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SUMMARY



The investigation of this thesis presents different approaches for Fault Tolerant Control based on
Model Reference Adaptive Control, Artificial Neural Networks, PID controller optimized by a Genetic
Algorithm, Nonlinear, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI),
LPV and nonlinear systems. All of the above techniques are integrated in different controller’s structures to
prove their ability to accommodate a fault.

Modern systems and their challenging operating conditions in certain processes increase the
possibility of system failures causing damages in equipment and/or their operators. In these environments, the
use of automation control (i.e. adaptive and robust control) and intelligent systems is fundamental to minimize
the impact of faults. Therefore, Fault Tolerant Control (FTC) methods have been proposed to ensure the
continuous operations of system even in fault situation and to prevent more serious effects.

Until now, most of the FTC methods that have been developed are based on classical control theory
(Yu et al., 2005; Zhang et al., 2007; Fradkov et al., 2008; Yang et al., 2008). The use of Artificial Intelligence
(AD) in FTC has emerged recently (Stengel, 1991; Bastani & Chen, 1998; Patton et al., 1999; Korbiicz et al.,
2004). Classical Artificial Intelligence (Al) approaches such as Artificial Neural Networks (ANN), Fuzzy
Logic (FL), ANN-FL and Genetic Algorithms (GA) may offer some advantages over traditional methods
(Schroder et al., 1998; Yu et al., 2005; Dong et al., 2006; Alves et al., 2009; Beainy et al., 2009; Kurihara,
2009; Li, 2009; Nieto et al., 2009; Panagi & Polycarpou, 2009) in the control community such as state
observers, statistical analysis, parameter estimation, parity relations, residual generation, etc. The reasons are
that Al approaches can reproduce the behavior of nonlinear dynamical systems with models extracted from
data. Also, there are many learning processes that improve the FTC performance. This is a very important
issue in FTC applications on automated processes, where information is easily available, or processes where
accurate mathematical models are hard to obtain.

In the last years, FTC and control schemes based on LPV systems have been developed. In Bosche et
al. (2009) a Fault Tolerant Control structure for vehicle dynamics is developed employing an LPV model with
actuator failures. The methodology described in Bosche et al. (2009) paper is based on the resolution of
Linear Matrix Inequalities (LMIs) using the DC-stability concept and a Parameter-Dependent Lyapunov
Matrix (PDLM). In Montes de Oca et al. (2009), an Admissible Model Matching (AMM) FTC method based
on LPV fault representation was presented; in this approach the faults were considered as scheduling variables
in the LPV fault representation allowing the controller adaptation on-line. For instance, in Rodriges et al.
(2007) a FTC methodology for polytopic LPV systems was presented. The most important contribution of
Rodrigues et al. (2007) work was the development of a Static Output Feedback (SOF) that maintains the
system performance using an adequate controller reconfiguration when a fault appears.

On the other hand, advanced techniques from Robust Control such as H.,, have also been applied to
FTC with encouraging results. For example, in Dong et al. (2009), an active FTC scheme for a class of linear
time-delay systems, using a H,, controller in generalized internal mode architecture in combination with an
adaptive observer-based fault estimator was presented. In Xiadong et al. (2008) a dynamic output feedback
FTC approach that uses a H,, index for actuator continuous gain faults was proposed. And, in Liang & Duan

(2004) a H,, FTC approach was used against sensor failures for uncertain descriptor system (systems which
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capture the dynamical behavior of natural phenomena).

To improve the capabilities of the FTC systems mentioned above, different types of controller based
on Adaptive Control, Artificial Neural Networks, Robust, Nonlinear and LPV Control for LTI, LPV and
Nonlinear systems are proposed in this thesis. These controllers are first tested in an Industrial Heat
Exchanger and then tested in a Coupled-Tank LPV System. Different types of faults are simulated in the
implemented schemes: First, additive abrupt faults and gradual faults were introduced. In the abrupt fault
case, the whole magnitude of the fault is developed in one moment of time and is simulated with a step
function. On the other hand, gradual faults are developed during a period of time and are implemented with a
ramp function. Second, multiplicative faults were tested. All types of faults, additive and multiplicative, can
be implemented in sensors (feedback), in which the properties of the process are not affected, but the sensor
readings are mistaken. And it also can be implemented in actuators (process entry) causing changes in the
behavior of the process or interruption.

The controllers developed to test the Industrial Heat Exchanger are a Model Reference Adaptive
Controller (MRAC), an MRAC with a PID controller whose parameters were optimized using a GA (MRAC-
PID), an MRAC with an ANN (MRAC-ANN), an MRAC with a PID and an ANN (MRAC-ANN-PID), an
MRAC with a Sliding Mode Controller (MRAC-SMC) and finally, an MRAC with an H,, control (MRAC-
H,,). These MRAC controllers were design using the MIT rule. The controller with the best response against
the faults is the MRAC-ANN-PID controller because was robust against the tested sensor and the actuator
were imperceptible with almost a 0% error between the reference model and the process model.

For the Coupled-Tank LPV system, an MRAC (MRAC-40P-LPV), an MRAC with an ANN
(MRAC-ANN4OP-LPV) and an MRAC with an H,, controller (MRAC-H,40OP-LPV) were designed for 4
operating points of the LPV system. For the sensor faults, the controller with the best results was the MRAC-
NN4OP-LPV because it was fault tolerant against the tested sensor faults no matter the value of the operating
point. This method resulted the best scheme because is a combination of two type of controllers, one is a
Model Reference Adaptive Controller (MRAC) and the other one is an Artificial Neural Network designed to
follow the ideal trajectory (non-faulty trajectory). For the actuator faults, the MRAC-H,,4OP-LPV was the
best scheme because it was fault tolerant to the applied faults and also could accommodate the faults faster
than the MRAC-40P-LPV scheme.

In addition, for the Coupled-Tank system, an MRAC (MRAC-LPV) controller and an MRAC with
an H,, Gain Scheduling controller (MRAC-H,GS-LPV) that work for all the operating points of the LPV
system were developed. Both controllers were tested using the LPV system of the plant and also were tested
using the nonlinear model of the system. In general, for additive and multiplicative faults, the MRAC-H,,GS-
LPV showed better results because is a combination of two type of LPV controllers, one is a Model Reference
Adaptive Controller (MRAC) and the other one is a H,, Gain Scheduling Controller, both controllers were
designed for an LPV system giving them the possibility of controlling any desired operating point between
the operation range of the dependent variables (¢, and ¢,). In addition, the manipulated variable was plotted

and it can be observe on this figure how the system compensates the fault.



The main contributions of this research are the development of the MRAC with an Artificial Neural
Network and a PID controller optimized by a Genetic Algorithm (MRAC-ANN-PID) and the development of
an MRAC with an H,, Gain Scheduling Controller that works for all the operating points of an LPV system
(MRAC-H,,GS-LPV). The MRAC-ANN-PID controller as mentioned above resulted to be robust against
sensor and the actuator faults were imperceptible with a very low error between the reference model and the
process. The PID parameters of this controller K, K; and K; were optimized in order to follow the desired
trajectory (no faulty system) and the ANN was trained also to follow the desired system trajectory no matter
the fault size. The MRAC-ANN-PID controller is different from the controllers that already exist in the
literature first because none of them had the controller structure of the MRAC-ANN-PID, second because
most of them do not use any Artificial Intelligence methods such as ANN or GA. And third, in the literature,
the ANN is used to represent or estimate the plant not as a controller which is the case of this research. On the
other hand, for the MRAC-H,,GS-LPV controller the main contribution was the development of a passive
structure of FTC able to deal with abrupt and gradual faults in actuators and sensors of nonlinear processes
represented by LPV models. This controller can accommodate the tested faults for any operating point
between the operating ranges. The MRAC and the H,, Gain Scheduling controller were specially designed to
switch from one operating point to another in less than a second. The MRAC controller was chosen as a FTC
because guarantees asymptotic output tracking, it has a direct physical interpretation and it is easy to
implement. The H,, Gain Scheduling Controller was also chosen because it increases the robust performance
and stability of the closed loop system. In the existing literature, the H,, technique has been combined with
other schemes to control systems but to the best of our knowledge there are no reports concerning the

combination of an MRAC with an H,, Gain Scheduling controller.



CHAPTER 1
INTRODUCTION



1 Introduction

1.1 Introduction to Fault Tolerant Control

An increasing demand on products quality, system reliability, and plant availability has allowed that
engineers and scientists give more attention to the design of methods and systems that can handle certain
types of faults. In addition, the global crisis creates more competition between industries and plant shutdowns
are not an option because they cause production losses and consequently lack of presence in the markets;
primary services such as power grids, water supplies, transportation systems, and communication and
commodities production cannot be interrupted without putting at risk human health and social stability.

On the other hand, modern systems and challenging operating conditions increase the possibility of
system failures which can cause loss of human lives and equipments; also, some dangerous environments in
places such as nuclear or chemical plants, set restrictive limits to human work. In all these environments, the
use of automation and intelligent systems is fundamental to minimize the impact of faults.

The most important benefit of the Fault Tolerant Control (FTC) approach is that the plant continues
operating in spite of a fault, no matter if the process has certain degradation in its performance. This strategy
prevents that a fault develops into a more serious failure. In summary, the main advantages of implementing

an FTC system are (Blanke et al., 1997):

e Plant availability and system reliability in spite of the presence of a fault.

e Prevention to develop a single fault into a system failure.

e  The use of information redundancy to detect faults instead of adding more hardware.

e  The use of reconfiguration in the system components to accommodate a fault.

e FTC admits degraded performance due to a fault but maintains the system availability.
e FTC is not very expensive because most of the time no new hardware will be needed.

Some areas where FTC is being used more often are: aerospace systems, flight control, automotive
engine systems and industrial processes. All of these systems have a complex structure and require a close
supervision; FTC utilizes plant redundancy to create an intelligent system that can supervise the behavior of
the plant components making these kinds of systems more reliable.

Since few years ago, emerging FTC techniques have been proposing new controller designs capable
to tolerate system malfunctions and maintain stability and desirable performance properties. In order to
achieve its objectives, two main tasks have to be considered on an active FTC system: fault detection and
diagnosis and controller reconfiguration. The main purpose of fault detection and diagnosis is to detect,
isolate and identify the fault, determining which faults affect the availability and safety of the plant. The
controller reconfiguration task accommodates the fault and re-calculates the controller parameters in order to
reduce the fault effects.

Although several schemes of FTC have been proposed, most of them are closely related to a general
architecture. Blanke et al., (1997) introduces an approach for the design of an FTC system, shown in Figure 1,

which included three operational levels: single sensor validation, fault detection and isolation using analytical



redundancy, and an autonomous supervision and reconfiguration system. The single sensor validation level
involves the control loop with actuators, sensors, the controller and the signal conditioning and filtering. The
second level (FDI) is composed of detectors and effectors that will perform the remedial actions. And finally,

the supervision level deals with state-event logic in order to describe the logical state of controlled objects.

Control Level

Figure 1. Architecture for Fault Tolerant Autonomous Control Systems proposed by (Blanke, 1997).

A slightly different architecture is presented in (Karsai et al., 2003). They introduce a scheme of
Fault-Adaptive Control Technology (FACT), centered on model-based approaches for fault detection, fault
isolation and estimation, and controller selection and reconfiguration for hybrid systems (see Figure 2).
Hybrid models derived from hybrid bond graphs are used to model the continuous and discrete system
dynamics. The supervisory controller, modeled as a generalized finite state automaton, generates the discrete
events that cause reconfigurations in the continuous energy-based bond graph models of the plant. Fault
detection involves a comparison between expected behaviors of the system, generated from the hybrid

models, with actual system behavior.
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Figure 2. Architecture for Fault-Adaptive Tolerant Control Technology proposed by (Karsai et al.,
2003).



1.2 Classification of the Fault Tolerant Control Methods

Some authors have proposed different classifications for the FTC methods (Blanke et al., 2003;
Eterno et al., 1985; Farrel et al., 1993; Lunze & Richter, 2006; Patton, 1997; Stengel, 1991). The
classification shown in Figure 3 includes all the methods explained by these authors. We can also find a
recent and very complete survey of FTC methods and applications in (Zhang & Jiang, 2008).

Regarding the design methods, fault tolerant control can be classified into two main approaches:
active or passive. In Active Fault Tolerant Control (AFTC), if a fault occurs, the control system will be
reconfigured using some properties of the original system in order to maintain an acceptable performance,
stability and robustness. In some cases, degraded system operations have to be accepted (Blanke et al., 2001;
Patton, 1997; Mahmoud et al., 2003). In Passive Fault Tolerant Control (PFTC), the system has a specific
fixed controller to counteract the effect and to be robust against certain faults (Eterno et al., 1985).

To implement the AFTC approach two tasks are needed: fault detection and isolation and controller
reconfiguration or accommodation. FDI means early detection, diagnosis, isolation, identification,
classification and explanation of single and multiple faults; and can be accomplished by using the following

three methodologies (Venkatasubramanian et al., 2003a, 2003b, 2003¢):

e  Quantitative Model-Based approaches require knowledge of the process model and dynamics in a
mathematical structural form. Also, the process parameters, which are unknown, are calculated
applying parameter estimation methods to measure inputs and outputs signals of the process. This
approach uses analytical redundancy that can be obtained by implementing Kalman filters, observers
and parity space.

e  Qualitative Model-Based are based on the essential comprehension of the process physics and
chemical properties. The model understanding is represented with quality functions placed in
different parts of the process. This methodology can be divided in abstraction hierarchies and causal
models. Abstraction hierarchies are based on decomposition and the model can establish inferences
of the overall system behavior from the subsystem law behavior. This can be done using functional
or structural approaches. Causal models take the causal system structure to represent the process
relationships and are classified in diagraphs, fault trees and qualitative physics.

e Process History-Based approaches use a considerable amount of the process historical data and
transform this data into a priori knowledge in order to understand the system dynamics. This data
transformation is done using qualitative or quantitative methods. The quantitative methods are
divided in expert systems (solve problems using expertise domain) and trend modeling (represent
only significant events to understand the process). Quantitative methods can be statistical (use PCA,

DPCA, CA) and non statistical (Artificial Neural Networks) to recognize and classify the problem.

After the detection and isolation of the fault, a controller reconfiguration or accommodation is
needed. In controller accommodation, when a fault appears, the variables that are measured and manipulated

by the controller continue unaffected, but the dynamic structure and parameters of the controller change



(Blanke et al., 2003). The fault will be accommodated only if the control objective with a control law that
involves the parameters and structure of the faulty system has a solution (Blanke et al., 2001). In order to
achieve fault accommodation, two approaches can be used: adaptive control and switched control. Adaptive
control means to modify the controller control law to handle the situation where the system’s parameters are
changing over time. It does not need a priori information about the parameters limits. The goal is to minimize
the error between the actual behavior of the system and the desirable behavior. On the other hand, switched
control is determined by a bank of controllers designed for specifics purposes (normal operation or fault) that
switch from one to another in order to control a specific situation (Lunze & Richter, 2006).

Meanwhile, controller reconfiguration is related with changing the structure of the controller, the
manipulated and the measured variables when a fault occurs (Steffen, 2005). This is achieved by using the

following techniques:

e  Controller Redesign. The controller changes when a fault occurs in order to continue achieving its
objective (Blanke et al., 2003). This can be done by using several approaches: pseudo inverse
methods (modified pseudo inverse method, admissible pseudo inverse method), model following
(adaptive model following, perfect model following, eigen structure assignment) and optimization
(linear quadratic design, model predictive control) (Caglayan et al., 1988; Gao & Antsaklis, 1991;
Jiang, 1994; Lunze & Richter, 2006; Staroswiecki, 2005).

o Fault Hiding Methods. The controller continues unchanged when a fault is placed, because a
reconfiguration system hides the fault from the controller. This method can be realized using virtual
actuators or virtual sensors. (Lunze & Richter, 2006; Steffen, 2005).

e  Projection Based Methods. A controller is designed a priori for every specific fault situation and
replaces the nominal controller if that specific fault occurs. This can be done by a bank of controllers
and a bank of observers (Mahmoud et al., 2003).

o Learning Control. This methodology uses artificial intelligence like ANN, fuzzy logic, genetic
algorithms, expert systems and hybrid systems which can learn to detect, identify and accommodate
the fault (Polycarpou & Vemuri, 1995; Stengel, 1991; Karsai et al, 2003).

e  Physical Redundancy. This is an expensive approach because it uses hardware redundancy (multiple
sensor or actuators) and decision logic to correct a fault because it switches the faulty component to a
new one. An example of this is the voting scheme method (Isermann et al., 2002; Mahmoud et al.,

2003).

On the other hand, passive FTC is based on robust control. In this technique, an established
controller with constant parameters is designed to correct a specific fault to guarantee stability and
performance (Lunze & Richter, 2006). There is no need for online fault information. The control objectives of
robust control are: stability, tracking, disturbance rejection, sensor noise rejection, rejection of actuator
saturation and robustness (Skogestad & Postlethwaite, 2005). Robust control involves the following

methodologies:



e H, controller. This type of controller deals with the minimization of the H,-norm in order to
optimize the worst case of performance specifications. In Fault Tolerant Control, it can be used as an
index to represent the attenuation of the disturbances performances in a closed loop system (Yang &
Ye, 2006) or can be used for the design of robust and stable dynamical compensators (Jaimoukha et
al., 2006; Liang & Duan, 2004).

o Linear Matrix Inequalities (LMIs). In this case, convex optimization problems are solved with
precise matrices constraints. In Fault Tolerant Control, they are used to achieve robustness against
actuator and sensor faults. (Zhang et al., 2007).

o  Simultaneous Stabilization. In this approach multiple plants must achieve stability using the same
controller in the presence of faults. (Blondel, 1994).

e  Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. This methodology is implemented in Fault
Tolerant Control to parameterize stabilizing controllers in order to guarantee system stability. YJBK
in summary is a representation of the feedback controllers that stabilize a given system (Neimann &

Stoustrup, 2005).

1.3 Fault Tolerant Control Schemes

Although, most of the FTC methods that have been developed are based on classical control theory
(Yu et al., 2005; Zhang et al., 2007; Fradkov et al., 2008; Yang et al., 2008), the use of Artificial Intelligence
(AI) in FTC has emerged recently (Stengel, 1991; Bastani & Chen, 1998; Patton et al., 1999; Korbicz et al.,
2004). Classical Artificial Intelligence (Al) approaches such as Artificial Neural Networks (ANN), Fuzzy
Logic (FL), ANN-FL and Genetic Algorithms (GA) may offer advantages over traditional methods (Schroder
et al., 1998; Yu et al., 2005; Dong et al., 2006; Alves et al., 2009; Beainy et al., 2009; Kurihara, 2009; Li,
2009; Nieto et al., 2009; Panagi & Polycarpou, 2009) in the control community such as state observers,
statistical analysis, parameter estimation, parity relations, residual generation, etc. The reasons are that Al
approaches can reproduce the behavior of nonlinear dynamical systems with models extracted from data.
Also, there are many learning processes that improve the FTC performance. This is a very important issue in
FTC applications on automated processes, where information is easily available, or processes where accurate
mathematical models are hard to obtain.

ANN have been applied to FTC because they are helpful to identify, detect and accommodate system
faults. The application of ANN to FTC can be divided in three groups. The first group includes ANN used as
fault detectors by estimating changes in process models dynamics (Polycarpou & Helmicki, 1997; Patton et
al., 1999; Polycarpou, 2001; Gomma, 2004). The second group includes ANN used as controllers (Wang &
Wang, 1999; Pashilkar et al., 2006), and the third group integrates ANN which performs both functions: fault
detection, and control (Perhinschi et al., 2007; Yen & De Lima, 2005; Patan & Korbicz, 2009; Yu et al.,
2009). In addition, Genetic Algorithms have been applied to fault tolerant control as a strategy to optimize
and supervise the controlled system in order to accommodate system failures (Schroder et al., 1998; Sugawara

et al., 2003). On the other hand, advanced techniques from Robust Control such as H,, and Non-linear
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Control as Sliding Mode Control, have also been applied to FTC with encouraging results. For example, in
(Liang & Duan, 2004), an H,, FTC approach was used against sensor failures for uncertain descriptor system
(systems which capture the dynamical behavior of natural phenomena). In (Xiadong et al., 2008), a dynamic
output feedback FTC approach that uses an H,, index for actuator continuous gain faults was proposed. In
(Dong et al. 2009), an active FTC scheme for a class of linear time-delay systems was presented, using an H,,
controller in generalized internal mode architecture in combination with an adaptive observer-based fault
estimator. Besides, in (Weidong & Shaocheng, 2007), a Fuzzy Adaptive Sliding Mode FTC for SISO
nonlinear systems was developed. This methodology uses a corrective control law (SMC) when a fault occurs
while the fuzzy system learns the unknown system and fault function dynamics and determines the FTC law.
In (Yen & Ho, 2000), a FTC system that includes a Sliding Mode control and an Artificial Neural Network
was presented. This system is able to control the desired trajectories tracking problems when a fault is present.

In the last years, FTC schemes based on LPV systems and control methods have been developed. For
instance, in (Rodrigues et al., 2007) a FTC methodology for polytopic LPV systems was presented. The most
important contribution of this work was the development of a Static Output Feedback (SOF) that maintains
the system performance using an adequate controller reconfiguration when a fault appears. In (Bosche et al.,
2009), a Fault Tolerant Control structure for vehicle dynamics is developed employing an LPV model with
actuator failures. The methodology described in this research is based on the resolution of Linear Matrix
Inequalities (LMIs) using the DC-stability concept and a Parameter-Dependent Lyapunov Matrix (PDLM). In
(Montes de Oca et al., 2009), an Admissible Model Matching (AMM) FTC method based on LPV fault
representation was presented. In this approach, the faults were considered as scheduling variables in the LPV
fault representation allowing the controller adaptation on-line. Although several applications have used LPV
systems theory to develop FTC schemes (Rodrigues et al., 2007; Bosche et al., 2009; Luzar et al., 2009) and
also MRAC-based approaches for FTC have been explored (Abdullah & Zribi, 2009; Cho et al., 1990;
Ahmed, 2000; Thanapalan et al., 2006; Yu, 2004; Miyasato, 2006), none of them integrates the methodologies
proposed in this thesis (i.e. MRAC, LPVs and H.,).

These investigation present different approaches for FTC based on Model Reference Adaptive
Control, Artificial Neural Networks, PID controller optimized by a Genetic Algorithm, Nonlinear, Robust and
LPV control. The investigation is organized as follows: Chapter 2 describes the background theory; in
Chapter 3 the experiments and schemes implemented in the Industrial Heat Exchanger are developed; Chapter
4 the experiments and schemes implemented in the Coupled-Tank System are presented, in Chapter 5 the
Stability Analysis is demonstrated, Chapter 6 addresses the conclusions and Chapter 7 proposed the future

work.

1.4 Justification

Nowadays the complexity of modern production systems and processes has created the necessity to
incorporate Fault Tolerant Control systems, because FTC can ensure the operability of the systems even if a

fault or faults appear. For this reason, this thesis presents different combinations of FTC structures based on a
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Model Reference Adaptive Controller combined with Artificial Neural Networks, PID controller optimized by
a Genetic Algorithm, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI)
and LPV systems.

The above mentioned structures were chosen first, because the adaptive control avoids explicit
modeling, decision making and control redesign (Thanapalan et al., 2006). Therefore, the MRAC controller
guarantees asymptotic output tracking, has an inherent capacity to accommodate perturbations and faults, has
direct physical interpretation and it is easy to implement (Sang & Tao, 2009). But, the use of only this type of
controller has certain limitations in the FTC systems (see Section 5.1 and 5.2 of Chapter 5). For this reason, it
is normal to find in the literature combinations of the MRAC controller with other structures in order to
guarantee the system performance in the presence of a fault (Cho et al., 1990; Miyasato, 2008), to isolate and
determinate faults (Thanapalan, 2006), to reduce the unknown model dynamics, the disturbances and
parameter variations (Hongjie & Bo, 2008), to have a nicer transient behavior, disturbance rejection capability
(Hsu, 1990), etc.

From the above discussion, this investigation presents the incorporation of Artificial Neural
Networks to an MRAC controller in order to help the system to maintain the desired system trajectory when a
fault appears. On the other hand, the use of a Genetic Algorithm in the design of the PID controller helps to
choose the optimal PID parameters. In addition, the incorporation to LPV controllers such the H,, Gain
Scheduling Controller to the MRAC controller adds controller robustness because the LPV controller is able
to control any operating point between the systems operating range. Also, the use of Robust Control

techniques increases robust performance and stability to the closed loop system.

1.5 Objective

The objective of this thesis is to present different approaches for Fault Tolerant Control based on
Model Reference Adaptive Control, Artificial Neural Networks, PID controller optimized by a Genetic
Algorithm, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI), LPV and
nonlinear systems. All of the above techniques are integrated in different controller’s structures to prove their

ability to accommodate a fault.

1.6 Hypothesis

The different Fault Tolerant Control approaches based on Model Reference Adaptive Control in
combination with Artificial Neural Networks, PID controller optimized by a Genetic Algorithm, Robust and
Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI) and LPV systems are developed in
this investigation because these approaches will improve the capabilities of the Fault Tolerant Control

systems such as robustness, fault accommodation, stability, etc.
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2 Background Theory

2.1 Model Reference Adaptive Control

The MRAC, shown in Figure 4, implements a closed-loop controller that involves the parameters that
should be optimized, in order to modify the system response to achieve the desired final value. The adaptation
mechanism adjusts the controller parameters to match the process output with the reference model output. The

reference model is specified as the ideal model behavior that the system is expected to follow.

Reference Model

Adjustment
Controller mechanism
parameters
Set Point
- Controller Process Model
Input Output

Figure 4. Model Reference Adaptive Controller (MRAC) general scheme (Astrom & Wittenmark,
1995).

2.1.1 MRAC based on the MIT rule

The mathematical procedure to design the MRAC system based on MIT rule (Figure 5) is the
following. First, equation (1) should be transformed in order to include the Process Model and the Reference

Model with their respective inputs (Astrom & Wittenmark, 1995):

€ = Yprocess — Vreference — Gp *U — Gy * U @

where e, y u and u, represent the error, process output, reference output, process input

process’ Y reference’
and controller input, respectively. To reduce the error, an adaptation mechanism that aims at reducing a cost

function is used, in the form of:

J(0) =1/, () @)

where 6 is the adaptive parameter inside the controller. For a second order system, the implemented

MRAC scheme has two adaptation parameters: adaptive feedfoward gain (6;) and adaptive feedback gain
(6,). These parameters will be updated to follow the reference model. Then, the input is rewritten in terms of

the adaptive feedforward and adaptive feedback gains as follows:

u=0,u;— Gzyprocess 3)
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Such the process output can be expressed as:

) (eluc - gzyprocess) = (br—el) U )

s2+aq,S+agr+byrBy

by

=G, *xUuU= (—
Yprocess P s2+ay,s+agr

Using equation (4), the error can be redefined as:

e = (ot Yu, - (G, *u,) 5)

s2+aq,rS+agr+byr0;
Therefore, equation (2) can be minimized if the parameters 6 change in the negative direction of the

gradient J, this is called the gradient descent method and is represented by:

0/ =~y /30 =-1%/s9e ©)

where y is the parameter to adjust the speed of learning. The above equation is known as the MIT

rule and determines how the parameter 8 will be updated to reduce the error (Whitaker, 1958). The error
partial derivatives with respect to the adaptive feedforward (6;) and adaptive feedback (68,) gains are

specified as:

de ( by )
—_— = Uu 7
36, s24aqps+agr+br0,/) € ™
de br261 by61
= ( 2 2) U = —\2 Yprocess ®)
00, (s2+aqrs+agyr+byrz) s?2+aq1rS+agr+byr6z

Consequently, the Process characteristic equation can be transformed into equation (9), because the
MRAC system aim is to approximate the Process Model with the Reference Model.
s2+ a5+ ag, + b0, = s?+ a5+ a,, )
Finally, with equation (9) defined, the error partial derivatives are transformed; and employing the
MIT rule, the update rules for the adaptive feedforward (6,) and adaptive feedback (6,) gains are written.
This can be viewed in equation (10) and (11).

de airs+ag dao, de airs+ag
_=(—2 r —Ju, > —=-y——e=—-y|(5——u.e (10
064 s?+aqirs+apr dt 064 s?+aqrs+apr
de ( airs+agr ) dae, de ( airs+agr )
_— | — - — = -y —e = _— e 11
a6, s2+aqrs+aor Yprocess dt 14 20, s2+aqs+aor Yprocess an
Reference Model
b,
2
STHa,s+a, Yreference
U, + e
Process
yPrucess
alrs+a0r alrs+aﬂl
| s +a,s+a, s> +a,s+ay,

Figure 5. Model Reference Adaptive Controller based on MIT rule.
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2.1.2 MRAC based on the Lyapunov stability theory

The Lyapunov theory in the design of an MRAC controller was introduced because the MIT rule
does not guarantee the stability of the closed-loop system. To design an MRAC controller using Lyapunov
theory (see Figure 6), the first step is to derive a differential equation for the error that contains the adaptation
parameters. Then, a Lyapunov function and an adaptation mechanism need to be established to reduce the
error to zero. The Lyapunov derivative function dV/dt is usually negative semidefinite. Therefore, to
determine the parameter convergence is necessary to establish persistently excitation and uniform
observability on the system and the reference signal (Astrom & Wittenmark, 1995).

The Lyapunov stability theorem establishes the following: If there exists a function V: R"—R being

positive definite and its derivative:

T T
W/ae = 1y 4o = /3, f ) = =W () (12)
is negative semidefinite, then the solution x(2)=0 to
X/ e = F() f(0) =0 (13)

is stable. If dV/dt is negative definite the solution will be asymptotically stable. ¥ denotes the Lyapunov
function for the system. If:
dV/dt <0 and V(x) = o when ||x|| = o (14)

the solution is globally asymptotically stable. Therefore, the following procedure was realized:

Process model:

yprocess + alyprocess + AoVprocess = bu 1s)
Reference model:
Vreference T Q1rYreference + QorYreference = brilc (16)
Control law:
u=0ju,— 92)’process an
Error:
€ = Yprocess — Yreference 18)

Then, the error dynamics is represented by:
19)
. . . 1 . 1 .
e = yprocess - y‘reference = a_1 [bu - yprocess - aoyprocess] - a_lr [bruc - yreference - aOryreference]
To simplify the mathematical notation yyeference=Vr aNd Yprocess=Vp-
. . . 1 . 1 .
e=Ypy W= P [bu W~ ao)’p] 4 [bruc —Vr— aOryr] (20)
Substituting Y,7y,-e and j}r=j}p-é from equation 20, equation 21 is obtained:

s = Ltpy Lty %, 1 Ly 1 g4 %, _ Gor
e_a1bu @ P T, P alrbruc-i-alryp ot Tt @D
Replacing u:9,uc—92yp in the above equation and placing the error terms in the left side of the

equation, equation 22 is obtained:
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+ =21 -1 -1 _ Gory, 1y 41y
E+é+Te= p bO u, . bu, p b8,y, 2, VP + o, Yp "oV + oI (22)

air 1r

The Reference Model is equal to the Process Model if no fault occurs (a;=ay;, ag=a,,, and b=Db,), then:

agr 1 .. 1

Lete+2e=Lhonu, —aibruc — b0y = T Yy oy By (@)
ZEté+ e = (b6, — bu — — (b6)y @4

Lot tre = L (b6, - bu — = (5,0, (25)

de_ _ailrdd—?——w—(b 61 = buc = - (b,62), (26)

The proposed Lyapunov function is quadratic in tracking error and controller parameter estimation
error since it is expected that the adaptation mechanism will drive both types of errors to zero. From the

equation error dynamics (see equation 26) the proposed Lyapunov function is:

V(e,01,0,) = 5 (are? + - (b0 = b,)? + - (5,6,)?) @7)

where b,, y and a;,>0. Equation 27 will be zero when the error is zero and the controller parameters
are equal to the desired values. The above Lyapunov function is valid if the derivative of this function is

negative. Thus, the derivative of equation 27 is:

V=aes+s (b 6y — b))t + (b 0,) 22 28)

Substituting equation 26 in the above equation, and rearranging the similar terms, equation 29 is

obtained.
(29)
; 1 d? 1 1 ae dae
V= aye (- =55 = e + = (b6 — b — = (0, 0,)y, ) + 2 (b0 — b) T+ (b6) T
. dZe ) 1 d91 d92
V= _eﬁ — Qgre” + (brgl - br)uce - (brez)Ype + ; (brel r) +- (b 92) (30)
; da? de dae
V=—eiz—aoe’ + (b6 — buce + (b6 — b)) T — (br8)ype + (0,6 (D)
; da? 1 1 dae
V= _ed_t;g_aOrez +;(br61 r)( +yuce ) +;(br92)(d_:_yyp€) (32)
Therefore, the adaptation parameters are selected to be updated as:
a6
d_tl = —yu.e 33)
de,
= YWe 34
Then
. da?
V= —ed—tj — ag,e? (35)
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It can be seen that equation 35 is negative semidefinite which implies V(¢)<V(0). This ensures that e,
0, and 6, are bounded. Since a,>0, a;,>0 and u. is bounded then y, is bounded and therefore y,=e+y, is
bounded as well. From the boundedness and convergence set theorem it can be concluded that the error e will

go to zero (Astrom & Wittenmark, 1995).

Reference Model
b,

2 o
s*+a,s+a,,

Yreference

Process

Ypmccs s

Figure 6. Model Reference Adaptive Controller based on Lyapunov theory.

2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are mathematical models that try to mimic the biological nervous
system. An artificial neuron have multiple input signals x;, x;, ...,x, entering the neuron using connection
links with specific weights w;, w,, ..., w, or Zi—;w,x; named the net input, and also have a firing threshold b,
an activation function f and an output of the neuron that is represented by y = f(Zi-;w;x; — b). The firing
threshold b or bias can be represented as another weight by placing an extra input node x, that takes a value of

1 and has a wy=-b (Nguyen et al., 2002). This can be represented in Figure 7.

N\

\ 9

Xo

X1

w
X 14‘ >3
s j —— Y = (2w, -b)
o ,
»
o. /z:)f ph

Ve

n

Figure 7. Basic Artificial Neuron.

An ANN with more than one input layer of neurons, a middle layer called the hidden layer and an

output layer is named a Multi-layer Artificial Neural Network (Figure 8).
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Figure 8. General Multi-layer Artificial Neural Network.

An ANN can have a feedback or a feed-forward structure. In the feedback structure, the information
can move back and forward. In the feed-forward structure, the information moves only forward from the input
nodes through the outputs nodes with no cycles in the network (Ruan, 1997).

The ANN need to be trained from examples, in a process called supervised learning. Once a
successfully training is done, the Artificial Neural Network is ready if and only if the network reproduces the
desired outputs from the given inputs. The most common methodology for this kind of learning is the
backpropagation algorithm, where the weights of the Artificial Neural Network are determined by using
iteration until the output of the network is the same as the desired output (Rumerhart et al., 1986). In
addition, unsupervised learning uses a mechanism for changing values of the weights according to the input
values, this mechanism is named self-organization. An example of this algorithm is the Hebbian learning
algorithm (Ruan, 1997).

