapter 3, we present the results of a study we presented in (Guzman et al., 2009) and 
some of the intuitions developed in (Guzman et al., 2011). In this chapter we perform an 
exploratory analysis of different alignment variables, including quality and structure, and de­
velop an intuition of how they impact the phrase-based translation model. 

— Analyze the different variables in the alignment (quality and structure) taking into ac­
count alignment density characteristics. 

— Analyze the phrase-tables (translation-model) and their characteristics. 

— Observe the relationship between alignment structure and the phrase-translation model. 

— Perform a user-based study to determine the impact of alignment structure on phrase-
quality. 

1.4.2 Predicting the Translation Model 
In Chapter 4, we present a study built upon linear regression models. This study, allowed us 
to identify the most important structural variables and their effects in the consolidation of a 
translation model. In this chapter we perform the following: 

— Analyze different alignment quality and structure variables, including alignment spar-
sity. 

— Perform a multivariate correlation analysis using clustering. 

— Build linear regression models to predict the most important characteristics of a trans­
lation model. 

— Test our models against unseen data and evaluate the results. 

1.4.3 Predicting Translation Quality 
In Chapter 5, we present a study where we identify the most important variables of the trans­
lation models and the translations, and how are they related with translation performance. 

— Perform multiple translation experiments and measure translation quality and structure 
characteristics of the phrase-translation models. 

— Build predictive models using feature selection to discriminate the most important fea­
tures. 

— Test the models against unseen data. 

— Build alternate models for specific translation task domains. 

— Identify the variables that most impact translation performance. 
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1.4.4 Improving Translation Using Alignment Structure 
In Chapter 6, we propose new training alternatives to incorporate alignment structure in align­
ment training and decoding. 

— Propose several alignment tuning metrics that take into account more of the alignment 
structure. 

— Benchmark the translation improvements resulting from those metrics. 

— Propose new decoding features that incorporate alignment structure. 

— Benchmark the translation improvement resulting from those decoding features. 

— Use the features in low-resource situations to improve translation performance. 

1.5 Limitations 

In order to keep the development of this study in a manageable time frame, there are several 
restrictions that we applied. 

— The set of language pairs used for experiments wi l l be fixed. 

Given the difficulty and time consuming process for S M T training, the only language 
pairs that wi l l be addressed wil l be Spanish-English, for estimating the multivariate 
predictive models and Chinese-English, Arabic-English, to evaluate the generality of 
such model (i.e. how robust it is to different language pairs). 

— We wil l use a set of generative and discriminative alignments for analysis. 

In this analysis we wil l only employ standard symmetrized alignments, provided by 
GIZA++ (Och, 2000) plus heuristics, and discriminative alignments with varying set­
tings provided by the DWA (Niehues and Vogel, 2008). 

— Phrase-extraction heuristic parameter wi l l be fixed (to default max-length 7). 

While the max-length parameter has been observed to have an effect on the size of the 
phrase table, allowing for longer phrases is too expensive memory wise. 

— For the decoding experiments, we wil l be using the Moses decoder (Koehn et al., 2007). 

— We wil l use linear models because we want to privilege interpretation rather than higher 
accuracy. Furthermore, by using feature selection (via stepwise regression) instead of 
other mechanisms that cope with higher dimensionality, we wil l also privilege the model 
interpretation. 

— Other particular settings of the experiments wil l be specified in the Experimental Setup 
in Appendix A . 
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1.6 Thesis Organization 
The remainder of this dissertation is distributed as follows: in Chapter 2, we introduce some 
of the concepts of Statistical Machine Translation and Phrase Based Machine Translation that 
we wi l l be using in this document. We pay special attention to statistical word alignment and 
to the training pipeline of phrase-based Statistical Machine Translation. 

Next, in Chapter 3, we present an exploratory study where we observe the effects of sta­
tistical word alignments in the estimation of the phrase-translation model. There, we present 
experiments where we perform alignment experiments with different aligners and compare 
the output. Then using the same aligners, we obtain translation models and compare them. 
Additionally, we perform a hand-assessment of the generated phrase-pairs to measure their 
quality. 

In Chapter 4 we present a predictive model for the phrase-table characteristics based on 
the alignment variables. We highlight the importance of alignment structure in determining 
the characteristics of the translation model, from structure (size, coverage, etc.) to translation 
entropies. 

In Chapter 5 we use the characteristics of a phrase-table and the characteristics of the 
first-best translations to predict translation quality. We perform translation experiments for 
different translation models, and evaluate the translation quality using different metrics. Fur­
thermore, we build models that predict translation quality depending on the translation task. 

Next, in Chapter 6 we use the information from alignment structure to improve Statis­
tical Machine Translation. For instance, we take into account alignment structure to propose 
two new alignment metrics. Then we train aligners to maximize those metrics and compare 
the generated translation models. Furthermore, we compare the translation outputs of such 
aligners. Additionally, we propose new decoding features based on the alignment gaps. We 
use them in different settings and compare the translation results. 

In Chapter 7, we summarize the findings of this dissertation. We revisit the hypothesis 
and the research questions and provide answers. Finally, we discuss the future work, were we 
discuss enhancements to the current study. 





Chapter 2 

Background 

In this section, we introduce some concepts that are essential to the understanding and devel­
opment of this proposal. First, we wil l start by presenting the basics of Machine Translation 
(MT). Then, we wil l introduce the main components of a Machine Translation system: lan­
guage model, translation model and decoder. Next, we wi l l discuss the main steps involved 
in model the phrase-based translation model estimation. Finally we wil l discuss the topic of 
performance in Machine Translation. 

2.1 Introduction to Statistical Machine Translation 

Machine Translation (MT) or computer assisted translation is the automatic translation of 
text or speech from a source natural language like Spanish to a target language like English, 
using a computer system. Despite being one of the most important applications of Natural 
Language Processing, it has long been considered a hard problem (Manning and Schiitze, 
1999). Although the ideal goal of M T systems is to produce high-quality translation without 
human intervention at any stage, in practice this is not possible except in constrained situations 
(Hutchins, 2003) where translation tasks are limited to small sub-language domains (Jurafsky 
and Martin, 2007). 

Historically, M T systems have been classified in accordance to the level of analysis 
of the source language. Roughly, three categories have been long defined: Direct Systems 
which include little or no syntactic analysis; Transfer Systems, based on syntactic parses; and 
Interlingua Systems based on a deep semantic analysis. For a more detailed description of 
each one of these architectures, please refer to: (Jurafsky and Martin, 2007; Hutchins, 2003; 
Somers, 2003). 

Along with the different architectures, there are different paradigms that have been 
adopted by researchers in order to build their systems. Most of the systems using the transfer 
architecture are known as Rule Based systems, because of the linguistic rules used to translate 
one source language syntactic tree into a target language syntactic tree. This was the dom­
inant paradigm until the 1990s, when the availability of large amounts of human translated 
texts gave rise to the corpora-based or empirical paradigms. Examples of these paradigms 
are the Example Based Machine Translation (EBMT) and the Statistical Machine Transla­
tion (SMT), which wil l be the focus of this thesis. More specifically, we wil l address the 

11 



12 CHAPTER 2. BACKGROUND 

translation model estimation in the phrase-based Statistical Machine Translation (PBSMT). 

2.2 Principles of Statistical Machine Translation 
The core idea of Statistical Machine Translation (SMT) is that we can estimate the probability 
of a source language sentence of being translated into another a target language sentence by 
analyzing parallel data (i.e. collections of human generated translations). It was first proposed 
by Brown et al. (1990) at I B M and became widely popular because it outperformed other M T 
paradigms. 

S M T has proven to be very robust and flexible, because it is not bound to any specific 
source-target language pair. However, it relies heavily on the training procedures used to 
estimate its models as well as the nature and availability of the training data. 

In its pure form, S M T makes no use of linguistic data. Instead, it models the probability 
of a source language sentence / of being translated into a target language sentence e1 and 
looks for the translation that maximizes such probability. This can be depicted in the following 
equation: 

2.2.1 Noisy Channel Model 
The noisy channel model has been long used in areas such as speech recognition. In SMT, 
the channel metaphor is applied as follows: we pretend that we originally had a target lan­
guage sentence e which then was corrupted by noise and transformed to a source sentence / . 
Therefore, we need to find the target sentence e that / is more likely to have arisen from. 

Although modeling the translation probability p(f\e) is not easier than modeling p(e\f), 
this rewriting ensures that our target translation e has both fluency (i.e. that it is good English, 
ensured by the language model p(e)) and has fidelity (i.e. that it is true to the original meaning 
in the source language sentence / , as modeled by the translation model p(f\e)). Meeting both 
criteria is difficult. In some cases, to achieve more fluency, the fidelity is sacrificed. Therefore 
we have to focus in maximizing both criteria simultaneously. This search procedure is widely 
known as decoding and is taken into account by the arg max of the equation. Figure 2.1 

for historical reasons, f was used to denote French and e to denote English 

Using Bayes rule, this formula can be transformed into: 

Note that p(f) is a normalization factor, and because of the arg max this equation can 
be rewritten as: 

This equation is known as the noisy channel model for translation. 
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Figure 2.1: Three components in Classical SMT: Language Model, Translation Model and 
Decoder 

depicts the interaction between these three components for a scenario where we want to trans­
late from Spanish to English. The Language Model is estimated by doing statistical analysis 
on some monolingual corpus (e.g. large collections of English documents). The Translation 
Model is estimated based in bi-texts or collections of translations (e.g. Spanish/English). The 
Decoder is a piece of software that uses both models to provide English translations to unseen 
Spanish translations. 

In the following sections, we wil l describe the main characteristics of the Language 
Model and the Translation Model (more specifically, the phrase-based). Later, in Section 2.6, 
we wil l discuss in depth the decoding procedure for phrase-based models. 

2.3 Language Model Estimation 

As we mentioned before, the language model (lm), gives us an idea of how fluent a target 
language sentence e is. It can be regarded as the probability that the words are correctly 
combined in the target language. They are usually computed via the probabilistic grammars 
called n-grams. 

2.3.1 N-grams 

N-gram models are closely related to the problem of word prediction where given a sequence 
of words, we need to predict the most likely word to complete the succession. Making use of 
the Markov assumption, which states that only the local context affects the next word, n-gram 
models use the previous N — I words to predict the next one (Jurafsky and Martin, 2007). 
Therefore a bi-gram (or 2-gram) would use the previous word to predict the next word. A 
trigram, would use the previous two words, and so on. For instance, to calculate the language 
model probability for the English phrase the white house with a bi-gram model would be: 

p(the white house) = p(the) x p(white|the) x p(house|white) (2.4) 
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The previous example reads as follows: the probability of observing the construction the white 
house is equal to the probability of observing the times the probability of observing the fol­
lowed by white times the probability of house coming right after white. 

The simplest way to compute n-gram probabilities is by counting the frequencies of the 
sequences in a corpus. This is called the Maximum likelihood estimate ( M L E ) . For instance, 
to determine the probability of house coming right after white, we would have to count the 
occurrences in the corpus in the following way: 

where C(x) stands for counts of word x. 

2.3.2 Smoothing Techniques 
Unfortunately M L E has the problem of not being able to deal with sparse data. Therefore, if 
during training we did not observe the occurrence of a given n-gram, it would be given a zero 
probability. To overcome this, some methods of "discounting" or "smoothing" are applied. 
These methods arrange for a certain amount of probability to be distributed among the unseen 
events, so the distribution is smoother. Some examples are the Good-Turing estimate(Chen 
and Goodman, 1998) and the Kneser-Ney discounting (Ney et al., 1994). 

Higher n-gram models wi l l be a better predictors of the following words because they 
have more context information. Thus, in M T it is desirable to use higher n-gram models. The 
major drawback is that the higher the n-gram size, the more sparse the distribution is. To 
overcome this problem, we can make use of back-off models. Simplifying, back-off models 
allow us to turn to a lower n-gram model whenever a higher n-gram model fails (i.e. we had 
no count for such n-gram). Another strategy that helps us to combine several n-gram models 
is called the deleted interpolation, which linearly combines the probability of several n-grams 
models under the restriction that the linear coefficients add up to 1. 

2.3.3 Estimation 
While Language Models are crucial to Machine Translation, estimating a language model is 
not a frequent practice due to the amount of time and computational resources involved in the 
process. Instead, we often compute a single target language model (i.e. for English) and use 
the same for different M T Systems only updating the model when strictly necessary (large 
amounts of new monolingual data available). For instance, in several of the experiments in 
this thesis are carried using the same language model and only changing the translation model. 

2.4 Phrase Based Translation Model 
Under the noisy channel framework, the translation model p{f\e) is the probability that a 
target language e sentence has arisen from the source language sentence / . Translation models 
give us an idea of the faithfulness of a translation, and it constitutes the core component in 
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a Machine Translation System. There are many approaches to calculate this model. In this 
section, we wil l briefly discuss the state of the art phrase-based models. 

2.4.1 Phrase Based Motivation 
It has been observed that words that form phrases in the source language tend to cohere in the 
target language. In other words, there are collections or chunks of words that appear next to 
each other in the source language, whose translations appear as chunks of words in the target 
language (fig. 2.2). This is the main idea behind phrase-based statistical machine translation. 
In phrase-based models, the unit of translation is a contiguous sequence of words known as 
phrase. However, this unit of translation does not imply a syntactic structure. 

During decoding, phrases are translated as a whole, and then moved to their final po­
sitions in the target language by a reordering process. By using phrases instead of words, 
we capture some local context (e.g. literal translations, idioms), and reduce the number of 
permutations needed in the final reordering. 

The principles of phrase-based S M T (PBSMT) models can be traced back to the tem­
plate alignments proposed by Och et al. (1999). However the term was coined later by the 
method proposed by Koehn et al. (2003), which was popularized by the Pharaoh decoder 
(Koehn, 2004a) and its later successor Moses(Koehn et al., 2007). 

Figure 2.2: Phrase-based models take advantage of the fact that some words often move as 
units during translation. This is the principle that motivated PBSMT. From (Koehn, 2004a) 

2.4.2 PBSMT Principles 
The generative story of phrase-based models can be summarized in the following way: The 
sentence / is segmented into a sequence of / phrases f(. Every possible segmentation is 
assumed to be equally likely. Then each foreign phrase /j in j{ is translated to an English 
phrase with the phrase translation probability <£(/i|ej). Also, the English phrase may be 
reordered with a distortion probability d. 

A distortion model d is used to penalize large reorderings by giving them lower probabil­
ities. For example, in a relative distortion model (there are many others), distortion probability 
refers to the probability of the translations of two consecutive source language phrases being 
separated in the target language by a span of a particular length. Thus, relative distortion is 
parameterized by d(at — 6,_i) where a, is the start position of the target phrase generated by 
fi and 6j_! is the end position of the phrase generated by 

Summarizing, the original phrase-based translation model using this settings can be de­
composed into: 
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Figure 2.3: A n example of a translation generated from the Spanish sentence la casa en donde 
vivo es blanca 

In this example, the segmentation proposed divides the source sentence into four phrases. 
Each phrase is then translated to English and reordered. For this particular example, every En­
glish phrase falls into the same position as its Spanish counterpart, leaving all the distortions 
equal to 1. Therefore the translation probability for this segmentation can be computed as 
follows: 

Whether this translation or this segmentation are chosen, depends on how good is its proba­
bility in regard to other translation hypotheses. 

There are many other ways to calculate a translation model. Variations in how we model 
distortion or <j> can make a difference. In fact, the use of a log-linear framework, can allow 
for a translation model to use many other arbitrary phrase-features. This shall be discussed 
later, in the decoding section (Section 2.6). At this moment, we wil l discuss how the phrasal 
translation probability <f) is estimated. 

2.4.3 Estimating the Model 
One issue that comes with the formulation of the phrase-based approach is how to calculate 
the phrase probabilities like 4>{f\e). If we had a phrase-level aligned bi-text (where chunks of 
source words were explicitly associated to chunks of target words), it would suffice to count 
frequencies and establish a maximum likelihood estimate. However this is not the case. We 
need to find the phrases which are translation of each other directly from the corpus. 
There are different types of phrase-based models (e.g. (Marcu and Wong, 2002; Koehn et al., 
2003)) and each has its own way of estimating phrasal probability </>. On one hand Marcu and 
Wong (2002) estimates phrasal probability directly from the corpus using unsupervised meth­
ods. On the other hand Koehn et al. (2003) uses heuristics to extract phrases from word align­
ments. In this work, we wi l l be using the latter approach, which has been well spread through 



2.5. PBSMT TRAINING PIPELINE 

the community thanks to the open source phrase-based Pharaoh system (Koehn, 2004a) and its 
later successor Moses decoder (Koehn et al., 2007). In the following section we will introduce 
the main steps involved in the estimation of this type phrase based translation model. 

2.5 PBSMT Training Pipeline 

From raw training data to translation model, the entire pipeline can be pictured in Figure 2.4. 
There are at least four important steps: Preprocessing, Word Alignment, Phrase Extraction 
and Phrase Scoring. Below, we provide a description of each of these stages. 

Figure 2.4: Pipeline of Phrase-Based Translation Model Estimation. First we clean the raw 
training data by preprocessing. Then we estimate statistical word alignments (in a generative 
or discriminative way) to generate symmetrized alignments. Then we use phrase-extraction 
to obtain prase-pairs that are consistent with the word alignments. Finally we estimate the 
probabilities of phrase-pairs using maximum likelihood. 

17 
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2.5.1 Preprocessing 
The preprocessing step focuses on cleaning the bilingual corpus and preparing it for the model 
estimation. This is as important step, as it allow to filter for undesired characters, html tags, 
etc. Also some engineering choices can be carried: tokenization (i.e. how to split words), 
segmentation (i.e. which morphological criteria to use), case (i.e. use truecase or lowercase), 
number tagging, etc.; to help models to carry a better estimation. In Figure 2.5 we observe an 
example of preprocessing. 

Figure 2.5: A n example of preprocessing. The text is modified to discard unwanted characters 
(e.g. html tags). Also, it can be lowercased, tokenized and segmented. 

2.5.2 Word Alignment 
During the word alignment (WA) stage, the likelihood of word-to-word translations are es­
timated and encoded as alignments. Alignment model estimation is a complex process but 
crucial to the phrase-based model estimation and to this thesis. Therefore, below we provide 
a brief introduction to Word Alignment. 

Introduction to Statistical Word Alignment 

In order to estimate most statistical translation models, it is needed to find the correspondence 
between the source and target language words in training the sentences of our bitext. These 
correspondences are known as word alignments and represent the lexical (word-by-word) 
translations. A n example of an alignment can be pictured in fig. 2.6. In the image shown, 
each source language word has a correspondence with a target language word: (la || he) , (casa 
|| house) , (es || is), (blanca || white). Of course, there could be other possible alignments or 
mappings between the source and target words, for example (la || white), (casa || the), (es || 
house), (blanca || is). 

More formally, Statistical Word Alignment is the task of finding the correspondences 
between words in a source language sentence (/ / = / i . . . / / ) and the words in a target 
language sentence (e{ = e\... ej) in which the source and target sentences contain / and J 
words, respectively . The alignment A of this pair is simply a set of these correspondences. 
We say that A c { 1 , 2 , . . . , / } x { 1 , 2 , . . . , J } . If (i, j) 6 A, then the ith source word is 
aligned to the jth target word. Also, it is said that there exists a link between words 
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Alignment Models 

There have been several approaches to find alignments in a corpus. First, the unsupervised or 
generative models (Brown et al., 1993; Vogel et al., 1996) , which model the alignment as a 
hidden variable, and try to discover their likelihoods using machine learning algorithms such 
as the Expectation Maximization or the forward backward algorithm. Second, the heuristic 
models (Melamed, 2000; Kobdani et al., 2009), which estimate the likelihood of an alignment 
according to word-distance and other metrics. Lastly, supervised or discriminative models 
(Ittycheriah and Roukos, 2005; Blunsom and Cohn, 2006; Niehues and Vogel, 2008) which 
make use of human annotated data (word alignments done by humans also known as hand 
alignments) to learn a model according to specific features. 

