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The investigation of this thesis presents different approaches for Fault Tolerant Control based on 

Model Reference Adaptive Control, Artificial Neural Networks, PID controller optimized by a Genetic 

Algorithm, Nonlinear, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI), 

LPV and nonlinear systems. All of the above techniques are integrated in different controller’s structures to 

prove their ability to accommodate a fault.  

Modern systems and their challenging operating conditions in certain processes increase the 

possibility of system failures causing damages in equipment and/or their operators. In these environments, the 

use of automation control (i.e. adaptive and robust control) and intelligent systems is fundamental to minimize 

the impact of faults. Therefore, Fault Tolerant Control (FTC) methods have been proposed to ensure the 

continuous operations of system even in fault situation and to prevent more serious effects.  

Until now, most of the FTC methods that have been developed are based on classical control theory 

(Yu et al., 2005; Zhang et al., 2007; Fradkov et al., 2008; Yang et al., 2008). The use of Artificial Intelligence 

(AI) in FTC has emerged recently (Stengel, 1991; Bastani & Chen, 1998; Patton et al., 1999; Korbiicz et al., 

2004). Classical Artificial Intelligence (AI) approaches such as Artificial Neural Networks (ANN), Fuzzy 

Logic (FL), ANN-FL and Genetic Algorithms (GA) may offer some advantages over traditional methods 

(Schroder et al., 1998; Yu et al., 2005; Dong et al., 2006; Alves et al., 2009; Beainy et al., 2009; Kurihara, 

2009; Li, 2009; Nieto et al., 2009; Panagi & Polycarpou, 2009) in the control community such as state 

observers, statistical analysis, parameter estimation, parity relations, residual generation, etc. The reasons are 

that AI approaches can reproduce the behavior of nonlinear dynamical systems with models extracted from 

data. Also, there are many learning processes that improve the FTC performance. This is a very important 

issue in FTC applications on automated processes, where information is easily available, or processes where 

accurate mathematical models are hard to obtain.  

In the last years, FTC and control schemes based on LPV systems have been developed. In Bosche et 

al. (2009) a Fault Tolerant Control structure for vehicle dynamics is developed employing an LPV model with 

actuator failures. The methodology described in Bosche et al. (2009) paper is based on the resolution of 

Linear Matrix Inequalities (LMIs) using the DC-stability concept and a Parameter-Dependent Lyapunov 

Matrix (PDLM). In Montes de Oca et al. (2009), an Admissible Model Matching (AMM) FTC method based 

on LPV fault representation was presented; in this approach the faults were considered as scheduling variables 

in the LPV fault representation allowing the controller adaptation on-line. For instance, in Rodriges et al. 

(2007) a FTC methodology for polytopic LPV systems was presented. The most important contribution of 

Rodrigues et al. (2007) work was the development of a Static Output Feedback (SOF) that maintains the 

system performance using an adequate controller reconfiguration when a fault appears.  

On the other hand, advanced techniques from Robust Control such as H∞, have also been applied to 

FTC with encouraging results. For example, in Dong et al. (2009), an active FTC scheme for a class of linear 

time-delay systems, using a H∞ controller in generalized internal mode architecture in combination with an 

adaptive observer-based fault estimator was presented. In Xiadong et al. (2008) a dynamic output feedback 

FTC approach that uses a H∞ index for actuator continuous gain faults was proposed. And, in Liang & Duan 

(2004) a H∞ FTC approach was used against sensor failures for uncertain descriptor system (systems which 
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capture the dynamical behavior of natural phenomena).  

To improve the capabilities of the FTC systems mentioned above, different types of controller based 

on Adaptive Control, Artificial Neural Networks, Robust, Nonlinear and LPV Control for LTI, LPV and 

Nonlinear systems are proposed in this thesis. These controllers are first tested in an Industrial Heat 

Exchanger and then tested in a Coupled-Tank LPV System. Different types of faults are simulated in the 

implemented schemes: First, additive abrupt faults and gradual faults were introduced. In the abrupt fault 

case, the whole magnitude of the fault is developed in one moment of time and is simulated with a step 

function.  On the other hand, gradual faults are developed during a period of time and are implemented with a 

ramp function. Second, multiplicative faults were tested. All types of faults, additive and multiplicative, can 

be implemented in sensors (feedback), in which the properties of the process are not affected, but the sensor 

readings are mistaken. And it also can be implemented in actuators (process entry) causing changes in the 

behavior of the process or interruption. 

The controllers developed to test the Industrial Heat Exchanger are a Model Reference Adaptive 

Controller (MRAC), an MRAC with a PID controller whose parameters were optimized using a GA (MRAC-

PID), an MRAC with an ANN (MRAC-ANN), an MRAC with a PID and an ANN (MRAC-ANN-PID), an 

MRAC with a Sliding Mode Controller (MRAC-SMC) and finally, an MRAC with an H∞ control (MRAC- 

H∞). These MRAC controllers were design using the MIT rule. The controller with the best response against 

the faults is the MRAC-ANN-PID controller because was robust against the tested sensor and the actuator 

were imperceptible with almost a 0% error between the reference model and the process model.  

For the Coupled-Tank LPV system, an MRAC (MRAC-4OP-LPV), an MRAC with an ANN 

(MRAC-ANN4OP-LPV) and an MRAC with an H∞ controller (MRAC-H∞4OP-LPV) were designed for 4 

operating points of the LPV system. For the sensor faults, the controller with the best results was the MRAC-

NN4OP-LPV because it was fault tolerant against the tested sensor faults no matter the value of the operating 

point. This method resulted the best scheme because is a combination of two type of controllers, one is a 

Model Reference Adaptive Controller (MRAC) and the other one is an Artificial Neural Network designed to 

follow the ideal trajectory (non-faulty trajectory). For the actuator faults, the MRAC-H∞4OP-LPV was the 

best scheme because it was fault tolerant to the applied faults and also could accommodate the faults faster 

than the MRAC-4OP-LPV scheme. 

In addition, for the Coupled-Tank system, an MRAC (MRAC-LPV) controller and an MRAC with 

an H∞ Gain Scheduling controller (MRAC-H∞GS-LPV) that work for all the operating points of the LPV 

system were developed. Both controllers were tested using the LPV system of the plant and also were tested 

using the nonlinear model of the system. In general, for additive and multiplicative faults, the MRAC-H∞GS-

LPV showed better results because is a combination of two type of LPV controllers, one is a Model Reference 

Adaptive Controller (MRAC) and the other one is a H∞ Gain Scheduling Controller, both controllers were 

designed for an LPV system giving them the possibility of controlling any desired operating point between 

the operation range of the dependent variables (φ
 
 and φ

 
). In addition, the manipulated variable was plotted 

and it can be observe on this figure how the system compensates the fault. 
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The main contributions of this research are the development of the MRAC with an Artificial Neural 

Network and a PID controller optimized by a Genetic Algorithm (MRAC-ANN-PID) and the development of 

an MRAC with an H∞ Gain Scheduling Controller that works for all the operating points of an LPV system 

(MRAC-H∞GS-LPV). The MRAC-ANN-PID controller as mentioned above resulted to be robust against 

sensor and the actuator faults were imperceptible with a very low error between the reference model and the 

process. The PID parameters of this controller Kp, Ki and Kd were optimized in order to follow the desired 

trajectory (no faulty system) and the ANN was trained also to follow the desired system trajectory no matter 

the fault size. The MRAC-ANN-PID controller is different from the controllers that already exist in the 

literature first because none of them had the controller structure of the MRAC-ANN-PID, second because 

most of them do not use any Artificial Intelligence methods such as ANN or GA. And third, in the literature, 

the ANN is used to represent or estimate the plant not as a controller which is the case of this research. On the 

other hand, for the MRAC-H∞GS-LPV controller the main contribution was the development of a passive 

structure of FTC able to deal with abrupt and gradual faults in actuators and sensors of nonlinear processes 

represented by LPV models. This controller can accommodate the tested faults for any operating point 

between the operating ranges. The MRAC and the H∞ Gain Scheduling controller were specially designed to 

switch from one operating point to another in less than a second. The MRAC controller was chosen as a FTC 

because guarantees asymptotic output tracking, it has a direct physical interpretation and it is easy to 

implement. The H∞ Gain Scheduling Controller was also chosen because it increases the robust performance 

and stability of the closed loop system. In the existing literature, the H∞ technique has been combined with 

other schemes to control systems but to the best of our knowledge there are no reports concerning the 

combination of an MRAC with an H∞ Gain Scheduling controller.  
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1 Introduction 

1.1 Introduction to Fault Tolerant Control     

An increasing demand on products quality, system reliability, and plant availability has allowed that 

engineers and scientists give more attention to the design of methods and systems that can handle certain 

types of faults. In addition, the global crisis creates more competition between industries and plant shutdowns 

are not an option because they cause production losses and consequently lack of presence in the markets; 

primary services such as power grids, water supplies, transportation systems, and communication and 

commodities production cannot be interrupted without putting at risk human health and social stability. 

On the other hand, modern systems and challenging operating conditions increase the possibility of 

system failures which can cause loss of human lives and equipments; also, some dangerous environments in 

places such as nuclear or chemical plants, set restrictive limits to human work. In all these environments, the 

use of automation and intelligent systems is fundamental to minimize the impact of faults.  

The most important benefit of the Fault Tolerant Control (FTC) approach is that the plant continues 

operating in spite of a fault, no matter if the process has certain degradation in its performance. This strategy 

prevents that a fault develops into a more serious failure. In summary, the main advantages of implementing 

an FTC system are (Blanke et al., 1997): 

 Plant availability and system reliability in spite of the presence of a fault. 

 Prevention to develop a single fault into a system failure. 

 The use of information redundancy to detect faults instead of adding more hardware. 

 The use of reconfiguration in the system components to accommodate a fault. 

 FTC admits degraded performance due to a fault but maintains the system availability. 

 FTC is not very expensive because most of the time no new hardware will be needed. 

Some areas where FTC is being used more often are: aerospace systems, flight control, automotive 

engine systems and industrial processes. All of these systems have a complex structure and require a close 

supervision; FTC utilizes plant redundancy to create an intelligent system that can supervise the behavior of 

the plant components making these kinds of systems more reliable.  

Since few years ago, emerging FTC techniques have been proposing new controller designs capable 

to tolerate system malfunctions and maintain stability and desirable performance properties. In order to 

achieve its objectives, two main tasks have to be considered on an active FTC system: fault detection and 

diagnosis and controller reconfiguration. The main purpose of fault detection and diagnosis is to detect, 

isolate and identify the fault, determining which faults affect the availability and safety of the plant. The 

controller reconfiguration task accommodates the fault and re-calculates the controller parameters in order to 

reduce the fault effects. 

Although several schemes of FTC have been proposed, most of them are closely related to a general 

architecture. Blanke et al., (1997) introduces an approach for the design of an FTC system, shown in Figure 1, 

which included three operational levels: single sensor validation, fault detection and isolation using analytical 
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redundancy, and an autonomous supervision and reconfiguration system. The single sensor validation level 

involves the control loop with actuators, sensors, the controller and the signal conditioning and filtering. The 

second level (FDI) is composed of detectors and effectors that will perform the remedial actions. And finally, 

the supervision level deals with state-event logic in order to describe the logical state of controlled objects.  

 

Figure 1. Architecture for Fault Tolerant Autonomous Control Systems proposed by (Blanke, 1997). 

A slightly different architecture is presented in (Karsai et al., 2003). They introduce a scheme of 

Fault-Adaptive Control Technology (FACT), centered on model-based approaches for fault detection, fault 

isolation and estimation, and controller selection and reconfiguration for hybrid systems (see Figure 2). 

Hybrid models derived from hybrid bond graphs are used to model the continuous and discrete system 

dynamics. The supervisory controller, modeled as a generalized finite state automaton, generates the discrete 

events that cause reconfigurations in the continuous energy-based bond graph models of the plant. Fault 

detection involves a comparison between expected behaviors of the system, generated from the hybrid 

models, with actual system behavior. 

 

Figure 2. Architecture for Fault-Adaptive Tolerant Control Technology proposed by (Karsai et al., 

2003). 
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1.2 Classification of the Fault Tolerant Control Methods 

Some authors have proposed different classifications for the FTC methods (Blanke et al., 2003; 

Eterno et al., 1985; Farrel et al., 1993; Lunze & Richter, 2006; Patton, 1997; Stengel, 1991). The 

classification shown in Figure 3 includes all the methods explained by these authors. We can also find a 

recent and very complete survey of FTC methods and applications in (Zhang & Jiang, 2008). 

Regarding the design methods, fault tolerant control can be classified into two main approaches: 

active or passive. In Active Fault Tolerant Control (AFTC), if a fault occurs, the control system will be 

reconfigured using some properties of the original system in order to maintain an acceptable performance, 

stability and robustness. In some cases, degraded system operations have to be accepted (Blanke et al., 2001; 

Patton, 1997; Mahmoud et al., 2003). In Passive Fault Tolerant Control (PFTC), the system has a specific 

fixed controller to counteract the effect and to be robust against certain faults (Eterno et al., 1985). 

To implement the AFTC approach two tasks are needed: fault detection and isolation and controller 

reconfiguration or accommodation. FDI means early detection, diagnosis, isolation, identification, 

classification and explanation of single and multiple faults; and can be accomplished by using the following 

three methodologies (Venkatasubramanian et al., 2003a, 2003b, 2003c):  

 Quantitative Model-Based approaches require knowledge of the process model and dynamics in a 

mathematical structural form. Also, the process parameters, which are unknown, are calculated 

applying parameter estimation methods to measure inputs and outputs signals of the process. This 

approach uses analytical redundancy that can be obtained by implementing Kalman filters, observers 

and parity space. 

 Qualitative Model-Based are based on the essential comprehension of the process physics and 

chemical properties. The model understanding is represented with quality functions placed in 

different parts of the process. This methodology can be divided in abstraction hierarchies and causal 

models. Abstraction hierarchies are based on decomposition and the model can establish inferences 

of the overall system behavior from the subsystem law behavior. This can be done using functional 

or structural approaches. Causal models take the causal system structure to represent the process 

relationships and are classified in diagraphs, fault trees and qualitative physics. 

 Process History-Based approaches use a considerable amount of the process historical data and 

transform this data into a priori knowledge in order to understand the system dynamics. This data 

transformation is done using qualitative or quantitative methods. The quantitative methods are 

divided in expert systems (solve problems using expertise domain) and trend modeling (represent 

only significant events to understand the process). Quantitative methods can be statistical (use PCA, 

DPCA, CA) and non statistical (Artificial Neural Networks) to recognize and classify the problem. 

 

After the detection and isolation of the fault, a controller reconfiguration or accommodation is 

needed. In controller accommodation, when a fault appears, the variables that are measured and manipulated 

by the controller continue unaffected, but the dynamic structure and parameters of the controller change 
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(Blanke et al., 2003). The fault will be accommodated only if the control objective with a control law that 

involves the parameters and structure of the faulty system has a solution (Blanke et al., 2001). In order to 

achieve fault accommodation, two approaches can be used: adaptive control and switched control. Adaptive 

control means to modify the controller control law to handle the situation where the system’s parameters are 

changing over time.  It does not need a priori information about the parameters limits. The goal is to minimize 

the error between the actual behavior of the system and the desirable behavior.  On the other hand, switched 

control is determined by a bank of controllers designed for specifics purposes (normal operation or fault) that 

switch from one to another in order to control a specific situation (Lunze & Richter, 2006).   

Meanwhile, controller reconfiguration is related with changing the structure of the controller, the 

manipulated and the measured variables when a fault occurs (Steffen, 2005). This is achieved by using the 

following techniques: 

 Controller Redesign. The controller changes when a fault occurs in order to continue achieving its 

objective (Blanke et al., 2003). This can be done by using several approaches: pseudo inverse 

methods (modified pseudo inverse method, admissible pseudo inverse method), model following 

(adaptive model following, perfect model following, eigen structure assignment) and optimization 

(linear quadratic design, model predictive control) (Caglayan et al., 1988; Gao & Antsaklis, 1991; 

Jiang, 1994; Lunze & Richter, 2006; Staroswiecki, 2005). 

 Fault Hiding Methods. The controller continues unchanged when a fault is placed, because a 

reconfiguration system hides the fault from the controller. This method can be realized using virtual 

actuators or virtual sensors. (Lunze & Richter, 2006; Steffen, 2005). 

 Projection Based Methods.  A controller is designed a priori for every specific fault situation and 

replaces the nominal controller if that specific fault occurs. This can be done by a bank of controllers 

and a bank of observers (Mahmoud et al., 2003). 

 Learning Control. This methodology uses artificial intelligence like ANN, fuzzy logic, genetic 

algorithms, expert systems and hybrid systems which can learn to detect, identify and accommodate 

the fault (Polycarpou & Vemuri, 1995; Stengel, 1991; Karsai et al, 2003). 

 Physical Redundancy. This is an expensive approach because it uses hardware redundancy (multiple 

sensor or actuators) and decision logic to correct a fault because it switches the faulty component to a 

new one. An example of this is the voting scheme method (Isermann et al., 2002; Mahmoud et al., 

2003). 