To create and train the Artificial Neural Network controller, the original process inputs were
introduced as well as the desired outputs. The created ANN is a two-layer feed forward neural network with
n number of sigmoid hidden neurons and a linear output neuron. To train the network the Levenberg-Maquard
backpropagation algorithm was used. This training algorithm is a combination of Gauss-Newton and gradient
descent methods which integrates the benefits of the global and local convergence properties from the
gradient descent and Gauss-Newton methods, respectively (Ye, 2004). The Levenberg-Marquardt method
approaches the Hessian matrix in the form of the product of a Jacobian matrix by its transpose, the same form

as the quasi-Newton Methods (Priddy & Keller, 2005; Hagan & Menhaj, 1994).

d0xq, 0xy oxn
9e; de; | dep
J =|ox1 ox; oxy 36)
laxl 0xy axNJ
H~J'J (37)

Then, the gradient can be estimated as the product of the transpose Jacobian matrix by a vector which
contains the minimized errors.

vV=]Te (38)

The combination of the above equations creates a weight-update formula, where p is the control

parameter and I is an identity matrix.

20



Aw=—=(J"]+uD"YTe 39)
It is important to mention that if u is a large number; the Aw equation will be similar to the gradient
descent method. On the other hand, if u is zero, the equation will be similar to the Newton method. Figure 9

demonstrates the steps of the Levenberg-Maquard backpropagation algorithm (Priddy and Keller, 2005).

Initialize the
weights

Introduce every pattern at
the input of the NN

Propagate the data forward, produce
an output pattern and calculate the error
ofthe desired output and the actual output

f more patterns
exists

Compute the error of the desired and
actual output of all patterns employing
the sum of square error (SSE)

Calculate the
Jacobian Matrix

l

Calculate the
weight-update

If“¢” is higher, increase
pand update Ao

Recalculate
SSE

If“e” is lower, reduce
pand update Ao

Compute
gradient norm

If the gradient norm is > than
thedesired value

If the gradient norm is <than
the desired value

Figure 9. Levenberg-Maquard Backpropagation Algorithm Steps (Priddy & Keller, 2005).
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2.3  Genetic Algorithms

Genetic Algorithms (GA) are searching and optimization algorithms motivated by natural selection
evolution and natural genetics (Goldberg, 1989). Basically, the GA algorithm initially generates a random set
of solutions (initial population of chromosomes), which are going to improve from iteration to iteration, by
changing its features (mutation) and combining with other solutions (crossover). The simplest GA follows the
next steps: Generate a random initial population of chromosomes, calculate the fitness of every chromosome
in the population, apply selection, crossover and mutation and replace the actual population with the new
population until the required solution is achieved. The main advantages of GA are: powerful computational
effect, robustness, fault tolerance, fast convergence to a global optimal, capability of searching in complex
landscape where the fitness function is discontinuous, can be combined with traditional optimization
techniques (Tabu search) and have the ability to solve problem without needing human experts (Goldberg,
1989; Mitchell, 1996; Ruan 1997). The Genetic Algorithm is represented in the flow diagram (Figure 10). The

parameters used in the Genetic Algorithm are showed in Table 1:

Table 1. Genetic Algorithm Parameters

GA Parameter Unit
Population Size 20
Generations 100 Epoch
Selection Function Tournament
Crossover Function Scattered
Crossover Fraction 0.7
Mutation Function Adapt Feasible
Stall Generation 50
Stall Time Limit 20
Function Tolerance le-06
Constraint Tolerance le-06
Time Limit o0
Maximum Iterations Number 100
Maximum Evaluation Number 100000
Variable Tolerance le-06
Mesh Size Tolerance 1e-06
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Create an initial population, i.e.:
10000,00100,00101,00011,
01001,01010

Create the next population using the
individuals in the actual population
using the following steps
|
Compute the fitness of every member of
the actual population, i.e.:

f(x) = x2— 10000 =16 — f(x) =256
v
Convert the score in a
convenient range of
values, i.e.: normalization

\

Select the parents using
their fitness value, i.e.:
10000,00101,01001,01010
|
The individuals with lower fitness
(elite individuals) transcend to the
next population, i.e.: 00101 and 01001

A

Mutate or cross over the parents to generate
the children, i.e.:
Mutation Crossover
Parents: 00101 and 01001 00101 and 01001
! !
Children: 00100 and 00001 00001 and 01101
L

Replace the actual population with
the generated children, i.e.:
00001 and 01101
L
STOP the GA if the
stopping criteria is accomplished

Figure 10. Genetic Algorithm Steps.

2.4 Sliding Mode Control

The sliding mode controller is a technique in which the states of the systems reach a sliding surface
(denote by “s”) and are maintained there by a shifting law design in order to stabilize the system using a state
feedback control law (Khalil, 2002). In order to develop the procedure to design this controller, first the
original transfer function is decomposing into a cascade system, and the following equations are obtained:
X ==X, — X, U, X, =x; and Yy =azx, 40)
where o, a,, and o; are constants, x; is equal to the system output, X, is the derivative of x, and x; is
the derivative of x;. With the above variables defined, the following equations can be established:

X =fx)+ gu and X, =x; (41)
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where: f{x) and g(x) are nonlinear functions, g(x)>0, f{x) and g(x) need not to be continuous and x; is

stable if:

X, = —ax,, a>0 42)
On the other hand, if:
S=x;tax, = X, =x; =—ax, +s (43)
Then, the time derivate of s is:
S= % +ax, =f(x)+gl)u+ax, (44)
Therefore, the Lyapunov candidate function is:
v=1/,¢ @5)
where:
V=3s=[f(x)+ g()u+ax,] (46)
V is negative definite if
<0fors>0
fX)+gx)u+ax;{=0fors=0 47
>0fors<0

The stability is ensured if

< f(x) fors>0
ul= B fors=0 and px) =12 48)
> f(x) fors <0 o

Finally, the control law that will be used is:
u = B(x) — Ksign(s) (49)
where K>0.

2.5 Linear Parameter Varying Systems
The Linear Parameter Varying (LPV) systems are systems with linear structure with a set of varying
parameters over time. This type of systems can be represented either in input-output or state space form and
either in continuous or discrete-time. The discrete-time representation of an LPV system is the following
(Apkarian et al., 1995):
x(k+1) = A(k)x(k) + B(k)u(k) (50)
y(k) = C(k)x(k) + D(k)u(k) (51
In equations (50) and (51), the matrix dependence over k could be anyone. On the other hand the
continuous representation of an LPV system is shown next:
x=A0()x+ B(O()u (52)
y = CO)x+DO)u (33)
where x represent the states, y is the measurement or output vector, u is the input vector and @ represent the

parameters varying over time.
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An LPV system can be obtained through different methodologies: If the physical representation of
the nonlinear system is available, the LPV model can be obtained through the Jacobian Linearization method,
the State Transformation Method and the Substitution Function method (Shamma & Cloutier, 1993). The
main objective of utilizing these methodologies is to hide the nonlinearity of the system in the varying
parameters. On the other hand, if the model should be obtained from experimental data, the LPV system can
be obtained using the Least Squares or the Recursive Least Square algorithm in different system operating
points (Bamieh & Giarré, 2001).

In addition, an LPV controller could be represented as follows:

xc = Ac(O(8))xc + B.(O(t))y (54)
u = C(0(0)x: + D:(0(t))y (35)
where x., v and u represent the states, the control output and the control input, respectively. This type of
controller will adjust the dynamic variations of the plant in order to maintain stability and an adequate

performance along of the trajectories of the parameter ©.

2.6 H, Loop Shaping Controller

The H,, control theory is a robust technique implemented in (Zames, 1981) to achieve robust
performance and stabilization in a given system. This control theory uses the H,, norm which is the frequency
response magnitude to maximum singular value of the interested transfer function (i.e. peak gain or worst
case disturbances). The standard configuration problem for an H, controller is shown in the next figure

(Skogestad & Postlethwaite, 2005):

Figure 11. General H,, Controller Configuration (Zames, 1981).

where K is the H,, controller, P is a generalized plant, u are the control variables, w the exogenous signals, z
the error signals which have to be minimized to achieve the control objectives and v the measured variables.

In terms of state space, the above is rewritten as (Skogestad & Postlethwaite, 2005):

z] _ wl _ [P11(s) Pia(s)]w
Bl=roll=le ol 60
u=K(s)v (57)
A B, B,
P=|(C; Dy Dy (58)
CZ D21 D22

In which the linear fractional transformation of w to z is given by:

z=F(P,K)w > F,(P,K) = Pj; + P,K(I — P,,K)™'P,,; (59)
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The H,, control is then formulated as the minimization of H,, norm of F;(P,K).
Il F,(P,K) llo=supa (F,(P,K)(jw)) (60)

where o means the upper singular value.

The H,, loop shaping method proposed in (McFarlane & Glover, 1989) consists of a two stage
process. In the first stage, the plant is augmented by pre and post compensators (W; and W,, respectively) in
order to obtain the desired shape of the singular values in an open loop system. Second, the shaped plant is
stabilized with H,, optimization. The shaped plant is denoted by:

Gs = WG W, (61)

The above configuration is observed in Figure 12:

G,
—w e F{w ]
K, |

Figure 12. Shaped plant and controller (Skogestad and Postlethwaite, 2005).

The controller K; is obtained solving the robust stabilization problem for the shaped plant G, with left
coprime factorization.
Gs=M"'N (62)
Therefore, the perturbed plant model G, can be represented as:

G, = (M + Ay) " (N + Ay) (63)
where A,,; and Ay represent the uncertainty of the nominal plant G. Then, the goal of robust stabilization is to
stabilize G and the family of perturbed plants G,.

Gy = {(M + 8p) 7 (N + Ap): 1l [Ay Ay] o< €} (64)

where >0 is the stability margin.

The above control design problem is represented graphically in Figure 13:

Figure 13. H, robust stabilization problem (Skogestad & Postlethwaite, 2005).
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The control problem presented in the above figure satisfies the stability property if and only if the

nominal feedback system is stable and:

Hynorm = | [’I(] (I = GK) M~ [l < ¢ (65)

where (I—GK)_I is the sensitivity function.
Finally, the feedback controller for the plant G of Figure 12 will be:
K = WKW, (66)
For each model of the desired system that need to be controlled, the H,, controller is designed by
using the loop shaping method and the following steps are realized: First, the worst case system faults ( Gpyuzs)
are simulated and identified in the form of a Laplace function. Second, the Laplace functions are compared
against the non-fault system function. Third, a loop shaping control synthesis is performed to calculate an
optimal H,, controller for the Laplace fault-functions. This controller shapes the sigma plot of the Laplace
fault-function and obtains the desired loop shaping with a precision parameter called “GAM” (e.g. if GAM
should be > 1 with GAM = 1 being a perfect match). Fourth, the stable-minimum-phase loop-shaping is
calculated squaring down a pre-filter W (Le & Safonov, 1992):
W=C(sl—A)B+D 67)
and the shaped plant G, is square in state space formulation:
Gs = GrguesW = C(sI = A)T'B+D (68)
Then, the desired shape G, is accomplished with high precision in the frequency range by the shaped
plant. After the above procedure, the Normalized-Coprime-Factor control synthesis (Glover & McFarlane,
1989) is used to calculate the ideal loop-shaping controller (Xj):
K,=C(sI—A)'B+D (69)
Finally, with the equation (69) the H,, controller is computed using:

He = W * K, (70)

2.7 Literature Review

First, for the case of Artificial Neural Networks, they have been applied in Fault Tolerant Control
because they are helpful to identify, detect and accommodate system faults. Polycarpou & Helmicki (1995)
proposed a construction of automated fault detection and accommodation architecture that uses on-line
approximators and adaptive-learning schemes. The online approximator is an ANN model that monitors
changes in the system dynamics due to a failure. Patton et al. (1999) use a scheme of an Artificial Neural
Network to detect and isolate a fault in two steps: residual generation and decision making. In the first step, a
residual vector characterizes the fault and then the second step process the residual vector information in
order to locate the fault and the time of occurrence. Once the residual is trained, qualitative knowledge of the
plant can be added. This combination of qualitative and quantitative approached is helpful to decrease the
number of false alarms in the fault decision making step. Polycarpou (2001) proposed a methodology for fault

accommodation of a multivariable nonlinear dynamical system using a learning approach that monitors and
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approximates any abnormal behavior using ANNs and adaptive non linear estimation. When a fault occurs,
the Artificial Neural Network is used to estimate the nonlinear fault function supplying a framework for fault
identification and accommodation. The ANN at the beginning of the monitoring stage is capable of learning
the modeling errors in order to improve the system robustness. Gomaa (2004) recommended a fault tolerant
control approach based on multi-ANN system faulty models. The nominal plant is nonlinear and is vulnerable
to faults. A feedforward neural network is trained as the nominal model. Two PID controllers are used, one
for the nominal plant and the other for the Artificial Neural Network imitating the nominal plant (reference
model). Both PIDs controllers were tuned using genetic algorithms. If there exist a difference between the
nominal plant (y,) and the reference model (,,) a nonzero residual is generated. Then, depending on the
magnitude of the residual, an ANN faulty model and its respective compensation path are selected to

counteract the fault and improve the system operating conditions. This can be observed in Figure 14.
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Figure 14. Multi-ANN faulty models FTC scheme (Gomaa, 2004).

Wang & Wang (1999) proposed an Artificial Neural Network-FTC where the nominal system is
controlled by a Pseudolinear Neural Network (PNN) based one-step-ahead controller that uses a modified
gradient approach. When the system is with no fault, a PNN model connected in parallel to the plant model
can be trained and used for the design of the control algorithm. The PNN model is helpful for the detection of
a fault. In addition, when a fault is present, a residual signal is generated and an extra Artificial Neural
Network based fault compensation loop is imported in order to provide the closed loop stability. This last
Artificial Neural Network is a two layer perceptron network and its weights are updated using the modified
gradient approach. This FTC system is shown in Figure 15. Pashilkar et al. (2006) proposed a neural

controller that improves the fault tolerant potential of a fighter aircraft during landing. The faults are caused

28



by severe winds or stuck control surfaces and can be divided in single faults (aileron or elevator stuck) or
double faults (aileron and elevator stuck). This Artificial Neural Network controller employs a feedback error
learning method with a dynamic radial basis function Artificial Neural Network. The Artificial Neural
Network uses on-line training and not a-priori training. This kind of controller helped to improve the
capability of handling large faults and also helps to achieve the desired requirements. Perhinschi et al. (2007)
presented a methodology for detection, identification and accommodation of sensor and actuator failures
inside fault tolerant control laws. The fault detection and identification uses neural estimators. The
accommodating control law design for the actuator fault is done using non-linear dynamic inversion with
Artificial Neural Network augmentation. Whereas the accommodation of sensor faults is accomplished by
changing the failed sensor output for neural estimates calculated in the detection and identification process.
This approach can handle sensor and actuator faults successfully. It uses membership functions to describe the
mathematical model of process. Yen & DeLima (2005) presented an Artificial Neural Network trained on-line
with a global dual heuristic programming architecture. This approach has also a supervision structure made
from decision logic. This supervision level is very efficient to identify the controller faults in early stages and
can supply new values to improve the convergence utilizing dynamic model bank information. Patan and
Korbicz (2009) proposed a FTC system for a boiler unit in which a recurrent neural network was used to build
an on-line fault approximator. Then, this approximator was employed in the fault detection and
accommodation of the system. Yu et al. (2009) introduced a hybrid dynamic ANN based on fault diagnosis
and fault tolerance method. This methodology is an incorporation of feedforward and recurrent ANN in order
to form a dynamical identification model for the system. Finally, Kamalasadan and Ghandakly (2011)
proposed a fighter aircraft pitch-rate command-tracking controller based on a neural network parallel
controller. The scheme consists of a radial basis function neural network in parallel with a model reference

adaptive controller and the controller is able to control the changes in the aircraft system.

Yd € NN U u nonlinear y
controller system
&
Ym
ANN i fault
model detection

Uc NN fault
compensator

Figure 15. Artificial Neural Network FTC scheme proposed by (Wang & Wang, 1999).

On the other hand, for Genetic Algorithms (GA), Schroder et al. (1998), proposed a fault tolerant
control technique for an active magnetic bearing. In this approach a nonlinear model of a turbo machine rotor
from the Rolls-Royce lifted up by an active magnetic bearing was presented. This model is capable of
modeling different configurations of magnetic bearings. A multi-objective genetic algorithm was used to

generate and adequate PID controller for the active magnetic bearing with different bearing configurations.
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Also the fault accommodation was done using a centralized fault compensation scheme. Sugawara et al.
(2003) showed a fault tolerant control approach using multi-layer neural networks with a genetic algorithm.
The propose of this approach was to develop a self-recovery technique implemented for large scale Artificial
Neural Networks programmed in a single ship to accommodate faults without the need of a host computer.
This FTC scheme uses hardware redundancy and weight retraining using a genetic algorithm in order to
reconfigure the Artificial Neural Network to accommodate the fault. The objective of the genetic algorithm is
to reduce the error between the actual output and the desired output.

And finally, in the last years some LPV systems and control methods have been developed. For
example, in Shamma & Cloutier (1993), a gain-scheduled design for a missile longitudinal autopilot was
presented. The missile dynamics are represented in an LPV form using state transformation. A robust
controller employing p synthesis was design to achieve the angle of attack control. In addition, an inner/outer
loop structure was designed being the angle of attack the inner loop and the normal acceleration control the
outer loop. Apkarian et al. (1995) presented a gain scheduled along parameter trajectories controller with
guaranteed H,, performance for a class of LPV systems. The controller synthesis problem is formulated using
LMIs that can be efficiently solved. The system state space matrices depend on a time varying parameters
vector in which the parameters can be measured in real time and are fed to the controller in order to achieve
the desired performance and the robustness of the closed-loop system. Li et al. (1999) proposed a gain-
scheduled controller for a class of LPV systems in which the controller synthesis was formulated using LMIs.
In addition, the performance specifications of this controller were in terms of L, gain, general quadratic
constraints, peak gain, generalized H, performance and input and output constraints. In Bamieh & Giarré
(2001), a discrete-time LPV model for gain scheduling control and an identification method for nonlinear
system are presented. The identification of the LPV model is done through a linear regression as Least Mean
Squares or Recursive Least Squares. Fodor & Toth (2004) developed a robust control structure for a speed
sensorless vector control of an Induction Motor. This control structure uses mixed sensitivity LPV H,, control
theory resulting in a more accurate control of the Induction Motor. Groot et al. (2005) proposed an LPV
control technique to create position-dependent controllers (feedback controllers) that are able to accommodate
themselves in order to maintain an optimal closed-loop performance. In Kwiatkowski & Werner (2005) a
methodology for reducing the scheduled parameters in an LPV controller was presented. This reduction was
done using Principal Components Analysis (PCA) to typical scheduling trajectories. The proposed method in
this thesis creates a trade-off between the number of reduced parameters in the LPV controller and the
requested accuracy of the model. The LPV controller presented in this methodology uses the mixed sensitivity
approach and compares its performance with a fixed-gain controller created using a robust H, approach.
Giarré et al. (2006) developed the identification of a nonlinear plant parameterizing its dynamics as an LPV
model where the control assignment is the output regulation of different system set points. After obtaining the
LPV model, the model is used to design a gain scheduled controller linear feedback controller (off-line) and a
nonlinear correction controller (on-line). This last controller is the consequence of horizon optimization based
on invariant set theory. Hecker (2006) presented a two vehicle steering controllers to enhance the yaw

dynamics of a mid-size passenger car using robust H, synthesis techniques. Both controllers satisfied the

30



desired mixed-sensitivity performance specifications. The first controller is designed with p synthesis
guarantying robust performance if the parameters are uncertain but constant. On the other hand, the second
controller is based on LPV control techniques and guarantees robust performance even though the parameters
variation. Salcedo & Martinez (2006) proposed a methodology for the identification of LPV systems based on
the previous linear identification of different operating points and adjusting them using a Least Square
Levenberg & Maquardt algorithm allowing the adaptation of non-linear models. The LPV models are defined
via Lineal Fractional Representation (LFR) of the variable parameters over time. Once the LPV model is
obtained, the next step is to design an LPV linear controller. In Wang & Weiss (2006), a self-scheduled
control for a doubly-fed induction generator was presented. The controller was designed employing the LMI
methodology for LPV systems using linear interpolation. In addition, a controller reduction for the LPV
controller was realized based on the truncation of fast modes. Lee & Park (2007) developed a robust dynamic
feedback Model Predictive Controller (MPC) for LPV systems. The control law of this controller is calculated
using LMIs at each sampling time solving a convex optimization problem. In addition, a parameter dependent
Lyapunov function is developed in order to obtain a less conservative condition for the system stability.
Robert et al. (2007) designed a polytopic methodology for LPV systems to obtain a H,, sampling period
dependent controller in order to deal with the adaptation of a real-time controller’s sampling period. In
Rodrigues et al. (2007), a FTC methodology for polytopic LPV systems was presented. The most important
contribution of this work was the development of a Static Output Feedback (SOF) that maintains the system
performance using an adequate controller reconfiguration when a fault appears. In addition, the controllers
used in this methodology were arranged through LMIs to maintain the system closed-loop stability. Gilbert et
al. (2008) developed a fixed-order controller for SISO gain scheduled with guaranteed stability and H,,
performance covering the entire scheduled parameter range. This approach uses polynomials as modeling
objective. Also, it uses flexible LMIs conditions to allow the polynomial dependence of the open-loop system
and the controller transfer functions in the scheduled parameters. And finally, it uses the LMI conditions
decoupling between the Lyapunov and the controller variables for the design of the parameter dependent
Lyapunov function and the fixed-order controller. Liang & Marquez (2008) proposed a global gain scheduling
synchronization method for identical synchronization of quadratic chaotic systems. The quadratic chaotic
system contains nonlinearities in the quadratic terms of the systems states such that it can be transformed into
an LPV system. The implementation of the gain scheduling technique allows achieving the global
synchronization for the quadratic chaotic system. In Poussot-Vassal et al. (2008), a new semi-active
suspension control strategy was designed using Linear Parameter Varying (LPV) theory ensuring internal
stability of the system. The controller is based on LMIs polytopic LPV/H,, control synthesis. Xie & Eisaka
(2008) developed a two-degree-of freedom (TDOF) control for LPV systems. To design the TDOF controller,
a coprime factorization of the LPV system was realized. Then, the TDOF controller approach for LTI systems
is extended to LPV systems and the controller design problem can be established in terms of LMIs related to
L, gain performance in order to reject disturbances and to have a good tracking performance. In Bosche et al.
(2009), a Fault Tolerant Control (FTC) structure for vehicle dynamics is developed employing an LPV model

with actuator failures. The methodology described in this research is based on the resolution of Linear Matrix
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Inequalities (LMIs) using the D-stability concept and a Parameter-Dependent Lyapunov Matrix (PDLM). De
Lira et al. (2009) presented a fault diagnosis problem in a Polymer Electrolyt Membrane Fuel Cell (PEM-FC)
system using a model-based approach. The PEM-FC system is represented through an LPV model. The fault
diagnosis method is based on the generation of structured residuals and the fault sensitivity analysis
evaluation. In addition, the variation of the system dynamics is contemplated using an LPV observer when
generating residuals and the fault isolation method is based on the relative fault sensitivity concept. Ginter &
Pieper (2009) developed a H,, LPV controller based on a physical model and an iterative simulation based
testing. To develop the controller, four operation regions of the system were established. Therefore, the
controller synthesis results in a convex optimization problem with LMIs having available numerous well
developed numerical algorithms. In Henry et al. (2009) a robust fault detection and isolation filters for LPV
systems using a LFR were developed. The objective of the FDI filter is to minimize the influence of the
unknown residuals inputs in the H,, case and to maximize the fault sensitivity in the H, case. The parameters
are optimized using LMI. Luzar et al. (2009) designed a Matlab block-set that can be employed for FTC of
LPV systems. In this proposal, an observer estimates an unknown state of the system. Then, a fault
identification system is executed and finally the control strategy is carried out using LMIs pole placement. In
Montes de Oca et al. (2009), an Admissible Model Matching (AMM) FTC method based on LPV fault
representation was presented. In this approach, the faults were considered as scheduling variables in the LPV
fault representation allowing the controller adaptation on-line. In addition, a FDI scheme detect, isolate and
estimate the faults, when the FDI is not able to estimate the magnitude of the fault a passive FTC method
based on a single controller can manage the admissible faults. The AMM methodology is based on a set of
admissible behaviors characterized through LMI regions. The LMIs are able to locate the closed-loop poles
inside the unit circle region. Also, the fault accommodation can be represented using several LMIs. In Chen et
al., (2010) an LPV Pole-placement approach as an FTC problem, this scheme involves pole-placement within
suitable LMI regions in order to guarantee stability and performance of a multi-fault LPV estimation used
within an FTC structure. In Montes de Oca et al. (2010) a Fault Tolerant Control design using LPV
admissible model matching with H,/H,, performance was presented. In this scheme the reconfiguration of the
controller is done on-line based on using LPV gain-scheduling techniques allowing changes in the system
parameters due to changes in the operating points and faults. This scheme is an active FTC strategy, in which
the quadratic Hy/H,, performance helps to select the best controller. Paton and Klinkhieo (2010) presented an
LPV fault estimation and FTC of a two-link manipulator. This scheme combines the use of LPV fault
estimation and compensation to achieve active FTC performance requirements in which the system is
characterized by sets of LMIs and can be obtained using efficient interior-point algorithms. In addition, a
polytopic estimator is synthesized to generate actuator fault used in an FTC scheme to schedule the nominal
system sate feedback gain, therefore, the system performance can be maintain over a wide range of operating
points within a proposed polytopic model. Montes de Oca & Puig (2010) presented a FTC scheme that uses a
virtual sensor for LPV systems. In this scheme the control loop is reconfigure such that the nominal controller
could be still used after the presence of a fault without the need of a retuning because the plant with the sensor

fault is modified adding a virtual sensor block that hides the fault and allows the controller to see the plant as
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a non-faulty plant. The virtual sensor is designed using polytopic LPV technique and LMIs and the LPV state
feedback controller is designed to achieve quadratic H,/H,, performance using a polytopic representation of

the system that contribute to solve a finite number of algebraic LMIs.

2.8 Faults Types

A fault is an unpermitted deviation of a parameter or characteristic of the system (e.g. physical
quality). The fault can be distinguished in abrupt, incipient or intermittent faults. With respect to the way of
introducing the fault in the system, the fault can be classified in additive or in multiplicative faults (Fortuna,
2007).

To test the approaches presented in Chapter 3 and Chapter 4, different types of faults are introduced
and simulated in the considered testbed cases. The first type of fault is an additive abrupt fault, the second
type of fault is an additive gradual fault, and the third type of fault is a multiplicative fault (see Figure 16). All
types of faults are introduced in actuator and sensors (see Figure 17). An additive fault will modify the
quantity of the nominal value by the addition of a quantity f(#). An abrupt additive fault in actuators represent,
for instance, a pump stuck or in sensors a constant bias in measurements. A gradual additive fault could be a
progressive loss of electrical power in pump or a drift in the sensor measurements. Finally, a multiplicative
fault is represented as a degradation of the nominal system, the nominal quantity is multiplied by a quantity
f(®). For example, actuator multiplicative fault is represented as u,~au, where u, represent the system input

with the actuator fault, a represents the degradation percentage of the actuator, and u is the nominal system

input.
Additive Fault (f,) Multiplicative Fault (f,)
. e
i Vi
o
Yprocess U Yprocess+fa yprocess Yprocess(a+f1n)

Figure 16. Representation of Additive and Multiplicative Faults (Mahmoud et al., 2003).
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Figure 17. Representation of Actuator and Sensor Faults.
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CHAPTER 3

INDUSTRIAL HEAT EXCHENGER
PROPOSED SCHEMES,
EXPERIMENTS AND RESULTS



3 Industrial Heat Exchanger

The first system used as test bed (shown in Figure 18 and Table 2) is a shell and tube Industrial Heat
Exchanger that has two inputs: water and steam flows controlled by pneumatic valves (FSV; and FSV,,
respectively). The water pass inside the tubes at room temperature and the steam pass through the tube walls
in order to transfer heat to the water. In addition, the industrial heat exchanger has one output, in which the
water temperature is measured by a thermistor (TT,). Variations in water and steam flows are determined by

flow transmitters (FT; and FT),, respectively).
345
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Figure 18. Industrial Heat Exchanger used in the experiments.

Table 2. Industrial Heat Exchanger Sensors/Transmitters Description.

Tag Name Description
FSV, Solenoid valve in the water inlet
TT, Temperature transmitter of the water inlet
FV, Pneumatic control valve in the water inlet
FT, Flow transmitter in the water inlet
TT, Temperature transmitter of the water outlet
FV, Pneumatic control valve in the steam inlet
FT, Flow transmitter of the steam inlet
FSV, Solenoid valve in the steam inlet

To obtain the continuous model of this process, an identification experiment was performed, where a
Pseudo Random Binary Sequence (PRBS) was applied to water and steam valves, and variations in water
temperature were recorded. With the data obtained in the PRBS test, the identification was achieved using
Matlab®. This was done with the help of the system Identification Toolbox commands described below. The
following commands are design for the estimation and validation of linear models from multiple-input/single-
output (MISO) data to find the one that best represents the system dynamics.

- The variables of the data to estimate the model are: inputl, time, and outputl. The variables for the
validation of the model are: input2, time, and output2. The inputl and input2 variables include in
each of the steam and water valves opening percentage. The output 1 and output 2 variable represent
the water temperature at the outlet of the Industrial Heat Exchanger. The next figure shows the

representation of these variables.
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Figure 19. PRBS test for model estimation.
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Figure 20. PRBS test for model validation.

- Establish the sampling time interval:

Ts = 1; % Sampling interval is 1 seg
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Create two data objects to encapsulate data values and data properties into a single entity, ze is
created for model estimation and zv is created for model validation.

ze = iddata(Outputl,expl,Ts);

zv = iddata(Output2,exp2,Ts);
To view the properties of the estimation data, the next command was applied. This command return
data properties as: domain, name, output data, output name, etc:

get(ze)
To plot the data objects the following commands are used:

plot(ze) % Plot the estimation data

figure % Open a new MATLAB Figure window

plot(zv) % Plot the validation data
Estimate the transfer function using spectral analysis for a fixed frequency resolution (estimate the
frequency response):

Ge=spa(ze);

bode(Ge)
Estimate the step response from the data:

step(ze,30)
Estimate the delay in the system:

delayest(ze)
Use the struc command to create a matrix of possible model orders and the selstruc command to
compute the loss functions:

NNI1 = struc(1:50,1:50,0);

selstruc(arxstruc(ze(:,:,1),zv(:,:,1),NN1)); %selects the model order

NN2 = struc(1:50,1:50,0);

selstruc(arxstruc(ze(:,:,2),zv(:,:,2),NN2));
Use the following command to create two model structures, one for each input/output combination
(P2 represents a transfer function with two poles)

midprocO = idproc({'P2','P2'});

midproc = pem(ze,midproc0);
To view the two resulting models, type the following command:

present(midproc)
The following command compares the actual output and the model output:

compare(zv,midproc)
The residual analysis is realized using:

resid(zv,midproc0)

37



Then, the following model was obtained:

Gp = Gsteam + (_Gwater) (1)
0.00002 -0.000013
Gp =3 +5 (72)
52+0.0042995+0.00002 = 52+0.0078155+0.00008
0.00002 0.000013
T(s) = s) — F s 73
() 5240.0042995+0.00002 steam (S) 5240.0078155+0.00008 water (5) (73)
T(s) 0.00002
Gsteam = =3 (74)
Fsteam(s)  $2+0.0042995+0.00002
T(s) -0.000013
Gwater = = (75)

Fwater(s) _ 52+0.0078155+0.00008

where G, represents the Process Model, Gieqn and G,,qe- describes the steam and water model of the
industrial heat exchanger, respectively. 7(s) describes the Water Temperature at the exit and Fi,,,(s) and
Fue(s) represent the steam and water flow, respectively. It is important to mention, that the obtained model
was composed of two additive parts Gyeqr, and Gz, in order to implement this model in an MRAC system,
the model was decomposed in to two subsystems Steam and Water. In addition, the obtained model is just an
approximation of the Industrial Heat Exchanger process and it was used just as an example to implement the

FTC schemes.

3.1 Model Reference Adaptive Controller (MRAC)

In order to derive a FTC scheme for the Industrial Heat Exchanger, a Model Reference Adaptive
Controller was designed. The MRAC scheme was chosen as the based controller because it guarantees
asymptotic output tracking and it has a direct physical interpretation.

In the design of the MRAC controller it is important to take in count the two second order systems:

steam and water systems. With the background theory presented in Chapter 2, the following equations were

developed:
(76)
0.00002 0.000026, )
= xYy—-|————— _ —
Ysteam_process = Gsteam * U (52+o.004299s+o.00002) (Qluc Gzyp“’cess) (SZ+0.004299s+0.00002+0.0000292 Ue
(77)
-G eu= ( —0.000013 )(9 w -0 ) = ( —0.0000136, )u
Ywater process = Uwater ~ \s2+0.0078155+0.00008/ \"17°€ 2Vprocess) = \ 5250.0078155+0.00008—0.0000136,/ ¢
Using equations (76) and (77), the error can be redefined as:
0.000026, )
e =( u. — (G * U 78
steam 52+40.004299540.0000240.000026,/ € ( steam_reference_model C) (78)
—0.0000136 )
e =( u. — (G * U 79
water $240.0078155+0.00008—0.0000136,/ ¢ ( water _reference_model C) )
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Therefore, the error partial derivatives with respect to the adaptive feedforward (6;) and adaptive

feedback (6,) gain are specified as equation 80 for the steam process and equation 81 for the water process:

de ( 0.00002 ) de ( 0.000026, )
= u. and = - 80
/691 524+0.0042995+0.00002+0.000028,/ € /602 52+0.0042995+0.00002+0.000028, ) YPTocess (80)

de ( —0.000013 ) de ( b6, )
= u. and = — 81
/601 5240.0078155+0.00008—0.0000136,/ ~ ¢ /692 5240.0078155+0.00008—0.0000136, Yorocess @81

Consequently, the Process characteristic equation can be transformed into equations (82) and (83),

because the MRAC system aim is to approximate the Process Model with the Reference Model.

steam — s% 4 0.004299s + 0.00002 + 0.000026, ~ s% + 0.004299s + 0.00002 (82)
water > s? + 0.007815s + 0.00008 — 0.0000130, ~ s? + 0.007815s + 0.00008 (83)

Finally, from equations (82) and (83), the error partial derivatives are transformed; and employing

the MIT rule, the update rules for the adaptive feedforward (8;) and adaptive feedback (6,) gain are obtained

as follows:
84
steam — d91/ _ ( 0.0042995+0.00002 )e and d92/ _ ( 0.0042995+0.00002 )e
dt = TV \$750.0042995+0.00002 ¢ dt = YV \§z30.004299510.00002 YPTOCESS
C)
water — d91/ _ ( 0.0078155+0.00008 ) and dez/ _ ( 0.0078155+0.00008 )e
dt = T \$Zi00078155+0.00008 1€ dt =Y \3Z30.007815s10.00008  Process

To select the value of y, different experiments with different y sizes were realized. In these
experiments a sensor fault of 10 % of nominal system deviation was introduced at time 5000 seconds and an
actuator fault of 5 % of nominal system deviation was introduced at time 15000 seconds. In summary, four

different size of y were tested (1000, 100, 10, 1) and the results are showed in Table 3 and Figure 21.