Generative Models 
In the original word based SMT, we model the best translation using the noisy channel 
approach, where we use a translation model p{f(\e{) to calculate the probability of 
one sentence in the source language f[ of being the translation of the target language 
sentence ef. In this formulation, an alignment a[ represents a function (mapping) which 
given a source side position, returns a target language position. For instance i f in the 
current alignment a[ the word source word / 3 is linked to e 8 then a 3 = 8. While this 
model helps estimation, it makes this type of models asymmetrical, because one source 
word can at most be linked to one target word, while a target word might be linked to 
two or more source words. 

To calculate p(f(\e{) we need to consider every possible mapping in our calculation. 
To do so, we assume that every alignment is possible (i.e. any word /* can be linked to 
any word Sj). Then, we treat the alignments as hidden variables and we sum over every 
possible alignment. 

Generative models have the advantage that they are well suited for a noisy-channel ap­
proach. They use unsupervised training to estimate p(f(, a-[\e{) using large amount of 

Figure 2.6: A simple example of word-alignment. Here, each source language word has a 
correspondence with a target language word: (la || he) , (casa || house) , (es || is), (blanca || 
white) 
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unlabeled parallel data. There have been several generative models that were proposed 
by Brown and his colleagues at I B M (Brown et al., 1993). Therefore they are widely 
known as the I B M models. Another widespread model is the H M M alignment model 
proposed by (Vogel et al., 1996). Each model has an increasing level of complexity. In 
the Table 2.1, we show the most important features of each model. 

Table 2.1: Summary of main generative alignment models and their main characteristics 

Lexical probabilities are the likelihood that one word in the source language be trans­
lated to another word in the target language. Distortion is a penalization for less likely 
alignments which try to align words that are too far apart. Fertility helps us to provide 
a mechanism with which a single target language word can be regarded as generating 
several source language words. 

Since higher order models are more complex, a common procedure is to use the esti­
mations from lower order models as priors. E.g. to train IBM1 to determine lexical 
probabilities and then use them as initialization for H M M , and so on. This is known as 
bootstrapping. 

GIZA++ 
A l l standard alignment models (IBM1.. .IBM5, H M M ) have been implemented in the 
GIZA++ toolkit. This toolkit was started at John Hopkins University workshop 1998 
and later extended by Och (2000). It is widely used by many groups and included in 
many translation toolkits such as Moses Decoder. Newer multi-threaded adaptations 
(Gao and Vogel, 2008) are also now in use. 

Viterbi Alignments 
In order to obtain a word alignment for the / words in f[ to the J words in e{ using the 
estimated models, one needs to perform a search among all possible mappings a[ for 
the that maximizes the likelihood of the model M. in question. 

In other words, we choose the alignment between that maximizes the probability of 
the sentence e{ of being the translation of the f{, given the probability model pM we 
estimated during training. Such alignment a{ is known as the Viterbi alignment for e{ 
a n d / / . 
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Symmetrization 
Because of how generative approaches model probabilities, certain restrictions apply. 
For example, many source to one target word alignments are allowed (modeled by the 
fertility), but only one target per source word alignments are permitted. This results in 
an inherent asymmetry depending on the direction of the alignment we are performing. 
For instance, the alignment obtained from English to Spanish is substantially different 
form the alignment obtained from Spanish to English. 

Fortunately, there are some heuristic processes that can be performed using the infor­
mation in the source-to-target (s2t) and target-to-source (t2s) alignments to boost the 
accuracy of an alignment. These heuristics help to overcome the original weaknesses of 
generative models and are very helpful for phrase extraction. Some of these heuristics 
include intersection, union, and some other refined heuristics such as grow-diag, grow-
diag-final, grow-diag-final-and (Och et al., 1999; Koehn et al., 2003). Symmetrization 
is a challenging procedure. Because of this, different research efforts have focused on 
it (Matusov et al., 2004; Liang et al., 2006). 

A n example of a symmetrization using a union heuristic is depicted in fig. 2.7. 

Figure 2.7: Example of a union type symmetrization: Alignments of different directions (left, 
middle) are combined to include the links that are present in both (right). 

The most used symmetrization heuristics are the grow-diag family of heuristics. We 
describe them below. 

grow-diag. This heuristic starts by using the intersection of the s2t and t2s align­
ments. Then visits each of the links (i, j)i in the intersection and adds any link 
(i ±L,j± L)u in the union of s2t and t2s that lies in the neighborhood of the first 
link provided that either source i or target j words were left unaligned. 

grow-diag-f i n a l . This heuristic is based on the grow-diag but uses the f i n a l 
procedure which consists on visiting each of the unaligned words in e and / . If 
there is a link in either s2t or t2s that contains i or j, add it to the final alignment. 

grow-d iag- f i na l -and This heuristic is based on the previous one, but requires 
that both words in i and j are left unaligned before adding any link from s2t or t2s. 

We expect to have a natural order in terms of number of links between these heuristics. 
In other words: AT C A G D C A G D F A C AQDF ^ A V . 



22 CHAPTER 2. BACKGROUND 

Discriminative Models 
Generative models are very robust, however they have a major disadvantage: they can 
hardly make use of the increasingly available manual alignments. Also, given their com­
plexity, to incorporate other sources of information such as POS tags, word frequencies 
etc., is a non-trivial task. 

In recent years several authors (Moore, 2005; Taskar and Lacoste, 2005; Blunsom and 
Cohn, 2006) have proposed discriminative word alignment frameworks and showed that 
this leads to improved alignment quality. In the discriminative alignment approach, we 
model P(A\F, e) directly. Therefore, the decision rule for this approach becomes: 

where represents an alignment among the set of all possible alignments A between 
the source F[ and target e\ sentences. 

One main advantage of the discriminative framework is the ability to use all available 
knowledge sources by introducing additional features. Also, these models trend to be 
symmetric in nature, making them suitable for phrase-based machine translation with­
out the need of symmetrization. Finally, discriminative approaches allow to have more 
control of how the alignment is modeled, by using specially engineered features. 

DWA Aligner 
In this study, in addition to the generative models implemented in GIZA++ we wi l l 
use the discriminative model presented in (Niehues and Vogel, 2008), which uses a 
conditional random field (CRF) to model the alignment matrix. By modeling the matrix, 
no restrictions to the alignment are required and even many to many alignments can be 
generated. As a result, the model is symmetric, and therefore wil l produce the same 
alignment regardless of the direction in which it is used. 

Word Alignment Quality 

When analyzing the errors made by the automatically generated word alignments we compare 
the aligner output (e.g. Viterbi alignments generated by GIZA++) against a gold standard ref­
erence of consisting of human hand aligned data. In some gold standards, there is a distinction 
between Sure and Possible links. Sure links represent the hand alignments made by the anno-
tator for which he is sure of the alignment. Possible links are those which represent a degree 
of uncertainty, e.g. were different annotators differ in the manual alignment. 

Based on the differences between output alignments and hand alignments, there are 
three basic quantities that we can measure: the number of links in which these two alignments 
agree, i.e. true positives (tp); the number of links that are present in the output of the aligner 
but not in the gold standard, i.e. false positives (fp); and the number of links that are present 
in the gold standard, but not in the output of the aligner, i.e. false negatives (fn). There are 
several metrics that are used for measuring the quality of a word alignment, but most of them 
are based on these three quantities. 

Precision 
This measure gives us a notion of how accurate is the output of the aligner. It is the ratio 
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of the correct to all generated links. 

Recall 
This measures how well we cover the desired links, i.e. those in the hand alignments, 
with the automatically generated ones. That is, of all the links in the gold standard, what 
is the amount of links that are also present in the aligner output. 

2.5.3 Phrase Extraction 
In order to estimate phrasal probabilities, we need to find out which phrases are translation 
of each other. This is done using word alignments as guidelines to obtain all phrase-pairs (FT 

|| Ei) that are consistent. Consistency is defined as follows: if the source word / , is aligned 
with the target word e,-, then a phrase-pair containing /j must also contain ef, likewise, a 
phrase-pair containing must also contain /j. Phrase pairs containing neither FT nor e,- are 
not constrained in any way by the alignment point (i, j). In Figure 2.8, we observe an example 
of this criterion. 

The process of phrase extraction is done incrementally, starting from phrase-pairs of 
length 1 up to a predefined maximal length (usually 7). In Figure 2.9 we observe the process 
of phrase extraction incrementally up to length 4. 

2.5.4 Phrase Scoring 
After all prase-pairs have been extracted, the phrase-based translation model is computed 
using a maximum likelihood estimate with no smoothing, as shown in the equation below. 

Alignment Error Rate 
A E R , as defined in (Och and Ney, 2003), takes Sure and Possible links into account. 

Where A stands for the set of links in the output alignment, S stands for the set of links 
in the sure alignments in the reference and P stands for the set of possible alignments 
in the reference. However when we only have Sure Alignments, the metric is related to 
the F measure : 
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Figure 2.8: Examples of a consistent (a) and an inconsistent (b) phrase-pair. In (a) the phrase-
pair (a square in black dotted lines) (f2 f3 || e2 e3) has all its words in the source language 
aligned to target language words which are part of the same prase-pair. In the second picture 
(b) the prase-pair (f2 f3 || e2) is inconsistent given that the word / 2 is aligned to e3 which lies 
outside the prase-pair. 

In this equation, the direct phrasal translation probability feature p{e\f) is calculated by 
counting the number of times that the source phrase / and the target phrase e belong to the 
same phrase-pair, and normalizing by the number of times the source phrase / is extracted 
paired to any other target phrase. The learned phrases are then stored in a data-structure 
widely known as phrase-table. Phrase-tables usually include the source and target language 
phrases, as well as their phrase-translation probabilities, lexical weighting, etc. This works as 
a database for the decoder. 

Table 2.2: A toy example of conditional phrasal translation estimation. In order to estimate 
the likelihood of the phrase la casa to translate into the house or p(e\f) we need to count all 
the times we observed such pairing (17) and divide it by the times that we observed la casa 
(17 -I- 5), which results in p(the house \la casa) = 17/(17 + 5) = 0.77. Similarly, p(la casa 
[the house) = 17/(17 + 120) = 0.12 

2.6 Decoding 
Decoding is the process through which we can use the translation and language models to 
translate unseen source language sentences into target language. The process consists in a 
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Figure 2.9: Phrase extraction example. At each step, the heuristic extracts the phrase-pairs 
that are coherent with the alignment. First step (a): (la || the) (casa || house) (es || is) (white 
|| blanca). Second step (b): (la casa || the house) (casa es || house is) (es blanca || is white). 
Third step (c): (la casa es || the house is) (casa es blanca || house is white). Fourth step (d): 
(la casa es blanca || the house is white). 

search for the best candidate translation. Modern decoders use the log-linear framework (Och 
and Ney, 2002) to score different hypotheses. Under this framework, translation models and 
language models are viewed as features. Other features are also available for use. The de­
coder, uses all the information available to translate input sentences. The output of the decoder 
can be (and usually is) evaluated to keep track of performance. A summarized picture of de­
coding is presented in Figure 2.10. 

In the next section, we wil l explain the log-linear framework, with its features and 
weights. Later, we wi l l introduce some concepts of the search procedure used by the decoder. 
Finally, we wil l discuss the different evaluation metrics used to measure the performance of a 
decoder. 

2.6.1 Log-Linear Models 
While early statistical M T was based on the noisy channel model, most recent systems make 
use of a discriminative log linear model (Och and Ney, 2002). In this model we directly model 
the posterior probability p(e\f) and we search for the sentence with the highest posterior 
probability: 

(2.15) 
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Figure 2.10: Decoding overview. The decoder uses features (e.g. translation model, language 
model) and weights for those features, to translate a source sentence (Spanish) into a target 
language (English). Translations from the decoder can be compared to references to evaluate 
a decoder's performance. During parameter tuning, the feature weights are optimized towards 
the evaluation metric. 

A well suited framework for doing this modeling is maximum entropy (Berger et al., 
1996). In this framework we model p(e\f) through a set of M feature functions hm(e, f) each 
of which has a parameter A m which acts as a weighting. The translation probability is then: 

(2.16) 

Where hm(e, f) is the mth local feature (depends only on e and / ) and A m is its scaling factor 
or feature weight. On the bottom part of the equation, we have a normalization factor which 
assures that the exponential term is a true probability. Fortunately, when doing the search, we 
can omit the normalization denominator. Thus, we obtain the following decision rule: 

(2.17) 

In fact, the noisy channel approach is a special case of this kind of optimization, with 
hx{e,f) = logp L M (e) and h2(e,f) = logprM(/ |e) with A x = A 2 = 1. In practice, the 
language model and translation model are still the most important feature functions in the 
log-linear model, but the architecture has the advantage of allowing the inclusion of other 
arbitrary features as well. 
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Since the optimal weights for the model are unknown, log linear models are trained to 
directly optimize evaluation metrics using a procedure such as minimum error rate training 
(MERT) (Och, 2003). This is known as parameter tuning. 

Some of the most used features in state-of-the-art P B S M T systems are summarized in 
Table 2.3. 

Table 2.3: Most frequent decoding features in modern systems 

Most of these features are estimated using phrase scoring and then stored in a dictionary­
like database called phrase-table. Then, phrase-tables are loaded by the decoder at runtime. 

2.6.2 The Process of Decoding 
Given an input source language sentence, there are several possible translations that can be 
achieved. Each of those translations is called a translation option or translation hypothesis 
and has a cost (the log-probability). We want to find the translation that has a lower cost. 
During decoding, the input sentence is segmented and all translation options of the possible 
segmentations are collected. This allows a quicker lookup, for faster decoding. 

Search 

The search for the best translation is done using a beam search algorithm. Each state is defined 
by the 'covered' words, (i.e. the number of words that have already been translated) and the 
target language string that has been generated. In the initial state, no source language words 
have been translated and no target language words have been generated. The goal state is 
where all the source language words are covered. From each state, the transitions are defined 
by the translation options. In Figure 2.11 

For example, i f our source sentence is "la casa blanca", the initial state has three uncov­
ered words, no English translation and no cost associated {la casa blanca || - || l } . When a 
translation option that covers the first two words, using (la casa || the house) would allow us 
to transition from the initial state to an state where there are two words covered , generating 
the partial hypothesis "the house" with a cost (hypothetical) of — logp(0.75) (i.e. the state {* 
* blanca || the house || 0.75}). 
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Figure 2.11: Example of different states and transitions during decoding 

The current cost of the new state is the cost of the original state multiplied with the 
translation, distortion and language model costs of the added phrasal translation. Among 
these the hypothesis with the lowest cost (highest probability) is selected as best translation. 

Recombination 

When there are two paths that lead to two or more hypotheses that are equivalent to the de­
coder, we keep only the hypothesis the least cost so far. The other hypothesis wil l always have 
higher cost regardless of the future paths, so we can safely discard (prune) it. This is know 
as hypothesis recombination. For example the following paths, lead to hypotheses that can be 
recombined: 

Pruning 

While the recombination of hypotheses as described above reduces the size of the search 
space, this is not sufficient. Therefore, several types of pruning can be implemented (e.g. 
threshold or histogram). This is done taking into account the cost of the hypothesis so far and 
a future cost estimation. Future cost estimation is similar to the heuristic distance estimate in a 
A * search. Since during decoding we are dealing with partial hypotheses (i.e. hypotheses that 
cover/translate different parts of the source sentence), future cost estimation helps to prevent 

In this example, we would choose the hypothesis b) that has a lower cost (higher proba­
bility) and discard hypothesis a). 

28 
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Figure 2.12: Example of hypothesis recombination 

the early pruning of partial hypotheses with "difficult" segments (i.e. that cover parts with 
inherent high translation cost) in favor of partial hypotheses with lower cost that are yet to 
cover those high-cost segments. 

Note that this type of pruning is not risk-free. If the future cost estimates are inadequate, 
we may prune out hypotheses on the path to the best scoring translation. 

N-best lists 

Usually, we expect the decoder to give us the best translation for a given input according to the 
model. However, search and model errors can occur, and the best-cost or first-best translation 
hypothesis could not be the best option. Therefore sometimes is useful to have more options 
to choose from. A n n-best list is one way to represent multiple candidate translations. N-best 
lists are formed by a set of N translation hypotheses sorted by their model score. Table 2.4 
depicts an example of an n-best list. 

2.6.3 Translation Evaluation 

The widespread development and usage of M T systems created a need for cheap and fast 
evaluation tools that could help to differentiate their quality and allow for development testing 
on an ongoing basis. Therefore several automatic quality metrics have been proposed. 

While current metrics are still very crude, translation evaluation is a very active research 
field. One of the most widespread metrics is B L E U (Papineni et al., 2002), but there are others 
that are starting to gain adoption (Meteor, TER). In this section we wil l briefly introduce them. 
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B L E U 

The BiLingual Evaluation Understudy (BLEU) is a widely used automatic evaluation tool for 
Machine Translation. It ranks from 0 to 1, 1 being the best translation. Its main goal is to 
compare n-grams of the candidate with the n-grams of the reference translations and to count 
the number of matches. These matches are position-independent. The more the matches, the 
better the candidate translation. 

Since B L E U is precision oriented, shorter translations with more n-gram matches are 
privileged. To avoid this, a brevity penalty is introduced. This brevity penalty deters from 
having translations that are shorter than the reference. B L E U has two nice properties. It 
accounts for adequacy by looking at word precision and it accounts for fluency by calculating 
n-gram precisions. However, since the final score is the weighted geometric average, it is 
deficient at the sentence level. Instead, it is an aggregate score over a large test set. Although 
recent studies suggest that B L E U ' s correlation with human judgments is not as strong as 
previously thought (Callison-Burch et al., 2006), and other metrics are available, B L E U is 
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still the main score reported in most academic research papers. Also, is the main indicator in 
many S M T evaluation campaigns. 

A clearer description of this metric can be found in (Papineni et al., 2002). 

M E T E O R 

The Metric for Evaluation of Translation with Explicit Ordering (METEOR) takes into ac­
count Recall and combines it with Precision but only at a unigram level. It aligns M T output 
with each reference (individually) and takes score of best pairing (best alignment). The un­
igram matching takes into account morphology (via stemming) and also includes semantic 
equivalents. It also uses a direct word-ordering penalty to capture fluency instead of relying 
on higher order n-grams matches. 

M E T E O R has several parameters that need to be tuned to optimize correlation with 
human judgments, therefore it has a significantly better correlation with human judgments, 
especially at the segment-level (Banerjee and Lavie, 2005). However, it is more expensive to 
compute. 

T E R 

Translation Error Rate is an error metric for machine translation that measures the number of 
edits required to change a system output into one of the references (Snover et al., 2006). This 
metric is widely used in evaluation campaigns such as G A L E 2 . 

2 h t t p : / / p r o j e c t s . l d c . u p e n n . e d u / g a l e / 





Chapter 3 

The Effects of Word Alignments on 
Phrase-Extraction 

Statistical word alignments serve as a starting point for the Statistical Machine Translation 
(SMT) training pipeline. Improving their quality has been a major focus of research in the 
S M T community. However, due to the amount of processing that a word alignment undergoes 
before being used in translation (e.g. phrase extraction), the quality of word alignments is not 
necessarily related to the quality of translation. 

The goal of better understanding the relationship between the alignment quality met­
rics (AER, precision, recall) and translation quality, is to make improvements in word align­
ment carry over to improvements in the end-to-end system performance. This is especially 
important in the case of discriminative word alignment (Niehues and Vogel, 2008), where 
alignments are designed to maximize a desired quality metric based on hand labeled data. 

In this chapter we present the results of our study published in (Guzman et al., 2009). 
Here, we explore in detail the dependencies between the word alignment and the phrase ex­
traction, as an effort to better understand the role of word alignments in phrase extraction. 
By studying the relationship of these two processes, we aim to shed light into the role that 
statistical word alignments play into the S M T training procedure. 