 

On the other hand, passive FTC is based on robust control. In this technique, an established 

controller with constant parameters is designed to correct a specific fault to guarantee stability and 

performance (Lunze & Richter, 2006). There is no need for online fault information. The control objectives of 

robust control are: stability, tracking, disturbance rejection, sensor noise rejection, rejection of actuator 

saturation and robustness (Skogestad & Postlethwaite, 2005). Robust control involves the following 

methodologies: 
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 H∞ controller. This type of controller deals with the minimization of the H∞-norm in order to 

optimize the worst case of performance specifications. In Fault Tolerant Control, it can be used as an 

index to represent the attenuation of the disturbances performances in a closed loop system (Yang & 

Ye, 2006) or can be used for the design of robust and stable dynamical compensators (Jaimoukha et 

al., 2006; Liang & Duan, 2004). 

 Linear Matrix Inequalities (LMIs). In this case, convex optimization problems are solved with 

precise matrices constraints.  In Fault Tolerant Control, they are used to achieve robustness against 

actuator and sensor faults. (Zhang et al., 2007). 

 Simultaneous Stabilization. In this approach multiple plants must achieve stability using the same 

controller in the presence of faults. (Blondel, 1994). 

 Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. This methodology is implemented in Fault 

Tolerant Control to parameterize stabilizing controllers in order to guarantee system stability. YJBK 

in summary is a representation of the feedback controllers that stabilize a given system (Neimann & 

Stoustrup, 2005). 

 

1.3 Fault Tolerant Control Schemes 

Although, most of the FTC methods that have been developed are based on classical control theory 

(Yu et al., 2005; Zhang et al., 2007; Fradkov et al., 2008; Yang et al., 2008), the use of Artificial Intelligence 

(AI) in FTC has emerged recently (Stengel, 1991; Bastani & Chen, 1998; Patton et al., 1999; Korbicz et al., 

2004). Classical Artificial Intelligence (AI) approaches such as Artificial Neural Networks (ANN), Fuzzy 

Logic (FL), ANN-FL and Genetic Algorithms (GA) may offer advantages over traditional methods (Schroder 

et al., 1998; Yu et al., 2005; Dong et al., 2006; Alves et al., 2009; Beainy et al., 2009; Kurihara, 2009; Li, 

2009; Nieto et al., 2009; Panagi & Polycarpou, 2009) in the control community such as state observers, 

statistical analysis, parameter estimation, parity relations, residual generation, etc. The reasons are that AI 

approaches can reproduce the behavior of nonlinear dynamical systems with models extracted from data. 

Also, there are many learning processes that improve the FTC performance. This is a very important issue in 

FTC applications on automated processes, where information is easily available, or processes where accurate 

mathematical models are hard to obtain.  

ANN have been applied to FTC because they are helpful to identify, detect and accommodate system 

faults. The application of ANN to FTC can be divided in three groups. The first group includes ANN used as 

fault detectors by estimating changes in process models dynamics (Polycarpou & Helmicki, 1997; Patton et 

al., 1999; Polycarpou, 2001; Gomma, 2004). The second group includes ANN used as controllers (Wang & 

Wang, 1999; Pashilkar et al., 2006), and the third group integrates ANN which performs both functions: fault 

detection, and control (Perhinschi et al., 2007; Yen & De Lima, 2005; Patan & Korbicz, 2009; Yu et al., 

2009). In addition, Genetic Algorithms have been applied to fault tolerant control as a strategy to optimize 

and supervise the controlled system in order to accommodate system failures (Schroder et al., 1998; Sugawara 

et al., 2003). On the other hand, advanced techniques from Robust Control such as H∞, and Non-linear 
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Control as Sliding Mode Control, have also been applied to FTC with encouraging results. For example, in 

(Liang & Duan, 2004), an H∞ FTC approach was used against sensor failures for uncertain descriptor system 

(systems which capture the dynamical behavior of natural phenomena). In (Xiadong et al., 2008), a dynamic 

output feedback FTC approach that uses an H∞ index for actuator continuous gain faults was proposed. In 

(Dong et al. 2009), an active FTC scheme for a class of linear time-delay systems was presented, using an H∞ 

controller in generalized internal mode architecture in combination with an adaptive observer-based fault 

estimator. Besides, in (Weidong & Shaocheng, 2007), a Fuzzy Adaptive Sliding Mode FTC for SISO 

nonlinear systems was developed. This methodology uses a corrective control law (SMC) when a fault occurs 

while the fuzzy system learns the unknown system and fault function dynamics and determines the FTC law. 

In (Yen & Ho, 2000), a FTC system that includes a Sliding Mode control and an Artificial Neural Network 

was presented. This system is able to control the desired trajectories tracking problems when a fault is present.  

In the last years, FTC schemes based on LPV systems and control methods have been developed. For 

instance, in (Rodrigues et al., 2007) a FTC methodology for polytopic LPV systems was presented. The most 

important contribution of this work was the development of a Static Output Feedback (SOF) that maintains 

the system performance using an adequate controller reconfiguration when a fault appears. In (Bosche et al., 

2009), a Fault Tolerant Control structure for vehicle dynamics is developed employing an LPV model with 

actuator failures. The methodology described in this research is based on the resolution of Linear Matrix 

Inequalities (LMIs) using the DC-stability concept and a Parameter-Dependent Lyapunov Matrix (PDLM). In 

(Montes de Oca et al., 2009), an Admissible Model Matching (AMM) FTC method based on LPV fault 

representation was presented. In this approach, the faults were considered as scheduling variables in the LPV 

fault representation allowing the controller adaptation on-line. Although several applications have used LPV 

systems theory to develop FTC schemes (Rodrigues et al., 2007; Bosche et al., 2009; Luzar et al., 2009) and 

also MRAC-based approaches for FTC have been explored (Abdullah & Zribi, 2009; Cho et al., 1990; 

Ahmed, 2000; Thanapalan et al., 2006; Yu, 2004; Miyasato, 2006), none of them integrates the methodologies 

proposed in this thesis (i.e. MRAC, LPVs and H∞).  

These investigation present different approaches for FTC based on Model Reference Adaptive 

Control, Artificial Neural Networks, PID controller optimized by a Genetic Algorithm, Nonlinear, Robust and 

LPV control. The investigation is organized as follows: Chapter 2 describes the background theory; in 

Chapter 3 the experiments and schemes implemented in the Industrial Heat Exchanger are developed; Chapter 

4 the experiments and schemes implemented in the Coupled-Tank System are presented, in Chapter 5 the 

Stability Analysis is demonstrated, Chapter 6 addresses the conclusions and Chapter 7 proposed the future 

work. 

 

1.4 Justification 

Nowadays the complexity of modern production systems and processes has created the necessity to 

incorporate Fault Tolerant Control systems, because FTC can ensure the operability of the systems even if a 

fault or faults appear. For this reason, this thesis presents different combinations of FTC structures based on a 
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Model Reference Adaptive Controller combined with Artificial Neural Networks, PID controller optimized by 

a Genetic Algorithm, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI) 

and LPV systems. 

The above mentioned structures were chosen first, because the adaptive control avoids explicit 

modeling, decision making and control redesign (Thanapalan et al., 2006). Therefore, the MRAC controller 

guarantees asymptotic output tracking, has an inherent capacity to accommodate perturbations and faults, has 

direct physical interpretation and it is easy to implement (Sang & Tao, 2009). But, the use of only this type of 

controller has certain limitations in the FTC systems (see Section 5.1 and 5.2 of Chapter 5). For this reason, it 

is normal to find in the literature combinations of the MRAC controller with other structures in order to 

guarantee the system performance in the presence of a fault (Cho et al., 1990; Miyasato, 2008), to isolate and 

determinate faults (Thanapalan, 2006), to reduce the unknown model dynamics, the disturbances and 

parameter variations (Hongjie & Bo, 2008), to have a nicer transient behavior, disturbance rejection capability 

(Hsu, 1990), etc.  

From the above discussion, this investigation presents the incorporation of Artificial Neural 

Networks to an MRAC controller in order to help the system to maintain the desired system trajectory when a 

fault appears. On the other hand, the use of a Genetic Algorithm in the design of the PID controller helps to 

choose the optimal PID parameters. In addition, the incorporation to LPV controllers such the H∞ Gain 

Scheduling Controller to the MRAC controller adds controller robustness because the LPV controller is able 

to control any operating point between the systems operating range. Also, the use of Robust Control 

techniques increases robust performance and stability to the closed loop system.  

 

1.5 Objective 

The objective of this thesis is to present different approaches for Fault Tolerant Control based on 

Model Reference Adaptive Control, Artificial Neural Networks, PID controller optimized by a Genetic 

Algorithm, Robust and Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI), LPV and 

nonlinear systems. All of the above techniques are integrated in different controller’s structures to prove their 

ability to accommodate a fault.  

 

1.6 Hypothesis 

The different Fault Tolerant Control approaches based on Model Reference Adaptive Control in 

combination with Artificial Neural Networks, PID controller optimized by a Genetic Algorithm, Robust and 

Linear Parameter Varying (LPV) control for Linear Time Invariant (LTI) and LPV systems are developed in 

this investigation because these approaches will improve the capabilities of the Fault Tolerant Control 

systems such as robustness, fault accommodation, stability, etc. 
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2 Background Theory 

2.1 Model Reference Adaptive Control 

The MRAC, shown in Figure 4, implements a closed-loop controller that involves the parameters that 

should be optimized, in order to modify the system response to achieve the desired final value. The adaptation 

mechanism adjusts the controller parameters to match the process output with the reference model output. The 

reference model is specified as the ideal model behavior that the system is expected to follow. 

 

Figure 4. Model Reference Adaptive Controller (MRAC) general scheme (Astrom & Wittenmark, 

1995). 

 

2.1.1 MRAC based on the MIT rule 

The mathematical procedure to design the MRAC system based on MIT rule (Figure 5) is the 

following. First, equation (1) should be transformed in order to include the Process Model and the Reference 

Model with their respective inputs (Astrom & Wittenmark, 1995):                                       

                                                                                                      (1) 

where  , y
process

,  
         

,   and    represent the error, process output, reference output, process input 

and controller input, respectively.  To reduce the error, an adaptation mechanism that aims at reducing a cost 

function is used, in the form of: 

                                                                           
                                                                       (2) 

where θ is the adaptive parameter inside the controller. For a second order system, the implemented 

MRAC scheme has two adaptation parameters: adaptive feedfoward gain      and adaptive feedback gain 

    . These parameters will be updated to follow the reference model. Then, the input is rewritten in terms of 

the adaptive feedforward and adaptive feedback gains as follows:  

                                                                                                                                        (3) 
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Such the process output can be expressed as:      

                               
  

           
                    

    

                
                   (4) 

Using equation (4), the error can be redefined as:                       

                                    
    

                
                                                             (5) 

Therefore, equation (2) can be minimized if the parameters θ change in the negative direction of the 

gradient J, this is called the gradient descent method and is represented by:      

                                   
  

                                                               (6) 

where γ is the parameter to adjust the speed of learning. The above equation is known as the MIT 

rule and determines how the parameter   will be updated to reduce the error (Whitaker, 1958). The error 

partial derivatives with respect to the adaptive feedforward      and adaptive feedback       gains are 

specified as: 

                                                          
  

   
  

  

                
                                                             (7) 

                           
  

   
  

  
   

                  
       

    

                
                                           (8) 

Consequently, the Process characteristic equation can be transformed into equation (9), because the 

MRAC system aim is to approximate the Process Model with the Reference Model. 

                                                                                                                         (9) 

Finally, with equation (9) defined, the error partial derivatives are transformed; and employing the 

MIT rule, the update rules for the adaptive feedforward      and adaptive feedback       gains are written. 

This can be viewed in equation (10) and (11). 

                      
  

   
  

        

           
    

   

  
   

  

   
     

        

           
                                (10)                     

  

   
   

        

           
          

   

  
   

  

   
    

        

           
                             (11) 

 

Figure 5. Model Reference Adaptive Controller based on MIT rule. 
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2.1.2 MRAC based on the Lyapunov stability theory 

The Lyapunov theory in the design of an MRAC controller was introduced because the MIT rule 

does not guarantee the stability of the closed-loop system. To design an MRAC controller using Lyapunov 

theory (see Figure 6), the first step is to derive a differential equation for the error that contains the adaptation 

parameters. Then, a Lyapunov function and an adaptation mechanism need to be established to reduce the 

error to zero. The Lyapunov derivative function dV/dt is usually negative semidefinite. Therefore, to 

determine the parameter convergence is necessary to establish persistently excitation and uniform 

observability on the system and the reference signal (Astrom & Wittenmark, 1995).  

 The Lyapunov stability theorem establishes the following: If there exists a function V: Rn R being 

positive definite and its derivative: 

  
       

     
       

                                               (12) 

is negative semidefinite, then the solution        to 

  
                                                                                (13) 

is stable. If       is negative definite the solution will be asymptotically stable. V denotes the Lyapunov 

function for the system. If: 

  
                                                                        (14) 

the solution is globally asymptotically stable. Therefore, the following procedure was realized: 

Process model:  

                                                                                (15) 

Reference model: 

                                                                                  (16) 

Control law: 

                                                                            (17) 

Error:  

                                                                             (18) 

Then, the error dynamics is represented by: 

(19)       

                         
 

  
                          

 

   
                                                   

To simplify the mathematical notation yreference=yr and yprocess=yp. 

           
 

  
              

 

   
                                            (20) 

Substituting   
 
  

 
-  and   

 
   

 
-   from equation 20, equation 21 is obtained:              

   
 

  
   

 

  
    

  

  
   

 

   
     

 

   
    

 

   
   

   

   
   

   

   
                       (21) 

Replacing   θ   -θ    in the above equation and placing the error terms in the left side of the 

equation, equation 22 is obtained: 
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The Reference Model is equal to the Process Model if no fault occurs (a1=a1r, a0=a0r, and b=br), then: 
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The proposed Lyapunov function is quadratic in tracking error and controller parameter estimation 

error since it is expected that the adaptation mechanism will drive both types of errors to zero. From the 

equation error dynamics (see equation 26) the proposed Lyapunov function is: 

           
 

 
     

  
 

   
         

  
 

   
      

                               (27) 

 

where br, γ and a1r>0. Equation 27 will be zero when the error is zero and the controller parameters 

are equal to the desired values. The above Lyapunov function is valid if the derivative of this function is 

negative. Thus, the derivative of equation 27 is: 

       
  

  
 

 

 
         

   

  
 

 

 
      

   

  
                                     (28) 

 

Substituting equation 26 in the above equation, and rearranging the similar terms, equation 29 is 

obtained.  

(29) 
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Therefore, the adaptation parameters are selected to be updated as: 

   

  
                                                                            (33) 

   

  
                                                                           (34) 

Then 

     
   

   
     

                                                                    (35) 
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It can be seen that equation 35 is negative semidefinite which implies  ( )≤ ( ). This ensures that e, 

θ1 and θ1 are bounded. Since a1r>0, a0r>0 and uc is bounded then yr is bounded and therefore yp=e+yr is 

bounded as well. From the boundedness and convergence set theorem it can be concluded that the error   will 

go to zero (Astrom & Wittenmark, 1995). 

 

Figure 6. Model Reference Adaptive Controller based on Lyapunov theory. 

 

2.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are mathematical models that try to mimic the biological nervous 

system. An artificial neuron have multiple input signals x1, x2, …,xn entering the neuron using connection 

links with specific weights w1, w2, …, wn or      
      named the net input, and also have a firing threshold b, 

an activation function f and an output of the neuron that is represented by         
        . The firing 

threshold b or bias can be represented as another weight by placing an extra input node x0 that takes a value of 

1 and has a w0=-b (Nguyen et al., 2002). This can be represented in Figure 7. 

 

Figure 7. Basic Artificial Neuron. 

An ANN with more than one input layer of neurons, a middle layer called the hidden layer and an 

output layer is named a Multi-layer Artificial Neural Network (Figure 8). 
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Figure 8. General Multi-layer Artificial Neural Network. 

An ANN can have a feedback or a feed-forward structure. In the feedback structure, the information 

can move back and forward. In the feed-forward structure, the information moves only forward from the input 

nodes through the outputs nodes with no cycles in the network (Ruan, 1997).   

The ANN need to be trained from examples, in a process called supervised learning.  Once a 

successfully training is done, the Artificial Neural Network is ready if and only if the network reproduces the 

desired outputs from the given inputs. The most common methodology for this kind of learning is the 

backpropagation algorithm, where the weights of the Artificial Neural Network are determined by using 

iteration until the output of the network is the same as the desired output (Rumerhart et al., 1986).  In 

addition, unsupervised learning uses a mechanism for changing values of the weights according to the input 

values, this mechanism is named self-organization. An example of this algorithm is the Hebbian learning 

algorithm (Ruan, 1997).  