Table 3. MSE of different sizes of y.

Y Sensor Fault  Actuator Fault

1000 0.0687 0.0291
100 0.0982 0.0289
10 0.1387 0.0292
1 0.1937 0.0324
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Figure 21. MRAC Results testing different sizes of y.

From Figure 21 and Table 3 the selected value of y to realize the following experiments was 1000,

because it has the lower MSE in sensor and actuator faults. With the above equations the following controller

was implemented (Figure 22):
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Figure 22. Fault Tolerant MRAC Controller Structure.

3.1.1 Experiments and Results

This section explains the different experiments that have been realized using the MRAC in the
Industrial Heat Exchanger. In these experiments, two different types of faults were simulated in the
implemented schemes: abrupt faults and gradual faults. In the abrupt faults case, the whole magnitude of the
fault is developed in one moment of time and was simulated with a step function. On the other hand, gradual
faults are developed during a period of time and are implemented with a ramp function.

Both types of faults, abrupt and gradual, have been considered in sensors (feedback), in which the
properties of the process are not affected, but the sensor readings are wrong. And, they have also been
considered in the actuators (process entry) in which the process behavior can change or can be interrupted. In
each experiment, a fault was introduced at time 5000 seconds. Three different fault levels were simulated:
5%, 15% and 25%. The fault size is given in terms of percentage deviation from the normal operational value.

In the next figures, three different results are explained: robust (no changes occur in the system after the
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fault), fault tolerant (the system tolerates and accommodates the fault completely) and degraded system (the
system does not tolerate the fault). For the gradual faults, the slope was of 10% deviation from the normal
operational value per second but had a saturation block stopping this percentage at the different fault
percentage values (5%, 15% and 25%). The following figures represent a comparison of the results applying

different faults magnitudes.
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Figure 23. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC controller.

From Figure 23, it can be observed that for abrupt and gradual sensor faults of 5% and 15% of

system deviation the classical MRAC approach was fault tolerant against these types of faults. Fault tolerant
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means that the fault is accommodated completely in the system. On the other hand, for abrupt and gradual

sensor faults of 25% of system deviation the classical MRAC scheme resulted in a degraded system.
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Figure 24. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC controller.

From Figure 24, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25%
of system deviation the classical MRAC scheme resulted in a degraded system after the occurrence of the
fault. In addition, the classical MRAC scheme based on the MIT rule and a classical MRAC scheme based on
Lyuapunov theory were tested in a real physical implementation using Coupled-Tank system (Cruz-Reynoso,
2011). In these experiments additive faults were proved. And results showed the robustness of the MRAC

FTC schemes to different fault scenarios (see Apendix A).
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3.2 Model Reference Adaptive Controller plus PID Controller (MRAC-PID)

To overcome the limitations of the simple MRAC structure (smaller fault accommodation threshold
than the MRAC controller in combination with other structures), a classical PID controller expressed in the

form
K.
PID=K,+ /s +Kgs (86)

is introduced in the feedforward part of the simple MRAC scheme (see Figure 25). The PID controller has the

properties showed in Table 4.

Table 4. PID Controller Parameters Properties (O’Dwyer, 2009).

g::;:;?el::- Rising Time Overshoot Settling Time Steady State Error
KD Decreases Increases Does not influence Decreases
Ki Decreases Increases Increases Eliminates
K Does not influence Decreases Decreases Does not influence

d

The PID parameters were obtained by using a Genetic Algorithm Pattern Search to track the desired
system trajectory with the Matlab® Optimization Toolbox. The desired closed-loop behavior of the system is
established through the model reference trajectory when there are no faults in the system. The parameters that

need to be established for the desired optimization are shown in Table 5.

Table 5. Matlab® Optimization Toolbox Parameters.

Parameters Value
Step Initial Value 0
Step Final Value 2

Step Time 0s

Rise time 400 s
% Rise 90
Settling Time 2500 s
% Settling 5
% Overshoot 20
% Undershoot 2

Then, the Genetic Algorithm obtains the best parameter optimization (see Table 6).

Table 6. Obtained best PID Controller parameters using GA Optimization.

Parameter Steam Water
Plant Plant

Kp 1.7764 0.8276
Ki 1.2229 0.0010
Kd 0.0047 1.1475
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Figure 25. Fault Tolerant MRAC-PID Controller structure

3.2.1 Experiments and Results

This section explains the different experiments that have been realized using the MRAC-PID
controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated
in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have
been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was
introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The

following figures represent a comparison of the results applying different faults magnitudes.
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Figure 26. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-PID controller.

From Figure 26, it can be observed that for abrupt and gradual sensor faults of 5% and 15% of
system deviation the MRAC controller in combination with the PID controller (MRAC-PID) resulted robust
against these types of faults. On the other hand, for faults of 25% of system deviation the MRAC-PID scheme

resulted in a degraded system after the occurrence of the fault.
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Figure 27. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-PID controller.

From Figure 27, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25%
of system deviation the MRAC controller in combination with the PID controller (MRAC-PID) resulted in a

degraded system after the occurrence of the fault.
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3.3 Model Reference Adaptive Controller plus an Artificial Neural Network
Controller (MRAC-ANN)

In this scheme, the PID controller was substituted by an Artificial Neural Network (see Figure 28).

An ANN was selected as an aditional controller because it has the capability of dealing with nonlinear system

and it can be tarined to follow the ideal trajectory (non-faulty trajectory). The created ANN is a two-layer feed

forward Artificial Neural Network with 20 sigmoid hidden neurons and a linear output neuron. To train the

network, the Levenberg-Maquard backpropagation algorithm was used. This training algorithm is a

combination of Gauss-Newton and gradient descent methods which integrates the benefits of the global and

local convergence properties from the gradient descent and Gauss-Newton methods, respectively. The

Artificial Neural Network was trained with the original process inputs as well as the desired outputs.
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Figure 28. Fault Tolerant MRAC-ANN Controller Structure.
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3.3.1

Experiments and Results

This section explains the different experiments that have been realized using the MRAC-ANN

controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated

in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have

been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was

introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The

following figures represent a comparison of the results applying different faults magnitudes.
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From Figure 29, it can be observed that for abrupt and gradual sensor faults of 5%, 15% and 25% of

system deviation the MRAC controller in combination with the ANN controller (MRAC-ANN) resulted in a

robust system against these types of faults.
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Figure 30. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-ANN controller.

From Figure 30, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25%
of system deviation the MRAC controller in combination with the ANN controller (MRAC-ANN) resulted in

a degraded system after the occurrence of the fault.
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3.4 Model Reference Adaptive Controller plus Artificial Neural Network and PID

Controllers (MRAC-ANN-PID)

A combination of the MRAC-PID and the MRAC-ANN controllers were developed (see Figure 31),
in order to increase the fault accommodation threshold of the system. Both controllers perform as feedforward
controllers with the main intention to obtain a robust FTC structure. In this structure, the PID controller helps
to attenuate the overshoot, undershoot and also helps to obtain the desired settling time and rise time. On the
other hand, the Artificial Neural Network controller will try to attenuate the fault by helping the system to
follow the desired reference trajectory. In addition, the controller structure adds robustness to the system, for

example, the PID helps to attenuate the signal.
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Figure 31. Fault Tolerant MRAC-ANN-PID Controller Structure

3.4.1 Experiments and Results

This section explains the different experiments that have been realized using the MRAC-ANN-PID

controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated
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in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have
been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was
introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The

following figures represent a comparison of the results applying different faults magnitudes.
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Figure 32. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-ANN-PID

controller.

From Figure 32, it can be observed that for abrupt and gradual sensor faults of 5%, 15% and 25% of
system deviation the MRAC controller in combination with the ANN controller and the PID controller

(MRAC-ANN-PID) resulted in a robust system against these types of faults.
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Figure 33. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-ANN controller.

From Figure 33, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25%
of system deviation the MRAC controller in combination with the ANN controller and the PID controller
(MRAC-ANN-PID) resulted in an imperceptible fault system. By definition the actuator faults cannot be
robust, because a change in the actuator has a physical affectation in the system, for that reason if the effect of

an actuator fault is not visible in the system output, the correct terminology is imperceptible.
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3.5 Model Reference Adaptive Controller plus an H,, Controller (MRAC-H.,)
The proposed H,, control was designed using the loop shaping method and the following steps were
realized: First, the worst case of system faults (steam process faults and water process faults) were simulated

and identified in the form of a Laplace function obtaining the following equations:

0.00002

G = 87

steam_faults ™ 2.0,000043095+0.00002 &7
—0.000013003

G = 88

water_faults = s240007819304+0.0000819 (88)

where Geam  fuuns A0 Goyurer fauns TEPresent the worst case faults in the steam process and water process,

respectively. Second, the above Laplace functions are compared against the non-faulty steam and water

process:

0.00002
52+40.0042995+0.00002
-0.000013
5240.0078155+0.00008

89)

Gsteam =

Gwater = (%90)
where Gy 18 the non-faulty function describing the steam process and G, is the non-faulty function
describing the water process (the above has been explained in more detail in Chapter 2).

Third, a loop shaping control synthesis is performed to calculate an optimal H,, controller for the
Laplace fault-functions (e.g2. Gyrer auirs)- This controller shapes the sigma plot of the Laplace fault-function
and obtains the desired loop shaping (non-fault steam and water function) with a precision parameter called
“GAM” (e.g. GAM should be > 1 with GAM = 1 being a perfect match).

The next procedure is to calculate the stable-minimum-phase loop-shaping. This was realized

squaring down a pre-filter -

Wisteam = C(sI —A)™*B + D 1)
92)
-8192  —4.295¢° 0 4.295¢° 1\ [-3.469¢718
0.003906 —1.819¢7'2 0 —0.001703 2.367¢7%
W, = 5 10 _ 10 I —
steam = [1.311e®  6.872¢1® 0 —6.872¢°]| s 0 0 —0.004299 —0.00512 0.0625
0 0 0.003906  4.748ee™2° 0

[0]

W _3.638e 125%+1.678e752+2.929e*5-348.6
steam ™ 44819253 +41.678e752+7.213e45-335.5

93)

54



In a manner that the shaped plant G, is square in state space formulation:
Gs = Gsteam_faultsW = C(S[ - A)_IB +D (94)

95)

Gs = [1.057e™* -167.8 —6.617e7?* 6.939e7'®* —6.617e 2% —1.388e 7] *

-1

-8192  -4096  3.815¢™° 1 4.235¢7%2 2 0
4096 -1.819¢2 2541 4.441e7® -2118¢2 4.441e7'6  -7.175¢™
(si-[ © 0 -4.309¢7 ~0.002561 1.2913:22 0.0001775y) =9:861e™) |\ ¢ 0406-29]
0 0 0.007813 -3.939¢™1*  4.136e 0.003405 0
0 0 0 0 -0.004299  -0.00512 -0.0625
0 0 0 0 0.003906  4.758¢% 0

3.725e"%s%+ 53841053+ 335,552+ 0.58585—-0.00697
56+ 819255+ 1.678e754+7.285e453+674.352+1.4575—0.006712

Gs = Gsteam_faultsW = (96)

Then, the desired shape of Gy, is accomplished with high precision in the frequency range by the
shaped plant. After the above, the Normalized-Coprime-Factor control synthesis is used to calculate the ideal

loop-shaping controller (Kj):

K,=C(sI—A)™B+D 7

K, =10.1002 —0.03229 0.06381 0.0001991 3.415¢~°] * 98)
[0.006639  0.004199  —0.005592 —1.938e™5 —3.324e °]\ [ —0.1399

—0.003146 —0.0003806 0.002807 2.63e7° 4.512e77 | || —0.03378 |
sl —1-0.004052 —0.002715 —0.005551 —2.675e¢™°> —4.59¢7° —0.06457 |+ [1.714]

2.125e75 8.556e~° 1.548e7° —2648 —1448 0.0001991
l—3.4436'5 —5.083¢7° 1.278e7° 1448 —5544 J —3.415e7°

K. = 1.7145°+1.404e*s*+2.876e”s3+7.557e*s2+417.25-0.5835 99

s $5+819254+1.678e753+2.109¢552+665.65—3.773 99

Finally, with the equation (99) the H,, controller is computed using:
Hos steam = W * K (100)
(101)

H _ —3.63e7125542.876e7s7+2.356e115%+ 4.825e 1455 +2.11e125%+1.9241%5%+3.208e 752 +1.427e%s-127
co_steam ™ (941 638e458+1.007e8s7+2.749e 1156+ 2.815e1455+4.749¢125%4+3.201e1053+1.821e852+4.954€55+1266

The parameter “GAM” which is a precision parameter for this controller is 1.9846 which is equal to

5.9535 dB. In Figure 34, the singular value plot of this controller can be viewed:

55



Singular Values (dB)

Singular Values

40 -

-80 —~

-100

]

-120 [~

-140 |-

-160

]

]

-180

-200 -

P FFFF

14 T TE FFFEFE

13 S

— 1/o(S) performance

(
(

**** o(Gd) desired loop
(

o(T) robustness

)
o(L) loopshape

- o(Gd) + GAM, dB

P rFr

10

10

10
Frequency (rad/sec)

Figure 34. H,, Controller Singular Value plot for the steam process.

In the above figure, L is the open loop, T is the complementary sensitivity (or closed loop function)

and S is the sensitivity function. It can be observed that these parameters are within the specified boundaries

denoted by the singular values of the non-fault system +/- the value of GAM. The expressions of L, T and S

are, respectively:

L= Gsteam_faults * K

—1.49¢7859-6.104e 7 5584575.357+4.712e%5%49.651e%5%+4.221e7s*+3.011e553+355.652+1.3525-0.00237

(102)
(103)

5114+1.638e%510+1.007e859+2.749e1158+2.815e1457+4.761e1256+3.78421055+2.784e85%+1.143e653+492952+9.9635+0.02532

1

1+Gsteam_faults*K

(104)

(105)

_ s1141.638e*510+1.007e859+2.749¢ 1158 +2.815e1*57+4.76 11256 +3.784e1055+2.784€85* +1.143653+492952+9.9635+0.02532

T s1141.638e4510+1.007e859+2.749¢1158+2.815e1457+4.761e1256+4.749¢1055+3.206e85%+1.445e653 +528452 +11.325+0.02295

—1.49¢785%-6.104e 7558 +575.357 +4.712e%5+9.651e%s5+4.221e7s*

_ Gsteam_faults*K

1+Gsteam_faults*K

+3.011e553+355.652+1.3525-0.00237

(106)

(107)

T s1141.638e4510+1.007e859+2.749¢1158+2.815e1457+4.761e1256+4.749e1055+3.206€85%+1.445e653 +528452+11.325+0.02295
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The above procedure is repeated for the G, er s process and the following H,, controller
(Ho water) s obtained:

2.94e%5°+2.408e105%+4.932e1353+4.327e1152+4.314€%5—2.38e°
57+1.638e%s6+1.007e855+2.749e1154+2.815¢1453+5.932e1252+5.169¢105+2.986€8

(108)

Hoo_water =

The parameter GAM for this controller is 1.0152 is equivalent to 0.1314 dB. Figure 35 presents the

singular value plot of this controller.
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Figure 35. H,, Controller Singular Value plot for the water process.

The open loop function L, the complementary sensitivity or closed loop function 7, and the
sensitivity function S are shown in equations (109) to (114). It can be observed that these parameters are

within the specified boundaries denoted by the singular values of the non-fault system +/- the value of GAM.

L= Gwater_faults * K (109)

—6.1042e755%438.195543.132e55%46.414e853+5.626€%52+5.602e*5+48.82

L= (110)

T 5941.638e%s8+1.007e857+2.749e1156+2.815¢1455+8.133e1254+1.206e 1153 +1.177¢%52+6.471e65+2.389¢4

1
S=———— (111)
1+Gwater_faults*K
_ 59+1.638e*s8+1.007¢857+2.749¢1156+2.815¢1*55+8.133e1%5* +1.206e 1 53+1.177¢%5% +6.471€%5+2.389¢*

T 5941.638e%s8+1.007e857+2.749¢1156+2.815e1455+8.133¢125%+1.212e1153+1.183e952+6.527e65+2.394e%

(112)

_ Gwater_faults*K (1 13)

1+Gwater_faults*K
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T = -6.1042e 550+38.1955+3.132e55%+6.414e85%+5.626€°52+5.602¢*5+48.82 (114)

59+1.638e%s8+1.007e857+2.749e1156+2.815e1455+8.133e125%+1.212e1153+1.183e952+6.527e65+2.394e*
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Figure 36. Fault Tolerant MRAC-H,, Controller Structure.

3.5.1 Experiments and Results

This section explains the different experiments that have been realized using the MRAC-H,,
controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated
in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have
been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was
introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The

following figures represent a comparison of the results applying different faults magnitudes.
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Figure 37. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-H,, controller.
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From Figure 37, it can be observed that for abrupt and gradual sensor faults of 5% and 15% of

system deviation the MRAC controller in combination with the H,, controller (MRAC- H,,) resulted in a

robust system against these types of faults. On the other hand, for faults of 25% of system deviation the

MRAC- H,, controller was fault tolerant.
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Figure 38. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC- H,, controller.

From Figure 38, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25%
of system deviation the MRAC controller in combination with the H,, controller (MRAC- H,,) resulted fault

tolerant against these types of faults.
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3.6 Model Reference Adaptive Control plus Sliding Mode Control (MRAC-SMC)
Using the Sliding Mode Control theory presented in Section 2.4, the controller presented in Figure 39

is designed. The application and result of this controller is explained next.
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Controller 170 ) Y steam reference
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+ f ¢
15 Process
+ ySlCal"ﬂ
a,S+4a,, @, S+ ay,
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Figure 39. Fault Tolerant MRAC-SMC Controller Structure.

3.6.1 Experiments and Results

This section explains the different experiments that have been realized using the MRAC-SMC
controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated
in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have
been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was
introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The

following figures represent a comparison of the results applying different faults magnitudes.
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Figure 40. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-SMC controller.

From Figure 40, it can be observed that for abrupt and gradual sensor faults of 5%, 15% and 25% of
system deviation the MRAC controller in combination with the SMC controller (MRAC-SMC) resulted in a

robust system against these types of faults.
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Figure 41. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-SMC controller.

From Figure 41, it can be observed that for abrupt and gradual actuator faults of 5% and 15% of
system deviation the MRAC controller in combination with the SMC controller (MRAC-SMC) resulted fault
tolerant against these types of faults. On the other hand, for faults of 25% of system deviation the system was

degraded.
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3.7 Mean Square Error for the Experiments in the Industrial Heat Exchanger

In addition, the Mean Square Error (MSE) was calculated for all the experiments, as follows:

2
MSE = (yreference_Yprocess)

n-2

(115)

where V,eprence 15 the output of the reference model, 3,,0cess 1S the output of the actual process and 7 is the

sampling period. The results are shown in Table 7 and Table 8 for sensor and actuator faults, respectively.

Table 7. Mean Square Error for the Abrupt and Gradual Sensor Faults.

Approaches Abrupt Sensor Faults Gradual Sensor Faults
f=5% f=15% f=25% f=5% f=15% f=25%

MRAC-ANN-PID 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05
MRAC-H,, 4.803E-06 4.803E-06 0.0007472 4.804E-06 4.804E-06 0.0007358
MRAC-SMC 1.843E-06 1.843E-06 1.843E-06 3.922E-06 3.922E-06 3.922E-06
MRAC-ANN 2.069E-05 2.069E-05 2.069E-05 2.069E-05 2.069E-05 2.069E-05
MRAC-PID 1.521E-05 1.521E-05 0.0698587 1.522E-05 1.522E-05 0.0698464
MRAC 0.0005245 0.0097135 1.8321538 0.0005246 0.0097138 1.8320687

Table 8. Mean Square Error for the Abrupt and Gradual Actuator Faults.

Approaches Abrupt Actuator Faults Gradual Actuator Faults
f=5% f=15% f=25% f=5% f=15% f=25%

MRAC-ANN-PID 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05
MRAC-H,, 0.0003495  0.0023871 0.0050391 0.0003494 0.0023870 0.0050384
MRAC-SMC 0.0003501 0.0024160 0.1223235 0.0003504 0.0024173 0.1223123
MRAC-ANN 0.2993774 0.1766571 0.1210197 0.2993563 0.1766339 0.1210041
MRAC-PID 0.2973728 0.1771648 0.1205219 0.2973542 0.1771336 0.1205066
MRAC 0.1182904 0.0855958 0.1187836 0.1182899 0.0855955 0.1187681

From the above results, it can be seen that in general the MRAC-SMC has the lower MSE for the

abrupt and gradual sensor faults (MSE = 1.843E-06 for the abrupt sensor faults and MSE = 3.922E-06 for the

gradual sensor faults). On the other hand, the MRAC-ANN-PID scheme has the lower MSE for the abrupt and

gradual actuator faults (MSE = 1.107E-05). It is important to mention that the combination of the MRAC

scheme with other controllers (PID, ANN, SMC or H,,) results in an Active FTC + Passive FTC, because the

MRAC can be considered as an Active FTC because this scheme accommodates the fault on-line and the

other combinatorial controllers (PID, ANN, SMC or H,,) are Passive FTC because their fault accommodation

capacity were design offline.
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3.8 Manipulated Variable Analysis for the Industrial Heat Exchanger
The next figures show different experiments that were realized to analyze the manipulated variable of

the Industrial Heat Exchanger.
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Figure 42. Comparison between the manipulated variable and the system output of the MRAC scheme,

applying an additive sensor fault of 10% at 5000 seconds.

In the above figure, it can be observed that when the additive sensor fault appears, the manipulated
variables compensate the fault. If the sensor faults decreases the valve opening % of the steam and water

decreases until the fault is compensated.
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Figure 43. Comparison between the manipulated variable and the system output of the MRAC scheme,

applying an additive actuator fault of 10% at 5000 seconds.

output remained with an oscillation, even though the manipulated variables tried to compensate the fault.

In the above figure, it can be observed that when the additive actuator fault appears, the system
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Figure 44. Comparison between the manipulated variable and the system output of the MRAC-ANN-

PID scheme, applying an additive sensor fault of 10% at S000 seconds.

In the above figure, it can be observed that the process output is robust against the sensor fault. The

manipulated variables compensate the fault in order to give the desired output value.

67



80

Manipulated Variable

781 MRAC-ANN-PID -
X
o Fault il
E 740 Jﬂ\ Compensation ,
(5]
2 7l | E
O
'Z 70 bl
<
E 68 g
S e6[- 1
7]

64 ,

62 B

60 v L

0 5000 10000 15000
Time (seconds)
Manipulated Variable
45 T T
MRAC-ANN-PID

44 -
S
o
£ 431 g
=
[
=%
O 42- ]
(o)
2
S 4t 4
% Fault
§ a0l Compensation J

391 _ l/ ,

/ : :
38
0 5000 10000 15000

Time (seconds)

Temperature (°C)

36

35.5

w
a

@
P
@

®

33.5

Process Output
L MRAC-ANN-PID

7\ J

Actuator

Fault

r L

33
0

5000 10000 15000

Time (seconds)

Figure 45. Comparison between the manipulated variable and the system output of the MRAC-ANN-

PID scheme, applying an additive actuator fault of 10% at 5000 seconds.

In the above figure, it can be observed that the additive actuator fault is imperceptible in the process

output. The manipulated variables compensate the fault in order to give the desired output value.
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CHAPTER 4

COUPLED-TANK SYSTEM
PROPOSED SCHEMES,
EXPERIMENTS AND RESULTS



4 Coupled-Tank System

A second order coupled-tank system was chosen to test the Linear Parameter Varying approaches.

This coupled-tank system designed by (Apkarian, 1999) is composed of two cylindrical tanks (see Figure 46):

an upper and a lower tank (tank 1 and tank 2, respectively). In this system, a pump is used to transport water

from the water reservoir to tank 1. Then, the outlet flow of tank 1 falls to tank 2 and finally the outlet flow of

tank 2 goes to the water reservoir (Abdullah & Zribi, 2009).
3

Tank 1

Tank 2
on @

Water Reservoir

Figure 46. Coupled-tank system designed by (Apkarian, 1999).

The water levels of the tanks are measured using pressure sensors located at the bottom of each tank.

The model dynamics of these levels %,(2) and /4,(?) can be represented as (Pan et al., 2005):
. k
ha(0) = =1/ JZga@® + P/ u(®)
ho(©) = T/ V29 (® = "2/ 29\ R (©)
y(t) = hy(t)

In Table 9, the variables definition involved in the above system are explained.

Table 9. Variable Definition

Variable Definition Value

hy, h water level of tank 1 and tank 2 -

A, A cross-section area of tank 1 and tank 2 15.5179 cm?

0 a cross-section area of the outflow orifice 0.1781 em’
b2 of tank 1 and tank 2 ’
U pump voltage -
k, pump gain 33c¢m’/ Vs
G gravitational constant 981 cm/s’
0y approximation constant 2.981x 107
o3 approximation constant -3.659x 107
o approximation constant 1.73x 107
oy approximation constant -4.036 x 107
oy approximation constant 0.583

(116)

(117)

(118)
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To derive an LPV model of the above system, the following procedure is followed: First, a

polynomial fitting technique is used to approximate \/E for 0<h;<30 cm with ¢ h;, where (Forsythe at al.,

1977):
@; = a,hf + azh} + ayh? + a h; + aq

(119)

The parameters ¢, and ¢, are bounded with the following values taking into account the level

operating ranges:
01=¢,<¢;<¢ =06
0.1=¢,<¢,<¢,=06
The LPV form of the water levels dynamic equations are written as:
x = A(p)x + Bu
y=Cx

where:

o= [1] 7= ]
—0.5085¢, 0 ] B = [0.2327]

A@) =] 050850, —05085¢, c=1[0 1]

-}

(120)
(121)

(122)
(123)

(124)

(125)
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4.1 MRAC-4 Operating Points LPV Controller

To start testing the LPV model of the two tank system, a MRAC for the four extreme operating
points was developed. These operating points are: ¢,=0./ and ¢,=0.1, ¢,=0.1 and ¢,=0.6, ¢,=0.6 and
9,=0.1, 9,=0.6 and ¢,=0.6.

For the first operating point ¢,=0.1 and ¢,=0.1, the reference model is equal to the process model if

the system is operating without a fault.

0.01082

Greference model = 235 10175+0.002586 (126)
0.01082
Gprocess modet = $240.10175+0.002586 (127)
The adaptive feed forward update rule for the MRAC based on the MIT rule (6;) is:
a6, _ _ de 0.10175+0.002586
- V39,67 (s2+o.1017s+o.002586 u”) € (128)
While the adaptive feedback update rule for the MRAC based on the MIT rule (6,) is:
a6, _ __de 0.10175+0.002586
PR (52+0.1017s+0.002586 yp) (129)

The second, third and fourth operating points were calculated in a similar form. In Table 10 a
summary of the MRAC controllers based on the MIT rule developed for the four different operating points is

presented.

Table 10. Model Reference Adaptive Controller of the 4 Operating Points based on MIT rule.

Operatin . . .
pPo'nt g MRAC Equations for Each Operating Point
1
Reference Model . .
- Adaptive feed forward Adaptive feedback
Process Model update rule (6,) update rule (6,)

¢,=0.1

0.01082 ( 0.1017s +0.002586 ) ( 0.1017s + 0.002586 )
9,701 731010175 +0002586 ' \s2+0.1017s +0.002586 </¢ ¥\5230.1017s + 0.002586” ) €
¢,=0.1

0.01082 ( 0.35595 +0.01551 ) ( 0.3559s + 0.01551 )
9,=06 $7+0.35595+0.01551 Y\§2 7035595 + 001551 7¢)¢  Y\§2 1035595 + 0.0155177)
9,=0.6 0.06489 ( 035595 +0.01551 ) ( 0.3559s + 0.01551 )
9,~0.1  s?+03550s 4001551 ' \s?+03550s +0.01551 ¢/¢ V\s77 035595 + 0015517/
9,=0.6 0.06489 ( 0.61025 +0.09309 ) ( 0.6102s + 0.09309 )
0,-0.6  s2+061025+0.09309 ' \s?+06102s +0.09309 ¢/¢ V\s7T 061025 +0093097p)

With the above equations, the MRAC controller presented in Figure 47 is implemented.
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Reference Model

0.01082
5% +0.1017s +0.002586

0.01082
5% +0.3559s +0.01551

Y reference

0.06489
5% +0.35595+0.01551

0.06489
5% +0.6102s +0.09309

Process Model

0.01082
5% +0.1017s +0.002586

0.01082
5% +0.35595+0.01551

0.06489
5% +0.3559s +0.01551

. (S
0.06489 yprocesa %7
5% +0.6102s +0.09309

0.1017s +0.002586
5% +0.1017s +0.002586

0.1017s +0.002586
5% +0.1017s +0.002586

0.3559s+0.01551

_ 035595 +0.01551 _ 035595 +0.01551
—> §”+0.35595+0.01551 > 5 +0.35595 +0.01551 :

0.3559s+0.01551

0.35595+0.01551
5% +0.35595 +0.01551

57 +0.3559s +0.01551

0.6102s +0.09309

0.61025 +0.09309
5% +0.6102s +0.09309

5% +0.6102s +0.09309

Figure 47. MRAC-4 Operating Points LPV Controller based on MIT rule.

On the other hand, using the MRAC controller based on Lyapunov theory the adaptive feedforward
(4,) and the adaptive feedback (8,) update rules are:

b1/ = —yuce (130)

do
2/ 4r = v¥pe (131)

The above adaptation parameters are the same for the 4 different operation points. The

implementation of the Lyapunov based MRAC controller is presented in Figure 48.
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Reference Model

0.01082
5% +0.10175+0.002586

0.01082
57 +0.35595 +0.01551

Y reference

0.06489
5% +0.3559s +0.01551

0.06489
57 +0.6102s +0.09309

Process Model

0.01082
s°+0.1017s +0.002586

0.01082
57 +0.3559s5 +0.01551

0.06489
5% +0.35595 +0.01551

- 52 +0.61025 +0.09309
0, %
_7 v
s 92 K
X x

Figure 48. MRAC-4 Operating Points LPV Controller based on Lyapunov theory.

To select the value of y, different experiments with different y sizes were realized. In these

10) and the results are showed in Table 11 and from Figure 49 to Figure 50.

Table 11. MSE of different sizes of vy.

Y Sensor Fault  Actuator Fault

10000 0.0068 0.2513
1000 28.5951 0.2501
100 28.5983 0.2491
10 28.5983 0.2472

experiments, first a sensor fault of 23.3% was introduced at time 2500 seconds. And then, an actuator fault of

magnitude 3% was introduced at time 2500 seconds. Four different size of y were tested (10000, 1000, 100,
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Figure 49. MRAC Results testing different sizes of y for sensor faults.
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Figure 50. MRAC Results testing different sizes of y for actuator faults.
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From the above results the selected value of y to realize the following experiments was 10000,

because it has the lower MSE combination for sensor and actuator faults.

4.1.1 Experiments and Results

This section explains the different experiments realized in the Coupled-Tank System using the
MRAC 4 Operating Points LPV Controller (MRAC-40P-LPV) based on the MIT rule and based on the
Lyapunov theory. Two different types of faults were simulated in the implemented schemes: abrupt and
gradual faults. In the abrupt fault case, the whole magnitude of the fault is developed in one moment of time
and was simulated with a step function. On the other hand, gradual faults are developed during a period of
time and are implemented with a ramp function. Both types of faults, abrupt and gradual, can be implemented
in sensors (feedback), in which the properties of the process are not affected, but the sensor readings are
wrong. Also, they can be implemented in actuators (process entry) in which the process properties are not
affected either, but the process behavior can change or can be interrupted. Abrupt faults in actuators represent
for instance a pump stuck while in sensors a constant bias in measurements. A gradual fault in actuators could
be a progressive loss of electrical power in pump, and in sensors a drift in the measurements. The next figures

show the results of the experiments realized using the MRAC-40OP-LPV scheme.

MIT RULE LYAPUNOV THEORY
4.5 T T 4.5 T T T T
4 4
® * \ Fault Tolerant against - \ Fault Tolerant against
g
8 3 Sensor Fault e 3 Sensor Fault
% 25 g 25
— —
a2 =~ 2
g g
= 15 = 15
1 1+
o MRAC-40P-LPV | % MRAC-40P-LPV |
00 0.r5 ; 1.r5 ; 25 00 O_r5 ‘; 1,r5 é 25
Time (seconds) x 10° Time (seconds) x 10°

Figure 51. Comparison between the MRAC-40OP-LPV based on the MIT rule and based on Lyapunov
theory with an abrupt-sensor fault of 23.3% at the first operating point.

In Figure 51, the MRAC-40P-LPV controllers based on the MIT rule and based on the Lyapunov
theory are compared. The controller is working in the operating point ¢,=0.1 and ¢,=0.1, an abrupt-sensor

fault of magnitude 23.3% was introduced at time 5000 seconds. It can be observed, that the MRAC-40P-LPV
based on the MIT rule and based on the Lyapunov theory was fault tolerant against the fault.

76



MIT RULE LYAPUNOV THEORY

‘H H ‘\‘HW\‘ -
r
I \ Actuator

Fault

\ Actuator

Fault

IS

Tank Level (cm)
Tank Level (cm)

MRAC-40P-LPV MRAC-40P-LPV

r r r r r r
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
4 4

Time (seconds) x 10 Time (seconds) x 10

Figure 52. Comparison between the MRAC-40P-LPV based on the MIT rule and based on Lyapunov

theory with an abrupt-actuator fault of 1% at the first operating point.

In Figure 52, the MRAC-40P-LPV controllers based on the MIT rule and on the Lyapunov theory
are compared. While, the controllers are working in the operating point ¢,=0.1 and ¢,=0./, an abrupt-
actuator fault of 1% was introduced at time 5000 seconds. In this figure the MRAC-4OP-LPV based on the
MIT rule and based on Lyapunov theory methods were fault tolerant against the actuator fault where the

MRAC-40P-LPV accommodates the fault in 15000 and 12500 seconds, respectively.
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Figure 53. Comparison between the MRAC-40OP-LPV based on the MIT rule and based on Lyapunov
theory with a gradual-sensor fault of 10% at the third operating point.