Furthermore, we explore not only alignment quality, but also structural characteristics 
of the alignment such as link density and number of unaligned words, and their impact in the 
phrase-pairs extracted from them. Our findings suggest that these structural characteristics 
have a strong influence on how our translation models are estimated. We found that along 
with alignment quality, alignment structure affects the quality of our translation model. 

This chapter is organized as follows: First, we start with a brief discussion of the impor­
tance of alignments in SMT. Next, we cover the details of the experimental setup of our study. 
We present the different types of alignments used and their characteristics. Later we analyze 
the phrase-pairs extracted from these alignments and discuss the results. Finally, we present 
the findings of a study we performed to assess the quality of phrase-pairs and observe how the 
structural characteristics of our alignments impact phrase-pair quality. 

33 
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3.1 Alignments and Phrase-Pairs 
Statistical word alignments are the basis for many S M T paradigms. They can be pictured 
as 'links' between the source and target language words of a sentence pair. They represent 
the lexical (word-to-word) translation of our sentences. Depending on the approach used 
to build our translation model, their application in S M T may vary. For phrase-based SMT, 
we use those alignments as input to build a phrase-lexicon (phrase-level dictionary) which 
is latter used to translate unseen documents. In consequence, word alignments determine 
which phrase-pairs are extracted and which are ignored. Furthermore, phrase-pair translation 
probabilities are determined based on frequencies. If a defective phrase-pair is extracted in 
several occasions during training, it wi l l be prone to be wrongly used as a reliable translation. 
Hence the importance of having good, accurate word alignments to start with. 

Traditionally, high quality alignments are those that the most alike to a human generated 
alignment. While this notion is itself debatable (two annotators can differ in their lexical 
translations of a sentence pair), much research has been done in augmenting the quality of 
automatic alignments, having as an objective to improve machine translation. Conversely, 
there have been studies that have found that alignment quality is not correlated with translation 
quality (Fraser and Marcu, 2007), or even prejudicial (Ayan and Dorr, 2006). However, little 
has been done to measure the impact of alignments in a step-by-step procedure. If high quality 
alignments are the goal, how does their quality impact our translation models? 

In this study, we focus in describing how different alignments, with varying alignment 
qualities, produce phrase-pairs. We pay attention to the quantity and quality of these generated 
phrase-pairs. In the following sections, we describe the details of this study. 

3.2 Experimental Setup 

There are several types of alignments. On one hand, we have the generative alignments which 
are discovered automatically given a set of sentence-aligned bilingual corpus. These models 
are asymmetrical, which means that the alignment discovered in one direction (e.g. source-to-
target (S2T)) are different than the alignments discovered in their reverse counterpart. To al­
leviate this problem, there are several heuristics that symmetrize the two directions by adding 
the common links first, and then the remaining links that do not cause conflict. One example 
of such heuristic is the commonly used grow-diag-final heuristic (Och and Ney, 2004). On 
the other hand, we have the discriminative alignments which are trained to maximize a certain 
alignment metric. The results of these alignments are symmetrical and sometimes use the 
generative model alignments as input features. 

For the following analysis, we used a small set of different automatically generated 
alignments along with human annotated data. We used both types of alignments: generative 
and discriminative to align a Chinese (S) English (T) corpus. For the generative alignment, we 
used the Viterbi alignments resulting from performing training through the standard sequence 
of word alignment models IBM1, H M M , IBM3 and finally IBM4, in both directions, i.e. 
source to target (S2T) and target to source (T2S). We used implementation provided by the 
modified G I Z A toolkit (Gao and Vogel, 2008). In addition, we generated the symmetrized 
alignment (SYM), using the grow-diag-final heuristic implemented and used in the M O S E S 
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package (Koehn et al., 2007). 

For the discriminative alignments, we used the approach described in (Niehues and Vo­
gel, 2008), because the output alignment matrix generated by such a system is composed of 
continuous values representing the alignment strength between source and target word. This 
allows to easily control the density of the alignment matrix, by using different intensity thresh­
olds, without having to recalculate the alignment. The different probability thresholds used 
throughout this study arep = {0.1,0.2, ...,0.9}. 

In the following experiments, the discriminative word aligner (DWA) uses the models 
from the G I Z A training (lexicon, fertility) as well as the G I Z A S2T and T2S Viterbi align­
ments as features. It is tuned to minimize the alignment error rate (AER) on the hand-aligned 
data using the alignment with threshold p = 0.5 as output. In Table 3.1, we show the sizes of 
the training sets for each of the aligners. We also show the size of our testing set. Note that 
for the tuning and the evaluation test sets the number of English words is about 20% higher 
than the number of Chinese words. For the training data the ratio is closer to 1 : 1.13. 

Table 3.1: Data Statistics of the alignment training set 

3.3 Characterization of Word Alignments 

When describing an alignment, there are two types of measurements we can use. On one hand, 
there are the alignment quality measures like A E R , precision and recall, which describe how 
close our output is to a gold standard in terms of the number of common links in the alignment. 
On the other hand, we have different structural measurements that can be computed over 
alignments, i.e. number of unaligned words, number of links, etc., which allow us to better 
understand the inner structure of an aligner's output. In the following sections, we explore 
the differences in the quality and structure of the different alignments. Later we discuss how 
these differences impact phrase-extraction. 
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3.3.1 Analysis of Alignment Quality 
In this part, we compare each of the automatically generated alignments against the hand-
aligned data. We used precision, recall and alignment error rate (AER) to evaluate the quality 
of the alignments. 

In Table 3.2 we display the quality measurements for the different word alignment ap­
proaches. First, the one-sided G I Z A alignments and the symmetrized (grow-diag-final) align­
ments are listed. For the discriminative word alignments the results for different thresholds 
are shown. Notice that the lowest error (AER) is achieved using the DWA-5. Changing the 
threshold allows us to cover a wide variety of alignments, from high precision (DWA-9) to 
high recall (DWA-1). Observe that the best discriminative alignments give a lower A E R than 
the symmetrized alignment from the generative models. 

Table 3.2: Precision, Recall and A E R for the different alignments. We show in bold the best 
results for each column. 

The same results are summarized in the Figure 3.1. Here we get a better sense of the be­
havior of the alignments. First, for the D W A alignments, we get a balance between precision 
and recall with the DWA-3 alignment. However, the best A E R is obtained by a slightly more 
precise alignment (DWA-5). For the G I Z A alignments and the heuristically symmetrized 
alignment, we observe more precision than recall balance, the symmetrization certainly re­
duces the overall error rate. 

3.3.2 Analysis of Alignment Structure 
In addition to quality, other statistics related to the structure of the alignment were also com­
puted. In this part of the study we also include the hand aligned data to have a better sense of 
which alignments are closer to the human generated data in terms of structure. The character­
istics measured are: 
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Figure 3.1: Precision, Recall and A E R for the different alignments 

— the total number of links (ANLK) in an alignment; 

— the average density of an alignment, i.e. the average number of links per word in a 
sentence (source ASLK, or target ATLK). 

— the number of unaligned words (gaps) in the source (ANSG), and target (ANTG), and their 
corresponding per word averages (AWSG, AWTG). 

Table 3.3 displays the source and target densities of the alignments resulting from human 
and different automatic alignments. For the hand aligned data we see that on average, one 
English word is aligned to 1.13 Chinese words, while the reverse case is almost one and a 
half. This discrepancy can be explained due to the difference in sentence lengths of Chinese 
and English test data. 

The G I Z A alignments have the characteristic that in one direction each word is aligned 
exactly to one word in the other language (source and target change their role in different 
directions). Since some words, in our case 2-4%, are explicitly aligned to the N U L L word, 
the density of links per proper word is slightly below 1 (0.96 and 0.98 for S2T and T2S, 
respectively). For the discriminative aligner the number of links decreases when the threshold 
is increased. The threshold DWA-3 gives a density closer to the hand-aligned data. This 
alignment has the best balance between precision and recall. Nevertheless as shown in Table 
3.2 its quality is not the best. A higher threshold gives a sparse alignment which results in a 
higher precision. This makes evident that human alignments are denser than our best quality 
alignments. In other words, there are many "good links" that we are missing. 
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Table 3.3: Total number of links (ANLK), average number links per source word (ASLK) and 
average number of links per target word ATLK, for different alignments 

3.3.3 Unaligned Words 

More interesting yet, is to look at the summary of unaligned words in Table 3.4. 
In general, there is a tendency to leave more Chinese words than English words un­

aligned. Note that the hand alignment has the most symmetric distribution (about 10% in 
both sides). 

The G I Z A alignments have the most striking disparity. While S2T leaves more than half 
of the English words unaligned, T2S leaves many Chinese words unaligned. 

For the D W A case, we observe more Chinese words unaligned at first. But as we increase 
the threshold, the situation is reversed (remark DWA-9). The situation is better appreciated in 
Figure 3.2 where we can observe the increase in the number of unaligned words as we move 
from lower to higher thresholds. 

Comparing the different alignments to the human generated alignment, we find that for 
the source side the symmetrized alignment is very similar to the gold standard on the number 
of words left unaligned. On the target side, the closest match is given by DWA-3 (totals) 
and DWA-4 (percentage). This shows that even our best quality alignments (AER-wise) are 
leaving too many words unaligned. 

3.3.4 Summary 

So far we have discussed several different statistics that can be used to describe alignments. 
They give us different perspectives on the nature of an alignment. And how does it compare 
to a human reference. 
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Table 3.4: Total number of unaligned words for source A N S G and target A N T G sides of the 
alignment. Also percentage of unaligned words for source A W S G and target A W T G . 

— We presented the different measures of alignment quality for the alignments. We ob­
served that we have a myriad of alignments in term of balance of precision and re­
call. However, we discovered that precision-oriented alignments prevail over their recall 
counterparts. 

— We also presented two alternatives to measure the structure of the alignments in terms 
of the density of an alignment. First, we presented the link density for the different 
alignments. Then we measured the number of unaligned words. We discovered that 
the most-human like alignments in terms of density are not the better quality ones. 
Our better quality alignments trend to be less-dense than the human counterpart. This 
outlines that there are many links in the hand alignment that we are leaving out. 

In the following section, we wi l l analyze the output of the phrase-extraction algorithm 
using the analyzed alignments as input. Our objective is to determine which of the character­
istics in the alignment might have more impact on the generated phrase-pairs. 

3.4 Analysis of Phrase-Pairs 
After generating symmetrized word alignments, the usual step in the pipeline is to extract 
phrase pairs. In the experiments described in this section, we used phrase-extract heuristic 
(Och and Ney, 2004) as implemented in the Moses package (Koehn et al., 2007), with a 
maximum phrase length of 7. 

As opposed to word alignments, there is no gold standard human generated phrase table. 
While some metrics as C P E R (Ayan and Dorr, 2006) have been proposed, they rely heavily in 
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Figure 3.2: Total number of unaligned words by system. 

the phrase-extraction algorithm to generate gold-standard phrase-pairs from a hand alignment. 
By doing so, the metric obscures the effect that the phrase-extraction heuristic may have on the 
quality of the phrase-table. In practice, measurements such as coverage, number of generated 
phrase pairs, size of the phrase table (i.e. unique phrase pairs), are used. In this study, we 
analyzed the following characteristics of the output of the extraction heuristic: 

— The number of phrase-pair instances PNI generated by an alignment a. 

— The percentage of singletons P N U , i.e. unique phrase-pairs. 

— The average source PSL and target PTL phrase lengths per phrase pair. 

— The average number of source PSG and target PTG "gaps" or unaligned words inside a 
phrase-pair. 

— The per-word average number of unaligned words in the source (PWSG) and target 
(PWTG) sides of the phrases extracted from an alignment. 

In the following subsections, we analyze the impact of the alignments in each of these 
characteristics of the phrase table. 

3.4.1 Analysis of Number and Length of Phrase-Pairs 
The number of generated phrases is an important characteristic of an alignment. The more 
unique phrase-pairs represent more translation options during decoding. However, the more 
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repeated phrases represent that our models wi l l have smooth probabilities and be better esti­
mated. Additionally, the longer our phrases are, usually means that we wil l be able to translate 
our input sentences using fewer phrases (which reduces the need for reordering). In this part, 
we start off by measuring these characteristics in the phrase-pairs generated by our alignment. 

Table 3.5: Different statistics for the phrase-pairs according to their length and number. We 
have the total number of phrase-pair instances PNI , the percentage of singletons ( P N U ) and 
the average source ( P S L ) and target (PTL) phrase lengths 

In Table 3.5, we summarize the statistics of the phrases according to their length, and 
number. The first piece of information that we observe is that as the D W A alignments gets 
sparser, the number of phrase-pairs increases steadily. Furthermore, the percentage of single­
tons also increases. 

This is a result of the behavior of the phrase extraction algorithm. As the D W A align­
ments become less dense, the number of phrase-pairs that are consistent with the alignment 
increases. This is similar with the results reported by (Ayan and Dorr, 2006), where they 
found that the size of the phrase table increases dramatically as the number of links in the 
initial alignment gets smaller. However not all the alignments exhibit the same behavior. 
For example, take DWA-7 and GIZA-S2T alignments. They have about the same number 
of links. Nonetheless, the number of generated phrase-pairs is almost three times larger for 
DWA-7 than for the S2T. Instead, the number of phrases generated seems to be influenced by 
an interaction between the number of links and the number of unaligned words. 

This result is more evident when we look at Figure 3.3. In this graph, we overlay the 
total number of unaligned words (source and target) on the bar graph for the total number 
of extracted phrases for each alignment. Observe that there is an interaction between the 
number of unaligned words on the source and target side of the alignment and the number 
of extracted phrases. While this rule is not perfect, it describes much better the quantity of 
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extracted phrases than the number of links. 

Alignments 

Figure 3.3: Distribution of length of the source phrases extracted from different alignments. 

Also remark that as we increase the sparsity of our alignments, the number of unique 
phrase-pairs also increases, but not nearly at the same rate. In Figure 3.4 we overlay the 
graphs of the two statistics. Observe how the number of extracted phrases increases quasi-
exponentially, while the growth in the unique phrases is more damped, almost logarithmic. 

This showcases the impact of spasity (more specifically, unaligned words) in the com­
position of our translation model. The more sparse is our alignment, the more phrase pairs we 
wil l be able to obtain. Unfortunately, many of the entries in our phrase-table wil l be seen only 
once (unique), which wil l result in a un-smoothed estimation. 

Another interesting piece of information is the distribution of lengths of the extracted 
phrase-pairs. We observe that as an alignment gets sparser the number of short source phrases 
remains about the same. However, the phrase extraction algorithm is able of finding longer 
phrases; many of which include a larger number of unaligned words, as we wil l show in the 
following subsection. 

3.4.2 Analysis of Phrase Alignment Gaps 

In Table 3.6, we summarize the gap statistics for the phrase-pairs extracted from the different 
alignments. Observe that the average number of gaps in both source and target sides of a 
phrase-pair increases as the sparsity of an alignment increases. For instance, most of the 
phrase-pairs of most-dense alignment (DWA-1) are gap-less (90% for source and 98.9% for 
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Figure 3.4: Number of extracted phrase pairs vs. unique phrase pairs per system 

target). In contrast for the DWA-9, the gap-less phrase pairs for source and target side account 
for 16.4% and 13.6% respectively. 

Notice also that the number of gap-less phrase-pairs tends to be higher in the English 
side, than in the Chinese side ( not taking into account GIZA alignments). In fact, when we 
look at the average per-word number of phrase alignment gaps (PWSG, PWTG), we observe 
that is extremely close to the per-word average of unaligned words of the alignments (AWSG, 
AWTG). In fact, the correlation between these two statistics is very high (0.93 for source and 
0.94 for target) suggesting that the distribution of unaligned words in our alignment carries 
into the phrase-pairs even after phrase-extraction. 

3.4.3 Summary 

In this section, we have observed how the structure of the different alignments has an impact 
on the phrase-pairs that are extracted from them. First, we observed that the number of ex­
tracted phrase-pairs is related to the number of unaligned words in the generating alignment. 
Furthermore, we observed that many of the generated phrase-pairs are unique, and trend to be 
longer. 

Furthermore, we discovered that the average per-word number of alignment gaps are 
preserved after phrase extraction. The correlation between the gap-measuring variables is 
very high. Therefore, we wonder if the gaps in an alignment also affect the quality of a 
phrase-pair. In the next section, we present a study in which we evaluated the human-assessed 
quality of phrase-pairs. 



44 CHAPTER 3. EFFECTS OF WORD ALIGNMENTS 

Table 3.6: Different statistics for the phrases according to their number of alignment gaps. 
We display the average number of gaps found in source ( P S G ) and target ( P T G ) phrases, along 
with the percentage of phrases extracted without into any gap ( - > P S G , - > P T G ) . We also present 
the per-word average of source and target gaps ( P W S G , P W T G ) 

3.5 The effect of Alignment Gaps in Phrase-Pair Quality 

As we have seen in the previous analysis, the number of unaligned words of an alignment 
has a huge impact on the number of phrase pairs extracted. As we observed, the phrase 
extraction heuristic allows to generate phrase pairs by growing into gaps. Some of these 
gappy phrase pairs wil l be useful. They wil l increase coverage, and actually might be accurate 
phrase pairs. However, many other phrase pairs wi l l be partially, i f not completely wrong. To 
investigate how the quality of the extracted phrase pairs depends on the type of the underlying 
word alignment, and on the gaps of the phrases extracted from these alignments, a small-
scale human evaluation was conducted. Several native Chinese speakers participated in this 
evaluation. 

The procedure was the following: Each subject was presented with a set of Chinese-
English phrase pairs. For each phrase-pair they judged i f source and target phrase were ad­
equate1 translations of each other. This was done without any other contextual information 
(i.e. the surrounding words, or the sentence pairs from where these phrases were extracted). 
This was also done blindly, as the evaluators did not have any knowledge of the origin of the 
phrase-pairs. Furthermore, we included a noisy set, which were pairs of randomly selected 
source and randomly selected target phrases. Such noisy set would help us to determine how 
likely is to obtain a good score by just having a random pair of source and target phrases. 

The phrases included are the ones generated by the alignments from the D W A with 

'By adequate, we mean that a source phrase could be used as translation of a target phrase in at least one 
situation, without loss of meaning 
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thresholds 0.1 to 0.9, the symmetric alignment and the hand-aligned data. Each set was gen­
erated by randomly selecting unique phrases generated by the alignments. We split the phrase 
pairs extracted from the hand-aligned data into two groups, Gaps and No-Gaps, which stand 
for phrase pairs generated from the hand alignment by growing into gaps, and phrase pairs 
generated without growing into gaps. We used this configuration because we wanted to high­
light the effect of having gaps in the phrases generated from a perfect alignment. The sample 
sizes were of 100 for the HA-Gaps, HA-No-Gaps, symmetric alignment and noisy sets and 
50 for the DWA-1 to DWA-9 sets. 

After the results were collected, an analysis of covariance (ANCOVA) was done, con­
sidering the independent variable: system, the random variables: evaluator, number of gaps 
in source phrase and target phrases; and the dependent variable: adequacy, with non-repeated 
measurements. As we can see in Table 3.5, only the system (alignment) is a significant factor, 
i.e. the means of the evaluation by system are not equal. This, as we expected, means that 
there are differences in quality across systems. The interaction between system and evaluator 
is not significant, which means that there is no evidence that show that evaluators were biased 
towards any specific system, which is expected in a blind experiment. Also note that while 
the effect of the number of source gaps is almost significant (at a = 0.01, there is strong 
evidence that suggests that there is an interaction between source and target gaps. In other 
words, looking at the gaps in one side of a phrase-pair may not tell us much about its quality. 
However, the combination of source and target gaps might be a good indicator. 

Table 3.7: A N C O V A table showing the effects in the experiment: Evaluator (EV), System 
(SYS), Number of Source Gaps (SG), Number of target Gaps (TG). Also two-way interactions 
are shown for Evaluator*System, Source Gaps*Target Gaps. 