To create and train the Artificial Neural Network controller, the original process inputs were 

introduced as well as the desired outputs.  The created ANN is a two-layer feed forward neural network with 

n number of sigmoid hidden neurons and a linear output neuron. To train the network the Levenberg-Maquard 

backpropagation algorithm was used. This training algorithm is a combination of Gauss-Newton and gradient 

descent methods which integrates the benefits of the global and local convergence properties from the 

gradient descent and Gauss-Newton methods, respectively (Ye, 2004). The Levenberg-Marquardt method 

approaches the Hessian matrix in the form of the product of a Jacobian matrix by its transpose, the same form 

as the quasi-Newton Methods (Priddy & Keller, 2005; Hagan & Menhaj, 1994).   

                                                              

 
 
 
 
 
 
   

   

   

   
 

   

   
   

   

   

   
 

   

   

    
   

   

   

   
 

   

    
 
 
 
 
 

                                                            (36) 

                                                                           H JTJ                                                                       (37) 

Then, the gradient can be estimated as the product of the transpose Jacobian matrix by a vector which 

contains the minimized errors.  

                                                                                                                                                        (38) 

The combination of the above equations creates a weight-update formula, where   is the control 

parameter and I is an identity matrix. 
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                                                                                                                                       (39) 

It is important to mention that if   is a large number; the    equation will be similar to the gradient 

descent method. On the other hand, if   is zero, the equation will be similar to the Newton method. Figure 9 

demonstrates the steps of the Levenberg-Maquard backpropagation algorithm (Priddy and Keller, 2005). 

 

 

Figure 9. Levenberg-Maquard Backpropagation Algorithm Steps (Priddy & Keller, 2005). 
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2.3 Genetic Algorithms 

Genetic Algorithms (GA) are searching and optimization algorithms motivated by natural selection 

evolution and natural genetics (Goldberg, 1989). Basically, the GA algorithm initially generates a random set 

of solutions (initial population of chromosomes), which are going to improve from iteration to iteration, by 

changing its features (mutation) and combining with other solutions (crossover). The simplest GA follows the 

next steps: Generate a random initial population of chromosomes, calculate the fitness of every chromosome 

in the population, apply selection, crossover and mutation and replace the actual population with the new 

population until the required solution is achieved. The main advantages of GA are: powerful computational 

effect, robustness, fault tolerance, fast convergence to a global optimal, capability of searching in complex 

landscape where the fitness function is discontinuous, can be combined with traditional optimization 

techniques (Tabu search) and have the ability to solve problem without needing human experts (Goldberg, 

1989; Mitchell, 1996; Ruan 1997). The Genetic Algorithm is represented in the flow diagram (Figure 10). The 

parameters used in the Genetic Algorithm are showed in Table 1: 

 

Table 1. Genetic Algorithm Parameters 

GA Parameter Unit 

Population Size 20 

Generations 100 Epoch 

Selection Function Tournament 

Crossover Function Scattered 

Crossover Fraction 0.7 

Mutation Function Adapt Feasible 

Stall Generation 50 

Stall Time Limit 20 

Function Tolerance 1e-06 

Constraint Tolerance 1e-06 

Time Limit ∞ 

Maximum Iterations Number 100 

Maximum Evaluation Number 100000 

Variable Tolerance 1e-06 

Mesh Size Tolerance 1e-06 
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Figure 10. Genetic Algorithm Steps. 

 

2.4 Sliding Mode Control 

The sliding mode controller is a technique in which the states of the systems reach a sliding surface 

(denote by ―s‖) and are maintained there by a shifting law design in order to stabilize the system using a state 

feedback control law (Khalil, 2002). In order to develop the procedure to design this controller, first the 

original transfer function is decomposing into a cascade system, and the following equations are obtained: 

                                                                              (40) 

where α , α , and α  are constants, x2 is equal to the system output,     is the derivative of x2 and     is 

the derivative of x1. With the above variables defined, the following equations can be established:  

                                                                                (41) 
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where: f(x) and g(x) are nonlinear functions, g(x)>0, f(x) and g(x) need not to be continuous and x2 is 

stable if: 

                                                                          (42) 

On the other hand, if: 

                                                                   (43) 

Then, the time derivate of s is: 

                                                                       (44) 

Therefore, the Lyapunov candidate function is: 

V= 1 2 s2                                                                     (45) 

where: 

                                                                           (46) 

   is negative definite if 

               

          
          

          

                                                 (47) 

The stability is ensured if 

  

             
             

             

                    
        

    
                                      (48)  

Finally, the control law that will be used is: 

                                                                           (49) 

where      

 

2.5 Linear Parameter Varying Systems 

The Linear Parameter Varying (LPV) systems are systems with linear structure with a set of varying 

parameters over time. This type of systems can be represented either in input-output or state space form and 

either in continuous or discrete-time. The discrete-time representation of an LPV system is the following 

(Apkarian et al., 1995): 

                                                                            (50) 

                                                                            (51) 

In equations (50) and (51), the matrix dependence over k could be anyone. On the other hand the 

continuous representation of an LPV system is shown next: 

                                                                              (52) 

                                                                             (53) 

where x represent the states, y is the measurement or output vector, u is the input vector and Θ represent the 

parameters varying over time.  
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An LPV system can be obtained through different methodologies: If the physical representation of 

the nonlinear system is available, the LPV model can be obtained through the Jacobian Linearization method, 

the State Transformation Method and the Substitution Function method (Shamma & Cloutier, 1993). The 

main objective of utilizing these methodologies is to hide the nonlinearity of the system in the varying 

parameters. On the other hand, if the model should be obtained from experimental data, the LPV system can 

be obtained using the Least Squares or the Recursive Least Square algorithm in different system operating 

points (Bamieh & Giarré, 2001). 

In addition, an LPV controller could be represented as follows: 

                                                                                                                             (54) 

                                                                                                                              (55) 

where xc, y and u represent the states, the control output and the control input, respectively. This type of 

controller will adjust the dynamic variations of the plant in order to maintain stability and an adequate 

performance along of the trajectories of the parameter  . 

 

2.6 H∞ Loop Shaping Controller 

The H∞ control theory is a robust technique implemented in (Zames, 1981) to achieve robust 

performance and stabilization in a given system. This control theory uses the H∞ norm which is the frequency 

response magnitude to maximum singular value of the interested transfer function (i.e. peak gain or worst 

case disturbances). The standard configuration problem for an H∞ controller is shown in the next figure 

(Skogestad & Postlethwaite, 2005): 

 

Figure 11. General H∞ Controller Configuration (Zames, 1981). 

where K is the H∞ controller, P is a generalized plant, u are the control variables, w the exogenous signals, z 

the error signals which have to be minimized to achieve the control objectives and v the measured variables. 

In terms of state space, the above is rewritten as  (Skogestad & Postlethwaite, 2005): 

                                                     
 
 
       

 
 
   

            
            

  
 
 
                                            (56) 

                                                                                                                                                   (57) 

                                                               

     
        
        

                                                              (58) 

In which the linear fractional transformation of w to z is given by: 

                                                                           
                                (59) 
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The H∞ control is then formulated as the minimization of H∞ norm of     ,  . 

                                                                               (60) 

where    means the upper singular value. 

The H∞ loop shaping method proposed in (McFarlane & Glover, 1989) consists of a two stage 

process. In the first stage, the plant is augmented by pre and post compensators (W1 and W2, respectively) in 

order to obtain the desired shape of the singular values in an open loop system. Second, the shaped plant is 

stabilized with H∞ optimization. The shaped plant is denoted by: 

                                                                                                                                                     (61) 

 The above configuration is observed in Figure 12:  

 

Figure 12. Shaped plant and controller (Skogestad and Postlethwaite, 2005). 

The controller Ks is obtained solving the robust stabilization problem for the shaped plant Gs with left 

coprime factorization. 

                                                                                                                                                     (62) 

Therefore, the perturbed plant model Gp can be represented as: 

                                                                     
                                                            (63) 

where    and    represent the uncertainty of the nominal plant G. Then, the goal of robust stabilization is to 

stabilize G and the family of perturbed plants Gp. 

                               
                                                            (64) 

where     is the stability margin. 

The above control design problem is represented graphically in Figure 13: 

 

Figure 13. H∞ robust stabilization problem (Skogestad & Postlethwaite, 2005). 

 

W1 G W2

Ks

Gs

N M-1

Ks

y

∆N

u

∆M

+

+

+ -



27 

 

The control problem presented in the above figure satisfies the stability property if and only if the 

nominal feedback system is stable and: 

                                                               
 
 
                                                          (65) 

where ( -  )
- 

 is the sensitivity function. 

Finally, the feedback controller for the plant G of Figure 12 will be: 

                                                                                                                                                (66) 

For each model of the desired system that need to be controlled, the H∞ controller is designed by 

using the loop shaping method and the following steps are realized: First, the worst case system faults (       ) 

are simulated and identified in the form of a Laplace function. Second, the Laplace functions are compared 

against the non-fault system function. Third, a loop shaping control synthesis is performed to calculate an 

optimal H∞ controller for the Laplace fault-functions. This controller shapes the sigma plot of the Laplace 

fault-function and obtains the desired loop shaping with a precision parameter called ―GAM‖ (e.g. if GAM 

should be ≥ 1 with GAM = 1 being a perfect match). Fourth, the stable-minimum-phase loop-shaping is 

calculated squaring down a pre-filter W (Le & Safonov, 1992): 

                                                                                                                        (67) 

and the shaped plant    is square in state space formulation: 

                                                                                                       (68) 

Then, the desired shape    is accomplished with high precision in the frequency range by the shaped 

plant. After the above procedure, the Normalized-Coprime-Factor control synthesis (Glover & McFarlane, 

1989) is used to calculate the ideal loop-shaping controller (Ks): 

                                                                                                                                (69) 

Finally, with the equation (69) the H∞ controller is computed using: 

                                                                          (70) 

 

2.7 Literature Review 

First, for the case of Artificial Neural Networks, they have been applied in Fault Tolerant Control 

because they are helpful to identify, detect and accommodate system faults. Polycarpou & Helmicki (1995) 

proposed a construction of automated fault detection and accommodation architecture that uses on-line 

approximators and adaptive-learning schemes. The online approximator is an ANN model that monitors 

changes in the system dynamics due to a failure. Patton et al. (1999) use a scheme of an Artificial Neural 

Network to detect and isolate a fault in two steps: residual generation and decision making. In the first step, a 

residual vector characterizes the fault and then the second step process the residual vector information in 

order to locate the fault and the time of occurrence. Once the residual is trained, qualitative knowledge of the 

plant can be added. This combination of qualitative and quantitative approached is helpful to decrease the 

number of false alarms in the fault decision making step. Polycarpou (2001) proposed a methodology for fault 

accommodation of a multivariable nonlinear dynamical system using a learning approach that monitors and 
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approximates any abnormal behavior using ANNs and adaptive non linear estimation. When a fault occurs, 

the Artificial Neural Network is used to estimate the nonlinear fault function supplying a framework for fault 

identification and accommodation. The ANN at the beginning of the monitoring stage is capable of learning 

the modeling errors in order to improve the system robustness. Gomaa (2004) recommended a fault tolerant 

control approach based on multi-ANN system faulty models. The nominal plant is nonlinear and is vulnerable 

to faults. A feedforward neural network is trained as the nominal model. Two PID controllers are used, one 

for the nominal plant and the other for the Artificial Neural Network imitating the nominal plant (reference 

model). Both PIDs controllers were tuned using genetic algorithms. If there exist a difference between the 

nominal plant (yp) and the reference model (yrm) a nonzero residual is generated. Then, depending on the 

magnitude of the residual, an ANN faulty model and its respective compensation path are selected to 

counteract the fault and improve the system operating conditions. This can be observed in Figure 14. 

 

Figure 14. Multi-ANN faulty models FTC scheme (Gomaa, 2004). 

Wang & Wang (1999) proposed an Artificial Neural Network-FTC where the nominal system is 

controlled by a Pseudolinear Neural Network (PNN) based one-step-ahead controller that uses a modified 

gradient approach. When the system is with no fault, a PNN model connected in parallel to the plant model 

can be trained and used for the design of the control algorithm. The PNN model is helpful for the detection of 

a fault.  In addition, when a fault is present, a residual signal is generated and an extra Artificial Neural 

Network based fault compensation loop is imported in order to provide the closed loop stability. This last 

Artificial Neural Network is a two layer perceptron network and its weights are updated using the modified 

gradient approach. This FTC system is shown in Figure 15. Pashilkar et al. (2006) proposed a neural 

controller that improves the fault tolerant potential of a fighter aircraft during landing. The faults are caused 
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by severe winds or stuck control surfaces and can be divided in single faults (aileron or elevator stuck) or 

double faults (aileron and elevator stuck). This Artificial Neural Network controller employs a feedback error 

learning method with a dynamic radial basis function Artificial Neural Network. The Artificial Neural 

Network uses on-line training and not a-priori training. This kind of controller helped to improve the 

capability of handling large faults and also helps to achieve the desired requirements. Perhinschi et al. (2007) 

presented a methodology for detection, identification and accommodation of sensor and actuator failures 

inside fault tolerant control laws. The fault detection and identification uses neural estimators. The 

accommodating control law design for the actuator fault is done using non-linear dynamic inversion with 

Artificial Neural Network augmentation. Whereas the accommodation of sensor faults is accomplished by 

changing the failed sensor output for neural estimates calculated in the detection and identification process. 

This approach can handle sensor and actuator faults successfully. It uses membership functions to describe the 

mathematical model of process. Yen & DeLima (2005) presented an Artificial Neural Network trained on-line 

with a global dual heuristic programming architecture. This approach has also a supervision structure made 

from decision logic. This supervision level is very efficient to identify the controller faults in early stages and 

can supply new values to improve the convergence utilizing dynamic model bank information.  Patan and 

Korbicz (2009) proposed a FTC system for a boiler unit in which a recurrent neural network was used to build 

an on-line fault approximator. Then, this approximator was employed in the fault detection and 

accommodation of the system. Yu et al. (2009) introduced a hybrid dynamic ANN based on fault diagnosis 

and fault tolerance method. This methodology is an incorporation of feedforward and recurrent ANN in order 

to form a dynamical identification model for the system. Finally, Kamalasadan and Ghandakly (2011) 

proposed a fighter aircraft pitch-rate command-tracking controller based on a neural network parallel 

controller. The scheme consists of a radial basis function neural network in parallel with a model reference 

adaptive controller and the controller is able to control the changes in the aircraft system.   

 

Figure 15. Artificial Neural Network FTC scheme proposed by (Wang & Wang, 1999). 

On the other hand, for Genetic Algorithms (GA), Schroder et al. (1998), proposed a fault tolerant 

control technique for an active magnetic bearing. In this approach a nonlinear model of a turbo machine rotor 

from the Rolls-Royce lifted up by an active magnetic bearing was presented. This model is capable of 

modeling different configurations of magnetic bearings. A multi-objective genetic algorithm was used to 

generate and adequate PID controller for the active magnetic bearing with different bearing configurations. 
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Also the fault accommodation was done using a centralized fault compensation scheme. Sugawara et al. 

(2003) showed a fault tolerant control approach using multi-layer neural networks with a genetic algorithm. 

The propose of this approach was to develop a self-recovery technique implemented for large scale Artificial 

Neural Networks programmed in a single ship to accommodate faults without the need of a host computer. 

This FTC scheme uses hardware redundancy and weight retraining using a genetic algorithm in order to 

reconfigure the Artificial Neural Network to accommodate the fault. The objective of the genetic algorithm is 

to reduce the error between the actual output and the desired output.  

And finally, in the last years some LPV systems and control methods have been developed. For 

example, in Shamma & Cloutier (1993), a gain-scheduled design for a missile longitudinal autopilot was 

presented. The missile dynamics are represented in an LPV form using state transformation. A robust 

controller employing µ synthesis was design to achieve the angle of attack control. In addition, an inner/outer 

loop structure was designed being the angle of attack the inner loop and the normal acceleration control the 

outer loop. Apkarian et al. (1995) presented a gain scheduled along parameter trajectories controller with 

guaranteed H∞ performance for a class of LPV systems. The controller synthesis problem is formulated using 

LMIs that can be efficiently solved. The system state space matrices depend on a time varying parameters 

vector in which the parameters can be measured in real time and are fed to the controller in order to achieve 

the desired performance and the robustness of the closed-loop system. Li et al. (1999) proposed a gain-

scheduled controller for a class of LPV systems in which the controller synthesis was formulated using LMIs. 

In addition, the performance specifications of this controller were in terms of L2 gain, general quadratic 

constraints, peak gain, generalized H2 performance and input and output constraints. In Bamieh & Giarré 

(2001), a discrete-time LPV model for gain scheduling control and an identification method for nonlinear 

system are presented. The identification of the LPV model is done through a linear regression as Least Mean 

Squares or Recursive Least Squares. Fodor & Tóth (2004) developed a robust control structure for a speed 

sensorless vector control of an Induction Motor. This control structure uses mixed sensitivity LPV H∞ control 

theory resulting in a more accurate control of the Induction Motor. Groot et al. (2005) proposed an LPV 

control technique to create position-dependent controllers (feedback controllers) that are able to accommodate 

themselves in order to maintain an optimal closed-loop performance. In Kwiatkowski & Werner (2005) a 

methodology for reducing the scheduled parameters in an LPV controller was presented. This reduction was 

done using Principal Components Analysis (PCA) to typical scheduling trajectories. The proposed method in 

this thesis creates a trade-off between the number of reduced parameters in the LPV controller and the 

requested accuracy of the model. The LPV controller presented in this methodology uses the mixed sensitivity 

approach and compares its performance with a fixed-gain controller created using a robust H2 approach. 