In Figure 53, the MRAC-40P-LPV controllers based on the MIT rule and on the Lyapunov theory
are compared. While the controllers are working in the operating point ¢,=0.6 and ¢,=0.1, a gradual-sensor
fault of 10% was introduced at time 5000 seconds. In this figure it can be observed that the MRAC-40P-LPV

was degraded for both methodologies.

77



MIT RULE LYAPUNOV THEORY

0.9

08f , 08}

0.7 0.7 p

0.6 \ ] 06 \

o Actuator | 0slh Actuator

0.9

g 8

© ©

3 Fault >

3 3 Fault

v 04 =04

E El

= o3 E o3
0.2 bt 0.2
01r MRAC-40P-LPV ] eir MRAC-40P-LPV ]
00 0.r5 ; 1.r5 é 25 OO 0.r5 1’ 1-’5 é 25

Time (seconds) x 10° Time (seconds) x 10°

Figure 54. Comparison between the MRAC-40P-LPV based on the MIT rule and based on Lyapunov
theory with a gradual-actuator fault of 1% at the third operating point.

In Figure 54, the MRAC-40P-LPV controllers based on MIT rule and on Lyapunov theory are
compared. While the controllers are operating in the operating point ¢,=0.6 and ¢,=0.1, a gradual-actuator
fault of 1% was introduced at time 5000 seconds. In this figure, it can be observed that the MRAC-40OP-LPV
based on Lyapunov theory was fault tolerant and could accommodate the fault in approximately 200 seconds.
The MRAC-40P-LPV based on MIT rule presented oscillations in the system after the occurrence of the

actuator fault.
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4.2 MRAC-Artificial Neural Network 4 Operating Points LPV Controller

Four Artificial Neural Networks controllers were added to the MRAC- 4 Operating Points LPV
Controller. To create and train each Artificial Neural Network controller, the original process inputs were
introduced as well as the desired outputs (no system fault case). The created ANN is a two-layer feedforward
Artificial Neural Network with 50 sigmoid hidden neurons and a linear output neuron. To train the network
the Levenberg-Maquard backpropagation algorithm was used. This training algorithm is a combination of
Gauss-Newton and gradient descent methods which integrates the benefits of the global and local

convergence properties from the gradient descent and Gauss-Newton methods, respectively (Ye, 2003).

The implementation of the MRAC-Artificial Neural Network 4 Operating Points LPV Controller
based on MIT rule is presented in Figure 55:

Reference Model

0.01082
s +0.10175+0.002586

0.01082
5% +0.3559s +0.01551

Yreference

0.06489
5% +0.35595 +0.01551

0.06489
57 +0.6102s +0.09309

Process Model

Controller 0.01082
) 57 +0.10175 +0.002586
ANN
0.01082
5% +0.35595 +0.01551
u, ANN 2
0.06489
i ANN 3 5% +0.35595 +0.01551 i
+ e
—t s 0.06489 M%—
ANN 4 57 +0.61025 +0.09309
0.1017s5 +0.002586 0.1017s +0.002586
5% +0.1017s +0.002586 5% +0.1017s +0.002586
0.35595+0.01551 0.3559s+0.01551
— 52 +0.35595+0.01551 52 +0.35595+0.01551 <
0.35595+0.01551 0.3559s+0.01551

5% +0.35595 +0.01551 5% +0.3559s +0.01551

0.6102s +0.09309

0.6102s +0.09309
5% +0.6102s +0.09309

5% +0.6102s +0.09309

Figure 55. MRAC-Artificial Neural Network 4 Operating Points LPV Controller based on MIT rule.

In addition, the implementation of the MRAC-Neural Network 4 Operating Points LPV Controller

based on Lyapunov theory is shown in Figure 56.
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Figure 56. MRAC-Artificial Neural Network 4 Operating Points LPV Controller based on Lyapunov

theory.

4.2.1

This section explains the different experiments realized in the Coupled-Tank System using the

Experiments and Results

MRAC-Artificial Neural Network 4 Operating Points LPV Controller (MRAC-ANN4OP-LPV) based on the

MIT rule and based on the Lyapunov theory. Two different types of faults were simulated in the implemented

schemes: abrupt and gradual faults. The next figures show the results of the experiments realized using this

scheme.
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Figure 57. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on

Lyapunov theory with an abrupt-sensor fault of 23.3% at the first operating point.
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In Figure 57, the MRAC-ANN4OP-LPV controllers based on the MIT rule and based on the

Lyapunov theory are compared. The controller is working in the operating point ¢ ,=0.1 and ¢,=0.1, an

abrupt-sensor fault of 23.3% was introduced at time 5000 seconds. It can be observed, that the MRAC-

ANNA4OP-LPV based on the MIT rule and based on the Lyapunov theory were robust against the fault.
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Figure 58. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on

Lyapunov theory with an abrupt-actuator fault of 1% at the first operating point.

In Figure 58, the MRAC-ANN4OP-LPV controllers based on the MIT rule and on the Lyapunov

theory are compared. While, the controllers are working in the operating point ¢,=0./ and ¢,=0.1, an abrupt-

actuator fault of 1% was introduced at time 5000 seconds. In this figure the MRAC-ANN4OP-LPV based on

the MIT rule and based on Lyapunov theory could not accommodate the fault completely because it can be

observed that the system remained with certain oscillations.
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Figure 59. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on

Lyapunov theory with a gradual-sensor fault of 10% at the third operating point.

In Figure 59, the MRAC-ANN4OP-LPV controllers based on the MIT rule and on the Lyapunov

theory are compared. While the controllers are working in the operating point ¢,=0.6 and ¢,=0.1, a gradual-

81



sensor fault of 10% was introduced at time 5000 seconds. In this figure it can be observed that the MRAC-

ANN4OP-LPV based on MIT rule and based on Lyapunov theory were robust against the fault.

MIT RULE

0.9 T T

0. 4

o H‘ﬂﬂ“WWkMWUM“JNNUWYMMWNWMWAWMNMWWWHwN
o ‘“\ ‘\‘H‘HHHHH\\H AN
g 05 Actuator '
j 0.4 Fault
=1
[i? 0.3

0.2

o1 MRAC-ANN4OP-LPV

o
o

Time (seconds) x 10"

r r
0.5 1 1.5 2 25

Tank Level (cm)

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

LYAPUNOV THEORY

\ Actuator

Fault

MRAC-ANN4OP-LPV |

r r
0.5 1 1.5 2 25

4

Time (seconds) x 10

Figure 60. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on

Lyapunov theory with a gradual-actuator fault of 1% at the third operating point.

In Figure 60, the MRAC-ANN4OP-LPV controllers based on MIT rule and on Lyapunov theory are

compared. While the controllers are operating in the operating point ¢,=0.6 and ¢,=0.1, a gradual-actuator

fault of 1% was introduced at time 5000 seconds. In this figure, it can be observed that the MRAC-ANN4OP-

LPV based on MIT rule and based on Lyapunov theory presented oscillations in the system after the

occurrence of the actuator fault.
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4.3 MRAC-H, 4 Operating Points LPV Controller

A H,, controller was designed for each of the 4 operating points. The H,, control proposed in this
work was designed by using the loop shaping method and using the following steps: First, the worst case of
system faults were simulated and identified in the form of a Laplace function. Second, these functions are
compared against the non-faulty process. Third, a loop shaping control synthesis is performed to calculate an
optimal H,, controller for the Laplace fault-functions. This controller shapes the sigma plot of the Laplace
fault-function and obtains the desired loop shaping with a precision parameter called GAM (e.g. if GAM
should be > 1 with GAM = 1 being a perfect match). Figure 61 shows the implementation of the MRAC-H,, 4
Operating Points LPV Controller based on the MIT rule.
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Figure 61. MRAC-H,, 4 Operating Points LPV Controller based on MIT rule.

The implementation of the MRAC-H,, 4 Operating Points LPV Controller based on Lyapunov theory
is shown in Figure 62.
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Figure 62. MRAC-H,, 4 Operating Points LPV Controller based on Lyapunov theory.

4.3.1 Experiments and Results

This section explains the different experiments realized in the Coupled-Tank System using the
MRAC-H,, 4 Operating Points LPV Controller (MRAC- H,40P-LPV) based on the MIT rule and based on
the Lyapunov theory. Two different types of faults were simulated in the implemented schemes: abrupt and

gradual faults. The next figures show the results of the experiments realized using this scheme.
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Figure 63. Comparison between the MRAC-H,40OP-LPV based on the MIT rule and based on
Lyapunov theory with an abrupt-sensor fault of 23.3% at the first operating point.
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In Figure 63, the MRAC-H,,4OP-LPV controllers based on the MIT rule and based on the Lyapunov

theory are compared. The controller is working in the operating point ¢,=0.1 and ¢,=0.1, an abrupt-sensor

fault of 23.3% was introduced at time 5000 seconds. It can be observed, that the MRAC-H,,4OP-LPV based

on the MIT rule and based on the Lyapunov theory were fault tolerant against the fault.
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Figure 64. Comparison between the MRAC-H.40OP-LPV based on the MIT rule and based on

Lyapunov theory with an abrupt-actuator fault of 1% at the first operating point.

In Figure 64, the MRAC-H_,4OP-LPV controllers based on the MIT rule and on the Lyapunov theory

are compared. While, the controllers are working in the operating point ¢,=0./ and ¢,=0./, an abrupt-

actuator fault of 1% was introduced at time 5000 seconds. In this figure the MRAC-H,,4OP-LPV based on

based on the MIT rule and based on Lyapunov theory were fault tolerant and was able to accommodate the

fault in 2000 to 2500 seconds.
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Figure 65. Comparison between the MRAC-H,40OP-LPV based on the MIT rule and based on

Lyapunov theory with a gradual-sensor fault of 10% at the third operating point.

In Figure 65, the MRAC-H,4OP-LPV controllers based on the MIT rule and on the Lyapunov theory

are compared. While the controllers are working in the operating point ¢,=0.6 and ¢,=0.1, a gradual-sensor
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fault of 10% was introduced at time 5000 seconds. In this figure it can be observed that the MRAC-H,.4OP-
LPV based on MIT rule and based on Lyapunov theory were fault tolerant against the fault.
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Figure 66. Comparison between the MRAC-H,40OP-LPV based on the MIT rule and based on
Lyapunov theory with a gradual-actuator fault of 1% at the third operating point.

In Figure 66, the MRAC-H.,4OP-LPV controllers based on MIT rule and on Lyapunov theory are
compared. While the controllers are operating in the operating point ¢,=0.6 and ¢,=0.1, a gradual-actuator
fault of 1% was introduced at time 5000 seconds. In this figure, it can be observed that the MRAC-H,40P-
LPV MIT rule scheme was fault tolerant and was able to accommodate the fault in 4000 seconds and the

MRAC-H,,40P-LPV based on Lyapunov theory scheme was also fault tolerant and it accommodates the fault
in 2500 seconds.

4.3.2 Comparison between MRAC-40P-LPV, MRAC-ANN4OP-LPV and the MRAC-
H.40P-LPYV based on MIT and based on Lyapunov theory

For each of the three proposed schemes based on the MIT rule and on the Lyapunov theory: MRAC
4 Operating Points LPV Controller (MRAC-40P-LPV), MRAC-Artificial Neural Network 4 Operating Points
LPV Controller (MRAC-ANN4OP-LPV) and MRAC-H,, 4 Operating Points LPV Controller (MRAC-
H,.40P-LPV) the summary of the results are explained in Table 12 and Table 13. These results explain the
range in which the methodologies are robust, fault tolerant or degraded against the fault. In addition Figure 67

and Figure 68 show a summary of these controllers.
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Table 12. Results of experiments of the MRAC-4OP-LPV, MRAC-ANN4OP-LPV and MRAC-H_ 40P-

LPV methodologies based on MIT rule.

Approach Sensor Faults Actuator Faults
Abrupt Gradual Abrupt Gradual
Process Model 1
f<15% — R f<+/-15% —R 0<f<10%— FT +/-0<f<+-10%—
MRAC-40P-LPV 15% <f<26%— FT  +/- 15% <f < +/-26%— FT £>10% — D FT
£>26%— D £>+/-26% — D £>+/-10% — D
MRAC-ANN4OP- R R f>0—>D f>0—>D
LPV
£<17% —> R f<+/-17% — R 0<f<2%—>FT +-0<f<t-2—>FT
MRAC-H..40P — 17% < < 53%— FT  +/- 17% <f < +/-53%— FT f>2%—D f>+-2 5D
LPV £>53% — D £>+4/-53% — D
Process Model 2
f<16% — R f<+/-16% — R 0<f<1%— FT  +-0<f<+-1%—
MRAC-40OP-LPV  16% <f<27%— FT  +/- 16% <f<+/-27%—FT £>1%—D FT
£>27%— D £>+/-27% — D £>+/-1% —D
MRAC-ANN4OP- R R f>0—>D f>0—>D
LPV
f<20% — R f<+/-20% — R 0<f<2%— FT +/-0 < f <+/- 2%—
MRAC-H..40P — 20% < £<52%— FT  +/- 20% <f<+/-52%— FT £>2% —>D FT
LPV £>52% — D £>+4/-52% — D £>4/-2% — D
Process Model 3
£f<2% — R f<+-2% —>R 0<f<2%— FT +-0 < f <+/- 2%—
MRAC-40P-LPV 2% <f<25%— FT  +/-0.52 <f<+/-2%— FT £>2% —D FT
£>2.5%— D £>+/-2.5% —D £>+/-2% —D
MRAC-ANN4OP- R R f>0-D f>0—>D
LPV
f<10% — R f<+/-10% — R 0<f<2%—FT +/-0 < f <+/- 2%—
MRAC-HAOP = 0 b 6% FT 4/~ 10% <f < +/-16%— FT £>2%—D FT
LPV £>16% — D £>+/-16% — D f>+-2% — D
Process Model 4
£f<2% — R f<+-2% —>R 0<f<2%—FT  +-0<f<H-2%—
MRAC-40P-LPV 2% <f<2.5%— FT  +/-2% <f<+/-2.5%— FT £>2%—D FT
£>25% —>D £>+/-2.5% — D £>+/-2% —D
MRAC-ANN4OP- R R f>0—>D f>0—>D
LPV
f<7% — R f<+/-7% — R 0<f<2%—FT  +-0<f<+-2%—
MRAC-H.40P — 7% < £<16%— FT  +/- 7% <f < +/-16%— FT £>2% —D FT
LPV £>16% — D f>+/-16% — D f>+-2% — D

R=Robust, FT = Fault Tolerant, D = Degraded
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Table 13. Results of experiments of the MRAC-4OP-LPV, MRAC-ANN4OP-LPV and MRAC-H, 40P-

LPV methodologies based on Lyapunov theory.

Approach Sensor Faults Actuator Faults
Abrupt Gradual Abrupt Gradual
Process Model 1
f<18% — R f<+/-18% — R 0<f<2.5%— FT +/-0<f<+/-2.5%—
18% < f<26% — +/- 18% < f<+/-26% — f>2.5%—D FT
MRAC-40P-LPY FT FT £>+/-2.5% — D
f>26% — D f>+/-26% — D
MRAC-ANN4OP- R R f>0—-D f>0—-D
LPV
f<20% — R f<+/-20% — R 0<f<2%—FT +-0<f<+/-2%—
MRAC- H, 40P — 20% < f<53%— +/-20% < f<+/-53% — f>2%—D FT
LPV FT FT f>+/-2% —D
f>53% —D f>+/-53% — D
Process Model 2
f<18% — R f<+/-18%— R 0<f<3%—FT +/-0 < f<+/-3%—
18% < f<27%— +/- 18% <f < +/-27%—FT f>3%—D FT
MRAC-40P-LPV FT £>+/-27% —D f>+- 3% —D
£>27% — D
MRAC-ANN4OP- R R f>0 S—>S]t)eeng;raded f>0 ;:?eeiraded
LPV y Y
f<22% — R f<+/-22% — R 0<f<2%—FT +-0 < f<+/-2%—
MRAC- H_40P — 22% < £f<50%— +/- 22% <f < +/-50%— FT f>2%—D FT
LPV FT f>+/-50%— D f>+/-2% —D
f>50% — D
Process Model 3
f<1.8%— R f<+/-1.8% —R 0<f<6%— FT +/-0 < f <+/-6%—
1.8%< £ <2.4%— +/-1.8%<f < +/-2.4%— FT f>6% — D FT
MRAC-40P-LPV FT f>+/-2.4% — D f>+/- 6% —D
£f>2.4% —D
MRAC-ANN4OP- R R f>0—-D f>0—-D
LPV
f<8.5% — R f<+/-8.5% — R 0<f<05—>FT +/-0 < f<+/-2%—
MRAC- H_40P — 8.5%< f<11%— +/- 8.5%<f<+/-11%— FT f>05—D FT
LPV FT f>+/-11%— D f>+/-2% — D
f>11% —D
Process Model 4
f<1.8%— R f<+/-1.8% —R 0<f<6%— FT +-0 < f<+/- 6%—
1.8%< f<2.4%— +/-1.8%<f < +/-2.4%— FT f>6% — D FT
MRAC-40P-LPY FT f>+/-2.4% — D f>+- 6% —D
£f>2.4% —D
MRAC-ANN4OP- R R f>0—-D f>0—-D
LPV
f<7.5% — R f<+/-7.5% — R 0<f<2%—FT +/-0 < f<t/- 2%—
MRAC- H, 40P — 7.5% <f<13%— +-7.5%<f <+/-13%— FT f>2% —D FT
LPV FT f>+/-13% — D f>+/-2% —D
f>13% — D

R=Robust, FT = Fault Tolerant, D = Degraded
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In addition, the Mean Square Error (MSE) was calculated for all the experiments. The results are

shown in Table 14. It is important to mention that the results were the same for abrupt and gradual faults.

Table 14. MSE Results of the comparison between the MRAC-4OP-LPV, MRAC-ANN4OP-LPV and
MRAC-H,40P-LPV based on MIT rule and based on Lyapunov theory.

Process Model 1

MRAC MIT based design

MRAC Lyapunov based design

Methodology Sensor Faults Actuator Faults Sensor Faults Actuator Faults
(23.3%) (1%) (23.3%) (1%)
MRAC-40P-LPV 0.00272417 0.10804153 0.000780457 0.084395641
MRAC-ANN4OP-LPV 0.009755478 0.047977847 0.006817029 0.043201383
MRAC-H,40P-LPV 0.00026123 0.035337832 5.98686E-05 0.029824218
Process Model 3
MRAC MIT based design MRAC Lyapunov based design
Methodology Sensor Faults Actuator Faults Sensor Faults Actuator Faults
(23.3%) (1%) (magnitude 3) (1%)
MRAC-40P-LPV 1.554861422 8.14169E-05 1.554861325 6.68611E-05
MRAC-ANN4OP-LPV 6.50112E-05 0.00314155 7.72308E-05 0.003103844
MRAC-H,40P-LPV 7.90349E-06 0.000183443 5.34546E-06 0.000163684

In all the results of Table 14, it can be seen that the MSE from the schemes using the MRAC based

on the Lyapunov theory is lower than the schemes using the MRAC based on MIT, because the Lyapunov

theory adds stability to the closed-loop system.
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4.4 MRAC-LPV Controller
Now, taking the above results as a pre-test, an LPV Model Reference Adaptive Controller for the
LPV system was designed (MRAC-LPV). First, the state-space LPV model was transformed to a continuous

space model:

G(S)Lpv_moder = C(sI —A)'B +D (132)

-1
G(S)pv.moaer = [0 1] ([(S) o] - [_0(_)!'550%855(21 _0.5(?85 ‘Pz]) %2+ 101 a33)
G(S)pv_moder = (s+0.50::<23)1(55i—(g.15085 1) (134)
G(S)Lpv_modet = 52+(0.5085<p15+(())'.15(:)?315522i)1+0.258572 0102 (35)
G(S)Lpv_moder = 52+0.5085(<p(:i()<;321)ssi(g.1258572 0102 (136)

Then, the reference model is:

G(S)Reference model = o (137)

52+0.5085(¢p1+ ¢2)s+0.258572 @1 ¢,

As in the previous cases, this reference model is the same as the process model when the system has

no faults.

0.108158 ¢
52+40.5085(@1+ ¢2)s+0.258572 @1 ¢,

G(S)Process_model = (138)

The adaptive feed forward update rule (6;) and the adaptive feedback update rule (6,) for the
MRAC-LPV based on MIT rule are:

ae de 0.5085(¢1+ (2)s+0.258572
1_ e = — ( Q1+ P2 9192 c) e (139)
dt 96, $2+0.5085(p1+ ¢2)s+0.258572 @1 @2
do de 0.5085(1+ 2)s+0.258572
2=y e = ( Q1+ @2 Q192 ) (140)
dt 36, 5240.5085(p1+ 2)s+0.258572 @15~ P

Finally, the MRAC-LPV system based on the MIT rule is represented in Figure 69:
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Figure 69. MRAC-LPYV system based on MIT rule.
The MRAC-LPV based on Lyapunov theory is shown in Figure 70.
Reference Model
0.1081 SSglJl Yreference
52 +0.5085(¢p, + @, )5 +0.258572(p, 0, )

Process Model

+ @, He 0.108158, Yprocess |+ e

52 40.5085(¢p, + ¢, )s +0.258572(p,0, )

Figure 70. MRAC-LPYV system based on Lyapunov theory.

To select the value of y, different experiments with different y sizes were realized. In these
experiments a sensor fault of 3.3% was introduced at time 1000 seconds and an actuator fault of 3% was
introduced at time 2000 seconds. In addition, a change in the operating point was applied at time 1500
seconds. In summary, four different size of y were tested (1000, 100, 10, 1) and the results are showed in

Figure 71 and Table 15.
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Figure 71. MRAC-LPYV Results testing different sizes of vy.

Table 15. MSE of the MRAC-LPYV results of different sizes of y.

Sensor Actuator
v Fault Fault Total MSE
1000 0.0748 0.0398 0.0128
100 0.0714 0.0388 0.0122
10 0.0726 0.0393 0.0124
1 0.0748 0.0398 0.0128

From Figure 71 and Table 15 the selected value of y to realize the following experiments was 100,

because it has the lower MSE in sensor and actuator faults.

4.4.1 Experiments and Results

This section explains the different experiments realized in the Coupled-Tank System using the
MRAC-LPV Controller (MRAC-LPV) based on the MIT rule and based on the Lyapunov theory. Two
different types of faults were simulated in the implemented schemes: abrupt and gradual faults. The next

figures show the results of the experiments realized using this scheme.
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Figure 72. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the
Lyapunov theory with an abrupt-sensor fault of magnitude 3.3% and an abrupt-actuator fault of

magnitude 20% for the operating points ¢,=0.3 and ¢,=0.5.

In Figure 72, the MRAC-LPV Controllers based on MIT rule and on Lyapunov theory are compared.
While both controllers are working in the operating point ¢,=0.3 and ¢,=0.5, an abrupt-sensor fault of 3.3%
was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time 15000
seconds. In addition, a change in the operating point was performed at time 10000 seconds. It can be observed

that the MRAC-LPV scheme was fault tolerant for the sensor and the actuator fault and could tolerate the

change in the operation points for both methodologies.
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Figure 73. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the

Lyapunov theory with an abrupt-sensor fault of magnitude 160% and an abrupt-actuator fault of

magnitude 20% for the operating points ¢,=0.3 and ¢,=0.5.

In Figure 73, the MRAC-LPV Controllers based on MIT rule and on Lyapunov theory are compared.
While both controllers are working in the operating point ¢,=0.3 and ¢,=0.5, an abrupt-sensor fault of 160%

was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time 15000
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seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this figure, the
MRAC-LPV scheme became degraded after the occurrence of the sensor fault, and was able to accommodate

the fault after 10000 seconds for both methodologies (MIT rule and Lyapunov theory).
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Figure 74. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the

Lyapunov theory with a gradual-sensor fault of 3.3% and a gradual-actuator fault of 20% for the

operating points ¢;=0.6 and ¢,=0.6.

In Figure 74, the MRAC-LPV Controllers based on MIT rule and on Lyapunov theory are compared.
While both controllers are working in the operating point ¢,=0.6 and ¢,=0.6, a gradual-sensor fault of 3.3%
was introduced in time 5000 seconds and a gradual-actuator fault of 20% was introduced at time 15000
seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this figure, it
can be observed that the MRAC-LPV scheme was fault tolerant for the sensor and the actuator fault and could

tolerate the change in the operation points for both methodologies.
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Figure 75. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the

Lyapunov theory with a gradual-sensor fault of 160% and a gradual-actuator fault of 20% for the

operating points ¢;=0.6 and ¢,=0.6.
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In Figure 75, the MRAC-LPV Controller based on the MIT rule and on the Lyapunov theory are
compared. While both controllers are working in the operating point ¢,=0.6 and ¢,=0.6, a gradual-sensor
fault of 160% was introduced in time 5000 seconds and a gradual-actuator fault of 20% was introduced at
time 15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this
figure it can be observed that the MRAC-LPV was fault tolerant against the sensor and actuator fault and

could tolerate the change in the operating point for both methodologies (MIT rule and Lyapunov theory).
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4.5 H. Gain Scheduling -MRAC LPV Controller

In addition a H, Gain Scheduling Control was developed. The H,, Gain Scheduling Control is
applicable to affine parameter-dependent plants, where the dependent parameter (p(t)) is a time-varying
vector of physical parameters (velocity, set point, etc.). And the matrices of the system A, B, C and D are
affine functions of p(t). The dependent parameters need to be measured in real time. For this reason a
controller that incorporates such measurements of the parameters to adjust the operating condition to these
changes must be designed (Packard, 1994). This type of controller is named scheduling control.

Therefore, if the parameter vector p(t) takes values in a box with corners {II;}_, (N = 2™), the plant

system matrix:

_ (A®) B)
5= (ca) 06) (40

ranges in a matrix polytope with vertices S(II;). Particularly, given any convex decomposition:
p(t) = ai11; + - + aylly, a; =0, Nia=1 (142)
of p over the corners of the parameter box, the system matrix S(p) is presented by
S) = a;S(Iy) + - + ayS(Ily) (143)
The above implies to seek for parameter dependent controllers with equations

{ =Ax(P){ + Bx(p)y
Ko, o s b

whose vertex property is: Given the convex decomposition p(t) = ¥V, a;II; of a current parameter value

(144)

p(t), the values of Ak (p), Bx(p), ... are derived from the values of Ag(I1;), Bg (I1;), ... at the corners of the

parameter box by

(66 opo) ==t (G i)

The above means that the controller state-space matrices in a specific operating point p(t) are

(145)

obtained by convex interpolation of the LTI vertex controllers

%= (cimy oram)

That generates a smooth scheduling of the controller matrices by the parameter measurements p(t).

(146)

The designed gain scheduled controller K (., p) must satisfy the vertex property and the closed-loop
system should be stable for all admissible parameters trajectories p(t) (Apkarian & Gahinet, 1995; Apkarian
et al., 1995, Becker & Packard, 1994; Packard, 1994).

In order to design the H,, Gain Scheduling LPV Controller, two weighting functions were established
(W; and W,). To obtain W, the following procedure is used: First, four plants were established using the
extreme operation points. Also, a nominal plant was obtained using the average of the operation points (see

Table 16)
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Table 16. Different Plants at the four and nominal operating points.

Plant Operating Plants
Number Points Transfer Functions
=0.1
Plant 1 i 0.01082
9,=0.1 sZ+0.1017s + 0.002586
¢,=0.1
Plant 2 0.01082
9,=0.6 s2 4+ 0.3559s + 0.01551
p,=0.6
Plant 3 1 0.06489
(p2=0,1 s2+0.3559s + 0.01551
p,=0.6
Plant 4 1 0.06489

0,=0.6 sZ+ 0.6102s + 0.09309

9,=0.35 0.06489

Nominal Plant
9,=0.35 s24+0.6102s + 0.09309

Then, the multiplicative uncertainty for each plant is calculated with the following equation:

__ (Plant i-Nominal Plant)

Wmi -

(147)

Nominal Plant

Table 17 shows the resulting Multiplicative uncertainty of each Plant.

Table 17. Multiplicative Uncertainty of each Plant.

Plant Operating Multiplicative Uncertainty

Number Points
»,=0.1
Plant 1 W —0.02703s* — 0.009618s% — 0.0006107s2 + 8.717e =55 + 7.752¢ =6
9,=0.1 mL = T0.037855% + 0.017325% + 0.00266752 + 0.0001567s + 3.1e-6
¢,=0.1
Plant 2 —0.02703s* — 0.01924s3% — 0.0045245% — 0.00039165 — 7.74e=5
ant 9,=0.6 Wz = 55378554 3 2 -5
. s* + 0.0269453 + 0.00658s2 + 0.00063565 + 1.85%
Plant 3 9,=0.6 _0.02704s* + 0.01925s° + 0.0057495% + 0.0008272s + 4.649¢ "
0,=0.1 ™3 = 70.037855% + 0.02694s3 + 0.00658s2 + 0.0006356s + 1.859¢ 5
Plant 4 9,=0.6 W 0.02704s%* + 0.00962253 — 0.0006126s2 — 0.0005227s — 4.65¢ 5
0,=0.6 m4 = 70.03785s% + 0.0365753 + 0.01294s2 + 0.001985s + 0.0001116
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The next step is to plot a Bode diagram of the above uncertainties (see Figure 76).

Magnitude (dB)

Figure 76. Bode Diagram of the 4 Plants Multiplicative Uncertainties.

Bode Diagram
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With the above Bode diagram, a multiplicative uncertainty function that includes W,,;, W,,,, W,; and

W4 1s obtained:

Magnitude (dB)

Wl = Wm

¢ =

0.755%40.33 53+0.02 52-0.00882 s
$%4+0.568837 s3+0.091878 s2+0.003019 s

Bode Diagram

Tt T T T TR T T T T T T TTE

T T TTT

10" 10
Frequency (rad/sec)

Figure 77. Bode Diagram of all Multiplicative Uncertainties.

(148)
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To obtain W,, the next procedure is applied. The additive uncertainty calculus for each plant is
calculated with:

W,; = Plant i — Nominal Plant (149)
Table 18 shows the resulting Additive uncertainty of each Plant.

Table 18. Additive Uncertainty of each Plant.

Plant Operating Additive Uncertainty

Number Points
9,=0.1
Plant 1 —0.02703s2 + 1.493e 65 + 0.0002448
ant @ :01 Wal = 4 3 2 _5
2 s* + 0.457653 + 0.0704552 + 0.004141s + 8.19¢
p,=0.1
—0.0270352 — 0.00962s — 0.0002444
Plant 2 ) =0.6 WaZ == 3 >
2 s*+0.7118 53 + 0.1738 52 + 0.01679 s + 0.0004912
Plant 3 9,=0.6 W 0.02704s2 + 0.009624s + 0.001468
0,=0.1 @3 = 54 1 0.7118 53 + 0.1738 52 + 0.01679 s + 0.0004912
a0 W 0.02704s2 — 1.719¢~%s — 0.001468
0,=0.6 @ = 4 1 0.9661 53 + 0.3419 52 + 0.05246 s + 0.002948

The next step is to plot a Bode diagram of the above uncertainties (see Figure 78).

40 -

Magnitude (dB)

-50 —~

-60 |~

70 -

-80 r r rrrrrerf r r rrrrrrf r r rrrrrerf r r e rrrrg
-3 -2 -1 0 1
10 10 10 10 10

Frequency (rad/sec)

Figure 78. Bode Diagram of the 4 Plants Additive Uncertainties.
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Finally, with the above bode diagram an additive uncertainty function that includes W,;, W,,, W3
and W,, is obtained (see Figure 79):

0.02839 5%40.01249 53+0.000757 s2-0.0003338 s
5640.9247 55+0.326 s4+0.05373 53+0.003984 s2+9.561e 55

Wy =Wy =

(150)

Bode Diagram
20 T TTTTTEE T T T T LI

— Wa
N — Wa2 [

\\ ——— Wa3

20~

30+~

Magnitude (dB)

50 +~

-60

-70 —

-80 c  c c coccerk f r rorcrecE r ot rororcecE c r o rorrrce
-3 -2 -1 0 1
10 10 10 10 10

Frequency (rad/sec)

Figure 79. Bode Diagram of all Additive Uncertainties.

After calculating W, and W, the following procedure implemented in Matlab® was realized:
- First, the value of the learning rate and the specific desired operation points were established:

%LPV-MRAC-Hinfgs Controller
%Input Data

gamma=100;

phil=.3;

phi2=.5;

%.1<=phil<=.6

%.1<=phi2<=.6

- Second, W, and W,have to be transformed into a Linear Time Invariant (LTI) system:

%Filter Shape W1y W2
n1=[0.02839 0.01249 0.000757 -0.0003338];
d1=[10.9247 0.326 0.05373 0.003984 9.561e-005];
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wl=ltisys('tf’,nl,d1);

n2=[0.75 0.33 0.02 -0.00882];
d2=[10.568837 0.091878 0.003019];
w2=ltisys('tf',n2,d2);

Third, the parameter range has to be specified in order to obtain the variation range of values of the
time-varying parameters or uncertain vector. In the considered case study, there are two parameters
varying within the operating point. This means that the range of values of this parameters form a
multi-dimensional box is given by

%Specify the range of parameter values (parameter box)

Philmin=.1; Philmax=.6;

Phi2min=.1; Phi2max=.6;

pv=pvec('box', [Philmin Philmax; Phi2min Phi2max]);

Fourth, the state space LPV model is transformed into an LTI system and then the parameter varying
system is specified as follows:

%Specify the parameter-dependent model with PSYS

sO=lItisys([0 0;0 01,[0.2127;01,[0 11, [0]);

s1=ltisys([-.5085 0;0.5085 0],[0;0],[0 01, [0],0); %Phil al component

s2=ltisys([0 0;0 -0.5085],[0;01,[0 0], [0],0); %Phi2 al component

pdG=psys(pv,[s0 sl s2]);

Fifth, the loop shaping structure of the LPV system is specified, where r is the exogenous input, y=K
represents the outputs generated by the control loop, K:7-y specify the controller and its inputs, G:K
represents that the input of G is the output of K and pdG is the system matrix.
% Specify the loop-shaping control structure with SCONNECT
[pdP,r]=sconnect('r",'y=K",'K:r-y','G:K',pdG);

Controller Process RSN

Figure 80. Loop Shaping Structure.

Sixth, the augmented plant is formed.
% Augment with the shaping filters

Paug=smult(pdP,sdiag(w1,w2));
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%Paug=smult(pdP);

- Seventh, the H,, Gain Scheduling Controller is calculated using hinfgs function. This function
calculates and H,, gain scheduled control for parameter varying systems with an affine dependence.
The parameters are assumed to be measured in real time. To calculate the controller, the function
implements the quadratic H,, performance approach where Paug is the parameter varying plant, » is a
vector specifying the dimensions of D22, /e-2 is the target value for gopt, 1e-4 is the desired relative
accuracy of the optimal performance of gopt, pdk is the polytopic representation of the gain-
scheduled controller and gopt is the optimal performance of the controller. Also, the psinfo function
gives the type of system (affine or polytopic), the number K of system matrices involved in its
definition, the number of states, inputs and outputs, respectively.