In Figure 3.5 we show the mean of the evaluation by system2. As expected, random 
phrase-pairs perform poorly. This verifies the consistency of the judges evaluation as good 
scores could not have been achieved randomly. Surprisingly, the phrase pairs extracted from 
DWA-1 achieved the highest score. While DWA-1. phrase are nearly all gap-less, the under­
lying word alignment is far from perfect. Furthermore, comparing phrase pairs extracted from 
human word alignment, shows that a perfect word alignment does not lead to perfect phrase-
pairs given the current extraction heuristic. However, the HA-no-gaps set performs better than 

2The confidence intervals are merely informational. To determine statistical differences, one must perform 
unplanned pairwise comparisons such as Scheffe tests 
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Figure 3.5: Phrase pair quality evaluation results 

the HA-gaps set. This suggests that the quality of a phrase-pair extracted from a gold standard 
hand alignment deteriorates when it has gaps on either its source or target phrases. Over­
all, we do observe the tendency that less number of unaligned words in the word alignment 
leads to better quality of the extracted phrase pairs. In other words low precision/ high recall 
alignment results in fewer but higher quality phrase pairs. To balance the trade-off between 
higher quality phrases and coverage, we conducted a series of translation experiments were 
the number of unaligned words was taken as a feature. They are described in detail in Chapter 
6. 

3.6 Conclusions 
In this chapter we studied in detail the relation between word alignment and phrase extraction. 
First, we analyzed word alignment according to several characteristics and compared them to 
hand-aligned data. We observed that there is a lot of room for improvement for our alignment 
models. Second, we analyzed the phrase-pairs generated by these alignments. We observed 
that sparser word alignments lead to a higher number of extracted phrases, which ultimate 
results in larger phrase tables. While these larger phrase tables contain longer phrases, many 
of the phrases contain unaligned words. Also, the number of unaligned words in the alignment 
have a large impact on the characteristics of the extracted phrase table. The unaligned words 
in the extracted phrase pairs follow the distribution of unaligned words in the alignment from 
where they were extracted. Third, a manual evaluation of phrase pair quality showed that the 
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more unaligned words (gaps) result in a lower human perceived quality. 





Chapter 4 

The Effects of Alignments on the 
Phrase-Based Translation Model 

In the previous chapter, we observed how several alignment density characteristics (link den­
sity, source and target gaps) influence the phrase-extraction process. We performed an ex­
ploratory study that allowed us to get a sense of the importance of certain features, specially 
the distribution of unaligned words. We detected a strong influence of alignment gaps in the 
number, length and quality of extracted phrase-pairs. 

In this chapter, we revisit the problem with a different focus. First, we study the transla­
tion model also known as phrase-table (as opposed to only phrase-pairs). The main difference 
is that in a translation model, each phrase-pair is unique and has a series of translation proba­
bilities assigned. 

Second, we make use of more variables in this analysis. In addition to alignment density, 
we, we include certain distortion variables, such as the proposed by (Lambert et al., 2010). 
For the phrase-table, we also measure the entropy of the translation model features. 

Finally, we go past the exploratory study by building regression models to help us predict 
the most important phrase-table variables using alignment characteristics as input. We test the 
regression models' robustness against unseen data. 

This chapter is an enhancement of the study presented before, in Chapter 3 and is tightly 
integrated to the analysis developed later in Chapter 5. There, we address how machine trans­
lation quality is related to several characteristics of the translation model. The remainder of 
this chapter is organized as follows: first we introduce the translation models and define the 
translation probabilities. Then, we define the setup of our experiment. Next, we perform a 
correlation analysis of the alignment variables and phrase-table variables to develop a sense 
of the relationships between the variables. Afterwards we build more fine-grained regression 
models and test their robustness to predict unseen data. We wrap up with a discussion of our 
findings. 

4.1 The Phrase Translation Model 
In the previous chapter we observed how we could extract phrase-pairs from an alignment. 
The following step in the training procedure after phrase-extraction is known as scoring. Its 

49 
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objective is to create a translation model, otherwise referred as a phrase-table. This process 
consists in calculating different translation probabilities for each phrase-pair. 

In Figure 4.1 we show a snippet of a phrase table. In addition to the English and Spanish 
phrases, we observe the (optional) alignment information, as well as four translation proba­
bilities which we introduce below. 

" f a m i l i a " que f i g u r a III 
" f a m i l y " ||| 
(0) (1) (1 ,2) () (2) M l (0) (1 ,2) (2 ,4) | | | 
0 .0140845 2 . 0 2 3 5 3 e - 0 7 1 0 .0163321 2 .718 

" f a m i l i a " que se e n c u e n t r a d e n t r o I I I 
" f a m i l y " t h a t f a l l s w i t h i n | | | 
(0) (1) (2) (3) (4) (4) (5) M l (0) (1) (2) (3) (4 ,5) (6) ||| 

1 2 . 0 3 5 5 3 e - 0 6 1 1 . 1 8 1 1 4 e - 0 5 2 . 7 1 8 

" f a m i l i a " que se e n c u e n t r a ||| 
" f a m i l y " t h a t f a l l s ||| 
(0) (1) (2) (3) (4) (4) M l (0) (1) (2) (3) (4 ,5) ||| 
0 . 5 9 . 7 5 0 5 4 e - 0 6 1 1 . 9 0 1 3 9 e - 0 5 2 . 7 1 8 

Figure 4.1: Snippet from a phrase table including alignment information. For display pur­
poses each entry of the phrase table appears broken into four lines. The first and second lines 
correspond to the phrasal translations (phrase-pairs). The third line corresponds to the align­
ment information (source to target and target to source). The fourth line corresponds to the 
feature values for each phrase-pair. 

4.1.1 Translation and Lexical Probabilities 
Traditionally, there are two types of probabilities that are embedded in a phrase-table. We 
present them in 4.1. 

Table 4.1: The four different translation probabilities included in a phrase-based translation 
model 

On one hand we have the phrase-translation probabilities P(F\e) and P{e\F), which are 
the maximum likelihood estimates (MLE) of the phrase-pair likelihoods based on a frequency 
(counts) approach. 
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where count(e, /) represents the number of times that phrase e and phrase / appear 
in the same phrase-pair, while count(/) represents the number of times the foreign phrase 
/ appeared in any phrase-pair. The similar criterion is used for the inverse P(F\e) phrase 
translation probability. 

Lexical translation probabilities PIEX (also known as lexical smoothing) measure the 
translation probability in a per-word basis. Since they are calculated over the whole vocab­
ulary using alignment information, they trend to be smoother than phrase-translation proba­
bilities. For more details on how these probabilities are calculated, please refer to Appendix 
B . 

4.2 Experimental Setup 

In this chapter, we analyze different alignments and the phrase-tables extracted from them. In 
addition to the alignment quality and density variables we discussed in the previous chapter, 
in this chapter we included distortion and dimension variables. In Table 4.2, we present each 
variable used in this study along with a brief description. For a thorough discussion of how 
each variable is calculated, please refer to Appendix B . 

In the following part, we present the data we used for our study. First, we introduce the 
datasets and sampling techniques used. Later, we introduce the different alignment procedures 
employed. 

4.2.1 Data and Sampling 
In this study, we evaluate alignment quality and structure as characteristics of the alignments 
and measure their implications in translation model estimation. To measure quality, we re­
quire to use human labeled data. Unfortunately the availability of human labeled data is 
limited. Moreover, to make reliable estimations of the phrase-translation probabilities in a 
translation model we require a considerate amount of word aligned training data. Hence, 
we resorted to the sampling-with-replacement (bootstrapping) technique which is commonly 
used for obtaining smooth distributions when sampling data is scarce. For instance, this tech­
nique has already been applied for estimating confidence intervals for machine translation 
quality (Zhang and Vogel, 2004; Guzman and Garrido, 2008). 

The initial sampling pools were populated with the datasets displayed in 4.3. In our 
experiments, we randomly sampled with replacement 1000 word alignments for each of the 
aligners. We obtained 30 of such subsamples for our Spanish-English training set and 10 
subsamples of the same size for each of the aligners in our Spanish-English, Arabic-English 
and Chinese-English test sets. 

Thus the direct probability P{e\F) of a foreign phrase / of being translated into and 
English phrase e is determined by: 
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Table 4.2: Alignment and phrase-table variables considered in this study 
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Table 4.3: Hand al i gnment datasets 

Systems 

To have more diversity in our samples, we different aligners for each of our language pairs. 
On the discriminative side, we used the discriminative aligner by (Niehues and Vogel, 2008) 
and filtered to relatively balanced density-thresholds (0.4,0.5,0.6,0.7). 

On the generative side, we used the GIZA(Och, 2000) source-to-target and target-to-
source aligners symmetrized using the following heuristics: grow-diag, grow-diag-final, and 
grow-diag-final-and. Not only these heuristics are a standard (grow-diag-final is the default 
for the Moses (Koehn et al., 2007) decoder), but also the three of them provide a nice differ­
entiation in terms of precision-recall balance. For instance, grow-diag-final yields high-recall, 
denser alignments, grow-diag provides high-precision sparse alignments and grow-diag-final-
and produces a more balanced balanced alignment. 

In summary we obtained 210(30x7) subsamples of Spanish-English alignments for the 
estimation of our regression models and 70(10x7) subsamples for each of the Spanish-English, 
Arabic-English and Chinese-English test sets. 

Phrase-Tables 

For each of the alignment samples, we obtained their corresponding phrase-tables using 
the phrase-extraction and phrase-scoring algorithms readily provided in the Moses package 
(Koehn et al., 2007). Furthermore, we measured the alignment variables of the samples and 
their corresponding phrase-tables and used their subsample average as input data. 

The overall setup of our experiment is depicted in Figure 4.2. 

4.3 Correlation Analysis 
The first step in our analysis was to determine which were the variables that are the most cor­
related among each other. While paired correlations give us an idea of 'relatedness' between 
variables, a full correlation matrix shows us the big picture. The main objective is to see 
which variables relate with each other before performing regression. This helps to alleviate 
some problems that can be caused by multicollinearity. 

To simplify this analysis, we clustered the variables by similarities. In Figure 4.3 we 
observe a correlation map of the alignment and phrase-table variables grouped by similarity 
(positive correlation) to allow an easier analysis. The procedure to generate such map is to 
simply run a k-nearest-neighbor clustering algorithm. 

For an easier interpretation, we annotated the major clusters and labeled from 1 to 6. 
Below, we explain each one of them. 
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Figure 4.2: In step 1, we resample the original source and target sentences along with 
the computer and human generated alignments. Then we extract a phrase-table for each of 
these subsamples. We then evaluate the alignment quality (AQ), alignment structure (AS) and 
phrase-table alignment structure (PS). 

C I Diagonality, phrase-distortion and phrase-length 
In the first cluster, we observe a clear correlation between the alignment diagonality 
ADG, the average source phrase length PSL and to a lesser extent the average target 
length PTL . The interpretation is straightforward. The more 'diagonal' or monotone 
our alignments are, the less trouble the phrase-extraction algorithm wil l have extracting 
longer phrases. Additionally we observe a relationship between the relative alignment 
distortion at the phrase-level PDT and the alignment diagonality ADG. This is surprising 
given that alignment diagonality and relative distortion are negatively correlated. This 
means that the more alignment distortion we have in our alignment, the less alignment 
distortion we can expect in our phrase-table PDT. The explanation for this is that the 
more distortion we have in our alignment, the phrase-extraction wil l find more restric­
tions and will in turn extract only phrases in regions of the alignment where there is 
lower distortion. Thus the resulting phrases wil l have lower relative distortion. Cluster 
C l . b indicates that there is a strong relationship between CI and C4 which also con­
sists of alignment distortion variables (alignment relative distortion ADT and alignment 
crossings ACR) which indicates that alignments that have high diagonality also have 
lower values of distortion. In addition, alignment density clusters C2, C6, are to a lesser 
extent, also related to this cluster, which means that alignments that have high density 
also trend to have more distortion. 
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Figure 4.3: Correlation map for different variables. In this figure, the lighter colored squares 
indicate a strong correlation (either positive or negative) of the two variables in the respective 
row and column. The darker colors indicate a lack of relationship between the variables. 
Major clusters are labeled from 1 to 6. 

C2 Sparsity 
In this second cluster, we observe a large number of variables. Many of them represent 
alignment sparsity, as measured by source and target gaps in both the alignment and 
phrases ( P S G , P T G , A S G , A T G ) . This reiterates the observations we made previously: 
the sparsity of an alignment remains even after phrase-extraction. Otherwise said, the 
phrase extraction algorithm does not modify alignment sparsity. 

Additionally, in this cluster we have the alignment quality metric precision P which 
confirms the intuition sparser alignments trend to be more precise (this is especially 
true for discriminative alignments, as we observed in 3 ). 

In this cluster, we also have three important translation model variables: the number of 
entries in a phrase-table P N E and the direct and inverse phrase-translation entropies ( P T 3 
and P T 1 ) . On one hand, we confirm what we had observed previously in (Guzman et al., 
2009), where we observed that sparser alignments yield a higher number of phrase-
pairs. On the other hand, we observe that sparser alignments produce less determined, 
more ambiguous phrase-translation probabilities. We will discuss these relationships 
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more into detail in next section, where we pay close attention to them. 

C3 Lexical entropy 
In this third cluster, we have the lexical entropies from the phase-table ( P T 2 , P T 4 ) . 
These two variables are almost exclusively related to each other. Although we can 
observe a slight correlation with some of the alignment distortion variables ( A D G , A C R , 
A D T ) . As we wil l discover in next section where we build regression models for these 
variables, they are hard to predict based only on alignment density and distortion. 

C4 Alignment distortion 
In this cluster, we have two alignment distortion variables: alignment crossings A C R 
and alignment relative distortion A D T . AS mentioned previously, this cluster is highly 
related to the diagonality cluster C I as observed in cluster C I . b. As noted before, it is 
also moderately related to the alignment density and sparsity clusters. 

The interpretation for this is that as our alignment gets denser, it is more likely to have 
more crossings and increasing its relative distortion. 

C5 Alignment density 
In this cluster, we have the alignment density variables A L K along with phrase align­
ment density P L K . This confirms that the process of phrase-extraction does not modify 
the behavior of alignment density. Related to these variables we have the percentage of 
unique source and target phrases ( P S U , P T U ) . While this relationship might seem coun­
terintuitive at first (as before we observed more unique phrase-pairs as we decreased the 
alignment density), this relationship is explained in detail in the next section when we 
observe that alignment gaps are responsible for such behavior. 

In this cluster, we could also include the alignment quality metric recall R . This, again 
is related to the fact that the more links we have in our alignment, the more likely we 
are to cover good links in the alignment reference. 

Finally, remark one more time, how there is a strong relationship between the density 
variables and the sparsity variables (gaps) which measure different ends of the same 
spectrum. This is visible form cluster C 2 . b. 

C6 Sentence lengths 
This last cluster brings together the average source and target lengths of the aligned sen­
tences (the dimensions of the alignment matrix A S L , A T L ) . We can observe that these 
two variables do not relate to any other variable. Remark that they do not influence in 
any measure the phrase lengths P S L and P T L . This is an artifact of the extraction heuris­
tic being limited to a certain max-phrase-length (in this case 7). Additionally, phrases 
are limited by link-related restrictions more than to the total length of the original sen­
tences. 

Alignment quality and distortion 
While precision p and recall R are related to density variables, which is understandable 
given their nature, the F-metric F is only moderately related to alignment distortion. 
This means that the more monotonic our alignment is, the better the alignment quality. 
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Unfortunately, the F-metric (the counterpart of the popular A E R metric used as a stan­
dard for alignment quality) does not correlate well with any phrase-table characteristic. 

In summary, we have a high degree of correlation between phrase-table variables and 
many of the alignment variables, specially the alignment density and ones. For some variables 
like the number of entries in a phrase table and average phrase source length, we would expect 
to have good prediction models for phrase-table variables based on alignment information. For 
other variables like the lexical translation entropies P T 2 , P T 4 , we can expect to have weaker 
models. 

Additionally, we observed how the distribution of certain variables remains unaffected 
for alignment density variables, even after phrase extraction. More density and alignment 
gaps in our alignment wi l l mean more density in our phrases. The inverse can be said for the 
relative alignment distortion A D T . More alignment distortion A D T wi l l result in less alignment 
distortion in our phrase tables P D T . For the other variables, this relationship is not kept. The 
phrase-extraction modifies the distribution of the source and target lengths ( A S L and A T L vs. 
P S L and P T L ) , diagonality ( A D G VS. P D G ) and number of crossings ( A C R VS P C R ) . 

In the following part we wi l l discuss the regression models built upon alignment vari­
ables to predict phrase-table variables. 

4.4 Regression Models 

Up to now, we have corroborated many of the intuitions we developed in Chapter 3. For in­
stance, we have observed that alignment density and sparsity have a large contribution to how 
our phrase-tables are built. We have also developed an intuition on how alignment distortion 
affects other translation model variables. In this section we go beyond an exploratory study. 
We use multivariate regression as a tool to predict different phrase-table variables using the 
alignment characteristics as predictors. As we wi l l discuss in Chapter 5 some of the phrase-
table variables that we have selected for this part also show a strong influence the translation 
performance. 

Furthermore, we use unseen data to measure the generalization of the regression models 
built. In addition to Spanish-English data, we also incorporate Arabic-English and Chinese-
English alignments. 

For a simpler analysis, we have divided this section into three parts. In the first part 
we discuss the effects of alignment variables into the size and percentage of unique entries 
in a phrase-table. Second, we discuss the effects of alignments in the average source and 
target phrase length. Last, we observe the relationship between the alignment density and the 
entropy of the phrase-table translation probabilities. 

4.4.1 Entries in the Phrase-Table 
The size of a phrase-table is an important factor for machine translation. The more entries we 
have available give us more diversity of translation options. Unfortunately it is often found 
that many of these entries consist of pure noise. Rare phrase pairs (which are seen just a few 
times during training) fall into that category. Another way of measuring the diversity of a 
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phrase-table consist on the percentage of unique source or target phrases. Large phrase-tables 
with low percentage of unique phrases wil l have more smooth probability distributions. 

In Table 4.4 we show the standardized coefficients of the regression models using the 
most significant predictors. We present the R2 results for the training (estimation) sample, as 
well as the unseen test sets for Spanish-English, Arabic-English and Chinese-English. 

Table 4.4: Regression results for entries in a phrase-table 

First, remark how only four variables are enough to predict the phrase-table sizes and 
percentage of unique variables. With these four variables we are able to determine at least 
96% of the variance in the Spanish-English test set, a minimum of 90% of the variance for the 
Arabic-English test set and 87% of the Chinese-Test set. Below we present the analysis for 
each individual phrase-table variable. 

Number of entries in a phrase-table 
We observe that the total number of phrases depends on the number of target gaps in a 
positive way. The more gaps we have in our alignment, the more entries in our phrase 
table. In a similar way, the link density has a negative effect. Thus, the more dense our 
alignment, the more extraction restrictions wil l be presented, which in turn wil l reduce 
the number of phrase-pairs that can be extracted. Finally, diagonality plays a positive 
role. Thus, the more monotone our alignment is, the more phrases we wi l l be able to 
extract. This phenomenon is depicted in Figure 4.5. 

Unique phrases 
In the correlation analysis of the previous section, we observed that the percentage of 
unique phrases had a positive correlation with alignment link density. However, using 
regression, we found that they are more dependent upon the alignment gaps. Further­
more, the percentage of unique phrase for source and target have a symmetrical depen­
dency upon the number of gaps. For the source unique, we observe that the number of 
target gaps have a negative effect. This is because having more target gaps allows the 
same source phrase to grows into target gaps without violating any restrictions. Thus as 
the number of extracted phrases increases, the number of unique source phrases remains 
the same. This lowers the percentage of unique source phrases. The same effect occurs 
with the target gaps. 
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Figure 4.4: Comparison of number of generated phrase-pairs by monotone and non-
monotone alignments. In the first case (a), the diagonality of this alignment is 1.0 and we 
have ten generated phrase pairs. Four are of length l x l , three of length 2x2 and two of length 
3x3 and one of length 4x4. On the second case (b) we have a diagonality of 0.5 while the 
number of generated phrases is only 8 (4+1+2+1). 