Giarré et al. (2006) developed the identification of a nonlinear plant parameterizing its dynamics as an LPV 

model where the control assignment is the output regulation of different system set points. After obtaining the 

LPV model, the model is used to design a gain scheduled controller linear feedback controller (off-line) and a 

nonlinear correction controller (on-line). This last controller is the consequence of horizon optimization based 

on invariant set theory. Hecker (2006) presented a two vehicle steering controllers to enhance the yaw 

dynamics of a mid-size passenger car using robust H∞ synthesis techniques. Both controllers satisfied the 
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desired mixed-sensitivity performance specifications. The first controller is designed with µ synthesis 

guarantying robust performance if the parameters are uncertain but constant. On the other hand, the second 

controller is based on LPV control techniques and guarantees robust performance even though the parameters 

variation. Salcedo & Martínez (2006) proposed a methodology for the identification of LPV systems based on 

the previous linear identification of different operating points and adjusting them using a Least Square 

Levenberg & Maquardt algorithm allowing the adaptation of non-linear models. The LPV models are defined 

via Lineal Fractional Representation (LFR) of the variable parameters over time. Once the LPV model is 

obtained, the next step is to design an LPV linear controller. In Wang & Weiss (2006), a self-scheduled 

control for a doubly-fed induction generator was presented. The controller was designed employing the LMI 

methodology for LPV systems using linear interpolation. In addition, a controller reduction for the LPV 

controller was realized based on the truncation of fast modes. Lee & Park (2007) developed a robust dynamic 

feedback Model Predictive Controller (MPC) for LPV systems. The control law of this controller is calculated 

using LMIs at each sampling time solving a convex optimization problem. In addition, a parameter dependent 

Lyapunov function is developed in order to obtain a less conservative condition for the system stability. 

Robert et al. (2007) designed a polytopic methodology for LPV systems to obtain a H∞ sampling period 

dependent controller in order to deal with the adaptation of a real-time controller’s sampling period. In 

Rodrigues et al. (2007), a FTC methodology for polytopic LPV systems was presented. The most important 

contribution of this work was the development of a Static Output Feedback (SOF) that maintains the system 

performance using an adequate controller reconfiguration when a fault appears. In addition, the controllers 

used in this methodology were arranged through LMIs to maintain the system closed-loop stability.  Gilbert et 

al. (2008) developed a fixed-order controller for SISO gain scheduled with guaranteed stability and H∞ 

performance covering the entire scheduled parameter range. This approach uses polynomials as modeling 

objective. Also, it uses flexible LMIs conditions to allow the polynomial dependence of the open-loop system 

and the controller transfer functions in the scheduled parameters. And finally, it uses the LMI conditions 

decoupling between the Lyapunov and the controller variables for the design of the parameter dependent 

Lyapunov function and the fixed-order controller. Liang & Marquez (2008) proposed a global gain scheduling 

synchronization method for identical synchronization of quadratic chaotic systems. The quadratic chaotic 

system contains nonlinearities in the quadratic terms of the systems states such that it can be transformed into 

an LPV system. The implementation of the gain scheduling technique allows achieving the global 

synchronization for the quadratic chaotic system. In Poussot-Vassal et al. (2008), a new semi-active 

suspension control strategy was designed using Linear Parameter Varying (LPV) theory ensuring internal 

stability of the system. The controller is based on LMIs polytopic LPV/H∞ control synthesis. Xie & Eisaka 

(2008) developed a two-degree-of freedom (TDOF) control for LPV systems. To design the TDOF controller, 

a coprime factorization of the LPV system was realized. Then, the TDOF controller approach for LTI systems 

is extended to LPV systems and the controller design problem can be established in terms of LMIs related to 

L2 gain performance in order to reject disturbances and to have a good tracking performance. In Bosche et al. 

(2009), a Fault Tolerant Control (FTC) structure for vehicle dynamics is developed employing an LPV model 

with actuator failures. The methodology described in this research is based on the resolution of Linear Matrix 
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Inequalities (LMIs) using the D-stability concept and a Parameter-Dependent Lyapunov Matrix (PDLM). De 

Lira et al. (2009) presented a fault diagnosis problem in a Polymer Electrolyt Membrane Fuel Cell (PEM-FC) 

system using a model-based approach. The PEM-FC system is represented through an LPV model. The fault 

diagnosis method is based on the generation of structured residuals and the fault sensitivity analysis 

evaluation. In addition, the variation of the system dynamics is contemplated using an LPV observer when 

generating residuals and the fault isolation method is based on the relative fault sensitivity concept. Ginter & 

Pieper (2009) developed a H∞ LPV controller based on a physical model and an iterative simulation based 

testing. To develop the controller, four operation regions of the system were established. Therefore, the 

controller synthesis results in a convex optimization problem with LMIs having available numerous well 

developed numerical algorithms. In Henry et al. (2009) a robust fault detection and isolation filters for LPV 

systems using a LFR were developed. The objective of the FDI filter is to minimize the influence of the 

unknown residuals inputs in the H∞ case and to maximize the fault sensitivity in the H2 case. The parameters 

are optimized using LMI. Luzar et al. (2009) designed a Matlab block-set that can be employed for FTC of 

LPV systems. In this proposal, an observer estimates an unknown state of the system. Then, a fault 

identification system is executed and finally the control strategy is carried out using LMIs pole placement. In 

Montes de Oca et al. (2009), an Admissible Model Matching (AMM) FTC method based on LPV fault 

representation was presented. In this approach, the faults were considered as scheduling variables in the LPV 

fault representation allowing the controller adaptation on-line. In addition, a FDI scheme detect, isolate and 

estimate the faults, when the FDI is not able to estimate the magnitude of the fault a passive FTC method 

based on a single controller can manage the admissible faults. The AMM methodology is based on a set of 

admissible behaviors characterized through LMI regions. The LMIs are able to locate the closed-loop poles 

inside the unit circle region. Also, the fault accommodation can be represented using several LMIs. In Chen et 

al., (2010) an LPV Pole-placement approach as an FTC problem, this scheme involves pole-placement within 

suitable LMI regions in order to guarantee stability and performance of a multi-fault LPV estimation used 

within an FTC structure. In Montes de Oca et al. (2010) a Fault Tolerant Control design using LPV 

admissible model matching with H2/H∞ performance was presented. In this scheme the reconfiguration of the 

controller is done on-line based on using LPV gain-scheduling techniques allowing changes in the system 

parameters due to changes in the operating points and faults. This scheme is an active FTC strategy, in which 

the quadratic H2/H∞ performance helps to select the best controller. Paton and Klinkhieo (2010) presented an 

LPV fault estimation and FTC of a two-link manipulator. This scheme combines the use of LPV fault 

estimation and compensation to achieve active FTC performance requirements in which the system is 

characterized by sets of LMIs and can be obtained using efficient interior-point algorithms. In addition, a 

polytopic estimator is synthesized to generate actuator fault used in an FTC scheme to schedule the nominal 

system sate feedback gain, therefore, the system performance can be maintain over a wide range of operating 

points within a proposed polytopic model. Montes de Oca & Puig (2010) presented a FTC scheme that uses a 

virtual sensor for LPV systems. In this scheme the control loop is reconfigure such that the nominal controller 

could be still used after the presence of a fault without the need of a retuning because the plant with the sensor 

fault is modified adding a virtual sensor block that hides the fault and allows the controller to see the plant as 
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a non-faulty plant. The virtual sensor is designed using polytopic LPV technique and LMIs and the LPV state 

feedback controller is designed to achieve quadratic H2/H∞ performance using a polytopic representation of 

the system that contribute to solve a finite number of algebraic LMIs.  

 

2.8 Faults Types 

A fault is an unpermitted deviation of a parameter or characteristic of the system (e.g. physical 

quality). The fault can be distinguished in abrupt, incipient or intermittent faults. With respect to the way of 

introducing the fault in the system, the fault can be classified in additive or in multiplicative faults (Fortuna, 

2007).  

To test the approaches presented in Chapter 3 and Chapter 4, different types of faults are introduced 

and simulated in the considered testbed cases. The first type of fault is an additive abrupt fault, the second 

type of fault is an additive gradual fault, and the third type of fault is a multiplicative fault (see Figure 16). All 

types of faults are introduced in actuator and sensors (see Figure 17). An additive fault will modify the 

quantity of the nominal value by the addition of a quantity f(t). An abrupt additive fault in actuators represent, 

for instance, a pump stuck or in sensors a constant bias in measurements. A gradual additive fault could be a 

progressive loss of electrical power in pump or a drift in the sensor measurements. Finally, a multiplicative 

fault is represented as a degradation of the nominal system, the nominal quantity is multiplied by a quantity 

f(t). For example, actuator multiplicative fault is represented as uf α , where uf represent the system input 

with the actuator fault, α represents the degradation percentage of the actuator, and u is the nominal system 

input. 

 

Figure 16. Representation of Additive and Multiplicative Faults (Mahmoud et al., 2003). 

 

 

Figure 17. Representation of Actuator and Sensor Faults. 
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3 Industrial Heat Exchanger 

The first system used as test bed (shown in Figure 18 and Table 2) is a shell and tube Industrial Heat 

Exchanger that has two inputs: water and steam flows controlled by pneumatic valves (FSV1 and FSV2, 

respectively). The water pass inside the tubes at room temperature and the steam pass through the tube walls 

in order to transfer heat to the water.  In addition, the industrial heat exchanger has one output, in which the 

water temperature is measured by a thermistor (TT2). Variations in water and steam flows are determined by 

flow transmitters (FT1 and FT2, respectively).  

 

Figure 18. Industrial Heat Exchanger used in the experiments. 

 

Table 2. Industrial Heat Exchanger Sensors/Transmitters Description. 

Tag Name Description 

FSV1 Solenoid valve in the water inlet 

TT1 Temperature transmitter of the water inlet 

FV1 Pneumatic control valve in the water inlet 

FT1 Flow transmitter in the water inlet 

TT2 Temperature transmitter of the water outlet 

FV2 Pneumatic control valve in the steam inlet 

FT2 Flow transmitter of the steam inlet 

FSV2 Solenoid valve in the steam inlet 

 

 To obtain the continuous model of this process, an identification experiment was performed, where a 

Pseudo Random Binary Sequence (PRBS) was applied to water and steam valves, and variations in water 

temperature were recorded. With the data obtained in the PRBS test, the identification was achieved using 

Matlab®. This was done with the help of the system Identification Toolbox commands described below. The 

following commands are design for the estimation and validation of linear models from multiple-input/single-

output (MISO) data to find the one that best represents the system dynamics. 

- The variables of the data to estimate the model are: input1, time, and output1. The variables for the 

validation of the model are: input2, time, and output2. The input1 and input2 variables include in 

each of the steam and water valves opening percentage. The output 1 and output 2 variable represent 

the water temperature at the outlet of the Industrial Heat Exchanger. The next figure shows the 

representation of these variables. 
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Figure 19. PRBS test for model estimation. 

 

 

Figure 20. PRBS test for model validation. 

 

- Establish the sampling time interval: 

 Ts = 1; % Sampling interval is 1 seg  
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- Create two data objects to encapsulate data values and data properties into a single entity, ze is 

created for model estimation and zv is created for model validation. 

 ze = iddata(Output1,exp1,Ts); 

 zv = iddata(Output2,exp2,Ts); 

- To view the properties of the estimation data, the next command was applied. This command return 

data properties as: domain, name, output data, output name, etc: 

 get(ze) 

- To plot the data objects the following commands are used: 

 plot(ze)     % Plot the estimation data 

 figure   % Open a new MATLAB Figure window 

 plot(zv) % Plot the validation data 

- Estimate the transfer function using spectral analysis for a fixed frequency resolution (estimate the 

frequency response): 

 Ge=spa(ze); 

 bode(Ge) 

- Estimate the step response from the data: 

 step(ze,30) 

- Estimate the delay in the system: 

 delayest(ze) 

- Use the struc command to create a matrix of possible model orders and the selstruc command to 

compute the loss functions: 

 NN1 = struc(1:50,1:50,0); 

 selstruc(arxstruc(ze(:,:,1),zv(:,:,1),NN1)); %selects the model order 

 NN2 = struc(1:50,1:50,0); 

 selstruc(arxstruc(ze(:,:,2),zv(:,:,2),NN2)); 

- Use the following command to create two model structures, one for each input/output combination 

(P2 represents a transfer function with two poles) 

 midproc0 = idproc({'P2','P2'}); 

 midproc = pem(ze,midproc0); 

- To view the two resulting models, type the following command: 

 present(midproc) 

- The following command compares the actual output and the model output: 

 compare(zv,midproc) 

- The residual analysis is realized using: 

 resid(zv,midproc0) 
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Then, the following model was obtained: 
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where Gp represents the Process Model, Gsteam and Gwater describes the steam and water model of the 

industrial heat exchanger, respectively. T(s) describes the Water Temperature at the exit and Fsteam(s) and 

Fwater(s) represent the steam and water flow, respectively. It is important to mention, that the obtained model 

was composed of two additive parts Gsteam and Gwater, in order to implement this model in an MRAC system, 

the model was decomposed in to two subsystems Steam and Water. In addition, the obtained model is just an 

approximation of the Industrial Heat Exchanger process and it was used just as an example to implement the 

FTC schemes. 

 

3.1 Model Reference Adaptive Controller (MRAC) 

In order to derive a FTC scheme for the Industrial Heat Exchanger, a Model Reference Adaptive 

Controller was designed. The MRAC scheme was chosen as the based controller because it guarantees 

asymptotic output tracking and it has a direct physical interpretation.  

In the design of the MRAC controller it is important to take in count the two second order systems: 

steam and water systems. With the background theory presented in Chapter 2, the following equations were 

developed: 

(76) 
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Using equations (76) and (77), the error can be redefined as:                    
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Therefore, the error partial derivatives with respect to the adaptive feedforward (θ1) and adaptive 

feedback (θ2) gain are specified as equation 80 for the steam process and equation 81 for the water process: 

 

  
   
   

       

                              
              

  
   
     

         

                              
            (80) 

  
   
   

         

                               
              

  
   
     

    

                               
           (81) 

 

Consequently, the Process characteristic equation can be transformed into equations (82) and (83), 

because the MRAC system aim is to approximate the Process Model with the Reference Model. 

 

                                                                            (82) 

                                                                          (83) 

 

Finally, from equations (82) and (83), the error partial derivatives are transformed; and employing 

the MIT rule, the update rules for the adaptive feedforward (θ1) and adaptive feedback (θ2) gain are obtained 

as follows: 

(84) 
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To select the value of γ, different experiments with different γ sizes were realized. In these 

experiments a sensor fault of 10 % of nominal system deviation was introduced at time 5000 seconds and an 

actuator fault of 5 % of nominal system deviation was introduced at time 15000 seconds. In summary, four 

different size of γ were tested (1000, 100, 10, 1) and the results are showed in Table 3 and Figure 21. 

Table 3. MSE of different sizes of γ. 

γ Sensor Fault Actuator Fault 

1000 0.0687 0.0291 

100 0.0982 0.0289 

10 0.1387 0.0292 

1 0.1937 0.0324 
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Figure 21. MRAC Results testing different sizes of γ. 

 

From Figure 21 and Table 3 the selected value of γ to realize the following experiments was 1000, 

because it has the lower MSE in sensor and actuator faults. With the above equations the following controller 

was implemented (Figure 22): 
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Figure 22. Fault Tolerant MRAC Controller Structure. 

 

3.1.1 Experiments and Results 

This section explains the different experiments that have been realized using the MRAC in the 

Industrial Heat Exchanger. In these experiments, two different types of faults were simulated in the 

implemented schemes: abrupt faults and gradual faults. In the abrupt faults case, the whole magnitude of the 

fault is developed in one moment of time and was simulated with a step function.  On the other hand, gradual 

faults are developed during a period of time and are implemented with a ramp function.  

Both types of faults, abrupt and gradual, have been considered in sensors (feedback), in which the 

properties of the process are not affected, but the sensor readings are wrong. And, they have also been 

considered in the actuators (process entry) in which the process behavior can change or can be interrupted. In 

each experiment, a fault was introduced at time 5000 seconds. Three different fault levels were simulated: 

5%, 15% and 25%. The fault size is given in terms of percentage deviation from the normal operational value. 