% LMI-BASED SYNTHESIS OF THE LPV CONTROLLER
% Minimization of gamma for the loop-shaping criterion
[gopt,pdK]=hinfgs(Paug,r,1e-2,1e-4);

Y%typ= affine or polytopic, K=# of K system matrices

%NS=# states, NI=# inputs and NO=#outputs
[typ,K,NS,NI,NOJ=psinfo(pdK);

- Eighth, the desired operating points are specifying in order to return the convex decomposition ¢ of p
over the set vertx of box corners.
%corresponding state-space parameters of the controller given any
%p of the parameter vector p(t)
pl=phil;
p2=phi2;
p=[p1;p2];
[c,vertx]=polydec(pv,p);
%NOTE: p has to be inside the range of phil y phi2: i.e. [.1 .5;.2.5]
% [Philmin Philmax; Phi2min Phi2max]

- Ninth, the evaluation of the desired operating points in the polytopic representation of the gain-
scheduled controller is realized. From this evaluation the state space matrices are extracted and then
transformed in to a continuous space system num_controller and den_controller whose values are
sent online to the simulation in SIMULINK®.

%Controller calculus

Kp = psinfo(pdK,'eval',c);
[a,b,c,d,e]=lItiss(Kp);
A=a;

B=b;
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C=c;

D=d;

%Transformation from ss to tf

[b,a] = ss2tf(A,B,C,D);
num_controller=b

den_controller=a

modelName = 'MRAC LPV";
modelName2 = 'MRAC Hinfgs LPV';
open_system(modelName)

open_system(modelName?2)

The H., Gain Scheduling — MRAC LPV Controller based on MIT rule is represented in Figure 81.

Reference Model

0.108158¢, Yreference
5% +0.5085(¢, + @, )s +0.258572(,0,)

H,, Gain Scheduling Controller

num _ controller

den _ controller

Process Model

+
(¢

0.108158¢, Yprocess
52 +0.5085(¢p, + ¢, )s +0.258572(p,0,)

0.5085(p, + ¢, )s +0.258572(p0,)
52 +0.5085(¢p, + ¢, )s +0.258572(¢,0,)

0.5085(¢p, + ¢, )s +0.258572(p,0,)
52+0.5085(¢p, + @, )5 +0.258572(p,0,)

Figure 81. H,, Gain Scheluding - MRAC LPV Controller based on MIT rule.

Finally, the H,, Gain Scheduling — MRAC LPV Controller based on Lyapunov theory is shown in
Figure 82.
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Reference Model

0.108158¢, Yreference
. . 57 +0.5085(¢, + ¢, )s +0.258572(p,0,
H_, Gain Scheduling Controller 01+ 0:)s (002)

num _ controller

den _controller

Process Model

0.108158¢,
52 +0.5085(¢, + ¢, )s +0.258572(,0,)

Yprocess

Figure 82. H,, Gain Scheluding - MRAC LPV Controller based on Lyapunov theory.

4.5.1 Experiments and Results

This section explains the different experiments realized in the Coupled-Tank System using the
MRAC-H,,GS-LPV Controller (MRAC-H,,GS-LPV) based on the MIT rule and based on the Lyapunov
theory. Two different types of faults were simulated in the implemented schemes: abrupt and gradual faults.

The next figures show the results of the experiments realized using this scheme.

MIT RULE LYAPUNOV THEORY
MRAC-H, GS-LPV | MRAC-H, GS-LPV |

25F 7\ A 250 7\
2 Fault Tolerant ’ Fault Tolerant

against Actuator against Actuator
Fault Fault

Tank Level (cm)
Tank Level (cm)

\ Robust against 1 \

Robust against

ensor Fault
S Sensor Fault
0.5 - 0.5
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4 4
Time (seconds) x 10 Time (seconds) x 10

Figure 83. Comparison between the MRAC-H,,GS-LPV Controllers based on the MIT rule and based

on the Lyapunov theory with an abrupt-sensor fault of 3.3% and an abrupt-actuator fault of 20% for

the operating points ¢;=0.3 and ¢,=0.5.

In Figure 83, the MRAC-H,GS-LPV Controllers based on MIT rule and on Lyapunov theory are
compared. While both controllers are working in the operating point ¢,=0.3 and ¢,=0.5, an abrupt-sensor
fault of 3.3% was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time

15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. It can be
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observed that the MRAC-H,GS-LPV was robust against the sensor fault, could tolerate the change in the

operating point and was fault tolerant against the actuator fault for both the MIT rule and the Lyapunov theory

methods.
MIT RULE LYAPUNOV THEORY
3 T T T T T T T T 3 T T T T T T T T
MRAC-H,_GS-LPV L MRAC-H, GS-LPV \
25¢ 25}
E ! g, !
= Fault Tolerant 2 Fault Tolerant
% against Actuator L against Actuator
a e Fault 4 e Fault
~ ‘
5 N E N
= Fault Tolerant =1 Fault Tolerant
against Sensor against Sensor
05 Fault 05 Fault

0

r r r r r
0 02 04 0.6 0.8 1

r r r r
1.2 1.4 1.6 1.
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2
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Figure 84. Comparison between the MRAC-H, GS-LPV Controllers based on the MIT rule and based

on the Lyapunov theory with an abrupt-sensor fault of 160% and an abrupt-actuator fault of 20% for

the operating points ¢;=0.3 and

(p2=0. 5.

In Figure 84, the MRAC-H,GS-LPV Controllers based on MIT rule and on Lyapunov theory are

compared. While both controllers are working in the operating point ¢,=0.3 and ¢,=0.5, an abrupt-sensor

fault of 160% was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time

15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this

figure, it can be observed that the MRAC-H,,GS-LPV was fault tolerant against the sensor and actuator fault

and could tolerate the change in the operating point. The above applies for both methodologies (MIT rule and

Lyapunov theory).
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Figure 85. Comparison between the MRAC-H, GS-LPV Controllers based on the MIT rule and based

on the Lyapunov theory with a gradual-sensor fault of 3.3% and a gradual-actuator fault of 20% for

the operating points ¢;=0.6 and ¢,=0.6.
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In Figure 85, the MRAC-H,GS-LPV Controllers based on MIT rule and on Lyapunov theory are
compared. While both controllers are working in the operating point ¢,=0.6 and ¢,=0.6, a gradual-sensor
fault of 3.3% was introduced at time 5000 seconds and an gradual-actuator fault of 20% was introduced at
time 15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this
figure, it can be observed that the MRAC-H,,GS-LPV was robust against the sensor fault, could tolerate the
change in the operating point and was fault tolerant against the actuator fault for both the MIT rule and the
Lyapunov theory methods.

LYAPUNOV THEORY

MIT RULE
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Time (seconds) x 10 Time (seconds) x10°

Figure 86. Comparison between the MRAC-H, GS-LPV Controllers based on the MIT rule and based
on the Lyapunov theory with a gradual-sensor fault of 160% and a gradual-actuator fault of 20% for

the operating points ¢;=0.6 and ¢,=0.6.

In Figure 86, the MRAC-H,GS-LPV controllers based on the MIT rule and on the Lyapunov theory
are compared. While both controllers are working in the operating point ¢,=0.6 and ¢,=0.6, a gradual-sensor
fault of 160% was introduced in time 5000 seconds and a gradual-actuator fault of 20% was introduced at
time 15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this
figure it can be observed that the MRAC-H,,GS-LPV was fault tolerant against the sensor and actuator fault

and could tolerate the change in the operating point for both methodologies (MIT rule and Lyapunov theory).

4.5.2 Comparison between the MRAC-LPV and the MRAC-H,,GS-LPV based on MIT and

based on Lyapunov theory

For each of the two proposed schemes based on the MIT rule and on the Lyapunov theory: MRAC-
LPV and MRAC-H,,GS-LPV the summary of the experiments results are explained in Table 19 and Table 20.
These results explain the range in which the methodologies are robust, fault tolerant or degraded against the
fault.

In addition, the Mean Square Error (MSE) was calculated for all the experiments. The results are

shown in Table 21. It is important to mention that the results were the same for abrupt and gradual faults.
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Table 19. Results of experiments of the MRAC-LPV and MRAC-H,,GS-LPV methodologies based on

MIT rule.
Methodology Sensor Faults Actuator Faults
Abrupt Faults Gradual Faults Abrupt Faults Gradual Faults
MRAC-LPV 0<f<33%—FT +/-0<f<+/-3.3%—FT 0<f<20% —FT +/-0<f<+/-20% —FT
) f>3.3% — D f>+/-3.3% — D £>20% — D f>+/-20% — D
0<£<20% —FT +/-0<f<+/-20% —FT
MRAC-H,,GS-LPV FT FT £>20% — D £51/-20% — D

FT = Fault Tolerant, D = Degraded

Table 20. Results of experiments of the MRAC-LPV and MRAC-H,,GS-LPV methodologies based on

Lyapunov theory.
Methodology Sensor Faults Actuator Faults
Abrupt Faults Gradual Faults Abrupt Faults Gradual Faults
MRAC-LPV 0<f<33%—FT +-0<f<+/-33% —>FT 0<f<20%—>FT +/-0<f<+/-20% —FT
£>3.3% —D f>+/-3.3% —D f>20% — D f>+/-20% — D
FT FT 0<f<20% —FT +4/-0<f<+/-20% —FT
MRAC-H,GS-LPV f>20% — D f>+/-20% —D

Table 21. MSE comparison between the MRAC-LPV and MRAC-H,,GS-LPV MIT and Lyapunov

based design.
Operating Point ¢,=0.3 and ¢,=0.5
MRAC MIT based design MRAC Lyapunov based design
Sensor Faults (3.3%) Sensor Faults (3.3%)
Methodology and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 0.004683719 0.004806042
MRAC-H,,GS-LPV 0.001259889 0.000996639

Sensor Faults (160%)
and Actuator Faults (20%)

Sensor Faults (160%)
and Actuator Faults (20%)

MRAC-LPV 9.834450837 9.834345325
MRAC-H,,GS-LPV 0.001216185 0.000942122
Operating Point ,=0.6 and ¢,=0.6
MRAC MIT based design MRAC Lyapunov based design

Sensor Faults (3.3%) Sensor Faults (3.3%)

Methodology and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 0.002133405 0.002114925
MRAC-H,,GS-LPV 0.000613752 0.000480325
Sensor Faults (160%) Sensor Faults (160%)
and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 6.83165252 6.831596171
MRAC-H,,GS-LPV 0.000614215 0.000480346

In almost all the results of Table 21, it can be seen that the MSE from the schemes using the MRAC

based on the Lyapunov theory is lower than the schemes using the MRAC based on MIT, because the

Lyapunov theory adds stability to the closed-loop system.
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4.6 Experiments using the MRAC MIT and MRAC Lyapunov based design with the

nonlinear model of the system

The experiments presented in the above section, are realized using the as the Process Model the LPV
model of the Coupled-Tank system. In this section the experiments are implemented using the nonlinear
model of the system, in order to present a more realistic simulation. The nonlinear model of the Coupled-Tank

system is represented trough the following equations:

() = ="/ V29I @ + Py u(®) ast)

ho(®) = 41/ 4 29\ (®) = %2/ 2932 (O (152)

y(&) = hy () (153)

The variables definition of the above equations was presented in Table 9 (Chapter 4). The
representation of the MRAC-LPV MIT controller, the MRAC-LPV Lyapunov Controller, the H,, Gain
Scheduling — MRAC LPV Controller based on MIT controller and the H,, Gain Scheduling — MRAC LPV

controller based on Lyapunov are represented from Figures 87 to 90.

Reference Model

0.108158¢, Yreference
52 +0.5085(¢p, + ¢, )s +0.258572(¢,0,)

+
a

Nonlinear Process Yprocess

0.5085(¢p, + @, )s +0.258572(p0,)
5 +0.5085(¢p, + @, )s +0.258572(,00,)

0.5085(¢, + @, )s +0.258572(p,0,)
5% +0.5085(¢p, + ¢, )5 +0.258572(p,0,)

Figure 87. Nonlinear Process MRAC-LPV Controller based on MIT rule.
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Reference Model

0.108158¢, Yreference

52 +0.5085(¢, + ¢, )s +0.258572(p,0,)
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Figure 88. Nonlinear Process MRAC-LPV Controller based on Lyapunov theory.
Reference Model
0.108158¢, Yreference
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Figure 89. Nonlinear Process MRAC-H,.GS-LPV Controller based on MIT rule.
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Figure 90. Nonlinear Process MRAC-H,.GS-LPV Controller based on Lyapunov theory.

When the controllers from Figure 87 to Figure 90 were used with the LPV model the value of y used
was 10000. On the other hand, when the nonlinear model is used instead of the LPV model a value of y
smaller gave better results because the chattering disappears (See Appendix C). The selected value of y was

0.003. The next figures show the results of the nonlinear model implementation:
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Figure 91. Comparison between the Nonlinear Process MRAC-H,,GS-LPV and the Nonlinear Process
MRAC-LPYV Controllers with an abrupt-sensor fault of 3.3% and an abrupt-actuator fault of 20% for
the operating points ¢;=0.3 and ¢,=0.5.
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In Figure 91, the MRAC-H,.GS-LPV and the MRAC-LPV Controller based on MIT rule and on
Lyapunov theory are compared. While both controllers are working in the operating point ¢ ;=03 and ¢ ,=0.5,
an abrupt-sensor fault of 3.3% was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was
introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000
seconds. In this figure, it can be observed that the four different controllers could accommodate the fault and
tolerate the change in the operating point. But in the impact of the fault is bigger than the schemes using
Lyapunov theory. Also, the schemes using the MRAC-H,,GS-LPV controller showed a faster adaptation than
the MRAC-LPV schemes.
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Figure 92. Comparison between the Nonlinear Process MRAC-H,,GS-LPV and the Nonlinear Process
MRAC-LPV Controllers with an abrupt-sensor fault of 166% and an abrupt-actuator fault of
magnitude 20% for the operating points ¢,=0.3 and ¢,=0.5 .

In Figure 92, the MRAC-H,,GS-LPV and the MRAC-LPV Controller based on MIT rule and on
Lyapunov theory are compared. While both controllers are working in the operating point ¢,=0.3 and ¢,=0.5,

an abrupt-sensor fault of 166% was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was
introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000

seconds. In this figure, it can be observed that the MRAC-H,,GS-LPV and the MRAC-LPV were unfeasible
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against the sensor fault because the tank level limit is 30 cm and these controllers were beyond this limit. On
the other hand, the MRAC-H,GS-LPV and the MRAC-LPV based on Lyapunov theory were able to
accommodate the sensor and the actuator faults. But the MRAC-H,,GS-LPV based on Lyapunov theory

showed a faster adaptation performance in comparison with the MRAC-LPV.
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Figure 93. Comparison between the Nonlinear Process MRAC-H,,GS-LPV and the Nonlinear Process
MRAC-LPV Controllers with a gradual-sensor fault of 3.3% and a gradual-actuator fault of 20% for
the operating points ¢;=0.6 and ¢,=0.6 .

In Figure 93, for gradual additive faults, the MRAC-H,GS-LPV and the MRAC-LPV Controller
based on MIT rule and on Lyapunov theory are compared. While both controllers are working in the
operating point ¢ ,=0.6 and ¢,=0.6, a gradual-sensor fault of 3.3% was introduced at time 5000 seconds and a
gradual-actuator fault of 20% was introduce at time 15000 seconds. In addition, a change in the operating
point was performed at time 10000 seconds. In this figure, it can be observed that the four different
controllers could accommodate the fault and tolerate the change in the operating point. But in schemes based
on the MIT rule the impact of the fault is bigger than the schemes using Lyapunov theory. Also, the schemes
using the MRAC-H,,GS-LPV controller showed a faster adaptation than the MRAC-LPV schemes.
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Figure 94. Comparison between the Nonlinear Process MRAC-H,,GS-LPV and the Nonlinear Process
MRAC-LPYV Controllers with a gradual-sensor fault of 166% and a gradual-actuator fault of 20% for
the operating points ¢;=0.6 and ¢,=0.6.

In Figure 94, for gradual additive faults, the MRAC-H,GS-LPV and the MRAC-LPV Controller
based on MIT rule and on Lyapunov theory are compared. While both controllers are working in the
operating point ¢,=0.6 and ¢,=0.6, a gradual-sensor fault of 166% was introduced at time 5000 seconds and
a gradual-actuator fault of 20% was introduce at time 15000 seconds. In addition, a change in the operating
point was performed at time 10000 seconds. In this Figure, it can be observed that the MRAC-H,GS-LPV
and the MRAC-LPV were unfeasible against the sensor fault because the tank level limit is 30 cm and these
controllers were beyond this limit. On the other hand, the MRAC-H,,GS-LPV and the MRAC-LPV based on
Lyapunov theory were able to accommodate the sensor and the actuator faults. But the MRAC-H,,GS-LPV
based on Lyapunov theory showed a faster adaptation performance in comparison with the MRAC-LPV.

In addition, to compare the Nonlinear Process controller based on the MIT rule and the Nonlinear
Process controller based on Lyapunov theory the Mean Square Error (MSE) was calculated for all the

experiments. The results are shown in Table 22.
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Table 22. MSE Results of the comparison between the Nonlinear MRAC-LPV and the Nonlinear
MRAC-H,,GS-LPV MIT and Lyapunov based design.

Operating Point ¢,=0.3 and ¢,=0.5

MRAC MIT based design MRAC Lyapunov based design
Sensor Faults (3.3%) Sensor Faults (3.3%)
Methodology and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 0.0379 0.0325
MRAC-H,GS-LPV 0.0300 0.0244
Sensor Faults (166%) Sensor Faults (166%)
and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 1.0810 0.1324
MRAC-H,GS-LPV 1.1672 0.1178
Operating Point ¢,=0.6 and ¢,=0.6
MRAC MIT based design MRAC Lyapunov based design
Methodology Sensor Faults (3.3%) Sensor Faults (3.3%)
and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 0.0330 0.0253
MRAC-H,GS-LPV 0.0278 0.0210
Sensor Faults (166%) Sensor Faults (166%)
and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 1.0799 0.1348
MRAC-H,GS-LPV 1.1316 0.1193
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4.7 Experiments and Results using the Coupled-Tank System as testbed

implementing Multiplicative Faults
In addition to the above experiments multiplicative faults were tested. This type of faults is
represented as a degradation of the nominal system. For example, actuator multiplicative fault is represented
as follows:
ur = au (154)
where u; represent the system input with the actuator fault, @ represents the degradation percentage of the
actuator, and u is the nominal system input. The above type of faults were implemented in each of the
following proposed schemes based on the MIT rule and on the Lyapunov theory: MRAC-LPV Controller and
H.,, Gain Scheduling MRAC-LPV Controller (MRAC-H,,GS-LPV) for LPV systems, MRAC-LPV Controller
and H,, Gain Scheduling MRAC-LPV Controller for nonlinear systems, MRAC-LPV Controller for LPV
systems and MRAC-LPV Controller for nonlinear.

4.7.1 Multiplicative Faults applied in the LPV System

First, the multiplicative faults were tested in the LPV system. The results of these experiments are
shown in Table 23. These results explain if the methodologies are robust, fault tolerant or degraded against

the simulated fault and also demonstrate the Mean Square Error (MSE).

Table 23. Results of experiments using multiplicative sensor (5000 seconds) and actuator (15000

seconds) faults in the MRAC-LPV and MRAC-H,,GS-LPV methodologies based on MIT rule for LPV

systems.
Methodol MSE Sensor and Actuator Faults
ethodology 0 =100% 0.1 =90% 0.5 = 50% 0.95 = 5%
FT—SF FT—SF FT—SF FT—SF
MRACM'#V bl“sed on D—AF D—AF D—AF D—AF
rule MSE=1.57169 MSE=1.27322 MSE=0.39341 MSE=0.00425
FT—SF FT—SF FT—SF FT—SF
M'EA::'LHPV :’h“serd on D—AF D—AF D—AF D—AF
yapunov theory MSE=1.57128 MSE=1.27283 MSE=0.39308 MSE=0.00415
MRAC-H,.GS-LPV based }S:i? R—SF R—SF R—SF
on MIT rule "~ D—AF MSE=1.27321 D—AF MSE=0.39381  D—AF MSE=0.00514
MSE=1.57158
MRAC-H,.GS-LPV based R—SF R—SF R—SF R—SF
on Lyapunov theory D—AF MSE=1.57130  D—AF MSE=1.27293 D—AF MSE=0.39353 ~ D—AF MSE=0.00486

AF=Actuator Fault, D=Degraded, FT=Fault Tolerant, R=Robust, SF=Sensor Fault

In Table 23, it is observed that none of the implemented methodologies was absolutely fault tolerant
to the combination of sensor fault (5000 seconds) and actuator fault (15000 seconds). For example, the
MRAC-LPV based on Lyapunov theory was Fault Tolerant for the sensor fault and was degraded for the
actuator fault. On the other hand the MRAC-H,GS-LPV based on MIT rule and based on Lyapunov theory

are robust against the sensor fault and degraded against the actuator fault. The next figures represent the
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implementation of the above experiments. In addition single multiplicative faults in sensors and actuators

were also tested, see Appendix B.

From Figure 95 to Figure 98, it can be observe that for the combination of multiplicative faults in
sensors at time 5000 and multiplicative faults in actuators at time 15000 of 100%, 90%, 50% and 5%, the
MRAC-H,,GS-LPV controller was robust against the multiplicative faults in sensors and became degraded
after the multiplicative faults in actuator. On the other hand, the MRAC-LPV scheme was fault tolerant to the
multiplicative faults in sensor and also became degraded after the occurrence of the multiplicative faults in
actuator. The above apply for the methodologies based on the MIT rule and the methodologies based on the
Lyapunov theory. Also, it can be observe that both controllers (MRAC-H,GS-LPV and MRAC-LPV) were

able to manage the change in the operating point at 10000 seconds.
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Figure 95. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative

sensor fault at time S000 seconds and a multiplicative actuator faults at time 15000 seconds both of

100%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the LPV system.
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MRAC CONTROLLERS BASED ON MIT RULE
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Figure 96. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of

90%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the LPV system.
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Figure 97. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of

50%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the LPV system.
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Figure 98. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%,

for the operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000 seconds
for the LPV system.

4.7.2 Multiplicative Faults applied in the Nonlinear System

After testing the multiplicative faults in the LPV system, these types of faults were tested using the
nonlinear system instead of the LPV system. The results of these experiments are shown in Table 24. These
results explain if the methodologies are fault tolerant or degraded and also show the Mean Square Error

(MSE). In addition, from Figure 99 to Figure 102 the experiments showed in Table 24 are represented.
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Table 24. Results of experiments using multiplicative sensor (5000 seconds) and actuator (15000

seconds) faults in the MRAC-LPV and MRAC-H,.GS-LPV methodologies based on MIT rule for

nonlinear systems.

MSE Sensor and Actuator Faults

Methodology 100% 90% 50% 5%
MRAC-LPYV based on Degraded Fault Tolerant Fault Tolerant Fault Tolerant
MIT rule MSE=3.5676 MSE=0.5057 MSE=0.0379 MSE=0.0281
MRAC-LPYV based on Degraded Fault Tolerant Fault Tolerant Fault Tolerant
Lyapunov theory MSE=3.5675 MSE=0.5055 MSE=0.0321 MSE=0.0278
MRAC-H.,GS-LPV based Degraded Fault Tolerant Fault Tolerant Fault Tolerant
on MIT rule MSE=3.5559 MSE=0.3447 MSE=0.0318 MSE=0.0179
MRAC-H.,GS-LPV based Degraded Fault Tolerant Fault Tolerant Fault Tolerant
on Lyapunov theory MSE=3.5551 MSE=0.3442 MSE=0.0302 MSE=0.0171
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Figure 99. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of
100%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000

seconds for the nonlinear system.
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In Figure 99, for the combination of multiplicative sensor fault of 100% at 5000 seconds and
multiplicative actuator fault of 100% at 15000 seconds, it can be observe that the four controller became
degraded after the occurrence of the multiplicative sensor fault and non of the controllers were able to return

to the desired tank level.
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Figure 100. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of
90%, for the operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000

seconds for the nonlinear system.

In Figure 100, for the combination of multiplicative sensor fault of 90% at 5000 seconds and
multiplicative actuator fault of 90% at 15000 seconds, it can be observe that MRAC-H,,GS-LPV based on the
MIT rule and based on Lyapunov theory were able to accommodate both types of faults and could tolerate the
change in the operating point. On the other hand, the MARC-LPV based on the MIT rule and on Lyapunov
theory controllers were able to accommodate the multiplicative sensor fault but could not accommodate in

time the multiplicative actuator fault. The H,GS helps the MRAC to achieve a faster adaptation mechanism.
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Figure 101. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of
50%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000

seconds for the nonlinear system.

In Figure 101, for the combination of multiplicative sensor fault of 50% at 5000 seconds and
multiplicative actuator fault of 50% at 15000 seconds, it can be observed that the four different controllers
could accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in
the operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes
using Lyapunov theory. Also, the schemes using the MRAC-H,,GS-LPV controller showed a faster adaptation
than the MRAC-LPV schemes.

123
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Figure 102. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%,
for the operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000 seconds

for the nonlinear system.

In Figure 102, for the combination of multiplicative sensor fault of magnitude 0.95 at 5000 second
and multiplicative actuator fault of 5% at 15000 seconds, it can be observed that the four different controllers
could accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in
the operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes
using Lyapunov theory. Also, the schemes using the MRAC-H,,GS-LPV controller showed a faster adaptation
than the MRAC-LPV schemes.
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4.8 Manipulated Variable Analysis for the Coupled Tank System

The next figures show different experiments that were realized to analyze the manipulated variable.

These experiments were carried on in the operating point ¢;=0.35 and ¢,=0.35 and different types and

sizes of faults were applied.
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Figure 103. Comparison between the manipulated variable and the system output of the MRAC-LPV

schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) and an additive

actuator fault (15000 seconds) of 10% in the operating points ¢;=0.35 and ¢,=0.35 and a change in the

operating point at time 10000 seconds for the nonlinear system.
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Figure 104. Comparison between the manipulated variable and the system output of the MRAC-LPV

schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 5% and an

additive actuator fault (15000 seconds) of 15% in the operating points ¢;,=0.35 and ¢,=0.35 and a

change in the operating point at time 10000 seconds for the nonlinear system.
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Figure 105. Comparison between the manipulated variable and the system output of the MRAC-LPV

schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 20% and an

additive actuator fault (15000 seconds) of 5% in the operating points ¢;=0.35 and ¢,=0.35 and a change

in the operating point at time 10000 seconds for the nonlinear system.
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Figure 106. Comparison between the manipulated variable and the system output of the MRAC-H,,GS-

LPV schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) and an

additive actuator fault (15000 seconds) of 10% in the operating points ¢;,=0.35 and ¢,=0.35 and a

change in the operating point at time 10000 seconds for the nonlinear system.
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Figure 107. Comparison between the manipulated variable and the system output of the MRAC-H,,GS-
LPV schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 5% and
an additive actuator fault (15000 seconds) of 15% in the operating points ¢;=0.35 and ¢,=0.35 and a

change in the operating point at time 10000 seconds for the nonlinear system.
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Figure 108. Comparison between the manipulated variable and the system output of the MRAC-H,,GS-
LPV schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 20% and
an additive actuator fault (15000 seconds) of 5% in the operating points ¢,=0.35 and ¢,=0.35 and a

change in the operating point at time 10000 seconds for the nonlinear system.

In the above figures the behavior of the manipulated variable under different experiments can be
observed. In all the above experiments when the system starts the pump voltage increases to increase the
water level, when a positive fault occurs the pump voltage decreases in order to take the tank level to the
desired value. Also, when the operating point change, the pump voltage increases to increase the tank level.
And finally, when a positive actuator faults appears the pump voltage decreases to decrease the tank level and

return it to the desired value.
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4.9 Comparison with Similar Approaches

Some other MRAC approaches in the last years have been developed. All of them are different from
the one proposed in this research. Cho et al. (1990) published a method for FTC systems using a pole
assignment controller and a MRAC controller to guarantee the system performance in the presence of a fault.
This scheme is different from our work because it did not use any artificial intelligence method such as ANN
or GA optimizer. Jia & Jingping (1997) introduced a MRAC based on a PID controller and a GA, in which
the GA was used to optimize the PID parameters. This scheme was used in a Continuous Stirred Tank Reactor
system (CSTR), and an Artificial Neural Network trained by the GA was used to estimate the state value of
the CSTR. The differences between this scheme and the one presented in this research is that the Artificial
Neural Network in Jia & Jingping (1997) is used as an estimator of the plant and in this research the Artificial
Neural Network is used as a trajectory controller to follow the ideal system trajectory (normal operation
mode). Ahmed (2000) presented an Artificial Neural Network based state feedback MRAC for a type of
nonlinear plants. This methodology uses a time varying pseudo-linear feedback control in which the gain of
the state feedback is generated from the ANN output. This scheme is different from the proposed structure
presented in this research, first because it did not uses a GA to optimize a PID controller and also because the
ANN is used just to approximate the controller parameters not as a trajectory controller. Zhu et al. (2000)
presented an MRAC application with an aged actuator in order to identify vulnerable devices or control
parameters on stability. This scheme did not use any artificial intelligence method (ANN or GA) and neither
uses a PID controller. Thanapalan et al. (2006) introduces a MRAC and quaternion based adaptive attitude
control (QAAC) in order to determinate and isolates faults. This scheme did not use an ANN controller and
neither uses a GA optimizer to obtain the best PID controller parameters. Zhang and Li (2006) proposed a
single neuron PID-MRAC based on Radial Basis Function (RBF) Neural Network on-line identification. In
this approach, the RBF Artificial Neural Network is used to identify the system on-line in order to built the
reference model and develop the controller parameters self-learning employing a single neuron controller.
This method did not use a GA to optimize the PID controller; also, the PID controller is not used as a
feedforward controller, and the RBF ANN was used to build the reference model. In our case, the reference
model was constructed using real data system identification from an Industrial Heat Exchanger and the ANN
controller is used as a trajectory control. Bayati (2008) presented a MRAC based on the PID-GA
combination. The GA is used to obtain the best PID parameters. The difference between the new proposed
structure and this method is that it did not use an Artificial Neural Network controller. Hongjie & Bo (2008)
showed a MRAC controller based on an on-line Artificial Neural Network and a traditional PID controller
used for servo system tracking control. In this scheme, the Artificial Neural Network controller was
implemented to reduce the unknown model dynamics, the disturbances and parameter variations. The
Artificial Neural Network weights and the MRAC parameters are updated using Lyapunov stability theory.
The differences from this scheme and the one proposed in this research are that the Hongjie & Bo (2008)
scheme did not use a GA to optimize the PID controller. Moreover, the controller is not a complete PID since

it is just a Proportional Controller and the ANN is used to reduce the unknown model dynamics and it is not
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used as a trajectory control. Demetriou et al. (2009) developed a theoretical framework of the MRAC design,
adaptive parameter identification and automated fault detection of a positive real infinite dimensional system
in which for each design problem the well-posedness and stability were investigated. Tan et al. (2011)
presented a discrete-time multiple-model MRAC scheme for adaptive actuator failure compensation, this
scheme has the capacity to achieve faster and accurate compensation of failure uncertainties. This scheme is
different than the one proposed in this thesis because it does not combine the MRAC with other methods such
as ANN, robust control, nonlinear control or LPV systems.

In the case of Robust H,, controller, although there are some publications where the H,, technique has
been combined with other schemes (Hwang & Chen, 1998; Lian et al., 2002; Yu, 2004; Miyasato, 2007,
Miyasato, 2008), to the best of our knowledge there are no reports concerning the combination of MRAC with
He.

For the MRAC controller for LPV systems (or LPV controls) just a few studies had been developed.
In Hsu (1990), a Variable Structure MRAC controller (VS-MRAC) was proposed. The benefit of this type of
controller is a nicer transient behavior, a disturbance rejection capability, nonlinearities or parameter
variations insensitivity and robustness against unmodeled dynamics. The difference between a Variable
Structure (VS) system and an LPV system is that VS case is based on switching functions that creates a
sliding surface. If the surface is accomplishing the switching function maintain the trajectory on the surface,
the desired system dynamics is achieved. In Hsu et al. (1994), a VS-MRAC control was also developed. This
structure uses only input and output data. Also, the controller showed a high-gain stability property which
guarantees the elimination of the chattering when linear zones are induced. In Yan et al. (2006), an output
feedback VS-MRAC controller was developed. This methodology is based on a classic VS-MRAC structure
with a high gain switching mechanism to adapt the VS control signal. The advantages of this methodology are
to guarantee a pre-specified steady-state and transient performance specifications for tracking error, the high
frequency gain sign is not required a priori, the reference model of the MRAC controller does not need to be
strictly positive real and the plant input disturbance can be rejected completely.

Miyasato (2006) presented a Model Reference Adaptive Controller for polytopic LPV systems in
fixed polytopes denoted by convex hulls of extreme systems (uncertainties of system parameters). In this
methodology, the control input is represented by a weighted sum of the extreme systems control signals and
the weights are regulated adaptively. In addition, stabilizing signals are aggregated to manage the time-
varying components effect in uncertain processes and to stabilize the plants. These signals are developed as a
solution of nonlinear H,, control problem for a virtual system. This methodology is different from the one
proposed in this work (MRAC-H,, Gain Scheduling-LPV) because the LPV system is also a polytopic system
but the control input is composed of the feedforward update rule (8,), the feedback update rule (6,) and the
output of the H,, Gain Scheduling controller. Also, the H, control problem is solved using the H,, Gain
Scheduling LPV method and not a simple H,, control. In Miyasato (2008), to guarantee stability just a
Lyapunov positive definite function is established and in our work to guarantee stability the MIT rule and the

Lyapunov theory method are used.
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In Abdullah & Zribi (2008), a model reference control for LPV systems was developed. The used
LPV system parameters can be measured on-line and are bounded. The development of this type of control
was divided into parts: the first part was to design the matrix coefficients of the controller. To obtain these
coefficients singular value decomposition (SVD) was employed. The second part was the design of the state
feedback controller gain; in order to acquire this gain a LMIs methodology was used. One of the main
differences between the methodology in Abdullah & Zribi (2008) and the one proposed in this work is that the
model reference control used in Abdullah & Zribi (2008) is not a model reference adaptive control. In
addition, the control law parameters in our case can be obtained through the feedforward update rule (#,), the
feedback update rule (6,) and the output of the H,, Gain Scheduling LPV controller and not with SVD or
LMIs. Another important difference is that Abdullah & Zribi (2008) do not use H,, Gain Scheduling LPV
Control. Finally, Montes de Oca et al., (2009) proposed a FTC design using LPV admissible model matching;
this strategy is an active technique and requires the detection and estimation of the fault by a FDI scheme,
then the controller can be redesigned. The faults are expresses as changes in the system dynamics and also are
considered as scheduling variables in the LPV model to allow the controller reconfiguration. The main
different with the schemes proposed in this thesis are the following: First, the schemes proposed in this thesis
are passive because are designed off-line. Second, the different presented schemes (MRAC, MRAC-ANN,
MRAC-LPV, MRAC-H,,GS-LPV,etc) do not need and FDI block because the MRAC has the ability to detect
and start to accommodate the fault by itself and third the scheme proposed by Montes de Oca et al. (2009)

does not combine any technique as the ones proposed in this thesis.