4.4.2 Length of Phrases 
Average phrase length is an important characteristic of a translation model. Having longer 
source phrases allows us to translate an input sentence using longer (thus fewer) phrases. This 
has the benefit that local reorderings (i.e. word swapping) are encapsulated inside the phrase. 
Additionally, using fewer phrases to translate give us a phrase-translation boost. In other 
words, by using fewer phrases to cover the input sentence, the cost of translation in terms of 
reordering and phrase-counts can be reduced. 

The target side phrase-length is not as important as the source counterpart. During 
decoding, translation hypothesis length is taken care of by a word count penalty, which as 
its name suggests, penalizes each word in our translation (to prevent too long translations). 
Therefore, the role of the average target side phrase-length is (as we corroborate in next chap­
ter) not as relevant. 

In Table 4.5, we present the results for our regression models. For source phrase-length 
P S L we observe that for the Spanish-English samples, about 85% of its variance can be ex­
plained with two variables: the link density A L K and the alignment diagonality A D G . 

Table 4.5: Regression coefficients for phrase-table phrase length 

Furthermore, we observe that for both variables ( P S L and P T L ) the contribution of link 
density is negative while the contribution of the diagonality is positive. The explanation for 
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this phenomenon is direct. Having more link density increases the restrictions for phrase-
extraction. Thus, we wil l be able to extract fewer long phrases because restrictions make 
harder to extract them. 

On the other hand, having more monotone/diagonal alignments wi l l allow us to extract 
longer phrases because monotone alignments present fewer restrictions. This is exemplified 
in Figure 4.4. 

Figure 4.5: Phrase length and monotonicity. Having more monotone allow for longer phrases. 
On the left, the diagonality is 1.0 while the average source length is 1.66. In the second case, 
the diagonality is 0.5, while the average source length is 1.6 

Finally, remark that the target-phrase length prediction model achieves lower determi­
nation. While this is not the best model we found, it is the simpler one. Other models excel 
in predicting P T L for Spanish-English, but fail to predict for the Arabic-English or Chinese-
English and vice-versa. Therefore, we show the one that best represented every sample. 

4.4.3 Translation Entropies 
The probabilities in a phrase-table determine in a large measure which phrase-pairs wi l l be 
selected during decoding. Low probabilities increase the translation cost and reduce the like­
lihood of a phrase-pair to make it to the final translation. For our study, we used the average 
entropy as a measure of the uncertainty of the model. 

Measuring entropy 

In Information Theory (Cover and Thomas, 1991; Manning and Schiitze, 1999), the entropy of 
a random variable is measure of uncertainty. When the entropy is large, the uncertainty about 
the value of a random value is large. The entropy of a discrete random variable is defined by: 

Entropy is always positive since 0 < p(x) < 1 and it is assumed that 0 log 0 = 0. 
Entropy is a concave function with a maximum at the uniform probability value (i.e. p(x) = 
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G X). Thus, there is more entropy where all events are equally likely to happen 
(more uncertainty). 

When dealing with conditional distributions it is customary to measure the conditional 
entropy instead. 

Table 4.6: Regression coefficients for translation model entropies 

Phrase-translation entropies 
Similarly to what we observed in the correlation analysis, both phrase-translation en­
tropies P T 1 , P T 3 have a strong influence from the alignment gaps. This behavior is 
symmetrical to our observation in the percentage of unique phrases. For instance, P T I 
has a strong positive influence from the source gaps A T G in the same fashion that for 

We can think of conditional entropy as the weighted average of the entropy of P(Y\x) 
over all events x G X. In our case, we use the phrase-translation probabilities in place of 
P{Y\x) but also assume a uniform distribution over x (i.e. P(x) = 1/\X\), which is equivalent 
to say that instead of using a weighted average, we simply use the arithmetic average. Thus, 
the average entropy we measure is: 

In other words we are calculating entropy of P(F\e) for each of the English phrases e 

and averaging it across the space of all English phrases £. 
We perform this operation for each of the four translation probabilities presented in 

Table 4.1. 

Regression models 

We used the alignment characteristics to predict the average entropy of the translation model 
probabilities. In Table 4.6, we present the most significant predictors along with the R2 for 
each model on unseen data. 
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the percentage of unique target phrases P T U receives a negative influence. Roughly 
speaking, our interpretation of these results is that the more gaps we have on source 
alignment, we wil l have more unique source phrases while the number of target gaps 
stays the same, lowering the percentage of unique target phrases. For the entropy of 
p(f\e) ( P T l ) this means that we wil l have more foreign / entries per English phrases 
e. This in turn wil l increase the entropy as the probability mass wil l be split into more 
events, increasing uncertainty. The reverse effect would happen with the entropy p{e\f) 
( P T 3 ) . 

Lexical translation entropies 
As anticipated from the correlation analysis, lexical translation entropies are more dif­
ficult to predict than their phrase-translation counterparts. From the results in 4.6 we 
observe only modest prediction results. We found that the most predictive variable was 
the diagonality of the alignment. While including other variables in the prediction mod­
els certainly increased the R2, the resulting models were instable (due to collinearity, 
we observed standardized coefficients > 1). Thus, we keep more modest yet sensible 
ones. The coefficients indicate a negative influence from the diagonality for both P T 2 
and P T 4 . Thus having more diagonality decreases the entropy in both variables. 

4.5 Conclusions 
In this chapter, we have revisited the relationship between alignments and phrase-tables. From 
the results, we corroborated that density variables (gaps, links) have high correlation with 
many phrase-table characteristics. Additionally, we discovered that the alignment distortion 
also plays an active role in determining certain phrase-table variables. Furthermore, we ob­
served that the phrase-extraction algorithm plays well with alignment density making its dis­
tribution to carry to phrases. The case is different for alignment dimensions and alignment dis­
tortion. We observed that phrase-extraction changes drastically the expected behavior. Lastly, 
we observed that alignment quality as prescribed by the F-metric has little relationship with 
other phrase-table variables, suggesting that phrase-extraction exploits alignment structure 
rather than alignment quality. 

Doing a regression analysis, we corroborated these intuitions once again but tested them 
with unseen data in different language pairs. For instance, we confirmed many intuitions 
regarding phrase-table size and phrase-length and alignment density. Additionally, we ob­
served that alignment diagonality also plays an important role for these models such as av­
erage phrase-length. By testing our models in unseen Chinese-English and Arabic-English 
data, we observed that many of the predictions hold well for different language pairs. This 
highlights the fact that phrase-extraction does not depend of linguistic features but rather in 
the structure of the alignment itself. 

In this chapter, we also explored the relationship between the uncertainty in our trans­
lation features and the alignments used to compute them. Here, we discovered that the en­
tropy in the phrase-translation probability can be predicted very accurately using alignment 
gaps. On the other hand, the lexical scores are more difficult to predict based simply on these 
alignment features. While diagonality seems to predict about 30% in the entropy of these 
translation features, the model is not complete. Using the knowledge gained in this chapter 



4.5. CONCLUSIONS 63 

and the models obtained in the next chapter, we wil l be able to get the big picture about the 
effect of alignments in machine translation. 





Chapter 5 

Predicting Translation Quality 

Improving translation performance is a major goal for researchers in the M T area. In recent 
years, the development of translation competitions ( G A L E , NIST, W M T ) have highlighted the 
importance of achieving better translation results. Thus, new techniques, translation features, 
training schemes, etc. are constantly emerging. 

More often, research is focused on tweaking parameters, enhancing training sets and 
looking at the end-to-end translation quality metrics as a measure of performance. Nonethe­
less, little attention is paid to an equally important task: understanding how each of the com­
ponents in the complex M T systems affect performance. 

In this thesis, our focus is to understand how different parts of an M T systems interact. 
More specifically, we pay attention to the effect of word alignments, and how their structure 
affect translation models and ultimately, translation quality. In this chapter, we analyze the 
characteristics of the phrase-tables and translation hypotheses and how they relate to transla­
tion quality. 

The correlation between characteristics of the translation model and the automatic qual­
ity metrics has previously been addressed by few researchers. For instance Lopez and Resnik 
(2006) makes a study of different translation model (TM) features and their impact translation 
quality. On the other hand Birch et al. (2008) studies different language-pair characteris­
tics and treat them as predictors of B L E U (Papineni et al., 2002) translation quality. Others, 
have focused on identifying characteristics of the word alignments upon which these mod­
els have been built. Fraser and Marcu (2007) study how alignment quality (AER) is related 
to its translation quality cousin B L E U . Lambert et al. (2009, 2010) analyze how alignment 
characteristics correlate with translation quality. 

In this chapter, we propose the analysis of the translation process into different stages. 
First, we analyze translation quality in terms of the model characteristics. Then in Chapter 4 
we study how alignment characteristics impact the models. 

5.1 Methodology 

In this section, we describe the techniques we used to analyze translation quality and build a 
regression model based on our translation model translations' characteristics. 

65 
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5.1.1 Key Terms 
Before going into detail about our models, let us define some key terms: 

phrase-table Also known as translation model, the phrase table is a collection of source 
phrases paired with their corresponding target phrases, and several feature values. In 
addition, phrase tables may include alignment information from the original alignments 
upon which the phrases were extracted. 

In the following figure, we can observe an example of a phrase-table. 

translation hypothesis Translation hypotheses are the possible translations that can be built 
using our models. Each of them is assigned with a translation cost given the differ­
ent scores of such translation according to the language model, the translation model 
(phrase-tables), etc. 

First-best hypotheses are those with the lower cost, and thus, the ones that result in the 
output of a S M T system as the final translation. 

There are several bits of information that can accompany a translation hypothesis: target 
sentence, feature scores, alignment information, etc. Below we present an example of 
the first and second best translation hypotheses for the Spanish source sentence: la bolsa 
de praga termino con menos puntos al final de la Jornada . 

Figure 5.1: Example a first-best hypothesis for the Spanish source sentence: la bolsa de 
praga termino con menos puntos al final de la Jornada . Each the output is splitted into 
different lines for visualization purposes. From top down, we have the fields: Source sentence 
index (0), its corresponding translation. Next, we have the values for each of the model 
features (distortion model djanguage model lm, translation model tm, and word penalty w) 
all in logscale. Additionally we have the accumulated weighted model score. Finally the 
hypothesis alignment (source-target and target-source). 

5.1.2 Measuring Variables 
In our study, we measure different characteristics of the phrase tables and translation hypothe­
ses. While some of them are shared (specially those regarding underlying alignment variable 
measurements), other are specific to each. Below, in Table 5.1 we present those variables 
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Table 5.1: Variables used in the translation quality prediction study 

used in our prediction models, as well as our predictors (translation quality): BLEU(Papineni 
et al., 2002), M E T E O R v l .3 (Denkowski and Lavie, 2011) and T E R vO.7.25 (Snover et al., 
2006). We highlight in bold typeface those variables that resulted in significant results. For 
further reference about each of the variables, please refer to Annex B where a more detailed 
description of each variable is provided. 

5.1.3 Finding a Regression Model 
In order to estimate a multivariate regression model when its specification is unknown (i.e. 
we do not know which variables belong to the model), there are several techniques that are 
commonly used (Hair et al., 2010; Johnson and Wichern, 2002). First, we have a combina­
torial approach, which search among all possible combination of independent variables. The 
best example of this kind of approach is the all-possible-subsets regression. Unfortunately 
this approach quickly becomes impractical as the number of possible predictors grows ( we 
would search among 2^x' where \X\ is the cardinality of our predictor set). 

The other category of model specification techniques are known as sequential search 
methods. These methods provide an objective function for selecting variables (i.e. the subset 
that maximizes the prediction) while employing the smallest possible number of variables. 
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Examples of this category are the Forward Addition ( where we start with an empty model 
and at each iteration the most predictive variable is added), the Backward Deletion (start with 
an full model, and iteratively delete the least significant variable), and the Stepwise Estimation 
(a mixture of Forward-Backward estimation). 

More specifically, the algorithm for the Stepwise Estimation, is the following (Hair et al., 
2010): 

1. Start with a simple regression model of only one predictor e.g. Y = b0 + b\Xi, where 
Xx is usually the independent variable with the highest correlation with the dependent 
variable. 

2. Examine the partial correlation coefficients to find additional independent variables that 
explain the largest statistically significant (to a threshold level penter) portion of the 
unexplained variance. Add the most significant variable to the model. 

3. Recompute the regression equation using the newly added variable. Look for the partial 
p-value (F-statistic) of the previous variables in the model. Remove the one with the 
lowest p-value below a threshold level pout. 

4. Continue the procedure, adding independent variables until none of the remaining can­
didates are statistically significant 

While stepwise regression can be very useful during specification stage, there are several 
caveats that need to be addressed. For instance, multicollinearity (i.e. predictors that are 
highly correlated) can obfuscate the effect of one predictor in favor of the other. Then, i f one 
of those predictors enters the model, it is very unlikely that the other wi l l be taken into account 
as well. Thus, one must also assess the possibility of collinearity and its impact to the model. 

Another critique that can be raised to this type of method is that consequently applied 
significance tests can inflate Type I error. To alleviate this problem, it is suggested to use 
more conservative thresholds. For our research we used penter = 0.01 and pout = 0.05 as 
thresholds. 

In addition, to test the generalization of our models and detect any capitalization of sam­
pling error (over-fitting), we performed prediction tests with unseen data using the regression 
coefficients for each model. 

5.2 Experimental Setup 
In this section we outline the configuration of our experiments including the translation sys­
tems used, the datasets and the sampling techniques used. 

5.2.1 Data and Sampling 
Data Sets 

For this analysis, we used a variety of different test-sets available for the Spanish-English 
translation task for the W M T 2011 competition1 as well as previous years. For Chinese test 

'Data can be obtained directly from h t t p : / /www. s t a t m t . o r g / w m t 11 / 
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data, we used the sets from NIST Open M T evaluation 2 . For Arabic, the test sets used were 
extracted from G A L E 3 evaluation data. The statistics for these sets are summarized in Table 
A.2 . 

Sub-document Sampling 

In their majority, translation metrics are designed to evaluate complete documents. B L E U for 
instance, rely on aggregate n-gram matches for the whole document. As such, it is deficient 
as the sentence level. To better appreciate the effect of translation model into translation 
quality, we used several sub-documents, long enough to provide accurate translation stats, but 
short enough to allow us to appreciate difference between different translation models. Sub-
document splitting is a known technique that has been used previously for confidence interval 
estimation (Koehn, 2004b; Guzman and Garrido, 2008). Lengths of sub-documents vary, but 
it's been reported around 50 test sentences per document. In our study, we chose to use a 
sub-document size of 100 translation sentences to get smoother results. 

Train and Test 

As mentioned before, we used the Spanish-English language pair for model estimation (train­
ing). Additionally we used test sets from Spanish-English, Chinese-English, and Arabic-
English language pairs. For the training part, we used three sub-documents of 100 sentences 
each per document-set for training. For testing, we used one sub-document of the same size 
from each Spanish document set. For Arabic test, we used 5 documents from each of the 
document sets. For Chinese, we used 2 sub-documents from each of the document sets. 

The final representation of document sets in our training and test samples are summa­
rized in Table A.2 

Systems 

For Spanish-English experiments, we used different translation models build upon differ­
ent alignments. The aligners used for these systems were the discriminative aligner (DWA) 
(Niehues and Vogel, 2008) with different density thresholds (Guzman et al., 2009)(0.4,0.5,0.6,0.7) 
to have a variety of dense and sparse alignments. The D W A aligner was trained using hand 
aligned data from the EPPS(Lambert et al., 2006) dataset. 

Additionally, we used the symmetrized GIZA++ alignments using the heuristics grow-
diag , grow-diag-final and grow-diag-final-and. 

For the Chinese and Arabic test sets, we used the grow-diag-final symmetrized align­
ment system. For further information about the systems' training, please refer to Appendix 
A . 

2See h t t p : / / w w w . i t l . n i s t . g o v / i a d / m i g / t e s t s / m t / 
3 h t t p : / / p r o j e c t s . l d c . u p e n n . e d u / g a l e / 
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5.2.2 Data Measurement and Consolidation 
For each of our phrase-tables, we filtered them to each of the sub-documents. I.e. from the 
whole phrase-table, we kept only those entries which had a match in the corresponding sub-
document. In practice, the filtered phrase-table has all the information needed by the decoder 
at runtime. From the deployment perspective, filtered phrase-tables have the advantage of 
saving the decoder's footprint. Additionally, they represent the search-space available to the 
decoder given an input document. In this study, we are interested in the characteristics of this 
search space as well as the characteristics of the translation hypotheses resulting from using 
these filtered phrase-tables. 

For that reason, we filtered each of our seven phrase-tables to each of the different sub-
documents. Next, we used the filtered phrase-tables to translate their corresponding sub-
documents. Additionally, we evaluated the quality of each of the translations. Finally, we 
formed a vector for each sub-document/phrase-table combination with the following form 
[PT, FB, Q] where PT stands for the variables related to the phrase-table and FB for the 
variables regarding the first-best translation hypothesis and Q for their corresponding transla­
tion quality. 

In this scenario, our total data points consisted in 7x3x9 for training (Es), 7x1x9 for 
Spanish testing, 1x6x4 for Arabic testing and 1x8x4 for Chinese testing. 

5.3 Experimental Results 
In this section we present the findings of our model building along with their interpretation 
and some thoughts on the actions we could follow to improve translation. In the first part, 
we present the general models obtained for the whole set of documents. We discuss their 
robustness and predictability not only for Spanish but also for Arabic and Chinese. In the 
second part, we present refined models adapted to 'easy' test sets and tougher 'medium' and 
'hard' test sets. There, we discuss the increase of predictability obtained by better targeting 
our models. Also discuss the trade-offs of such refinement. 

5.3.1 General Model 
While the use of stepwise regression is useful for discovering models where a there is no 
'strong' theory about the dependency between variables, it does trend to 'capitalize' on sam­
pling error. To avoid this, we tried several runs of the algorithm, deleting the most predictive 
variables from the pool, and running the algorithm again. The best results on the overall data 
are presented below. 

B L E U 

In Figure 5.2 we present the results for our model. On the top, we present the predictors 
present in the final model along with their standardized regression coefficients to facilitate 
the comparison among them. On the bottom part, we present the regression determination 
coefficient (R2) for the training model (tra) at each of the iterations, after including one by 
one each of the most significant variables. These results represent the amount of variation that 
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can be explained by the regression model. Additionally, we present the determination for the 
unseen Spanish(es), Arabic (ar) and Chinese (ch) test sets. 

Figure 5.2: General model for B L E U 

— Mode l Analysis 
If we regard the lower part of fig. 5.2 we observe the predictive behavior of the regres­
sion model at each stage of our stepwise search. From this graph, the behavior of our 
model depends largely on the language pair. For instance, this model was estimated on a 
Spanish-English sample, and we observe that the inclusion of each variable in the model 
(tra) has also a positive effect on the unseen Spanish test set (es). The total variance ex­
plained by the model for this language pair is around 55%. For the Arabic-English 
test set (ar), the story is a bit different. The best prediction can be achieved using only 
the average entropy of the direct lexical translation probability PT4 which accounts for 
about 70% of the variability. From there, every variable included in the model degrades 
the prediction, with the exception of the average entropy of the reverse lexical transla­
tion probability PT2 and the language model cost FLM. The final model determination 
is around 50%. For the Chinese-English test set (ch), only two variables degrade pre­
diction: the average number of alignment gaps in the hypothesis FTG and the language 
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model cost F L M . Except from that, each variable included, has an important contribution 
in predicting B L E U . The final determination is around 55%. 