In the next figures, three different results are explained: robust (no changes occur in the system after the 
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fault), fault tolerant (the system tolerates and accommodates the fault completely) and degraded system (the 

system does not tolerate the fault). For the gradual faults, the slope was of 10% deviation from the normal 

operational value per second but had a saturation block stopping this percentage at the different fault 

percentage values (5%, 15% and 25%). The following figures represent a comparison of the results applying 

different faults magnitudes. 

 

Figure 23. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC controller. 
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means that the fault is accommodated completely in the system. On the other hand, for abrupt and gradual 

sensor faults of 25% of system deviation the classical MRAC scheme resulted in a degraded system. 

 

Figure 24. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC controller. 
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3.2 Model Reference Adaptive Controller plus PID Controller (MRAC-PID) 

To overcome the limitations of the simple MRAC structure (smaller fault accommodation threshold 

than the MRAC controller in combination with other structures), a classical PID controller expressed in the 

form  

                                         PID=Kp 
Ki

s  Kds                                          (86)  

is introduced in the feedforward part of the simple MRAC scheme (see Figure 25). The PID controller has the 

properties showed in Table 4. 

Table 4. PID Controller Parameters Properties (O’Dwyer, 2009). 

Controller 

Parameter 
Rising Time Overshoot Settling Time Steady State Error 

K
p
 Decreases Increases Does not influence Decreases 

K
i
 Decreases Increases Increases Eliminates 

K
d
 Does not influence Decreases Decreases Does not influence 

 

The PID parameters were obtained by using a Genetic Algorithm Pattern Search to track the desired 

system trajectory with the Matlab® Optimization Toolbox. The desired closed-loop behavior of the system is 

established through the model reference trajectory when there are no faults in the system. The parameters that 

need to be established for the desired optimization are shown in Table 5.  

Table 5. Matlab® Optimization Toolbox Parameters. 

Parameters Value 

Step Initial Value 0 

Step Final Value 2 

Step Time 0 s 

Rise time 400 s 

% Rise 90 

Settling Time 2500 s 

% Settling 5 

% Overshoot 20 

% Undershoot 2 

 

Then, the Genetic Algorithm obtains the best parameter optimization (see Table 6).  

Table 6. Obtained best PID Controller parameters using GA Optimization. 

Parameter 
Steam 

Plant 

Water 

Plant 

Kp 1.7764 0.8276 

Ki 1.2229 0.0010 

Kd 0.0047 1.1475 
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Figure 25. Fault Tolerant MRAC-PID Controller structure 
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Figure 26. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-PID controller. 

 From Figure 26, it can be observed that for abrupt and gradual sensor faults of 5% and 15% of 

system deviation the MRAC controller in combination with the PID controller (MRAC-PID) resulted robust 

against these types of faults. On the other hand, for faults of 25% of system deviation the MRAC-PID scheme 

resulted in a degraded system after the occurrence of the fault. 
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Figure 27. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-PID controller. 

 From Figure 27, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25% 

of system deviation the MRAC controller in combination with the PID controller (MRAC-PID) resulted in a 

degraded system after the occurrence of the fault. 
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3.3 Model Reference Adaptive Controller plus an Artificial Neural Network 

Controller (MRAC-ANN) 

In this scheme, the PID controller was substituted by an Artificial Neural Network (see Figure 28). 

An ANN was selected as an aditional controller because it has the capability of dealing with nonlinear system 

and it can be tarined to follow the ideal trajectory (non-faulty trajectory). The created ANN is a two-layer feed 

forward Artificial Neural Network with 20 sigmoid hidden neurons and a linear output neuron. To train the 

network, the Levenberg-Maquard backpropagation algorithm was used. This training algorithm is a 

combination of Gauss-Newton and gradient descent methods which integrates the benefits of the global and 

local convergence properties from the gradient descent and Gauss-Newton methods, respectively. The 

Artificial Neural Network was trained with the original process inputs as well as the desired outputs. 

 

Figure 28. Fault Tolerant MRAC-ANN Controller Structure. 
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3.3.1 Experiments and Results 

This section explains the different experiments that have been realized using the MRAC-ANN 

controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated 

in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have 

been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was 

introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The 

following figures represent a comparison of the results applying different faults magnitudes. 

 

Figure 29. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-ANN controller. 
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 From Figure 29, it can be observed that for abrupt and gradual sensor faults of 5%, 15% and 25% of 

system deviation the MRAC controller in combination with the ANN controller (MRAC-ANN) resulted in a 

robust system against these types of faults.  

 

 

Figure 30. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-ANN controller. 

 From Figure 30, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25% 

of system deviation the MRAC controller in combination with the ANN controller (MRAC-ANN) resulted in 

a degraded system after the occurrence of the fault. 
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3.4 Model Reference Adaptive Controller plus Artificial Neural Network and PID 

Controllers (MRAC-ANN-PID) 

A combination of the MRAC-PID and the MRAC-ANN controllers were developed (see Figure 31), 

in order to increase the fault accommodation threshold of the system. Both controllers perform as feedforward 

controllers with the main intention to obtain a robust FTC structure. In this structure, the PID controller helps 

to attenuate the overshoot, undershoot and also helps to obtain the desired settling time and rise time. On the 

other hand, the Artificial Neural Network controller will try to attenuate the fault by helping the system to 

follow the desired reference trajectory. In addition, the controller structure adds robustness to the system, for 

example, the PID helps to attenuate the signal. 

 

Figure 31. Fault Tolerant MRAC-ANN-PID Controller Structure 
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in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have 

been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was 

introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The 

following figures represent a comparison of the results applying different faults magnitudes. 

 

Figure 32. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-ANN-PID 

controller. 

 From Figure 32, it can be observed that for abrupt and gradual sensor faults of 5%, 15% and 25% of 

system deviation the MRAC controller in combination with the ANN controller and the PID controller 

(MRAC-ANN-PID) resulted in a robust system against these types of faults.  
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Figure 33. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-ANN controller. 

 From Figure 33, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25% 

of system deviation the MRAC controller in combination with the ANN controller and the PID controller 

(MRAC-ANN-PID) resulted in an imperceptible fault system. By definition the actuator faults cannot be 

robust, because a change in the actuator has a physical affectation in the system, for that reason if the effect of 

an actuator fault is not visible in the system output, the correct terminology is imperceptible.  
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3.5 Model Reference Adaptive Controller plus an H∞ Controller (MRAC-H∞) 

The proposed H∞ control was designed using the loop shaping method and the following steps were 

realized: First, the worst case of system faults (steam process faults and water process faults) were simulated 

and identified in the form of a Laplace function obtaining the following equations: 

 

                                                              
       

                      
                                                 (87)   

                                                             
            

                        
                                               (88) 

 

where                and                represent the worst case faults in the steam process and water process, 

respectively. Second, the above Laplace functions are compared against the non-faulty steam and water 

process: 

 

                                                      
       

                    
                                                     (89)             

       
         

                    
                                                     (90) 

  

where        is the non-faulty function describing the steam process and        is the non-faulty function 

describing the water process (the above has been explained in more detail in Chapter 2). 

 Third, a loop shaping control synthesis is performed to calculate an optimal H∞ controller for the 

Laplace fault-functions (e.g.              ). This controller shapes the sigma plot of the Laplace fault-function 

and obtains the desired loop shaping (non-fault steam and water function) with a precision parameter called 

―GAM‖ (e.g. GAM should be ≥ 1 with GAM = 1 being a perfect match). 

 The next procedure is to calculate the stable-minimum-phase loop-shaping. This was realized 

squaring down a pre-filter W: 
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In a manner that the shaped plant    is square in state space formulation: 
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Then, the desired shape of        is accomplished with high precision in the frequency range by the 

shaped plant. After the above, the Normalized-Coprime-Factor control synthesis is used to calculate the ideal 

loop-shaping controller (Ks): 
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Finally, with the equation (99) the H∞ controller is computed using: 

                                                                         (100) 

(101) 

          
                                                                                        

                                                                                           
            

 

The parameter ―GAM‖ which is a precision parameter for this controller is 1.9846 which is equal to 

5.9535 dB. In Figure 34, the singular value plot of this controller can be viewed: 
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Figure 34. H∞ Controller Singular Value plot for the steam process. 

 

In the above figure, L is the open loop, T is the complementary sensitivity (or closed loop function) 

and S is the sensitivity function. It can be observed that these parameters are within the specified boundaries 

denoted by the singular values of the non-fault system +/- the value of GAM. The expressions of L, T and S 

are, respectively: 
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The above procedure is repeated for the               process and the following H∞ controller 

( ∞      ) is obtained: 

         
                                                         

                                                                         
         (108) 

 

The parameter GAM for this controller is 1.0152 is equivalent to 0.1314 dB. Figure 35 presents the 

singular value plot of this controller. 

 

Figure 35. H∞ Controller Singular Value plot for the water process. 

 

The open loop function L, the complementary sensitivity or closed loop function T, and the 

sensitivity function S are shown in equations (109) to (114). It can be observed that these parameters are 

within the specified boundaries denoted by the singular values of the non-fault system +/- the value of GAM. 
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    (114) 

 

Figure 36. Fault Tolerant MRAC-H∞ Controller Structure. 

 

3.5.1 Experiments and Results 

This section explains the different experiments that have been realized using the MRAC-H∞ 

controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated 

in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have 

been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was 

introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The 

following figures represent a comparison of the results applying different faults magnitudes. 
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Figure 37. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-H∞ controller. 

 From Figure 37, it can be observed that for abrupt and gradual sensor faults of 5% and 15% of 

system deviation the MRAC controller in combination with the H∞ controller (MRAC- H∞) resulted in a 

robust system against these types of faults. On the other hand, for faults of 25% of system deviation the 

MRAC- H∞ controller was fault tolerant. 
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Figure 38. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC- H∞ controller. 

 From Figure 38, it can be observed that for abrupt and gradual actuator faults of 5%, 15% and 25% 

of system deviation the MRAC controller in combination with the H∞ controller (MRAC- H∞) resulted fault 

tolerant against these types of faults. 
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3.6 Model Reference Adaptive Control plus Sliding Mode Control (MRAC-SMC) 

Using the Sliding Mode Control theory presented in Section 2.4, the controller presented in Figure 39 

is designed. The application and result of this controller is explained next.  

 

Figure 39. Fault Tolerant MRAC-SMC Controller Structure. 

                                                         

3.6.1 Experiments and Results 

This section explains the different experiments that have been realized using the MRAC-SMC 

controller in the Industrial Heat Exchanger. In these experiments, two different types of faults were simulated 

in the implemented schemes: abrupt faults and gradual faults. Both types of faults, abrupt and gradual, have 

been considered in sensors (feedback) and in the actuators (process entry). In each experiment, a fault was 

introduced at time 5000 seconds. Three different fault levels were simulated: 5%, 15% and 25%. The 

following figures represent a comparison of the results applying different faults magnitudes. 
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Figure 40. Abrupt and Gradual Sensor Faults of 5%, 15% and 25% for the MRAC-SMC controller. 

 From Figure 40, it can be observed that for abrupt and gradual sensor faults of 5%, 15% and 25% of 

system deviation the MRAC controller in combination with the SMC controller (MRAC-SMC) resulted in a 

robust system against these types of faults.  
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Figure 41. Abrupt and Gradual Actuator Faults of 5%, 15% and 25% for the MRAC-SMC controller. 

 From Figure 41, it can be observed that for abrupt and gradual actuator faults of 5% and 15% of 

system deviation the MRAC controller in combination with the SMC controller (MRAC-SMC) resulted fault 

tolerant against these types of faults. On the other hand, for faults of 25% of system deviation the system was 

degraded.  
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3.7 Mean Square Error for the Experiments in the Industrial Heat Exchanger 

In addition, the Mean Square Error (MSE) was calculated for all the experiments, as follows: 

                                                             
                     

 

   
                                 (115) 

where yreference is the output of the reference model, yprocess is the output of the actual process and n is the 

sampling period. The results are shown in Table 7 and Table 8 for sensor and actuator faults, respectively.  

Table 7. Mean Square Error for the Abrupt and Gradual Sensor Faults. 

Approaches Abrupt Sensor Faults Gradual Sensor Faults 

 f = 5% f = 15% f = 25% f = 5% f = 15% f = 25% 

MRAC-ANN-PID 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05 

MRAC-H∞ 4.803E-06 4.803E-06 0.0007472 4.804E-06 4.804E-06 0.0007358 

MRAC-SMC 1.843E-06 1.843E-06 1.843E-06 3.922E-06 3.922E-06 3.922E-06 

MRAC-ANN 

MRAC-PID 

MRAC 

2.069E-05 

1.521E-05 

0.0005245 

2.069E-05 

1.521E-05 

0.0097135 

2.069E-05 

0.0698587 

1.8321538 

2.069E-05 

1.522E-05 

0.0005246 

2.069E-05 

1.522E-05 

0.0097138 

2.069E-05 

0.0698464 

1.8320687 

 

Table 8. Mean Square Error for the Abrupt and Gradual Actuator Faults. 

Approaches Abrupt Actuator Faults Gradual Actuator Faults 

 f = 5% f = 15% f = 25% f = 5% f = 15% f = 25% 

MRAC-ANN-PID 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05 1.107E-05 

MRAC-H∞ 0.0003495 0.0023871 0.0050391 0.0003494 0.0023870 0.0050384 

MRAC-SMC 0.0003501 0.0024160 0.1223235 0.0003504 0.0024173 0.1223123 

MRAC-ANN 

MRAC-PID 

MRAC 

0.2993774 

0.2973728 

0.1182904 

0.1766571 

0.1771648 

0.0855958 

0.1210197 

0.1205219 

0.1187836 

0.2993563 

0.2973542 

0.1182899 

0.1766339 

0.1771336 

0.0855955 

0.1210041 

0.1205066 

0.1187681 

 

 From the above results, it can be seen that in general the MRAC-SMC has the lower MSE for the 

abrupt and gradual sensor faults (MSE = 1.843E-06 for the abrupt sensor faults and MSE = 3.922E-06 for the 

gradual sensor faults). On the other hand, the MRAC-ANN-PID scheme has the lower MSE for the abrupt and 

gradual actuator faults (MSE = 1.107E-05). It is important to mention that the combination of the MRAC 

scheme with other controllers (PID, ANN, SMC or H∞) results in an Active FTC + Passive FTC, because the 

MRAC can be considered as an Active FTC because this scheme accommodates the fault on-line and the 

other combinatorial controllers (PID, ANN, SMC or H∞) are Passive FTC because their fault accommodation 

capacity were design offline. 
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3.8 Manipulated Variable Analysis for the Industrial Heat Exchanger 

The next figures show different experiments that were realized to analyze the manipulated variable of 

the Industrial Heat Exchanger.  

 

Figure 42. Comparison between the manipulated variable and the system output of the MRAC scheme, 

applying an additive sensor fault of 10% at 5000 seconds. 

In the above figure, it can be observed that when the additive sensor fault appears, the manipulated 

variables compensate the fault. If the sensor faults decreases the valve opening % of the steam and water 

decreases until the fault is compensated. 
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Figure 43. Comparison between the manipulated variable and the system output of the MRAC scheme, 

applying an additive actuator fault of 10% at 5000 seconds. 

In the above figure, it can be observed that when the additive actuator fault appears, the system 

output remained with an oscillation, even though the manipulated variables tried to compensate the fault.  
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Figure 44. Comparison between the manipulated variable and the system output of the MRAC-ANN-

PID scheme, applying an additive sensor fault of 10% at 5000 seconds. 

In the above figure, it can be observed that the process output is robust against the sensor fault. The 

manipulated variables compensate the fault in order to give the desired output value.  
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Figure 45. Comparison between the manipulated variable and the system output of the MRAC-ANN-

PID scheme, applying an additive actuator fault of 10% at 5000 seconds. 

In the above figure, it can be observed that the additive actuator fault is imperceptible in the process 

output. The manipulated variables compensate the fault in order to give the desired output value.  
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4 Coupled-Tank System 

A second order coupled-tank system was chosen to test the Linear Parameter Varying approaches. 

This coupled-tank system designed by (Apkarian, 1999) is composed of two cylindrical tanks (see Figure 46): 

an upper and a lower tank (tank 1 and tank 2, respectively). In this system, a pump is used to transport water 

from the water reservoir to tank 1. Then, the outlet flow of tank 1 falls to tank 2 and finally the outlet flow of 

tank 2 goes to the water reservoir (Abdullah & Zribi, 2009).  

 

Figure 46. Coupled-tank system designed by (Apkarian, 1999). 

The water levels of the tanks are measured using pressure sensors located at the bottom of each tank.  

The model dynamics of these levels h1(t) and h2(t) can be represented as (Pan et al., 2005): 

           
  

  
           

  
  

                                          (116) 

                                            
  

  
           

  
  
                                            (117) 

                                                                                                                                              (118) 

In Table 9, the variables definition involved in the above system are explained.  