Table 25. Summary of comparison with similar approaches.

Author Methodology | Application Advantages Disadvantages Differences
Cho et al. | Pole Simple 2™ Ensures the The failure is only | Do not use any
(1990) assignment + | order plant performance of | in one of the two | Al method.

MRAC set-point controllers.
tracking
Hsu (1990) | VS-MRAC Plants with Nicer transient Only additive The VS is based
arbitrary behavior, changes were on switching
relative disturbance proved. functions that
degree rejection creates a sliding
capability, surface.
robustness
Hsu et al. | VS-MRAC Plants with High-gain High frequency The VS is based
(1994) arbitrary stability is noise must be on switching
relative achieved compensated. functions that
degree creates a
sliding. Surface
Jia & | MRAC +PID | CSTR Satisfying Long The ANN was
Jingping optimized by system Control Effects | Computational used as an
(1997) GA + ANN Time due to the estimator of the
use of the GA. plant. The GA
trained the
ANN.
Ahmed ANN + Nonlinear Good tracking Only local The ANN is
(2000) MRAC Plants performance + stability was used to
fast proved. approximate the
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convergence controller
parameters.
Zhu et al. | MRAC +aged | Reactor Successful Limited Do not use any
(2000) actuator Regulating dealing against simulation results. | combination
System the worst tested | Lack of formal with the
(Nuclear situation stability analysis. | MRAC.
Plant)
Miyasato MRAC + H,, + | Continuous The adaptive Only The H, is not a
(2006) LPV System control systems | mathematical Gain
are uniformly procedure was Scheduling
bounded, and showed (no Controller.
that the tracking | simulations or
error converges | experiments yet).
to an arbitrary
small residual
region.
Thanapalan | MRAC + Satellite Increase The limitations of | The MRAC is
et al. (2006) | Quaternion Formation operational system not combined
based adaptive | Flying safety reconfiguration with any
attitude due to signal proposed
control constraints are not | scheme of this
established yet. thesis.
Yan et al. | Output Second order | Guarantee a pre- | Amplitude of the | Based on
(2006) Feedback VS- | systems specified ultimate switching | switching
MRAC steady-state and | control remains schemes.
transient constant
performance and can be
specifications eventually large /
for tracking Unmodeled
error dynamic are not
tested
Zhang & Li | PID-MRAC + | Second order | High control The stability The RBF-ANN
(2006) RBF ANN system accuracy and analysis was not is used to
good dynamic mention at all. identify the
performance system.
Abdullah & | Model Coupled- Simulation and | Only changes in Uses SVD and
Zribi (2008) | Reference Tank System | experimental reference models | a state feedback
Control results indicate are tested. controller gain.
that the
proposed
scheme works
well.
Bayati MRAC + PID- | Power Oscillations The stability Different
(2008) GA System Mitigation analysis was not MRAC
mention at all. combinations
except MRAC
+ PID.
Hongjie & | MRAC + Servo Reduction of The ANN The ANN
Bo (2008) ANN + System plant sensitivity | controller is used | structure inside
Proportional to parameter in one part of the | the MRAC. The
Controller variation and system. use of only a
disturbance Proportional
controller.
Demetriou MRAC Positive real | Well-posedness | Only additive The MRAC is
et al. (2009) infinite and stability faults were tested. | not combined
dimensional | analysis with any
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system proposed
scheme of this
thesis.
Montes de | AMM Two-degree | Allow the The active Completely
Oca et al of Freedom controller controller requires | different
(2009) Helicopter design to be the fault structure - Need
defined by a set | estimation. a FDI block.
of admissible
faults.
Sang & Tao | MRAC SISO and Robustness of In SISO MRAC The MRAC is
(2009) Multivariable | the desired the performance not combined
MRAC closed-loop is not achieved for | with any
systems performance of | large reduction in | proposed
stability and actuator scheme of this
asymptotic effectiveness. thesis.
tracking
Tan et al. | Discrete- Aircraft Faster and Continuous-time The MRAC is
(2011) MRAC flight control | accurate system with not combined
compensation of | actuator failures with other
failure are not presented | methods.

uncertainties

yet (under study).
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CHAPTER 5

STABILITY
ANALYSIS



5 Stability Analysis

5.1 LPYV Stability Analysis
To analyze the stability of the LPV systems the Quadratic Lyapunov Stability method is used
(Gahinet et al., 1994). This method helps to analyze linear time-varying systems, such has:
E@x@®) = A®Ox(®),  x(0) =x, (155)

To ensure the stability of the above system, a sufficient condition for asymptotic stability is the

existence of a positive-definite quadratic Lyapunov function:

V(x) = x"Px (156)
and
wEm)) <o (157)
throughout the state trajectories. This means that:
Q:=pP1 (158)
AMWQEM)" + E®)QA(D)T <0 (159)

for all the times ¢.
Evaluating the quadratic stability is not tractable in general since equation (159) places an infinite
number of constraints on Q. Therefore, equation (159) is reduced to a finite set of LMI constraints in the next

cases:
1. A(t) and E(t) are fixed affine functions of time-varying parameters p;(t), ..., pa(t).

A(t) = Ap + P1(DA1 + - + Pr(DA, (160)
E(t) = Eg+p1(DE; + -+ po(DE, (161)

Equation (160) and (161) represent an affine parameter-dependent model.
2. A(t) +jE(t) ranges in a fixed polytope of matrices

E(t) =a;()E{ + -+ a,(OE, (163)

with o;(t)>0 and Y;]-; a; (t) = 1. The above is referred as a polytopic model.

The first case is for those system in which the state-space equations depend affinely on time-varying
parameters, and the second case is for time-varying systems modeled by an envelope of LTI systems. In

conclusion, a Quadratic Lyapunov function will guarantee stability for arbitrarily fast time variations.
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The LMI conditions for quadratic stability are (Barmish, 1983; Boyd & Yang, 1989; Horisberger &
Belanger, 1976):

For affine models, consider the parameter-dependent model

E(p)x = A(p)x (164)
A(t) =4, + pl(t)Al +t pn(t)An
E(t) =Ey+ pl(t)El +t pn(t)En

where
pi(t) € [gi,ﬁ,-] (165)
and
Vs = {(wl. e, @) @; € {gi,ﬁ,-}} (166)

represent the set of corners of the parameter box. The dynamical system (equation 164) is quadratically stable

if there exist symmetric matrices Q and {M;}?, in such a form that

A(w)QE(w)" + E(w)QA(@w)" + ¥; w? < 0 for all w € V4 167)
A,PET + E;PAT + M; > 0 fori=1, ...,n (168)
M;>0 (169)

Q>1 (170)

On the other hand, for polytopic models, the polytopic system:

E(®)x(t) = A(t)x(t) 171
A(t) + JE(t) € CofA; + JE4, ..., A, + JE,.}

is quadratically stable if there exist a symmetric matrix Q and scalars t;; = t;; such that

A,QE] + E;QA] + A;QE] + E;QA] < 2t;l fori,j € {1,...,n} a72)
Q>1 a73)
Pow <o (174)

tin o tun

All the above LMI conditions are necessary and sufficient for quadratic stability when: In the affine
case, no parameter p; enters both A(t) and E(t), which means, A=0 or E;=0 for all i. This implies that
equations (168) and (169) can be suppressed and is enough to verify equation (159) at the corners w of the
parameter box. On the other hand, for the polytopic case, either A(t) or E(t) is constant and is enough to

compute equations (165) and (166) for t;; = 0.
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5.1.1

LPYV Plant Open Loop Stability Analysis

Consider the following plant:

where:

0.108158+¢,

52+0.5085(¢1+¢2)s+0.258572(¢@1*@3)

0.1< ¢, <06

and

(175)

0.1< ¢, <0.6

The stability will be measured using the resultant plants of the above system: 4 plants using the

extremes values of ¢, and ¢, were obtained (see Table 25).

Table 26. Resulting plants at the corners of the parameter box.

Plants

Laplace Transfer

State Space

Function Transfer Function
Plant 1 —0.05085 0 0.2127
0.01058 = B =
(¢,=0.1 and ¢,=0.1): Gi=5 0.05085 —0.05085] [ 0 ]
s2+0.1017s+0.002586 c=[0 1] D =[0]
Plant 2 —0.05085 0 0.2127
0.01082 = B =
(¢,=0.1 and ¢,=0.6): Gor=5 0.05085 —0.3051] [ 0 ]
§7+0.3559s+0.01551 c=1[0 1] D = [0]
Plant 3 —0.3051 0 0.2127
0.06489 = B =
(¢,=0.6 and ¢,=0.1): Gy= 0.3051 —0.05085] [ 0 ]
§2+0.3559s+0.01551 c=1[0 1] D = [0]
Plant 4 —0.3051 0 0.2127
0.06489 A= B =
(¢,=0.6 and ¢,=0.6): Gy= [ 0.3051 —0.3051] [ 0 ]
$2+0.6102s+0.09309 c=[0 1] D =[0]

To calculate the quadratic stability of the above plants, the following Matlab® code was used.

- First, the four state space matrices A are defined:

>> A1=[-0.05085,0;0.05085,-0.05085];
>> A2=[-0.05085,0;0.05085,-0.3051];
>> A3=[-0.3051,0;0.3051,-0.05085];
>> A4=[-0.3051,0;0.3051,-0.3051];

- Second, the polytopic system is defined as:

>> 51 = ltisys(Al)

>> g2 = Itisys(A2)

—0.05085
s1={ 0.05085

0

0 2
—0.05085 0
0 [ee)
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[—0.05085 0 2]
s2=1]0.05085 —-0.3051 O
0 0 oo
>> 53 = tisys(A3)
[—0.3051 0 2]
s3=10.3051 -0.05085 0
0 0 oo}
>> 4 = ltisys(A4)
—0.3051 0 2
s4 =| 03051 —-0.3051 0
0 0 [e)
>> polsys = psys([s] s2 s3 s4])
o 0 -0.05085 0 2 0 -0.05085 0 2 0 -0.3051 0 2 0 -0.3051 0 2
1 0 0.05085 -0.05085 0 0 0.05085 -03051 0 0 03051 -0.05085 0 0 0-3051 -0.3051 0
4 0 0 0 w0 0 0 0 ) 0 0 w0 0 0 0 -0
|2 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0|
lo o o 0 00 0 0 00 0 0 00 0 0 0l
lo o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0l
Lo o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0l

- Third, the quadratic stability is calculated using:

>> [tmin,P] = quadstab(polsys)
Solver for LMI feasibility problems L(x) < R(x)
This solver minimizes t subject to L(x) < R(x) + t*I

The best value of t should be negative for feasibility

Iteration : Best value of't so far
1 0.045331
2 -0.012013

Result: best value of t: -0.012013

f-radius saturation: 0.000% of R = 1.00e+008
This system is quadratically stable

tmin = -0.012013412684107

The value of the matrix P is

_ [0.95945 0.04672
0.04672  0.62847

Denoting the LMI system represented by equations (173) and (174) by A(x) < 0, the function
quadstab evaluates its feasibility by minimizing t subject to A(x) < t and returns the global minimum “tmin”

of this problem. Therefore the system is quadratically stable if and only if tmin < 0.
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Maximizing the Quadratic Stability Region of the LVP Plant

In order to maximize the stability region of the LPV plant, the following theory is used:

- First E matrix need to be constant and each parameter p;(t) ranges in an interval p;(t) € [pi, 5i].

- Second, the center and radius of each interval is represented by u;

%(Bi +5i) and §; =

- Third, the maximal quadratic stability region is defined as the largest portion of the parameter box in

which the quadratic stability can be established. The above means the largest dilatation factor such

that the system is quadratically stable whenever p; (t) € [u; — 06, u; + 66;].

The computation of the above theory is the following. The LPV system is transformed in an LTI

>> s0=ltisys([0 0;0 01,[0.2127;0],[0 1], [0])

So =

(= ell o)

(=N e R ]

0.2127

0
0
0

2
0
0

—00

>> g]=ltisys([-.5085 0;0.5085 01,[0;0],[0 0], [0],0) %Phil component
—0.5085 — 1i

S1 =

0
0

0.5085

0 0
0-1i O
0 0
0 0

2
0
0

—0Q0

>> g2=ltisys([0 0;0 -0.5085],[0;01,[0 0], [0],0) %Phi2 component
0—-1i

Sy =

>> Philmin=.1; Philmax=.6;

>> Phi2min=.1; Phi2max=.6;

0 0
—-0.5085—-1i 0
0 0
0 0

>> pv=pvec('box', [Philmin Philmax; Phi2min Phi2max])

1 01 06

PY=12 01 06

>> affsys = psys(pv,[s0 s1 s2]

5.1.2
1 —
s (-7,
form:
-0 0 0 0 02127
2 0 0 O 0
3 0 01 0
2 0 0 0 0
1 0 0 O 0
1 0 0 O 0
10 0 0 O 0

2

Soog oo

0
0
0
0
0
0
0

-0.5085-11
0.0505
0

[N iNe)

0
0—1i
0

oo oo

[=NeNeloNoNoN =]

coo g oo

[=ReNe ool =R-]

2
0
0

—0Q0

[=R=NeNeNeNel=]

cocoogoowm

SO OO O N~

0.1
0.1

S oo oo

0.6
0.6

S oo oo

S oo oo oo

S OO OoO O OO
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To calculate the maximal stability margin of the parameter box, the next command is used:

>> [marg,P] = quadstab(affsys,[1 0 0])

Solver for generalized eigenvalue minimization

Iterations :

~N O RN =

ks

skeskosk

10

skeskosk

11

ks

12
sksksk
13
14
sksksk
15
16
sksksk
17
18
sksksk
19
20
kskk
21
22
23

kokok

24

Best objective value so far

309.375000
146.808105
101.297593

new lower bound
22.509389

new lower bound
4.647148

3.206532

new lower bound

2.212507

new lower bound:

2.190382

new lower bound:

2.168478
1.614029

new lower bound:

1.597889
1.259115

new lower bound:

1.224548
1.147979

new lower bound:

1.128178
0.885332

new lower bound:

0.885332
0.816218
0.755383

new lower bound:

0.755383

:-4926.595947

:-1117.669819

1 -556.511336

-66.758202

-32.272847

-2.015697

-0.161549

-0.119306

0.516723

0.524422
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25
e
26
27
T
28
29
30
e
31
32
33

ks

34

skeskosk

0.740948

new lower bound:

0.739420
0.733404

new lower bound:

0.732767
0.726499
0.724912

new lower bound:

0.724912
0.724424
0.721063

new lower bound:

0.720699

new lower bound:

Result: feasible solution

best value of t:  0.720699

0.643162

0.692649

0.693690

0.709444

0.709807

guaranteed absolute accuracy: 1.09¢-002
f-radius saturation: 0.000% of R = 1.00e+008
Termination due to SLOW PROGRESS:

the gen. eigenvalue t decreased by less than

1.000% during the last 5 iterations.
Quadratic stability established on 138.7541% of the prescribed parameter box

marg = 1.3875

_ [663.0128 22.0194

22.0194 42.7137

The above means that the system is quadratically stable on 138.7541% of the parameter box. If marg >

1 the system is quadratically stable in the entire specified parameter box.
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5.2 Stability Assumptions for the MRAC controller

[TAR 1}

The objective of the Model Reference Adaptive Controller is achieve if the input of the plant “u” is
selected so that the closed-loop transfer function from the reference “r” to the plant output “y,” has stable
poles and is equal to the transfer function of the reference model. When the above is accomplished the plant

output matches the output of the reference model exponentially fast.

G
Gr = 1+CG (176)

- The plant model is strictly proper and minimum phase (i.e. have stable zeros).

- The design of the controller requires the knowledge of the coefficients of the plant transfer function
G(s).

- The reference model has the same degree as the corresponding plant polynomial.

- The reference model is stable and minimum phase.

- The input signal of the controller “u.” must be pe rsistently exciting to achieve the desired value of

the system (reference model).

If the plant is represented by:

Y(s) _ 4, Bp(s)
Us) P Ay(s)

177)

- A, and B, are coprime Hurwitz polynomials.

- Theroots of B, are the open left-half s-plane.

- The sign of K, is known and assume to be positive.

- The reference model is a strictly positive real transfer function.

- A, and B, (A and B from the reference model) are a controllable pair.

- The reference model is monic and stable.

- The reference model is Hurwitz polynomial (i.e. its zeros have strictly negative real parts).

- The persistency excitation (PE) of the input signals in the adaptive loop guarantees the exponential
stability of the unperturbed error system and eventually the local stability of the closed-loop time

variant plant.

5.2.1  Lyapunov Stability Theorem for the Design of the MRAC Controller

As mentioned in Chapter 2, the Lyapunov theory in the design of an MRAC controller was
introduced because the MIT rule does not guarantee the stability of the closed-loop system. To design an
MRAC controller using Lyapunov theory, the first step is to derive a differential equation for the error that
contains the adaptation parameters. Then, a Lyapunov function and an adaptation mechanism need to be

established to reduce the error to zero. The Lyapunov derivative function dV/dt is usually negative
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semidefinite. Therefore, to determine the parameter convergence is necessary to establish persistently
excitation and uniform observability on the system and the reference signal (Astrom & Wittenmark, 1995).
The Lyapunov stability theorem establishes the following: If there exists a function 7: R"—R being

positive definite and its derivative:

T T
W/ =)0 e = [ fO) = =W () (178)

is negative semidefinite, then the solution x(2)=0 to
dx/ .= f(x) f(0)=o0 (179)

is stable. If dV/dt is negative definite the solution will be asymptotically stable. /" denotes the Lyapunov
function for the system. If:
dV/dt <0 and V(x) - o when ||x|| = o (180)
the solution is globally asymptotically stable.
Therefore, the following procedure was realized:

Process model:

yprocess + alyprocess + AoVprocess = bu (181)
Reference model:
Vreference T Q1rYreference + QorYreference = briic (182)
Control law:
u = 61uUc — 0;Yprocess (183)
Error:
€ = Yprocess — Yreference (184)

Then, the error dynamics is represented by:

(185)
. . . 1 . 1 .
e = yprocess - y‘reference = a_1 [bu - yprocess - aoyprocess] - a_lr [bruc - yreference - aOryreference]

To simplify the mathematical notation yyeference=Vr aNd Yprocess=Vp-

. . . 1 .. 1 .
e=Yp—Vr = P [bu Y~ ao)’p] - [bruc —Vr aOryr] (186)

air
Substituting Y,=y,-e and j}r=j}p-é from equation 22, equation 23 is obtained:

. 1 1 .. a, 1 1 .. 1 .  a a,
e=—bu——yp—a—(1’yp—a—”bruc+a—”yp——re+ﬂyp—L:e (187)

az az az air az

Replacing u=01uc-92yp in the above equation and placing the error terms in the left side of the

equation, equation 188 is obtained:

L ote4lre=tL -1 - _ % Gor, 1y 41y
ete+— e—albeluc alrbruc albazyp alyp+a1ryp alyp+a1ryp (188)

air 1r

The control objective is that the Process Model most be equal to the Reference Model (a;=a;,, ag=ay,,

and b=b,), then:

1

—j, + —Jp  (189)

1 .. . Aor 1 1 1 aor aor
—é+é+—Le=—>b6,u.——bu.——b.0,y, -y, + Ly, —
air rU1te air ree air T 2}’p a1ryp ay }’p air

ar ar
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1 1
—e +é + = a_n(brgl - b u, — a_lr(erZ)yp (190)

air 1r

a 1 1

—e=— (br61 — b )u, — . (b,02)yp (91
1r ir

A L e+ o (b6, — by)u, — . (breZ)yp (192)

The proposed Lyapunov function is quadratic in tracking error and controller parameter estimation
error since it is expected that the adaptation mechanism will drive both types of errors to zero (tracking error
and error in the controller parameters estimation). From the equation error dynamics (see equation 192) the

proposed Lyapunov function is:
1 1 1
V(e 6,,0;) =3 (a1r€2 o (b6, — b.)? + o (brgz)z) (193)

where b,, y and a;>0.

Equation 193 will be zero when the error is zero and the controller parameters are equal to the
desired values. The above Lyapunov function is valid if the derivative of this function is negative. Thus, the
derivative of equation 194 is:

d91 d62

V= alre + (b 6, —b ) += (b 92) (194)

Substituting equation 192 in the above equation, and rearranging the similar terms, equation 195 is

obtained.
(195)
. 1 d? r 1 1 1 ae ae
V= e (— =55 = e + = (b6 — bue = = (0,00 ) + 7 (b6 — b) T+ (b,6,) T
. d?e 1 d91 d92
V= —e—5— agre® + (b6, — by uce — (b0;)y,e + 1—/(br91 b ) + = (b 92) (196)
; da? 1 dae dae
V= —eis—aore’ + (b6 — buce + (b6 — b)) Tt — (br8)ype + (b,0,) T (197)
; da? 1 d
V= _ed_ti_ aOrez +;(br61 r) ( +yuce ) +i(brez)(d_:_yyp€) (198)
If the adaptation parameters are updated as:
de
d—tl = —yuce (199)
dgz
e = Yoe (200)
Then
V=—ele 2 201
= o5 age @01

It can be seen that equation 37 is negative semidefinite which implies V(2)<V(0). This ensures that e,
0, and 6, are bounded. Since a;>0, ay>0 and u. is bounded then y, is bounded and therefore y,=e+y, is
bounded as well. From the boundedness and convergence set theorem it can be concluded that the error e will

go to zero (Astrom & Wittenmark, 1995). Since V (e, 91, 6,) is positive definite and

V= e -aOre <0 (202)
Then according to the theorem of Lyapunov uniform asymptotic stability of non-autonomous

systems, the equilibrium point x = 0 is uniformly stable.

143



Theorem of Lyapunov uniform asymptotic stability of non-autonomous systems
Let x = 0 be an equilibrium point of a system described by x = f(x,t) and u € R™ a domain
containing it. Let VV:u X [0,00) — R be a continuously differentiable function that satisfies
w1 (x) <V(x,t) < w,(x) (203)
Vix,t) =00/c +0V/  fx,) < —wy (204)
For all t > t, and x € u, where w;(x), w,(x) and w5(x) are continuous positive definite functions
of u.
Then x = 0 is uniformly asymptotically stable and V is called a Lyapunov function. Furthermore, if
w3(x) = 0, then x = 0 is uniformly stable.
Corollary:
Suppose that the assumptions of the above theorem hold for all x € R™ and w,(x) — oo for ||x|| -

oo, then x = 0 is globally uniformly asymptotically stable (Astrom & Wittenmark, 1995).

Theorem of boundedness and convergence set
Let D = {x € ul||x|]] <y} and suppose that f(x,t) is locally Lipschitz on D X [0,). Let V a
continuously differentiable function such that
a;(llxl) = V(x, t) < ay(llxID (205)

And

dv ov  ov
AP A4 < - <
prialevies axf(x, H<-wkx)<0 (2006)
Vt=>0,Vx €D, where a; and a, are class K functions defined on [0, ) and w(x) is continuously on D.
. . . . . . d
Furthermore, it is assumed that Z—: is uniformly continuous in t. Then, all solutions to d—’: =f(xt)

with ||x(t0) <aj; 1(a1 (y))" are bounded and satisfy a)(x(t)) — 0 ast - o (Astrom & Wittenmark, 1995).
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5.3 Stability Assumptions for H,, Gain scheduling controller
As mentioned in Chapter 4, the designed gain scheduled controller K(.,p) (see Figure 109) must
satisfy the vertex property and the closed-loop system should be stable for all admissible parameters

trajectories p(t) (Apkarian & Gahinet, 1995; Apkarian et al., 1995, Becker & Packard, 1994; Packard, 1994).

v P(.p) z
u |j y
K(.p)
p)

Figure 109. H,, Gain Scheduling Controller representation.
Where K(.,p) represents the H,, Gain Scheduling Controller, P(.,p) is the parameter dependent
plant, and p(t)represents a time-varying vector of physical parameters.
The above is implicit in the design of the H,, Gain Scheduling Controller, because first to enforce the

performance and robustness requirements, the following loop-shaping criterion was used:

| w,S

W,KS <1 207)
Where S = (I + GK)™! and the H,, norm is in terms of input/output Random Mean Square gain

|OO

which is the largest input/output gain over all bounded inputs u(t) (Willems, 1971; Anderson &
Vongpanitler, 1973; Vidyasagar, 1992). Then, for loop-shaping purposes an augmented plant associated with
the above criterion was created using the following commands (see section 4.5):
[pdP,r]=sconnect('r",'y=K",'K:r-y','G:K',pdG);
Paug=smult(pdP,sdiag(w1,w2));

Where pdP and Paug represent polytopic models. Therefore, the H,, Gain Scheduling Controller was

computed with the next command:
[gopt,pdK]=hinfgs(Paug,r,1e-2,1e-4);

The above computation gave a value of y,,, < 1 (gopt=0.0024), which means that the performance
specification are achievable, and pdK returns the polytopic description of the controller with the y,,, <1
performance. Therefore, the closed-loop system of the designed gain scheduled controller is stable for all the
admissible parameters trajectories p(t).

The stability analysis of the whole control system (MRAC-H,,GS-LPV) could not me computed due
to the complexity of the closed loop system. For this reason, the stability was proved by design, which means
that the proposed controller is integrated by an MRAC based on Lyapunov theory and a H,, Gain Scheduling

Controller that are already stable.
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CHAPTER 6
CONCLUSIONS



6 Conclusions

6.1 Industrial Heat Exchanger

6.1.1 Comparison between MRAC-ANN-PID, MRAC-H,,, MRAC-SMC, MRAC-ANN,
MRAC-PID and MRAC

In general, the MRAC-ANN-PID methodology showed the best results because it was robust against
sensor and imperceptible against actuator faults of 5%, 15% and 25% with a very low error between the
reference model and the process model. This method was the best scheme because is a combination of two
types of controllers: the PID controller optimized by the GA with the best parameters to handle the fault, and
the ANN that was trained to follow the desired system trajectory no matter the fault size. In addition, the
MRAC-H,, approach was robust against certain types of faults (5% and 15% of abrupt and gradual sensor
faults) and it was fault tolerant to the rest of fault types (25% of abrupt and gradual sensor faults and 5%, 15%
and 25% of abrupt and gradual actuator faults). Also, the MRAC-SMC resulted in a good FTC scheme
because it was robust against sensor faults (5%, 15% and 25%) because has the lower MSE, but it was fault
tolerant for some actuator faults (5% and 15%) and was degraded for actuators faults of 25%. The other three
approaches (MRAC-ANN, MRAC-PID and MRAC) were degraded for abrupt and gradual actuator faults,
and just one of them (MRAC-ANN) was robust against abrupt and gradual sensor faults. Also, the

manipulated variable was plotted and in this figures it can be observed how the system compensate the fault.

6.2 Coupled-Tank System

6.2.1 Comparison between MRAC-ANN4OP-LPV, MRAC-40P-LPV and MRAC-H,40P-
LPV based on the MIT rule and on Lyapunov theory

In the evaluation of the first operating point ¢,=(0./ and ¢,=0.1, when the abrupt sensor fault of
23.3% was applied the MRAC-ANN4OP-LPV based on the MIT rule and based on Lyapunov theory was
robust, the MRAC-H,,4OP-LPV and MRAC-40P-LPV based on MIT rule and based on Lyapunov theory
resulted to be fault tolerant (the fault was corrected immediately). In addition when the abrupt actuator fault
of 1% was applied the MRAC-ANN4OP-LPV based on the MIT rule and on Lyapunov theory could not
accommodate the faults (the system remained oscillating), the MRAC-H,,4OP-LPV based on Lyapunov
theory and on MIT rule was fault tolerant (the fault was corrected in less than 2500 seconds). And also, the
MRAC-40P-LPV based on MIT rule was fault tolerant, the fault was corrected after 15000 second in the
scheme based on the MIT rule and 12500 second in the scheme based on Lyapunov theory.

In the evaluation of the third operating point ¢,=0.6 and ¢,=0.1, when the gradual sensor fault of
10% was applied the MRAC-ANN4OP-LPV based on the MIT rule and based on Lyapunov theory was
robust, the MRAC-H,,4OP-LPV based on MIT rule and on Lyapunov theory was fault tolerant (the fault was
accommodated immediately) and the MRAC-40P-LPV based on MIT rule and based on Lyapunov theory
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resulted to be degraded. In addition when the gradual actuator fault of 1% was applied the MRAC-H,4OP-
LPV based on MIT rule and on Lyapunov theory was fault tolerant (the fault was accommodated in less than
4000 seconds), the MRAC-ANN4OP-LPV based on the MIT rule and on Lyapunov theory could not
accommodate the fault and the MRAC-40OP-LPV based on MIT rule could not accommodate the fault (the
system remained oscillating) and the MRAC-40P-LPV based on Lyapunov theory was fault tolerant (the fault
was accommodated in 2000 seconds).

In general, for sensor faults the MRAC-ANN4OP-LPV methodology showed the best results because
it was fault tolerant against the applied sensor faults no matter the value of the operating point between the
operating ranges. This method resulted the best scheme because is a combination of two type of controllers,
one is a Model Reference Adaptive Controller (MRAC) and the other one is an Artificial Neural Network
designed to follow the ideal trajectory (non-faulty trajectory). Both controllers were designed to work in the 4
operating points of an LPV system giving them the possibility of control each of these operating points. On
the other hand, for actuator faults the MRAC-H,4OP-LPV was the best scheme because it was fault tolerant
to the applied faults and also could accommodate the faults faster than the MRAC-40OP-LPV scheme.

6.2.2 Comparison between MRAC-H,GS-LPV and MRAC-LPYV based on the MIT rule and

on Lyapunov theory

6.2.2.1 Additive Faults

For the operating point ¢,;=0.3 and ¢,=0.5 with an additive abrupt sensor fault of 3.3% (5000
seconds) and an abrupt actuator fault of 20% (15000 seconds), the MRAC-H,,GS-LPV based on MIT rule and
on Lyapunov theory was robust to the sensor fault, was fault tolerant to the actuator fault and could tolerate
the change in the operating point at 10000 seconds. On the other hand, the MRAC-LPV based on MIT rule
and on Lyapunov theory was fault tolerant and could tolerate the change in the operating point at 10000
seconds. Then, if the additive abrupt sensor fault was changed to 166% (5000 seconds) and the abrupt
actuator fault remains with 20% (15000 seconds) the MRAC-H,GS-LPV based on MIT and on Lyapunov
theory was fault tolerant to the sensor and to the actuator fault and the MRAC-LPV based on MIT rule and on
Lyapunov theory became degraded.

For the operating point ¢;=0.6 and ¢,=0.6 with an additive gradual sensor fault of 3.3% (5000
seconds) and gradual actuator fault of 20% (15000 seconds) the MRAC-H,,GS-LPV based on MIT rule and
on Lyapunov theory was robust to the sensor fault, was fault tolerant to the actuator fault and could tolerate
the change in the operating point at 10000 seconds. In addition, the MRAC-LPV based on MIT rule and on
Lyapunov theory was fault tolerant and could tolerate the change in the operating point at 10000 seconds.
Then, if the additive abrupt sensor fault was changed to 166% (5000 seconds) and the abrupt actuator fault
remains with 20% (15000 seconds) the MRAC-H,,GS-LPV and the MRAC-LPV based on MIT rule and on
Lyapunov theory were fault tolerant and could tolerate the change in the operating point at 10000 seconds.

In general the MRAC-H,,GS-LPV showed better results because is a combination of two type of
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LPV controllers, one is a Model Reference Adaptive Controller (MRAC) and the other one is a H,, Gain
Scheduling Controller, both controllers were designed for an LPV system giving them the possibility of

controlling any desired operating point between the operation range of the dependent variables (¢, and ¢,).

6.2.2.2  Multiplicative Faults

It was observed that in the operating point ¢;=0.3 and ¢,=0.5, with multiplicative sensors faults of
100%, 90%, 50% and 5% at time 5000 seconds and multiplicative actuator faults of 100%, 90%, 50% and 5%
at time 15000 seconds and a change in the operating point at time 10000 seconds, the MRAC-H,,GS-LPV
scheme was robust against the multiplicative sensor fault but the system output became degraded after the
occurrence of the multiplicative actuator faults. On the other hand, the MRAC-LPV scheme was fault tolerant
to multiplicative sensor faults and also the system output remained with an offset after the occurrence of the
multiplicative actuator fault. The above applies for all the tested faults magnitudes and for the schemes based

on the MIT rule and based on Lyapunov theory.

6.2.3 Comparison between the MRAC controllers using the nonlinear model of the system

6.2.3.1 Additive Faults

The value of v used was 0.003 because a smaller value of y decreases the chattering in the system

output (see Appendix C). For the operating point ¢;=0.3 and ¢,=0.5 with an additive abrupt sensor fault of
3.3% (5000 seconds) and an abrupt actuator fault of 20% (15000 seconds), the four different controllers could
accommodate the fault and tolerate the change in the operating point. But in the impact of the fault is bigger
than the schemes using Lyapunov theory. Also, the schemes using the MRAC-H,,GS-LPV controller showed
a faster adaptation than the MRAC-LPV schemes.
Then, if the additive abrupt sensor fault was changed to a 166% (5000 seconds) and the abrupt actuator fault
remains with a 20% (15000 seconds) the MRAC-H,,GS-LPV and the MRAC-LPV were unfeasible against the
sensor fault because the tank level limit is 30 cm and these controllers were beyond this limit. On the other
hand, the MRAC-H,,GS-LPV and the MRAC-LPV based on Lyapunov theory were able to accommodate the
sensor and the actuator faults. But the MRAC-H,,GS-LPV based on Lyapunov theory showed a faster
adaptation performance in comparison with the MRAC-LPV.

For the operating point ¢;=0.6 and ¢,=0.6 with an additive gradual sensor fault of 3.3% (5000
seconds) and gradual actuator fault of 20% (15000 seconds) the four different controllers could accommodate
the fault and tolerate the change in the operating point. But in schemes based on the MIT rule the impact of
the fault is bigger than the schemes using Lyapunov theory. Also, the schemes using the MRAC-H,,GS-LPV
controller showed a faster adaptation than the MRAC-LPV schemes. Then, if the additive gradual sensor fault
was changed to 166% (5000 seconds) and the gradual actuator fault remains in 20% (15000 seconds) the
MRAC-H,GS-LPV and the MRAC-LPV were unfeasible against the sensor fault because the tank level limit
is 30 cm and these controllers were beyond this limit. On the other hand, the MRAC-H,GS-LPV and the
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MRAC-LPV based on Lyapunov theory were able to accommodate the sensor and the actuator faults. But the
MRAC-H,,GS-LPV based on Lyapunov theory showed a faster adaptation performance in comparison with
the MRAC-LPV.