— Model Interpretation 
From analyzing the regression coefficients of the model (displayed on the top of the 
figure) we draw the following conclusions 

1. The factor with the strongest effect comes from the average entropy of direct 
lexical translation P T 4 . It is a negative effect, which means that the more entropy 
of the piex{e\f) feature in our translation model, the worse our translations wi l l 
be. Large entropies in such feature are associated with very similar lexical scores 
(probabilities) for different target phrases given a source phrase. In a low entropy 
setting, we would have either few translation options or a target phrase with high 
lexical score for each source phrase. Therefore, having less determination in our 
scores, wi l l hurt B L E U . 

2. The second strongest effect is the number of entries in the phrase table P N E . 
This means that the more entries we have, the better quality in translation. Since 
the entries in the phrase tables are constrained on the source side (because of the 
filtering) this means that having larger phrase tables implies having more target 
side alternatives. 

3. There is a positive effect of the average entropy direct lexical translation piex(f\e) 
P T 2 . As opposed to the effect of P T 4 , this one means that the more entropy we 
have for this feature, the better translations we wil l get. In other words, for each 
target phrase we want to have as many correspondences as possible on the source 
side, each one as likely. Thus, all things equal, phrase-tables with a smaller num­
ber of unique target phrases wil l perform better. It is often the case that when we 
have many unique target phrases, many of them are rare. And it is often the case 
that these rare phrases are noisy. 

4. The hypothesis target side gaps F T G has a negative effect on the B L E U score. 
This means that, the more unaligned words are in the target side of the phrases we 
used, the lower the quality of our translations wil l be. This is in accordance with 
the study we developed in (Guzman et al., 2009) and discussed in next chapter. 

5. Lastly, the per word language model cost F L M has a slight negative effect. This 
means that the more ungrammatical or bad English our translation is, the worse it 
wil l fare with B L E U . 

M E T E O R 

In Figure 5.3, we can observe the results of our model for the M E R T metric. While there are 
some similarities to the B L E U regression model, the results do not generalize as well. 

From the bottom of the graph, we observe a mix of results for the training ad testing 
sets. While the variables included in the final model are the same as the ones included for 
B L E U model, the order in which they were added differs significantly. For Spanish-English, 
with exception of P T 4 , every variable improves the prediction of the model, reaching a final 
R2 of about 40%. For Arabic-English, every variable included has a positive effect. The 
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most important feature seems to be PT4 (as with B L E U ) . The final prediction lies around 
40%, which is lower than for B L E U . For Chinese-English, the only three features that seem to 
improve predictability are PT4 and PT2 and FLM. Unfortunately, the final model only accounts 
for about 30% of variance, which is much lower compared to the results observed for B L E U . 

Similarly to B L E U model, the direction and magnitude of the coefficients is similar. The 
main difference lies in the magnitude of the coefficients, but the order of importance remains 
the same. 

T E R 

The model for TER is shown in Figure 5.4. It is simpler than the previous models, including 
only four variables. However, it reaches only about 35% of accuracy on the test sets. 

From the bottom graph, we observe a consistent behavior between the Spanish-English 
train and test sets. Each variable adds a some prediction. Nonetheless, the last two variables 
FTG and PT2 seem to be more important for the test set. The behavior for Arabic-English and 
Chinese-English test sets is very similar. PT4, PNE and PT2 increase the predictability while 
FTG has a negative effect. 
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Figure 5.4: General model for T E R 

Since T E R is a negative measure (less is more), opposed to B L E U or M E T E O R , the 
results have similar interpretation as for the previous metrics. Notice that the language model 
cost FLM does not appear to have a significant effect in predicting TER. 

Discussion 

In Table 5.2, we summarize the effects of the phrase-table and hypotheses in translation qual­
ity. The most important effects are PT4 and PNE. Medium strength effects are PT2 and FTG. 
Finally, we also have a weak effect from the FLM only for B L E U and M E T E O R . From these 
results, we can draw some conclusions. First, the most relevant effects are related to the trans­
lation model. Thus, it is important to have a well defined translation model (PT4,PT2), with 
many options (PNE). Additionally, it is also that our translations have good word alignment 
support (FTG) and are in correct English(FLM). 

While these findings could be straightforward to anyone with long standing record of 
empirical work, this is the first study (to the best of our knowledge) that actually uses statistical 
methods to corroborate the intuition. Furthermore, this study showcases the relevance of word 
alignment into translation. As we have seen before, there are several alignment characteristics 
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Table 5.2: Effects of several variables in translation quality. Positive effects are noted with a 
(+) sign, while negative effects with a (-). We use the inverse effects of T E R for comparison 
purposes. 

that impact the size of a phrase-table, and the quantity of unique source and target entries. 
This was demonstrated showcased in the previous chapters. Additionally, the relevance of 
alignment gaps ( F T G ) was also outlined. In Chapter 6 we measure the impact of giving the 
decoder information to discriminate between hypotheses based on the number of gaps in their 
alignment. 

5.3.2 Refined Models 

From the previous results, we observed that the general model performed well on B L E U but 
not so well on M E T E O R nor TER. When we performed a careful analysis on the response 
variables, we observed that there is an evident clustering of translation quality according to 
the set documents we are dealing with. In Figure 5.5 we show the kernel density estimation 
(kde) of the translation metrics for the Spanish-English train and test sets. 

A kde is analogous to an histogram in the sense that shows us the distribution of the vari­
ables. However it is calculated using a gaussian smoothing, revealing a continuous distribution 
that does not suffer from the problem of binning. Here we use it to show the multi-modality 
of the distributions. 

From the figure we observe that while the B L E U distribution has three evident peaks, 
corresponding to easy, medium difficulty and hard translation tasks, the overall distribution 
is more symmetric than those of T E R and M E T E O R . This explains why the general models 
perform better for B L E U than for the other metrics. Furthermore, observe that in both sets, 
M E T E O R and T E R have roughly two sets: a medium-hard and an easy set of translation tasks. 
When we analyzed the document sets to which these tasks belong, we discovered a natural 
per document set division. Table 5.3 we present the manual labeling of the document sets. 

5.3.3 Refined Models: Easy Set 

In this section, we present the results of training our stepwise regression algorithm in the easy 
Spanish-English set, and testing on easy Spanish-English and both complete Arabic-English 
and Chinese-English, to test generalization. 
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Figure 5.5: Kernel density estimation for B L E U , M E T E O R and T E R for the Spanish-English 
data sets. The top row represents the distributions for the training sets, while the bottom row, 
the test sets. From left to right, we show the distributions for B L E U . M E T E O R and T E R . 

B L E U 

For the easy set, the B L E U metric is relatively easy to predict using few variables. In fig. 5.6 
we observe the results for this model. 

— Model Analysis 
This model is relatively simple. Two variables help us to predict very accurately the 
Spanish-English B L E U metric. By using only the F L M we can predict about 60% of the 
variability. Incorporating the F T G we get up to 75% accuracy. Performance differs for 
Arabic, where only F L M give us about 60% of determination but F T G does not contribute 
much. The story is very different for Chinese-English, for which the models does not 
hold well. 

Table 5.3: Classification of documents according to their nature 
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Figure 5.6: Model of B L E U for easy set 

— Model Interpretation 
This model explains B L E U as having a large penalty from the per word language 
model cost FLM . This means that the more fluent our translation hypotheses are, the 
better quality they wil l have according to B L E U . Additionally, we observe a negative 
effect from hypothesis target gaps FTG. This means that the more gaps we have in our 
translation, the worse it will be. These results are intuitive: first FTG can be regarded as 
an indicator of the quality of the translation model while is FLM represents the influence 
of the language model. These two components are the canonical components of any 
machine translation system. However, the relevance of FTG is noteworthy. 

M E T E O R 

The model for M E T E O R is very similar to the one for B L E U . However, it performs much 
better for Spanish-English. The results for this model can be observed in Figure 5.7. 

For Spanish-English, this model reaches high accuracy using two variables. Each one 
increases the determination coefficient on the test set, reaching to an R2 of 85%. For Arabic-
English, only the language model FLM seem to help predict M E T E O R . The inclusion of FTG 
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Figure 5.7: Model of M E T E O R for easy set 

variables only hurts prediction. The final model accuracy is about 60%. For Chinese-English, 
the model is only able to make poor predictions, accounting for about 10% of the variance. 

The direction and magnitude of the regression coefficients are very close to the coeffi­
cients for B L E U , thus receive a similar interpretation 

T E R 

The last of the models for easy data, the T E R model includes the same two variables as the 
previous models. In this case, since the T E R variable is measured inversely, the direction of 
those variables in reversed. The general outline of the model is displayed in Figure 5.8. 

From the figure, we observe that the behavior is very similar to the B L E U case. Only 
that in this case, Arabic-English reaches about 45% in accuracy while Chinese-English receive 
10%. The interpretation in this case is similar. The more alignment gaps we have in our 
hypotheses, the more translation error we wil l see. On the other hand, the less fluent our 
English constructions are, the more penalized our translation wil l be. 
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Figure 5.8: Model of T E R for easy set 

Summary 

So far, we have observed that when dealing with an easy document, that is, one document 
with long source sentences, the models that better predict our translation quality variables can 
be summarized as in Table 5.4.The prediction levels are substantially higher than the general 
models. 

Table 5.4: Summary of effects for the easy document set. The (+) and (-) signs summarize the 
strength of the effect. (+) stands for low, (++) medium and (+++) for large. 

We observe in every case, two components, the language model and the alignment gaps. 
Notice also that these models fit very well Spanish-English and Arabic-English. Chinese, on 
the other hand, performs very well. The immediate justification for this divergence could 
reside in the absence of any distortion component in the model. While Arabic-English and 
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Spanish-English are strongly monotonically aligned, Chinese-English has more long-distance 
re-orderings which do affect translation quality. 

5.3.4 Refined Models: Hard 

For Spanish-English, hard and medium difficulty models are those which are shorter on the 
source side. Generally speaking, models for this set have a more 'traditional' decomposition, 
with variables such as the translation model cost or the language model cost as their main 
components. In the following sections, we analyze each one of these models and provide a 
brief interpretation. 

B L E U 

Similarly to the models for the easy set, the B L E U model for the harder set also generalizes 
well for the Arabic-English set. In fig. 5.9 we observe the results. 

Figure 5.9: Model of B L E U for medium-hard set 
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— Model Analysis 
This model generalizes well for the Spanish and Arabic test sets. We observe that each 
of the variables in the model adds some prediction to the sets. The final models account 
for about 80% and 70% of the variance of Spanish and Arabic, respectively. For the 
Chinese case, only the average source phrase length F P S L seems to have any predictive 
value. The final prediction is about 15%. 

— Model Interpretation 
For this model, the per word language model cost F L M has the largest negative effect. 
Therefore the lower our cost per word is, the better our translation wil l be evaluated. In 
other words, the more grammatical our translation is (i.e. good English), the better. The 
next factor is the per phrase direct phrase-translation cost FT 3. In this case, the variable 
has a small negative effect. This means that the higher phrase translation probability, 
the better our translation wil l be. Last, we have the average source length of used 
phrases F P S L . This indicates that the longer the phrases we use to decode the source 
sentences, the better our translation wil l be. A l l things equal, this variable can also be 
interpreted as a requirement to use the fewer possible number of phrases to decode a 
source sentence. 

M E T E O R 

For M E T E O R the variables in the model are the same as for B L E U . As in the easy set, the level 
of accuracy for M E T E O R is higher than those for B L E U . For Spanish-English, we observe 
close to 90% accuracy, while for Arabic-English it is around 75%. For Chinese-English, the 
total model determination is of 20%. 

T E R 

From Figure 5.11, we observe that the model for T E R is slightly different from the model 
for B L E U and M E T E O R . Instead of a long-phrase boost F P S L , it uses the F T l . Notice that 
this model has lower accuracy as well. For Spanish-English and it only reaches about 50% of 
accuracy. For Arabic-English, the most predictive feature is the Language Model, reaching for 
about 50%. The final model has accuracy of 45%. The Chinese-English case, as previously 
observed, fits poorly, with about 20%. 

The interpretation of this model is similar to the previous. Notice that T E R has a 'boost' 
from reverse phrase translation cost. This might seem contradictory to the F T 3 penalty. Our 
take on this phenomenon is that while T E R prefers low cost Foreign-to-English phrases p(e\f) 
it actually prefers high cost in the English-to-Foreignp(/|e), thus penalizing phrases that have 
high phrase translation probabilities. This is in accordance to what we discovered previously 
for the general models, where we discovered a boost for high entropies on the PT2 feature. 

5.3.5 Summary 
The models for the medium-hard document sets have some common characteristics across 
quality metrics. These models are more intuitive than the previous. They represent they ac­
commodate the classical components of any S M T system. First, we see a strong contribution 
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Figure 5.10: Model of M E T E O R for medium-hard set 

from the language model. Then we observe that the phrasal translations also come into play. 
While in the previous models the importance of the translation model was represented by 
simpler features (such as F T G ) , in this case the phrase translation features gain more impor­
tance. Additionally, for B L E U and M E T E O R , we observe the length of the used phrases being 
important. 

5.4 Conclusions 
In this Chapter, we have developed several regression models that effectively allow us to 
predict translation quality in terms of the characteristics of the translation model (phrase-
table) and translation hypotheses characteristics. In Table 5.6 we present the summary of our 
findings. 

What we observed is that when aiming for a general model, the most important charac­
teristics for translation quality come from the phrase table. In short, we need to have large 
translation models, that are well defined. We need to have good alignment support, to re­
duce the number of alignment gaps that go into our translation. When dealing with target 
models, we discovered that short sentences are harder to translate. While experience tells us 
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Figure 5.11: Model of T E R for medium-hard set 

that individual shorter sentences are easier to transíate, at the aggregate level we observed the 
opposite. Documents whose average length is shorter, trend to fare worse. The explanation is 
that having longer sentences allows us to have a broader span of translation options at decod-
ing time. Another explanation might come from the nature of the data, it could be the case 
that the harder documents belong to a different domain that just happen to be shorter. In any 
case, by targeting our models to describe more precisely those samples, we obtained a better 
description of translation quality. 

When dealing with difficult tasks, translation quality comes determined by the cost of 
the language model and the direct phrase-translation feature and the length of the source side 
of the phrases sued. In other words, when we dealt with shorter sentences, we observed that 
we need to use as few as possible phrases to transíate, while having a fluent output that also 
represents well the meaning of the original sentence. 

When dealing with longer translation tasks, the situation is slightly different. We need 
that our final translation is fluent (longer translations could degrade quickly because of re-
orderings). However the translation model score does not have a significant effect. Instead, 
we observed that the aggregate number of alignment gaps help to discriminate between good 
and bad translations. 



84 CHAPTER 5. PREDICTING TRANSLATION QUALITY 

Table 5.5: Summary of effects for the hard document set. The (+) and (-) signs summarize the 
strength of the effect. (+) stands for low, (++) medium and (+++) for large. 

Table 5.6: General summary of the regression model with the translation model and hypothe­
ses effects. 

We measured the generalization of these models in terms of how well they helped to pre­
dict translation scores for unseen data in several language pairs. We observed that the generic 
models make weaker predictions that hold across language pairs. On the other hand when 
using the targeted models, we observed that Arabic-English and Spanish-English performed 
very well while Chinese-English performed poorly. We attribute this to the lack of reordering 
as a predictor. While Arabic and Spanish align more monotonically to English, Chinese has 
more long-distance re-orderings. Lack of fit on unseen data was a trade-off we expected when 
doing target models for Spanish. Surprisingly, Arabic performed better than expected. 

Finally, the results from this study set the grounds for further alignment research. We 
demonstrated that alignment related features impact translation quality. Thus, we need to use 
that information to improve alignments and translation. In the next chapter, we observe how 
important characteristics of the phrase table are closely related to the alignment structure and 
quality. 



Chapter 6 

Improving 
Alignment 

Machine Translation with 
Structure 

In the previous chapters, we observed that certain alignment structural features impact the 
consolidation of a translation model. Furthermore, we have discussed how those effects can 
propagate up to translation performance. 

In order to have increased control over the structure of the alignments in the final trans­
lation, we propose two alternatives to enhance the use of alignment structure for machine 
translation. Of particular interest is to provide means to control the number of words left 
unaligned, which according to our observations, determine greatly the characteristics of the 
translation model. Thus, the metrics we propose control that characteristic at two different 
stages: alignment training and decoding. On one hand, we present two new alignment qual­
ity metrics, which make use of the alignment structure the gaps to calculate the final quality 
score. Additionally, we introduce the alignment gap feature for decoding and its experimental 
translation results presented in (Guzman et al., 2009). Finally, we combine and compare both 
strategies and their effects in a final experiment. 

The remainder of this chapter wi l l be organized as follows: On the first section we 
describe in detail our proposed alignment metrics, along with the experimental translation 
results for alignments trained to maximize this metric. Next, we describe the new translation 
features used during decoding and the experimental results. Finally, we mix-and-match these 
enhancements and compare the results when they are used in isolation and combined. 

6.1 Improving Word Alignment for Phrase-Extraction 
A s we have observed previously, there is a strong influence from unaligned words into how 
the phrase-translation model. While there is no rule-of-thumb to whether we should have 
sparser or denser alignments, conventional wisdom indicates that we should have alignments 
as close to the Human Aligned reference. In Chapter 3, we confirmed that intuition when 
we observed that phrases extracted from hand alignments are perceived as having better qual­
ity than phrases from automatic alignments. Additionally, we observed that human-alignment 
generated phrases with unaligned words are perceived as having lower quality when compared 
to phrases without gaps. We understand that quality and structure both play an important role 

85 



86 CHAPTER 6. IMPROVING MACHINE TRANSLATION 

in how the final translation model wil l be estimated. Therefore, we propose two new align­
ment metrics that take into account more of the alignment structure, playing special attention 
to the negative space of the alignment matrix. 

Traditional alignment metrics such as precision, recall, the F-measure and A E R focus 
on quantifying the matches of true positive instances (i.e. the links in the alignment) while 
leaving the true negative instances out of their computation. In other words, they focus on 
how the positive space of an alignment matches the positive space of the reference. As shown 
in Chapter 3 optimizing towards maximizing these metrics leads to alignments that are less 
dense than the reference. Thus, optimization encourages alignments to be more precision-
oriented. In some situations, more precise alignments are preferable because they result in 
larger phrase-tables which result handy when dealing with low coverage situations. In other 
situations, recall oriented alignments wi l l be preferred because their translation models wi l l 
have lower entropy. 

In Chapter 3, we observed how word alignments have an impact on how the translation 
model is estimated. In addition, the quality of phrases is related to the alignment quality and 
the alignment structure. Therefore, to have better quality phrases, we need to make alignments 
more structurally-like to hand alignments. 

There are several ways to accomplish this task. On one hand, we can devise a heuristic 
process (much like symmetrization heuristics) which takes into account the structural charac­
teristics of the alignments to decide which links are added to the final alignment. Also, we 
can integrate more structural characteristics into a generative alignment model (like IBM) to 
let the algorithms discover the best alignments automatically. Another alternative is to create 
new alignment quality metrics that take into account not only the number of link matches but 
also some of the alignment structure. 

We favor the last alternative because a new alignment metric can easily be coupled 
with different discriminative alignment frameworks. Furthermore, a new metric can be use 
to compare and evaluate the output of several systems, while taking the advantage of human 
annotated data. 

In this section, we explore two new alignment metrics that take into account more of the 
structure of the alignment. First we make a modification to the F-metric (AER) to include the 
number of unaligned words into the match count. Additionally we propose the use of Balanced 
Accuracy (BA) as an alternative metric in which the positive instances in the learning problem 
(i.e. links) have equal importance as the negative instances (i.e. voids in the alignment matrix). 
Below we give a brief explanation of each. 