Table 9. Variable Definition 

Variable Definition Value 

h1, h2 water level of tank 1 and tank 2 - 

A1, A2 cross-section area of tank 1 and tank 2 15.5179 cm
2
 

a1, a2 
cross-section area of the outflow orifice 

of tank 1 and tank 2 
0.1781 cm

2
 

U pump voltage - 

kp pump gain 3.3 cm
3
/ V s 

G gravitational constant 981 cm/s
2 

α4 approximation constant 2.981 x 10
-7

 

α3 approximation constant -3.659 x 10
-5

 

α2 approximation constant 1.73 x 10
-3 

α1 approximation constant -4.036 x 10
-2

 

α0 approximation constant 0.583 

Tank 1 

h 1 

Tank 2 

h 2 

Water Reservoir 

Pump 
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To derive an LPV model of the above system, the following procedure is followed: First, a 

polynomial fitting technique is used to approximate     for  ≤  ≤   cm with φ
 
  , where (Forsythe at al., 

1977): 

                                              
      

      
                                                     (119) 

The parameters φ
 
 and φ

 
 are bounded with the following values taking into account the level 

operating ranges: 

                                                              
 
                                                        (120) 

                                                               
 
                                                        (121) 

The LPV form of the water levels dynamic equations are written as: 

                                                                                                                                          (122) 

                                                                                                                                                (123) 

where: 

                                           
  
  
                        

  
  
                                                   (124) 
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4.1 MRAC-4 Operating Points LPV Controller 

 To start testing the LPV model of the two tank system, a MRAC for the four extreme operating 

points was developed. These operating points are: φ
 
     and φ

 
    , φ

 
     and φ

 
    , φ

 
     and 

φ
 
    , φ

 
     and φ

 
    . 

 For the first operating point φ
 
     and φ

 
    , the reference model is equal to the process model if 

the system is operating without a fault. 

                                                                  
       

                   
                                           (126) 

                                                                    
       

                   
                                            (127) 

 The adaptive feed forward update rule for the MRAC based on the MIT rule  θ   is: 

                                            
   

  
   

  

   
     

                

                   
                                        (128) 

 While the adaptive feedback update rule for the MRAC based on the MIT rule  θ   is: 

                                              
   

  
   

  

   
    

                

                   
                                        (129) 

  

 The second, third and fourth operating points were calculated in a similar form. In Table 10 a 

summary of the MRAC controllers based on the MIT rule developed for the four different operating points is 

presented. 

Table 10. Model Reference Adaptive Controller of the 4 Operating Points based on MIT rule. 

Operating 

Point 
MRAC  Equations for Each Operating Point 

 
Reference Model 

= 

Process Model 

Adaptive feed forward 

update rule  θ   
Adaptive feedback 

update rule  θ   

 

φ
 
     

φ
 
     

       

                   
    

                

                   
       

                

                   
     

 

φ
 
     

φ
 
     

       

                  
    

               

                  
       

               

                  
     

 

φ
 
     

φ
 
     

       

                  
    

               

                  
       

               

                  
     

 

φ
 
     

φ
 
     

       

                  
    

               

                  
       

               

                  
     

 

 

 With the above equations, the MRAC controller presented in Figure 47 is implemented. 
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Figure 47. MRAC-4 Operating Points LPV Controller based on MIT rule. 

 

On the other hand, using the MRAC controller based on Lyapunov theory the adaptive feedforward 

 θ   and the adaptive feedback  θ   update rules are: 

   
  
                                                                     (130) 

   
  
                                                                     (131) 

 

The above adaptation parameters are the same for the 4 different operation points. The 

implementation of the Lyapunov based MRAC controller is presented in Figure 48. 
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Figure 48. MRAC-4 Operating Points LPV Controller based on Lyapunov theory. 

 

To select the value of γ, different experiments with different γ sizes were realized. In these 

experiments, first a sensor fault of 23.3% was introduced at time 2500 seconds. And then, an actuator fault of 

magnitude 3% was introduced at time 2500 seconds. Four different size of γ were tested (10000, 1000, 100, 

10) and the results are showed in Table 11 and from Figure 49 to Figure 50. 

Table 11. MSE of different sizes of γ. 

γ Sensor Fault Actuator Fault 

10000 0.0068 0.2513 

1000 28.5951 0.2501 

100 28.5983 0.2491 

10 28.5983 0.2472 
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Figure 49. MRAC Results testing different sizes of γ for sensor faults. 

 
Figure 50. MRAC Results testing different sizes of γ for actuator faults. 
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 From the above results the selected value of γ to realize the following experiments was 10000, 

because it has the lower MSE combination for sensor and actuator faults. 

 

4.1.1 Experiments and Results 

This section explains the different experiments realized in the Coupled-Tank System using the 

MRAC 4 Operating Points LPV Controller (MRAC-4OP-LPV) based on the MIT rule and based on the 

Lyapunov theory. Two different types of faults were simulated in the implemented schemes: abrupt and 

gradual faults. In the abrupt fault case, the whole magnitude of the fault is developed in one moment of time 

and was simulated with a step function.  On the other hand, gradual faults are developed during a period of 

time and are implemented with a ramp function. Both types of faults, abrupt and gradual, can be implemented 

in sensors (feedback), in which the properties of the process are not affected, but the sensor readings are 

wrong. Also, they can be implemented in actuators (process entry) in which the process properties are not 

affected either, but the process behavior can change or can be interrupted.  Abrupt faults in actuators represent 

for instance a pump stuck while in sensors a constant bias in measurements. A gradual fault in actuators could 

be a progressive loss of electrical power in pump, and in sensors a drift in the measurements. The next figures 

show the results of the experiments realized using the MRAC-4OP-LPV scheme. 

 

Figure 51. Comparison between the MRAC-4OP-LPV based on the MIT rule and based on Lyapunov 

theory with an abrupt-sensor fault of 23.3% at the first operating point. 

 In Figure 51, the MRAC-4OP-LPV controllers based on the MIT rule and based on the Lyapunov 

theory are compared. The controller is working in the operating point φ
 
     and φ

 
    , an abrupt-sensor 

fault of magnitude 23.3% was introduced at time 5000 seconds. It can be observed, that the MRAC-4OP-LPV 

based on the MIT rule and based on the Lyapunov theory was fault tolerant against the fault.  
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Figure 52. Comparison between the MRAC-4OP-LPV based on the MIT rule and based on Lyapunov 

theory with an abrupt-actuator fault of 1% at the first operating point. 

 In Figure 52, the MRAC-4OP-LPV controllers based on the MIT rule and on the Lyapunov theory 

are compared. While, the controllers are working in the operating point φ
 
     and φ

 
    , an abrupt-

actuator fault of 1%  was introduced at time 5000 seconds. In this figure the MRAC-4OP-LPV based on the 

MIT rule and based on Lyapunov theory methods were fault tolerant against the actuator fault where the 

MRAC-4OP-LPV accommodates the fault in 15000 and 12500 seconds, respectively.  

 

Figure 53. Comparison between the MRAC-4OP-LPV based on the MIT rule and based on Lyapunov 

theory with a gradual-sensor fault of 10% at the third operating point. 

 In Figure 53, the MRAC-4OP-LPV controllers based on the MIT rule and on the Lyapunov theory 

are compared. While the controllers are working in the operating point φ
 
     and φ

 
    , a gradual-sensor 

fault of 10% was introduced at time 5000 seconds. In this figure it can be observed that the MRAC-4OP-LPV 

was degraded for both methodologies. 
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Figure 54. Comparison between the MRAC-4OP-LPV based on the MIT rule and based on Lyapunov 

theory with a gradual-actuator fault of 1% at the third operating point. 

 In Figure 54, the MRAC-4OP-LPV controllers based on MIT rule and on Lyapunov theory are 

compared. While the controllers are operating in the operating point φ
 
     and φ

 
    , a gradual-actuator 

fault of 1% was introduced at time 5000 seconds. In this figure, it can be observed that the MRAC-4OP-LPV 

based on Lyapunov theory was fault tolerant and could accommodate the fault in approximately 200 seconds. 

The MRAC-4OP-LPV based on MIT rule presented oscillations in the system after the occurrence of the 

actuator fault. 
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4.2 MRAC-Artificial Neural Network 4 Operating Points LPV Controller 

 Four Artificial Neural Networks controllers were added to the MRAC- 4 Operating Points LPV 

Controller. To create and train each Artificial Neural Network controller, the original process inputs were 

introduced as well as the desired outputs (no system fault case).  The created ANN is a two-layer feedforward 

Artificial Neural Network with 50 sigmoid hidden neurons and a linear output neuron. To train the network 

the Levenberg-Maquard backpropagation algorithm was used. This training algorithm is a combination of 

Gauss-Newton and gradient descent methods which integrates the benefits of the global and local 

convergence properties from the gradient descent and Gauss-Newton methods, respectively (Ye, 2003).  

The implementation of the MRAC-Artificial Neural Network 4 Operating Points LPV Controller 

based on MIT rule is presented in Figure 55: 

 

Figure 55. MRAC-Artificial Neural Network 4 Operating Points LPV Controller based on MIT rule. 

 

In addition, the implementation of the MRAC-Neural Network 4 Operating Points LPV Controller 

based on Lyapunov theory is shown in Figure 56. 
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Figure 56. MRAC-Artificial Neural Network 4 Operating Points LPV Controller based on Lyapunov 

theory. 

4.2.1 Experiments and Results 

This section explains the different experiments realized in the Coupled-Tank System using the 

MRAC-Artificial Neural Network 4 Operating Points LPV Controller (MRAC-ANN4OP-LPV) based on the 

MIT rule and based on the Lyapunov theory. Two different types of faults were simulated in the implemented 

schemes: abrupt and gradual faults. The next figures show the results of the experiments realized using this 

scheme. 

 

Figure 57. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on 

Lyapunov theory with an abrupt-sensor fault of 23.3% at the first operating point. 
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 In Figure 57, the MRAC-ANN4OP-LPV controllers based on the MIT rule and based on the 

Lyapunov theory are compared. The controller is working in the operating point φ
 
     and φ

 
    , an 

abrupt-sensor fault of 23.3% was introduced at time 5000 seconds. It can be observed, that the MRAC-

ANN4OP-LPV based on the MIT rule and based on the Lyapunov theory were robust against the fault.  

 

Figure 58. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on 

Lyapunov theory with an abrupt-actuator fault of 1% at the first operating point. 

 In Figure 58, the MRAC-ANN4OP-LPV controllers based on the MIT rule and on the Lyapunov 

theory are compared. While, the controllers are working in the operating point φ
 
     and φ

 
    , an abrupt-

actuator fault of 1% was introduced at time 5000 seconds. In this figure the MRAC-ANN4OP-LPV based on 

the MIT rule and based on Lyapunov theory could not accommodate the fault completely because it can be 

observed that the system remained with certain oscillations. 

 

Figure 59. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on 

Lyapunov theory with a gradual-sensor fault of 10% at the third operating point. 
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sensor fault of 10% was introduced at time 5000 seconds. In this figure it can be observed that the MRAC-

ANN4OP-LPV based on MIT rule and based on Lyapunov theory were robust against the fault. 

 

Figure 60. Comparison between the MRAC-ANN4OP-LPV based on the MIT rule and based on 

Lyapunov theory with a gradual-actuator fault of 1% at the third operating point. 

 In Figure 60, the MRAC-ANN4OP-LPV controllers based on MIT rule and on Lyapunov theory are 

compared. While the controllers are operating in the operating point φ
 
     and φ

 
    , a gradual-actuator 

fault of 1% was introduced at time 5000 seconds. In this figure, it can be observed that the MRAC-ANN4OP-

LPV based on MIT rule and based on Lyapunov theory presented oscillations in the system after the 

occurrence of the actuator fault. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Actuator

Fault

Time (seconds)

T
an

k
 L

ev
el

 (
cm

)

MRAC-ANN4OP-LPV

MIT RULE LYAPUNOV  THEORY

Time (seconds)

T
an

k
 L

ev
el

 (
cm

)

MRAC-ANN4OP-LPV

Actuator

Fault



83 

 

4.3 MRAC-H∞ 4 Operating Points LPV Controller 

 A H∞ controller was designed for each of the 4 operating points. The H∞ control proposed in this 

work was designed by using the loop shaping method and using the following steps: First, the worst case of 

system faults were simulated and identified in the form of a Laplace function. Second, these functions are 

compared against the non-faulty process. Third, a loop shaping control synthesis is performed to calculate an 

optimal H∞ controller for the Laplace fault-functions. This controller shapes the sigma plot of the Laplace 

fault-function and obtains the desired loop shaping with a precision parameter called GAM (e.g. if GAM  

should be ≥ 1 with GAM = 1 being a perfect match). Figure 61 shows the implementation of the MRAC-H∞ 4 

Operating Points LPV Controller based on the MIT rule. 

 

Figure 61. MRAC-H∞ 4 Operating Points LPV Controller based on MIT rule. 

  

 The implementation of the MRAC-H∞ 4 Operating Points LPV Controller based on Lyapunov theory 

is shown in Figure 62. 
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Figure 62. MRAC-H∞ 4 Operating Points LPV Controller based on Lyapunov theory. 

4.3.1 Experiments and Results 

This section explains the different experiments realized in the Coupled-Tank System using the 

MRAC-H∞ 4 Operating Points LPV Controller (MRAC- H∞4OP-LPV) based on the MIT rule and based on 

the Lyapunov theory. Two different types of faults were simulated in the implemented schemes: abrupt and 

gradual faults. The next figures show the results of the experiments realized using this scheme. 

 

Figure 63. Comparison between the MRAC-H∞4OP-LPV based on the MIT rule and based on 

Lyapunov theory with an abrupt-sensor fault of 23.3% at the first operating point. 
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 In Figure 63, the MRAC-H∞4OP-LPV controllers based on the MIT rule and based on the Lyapunov 

theory are compared. The controller is working in the operating point φ
 
     and φ

 
    , an abrupt-sensor 

fault of 23.3% was introduced at time 5000 seconds. It can be observed, that the MRAC-H∞4OP-LPV based 

on the MIT rule and based on the Lyapunov theory were fault tolerant against the fault.  

 

Figure 64. Comparison between the MRAC-H∞4OP-LPV based on the MIT rule and based on 

Lyapunov theory with an abrupt-actuator fault of 1% at the first operating point. 

 In Figure 64, the MRAC-H∞4OP-LPV controllers based on the MIT rule and on the Lyapunov theory 

are compared. While, the controllers are working in the operating point φ
 
     and φ

 
    , an abrupt-

actuator fault of 1% was introduced at time 5000 seconds. In this figure the MRAC-H∞4OP-LPV based on 

based on the MIT rule and based on Lyapunov theory were fault tolerant and was able to accommodate the 

fault in 2000 to 2500 seconds.  

 

Figure 65. Comparison between the MRAC-H∞4OP-LPV based on the MIT rule and based on 

Lyapunov theory with a gradual-sensor fault of 10% at the third operating point. 
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fault of 10% was introduced at time 5000 seconds. In this figure it can be observed that the MRAC-H∞4OP-

LPV based on MIT rule and based on Lyapunov theory were fault tolerant against the fault. 

 

Figure 66. Comparison between the MRAC-H∞4OP-LPV based on the MIT rule and based on 

Lyapunov theory with a gradual-actuator fault of 1% at the third operating point. 

 In Figure 66, the MRAC-H∞4OP-LPV controllers based on MIT rule and on Lyapunov theory are 

compared. While the controllers are operating in the operating point φ
 
     and φ

 
    , a gradual-actuator 

fault of 1% was introduced at time 5000 seconds. In this figure, it can be observed that the MRAC-H∞4OP-

LPV MIT rule scheme was fault tolerant and was able to accommodate the fault in 4000 seconds and the 
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Figure 67. MRAC + ANN + H∞ 4 Operating Points LPV Controllers based on MIT rule. 

 

 

Figure 68. MRAC + ANN + H∞ 4 Operating Points LPV Controllers based on Lyapunov theory. 
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Table 12. Results of experiments of the MRAC-4OP-LPV, MRAC-ANN4OP-LPV and MRAC-H∞4OP-

LPV methodologies based on MIT rule. 