In general, the MRAC-H,,GS-LPV controller based on Lyapunov theory was the best scheme
because was able to accommodate the fault in less time than the other schemes and also the fault impact was

lower in comparison with the other schemes.

6.2.3.1  Multiplicative Faults

For the combination of multiplicative sensor fault of 100% at 5000 seconds and multiplicative
actuator fault of 100% at 15000 seconds, it can be observe that the four controller became degraded after the
occurrence of the multiplicative sensor fault and non of the controllers were able to return to the desired tank
level. If the of multiplicative changed to a multiplicative sensor fault of 90% at 5000 seconds and
multiplicative actuator fault of 90% at 15000 seconds, it can be observe that MRAC-H,,GS-LPV based on the
MIT rule and based on Lyapunov theory were able to accommodate both types of faults and could tolerate the
change in the operating point. On the other hand, the MARC-LPV based on the MIT rule and on Lyapunov
theory controllers were able to accommodate the multiplicative sensor fault but could not accommodate in
time the multiplicative actuator fault. The H,,GS helps the MRAC to achieve a faster adaptation mechanism.
If the multiplicative fault decreases to a 50%, it can be observed that the four different controllers could
accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in the
operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes using
Lyapunov theory. Also, the schemes using the MRAC-H,,GS-LPV controller showed a faster adaptation than
the MRAC-LPV schemes. Finally, for the combination of multiplicative sensor fault of 5% at 5000 second
and multiplicative actuator fault of 5% at 15000 seconds, it can be observed that the four different controllers
could accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in
the operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes
using Lyapunov theory. Also, the schemes using the MRAC-H,,GS-LPV controller showed a faster adaptation
than the MRAC-LPV schemes.

In general, the controllers presented in this research:

- Allow the system availability in spite of the presence of a fault, for example the MRAC-ANN-
PID was robust against the tested sensor faults and the actuator faults were imperceptible due to
the combination of an Al and an Adaptive control technique. And the MRAC-H,,GS-LPV was
robust and fault tolerant against sensor faults and fault tolerant for actuator faults.

- The implemented controllers in most cases were able to accommodate a fault between certain
fault magnitude thresholds.

- The systems used to test the control schemes (Industrial Heat Exchanger and Coupled-Tank

System) had stable plants because all the poles were in the left-half s plane.
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For the Industrial Heat Exchanger, the MRAC-PID-ANN methodology showed the best results
because was robust against the tested sensor faults and the actuator faults were imperceptible
with a very low error between the reference model and the process model; this method resulted
the best scheme because is a combination of two type of controllers: the PID controller
optimized by the GA with the best parameters to handle the fault, and the ANN that was trained
to follow the desired system trajectory and its control structure adds robustness to the system.
The computational time to train the ANN and to obtain the PID parameters using the GA was
excessively long (48 hrs for the GA); this was the main reason for not incorporating these
schemes in the second part of the investigation.

For additive faults, the MRAC-H,GS-LPV controller based on Lyapunov theory was able to
deal with the tested abrupt and gradual faults in actuators and sensors of nonlinear processes
represented by LPV models and by the nonlinear process, and could accommodate the tested
faults for any operating point between the operating ranges of the LPV system.

For multiplicative faults, the MRAC-H,GS-LPV controller based on Lyapunov theory was in
general the best controller, because was the one that could handle the faults more properly
because is a combination of an MRAC design with the Lyapunov theory which adds closed loop
stability to the system and also the controller has an H,, gain scheduling controller that was
design to be stable for the operating points between the operating range.

The schemes tested using the nonlinear system presented some chattering due to the
nonlinearities of the system, but the schemes based on Lyapunov theory and specifically the
scheme that combines MRAC with H,, gains scheduling control based on Lyapunov theory
were able to deal and decrease the chattering. The chattering decreases if the y in the MRAC
controller decreases.

The Lyapunov theory implemented to design the MRAC controllers guarantees closed-loop
stability.

The MRAC-H,,GS-LPV was demonstrated to be stable by design because the MRAC based on
Lyapunov theory controller guarantees closed-loop stability and the H, Gain Scheduling
controller was also designed to be stable along the specifies parameter trajectories.

The combination of the MRAC controller with other schemes becomes an Active + Passive
FTC because the MRAC accommodates the fault on-line but the combinational controllers (for
example: H,,) are passive controller because were designed off-line.

The multiplicative faults in comparison with the additive faults applied in the LPV system of
the Coupled-Tank system had more impact in the case of actuator faults, because after the
occurrence of the fault the system became degraded and could not accommodate the fault. On
the other hand, the multiplicative faults in comparison with the additive faults applied in the
nonlinear system of the Coupled-Tank system had more impact in the case of 100% of fault
because after the sensor fault the system was degraded and could not accommodate the fault, in

the other fault cases the controller was able to accommodate the fault.
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7 Future Work

As a continuity of this thesis the following future work will be realized:

- Quantify the values of the fault that can be tolerated by the FTC scheme, using an LPV Gain
Scheduling methodology in order to establish an accepted fault range (Patton & Klinkhieo, 2010).

- A new FTC is proposed for future work (see Figure 110). This scheme consists of an FDI block that
uses DPCA + Contribution Plots (Tudén et al., 2010; Tudén et al., 2011). After the identification and
isolation of the fault an MRAC will be chosen from a bank of multiple MRAC model depending on
the value of the fault (Tan et al. 2011). Each MRAC model has a different reference model according
to the fault magnitude and according to the fault affectation in the system. To save computational
effort the adaptation mechanism will be active just after the detection and quantification of the fault.
In the FDI block, the DPCA detect the fault and the Contribution Plots isolate the fault. Figure 111
shows the procedure of these methodologies (Tudén et al., 2010, Tudén et al., 2011).
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Figure 110. FDI + MRAC FTC Scheme.

152



‘ Obtain a new measurement vector ‘

l

Obtain a new

. measurement vector
Normalize the new data vector i
[
: — . v Calculate the residue
Project the data vector in the 77 space ‘ ‘ Project the data vector in the O space ‘ . .
L i in the residual space
Compare the projection Compare the projection i
with an established threshold with an established threshold Calculat'e th'e error
contributions
If both statistics are greater than thei - - ¢ .
— 1sucsare greaterthan thewr | The highest contribution is isolated as the
thresholds: A fault is detected.
most relevant to the fault that has occurred.
If both statistics are lower than their
—>1 thresholds: The system is in normal <
operating conditions.

% Else: False Alarm. F

Figure 111. DPCA and Contribution Plots methodologies (Tudén et al. 2010).

- To improve the fault tolerant capabilities of the MRAC schemes that use an ANN, it is
recommended to prove this controller with other ANN architectures. The ANN architecture
used in this investigation is a two-layer feed forward neural network.

- Test the LPV control schemes in a real physical experiment to corroborate the fault tolerant
capabilities of the proposed schemes.

- Implement the proposed schemes in different types of systems to corroborate and compare the
results of this thesis.

- Design an analytic methodology to establish the fault tolerant threshold.

- Establish the global stability.
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Appendix A

Three Fault Tolerant Control (FTC) schemes based on Model Reference Adaptive Control (MRAC)
for Single Input-Single Output (SISO) processes are compared in an experimental study. The first structure,
named MRAC-MIT, is based on an MRAC design using the MIT rule, the second scheme, named MRAC-
LYA, is based on an MRAC design using the Lyapunov theory, and the third scheme is a Variable Structure
MRAC (VS-MRAC) modified with a Saturation Function and a PI controller (VS-MRAC-SAT-PI) (Cruz-
Reynoso R, 2010). The three FTC controllers were implemented and tested first in an Industrial Heat
Exchanger (simulation) and then in a Coupled-Tank System (real physical implementation). In order to
compare the performance of these schemes, different types of additive faults (abrupt and gradual faults)
implemented in sensors and actuators with different magnitudes were tested. Results showed the robustness of
the three MRAC-based FTC schemes to different fault scenarios.

To test the different approaches proposed in this research, two different experiments were developed.
First, the three schemes were tested in an Industrial Heat Exchanger, these experiments are all simulated.
Second, another experiment using a Coupled-Tank system is chosen. This experiment was tested in

simulation and in a real physical Coupled-Tank system.

Industrial Heat Exchanger

The first system used as testbed (shown in Figure A.1) is a shell and tube Industrial Heat Exchanger
that has two inputs: water and steam flows controlled by pneumatic valves (FSV; and FSV,, respectively).
The water pass inside the tubes at room temperature and the steam pass through the tube walls in order to
transfer heat to the water. In addition, the industrial heat exchanger has one output, in which the water

temperature is measured by a thermistor (TT,). Variations in water and steam flows are determined by flow

@ FSV,

transmitters (FT; and FT,, respectively).

Steam
Inlet | i =~ g

) B
i

Condensed

Figure A. 1. Industrial Heat Exchanger used in the experiments.

To obtain the continuous model of this process, an identification experiment was performed, where a
Pseudo Random Binary Sequence (PRBS) was applied to water and steam valves, and variations in water
temperature were recorded. With the data obtained in the PRBS test, the identification was achieved using

Matlab®. The following model was obtained:
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Gp = Gsteam + (_Gwater) (208)

0.00002 -0.000013
G =3 +5 (209)
5240.0042995+0.00002 = $2+0.0078155+0.00008
0.00002 0.000013
T(s) = F, s)— s 210
Q) 52+40.0042995+0.00002 steam (5) 52+0.0078155+0.00008 water (S) (210)
T(s) 0.00002
Gsteam = == 211
Fsteam(s) ~ s2+0.0042995+0.00002
T(s) -0.000013
Gwater = = (212)

Fwater(s) _ 52+0.0078155+0.00008

where G, represents the Process Model, Gyeqn and G,y describes the steam and water model of the industrial
heat exchanger, respectively. T(s) describes the Water Temperature at the exit and Fqn(s) and Fue(s)

represent the steam and water flow, respectively.

Model Reference Adaptive Controller for the Industrial Heat Exchanger
In order to derive an MRAC for the Industrial Heat Exchanger, it is important to take in account the
two second order systems: steam and water systems. With the background theory presented in Section II, the

following equations were developed:

(213)
0.00002 0.000026; )
= * el B ————————————— — =
Ysteam process Gisteam * U (SZ+O.OO4299S+O.OOOOZ) (91uc Gzyp“’ce”) (52+0.0042995+0.00002+0.0000292 Ue
214)
-G el = ( —0.000013 )(9 w -8 ) _ ( —0.0000136, )u
Ywater process = Uwater ~ \s2+0.0078155+0.00008/ \~17°€ 2YVprocess) = \ 5250.0078155+0.00008—0.0000136,/ €
Using equations (213) and (214), the error can be redefined as:
0.000026; )
e =( u.— (G * 1 215
steam $2+0.0042995+0.00002+0.000026, c ( steam_reference_model c) ( )
—0.0000136; )
e =( u. — (G * 1, 216
water $2+0.007815540.00008—0.0000136,/) € ( water_reference_model c) ( )

Therefore, the error partial derivatives with respect to the adaptive feedforward (6;) and adaptive

feedback (6,) gain are specified as equation 217 for the steam process and equation 218 for the water process:

de _ 0.00002 de _ 0.000026,
/091 = \$270.0042995+0.00002 +0.000026,/ ¢ and /662 = 7 \5740.0042995+0.00002+0.000026, ) YProcess (217)
(218)
de ( ~0.000013 ) de ( b,6, )
= u, and = -
1 S54+0. s+0. =0. 2 2 s<+0. s+0. =0. 2
/o6 210.0078155+0.00008—0.0000136,/ ~ € /a6 2+0.0076155+0.00008—0.0000136,) YProcess

Consequently, the Process characteristic equation can be transformed into equations (219) and (220),

because the MRAC system aim is to approximate the Process Model with the Reference Model.
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steam — s+ 0.004299s + 0.00002 + 0.000026, ~ s? + 0.004299s + 0.00002 (219)
water > s? + 0.007815s + 0.00008 — 0.0000130, ~ s? + 0.007815s + 0.00008 (220)

Finally, from equations (219) and (220), the error partial derivatives are transformed; and employing

the MIT rule, the update rules for the adaptive feedforward (6;) and adaptive feedback (6,) gain are obtained

as follows:
221
steam — d91/ _ ( 0.0042995+0.00002 )e and d92/ _ ( 0.0042995+0.00002 )e
dt = TV \$Zr0.0042995+0.00002 1€ dt = ¥ \$Z50.004299s+0.00002 JProcCess
222)
water — d91/ _ ( 0.0078155+0.00008 )e and dez/ _ ( 0.0078155+0.00008 )e
dt = TV \$Zr00078155+0.00008 “¢ dt =Y \5270.0078155+0.00008 - Process

On the other hand, for the MRAC controller based on Lyapunov theory for the Industrial Heat
Exchanger no matter if is for the steam process or for the water process the difference is that the adaptive feed

forward (6;) and the adaptive feedback (6,) update rules are:

do,

o = Yuce (223)
do, _
. = YWe (224)

With the above equations the controller of Figure A. 2 was implemented.

VS-MRAC-SAT-PI for the Industrial Heat Exchanger

In order to achieve the VS-MRAC-SAT-PI controller proposed in this research for the Industrial
Heat Exchanger, first, a simple VS-MRAC controller was designed. This controller is implemented following
the method presented in (Hsu, 1988) and (Hsu, 1990). The principal characteristic of this methodology is that
it uses commutation function as sign functions. Then, a second structure was proposed (VS-MRAC-SAT). In
this structure the original scheme is modified substituting the sign functions by saturation function. This
modification is recommended to smooth the control signal and to avoid high frequency oscillations known as
chattering. Finally, the third and last scheme, which is the one proposed in this research adds a Proportional
Integer (PI) controller to the original VS-MRAC controller. This scheme uses sign functions to realize the

commutation.
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Figure A. 2. Fault Tolerant MRAC Controller Structure.

For the first structure (VS-MRAC), to obtain a reference model for the steam and water system with

unitary gain and a settling time of 2500 seconds and 1600 seconds, respectively, the M(s) is defined as:

K 0.000007
Msteam (s) = (s+am)?  (s+0.002632)2 (225)

K 0.000017
Muarer (s) = (stam)?  (s+0.004112)2 (226)

Considering that a,, takes the value of 0.002632 for the steam system and a value of 0.004112 for the

water system and that the design method indicates that w,>>a,,, the value of w, is
Wo_steam = 5Am = 5% 0.002632 = 0.01316 (227)
Wo water = 54y = 5% 0.004112 = 0.02056 (228)

Using {=0.456 for both systems (steam and water) and w;~0.01316 and ®;=0.02026 for the steam

and water systems, respectively, the following filter transfer function is obtained:

_ 2 0.000173
F7Y(S)steam = Tgeee— = (229)

s2428wo+wo  $2+0.0120025+0.000173
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w§ _ 0.000423
s2+28wo+wg  $%2+0.0187515+0.000423

F_l(s)water = (230)

From the Industrial Heat Exchanger second order model, the values of «;=0.004299 and
a;=0.007815 for the steam and water systems, respectively, are obtained. Therefore the polynomial L(s) is

define by
L(S)steam =S +a; = s+ 0.004299 (231)
L(S)water =S +a, =s +0.007815 (232)

From the multiplication of the above equations by their respective reference model, the following

equations are form:

__0.0000075+(3.0093+1078)

MLsteam = $240.0052645+0.000007 (233)
ML _0.0000175+(1.32855%107) 234
water ™ 210,0082245+0.000017 (234)
The value of k; is selected as 1, therefore the value of k is represented by
k 1
ko steam = é = Sooseas = 379.939 (235)
Ko water = 2+ = ——— = 243.191 (236)

am  0.004112

Then, the sign of the classical VS-MRAC scheme is changed by a saturation function (VS-MRAC-
SAT). The saturation function will behave as a sign function just when the absolute value of the input signal
is higher that the design parameter value ¢. If the input signal has an absolute value lower than ¢, the output
signal from the saturation function is equal to the input signal multiplied by the parameter k, or k;. The value
of ¢y and ¢; was determined in an empiric form from the simulation of the system (&,=0.01 and &;=2 for the
steam and water system). Finally, the proposed scheme presented in this research is a VS-MRAC with a
Saturation function and a PI controller (VS-MRAC-SAT-PI). In this structure a PI controller is added to the
VS-MRAC-SAT structure. The PI controller ap, cp, a; and ¢; parameters were selected in an empiric form
through simulation (ap=1, cp=320, a;=1.6, ¢;=0.99 for the steam system and ap=1, cp=320, a;=1.6, ¢;=0.99
for the water system). Finally, the VS-MRAC-SAT-PI is represented by Figure A. 3.
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Figure A. 3. VS-MRAC-SAT-PI Structure for the Industrial Heat Exchanger.

Coupled-Tank System
A real Coupled-Tank system control station was used to design; implement and test the proposed

controller (see Figure A.4).
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Figure A. 4. Physical Implementation of the Coupled-Tank System.

In Figure A.5 a schematic diagram of the Coupled-Tank control station is represented. This system
consist in a pair of coupled cylindrical tanks interconnected by the inferior part, both tanks have a height of
0.8 m and a diameter of 0.15 m. A pneumatic control valve (FCV) regulates the flow of water that feeds tank
T-1, this valve is controlled by a current signal that varies from 4 to 20 mA. The water level is measured in
tank T-2 using a level transmitter (LT) which delivers a current signal from 4 to 20 mA. The water discharge
is located in Tank T-1. The sensor and control signals are generated and acquired using a data acquisition card
NI-PXI from National Instruments. After processing, the control variable measures the percentage of valve
opening and the process variable measures the percentage of the tank capacity. The implementation of the
controllers is realized using Matlab® and Labview®. The control objective is to regulate the input flow in a
way that the liquid level in Tank T-2 follows a reference signal. The control system must be able to follow the

reference signal in spite of the presence of level sensor and control valve faults.

PC/HMI NI-PXI

i -

b, ©

Recirculation Tank

Pump

Figure A. 5. Coupled-Tank System Control Scheme Schematic Diagram.
To obtain a transfer model of the above scheme a PRBS test was applied to the Coupled-Tank
system. From the results of the PRBS test and using the Identification Control Toolbox of Matlab®, the

following second order transfer function was obtained.

0.02422e714S
52+0.37465+0.003637

Gy(s) = (237)
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Model Reference Adaptive Controller for the Coupled-Tank System

Two different MRAC were designed for the Coupled-Tank System, an MRAC based on the MIT rule
and an MRAC based on the Lyapunov theory.

The reference model used in both controllers was chosen in order to have a maximum peak (MP) of
overshoot of 20% and a settling time (t;) of 60 seconds. A reference model that achieves the above
characteristic is:

0.02138
52+0.13335+0.02138

G (s) = (238)

Based on the theory explained in the Background theory section, the adaptation laws of the MRAC based on

the MIT rule for the above reference model are represented by (see figure A. 6):

dgl/dt _ —]/( 013335+0.02138 )e (239)

5240.007815540.00008 €

de/dt _ )/( 0.13335+0.02138 y )e (240)

5240.0078155+0.00008 ~ PTOCESS

On the other hand, the adaptation laws for the MRAC base don Lyapunov theory are given by (see
figure A. 6):

a8,

= —yu.e 241
@ = VU (241)
daé,
. = YWe (242)
Reference Model
0.02138
57 +0.13335+0.02138 Y,

+
@

Real
Process

Yo

MIT Rule

0.1333s+0.02138
57 +0.13335+0.02138

MIT Rule

0.1333s+0.02138
s> +0.13335+0.02138

Lyapunov Theory Lyapunov Theory

Figure A. 6. Coupled-Tank MRAC scheme based on MIT rule and based on Lyapunov theory.
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VS-MRAC-SAT-PI for the Coupled-Tank System

In order to achieve the VS-MRAC-SAT-PI for the Coupled-Tank system, the following procedure
was realized. For the first structure (VS-MRAC), to obtain a reference model with unitary gain and a settling

time of 60 seconds M(S) is defined as:

K 004
(s+am)?  (s+0.2)2

Mgieam(s) = (243)

Considering that a,, takes the value of 0.2 and that the design method indicates that w,>>a,, the

value of wy is
wo = 5a, =1 (244)

Using £=0.707 and w,=1, the following filter transfer function is obtained:

2

Fl(s)=—20 -1 (245)

s2428wo+wg  S2+1.414s+1

From the Coupled-Tank system second order model, the value of @;=0.3746, therefore the
polynomial L(s) is define by

L(S)steam =S +a; = s + 0.3746 (246)

From the multiplication of the above equation by the reference model, the following equation is form:

0.045+0.015
MLsteam = 5 7ev00a (247)

The value of &; is selected as 20, therefore the value of & is represented by
ko = <2 =100 (248)

am

Then, the second structure (VS-MRAC-SAT) was developed. The value of ¢, and &; was determined
in an empiric form from the simulation of the system (gy=0.01 and &;=0.5). And finally, the proposed scheme
presented in this research (VS-MRAC-SAT-PI) was developed. The values of PI parameters (ap, cp, a; and ¢;)

were selected in an empiric form through simulation (ap=10, cp=0.2, a;=20 and ¢;=0.3) (see Figure A.7.).
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Figure A. 7. VS-MRAC-SAT-PI Structure for the Coupled-Tank System.
Results

To test the above approaches, two different types of faults are introduced in the considered testbed
case. The first type of fault is an additive abrupt fault and the second type of fault is an additive gradual fault.
All types of faults are introduced in actuator and sensors. An additive fault will modify the quantity of the
nominal value by the addition of a quantity f{z). An abrupt additive fault in actuators represent, for instance, a
pump stuck or in sensors a constant bias in measurements. A gradual additive fault could be a progressive loss
of electrical power in pump or a drift in the sensor measurements.

As mentioned before, the above type of faults were tested in two different systems: a simulated
Industrial Heat Exchanger and a real physical Coupled-Tank System. In each system, the three developed
schemes were tested (MRAC based on MIT rule, MRAC based on Lyapunov theory and VS-MRAC-SAT-
PI).

Simulation Results for the Industrial Heat Exchanger

To test and compare the proposed schemes in the Industrial Heat Exchanger, the same operating
conditions were applied for the three schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI). It is
important to mention that the faults are introduced after the stabilization of the system. The total test time is of
15000 seconds, the sensor or the actuator faults (abrupt or gradual for both cases) were introduced at 5000
seconds. For sensor faults two different faults magnitudes were proved (5% and 15%). On the other hand, for
actuator faults the magnitude of the faults were chosen as 1% and 5%. In addition the MSE error was
calculated for each of the above experiments (see Table A-II). Figure A. 8 and Figure A. 9 shows the
implementation of abrupt sensor and abrupt actuator faults, while Figure A. 10 and Figure A. 11 shows the

implementation of gradual sensor and gradual actuator faults.
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Abrupt Sensor Faults of 5%
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Figure A. 8. Abrupt Sensor Faults of 5% and 15% tested in the MRAC-MIT, MRAC-LYA and VS-
MRAC-SAT-PI schemes.

In Figure A. 8, it can be observed that the MRAC-MIT and the MRAC-LYA schemes were robust
against abrupt sensor faults of 5% and 15%, while the VS-MRAC-SAT-PI scheme was fault tolerant for

abrupt sensor faults of 5% but was degraded for abrupt sensor fault of 15%.
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Figure A. 9. Abrupt Actuator Faults of 1% and 5% tested in the MRAC-MIT, MRAC-LYA and VS-
MRAC-SAT-PI schemes.
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In Figure A. 9, it can be shown that the MRAC-MIT and the MRAC-LY A schemes became degraded
after the occurrence of the abrupt actuator fault of 1% and 5%, while the fault of the VS-MRAC-SAT-PI
scheme was imperceptible for both magnitudes (abrupt actuator faults of 1% and 5%).
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Figure A. 10. Gradual Sensor Faults of 5% and 15% tested in the MRAC-MIT, MRAC-LYA and VS-
MRAC-SAT-PI schemes.
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FigureA. 11. Gradual Actuator Faults of 1% and 5% tested in the MRAC-MIT, MRAC-LYA and VS-
MRAC-SAT-PI schemes.

175



The same results of abrupt faults (Figure A. 8 and Figure A. 9) were obtained testing the gradual
faults (see Figure A. 10 and Figure A. 11).

The summary of the above results can be observed in Table II. And Table III presents the result of
the MSE from the above tested types of faults.

Table A-II corroborate the results showed from Figure A. 8 to Figure A. 11 and the results of Table
I, in which in general the best designed schemes for abrupt or gradual sensor faults were the MRAC-MIT and
the MRAC-LYA schemes. And the best designed scheme for abrupt or gradual actuator faults was the VS-
MRAC-SAT-PI scheme.

Table A- I. Summary of results of Abrupt or Gradual Faults

Abrupt or Gradual Faults
Proposed Schemes Sensor Faults Actuator Faults
5% 15% 1% 5%
MRAC-MIT R R D D
MRAC-LYA R R D D
VS-MRAC-SAT-PI FT D R R

D = Degraded System, FT = Fault Tolerant, R = Robust

Table A- II. MSE of the different designed schemes

Fault Type Fault MRAC- MRAC- | VS-MRAC-
Magnitude MIT LYA SAT-PI
5% 0 0 0.00068
Sensor
Abrunt 15% 0 0 133095
rup Aetuat 1% 0.00077 0.00068 0
ctuator
U 5% 0.00728 0.00951 0
5% 0 0 0.00068
Sensor
Gradual 15% 0 0 1.03483
radua Aetuat 1% 0.00069 0.00068 0
ctuator
U 5% 0.00692 0.00951 0

Results for the Physical Coupled-Tank System

To test and compare the proposed schemes in the Coupled-Tank System, the same operating
conditions were applied for the three schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI. To test
the schemes, the system was already stabilized at the 50% of water level of the total capacity of both tanks.
Then a 10% of change in reference is performed. The faults are introduced after the stabilization of the
system. The total test time is of 1200 seconds, the actuator fault was introduced at 400 seconds and the sensor
fault was introduced at 800 seconds. For actuator faults two different faults magnitudes were proved (10%
and 30%). On the other hand, for sensor faults the magnitude of the faults were chosen as 5% and 10%. In

addition the MSE error was calculated for each of the above experiments (see Table A-V).

176



First, the combination of abrupt actuator fault of magnitude 10% and abrupt sensor fault of
magnitude 5% with the combination of abrupt actuator fault of magnitude 30% and abrupt sensor fault of
magnitude 10% were tested (see Figure A. 12). The three FTC schemes were proved in the real Coupled-Tank
system station. The value of y for the MRAC-MIT and the MRAC-LY A was selected as 0.001.

Second, the combination of gradual actuator fault of magnitude 10% and gradual sensor fault of
magnitude 5% with the combination of gradual actuator fault of magnitude 30% and gradual sensor fault of
magnitude 10% were tested (see Figure A. 13). The three FTC schemes were proved in the real Coupled-Tank
system station. The value of y for the MRAC-MIT and the MRAC-LY A was selected as 0.001.
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Figure A. 12. Abrupt Sensor and Abrupt Actuator Faults in the MRAC-MIT, MRAC-LYA and VS-
MRAC-SAT-PI schemes.
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Gradual Actuator Faults of 10% (400s) and Gradual Sensor Faults of 5% (800s)
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Figure A. 13. Abrupt Sensor and Abrupt Actuator Faults in the MRAC-MIT, MRAC-LYA and VS-

MRAC-SAT-PI schemes.

The summary of the results of the above figures can be observed in Table A-III and Table A-IV.

Table A- I11. Summary of results of Abrupt Faults

Abrupt Faults
Proposed Fault Combination 1 Fault combination 2
Schemes Actuator Sensor Actuator Sensor
Fault Fault 5 Fault 30 Fault 10
10% % % %
MRAC-MIT FT FT FT FT
MRAC-LYA FT FT FT FT
VS-MRAC-
SAT-PI FT FT FT FT

FT=Fault Tolerant

Table A- IV. Summary of results of Gradual Faults

Gradual Faults
Proposed Fault Combination 1 Fault combination 2
Schemes Sensor Actuator Sensor
Actuator
Fault 10% Fault 5 Fault 30 Fault 10
% % %
MRAC-MIT FT FT FT FT
MRAC-LYA FT FT FT FT
VS-MRAC-
SAT-PI FT FT FT FT

FT=Fault Tolerant
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It can be observed from Figures A. 12 and Figure A. 13 and from Table A-III and A-IV that for
abrupt faults the three proposed schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI) resulted fault
tolerant to the two different combinations of faults tested in this research. Also, for gradual faults the three

schemes were fault tolerant to actuator faults and to sensor faults, no matter the fault combination magnitude.

Table A-V presents the result of the MSE from the above combination of actuator fault and sensor

faults.
Table A- V. MSE of the different designed schemes
MRAC-MIT MRAC-LYA VS-MRAC-SAT-PI
Actuator Sensor
Fault Fault Fault MSE MSE MSE MSE MSE MSE
Type Magnitude | Magnitude Actuator | Sensor | Actuator | Sensor | Actuator | Sensor
Fault Fault Fault Fault Fault Fault
Abrunt 10 % 5% 0.5840 0.4690 0.6581 0.5354 0.0808 0.4054
r
up 30 % 10 % 5.8530 2.0780 5.7538 2.4842 1.2220 2.5371
Gradual 10 % 5% 0.1029 0.0059 0.1029 0.0047 0.0091 0.0072
r
adud 30 % 10 % 0.7477 | 0.0114 | 07673 | 0.0125 | 0.0434 | 0.0091

Table A-V corroborate the results showed from Figure A. 12 and A. 13 and the results of Table A-III
and A-IV, in which in general the best designed scheme for abrupt and gradual actuator faults of 10% and
30% and for abrupt sensor fault of 5% and gradual sensor fault of 10% was the VS-MRAC-SAT-PI because
has the lower MSE in the mentioned cases. On the other hand, for the abrupt sensor fault of 10% the best
scheme is the MRAC-MIT and for gradual sensor fault of 5% the best scheme is the MRAC-LYA because
have the lower MSE.

Conclusions

For the experiments implemented in the Industrial Heat Exchanger, it can be observed that the
MRAC-MIT and the MRAC-LYA schemes were the best schemes for abrupt sensor faults of 5% and 15%
because both schemes were robust against these types of fault. On the other hand the VS-MRAC-SAT-PI
scheme was fault tolerant for the abrupt sensor fault of 5% but was degraded for abrupt sensor fault of 15%.
In the case of actuator faults, the MRAC-MIT and the MRAC-LYA schemes became degraded after the
occurrence of the fault of 1% and 5%, while the VS-MRAC-SAT-PI scheme was robust for both fault
magnitudes (abrupt actuator faults of 1% and 5%). In general, the same results were obtained for gradual
faults. The MSE results (Table A-II) corroborate the above information, in which in general the best designed
schemes for abrupt or gradual sensor faults were the MRAC-MIT and the MRAC-LYA schemes. And, the
best designed scheme for abrupt or gradual actuator faults was the VS-MRAC-SAT-PI scheme

For the experiments implemented in the Coupled-Tank system, it can be observed that for abrupt
faults the three proposed schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI) were fault tolerant to
the two different combinations of faults tested in this research (actuator faults of 10% and 30% and sensor

faults of 5% and 10%). Also, for Gradual faults the three schemes were fault tolerant to actuator faults and to
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sensor faults, no matter the fault combination magnitude. But, the MSE results (Table A-V) shows that in
general the best designed scheme for abrupt and gradual actuator faults of 10% and 30% and for abrupt sensor
fault of 5% and gradual sensor fault of 10% was the VS-MRAC-SAT-PI. And, for the abrupt sensor fault of
10% the best scheme is the MRAC-MIT and for gradual sensor fault of 5% the best scheme is the MRAC-
LYA.

In summary, the controllers presented in this work allow the system availability in spite of the
presence of a fault, because the implemented controllers were able to accommodate a fault between certain

magnitude thresholds.
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Appendix B

First, this section explains the single multiplicative faults tested in the LPV system. The results of
these experiments are shown from Table B-I and Table B-II. These results explain if the methodologies are
robust, fault tolerant or degraded against the simulated fault and also demonstrate the Mean Square Error

(MSE).

Table B-I. Results of experiments using multiplicative sensor faults in the MRAC-LPV and MRAC-
H.,GS-LPV methodologies based on MIT rule for LPV systems.

Methodol Sensor Faults Result and MSE
chodotosy 100% 90% 50% 5%
MRAC-LPV based Fault Tolerant Fault Tolerant Fault Tolerant Fault Tolerant
on MIT rule MSE=0.00133 MSE=0.00122 MSE=0.00082 MSE=0.00033
MRAC-LPYV based Fault Tolerant Fault Tolerant Fault Tolerant Fault Tolerant
on Lyapunov MSE=0.00092 MSE=0.00083 MSE=0.00049 MSE=0.00022
MRAC-H,GS-LPV Robust Robust Robust Robust
based on MIT rule MSE=0.00122 MSE=0.00122 MSE=0.00122 MSE=0.00122
MRAC-H,GS-LPV Robust Robust Robust Robust
based on Lyapunov MSE=0.00094 MSE=0.00094 MSE=0.00094 MSE=0.00094

In Table B-, it is observed that the best methodologies are the MRAC-LPV and the MRAC-H.,GS-
LPV based on Lyapunov theory, because they are Fault Tolerant and Robust, respectively, against the sensor

fault implemented at 5000 seconds and have the smaller Mean Square Error.

Table B-1II. Results of experiments using multiplicative actuator faults in the MRAC-LPV and MRAC-
H..GS-LPV methodologies based on MIT rule for LPV systems.

Methodol MSE Actuator Faults
cthodoTosy 100% 90% 50% 5%

MRAC-LPYV based Degraded Degraded Degraded Degraded

on MIT rule MSE=1.57069 MSE=1.27232 MSE=0.39292 MSE=0.00425
MRAC-LPYV based Degraded Degraded Degraded Degraded

on Lyapunov MSE=1.57058 MSE=1.27221 MSE=0.39281 MSE=0.00415
MRAC-H,.GS-LPV Degraded Degraded Degraded Degraded
based on MIT rule MSE=1.57158 MSE=1.27321 MSE=0.39381 MSE=0.00514
MRAC-H,.GS-LPV Degraded Degraded Degraded Degraded
based on Lyapunov MSE=1.57130 MSE=1.27293 MSE=0.39353 MSE=0.00486

In Table B-II, it is observed that for actuator faults the four methodologies could not accommodate
the fault. The actuator fault was introduced at time 15000 seconds. In Figure B. 1, Figure B. 2, Figure B. 3
and Figure B. 4, it can be observe that for the multiplicative faults of magnitude 100%, 90%, 50% and 5%
applied in the sensor, the MRAC-H,GS-LPV controller was robust against this type of fault. The above apply
for the methodology based on the MIT rule and the methodology based on the Lyapunov theory. In addition,
the MRAC-LPV controller was able to accommodate the multiplicative sensor faults of the different fault
magnitudes. On the other hand, for the multiplicative actuator faults of magnitude 100%, 90%, 50% and 5%
both controllers (MRAC-H,,GS-LPV and MRAC-LPV) became degraded after the occurrence of the fault.
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Also, it can be observe that in both cases (multiplicative sensor or multiplicative actuator faults) the

controllers were able to have a change in the operating point at 10000 seconds.
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Figure B. 1. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 100% (multiplicative
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sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the LPV system.