— F° score 
The traditional Fl-score uses the harmonic mean of Precision and Recall to compute 
its score. In other words it is defined as F = (R~l + P - 1 ) - 1 . In terms of a confusion 
matrix, the F-score is computed as: 

where TP are the true positives, FP are the false positives and FN are the false negatives. 
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Unaligned words or alignment gaps are also known as NULL-alignments. They get 
their name from the generative models where an explicit N U L L word was considered 
during training to model the probability of a source word to be aligned to no word on 
the target side. It was also said that the source word in question had a zero fertility. 
Different views from the same phenomenon are depicted in Figure 6.1. 

Figure 6.1: Three different representations of the alignment gaps/ NULL- l inks . 

In the traditional link-representations, unaligned words have no link with words on the 
opposite side (e.g. French words ne, du.). In the matrix representation of the alignment, 
unaligned words are represented by an empty column. In the IBM-model's view, they 
are represented by an explicit link towards a N U L L word. Inspired by this last repre­
sentation, we introduce the F° (F-null) metric, which uses null links in the computation 
of the quality score. It is defined by: 

Where TP°, FN° and FP° stand for the matches (non-matches) of null links. 

B y taking into account the positive and the null link matches this metric has the advan­
tage of incorporating some of the alignment structure into the quality score. 

Balanced accuracy 
Besides Precision and Recall (also called sensitivity), Specificity is another metric 
which is typically used in medical domain applications. Specificity is defined as the 
amount of true negatives by the amount of negatives in the gold standard. Thus it takes 
into account the negative space in our alignments. It is defined by: 

(6.3) 
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While sensitive (recall) oriented alignments trend to be more dense, very specific align­
ments would only have the opposite constitution. To balance these two quantities in 
equal terms, the Balanced Accuracy is defined as the average of the two. 

6.1.1 Alignment Results 
We used the new alignment metrics to tune the parameters of the Discriminative. Word Al ign­
ment (Niehues and Vogel, 2008) to measure the effectiveness of these metrics in discrimi­
native training. Our goal was to determine how the resulting alignments compare the A E R 
(F-measure) tuned alignments in terms of alignment quality and alignment structure. 

Traditionally, the tuning for DWA alignment comes in two stages: first a maximum like­
lihood tuning of parameters is performed. Then in the second stage, the parameters (scaling 
factors) are fine-tuned towards a second alignment metric as this is reported to lead to the best 
results (Niehues and Vogel, 2008). 

We performed an experiment in which our baseline was the A E R metric tuning. We 
compared it to the F° and B A tuning measures based on the alignments produced for a unseen 
test sample. 

Alignment Quality 

In Table 6.1, we present the quality results for each of the alignments tuned to different met­
rics. 

Table 6.1: Alignment quality metrics for each of the different alignments: F-tuned alignment 
(F), F° tuned alignment and Balanced accuracy (BA) tuned alignment. The metrics considered 
are precision (P), recall (R), F-measure (F), the null-link metrics (F°,P° and R°), Balanced 
accuracy (BA) and specificity (SP). We present in bold font the best results for each metric. 

Notice how optimizing towards different metrics yields slightly different alignments. 
For instance, alignments tuned towards F° are more precise than its counterparts in terms of 
both P and P°. However the gains are larger for P. This indicates that in order to achieve 
better F° score and have more N U L L link matches, the aligner omits more true links. As 

Balanced accuracy gives equal importance to the positive matches as to the negative 
matches. In other words, its not only concerned of the true space, but also to the struc­
ture of the alignment defined in the negative space. As we have observed before, the 
sparsity of an alignment is also an important characteristic for phrase-extraction. 
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expected, this results in an slight increase of the F° score. Additionally it performs better on 
the F-score when compared to the F-tuned alignment. Finally notice how it has the highest 
Specificity. This means that this alignment accurately improves the rate of true negatives 
(non-links) matches. 

The B A tuned alignments have the highest B A score. They also perform significantly 
better recall, both R and R°. However they report a significant loss in precision, which hurts 
the F and F° scores. 

Alignment Structure 

In Table 6.2 we present the structural differences between the alignments and the reference. 

Table 6.2: Alignment structure metrics for each alignment. In bold-font we present each of 
the results which are structurally closer to the hand alignment. In slanted font, the results that 
are remarkably high. 

In terms of structure, we observe that the B A alignment is denser than its counterparts 
and it is closer to the reference in several structural criteria. For instance, it has a rate of 
source gaps A S G closer to the reference alignment and the lowest A T G from all the alignments. 
Additionally its link density is closer to the link density of a hand alignment. Since it is more 
dense, we also observe more crossing A C R and more relative distortion A D T . Surprisingly, it 
has the highest diagonality overall. 

As anticipated, the F° alignments present more alignment gaps than the rest of the align­
ments, and their density is slightly lower than the F-tuned alignments. They also present the 
less distortion overall both in terms of alignments crossings A C R and relative distortion A D T . 

Summarizing, changing the tuning metric for discriminative alignments does have an 
effect on the quality and structure of the resulting alignments. For instance, we observed that 
including NULL- l inks in the computation of the F-score yields more precise alignments which 
leave more unaligned words. In terms of F and F° quality, they present a slight improvement 
when compared to the regular F-tuned alignments. 

On the other hand, having alignments tuned towards Balanced Accuracy (which take 
into accounts the true negatives of the alignments) yields more recall-oriented alignments, 
which in terms of structure are more similar to the human generated data. As we can expect, 
these alignments wi l l yield very different translation models. As predicted by our models in 
chapter4 these alignments also yield very different phrase tables. Taking as a reference the 
F alignment which has 20 million entries, the B A alignment which is more dense, yields a 
shorter phrase table with only 15 million entries. On the other hand the F° alignments yields 
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a larger phrase table with 21 million entries. In the next part we wil l present the translation 
experiments. 

6.1.2 Translation Experiments 
As a final experiment, we used the phrase-tables from each alignment for translating un­
seen data. The optimization of each model was done using M E R T (Och, 2003) to maximize 
B L E U for the news part of WMT2008 test data (nw08). For translation we used two news­
cast datasets corresponding to years 2007 and 2008 of the W M T newscast test data (NC07, 
NC08).The results of that experiment are summarized in tab. 6.3. For comparison, we in­
cluded the heuristic symmetrized alignment grow-diag-final-and. 

Table 6.3: Translation results using four different models: A discriminative aligner tuned 
towards three different metrics (F,F°,BA) and a symmetrized alignment. The different evalu­
ation metrics used were B L E U , M E T E O R and T E R 

First, remark how the initial F-tuned alignment has some trouble translating these sets of 
documents in comparison with the symmetrized alignment. However, including the N U L L -
link information in the F-metric shows significant improvements not only with respect to 
the baseline, but also with respect to the symmetrized heuristic. This behavior is replicated 
in the different metrics. While it is expected that improvements for B L E U are the largest 
(because the systems are optimized to maximize B L E U ) , observe how the D W A - F 0 alignment 
has consistent improvement across the different metrics. 

The Balanced Accuracy alignment, which was structurally more alike to the human 
aligned data, has the worse results of all systems. The results from these experiments are con­
sistent with the general predictive model that we obtained in Chapter 5. In fact, the correlation 
between the obtained B L E U scores and the predicted scores are of 0.88. As we observed be­
fore, having more entries in the phrase-table is an important factor in obtaining better scores. 
Thus, it is not surprising that the B A alignment obtained lower scores, given that its high 
density alignment results in fewer translation entries in the translation model. 

6.1.3 Conclusions 
As a result of the analysis performed in the previous chapters of this thesis, we observed that 
alignment structure is very important for the estimation of the translation model. To provide 
a mechanism to better control the structure of such alignments, in this section we introduced 
two new alignment quality metrics which take into account more of the alignment structure. 
We introduced two new alignment optimization metrics: Balanced Recall and the F-0 metric 
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which make use of NULL-alignment information. We observed that the F°-tuned alignments 
present improvements in terms of precision with respect to the F-tuned alignments. Also, we 
observed that the B A alignments are the most human-like in terms of structure. However, this 
similarity turns out to be of little help for machine translation. 

In terms of translation quality, the clear winner is the D W A - F 0 alignment, which yields 
consistent improvements across metrics. 
While the original concern was to reduce the number of unaligned words, tuning towards a 
metric that uses unaligned information yields a slightly larger number of unaligned words. 
However, this alignment is able to obtain better results mainly due to the fact that it results in 
a significantly larger phrase-table. 

In the next section, we present experiments where we control the alignment gaps at 
decoding time via an unaligned feature. 

6.2 Improving Translation Using Alignment Gap Features 
In Chapter 5, we observed that there are several features from the translation model that 
predict well translation quality of translation hypotheses on a static scenario. We observed 
how the translation hypotheses with more target gaps seemed to have lower translation quality. 
Inspired by that fact, and to give the decoder more control over the gaps in the translation 
hypotheses we introduce a new decoding feature that takes into account the alignment gaps 
information and uses it dynamically at decoding time. As we wil l observe later, using such 
feature enables the decoder to turn an originally liability ( more gaps meant less translation 
quality) into an asset. The target gap decoding feature (hftg) is defined as follows : 

Where e{ stands for the target phrase spanning from words 1 to J , F( stands for the 
source word spanning from 1 to I, and is an indicator function {0,1} that tells us 
whether there is an alignment link between word i and word j. By multiplying all (1 — j)) 
for the same j we verify i f the j th word is left unaligned. Thus, when calculating the feature 
value for a full translation hypothesis, the cost wil l be: 

In the end, an optimization procedure (MERT) wil l set the optimal weight for Wftg 

based on a development (tuning) translation set. In the next part, we wil l discuss the results 
of performing the optimization for these new features. 

6.2.1 Tuning Weights for Quality 
In this part of the analysis, we use the weights for the new features tuned by the Minimum 
Error Rate optimization. For comparison, we used a set of different translation models, which 
were generated from the alignments we had analyzed in previous chapter (DWA-4 to DWA-7, 
grow-diag, grow-diag-final, grow-diag-final-and). 
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For M E R T we used the news-test for the W M T 2008. This dataset consists of News 
data, which is considered out-of-domain for our translation models, which were trained on 
Europarl, News Commentary and U N data. For further reference about the data please refer 
to Appendix A . 

In Table 6.4, we present the weights for each of the translation models used. Since each 
of the optimization is performed independently (i.e. for each system and for each setting), 
since adding one new feature changes the search space and thus, the optimizer might modify 
the assigned weights for each feature. Therefore, we present the percentage of weight change 
corresponding to this feature, as defined by: 

Table 6.4: MERT-tuned weights for the F T G feature by system. On the central column 
we present the nominal weights for the decoding feature. These weights are normalized so 

\ W i \ = 1. On the right column we present the percent of tuning weight change attributed 
to this feature. 

First of all, notice how all of the weights given to this feature are positive. This means 
that the feature is acting as a boost rather than a penalty. In this new scenario, it uses the 
gap information to discriminate good and bad hypotheses locally. In fact, decoder is using 
the target gap-feature (as we wil l observe later on fig. 6.4) as a counterweight to phrasal 
probability. By giving a boost to phrases-with gaps, it can then penalize harder other phrases 
that do not have gaps, yet have low translation probability. 

Also note that a substantial amount of the weight change for these systems comes from 
the weight optimization for the newly added feature. For most of the systems, the percentage 
of weight change due to the gap-feature is less than 20%. 

In the next part, we wil l observe how the new feature contributes to the improvement of 
the translation. 

6.2.2 Translation Results 
For this part, we used the models with the new features and the optimized weights to translate 
several test sets. The considered documents were both in-domain Europal test-sets (WMT06, 
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W M T 0 7 , WMT08) , the also limited domain Acquis corpus (AC) and the News test set (NW09, 
NW10, SC09). 

The best scores for each document set are presented in Table 6.5. Notice that from all 
the tasks available, most of the best results were collected by the DWA-5 translation model the 
translation gap feature. And only one was obtained by the G R O W - D I A G - F I N A L symmetrized 
heuristic without gap. 

Table 6.5: Best scores per document set obtained by system/feature combination 

The individual B L E U gains scores between the translation models which use the new 
feature and those that do not are shown in represented in Figure 6.2, where we plot the deltas 
ABLEU = BLEU FTG - BLEUu by document set. 

Notice how we observe mixed results for the feature depending on the test-set. For 
in-domain sets, we get significant improvements. For instance, for the WMT06 , we get an 
improvement of 1.04 blue-points for the best-case, while the worst case increases 0.08 BP, 
with an average of 0.38 B P gain. For the out-of domain sets the results are less optimistic. 
For instance, for NW10, the best-case system gets an improvement of 0.8, while the worse, 
presents a loss of 0.46 BP, with an average gain of 0.15BP which is barely significant. On the 
positive side, the general average gain is of 0.27 BP. 

Analyzing the results by system (fig. 6.3) we observe an interesting pattern. For the 
discriminative systems, we observe that a tendency to achieve large gains by using the feature. 
These gains are more pronounced for moderately sparse alignments such as the DWA-5 and 
DWA-6. Which register average gains larger than 0.5BP. For the symmetrized alignments, the 
addition of the feature does not represent any significant change. 

By comparing the gains by the system to the relative weight changes, we observed an 
interesting correlation between the gains and the shift in the weight for the inverse phrasal 
probability feature p(f\e) as shown in fig. 6.4. 

Observe how there is a clear tendency in the gains obtained by adding the new feature. 
Systems for which the new feature was used to counterweight the p(f\e) feature, achieve 
better results. This was done by M E R T by increasing the penalization for the p{f\e) feature. 

Summarizing, using the phrase-gap feature, results in a boost for phrases that carry 
many gaps. When combined with an increased phrase-translation penalty, we can achieve 
large improvements in translation quality. These improvements were more noticeable for in-
domain test-sets. However, for the most part, the best-quality results were delivered by the 
DWA-5 system using the target gap feature. 
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Figure 6.2: B L E U gains of systems using the target gap feature segmented by test-document. 
On the left axis we present the different document groups. On the horizontal axis, the gains 
of B L E U ABLEU = BLEUFTG - BLEUU- For each document set, the overall average gain 
is marked with an x. The general average is represented by the vertical dashed line. 

Gap features can be more useful in situations where we have limited training data. In 
the next section we wil l present the results of experiments done in Chinese. 

6.3 Translation Gaps for Limited Scenarios 

In this section, we present the translation results of our experiments using limited data and a 
combination of two gap-features (source and target). These results were presented in (Guzman 
et al., 2009). 
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Figure 6.3: B L E U gains using the target gap feature segmented by system. On the left axis 
we present the different translation models used. On the horizontal axis, the gains of B L E U . 
For each system, their average gain is marked with an x. The general average is represented 
by the vertical dashed line. 

6.3.1 Setup 

For this experiment, we used a training data set consisting of the G A L E P3 Data 1. The data 
was filtered to have maximum sentence length 30. The final training set contains one million 
sentences. This setting is more limited than the previous experiments. The different sys­
tems that were used, were built upon the alignments from the DWA with alignment threshold 
p = {0.1..0.9}, and the symmetrized alignment (grow-diag-final). We use the MT05 test set 
for tuning, and used a subset of the development dataset of G A L E 0 7 Evaluation (DEV07) as 
the blind testing data. The data set consists subsets from different sources: Newswire (NW) 
and Weblog (Web) with 427 and 358 sentences respectively. In Table 6.6 we display the B L E U 
Scores for these sets. First, notice how in our baseline the best results are obtained by the sys-

1 FOUO data (LDC2006G05), HKnews (LDC2004T08), XinhuaNews (LDC2003T05), and parallel data 
from GALE (LDC2008E40, LDC2007E101, LDC2007E86, LDC2007E45, LDC2006E92, LDC2006E34, 
LDC2006E26, and LDC2005E83). 
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Average B L E U gains vs. weight change 

Figure 6.4: Average B L E U gains by system vs. the normalized weight change for the p(f\e) 
feature A m V ( / | e ) -

tern that previously achieved the highest A E R (DWA-5). From there on, the systems trend to 
have lower quality as we shift the balance from precision/recall in our alignment. However, 
the alignments with higher recall (DWA-1) trend to perform more poorly than the high preci­
sion ones (DWA-9). This is not surprising, as this phenomenon has been observed previously. 
For the systems that use the number of unaligned words as a feature, we observe that the best 
results are found with a higher precision alignment (DWA-6). This can be explained as the 
result of penalizing the phrases that include a lot of gaps, which as shown before have lower 
human-perceived quality. The improvements of using gap features are more striking for the 
Web test set, where we obtain up to 2BP of improvement (for DWA-7). 

6.4 Conclusions 
In this chapter, we introduced two alternatives to take advantage from alignment structure for 
improving machine translation at the alignment training and decoding phases. 

We proposed two alignment quality metrics, which by counting the negative space of the 
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Table 6.6: Translation results for the baseline systems (base) and the gap-feature enhanced 
systems (gaps) built upon different alignments. 

alignment into account, incorporate more of the structure of the alignments. We observed how 
the Balanced Accuracy metric yields denser alignments whose structure is more similar to the 
hand-aligned data. However, these denser alignments inhibit the phrase-extraction process and 
result in compact phrase tables. On the other hand we also introduced the F° measure which 
takes into account the N U L L alignments into when computing the alignment quality score. 
This metric results in higher quality alignments with respect both to the F and F° metric. 
Furthermore, this metric also represents an improvement to translation quality with respect 
to the baseline and other symmetrization heuristic. We also observed how these translation 
results are consistent with the predictions drawn from our general translation quality predictive 
model. 

At the decoding stage, we proposed to incorporate alignment structure by integrating 
the unaligned word count as a decoding feature. This modification works well for translation 
models coming from discriminative alignments for which produces the best translations (ex­
cept in one case). We also observed how the target gap feature interacts with the translation 
model phrase-translation probabilities and yields the best results when optimization weights 
for such phrasal probabilities are penalized more. We also observed that the gain from using 
this feature is dependent on the translation task and yields best results for in-domain tasks. 

When using not only the target gap feature but also the source gap feature to translate 
data in a constrained setting, we observed a consistent improvement for different machine 
translation models. In the best of cases, we were able to gain 2 B L U E points which is a highly 
significant result. Finally, the combination of both improvements do not present particular 
improvements. 

In conclusion, by using the alignment structural information, in particular the gaps in 
the alignment, we were able to turn a feature that originally appeared as a liability into an ad­
vantage. In other words, by using the knowledge gained during the development of this thesis, 
by identifying important alignment characteristics, controlling them and providing means to 
use the information to our advantage, we were able to improve machine translation. 





Chapter 7 

Conclusions 

Improving word alignment quality has been a major focus of research in the S M T commu­
nity. However, little attention was focused to understand the effects of alignment structure into 
the Machine Translation Pipeline. Therefore, despite the improvements reached in alignment 
quality, only modest improvements in translation performance were observed. In this disserta­
tion, we studied how alignment structure impacts the translation model and how a translation 
model impacts translation performance. Additionally, we proposed alternatives to take into 
account the alignment structure and moderate its effects. 

In this chapter, we summarize the body of knowledge accumulated through the develop­
ment of this work. First, we revisit the observations made across different chapters. Then, we 
revisit our original hypothesis and research questions. Finally we wrap up with a discussion 
of the findings and propose future research directions. 

7.1 Summary of our Findings 
In this section we recapitulate the findings made throughout this thesis. From each chapter, 
we only extract the most important observations and consolidate them in a comprehensive list. 

7.1.1 The Effects of Alignments on the Phrase-Based Translation Model 
In Chapter 3, we performed a series of experiments that allowed us to compare different align­
ments according to their quality and structure. The observations made were the following: 

— By analyzing word alignments according to several characteristics and comparing them 
to hand-aligned data, we observed that there is a lot of room of improvement for our 
alignment models. Both in terms of alignment quality and structure, our alignments are 
far from human generated data 

— We observed that sparser word alignments lead to a higher number of extracted phrases, 
which ultimate results in larger phrase tables. While these larger phrase tables contain 
longer phrases, many of the phrases contain unaligned words. 

— The number of unaligned words in the alignment have a large impact on the character­
istics of the extracted phrase table. 
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— The unaligned words in the extracted phrase pairs follow the distribution of unaligned 
words in the alignment from where they were extracted. 