Approach Sensor Faults Actuator Faults 

 Abrupt Gradual Abrupt Gradual 

Process Model 1 

MRAC-4OP-LPV 

f < 15%   R 

15% <f <26%  FT 

f > 26%  D 

f < +/- 15%   R 

+/- 15% <f < +/-26%  FT 

f > +/- 26%   D 

0 < f < 10%  FT 

f > 10%   D 

+/-0 < f <+/- 10%  

FT 

f >+/- 10%   D 

MRAC-ANN4OP-

LPV 

R R f > 0   D f > 0   D 

MRAC-H∞4OP –

LPV 

f < 17%   R 

17% < f < 53%  FT 

f > 53%   D 

f < +/- 17%   R 

+/- 17% <f < +/-53%  FT 

f > +/- 53%   D 

0 < f < 2%  FT 

f > 2%  D 

+/-0 < f <+/- 2  FT 

f >+/- 2   D 

Process Model 2 

MRAC-4OP-LPV 

f < 16%   R 

16% < f < 27%  FT 

f > 27%  D 

f < +/- 16%   R 

+/- 16% <f < +/-27% FT 

f > +/-27%   D 

0 < f < 1%  FT 

f > 1%   D 

+/-0 < f <+/- 1%  

FT 

f >+/- 1%  D 

MRAC-ANN4OP-

LPV 

R R f > 0   D f > 0   D 

MRAC-H∞4OP –

LPV 

f < 20%   R 

20% < f <52%  FT 

f > 52%   D 

f < +/- 20%   R 

+/- 20% <f < +/-52%  FT 

f > +/- 52%   D 

0 < f <2%  FT 

f > 2%   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%   D 

Process Model 3 

MRAC-4OP-LPV 

f < 2%   R 

2% < f < 2.5%  FT 

f > 2.5%  D 

f < +/- 2%   R 

+/- 0.52 <f < +/-2%  FT 

f > +/- 2.5%   D 

0 < f <2%  FT 

f >2%   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%  D 

MRAC-ANN4OP-

LPV 

R R f > 0   D f > 0   D 

MRAC-H∞4OP –

LPV 

f < 10%   R 

10% < f < 16%  FT 

f > 16%   D 

f < +/- 10%   R 

+/- 10% <f < +/-16%  FT 

f > +/-16%   D 

0 < f < 2%  FT 

f > 2%   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%   D 

Process Model 4 

MRAC-4OP-LPV 

f < 2%   R 

2% < f < 2.5%  FT 

f > 2.5%   D 

f < +/- 2%   R 

+/- 2% <f < +/-2.5%  FT 

f > +/- 2.5%   D 

0 < f < 2%  FT 

f > 2%   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%  D 

MRAC-ANN4OP-

LPV 

R R f > 0   D f > 0   D 

MRAC-H∞4OP –

LPV 

f < 7%   R 

7% < f < 16%  FT 

f > 16%   D 

f < +/- 7%   R 

+/- 7% <f < +/-16%  FT 

f > +/- 16%   D 

0 < f < 2%  FT 

f > 2%   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%   D 

 R=Robust, FT = Fault Tolerant, D = Degraded  

 

 



89 

 

Table 13. Results of experiments of the MRAC-4OP-LPV, MRAC-ANN4OP-LPV and MRAC-H∞4OP-

LPV methodologies based on Lyapunov theory. 

Approach Sensor Faults Actuator Faults 

 Abrupt Gradual Abrupt Gradual 

Process Model 1 

MRAC-4OP-LPV 

f < 18%   R 

18% < f < 26%   

FT 

f > 26%   D 

f < +/- 18%   R 

+/- 18% < f < +/-26%   

FT 

f > +/- 26%   D 

0 < f < 2.5%  FT 

f > 2.5%   D 

+/-0 < f <+/- 2.5%  

FT 

f > +/- 2.5%   D 

MRAC-ANN4OP-

LPV 

R R f > 0   D f > 0   D 

MRAC- H∞4OP –

LPV 

f < 20%   R 

20% < f < 53%  

FT 

f > 53%   D 

f < +/- 20%   R 

+/- 20% < f < +/-53%   

FT 

f > +/- 53%   D 

0 < f < 2%  FT 

f > 2%   D 

+/- 0 < f < +/- 2%  

FT 

f > +/- 2%   D 

Process Model 2 

MRAC-4OP-LPV 

f < 18%   R 

18% < f < 27%  

FT 

f >27%   D 

f < +/- 18%  R 

+/- 18% <f < +/-27% FT 

f > +/- 27%  D 

0 < f < 3%  FT 

f > 3%   D 

+/-0 < f <+/- 3%  

FT 

f >+/- 3%  D 

MRAC-ANN4OP-

LPV 

R R f > 0   Degraded 

System 

f > 0   Degraded 

System 

MRAC- H∞4OP –

LPV 

f < 22%   R 

22% < f < 50%  

FT 

f > 50%   D 

f < +/- 22%   R 

+/- 22% <f < +/-50%  FT 

f > +/-50%  D 

0 < f < 2%  FT 

f > 2%   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%   D 

Process Model 3 

MRAC-4OP-LPV 

f < 1.8%  R 

1.8%< f <2.4%  

FT 

f > 2.4%   D 

f < +/- 1.8%   R 

+/-1.8%<f < +/-2.4%  FT 

f > +/- 2.4%   D 

0 < f < 6%  FT 

f > 6%   D 

+/-0 < f <+/-6%  

FT 

f >+/- 6%  D 

MRAC-ANN4OP-

LPV 

R R f > 0   D f > 0   D 

MRAC- H∞4OP –

LPV 

f < 8.5%   R 

8.5%< f <11%  

FT 

f > 11%   D 

f < +/- 8.5%   R 

+/- 8.5%<f < +/-11%  FT 

f > +/- 11%  D 

0 < f < 0.5  FT 

f > 0.5   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%   D 

Process Model 4 

MRAC-4OP-LPV 

f < 1.8%  R 

1.8%< f <2.4%  

FT 

f > 2.4%   D 

f < +/- 1.8%   R 

+/-1.8%<f < +/-2.4%  FT 

f > +/- 2.4%   D 

0 < f < 6%  FT 

f > 6%   D 

+/-0 < f <+/- 6%  

FT 

f >+/- 6%  D 

MRAC-ANN4OP-

LPV 

R R f > 0   D f > 0   D 

MRAC- H∞4OP –

LPV 

f < 7.5%   R 

7.5% < f < 13%  

FT 

f > 13%    D 

f < +/-7.5%   R 

+/-7.5%<f < +/-13%  FT 

f > +/-13%   D 

0 < f < 2%  FT 

f > 2%   D 

+/-0 < f <+/- 2%  

FT 

f >+/- 2%   D 

R=Robust, FT = Fault Tolerant, D = Degraded 
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 In addition, the Mean Square Error (MSE) was calculated for all the experiments. The results are 

shown in Table 14. It is important to mention that the results were the same for abrupt and gradual faults.  

Table 14. MSE Results of the comparison between the MRAC-4OP-LPV, MRAC-ANN4OP-LPV and 

MRAC-H∞4OP-LPV based on MIT rule and based on Lyapunov theory. 

 

In all the results of Table 14, it can be seen that the MSE from the schemes using the MRAC based 

on the Lyapunov theory is lower than the schemes using the MRAC based on MIT, because the Lyapunov 

theory adds stability to the closed-loop system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Process Model 1 

 MRAC MIT based design MRAC Lyapunov based design 

Methodology Sensor Faults 

(23.3%) 

Actuator Faults 

(1%) 

Sensor Faults 

(23.3%) 

Actuator Faults 

(1%) 

MRAC-4OP-LPV 0.00272417 0.10804153 0.000780457 0.084395641 

MRAC-ANN4OP-LPV 0.009755478 0.047977847 0.006817029 0.043201383 

MRAC-H∞4OP-LPV 0.00026123 0.035337832 5.98686E-05 0.029824218 

Process Model 3 

 MRAC MIT based design MRAC Lyapunov based design 

Methodology Sensor Faults 

(23.3%) 

Actuator Faults 

(1%) 

Sensor Faults 

(magnitude 3) 

Actuator Faults 

(1%) 

MRAC-4OP-LPV 1.554861422 8.14169E-05 1.554861325 6.68611E-05 

MRAC-ANN4OP-LPV 6.50112E-05 0.00314155 7.72308E-05 0.003103844 

MRAC-H∞4OP-LPV 7.90349E-06 0.000183443 5.34546E-06 0.000163684 
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4.4 MRAC-LPV Controller 

 Now, taking the above results as a pre-test, an LPV Model Reference Adaptive Controller for the 

LPV system was designed (MRAC-LPV). First, the state-space LPV model was transformed to a continuous 

space model: 

                                                                                                                             (132) 
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 Then, the reference model is: 
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 As in the previous cases, this reference model is the same as the process model when the system has 

no faults. 
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 The adaptive feed forward update rule  θ   and the adaptive feedback update rule  θ   for the 

MRAC-LPV based on MIT rule are: 
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 Finally, the MRAC-LPV system based on the MIT rule is represented in Figure 69: 
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Figure 69. MRAC-LPV system based on MIT rule. 

 The MRAC-LPV based on Lyapunov theory is shown in Figure 70. 

 

Figure 70. MRAC-LPV system based on Lyapunov theory. 

 

To select the value of γ, different experiments with different γ sizes were realized. In these 

experiments a sensor fault of 3.3% was introduced at time 1000 seconds and an actuator fault of 3% was 

introduced at time 2000 seconds. In addition, a change in the operating point was applied at time 1500 

seconds. In summary, four different size of γ were tested (1000, 100, 10, 1) and the results are showed in 

Figure 71 and Table 15. 
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Figure 71. MRAC-LPV Results testing different sizes of γ. 

 

Table 15. MSE of the MRAC-LPV results of different sizes of γ. 

γ 
Sensor 

Fault 

Actuator 

Fault 
Total MSE 

1000 0.0748 0.0398 0.0128 

100 0.0714 0.0388 0.0122 

10 0.0726 0.0393 0.0124 

1 0.0748 0.0398 0.0128 

 

From Figure 71 and Table 15 the selected value of γ to realize the following experiments was 100, 

because it has the lower MSE in sensor and actuator faults. 

4.4.1 Experiments and Results 

This section explains the different experiments realized in the Coupled-Tank System using the 

MRAC-LPV Controller (MRAC-LPV) based on the MIT rule and based on the Lyapunov theory. Two 

different types of faults were simulated in the implemented schemes: abrupt and gradual faults. The next 

figures show the results of the experiments realized using this scheme. 
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Figure 72. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the 

Lyapunov theory with an abrupt-sensor fault of magnitude 3.3% and an abrupt-actuator fault of 

magnitude 20% for the operating points φ1=0.3 and φ2=0.5. 

 In Figure 72, the MRAC-LPV Controllers based on MIT rule and on Lyapunov theory are compared. 

While both controllers are working in the operating point φ
 
     and φ

 
    , an abrupt-sensor fault of 3.3% 

was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time 15000 

seconds. In addition, a change in the operating point was performed at time 10000 seconds. It can be observed 

that the MRAC-LPV scheme was fault tolerant for the sensor and the actuator fault and could tolerate the 

change in the operation points for both methodologies. 

 

Figure 73. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the 

Lyapunov theory with an abrupt-sensor fault of magnitude 160% and an abrupt-actuator fault of 

magnitude 20% for the operating points φ1=0.3 and φ2=0.5. 

 In Figure 73, the MRAC-LPV Controllers based on MIT rule and on Lyapunov theory are compared. 

While both controllers are working in the operating point φ
 
     and φ

 
    , an abrupt-sensor fault of 160% 

was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time 15000 
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seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this figure, the 

MRAC-LPV scheme became degraded after the occurrence of the sensor fault, and was able to accommodate 

the fault after 10000 seconds for both methodologies (MIT rule and Lyapunov theory). 

 

Figure 74. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the 

Lyapunov theory with a gradual-sensor fault of 3.3% and a gradual-actuator fault of 20% for the 

operating points φ1=0.6 and φ2=0.6. 

 In Figure 74, the MRAC-LPV Controllers based on MIT rule and on Lyapunov theory are compared. 

While both controllers are working in the operating point φ
 
     and φ

 
    , a gradual-sensor fault of 3.3% 

was introduced in time 5000 seconds and a gradual-actuator fault of 20% was introduced at time 15000 

seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this figure, it 

can be observed that the MRAC-LPV scheme was fault tolerant for the sensor and the actuator fault and could 

tolerate the change in the operation points for both methodologies. 

 

Figure 75. Comparison between the MRAC-LPV Controllers based on the MIT rule and based on the 

Lyapunov theory with a gradual-sensor fault of 160% and a gradual-actuator fault of 20% for the 

operating points φ1=0.6 and φ2=0.6. 
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 In Figure 75, the MRAC-LPV Controller based on the MIT rule and on the Lyapunov theory are 

compared. While both controllers are working in the operating point φ
 
     and φ

 
    , a gradual-sensor 

fault of 160% was introduced in time 5000 seconds and a gradual-actuator fault of 20% was introduced at 

time 15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this 

figure it can be observed that the MRAC-LPV was fault tolerant against the sensor and actuator fault and 

could tolerate the change in the operating point for both methodologies (MIT rule and Lyapunov theory). 
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4.5 H∞ Gain Scheduling -MRAC LPV Controller 

 In addition a H∞ Gain Scheduling Control was developed. The H∞ Gain Scheduling Control is 

applicable to affine parameter-dependent plants, where the dependent parameter (    ) is a time-varying 

vector of physical parameters (velocity, set point, etc.). And the matrices of the system A, B, C and D are 

affine functions of     . The dependent parameters need to be measured in real time. For this reason a 

controller that incorporates such measurements of the parameters to adjust the operating condition to these 

changes must be designed (Packard, 1994). This type of controller is named scheduling control.  

 Therefore, if the parameter vector      takes values in a box with corners        
       , the plant 

system matrix: 

      
        

        
                                                           (141) 

ranges in a matrix polytope with vertices      . Particularly, given any convex decomposition: 

                ,     ,        
                         (142) 

of    over the corners of the parameter box, the system matrix      is presented by 

                                                                      (143) 

 The above implies to seek for parameter dependent controllers with equations 

       
               

              
                                                     (144) 

whose vertex property is: Given the convex decomposition           
 
    of a current parameter value 

    , the values of      ,      , … are derived from the values of       ,       , … at the corners of the 

parameter box by 

 
          

          
     

 
    

            

            
                                      (145) 

 The above means that the controller state-space matrices in a specific operating point      are 

obtained by convex interpolation of the LTI vertex controllers 

    
            

            
                                                          (146) 

 That generates a smooth scheduling of the controller matrices by the parameter measurements     . 

 The designed gain scheduled controller        must satisfy the vertex property and the closed-loop 

system should be stable for all admissible parameters trajectories      (Apkarian & Gahinet, 1995; Apkarian 

et al., 1995, Becker & Packard, 1994; Packard, 1994). 

 In order to design the H∞ Gain Scheduling LPV Controller, two weighting functions were established 

(W1 and W2). To obtain W1, the following procedure is used: First, four plants were established using the 

extreme operation points. Also, a nominal plant was obtained using the average of the operation points (see 

Table 16). 
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Table 16.  Different Plants at the four and nominal operating points. 

Plant 

Number 

Operating 

Points 

Plants 

Transfer Functions 

Plant 1 

φ
 
     

φ
 
     

       

                   
 

 

Plant 2 

φ
 
     

φ
 
     

       

                  
 

 

Plant 3 
φ
 
     

φ
 
     

       

                  
 

 

Plant 4 
φ
 
     

φ
 
     

       

                  
 

 

Nominal Plant 
φ
 
      

φ
 
      

       

                  
 

 

 

 Then, the multiplicative uncertainty for each plant is calculated with the following equation: 

      
                       

             
                                                        (147) 

Table 17 shows the resulting Multiplicative uncertainty of each Plant. 

Table 17.  Multiplicative Uncertainty of each Plant. 

Plant 

Number 

Operating 

Points 
Multiplicative Uncertainty 

Plant 1 

φ
 
     

φ
 
         

                                                    

                                                
 

 

Plant 2 

φ
 
     

φ
 
         

                                                  

                                                 
 

 

Plant 3 
φ
 
     

φ
 
     

    
                                                  

                                                 
 

 

Plant 4 
φ
 
     

φ
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 The next step is to plot a Bode diagram of the above uncertainties (see Figure 76). 

 

Figure 76. Bode Diagram of the 4 Plants Multiplicative Uncertainties. 

 With the above Bode diagram, a multiplicative uncertainty function that includes Wm1, Wm2, Wm3 and 

Wm4 is obtained: 

                                                 
                                

                                     
                                         (148) 

 

Figure 77. Bode Diagram of all Multiplicative Uncertainties. 
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To obtain W2, the next procedure is applied. The additive uncertainty calculus for each plant is 

calculated with: 

                                                                                                                                   (149) 

Table 18 shows the resulting Additive uncertainty of each Plant. 

Table 18.  Additive Uncertainty of each Plant. 

Plant 

Number 

Operating 

Points 
Additive Uncertainty 

Plant 1 

φ
 
     

φ
 
         

                              

                                       
 

 

Plant 2 

φ
 
     

φ
 
         

                             

                                          
 

 

Plant 3 
φ
 
     

φ
 
     

    
                            

                                          
 

 

Plant 4 
φ
 
     

φ
 
     

    
                            

                                         
 

 

 

  

 The next step is to plot a Bode diagram of the above uncertainties (see Figure 78). 

 

Figure 78. Bode Diagram of the 4 Plants Additive Uncertainties. 
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 Finally, with the above bode diagram an additive uncertainty function that includes Wa1, Wa2, Wa3 

and Wa4 is obtained (see Figure 79): 

                                  
                                             

                                                      
                                 (150) 

 

Figure 79. Bode Diagram of all Additive Uncertainties. 