SENSOR FAULTS
MRAC CONTROLLERS BASED ON MIT RULE
MRAC-H,GS-LPV . MRAC-LPV

Tank Level (cm)
Tank Level (cm)

@
°
b

0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

x 10" x10°

Time (seconds) Time (seconds)

MRAC CONTROLLERS BASED ON LYAPUNOV THEORY
MRAC-H,GS-LPV , MRAC-LPV

Tank Level (cm)
Tank Level (cm)

@
°
&

o

0.2 0.4 0.6 0.8 1 12 14 16 18 2 0 0.2 04 06 08 1 1.2 14 16 1.8 2
Time (seconds) x10* Time (seconds) x 10*

ACTUATORFAULTS
MRAC CONTROLLERS BASED ON MIT RULE

MRAC-H,GS-LPV MRAC-LPV

w
w

Tank Level (cm)
Tank Level (cm)

[

o

02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

x10* x 10

Time (seconds)

MRAC CONTROLLERS BASED ON LYAPUNOV THEORY
MRAC-H,GS-LPV MRAC-LPV

3

Time (seconds)

Tank Level (cm)
Tank Level (cm)

L

0 0.2 0.4 0.6 0.8 1 1.2 14 16 18 2 [ 0.2 0.4 0.6 0.8 1 1.2 14 16 18 2
. " . "
Time (seconds) x10 Time (seconds) x10

Figure B. 2. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 90% (multiplicative
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sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the LPV system.
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Figure B. 3. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 50% (multiplicative
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sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the LPV system.
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Figure B. 4. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of magnitude 5%
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(multiplicative sensor and multiplicative actuator fault) for the operating points ¢;=0.3 and ¢,=0.5 and
a change in the operating point at time 10000 seconds for the LPV system.

In addition to the experiments presented in this section, the error of these experiments was calculated

and plotted, see the next figures.
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Figure B. 5. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of magnitude 100%
(multiplicative sensor and multiplicative actuator fault) for the operating points ¢;=0.3 and ¢,=0.5 and
a change in the operating point at time 10000 seconds for the LPV system.
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Figure B. 6. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of magnitude 90%
(multiplicative sensor and multiplicative actuator fault) for the operating points ¢;=0.3 and ¢,=0.5 and
a change in the operating point at time 10000 seconds for the LPV system.

In Figure B. 5 and Figure B. 6, it can be observe that for the single multiplicative sensor fault of
100% and 90% the error range between +/- 1 cm from the set point. On the other hand for the single

multiplicative actuator fault of magnitude 100% and 90% the error represents approximately 2.5 cm of the

system output.
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In figure B. 7, it can be observe that for the single multiplicative sensor fault of 50% the error range

between +/- 1 cm from the set point. On the other hand for the single multiplicative actuator fault of 50% the

error represents approximately 1.5 cm of the system output.
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Figure B. 7. Compariso
Controllers based on the

n between the error output of the MRAC-H,GS-LPV and MRAC-LPV
MIT rule and the Lyapunov theory with a single fault of magnitude 50%

(multiplicative sensor and multiplicative actuator fault) for the operating points ¢;=0.3 and ¢,=0.5 and

a change in the operating

point at time 10000 seconds for the LPV system.
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In figure B. 8, it
error range between +/- 1

of magnitude 5% the error

Error OEtput (cm)

&

can be observe that for the single multiplicative sensor fault of magnitude 5% the
cm from the set point. On the other hand for the single multiplicative actuator fault

represents approximately 1 cm of the system output.
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Controllers based on the
sensor and multiplicative

n between the error output of the MRAC-H,GS-LPV and MRAC-LPV
MIT rule and the Lyapunov theory with a single fault of 5% (multiplicative
actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the

operating point at time 10000 seconds for the LPV system.
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In Figure B. 9 and Figure B. 10, for the combination of a multiplicative sensor fault and a
multiplicative actuator fault both of 100% and 90%, the error represents approximately 2.5 cm of the system

output.

In figure B. 11, for the combination of a multiplicative sensor fault and a multiplicative actuator fault

both of 50%, the error represents approximately 1.5 cm of the system output.

In figure B. 12, for the combination of a multiplicative sensor fault and a multiplicative actuator fault

both of 5%, the error represents approximately 1 cm of the system output.
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Figure B. 9. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of

100%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the LPV system.
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Figure B. 10. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of
90%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000

seconds for the LPV system.
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Figure B. 11. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time S000 seconds and a multiplicative actuator faults at time 15000 seconds both of
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50%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the LPV system.
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Figure B. 12. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%,

for the operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000 seconds
for the LPV system.
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Appendix C

The next figures show the results of the nonlinear model implementation using a value of y = 10000
with additive faults. Theses figure presented chattering and oscillation in comparison with the experiments

when a value of y = 0.003 was used.
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Figure C. 1 . Comparison between the Nonlinear Process MRAC-H,GS-LPV and the Nonlinear
Process MRAC-LPV Controllers with an abrupt-sensor fault of 3% and an abrupt-actuator fault of
20% for the operating points ¢;=0.3 and ¢,=0.5.

In Figure C.1, the MRAC-H,,GS-LPV and the MRAC-LPV Controller based on MIT rule and on
Lyapunov theory are compared. While both controllers are working in the operating point ¢,=0.3 and ¢,=0.5,
an abrupt-sensor fault of 3% was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was
introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000
seconds. In this figure, it can be observed that the MRAC-H,,GS-LPV based on MIT rule was robust against
the sensor fault but the systems remained with oscillations after the change in the operating point. The
MRAC-H,,GS-LPV based on Lyapunov theory was fault tolerant against the sensor fault, could tolerate the
change in the operating point with certain oscillations and the actuator fault was imperceptible. On the other
hand, the MRAC-LPV scheme based on MIT rule presented certain oscillations after the occurrence of the
sensor fault, and was able to accommodate the fault after the occurrence of the actuator fault. Finally, the
MRAC-LPV scheme based on Lyapunov theory presented certain oscillations after the occurrence of the
sensor fault but was able to accommodate the fault after the change in the operating point and the actuator

fault was imperceptible.
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Figure C. 2. Comparison between the Nonlinear Process MRAC-H,,GS-LPV and the Nonlinear Process
MRAC-LPYV Controllers with an abrupt-sensor fault of 160% and an abrupt-actuator fault of 20% for
the operating points ¢;=0.3 and ¢,=0.5 .

In Figure C.2, the MRAC-H,,GS-LPV and the MRAC-LPV Controller based on MIT rule and on
Lyapunov theory are compared. While both controllers are working in the operating point ¢,=0.3 and ¢,=0.5,
an abrupt-sensor fault of 160% was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was
introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000
seconds. In this figure, it can be observed that the MRAC-H,.GS-LPV based on MIT rule became unfeasible
after the change in the operating point because it reached a value of +/- 60 and the maximum real physical
value of the system output is 30. In the MRAC-H,,GS-LPV based on Lyapunov theory after the occurrence of
the sensor fault the system presented a small oscillation that was corrected after the occurrence of the actuator

fault. On the other hand, the MRAC-LPV scheme based on MIT rule and Lyapunov theory became degraded

after the occurrence of the sensor fault.
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Figure C. 3. Comparison between the Nonlinear Process MRAC-H,,GS-LPV and the Nonlinear Process
MRAC-LPYV Controllers with a gradual-sensor fault of 3% and a gradual-actuator fault of 20% for the
operating points ¢;=0.6 and ¢,=0.6 .

In Figure C.3, the MRAC-H,,GS-LPV and the MRAC-LPV Controller based on MIT rule and on
Lyapunov theory are compared. While both controllers are working in the operating point ¢,=0.6 and ¢,=0.6,
a gradual-sensor fault of 3% was introduced in time 5000 seconds and a gradual-actuator fault of 20% was
introduced at time 15000 seconds. In addition, a change in the operating point was performed at time 10000
seconds. In this figure, it can be observed that the MRAC-H,GS-LPV based on MIT rule, the MRAC-LPV
based on the MIT rule and based on Lyapunov theory schemas remained with oscillations problems after the
occurrence of the sensor fault until the end of the simulation. On the other hand, the MRAC-H,GS-LPV
based on Lyapunov theory presented a small oscillation, since the beginning and during the sensor fault
occurrence, almost unnoticed that is accommodated after the change in the operation point and the actuator

fault was imperceptible.
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Figure C. 4. Comparison between the Nonlinear Process MRAC-H,,GS-LPV and the Nonlinear Process
MRAC-LPYV Controllers with a gradual-sensor fault of 160% and a gradual-actuator fault of 20% for
the operating points ¢;=0.6 and ¢,=0.6 .

In Figure C.4, the MRAC-H,,GS-LPV and the MRAC-LPV Controller based on the MIT rule and on
the Lyapunov theory are compared. While both controllers are working in the operating point ¢,=0.6 and
¢,=0.6, a gradual-sensor fault of 160% was introduced in time 5000 seconds and a gradual-actuator fault of
20% was introduced at time 15000 seconds. In addition, a change in the operating point was performed at
time 10000 seconds. In this figure, it can be observed that the MRAC-H,,GS-LPV based on MIT rule became
unfeasible after the change in the operating point. The MRAC-H,,GS-LPV based on Lyapunov theory after
the occurrence of the sensor fault presented a small oscillation until the end of the simulation. On the other

hand, the MRAC-LPV scheme based on MIT rule and Lyapunov theory became degraded after the

occurrence of the sensor fault.

In addition, to compare the Nonlinear Process MRAC MIT and the Nonlinear Process MRAC
Lyapunov based design the Mean Square Error (MSE) was calculated for all the experiments. The results are

shown in Table C-I.
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Table C- I. MSE Results of the comparison between the Nonlinear MRAC-LPV and the Nonlinear

MRAC-H,,GS-LPV MIT and Lyapunov based design.

Operating Point ¢,=0.3 and ¢,=0.5

MRAC MIT based design MRAC Lyapunov based design
Sensor Faults (3% Sensor Faults (3%
Methodology and Actuator Faulis (2)0%) and Actuator FaulEs (2)0%)
MRAC-LPV 0.462414 0.022708
MRAC-H, GS-LPV 1.798773 0.01143
Sensor Faults (160%) Sensor Faults (160%)
and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 96.72275 95.6898
MRAC-H,,GS-LPV 34.61832 0.013007
Operating Point ¢, =0.6 and ¢,=0.6
MRAC MIT based design MRAC Lyapunov based design
Methodology Sensor Faults (3%) Sensor Faults (3%)
and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 0.659136 0.039946
MRAC-H,,GS-LPV 1.238969 0.010449
Sensor Faults (160%) Sensor Faults (160%)
and Actuator Faults (20%) and Actuator Faults (20%)
MRAC-LPV 90.21047 89.67406
MRAC-H,GS-LPV 8.678645 0.008226

On the other hand, the following figures show the results of the nonlinear model implementation of

multiplicative faults using a value of y = 10000:
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Figure C. 5. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of
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100%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the nonlinear system.

In Figure C.5, for the combination of multiplicative sensor fault of 100% at 5000 second and
multiplicative actuator fault of 100% at 15000 seconds, it can be observe that MRAC-H,,GS-LPV based on
the MIT rule was robust to the sensor fault but became unfeasible after occurrence of the actuator fault. The
same applies for the MRAC-LPV based on the MIT rule. On the other hand, the MRAC-H,,GS-LPV based on
Lyapunov was robust against the multiplicative sensor fault, but became degraded after the appearance of the
actuator fault. The MRAC-LPV based on Lyapunov theory was fault tolerant to the multiplicative sensor fault

but also became degraded after the occurrence of the actuator fault.
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Figure C. 6. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of

90%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the nonlinear system.

In Figure C.6, for the combination of multiplicative sensor fault of 90% at 5000 second and
multiplicative actuator fault of 90% at 15000 seconds, it can be observe that MRAC-H,,GS-LPV based on the
MIT rule was fault tolerant to the sensor fault but became unfeasible after the change in the operating point.
The MRAC-LPV based on the MIT rule presented and offset since the beginning of the simulation, was fault
tolerant to the sensor fault but became unfeasible after the occurrence of the actuator fault. On the other hand,
the MRAC-H,,GS-LPV based on Lyapunov was robust against the multiplicative sensor fault, presented some
chattering after the change in the operating point and was fault tolerant to the actuator fault. The MRAC-LPV
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based on Lyapunov theory presented some chattering since the beginning of the simulation and was fault

tolerant to the multiplicative sensor and actuator fault.

MRAC CONTROLLERS BASED ON MIT RULE
MRAC-H,GS-LPV N MRAC-LPV

2 g = &
& 8 8

N
S

Tank Level (cm)
8 5 8 o
Tank Level (cm)

&
8

-1 -30
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Time (seconds) x10* Time (seconds) x10°

MRAC CONTROLLERS BASED ON LYAPUNOV THEORY
MRAC-H,GS-LPV MRAC-LPV

4
o
~ ~ 3r
£ g
S L 1 o l
© f <
2 2 "5 ‘
= ’3 1
EYE saiu ]
g 1 =
< <
= = 0
0
At
1
- 0 0.2 0.4 0.6 0.8 1 12 14 16 18 2 -ZD 0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2
Time (seconds) x10' Time (seconds) < 10°

Figure C. 7. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of

50%, for the operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the nonlinear system.

In Figure C.7, for the combination of multiplicative sensor fault of 50% at 5000 second and
multiplicative actuator fault of 50% at 15000 seconds, it can be observe that MRAC-H,,GS-LPV based on the
MIT rule was fault tolerant to the sensor fault but became unfeasible after the change in the operating point.
The MRAC-LPV based on the MIT rule presented and offset since the beginning of the simulation, and
presented chattering problems after the sensor fault. On the other hand, the MRAC-H,GS-LPV based on
Lyapunov was robust against the multiplicative sensor fault, presented some chattering after the change in the
operating point and was fault tolerant to the actuator fault. The MRAC-LPV based on Lyapunov theory

presented some chattering since the beginning of the simulation and was fault tolerant to the multiplicative

sensor and actuator fault.
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Figure C. 8. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%,
for the operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000 seconds
for the nonlinear system.

In Figure C.8, for the combination of multiplicative sensor fault of 5% at 5000 second and
multiplicative actuator fault of 5% at 15000 seconds, it can be observe that MRAC-H,,GS-LPV based on the
MIT rule was fault tolerant to the sensor fault but became unfeasible after the change in the operating point.
The MRAC-LPV based on the MIT rule presented and offset since the beginning. On the other hand, the
MRAC-H,,GS-LPV based on Lyapunov was robust against the multiplicative sensor fault, presented some
chattering after the change in the operating point and was fault tolerant to the actuator fault. The MRAC-LPV
based on Lyapunov theory presented some chattering since the beginning of the simulation and was fault
tolerant to the multiplicative sensor and actuator fault. In addition, the error from the multiplicative faults

experiments was calculated and plotted.

Table C-II shows the results of the above multiplicative fault experiments. These results explain if
the methodologies are robust, fault tolerant, degraded, and unfeasible or if they have a chattering against the
simulated fault and also demonstrate the Mean Square Error (MSE). In Table 24, it is observed that just a few
methodologies were able to tolerate the combination of the multiplicative sensor (5000 seconds) and actuator
(15000 seconds) faults implemented in the nonlinear system, for example the MRAC-H,,GS-LPV based on
Lyapunov theory with a sensor and an actuator fault of 90% was robust against the sensor fault and was fault

tolerant against the actuator fault. In general, the MRAC-LPV and the MRAC-H,GS-LPV based on
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Lyapunov theory presented the best behavior because the Mean Square Error was the lower in comparison
with the methodologies using the MIT rule. In addition, most of the experiments presented some chattering

effects due to the nonlinearities of the system.

Table C- II. Results of experiments using multiplicative sensor (5000 seconds) and actuator (15000
seconds) faults in the MRAC-LPV and MRAC-H,.GS-LPV methodologies based on MIT rule for
nonlinear systems.

Methodol MSE Sensor and Actuator Faults
ethodology 100% 90% 50% 5%
FT, C—SF FT, O—SF 0, C>SF O, R>SF
MRA(;I'i?V blased on FT, UF »AF UF, O —AF C,0 —AF 0, >AF
rule MSE=519.004 MSE=9.23630 MSE=2.71772 MSE=0.93032
FT, C—SF FT, C—SF FT, C—SF C—SF
MﬁAC'LPV :’has"d on D —AF C SAF C SAF FT, C>AF
yapunov theory MSE=1.58337 MSE=0.00863 MSE=0.00537 MSE=0.00315
ISF FT—SF R—SF R—SF
MRAC-H..GS-LPV based BT UF S AF [ —AF [>AF FT—AF
on MIT rule MSE;29120 47.96 Unfeasible Unfeasible Unfeasible
: MSE=18.53418 MSE=16.75147 MSE=29.95529
FT, C—SF R—SF R—SF R—SF
Ml:ﬁ‘igxcfflt’l}; ;’:‘sed D —AF FT, CoAF FT, C—AF FT, C—AF
yapunov y MSE=1.94864 MSE=0.01223 MSE=0.03068 MSE=0.01669

AF=Actuator Fault, C=Chattering, FT=Fault Tolerant, O=Offset,
R=Robust, SF=Sensor Fault, UF=Unfeasible, I=Imperceptible

In addition, single fault were tested. The results of these experiments are shown from Table C-III and
Table C-IV. These results explain if the methodologies are robust, fault tolerant, degraded, and unfeasible or

if they have a chattering against the simulated fault and also demonstrate the Mean Square Error (MSE).

Table C- I11. Results of experiments using multiplicative sensor faults in the MRAC-LPV and MRAC-
H..GS-LPV methodologies based on MIT rule for nonlinear systems.

Methodolo Sensor Faults Result and MSE
gy 100% 90% 50% 5%
MRAC-LPV based C%EZZing Offset C}g gsfitng Offset
on MIT rule MSE=1 35567 MSE=0.72602 MSE=4 36206 MSE=0.94201
Fault Tolerant Fault Tolerant Fault Tolerant .
MIEAC-LPV tbhased Chattering Chattering Chattering M(Sfllgaic(t)e(r)lgzg?, 3
on Lyapunovheory | \isp—0.01065 MSE=0.00870 MSE=0.00527 :
Chatterin Fault Tolerant Robust Robust
MRAC-H,.GS-LPV Un feasibl% Chattering Chattering Chattering
based on MIT rule MSE=16.2487 Unfeasible Unfeasible Unfeasible
’ MSE=18.5341 MSE=16.7514 MSE=29.9521
MRAC-H,,GS-LPV Chatterin Robust Robust Robust
based on Lyapunov MSE=0 01553 Chattering Chattering Chattering
theory ) MSE=0.01230 MSE=0.01544 MSE=0.01257

In Table C-II1, it is observed that the best methodologies are the MRAC-LPV and the MRAC-H,,,GS-
LPV based on Lyapunov theory, because they are Fault Tolerant and Robust, respectively, against the sensor

fault implemented at 5000 seconds and have the smaller Mean Square Error. When the nonlinear system is
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used as the plant it can be shown that the output signal presents some chattering effect due to the

nonlinearities of the system.

Table C- IV. Results of experiments using multiplicative actuator faults in the MRAC-LPV and
MRAC-H,,GS-LPV methodologies based on MIT rule for nonlinear systems.

Methodolo MSE Actuator Faults
&Y 100% 90% 50% 5%
. Offset
MRAC-LPYV based Unfeasible Chattering Offset Offset
on MIT rule MSE=3317.69 MSE=1 20246 MSE=0.93118 MSE=1.04342
MRAC-LPYV based %22;23:(% Chattering Chattering Fegllll? Elleerﬁn ¢
on Lyapunov theory MSF=1.62418 MSE=0.00327 MSE=0.00338 MSE=0.00318
. Chattering .
MRAC-H,GS-LPV Unfeasible ngsrl‘bnli Fault Tolerant léﬁif:rlgg
based on MIT rule MSE=2918.92 = Unfeasible -
MSE=5.01029 MSE=13 38106 MSE=1.82513
MRAC-H,.GS-LPV Chattering Chattering Chattering .
Chattering
based on Lyapunov Degraded Fault Tolerant Fault Tolerant MSE=0 02048
theory MSE=2.22839 MSE=0.02010 MSE=0.02013 )

In Table C-IV, the actuator fault was introduced at 15000 seconds. It can be observed that some of
the actuator faults implemented in the methodologies are unfeasible to the system, this mean that the results
are above the physical capacities of the nonlinear system, for example, the MRAC-LPV based on MIT rule
with an actuator fault of 100%. On the other hand, most of the methodologies presented some chattering
effect. The best methodologies are the ones based on Lyapunov theory because they have the slower Mean

Square Error.

In Figure C.9, it can be observe that for the multiplicative fault in sensors of 100% at time 5000
applied to the nonlinear system. The MRAC-H,,GS-LPV based on the MIT rule became unfeasible after the
change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks
that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule. In
addition both controllers presented chattering problems after the occurrence of the fault. On the other hand, in
the MRAC-H.,GS-LPV based on Lyapunov after the occurrence of the multiplicative sensor fault, the system
presented some reasonable chattering (+/- 0.2 cm) and could tolerate the change in the operating point. The
chattering effects are due to the nonlinearities of the system. The same applies for the MRAC-LPV based on
Lyapunov theory. For the multiplicative actuator fault of 100% applied at 15000, the MRAC-H,,GS-LPV and
the MRAC-LPV based on the MIT rule became unfeasible after the occurrence of the fault. And on the other
hand the MRAC-H,,GS-LPV and the MRAC-LPV based on Lyapunov theory became degraded after the
presence of the fault. It is important to mention that just the schemes based on the Lyapunov theory were able

to tolerate the change in the operating point having a controlled chattering of maximum +/- 1 cm.
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Figure C. 9. Comparison between the system output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 100% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.
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Figure C. 10. Comparison between the system output of the MRAC-H,,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 90% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.
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In Figure C.10, it can be observe that for the multiplicative fault in sensors of 90% at time 5000
applied to the nonlinear system. The MRAC-H,,GS-LPV based on the MIT rule became unfeasible after the
change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks
that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule in
which the system output reached a value of more than +/-30 at the beginning of the simulation and presents an
offset during the simulation. On the other hand, in the MRAC-H,GS-LPV based on Lyapunov was robust
against the multiplicative sensor fault, but presented some reasonable chattering after the change in the
operating point. The chattering effects are due to the nonlinearities of the system. The MRAC-LPV was fault
tolerant to the multiplicative sensor fault but stayed with some reasonable chattering. For the multiplicative
actuator fault of 90% applied at 15000, the MRAC-H,,GS-LPV based on the MIT rule became unfeasible
after the occurrence of the fault. The MRAC-LPV based on MIT rule presented an offset since the beginning
of the simulation and stayed with chattering problems (+/- S5cm) after the occurrence of the fault. On the other
hand the MRAC-H,,GS-LPV based on Lyapunov theory presented some chattering (less than +/- lcm) after
the change in the operating point but was fault tolerant against the actuator multiplicative fault. In addition,
the MRAC-LPV based on Lyapunov theory presented a chattering since de beginning of the simulation but
also was fault tolerant to the multiplicative actuator fault. It is important to mention that just the schemes
based on the Lyapunov theory were able to tolerate the change in the operating point having a controlled

chattering of maximum +/- 1 cm.

In Figure C.11, it can be observe that for the multiplicative fault in sensors of 50% at time 5000
applied to the nonlinear system, the MRAC-H,,GS-LPV based on the MIT rule became unfeasible after the
change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks
that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule in
which the system output reached a value of more than +/-30 at the beginning of the simulation and presents an
offset during the simulation and chattering problems (+/- 5 cm) after the occurrence of the fault. On the other
hand, in the MRAC-H,,GS-LPV based on Lyapunov was robust against the multiplicative sensor fault, but
presented some reasonable chattering after the change in the operating point. The chattering effects are due to
the nonlinearities of the system. The MRAC-LPV was fault tolerant to the multiplicative sensor fault but
stayed with some reasonable chattering. For the multiplicative actuator fault of 50% applied at 15000, the
MRAC-H,GS-LPV based on the MIT rule became unfeasible after the occurrence of the fault. The MRAC-
LPV based on MIT rule presented an offset since the beginning of the simulation. On the other hand the
MRAC-H,,GS-LPV based on Lyapunov theory presented some chattering (less than +/- 1cm) after the change
in the operating point but was fault tolerant against the actuator multiplicative fault. In addition, the MRAC-
LPV based on Lyapunov theory presented a chattering since de beginning of the simulation but also was fault
tolerant to the multiplicative actuator fault. It is important to mention that just the schemes based on the
Lyapunov theory were able to tolerate the change in the operating point having a controlled chattering of

maximum +/- 1 cm.
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Figure C. 11. Comparison between the system output of the MRAC-H,,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 50% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.
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Figure C. 12. Comparison between the system output of the MRAC-H,,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 5% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.
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In Figure C.12, it can be observe that for the multiplicative fault in sensors of 5% at time 5000
applied to the nonlinear system, the MRAC-H,,GS-LPV based on the MIT rule became unfeasible after the
change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks
that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule in
which the system output reached a value of more than +/-30 at the beginning of the simulation and presents an
offset during the simulation. On the other hand, in the MRAC-H,,GS-LPV based on Lyapunov was robust
against the multiplicative sensor fault, but presented some reasonable chattering after the change in the
operating point. The chattering effects are due to the nonlinearities of the system. The MRAC-LPV was fault
tolerant to the multiplicative sensor fault but stayed with some reasonable chattering. For the multiplicative
actuator fault of 5% applied at 15000, the MRAC-H,GS-LPV based on the MIT rule became unfeasible after
the occurrence of the fault. The MRAC-LPV based on MIT rule presented an offset since the beginning of the
simulation and also became unfeasible because it reached +/- 30 cm of variation in the system output at the
beginning of the simulation. On the other hand the MRAC-H,,GS-LPV based on Lyapunov theory presented
some chattering (less than +/- 1cm) after the change in the operating point but the actuator multiplicative fault
was imperceptible. In addition, the MRAC-LPV based on Lyapunov theory presented a chattering since de
beginning of the simulation but also was fault tolerant to the multiplicative actuator fault. It is important to
mention that just the schemes based on the Lyapunov theory were able to tolerate the change in the operating

point having a controlled chattering of maximum +/- 1 cm.

The next figures represent the error for the experiments tested in the nonlinear system. In Figure
C.13, it can be observe that for the single multiplicative sensor fault of 100% the error range between +/- 100
cm from the set point in the MRAC-H,,GS-LPV based on the MIT rule, it varies +/-30 cm for the MRAC-
LPV based on MIT rule, varies +/- Scm in the MRAC-LPV based on Lyapunov theory and varies +/- 2 cm in
the MRAC-H,,GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative actuator
fault of 100% the error represents approximately 800 cm of the system output for the schemes based on the
MIT rule (MRAC-H,,GS-LPV and MRAC-LPV), it varies 30 cm from the system output set point in the
MRAC-H,,GS-LPV scheme based on Lyapunov theory and it varies 10 cm in the MRAC-LPV scheme based
on Lyapunov theory. In Figure C.14, it can be observe that for the single multiplicative sensor fault of 90%
the error range between +/- 50 cm from the set point in the MRAC-H,,GS-LPV based on the MIT rule, it
varies +/-5 c¢cm for the MRAC-LPV based on MIT rule, varies +/- 4 ¢cm in the MRAC-LPV based on
Lyapunov theory and varies +/- 1 cm in the MRAC-H,,GS-LPV based on Lyapunov theory. On the other hand
for the single multiplicative actuator fault of 90% the error represents approximately +/- 60 cm of the system
output for the MRAC-H,,GS-LPV scheme based on the MIT rule, it varies +/- 5 cm of the system output for
the MRAC-LPV scheme based on the MIT rule, it varies +/- 1 cm from the system output set point in the
MRAC-H,GS-LPV scheme based on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme

based on Lyapunov theory.
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Figure C. 13. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 100% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.

209



SENSOR FAULTS
MRAC CONTROLLERS BASED ONMIT RULE

MRAC-H,,GS-LPV MRAC-LPV
,(E: sol- /:E; 20
\zé: g 10
= S 0
] o
g” £l
s @
Time (seconds) x Time (seconds) xo
MRAC CONTROLLERS BASED ON LYAPUNOV THEORY
MRAC-H,GS-LPV MRAC-LPV
’g 50 ’g 2o
=1 =4 | 4
] o T 4
:
@ @
[ 0.2 0.4 0.6 Tl‘]]:ne gsec'l(:nd;; 16 1Bx10‘2 [ 0.2 0.4 0.6 T‘Ur;e (;ec;;ds’l)A 16 18x10‘2
ACTUATORFAULTS
MRAC CONTROLLERS BASED ON MIT RULE
MRAC-H,GS-LPV MRAC-LPV
\é 20 ‘é 10
£ 2. B
o o
§ -20 § 10
[ @
Time (seconds) xo! Time (seconds) xo'
MRAC CONTROLLERS BASED ON LYAPUNOV THEORY
MRAC-H,GS-LPV MRAC-LPV
,gae— g 20
gzo— g 1ol
] =] ;
o o i
g g
U‘:i 20 LE -10r-
[ 02 04 0.6 ’I?line Esecioznd;; 16 18 ) 1042 [ 02 0.4 0.6 Tlﬂl;e (’\SeC;;dS;A 16 18 ; 1042

Figure C. 14. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 90% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.
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In Figure C.14, it can be observe that for the single multiplicative sensor fault of 90% the error range
between +/- 100 cm from the set point in the MRAC-H,,GS-LPV based on the MIT rule, it varies +/-10 cm for
the MRAC-LPV based on MIT rule, varies +/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies
+/- 3 cm in the MRAC-H,,GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative
actuator fault of 90% the error represents approximately +/- 80 cm of the system output for the MRAC-
H,.GS-LPV scheme based on the MIT rule, it varies +/- 4 cm of the system output for the MRAC-LPV
scheme based on the MIT rule, it varies +/- 3 cm from the system output set point in the MRAC-H,,GS-LPV
scheme based on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme based on Lyapunov

theory.

In Figure C.15, it can be observe that for the single multiplicative sensor fault of 50% the error range
between +/- 100 cm from the set point in the MRAC-H,,GS-LPV based on the MIT rule, it varies +/-10 cm for
the MRAC-LPV based on MIT rule, varies +/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies
+/- 3 cm in the MRAC-H,,GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative
actuator fault of 50% the error represents approximately +/- 80 cm of the system output for the MRAC-
H,GS-LPV scheme based on the MIT rule, it varies +/- 4 cm of the system output for the MRAC-LPV
scheme based on the MIT rule, it varies +/- 3 cm from the system output set point in the MRAC-H,,GS-LPV
scheme based on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme based on Lyapunov

theory.

In Figure C.16, it can be observe that for the single multiplicative sensor fault of 5% the error range
between +/- 100 cm from the set point in the MRAC-H,,GS-LPV based on the MIT rule, it varies +/-5 cm for
the MRAC-LPV based on MIT rule, varies +/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies
+/- 3 cm in the MRAC-H,,GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative
actuator fault of 5% the error represents approximately +/- 30 cm of the system output for the MRAC-H,.GS-
LPV scheme based on the MIT rule, it varies +/- 4 cm of the system output for the MRAC-LPV scheme based
on the MIT rule, it varies +/- 3 cm from the system output set point in the MRAC-H,GS-LPV scheme based
on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme based on Lyapunov theory.
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SENSOR FAULTS
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Figure C. 15. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 50% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.
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Figure C. 16. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a single fault of 5% (multiplicative
sensor and multiplicative actuator fault) for the operating points ¢,=0.3 and ¢,=0.5 and a change in the
operating point at time 10000 seconds for the nonlinear system.

213



In Figure C.17, it can be observe that for the combination of multiplicative sensor fault and
multiplicative actuator fault both of 100% the error range between - 12000 cm from the set point in the
MRAC-H,,GS-LPV based on the MIT rule, it varies - 400 cm for the MRAC-LPV based on MIT rule, varies
+/- 5 cm in the MRAC-LPYV based on Lyapunov theory and varies — 20 cm in the MRAC-H,,GS-LPV based
on Lyapunov theory. In Figure C.18, it can be observe that for the combination of multiplicative sensor fault
and multiplicative actuator fault both of 90% the error range between +/- 100 cm from the set point in the
MRAC-H,GS-LPV based on the MIT rule, it varies +/- 60 cm for the MRAC-LPV based on MIT rule, varies
+/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies +/- 4 cm in the MRAC-H,,GS-LPV based
on Lyapunov theory. In Figure C.19, it can be observe that for the combination of multiplicative sensor fault
and multiplicative actuator fault both of 50% the error range between +/- 100 cm from the set point in the
MRAC-H,,GS-LPV based on the MIT rule, it varies +/- 30 cm for the MRAC-LPV based on MIT rule, varies
+/- 4 cm in the MRAC-LPV based on Lyapunov theory and varies +/- 4 cm in the MRAC-H,,GS-LPV based
on Lyapunov theory. In Figure C.20, it can be observe that for the combination of multiplicative sensor fault
and multiplicative actuator fault both of 5% the error range between +/- 100 cm from the set point in the
MRAC-H,GS-LPV based on the MIT rule, it varies +/- 30 cm for the MRAC-LPV based on MIT rule, varies
+/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies +/- 3 cm in the MRAC-H,,GS-LPV based

on Lyapunov theory.
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Figure C. 17. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and on the Lyapunov theory with a combination of a multiplicative
sensor fault (5000 seconds) and a multiplicative actuator faults (15000 seconds), both of 100%, for the

operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000 seconds for the
nonlinear system.
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Figure C. 18. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of
90%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the nonlinear system.
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Figure C. 19. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time S000 seconds and a multiplicative actuator faults at time 15000 seconds both of
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50%, for the operating points ¢,=0.3 and ¢,=0.5 and a change in the operating point at time 10000
seconds for the nonlinear system.
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Figure C. 20. Comparison between the error output of the MRAC-H,GS-LPV and MRAC-LPV
Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative
sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%,

for the operating points ¢;=0.3 and ¢,=0.5 and a change in the operating point at time 10000 seconds
for the nonlinear system.
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