— A manual evaluation of phrase pair quality showed that more unaligned words (gaps) 
result in a lower human perceived quality. 

— Phrases extracted from human aligned data have better quality than computer generated 
word alignments. 

7.1.2 The Characteristics of the Translation Model 
In Chapter 4 we generated a large number of phrase-tables using different alignments. Then, 
we estimated regression models for different characteristics of the phrase-tables. Our most 
important findings were: 

— We corroborated that density variables (gaps, links) have high correlation with many 
phrase-table characteristics, especially the number of entries and the length of the phrase-
pairs. 

— We discovered that the alignment distortion also plays an important role in determining 
certain phrase-table variables, such as the entropy of the lexical translation features. 

— We observed that the phrase-extraction algorithm preserves the distribution of alignment 
density allowing it to carry to phrases. Thus, denser alignments yield denser phrase-
pairs. 

— The case is different for alignment dimensions and alignment distortion. We observed 
that phrase-extraction changes drastically the expected behavior of distortion variables 
(e.g. the more crossings in our alignment, the fewer crossing inside the phrase-pairs, 
because highly distorted phrases can't be extracted with the current heuristic). 

— We observed that alignment quality as measured by the F-metric (AER) has little re­
lationship with other phrase-table variables, confirming that phrase-extraction exploits 
alignment structure and has little to do with alignment quality. 

— We discovered that the entropy in the phrase-translation probability can be predicted 
very accurately using alignment gaps. 

— Lexical scores were more difficult to predict using the structural alignment features. 
While diagonality predicts about 30% of the variance in the entropy of these translation 
features, the model is not complete. 

— By testing our models on unseen Chinese-English and Arabic-English data, we ob­
served that many of the predictions hold well for different language pairs. This high­
lights the fact that phrase-extraction does not depend on linguistic features but rather on 
the structure of the alignment itself. 

7.1.3 Predicting Translation Quality 
In Chapter 5, we ran a series of experiments where we used full translation models to translate 
different data sets. Then, we predicted the translation quality using the information from the 
translation models. We discovered that: 
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— Predicting translation is not as easy as predicting the characteristics of a translation 
model. This is mainly because translation performance is dependent on the translation 
task. Thus, we analyzed data from a general perspective and from a translation-task 
targeted view. 

— When aiming for a general model, the most important characteristics for translation 
quality come from the phrase table. In short, we need to have many translation options 
(from large translation models, with high inverse lexical entropy), that are well defined 
(with low lexical entropy). Additionally, hypotheses need to have good alignment sup­
port (with few gaps) and high fluency (with low language model cost). 

— When dealing with easier translation tasks, we need that our final translation is fluent 
(with low language model cost), and that it has good alignment support (i.e. that the 
aggregate number of alignment gaps remains low). 

— For difficult translation tasks we observed that using fewer, but more reliable translation 
options is preferable. Language fluency is also very important. 

— While the generic models make weaker predictions, they hold across language pairs. 
On the other hand, targeted models are more dependent on the language pair. They 
performed very well for Spanish while presented lack-of-fit on Chinese-English. 

7.1.4 Improving Translation Using Alignment Structure 
Finally in Chapter 6, we introduced two alternatives to take advantage of alignment structure 
for improving machine translation at the alignment training and decoding levels. In summary: 

— We proposed two alignment quality metrics (BA and F°), which by taking the negative 
space of the alignment into account, incorporate more of the structure of the alignments. 

— We observed that the Balanced Accuracy metric yields denser alignments whose struc­
ture is more similar to the hand-aligned data. However, these denser alignments inhibit 
the phrase-extraction process and result in phrase tables with fewer translation options. 

— We concluded that having more human-alignment-like structure can be counterproduc­
tive when human alignments are very dense. 

— We also introduced the F° measure which takes into account the N U L L alignments into 
when computing the alignment quality score. This metric results in higher quality align­
ments with respect to both the F and F° metric and also improved translation quality. 
We observed that this improvement can be traced to the increase in translation options 
in the phrase-table coupled with other structural alignment differences. 

— We also observed that our general translation quality prediction models hold well for 
predicting translation gains based on changes in alignment structure. 

— At the decoding stage, we proposed to incorporate alignment structure by integrating 
the unaligned word count as a decoding feature. This modification works well for 
translation models coming from discriminative alignments for which produce the best 
translations overall. 
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— When using not only the target gap feature but also the source gap feature to trans­
late data in a constrained setting, we observed a consistent improvement for different 
machine translation models. 

— By using the alignment structural information, in particular the gaps in the alignment, 
we were able to turn a feature that originally appeared as a liability into an advantage. 
In other words, by using the knowledge gained during the development of this thesis, by 
identifying important alignment characteristics, controlling them and providing means 
to use the information to our advantage, we were able to improve machine translation. 
In the best of cases, we were able to gain 2 B L E U points which is a highly significant 
result. 

7.2 Hypothesis and Research Questions Revisited 

In Section 1.2 we presented our main hypothesis and dissected into three different parts. The 
first part was related to the effects that alignment structure has in the consolidation of nur 
translation model. The second part was related to the influence of alignments on translation 
performance. The third part was related to the modulation of alignment structure in favor of 
translation performance. Below, we revisit each point individually. 

The impact of alignment structure on the translation model 
We observed that structural alignment characteristics influence greatly the characteris­
tics of the resulting translation model. Our models explain accurately the variations in 
the size and lexical diversity of our translation models using only alignment structure 
variables as predictors. Furthermore, these models hold very well for different lan­
guage pairs, which highlights the fact that phrase-extraction in its current form is very 
dependent on the structure of the alignments. 

The impact of alignment structure of the translation model on M T performance 
Translation performance depends largely on the translation task. Thus, the variables 
of the translation model that are more useful differ depending on the domain of ap­
plication. However, we were able to obtain predictive models that explain translation 
performance in general moderately well. These models rely upon the characteristics 
of the translation model to explain differences in performance. Additionally, we also 
observed that precisely these characteristics are largely influenced by the structure of 
the alignment. 

Providing means to control alignment structure will result in improvements in M T per­
formance 
We discovered that the right engineering of features can help to improve performance. 
We also observed that the human alignment is not the best gold-standard in terms of 
structure, thus having discriminative training to imitate human alignment's structure 
is not recommended. We observed that alignment target gaps explained some of the 
variance in translation performance. When we added alignment gap information to the 
decoder, we observed that we could achieve better estimation and improve performance 
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for discriminative alignments. Furthermore, in cases of limited training data, these new 
features helped to improve estimation and yield better translation results 

In addition to our hypothesis, there were different research questions that were initially 
posed. Below we address them individually. 

Which variables describing word alignments, translation models and translation hy­
potheses that we are going to include in this study? 
Our study was motivated by previous research. Thus, we considered some variables 
that had already been used for describing alignment structure (e.g. number of links, 
crossings). Additionally we proposed new measures for alignment such as the align­
ment gaps or the alignment diagonality. We measured alignment structure at several 
stages of the pipeline. First, we measured word alignments directly, then we measured 
the alignments embedded into the phrase pairs and finally we measured the alignment 
structure of the phrase-pairs used for translation. 

How are we going to characterize the decoding search space? Which variables are we 
going to use to discriminate between good and bad translation hypotheses? 
In addition to the cost of the decoding features, we used the alignment's variables for 
the translation hypotheses. Based on those features we constructed models to predict 
translation quality. 

How are we going to deal with undesired effects in multivariate analysis such as collinear-
ity? 
To deal with multicollinearity, we opted for the use of feature selection (stepwise) and 
retained those features that yielded stable models. While other options were available 
(regularization, dimension reduction), this choice was motivated by a preference to­
wards model interpretability. 

Which type of multivariate analysis better suits our scenario? 
Also to favor interpretability, we opted for multivariate linear regression. 

Which model or multivariate technique should be used to build our model? 
While we tested several approaches to build complex models, we opted to use the sim­
pler models, to favor the interpretation of the results. 

How do we compare predictive models? How do we evaluate their robustness? 
We employed the determination coefficient (R 2 ) on unseen data. Such a metric gives us 
an idea of how well a model fits our dependent variables. 

How do we control alignment structure for Machine Translation? 
As we mentioned before, we opted for two different alternatives: using discrimina­
tive training towards an alignment structure aware metric, and using decoding features 
that incorporate alignment structure (in form of alignment gaps) to refine its translation 
model. 
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7.3 Final Remarks 
During the development of this dissertation we have discovered how different characteristics 
of the alignment impact Machine Translation. We discovered that while good quality align­
ments yielded good phrase-pairs, the consolidation of a translation model is more dependent 
on the alignment structure than alignment quality. We observed that human-alignments are 
more dense than the computer generated counterparts, which trend to be more sparse and 
precision-oriented. Trying to emulate human-like alignment structure resulted in poorer sys­
tems, despite that denser alignments with fewer alignment gaps have better phrase-pairs. This 
is due to the fact that those translation models trend to be more compact and lack translation 
options. On the other hand, more translation options, even if they are noisier, help to im­
prove the quality of the translation. This is due to the fact that translation does not rely only 
on the translation model, but also on other factors (e.g. the language model). Lastly, when 
we provide the decoder with features that help it to make "more informed decisions" we ob­
serve a clear improvement in translation quality. This was specially true for the discriminative 
alignments which inherently leave more words unaligned. The result is more evident in low-
resource settings where having larger translation lexicons represent more translation options. 
Using simple features to help the decoder discriminate translation hypotheses, clearly showed 
consistent improvements. 

By performing a detailed analysis, and understanding better how phrase-based transla­
tion works, we were able to better engineer decoding features. We are confident that there are 
more directions to explore in terms of alignment structure. In the last section of this document, 
we briefly discuss them. 

7.4 Future Work 
In this dissertation we have observed how different alignment characteristics affect phrase-
based statistical machine translation. We also observed how adding structural alignment in­
formation can improve translation quality specially for discriminative alignments. However, 
this is an ongoing process and there are several directions in which this research can be ex­
panded. 

Investigate the effect of coupling Alignment enhancements such as the F° training with 
the use of structural alignment decoding features such as the gap features. 
We would like to explore the interaction between tuning towards an structure-aware 
alignment metric and structure-aware decoding features. This could lead to improve­
ments specially for the F° alignment which is more sparse, with more alignment gaps 
(and more noise) that could be smoothed using the gap decoding features. 

Use other alignment characteristics into decoding. Specially, distortion features such 
as the number of crossings and the diagonality of the translation hypothesis align­
ment. 
In this dissertation we explored the inclusion of alignment gaps as a decoding feature 
and we observed improvements in translation quality. However, we could include more 
decoding features that incorporate alignment structure, such as diagonality or number of 
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link crossings. Optimizing log-linear weights for a higher dimensionality set of features 
would require some modifications of our training approach. In order to do so, we should 
move from a linear-descent-based optimization metric such as M E R T towards one more 
resilient to higher dimensionality such as M I R A (Chiang et al., 2008; Watanabe et al., 
2007). 

Explore other regression model specification alternatives. 
During our prediction model specification, we faced some issues related to higher di­
mensionality. We opted to use feature selection to resolve them. However, we could 
explore the use of mapped features (to build polynomial models) coupled with regular-
ization. In that sense, we would be able to explore the interaction of several features 
and higher order terms. On the other hand, to cope with the original dimensionality 
problem, we could use feature dimension reduction techniques such as P C A to reduce 
the impact of collinearity. This would require that we make an accurate description of 
the principal components to ensure that the interpretation remains consistent. 

Propose a complex hierarchical model that combines regression from alignment to 
phrase-tables and regression from phrase-tables to translation quality. 
In this thesis, we provided two different prediction models that work at two separate 
stages. The situation arises from the fact that they necessarily have to be estimated 
using separate samples. Anyhow, we could couple both of their findings into a single 
more complex model, by using multivariate techniques such as path analysis or struc­
tural equation modeling. 

Explore new optimization techniques. 
We observed that the translation quality models we obtained are susceptible to M E R T 
optimization. Specially when adding new features to decoding that change the decoder's 
search space. Thus it would be interesting to incorporate linear regression modeling 
coupled with response surface methods to propose a new optimization scheme for Ma­
chine Translation. 





Appendix A 

Baseline System 

In this annex we describe the data used for training and testing of the Spanish-English systems 
used through this dissertation. 

A. l Translation Training Data 

In this section we introduce the characteristics of our baseline Spanish-English translation 
system. We start by describing de domain of the data and its characteristics. We also outline 
the preprocessing steps performed to clean the data. 

A.l. l Data Sources 
The source of the data is European Parliament Proceedings (EUROPARL Version 5), News 
commentary text, as well as the United Nations proceedings from year 2000 as provided for 
W M T 2010 competition. The total number of lines of data is displayed in Table A . l . 

A. 1.2 Preprocessing 
For this data, we performed three preprocessing steps: tokenization, lowercasing and trunca­
tion. In fig. A . 1 we present an illustration of the first two processes. 

Figure A . 1: Example of preprocessing 

Tokenization splits words into simpler forms. It separate punctuation marks from words, 
so they are considered as single words. Thus it is expected to find longer sentences after the 
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procedure. However, the vocabulary size is expected to go down because morphology com­
plexity is reduced. Lowercasing does not change to the distribution of length of the sentences, 
however further reduces the vocabulary. Truncation removes sentences longer than a certain 
limit. This is recommended due to the aligners' memory/processing limitations. For this cor­
pus, we removed sentences longer than 50 words using standard cleaning corpus script from 
Moses decoder. This script removes empty lines, removes redundant space characters, drops 
lines (and their corresponding lines) that are empty, lines that are too short, too long or violate 
the 9-1 sentence ratio limit for GIZA++. 

In Table A . l , we present the statistics for R A W and Preprocessed (PP) Data 

Table A . l : Statistics for Raw and preprocessed data for Europarl (EU), News Commentary 
(NC) and U N training data. We present the total number of training examples (lines), number 
of tokens (tok) and the vocabulary size (voc). 

From this table, we can observe that preprocessing indeed reduces vocabulary (unique 
words) size while preserving most of the content. If we look at the reduction in vocabulary size 
(Change column), we find that more than 50% of the vocabulary is reduced, while the total 
number of tokens (word instances) is reduced at most 32%. This drastic drop in number of 
words can be attributed mostly to the cleaning part, where we drop non-conforming sentences 
(and thus, some non-functional content). 

A.2 Translation Test Data 
In this section we provide some statistics about the data used in our translation tests. The 
sources for our data come from different years of the W M T competition, and each consists of 
samples coming from different domains: 

— Europarl data 
Consists of proceedings from the European Parliament. Test sets: WMT06 , W M T 0 7 , 
WMT08 . 
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— Acquis Communautaire corpus 
Consists of European law. Test sets: A C . 

— News Commentary 
Consists of news commentary (editorials) from different sources. Test sets: NC07, 
NC08 

— News Wire 
Consists of excerpts of news from European newspapers (Le Monde, E l Pais, etc). Test 
sets: NW10, NW09 

Depending on their domain, each set can be considered to be in or out of domain. For 
instance W M T 0 6 through WMT08 are considered in-domain because the translation tasks 
come from the Europarl Corpus. On the other hand, N W and N C data is considered out of 
domain. Below, we present the statistics for this data. 

A.3 Hand Aligned Data 
In the following table we present the statistics for the Spanish-English hand alignment data 
from EPPS. The original data consisted of 500 lines. But after preprocessing the total amount 
was reduced to 420. We then proceeded to divide that set and use 200 lines for training and 
220 for testing. 
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Table A.3 : Data Statistics for Spanish-English hand alignments 
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Variables 

In this annex we describe in detail the variables used across this study. 

B.l Alignment Variables 
Given a set of alignments A where each alignment Ak € A is represented by matrix of Ik 
source words by Jk target words, represents a link between the ith source word and 
the j th target word, and Lk represents the total number of links in the alignment Ak, we can 
compute the following statistics. 

B.l.l Alignment Dimension 
A S L Average number of source words 

( B . l ) 

A T L Average number of target words 

(B .2) 

w The normalized alignment matrix width 
The geometric average of the source and target lengths of an alignment k 

(B .3) 

B.l.2 Alignment Density 
A N L K Average number of links 

This variable represents the average number of links. 

(B .4) 
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A L K Average link density 
This variable represents the normalized number of links per word in the alignment ma-

The number of crossings cross are calculated in the by the algorithm B . l . 

A D G Average alignment diagonality 
This variable represents the average diagonality of an alignment set. Diagonality is 
defined as the absolute correlation between the positions in the i and j positions of the 
links in the alignment Ak. 

(B.5) 

A S L K Average number of links per source word 
This variable represents the average number of links per source word. 

(B.6) 

A N S G Average number of source gaps 
This variable represents the average number of unaligned source words. 

(B.7) 

A S G Average number source gaps per normalized number of words 
This variable represents the average number of unaligned source words divided by the 
normalized length of the matrix. 

(B.8) 

B.1.3 Alignment Distortion 
A C R Average number of alignment crossings 

This variable represents the average the number of crossings in an alignment normalized 
by the matrix width. 

(B.9) 

(B.10) 

This gives us a notion of the monotonicity in the positions of the alignments. 

( B . l l ) 
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A D T Average relative distortion 
This variable represents the distortion between the ith and j th positions of the links in 
the alignments. 

B.1.4 Alignment Quality 

p Precision 

R Recall 

F F measure 

A E R Alignment Error Rate For practical purposes AER = 1 — F. 

B A Balanced Accuracy 

For each phrase-pair Pk in the phrase table V, we have h source words in the source phrase 
and J f c target words in the target side, lk{i,j) represents a link between the ilh source word 
and the j th target word in the phrase-pair, and Lk represents the total number of links in the 
alignment embedded in P^. Additionally, let \Vi\, \Vj\ be the total number of unique source 
and target phrases, respectively. 

(B.12) 

B.2 Phrase-table Variables 

B.2.1 Alignment Variables 
P S G , P T G , P L K , P D T , P D G , P C R are calculated as its alignment counterparts. 
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P W S G Average number of source gaps per word 
This variable represents the average proportion of source unaligned words per source 
word. 

B.2.2 Phrase-table Dimension 

P S L Average source phrase length 

P T L Average target phrase length 

(B.15) 

B.2.3 Phrase-table Entries 

P N E Total number of entries in the phrase-table 
This quantity is equivalent to \V\. Also referred as the unique number of phrase-pairs 
P N U . 

P N I Total number of extracted phrase-pairs 
This quantity is the number of non-unique phrase-pairs extracted from an alignment set. 

P N U Total number of unique extracted phrase-pairs 
See P N E . 

B.2.4 Coverage Variables 

P S U Percentage of source unique phrases 

(B.13) 

(B.14) 

(B.16) 

P T U Percentage of target unique phrases 

(B.17) 
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B.2.5 Translation Entropies 
P T I Average Entropy of the inverse phrasal probability 

P T 2 Average Entropy of the inverse lexical probability 

P T 3 Average Entropy of the direct phrasal probability 

(B.20) 

P T 4 Average Entropy of direct lexical probability 

B.3.2 Cost Variables 
Cost variables are calculated by computed the negative log-likelihood of the probability in 
question. For instance, for language models: 

F L M Average language model cost 

B.3 Translation (First-best) Variables 
In this part we define the first-best hypothesis variables. For compactness, we define only 
the most important. For each first-best translation Fk from source sentences in document V, 
we have Ik source words in the source phrase and Jk target words in the target side, lk(i,j) 
represents a link between the ith source word and the j th target word in the phrase-pair, and 
Lfe represents the total number of links in the alignment embedded in Fk. Additionally, let 

be the number of phrases used in translation Fk- Then: 

B.3.1 Alignment Variables 
F S G , F T G , F L K , F D T , F D G , F C R are calculated as its alignment counterparts 

(B.22) 

For the rest of the cost variables, the procedure is the same. 

(B.18) 

(B.19) 
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B.3.3 Translation Quality 
B L E U Bleu 

M E T Meteor 

T E R Translation Error Rate 
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