 

 After calculating W1 and W2 the following procedure implemented in Matlab
®
 was realized:  

- First, the value of the learning rate and the specific desired operation points were established: 

%LPV-MRAC-Hinfgs Controller 

%Input Data 

gamma=100; 

phi1=.3; 

phi2=.5; 

%.1<=phi1<=.6 

%.1<=phi2<=.6 

 

- Second, W1 and W2 have to be transformed into a Linear Time Invariant (LTI) system: 

%Filter Shape W1 y W2 

n1=[0.02839 0.01249 0.000757 -0.0003338]; 

d1=[1 0.9247 0.326 0.05373 0.003984 9.561e-005]; 
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w1=ltisys('tf',n1,d1); 

  

n2=[0.75 0.33 0.02 -0.00882]; 

d2=[1 0.568837 0.091878 0.003019]; 

w2=ltisys('tf',n2,d2); 

 

- Third, the parameter range has to be specified in order to obtain the variation range of values of the 

time-varying parameters or uncertain vector. In the considered case study, there are two parameters 

varying within the operating point. This means that the range of values of this parameters form a 

multi-dimensional box is given by 

%Specify the range of parameter values (parameter box) 

Phi1min=.1; Phi1max=.6; 

Phi2min=.1; Phi2max=.6; 

pv=pvec('box', [Phi1min Phi1max; Phi2min Phi2max]); 

 

- Fourth, the state space LPV model is transformed into an LTI system and then the parameter varying 

system is specified as follows: 

%Specify the parameter-dependent model with PSYS 

s0=ltisys([0 0;0 0],[0.2127;0],[0 1], [0]); 

s1=ltisys([-.5085 0;0.5085 0],[0;0],[0 0], [0],0); %Phi1_al component 

s2=ltisys([0 0;0 -0.5085],[0;0],[0 0], [0],0); %Phi2_al component 

pdG=psys(pv,[s0 s1 s2]); 

  

- Fifth, the loop shaping structure of the LPV system is specified, where r is the exogenous input, y=K 

represents the outputs generated by the control loop, K:r-y specify the controller and its inputs, G:K 

represents that the input of G is the output of K and pdG is the system matrix. 

%  Specify the loop-shaping control structure with SCONNECT 

[pdP,r]=sconnect('r','y=K','K:r-y','G:K',pdG); 

 

 

Figure 80. Loop Shaping Structure. 

 

- Sixth, the augmented plant is formed. 

%  Augment with the shaping filters 

Paug=smult(pdP,sdiag(w1,w2)); 
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%Paug=smult(pdP); 

  

- Seventh, the H∞ Gain Scheduling Controller is calculated using hinfgs function. This function 

calculates and H∞ gain scheduled control for parameter varying systems with an affine dependence. 

The parameters are assumed to be measured in real time. To calculate the controller, the function 

implements the quadratic H∞ performance approach where Paug is the parameter varying plant, r is a 

vector specifying the dimensions of D22, 1e-2 is the target value for gopt, 1e-4 is the desired relative 

accuracy of the optimal performance of gopt, pdk is the polytopic representation of the gain-

scheduled controller and gopt is the optimal performance of the controller. Also, the psinfo function 

gives the type of system (affine or polytopic), the number K of system matrices involved in its 

definition, the number of states, inputs and outputs, respectively. 

%  LMI-BASED SYNTHESIS OF THE LPV CONTROLLER 

%  Minimization of gamma for the loop-shaping criterion 

[gopt,pdK]=hinfgs(Paug,r,1e-2,1e-4); 

%typ= affine  or polytopic, K=# of K system matrices 

%NS=# states, NI=# inputs and NO=#outputs 

[typ,K,NS,NI,NO]=psinfo(pdK); 

 

- Eighth, the desired operating points are specifying in order to return the convex decomposition c of p 

over the set vertx of box corners. 

%corresponding state-space parameters of the controller given any 

%p of the parameter vector p(t) 

p1=phi1; 

p2=phi2; 

p=[p1;p2]; 

[c,vertx]=polydec(pv,p); 

%NOTE: p has to be inside the range of phi1 y phi2: i.e. [.1 .5; .2 .5]  

% [Phi1min Phi1max; Phi2min Phi2max] 

 

- Ninth, the evaluation of the desired operating points in the polytopic representation of the gain-

scheduled controller is realized. From this evaluation the state space matrices are extracted and then 

transformed in to a continuous space system num_controller and den_controller whose values are 

sent online to the simulation in SIMULINK®. 

%Controller calculus 

Kp = psinfo(pdK,'eval',c); 

[a,b,c,d,e]=ltiss(Kp); 

A=a; 

B=b; 



n 
C=c; 

D=d; 

%Transformation from ss to tf 

[b,a] = ss2tf(A,B,C,D); 

num_controller=b 

den_controller=a 

modelName = 'MRAC_LPV'; 

modelName2 = 'MRAC_Hinfgs_LPV'; 

open_system(modelName) 

open_system(modelName2) 

  

 The H∞ Gain Scheduling – MRAC LPV Controller based on MIT rule is represented in Figure 81. 

 

Figure 81. H∞ Gain Scheluding – MRAC LPV Controller based on MIT rule. 

 

Finally, the H∞ Gain Scheduling – MRAC LPV Controller based on Lyapunov theory is shown i

Figure 82. 
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Figure 82. H∞ Gain Scheluding – MRAC LPV Controller based on Lyapunov theory. 

 

4.5.1 Experiments and Results 

This section explains the different experiments realized in the Coupled-Tank System using the 

MRAC-H∞GS-LPV Controller (MRAC-H∞GS-LPV) based on the MIT rule and based on the Lyapunov 

theory. Two different types of faults were simulated in the implemented schemes: abrupt and gradual faults. 

The next figures show the results of the experiments realized using this scheme. 

 

Figure 83. Comparison between the MRAC-H∞GS-LPV Controllers based on the MIT rule and based 

on the Lyapunov theory with an abrupt-sensor fault of 3.3% and an abrupt-actuator fault of 20% for 

the operating points φ1=0.3 and φ2=0.5. 

 In Figure 83, the MRAC-H∞GS-LPV Controllers based on MIT rule and on Lyapunov theory are 

compared. While both controllers are working in the operating point φ
 
     and φ

 
    , an abrupt-sensor 

fault of 3.3% was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time 

15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. It can be 
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observed that the MRAC-H∞GS-LPV was robust against the sensor fault, could tolerate the change in the 

operating point and was fault tolerant against the actuator fault for both the MIT rule and the Lyapunov theory 

methods.  

 

Figure 84. Comparison between the MRAC-H∞GS-LPV Controllers based on the MIT rule and based 

on the Lyapunov theory with an abrupt-sensor fault of 160% and an abrupt-actuator fault of 20% for 

the operating points φ1=0.3 and φ2=0.5. 

 In Figure 84, the MRAC-H∞GS-LPV Controllers based on MIT rule and on Lyapunov theory are 

compared. While both controllers are working in the operating point φ
 
     and φ

 
    , an abrupt-sensor 

fault of 160% was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was introduce at time 

15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this 

figure, it can be observed that the MRAC-H∞GS-LPV was fault tolerant against the sensor and actuator fault 

and could tolerate the change in the operating point. The above applies for both methodologies (MIT rule and 

Lyapunov theory). 

 

Figure 85. Comparison between the MRAC-H∞GS-LPV Controllers based on the MIT rule and based 

on the Lyapunov theory with a gradual-sensor fault of 3.3% and a gradual-actuator fault of 20% for 

the operating points φ1=0.6 and φ2=0.6. 
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 In Figure 85, the MRAC-H∞GS-LPV Controllers based on MIT rule and on Lyapunov theory are 

compared. While both controllers are working in the operating point φ
 
     and φ

 
    , a gradual-sensor 

fault of 3.3% was introduced at time 5000 seconds and an gradual-actuator fault of 20% was introduced at 

time 15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this 

figure, it can be observed that the MRAC-H∞GS-LPV was robust against the sensor fault, could tolerate the 

change in the operating point and was fault tolerant against the actuator fault for both the MIT rule and the 

Lyapunov theory methods.  

 

Figure 86. Comparison between the MRAC-H∞GS-LPV Controllers based on the MIT rule and based 

on the Lyapunov theory with a gradual-sensor fault of 160% and a gradual-actuator fault of 20% for 

the operating points φ1=0.6 and φ2=0.6. 

 In Figure 86, the MRAC-H∞GS-LPV controllers based on the MIT rule and on the Lyapunov theory 

are compared. While both controllers are working in the operating point φ
 
     and φ

 
    , a gradual-sensor 

fault of 160% was introduced in time 5000 seconds and a gradual-actuator fault of 20% was introduced at 

time 15000 seconds. In addition, a change in the operating point was performed at time 10000 seconds. In this 

figure it can be observed that the MRAC-H∞GS-LPV was fault tolerant against the sensor and actuator fault 

and could tolerate the change in the operating point for both methodologies (MIT rule and Lyapunov theory). 

 

4.5.2 Comparison between the MRAC-LPV and the MRAC-H∞GS-LPV based on MIT and 

based on Lyapunov theory 

For each of the two proposed schemes based on the MIT rule and on the Lyapunov theory: MRAC-

LPV and MRAC-H∞GS-LPV the summary of the experiments results are explained in Table 19 and Table 20. 

These results explain the range in which the methodologies are robust, fault tolerant or degraded against the 

fault. 

In addition, the Mean Square Error (MSE) was calculated for all the experiments. The results are 

shown in Table 21. It is important to mention that the results were the same for abrupt and gradual faults. 
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Table 19. Results of experiments of the MRAC-LPV and MRAC-H∞GS-LPV methodologies based on 

MIT rule. 

Methodology Sensor Faults Actuator Faults 

 Abrupt Faults Gradual Faults Abrupt Faults Gradual Faults 

MRAC-LPV 
0 < f < 3.3%  FT 

f > 3.3%   D 

+/-0 < f <+/-3.3% FT 

f >+/- 3.3%   D 

0 < f < 20%  FT 

f > 20%   D 

+/-0 < f <+/- 20%  FT 

f >+/- 20%   D 

MRAC-H∞GS-LPV FT FT 
0 < f < 20%  FT 

f > 20%   D 

+/-0 < f <+/- 20%  FT 

f >+/- 20%   D 

FT = Fault Tolerant, D = Degraded 

Table 20. Results of experiments of the MRAC-LPV and MRAC-H∞GS-LPV methodologies based on 

Lyapunov theory. 

Methodology Sensor Faults Actuator Faults 

 Abrupt Faults Gradual Faults Abrupt Faults Gradual Faults 

MRAC-LPV 
0 < f < 3.3%  FT 

f > 3.3%  D 

+/-0 < f <+/- 3.3%  FT 

f >+/- 3.3%  D 

0 < f < 20% FT 

f > 20%   D 

+/-0 < f <+/- 20%  FT 

f >+/- 20%   D 

 

MRAC-H∞GS-LPV 
FT FT 

0 < f < 20%  FT 

f > 20%   D 

+/-0 < f <+/- 20%  FT 

f >+/- 20%  D 

 

Table 21. MSE comparison between the MRAC-LPV and MRAC-H∞GS-LPV MIT and Lyapunov 

based design. 

 

In almost all the results of Table 21, it can be seen that the MSE from the schemes using the MRAC 

based on the Lyapunov theory is lower than the schemes using the MRAC based on MIT, because the 

Lyapunov theory adds stability to the closed-loop system. 

 

Operating Point  
1
=0.3 and  

2
=0.5 

 MRAC MIT based design MRAC Lyapunov based design 

Methodology 
Sensor Faults (3.3%) 

and Actuator Faults (20%) 

Sensor Faults (3.3%) 

and Actuator Faults (20%) 

MRAC-LPV 0.004683719 0.004806042 

MRAC-H∞GS-LPV 0.001259889 0.000996639 

 
Sensor Faults (160%) 

and Actuator Faults (20%) 

Sensor Faults (160%) 

and Actuator Faults (20%) 

MRAC-LPV 9.834450837 9.834345325 

MRAC-H∞GS-LPV 0.001216185 0.000942122 

Operating Point  
1
=0.6 and  

2
=0.6 

 MRAC MIT based design MRAC Lyapunov based design 

Methodology 
Sensor Faults (3.3%) 

and Actuator Faults (20%) 

Sensor Faults (3.3%) 

and Actuator Faults (20%) 

MRAC-LPV 0.002133405 0.002114925 

MRAC-H∞GS-LPV 0.000613752 0.000480325 

 
Sensor Faults (160%) 

and Actuator Faults (20%) 

Sensor Faults (160%) 

and Actuator Faults (20%) 

MRAC-LPV 6.83165252 6.831596171 

MRAC-H∞GS-LPV 0.000614215 0.000480346 
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4.6 Experiments using the MRAC MIT and MRAC Lyapunov based design with the 

nonlinear model of the system 

 The experiments presented in the above section, are realized using the as the Process Model the LPV 

model of the Coupled-Tank system. In this section the experiments are implemented using the nonlinear 

model of the system, in order to present a more realistic simulation. The nonlinear model of the Coupled-Tank 

system is represented trough the following equations: 

        
  

  
           

  
  

                                           (151) 

                                            
  

  
           

  
  
                                             (152) 

                                                                                                                                               (153) 

 

The variables definition of the above equations was presented in Table 9 (Chapter 4). The 

representation of the MRAC-LPV MIT controller, the MRAC-LPV Lyapunov Controller, the H∞ Gain 

Scheduling – MRAC LPV Controller based on MIT controller and the H∞ Gain Scheduling – MRAC LPV 

controller based on Lyapunov are represented from Figures 87 to 90. 

 

 

Figure 87. Nonlinear Process MRAC-LPV Controller based on MIT rule. 

 

Reference Model

u yprocess e

yreference

uc +

-

+
-

s



s




 1

 2

×

×

× ×

Nonlinear Process

   2121

2

1

258572.05085.0

108158.0





 ss

   
   2121

2

2121

258572.05085.0

258572.05085.0









ss

s   
   2121

2

2121

258572.05085.0

258572.05085.0









ss

s

+

-



110 

 

 

Figure 88. Nonlinear Process MRAC-LPV Controller based on Lyapunov theory. 

 

 

Figure 89. Nonlinear Process MRAC-H∞GS-LPV Controller based on MIT rule. 
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Figure 90. Nonlinear Process MRAC-H∞GS-LPV Controller based on Lyapunov theory. 

When the controllers from Figure 87 to Figure 90 were used with the LPV model the value of γ used 

was 10000. On the other hand, when the nonlinear model is used instead of the LPV model a value of γ 

smaller gave better results because the chattering disappears (See Appendix C). The selected value of γ was 

0.003. The next figures show the results of the nonlinear model implementation: 

 

Figure 91. Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear Process 

MRAC-LPV Controllers with an abrupt-sensor fault of 3.3% and an abrupt-actuator fault of 20% for 

the operating points φ1=0.3 and φ2=0.5. 
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 In Figure 91, the MRAC-H∞GS-LPV and the MRAC-LPV Controller based on MIT rule and on 

Lyapunov theory are compared. While both controllers are working in the operating point φ
 
     and φ

 
    , 

an abrupt-sensor fault of 3.3% was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was 

introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000 

seconds. In this figure, it can be observed that the four different controllers could accommodate the fault and 

tolerate the change in the operating point. But in the impact of the fault is bigger than the schemes using 

Lyapunov theory. Also, the schemes using the MRAC-H∞GS-LPV controller showed a faster adaptation than 

the MRAC-LPV schemes.  

 

Figure 92. Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear Process 

MRAC-LPV Controllers with an abrupt-sensor fault of 166% and an abrupt-actuator fault of 

magnitude 20% for the operating points φ1=0.3 and φ2=0.5 . 

 In Figure 92, the MRAC-H∞GS-LPV and the MRAC-LPV Controller based on MIT rule and on 

Lyapunov theory are compared. While both controllers are working in the operating point φ
 
     and φ

 
    , 

an abrupt-sensor fault of 166% was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was 

introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000 

seconds. In this figure, it can be observed that the MRAC-H∞GS-LPV and the MRAC-LPV were unfeasible 
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against the sensor fault because the tank level limit is 30 cm and these controllers were beyond this limit. On 

the other hand, the MRAC-H∞GS-LPV and the MRAC-LPV based on Lyapunov theory were able to 

accommodate the sensor and the actuator faults. But the MRAC-H∞GS-LPV based on Lyapunov theory 

showed a faster adaptation performance in comparison with the MRAC-LPV.  

 

Figure 93. Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear Process 

MRAC-LPV Controllers with a gradual-sensor fault of 3.3% and a gradual-actuator fault of 20% for 

the operating points φ1=0.6 and φ2=0.6 . 

 In Figure 93, for gradual additive faults, the MRAC-H∞GS-LPV and the MRAC-LPV Controller 

based on MIT rule and on Lyapunov theory are compared. While both controllers are working in the 

operating point φ
 
     and φ

 
    , a gradual-sensor fault of 3.3% was introduced at time 5000 seconds and a 

gradual-actuator fault of 20% was introduce at time 15000 seconds. In addition, a change in the operating 

point was performed at time 10000 seconds. In this figure, it can be observed that the four different 

controllers could accommodate the fault and tolerate the change in the operating point. But in schemes based 

on the MIT rule the impact of the fault is bigger than the schemes using Lyapunov theory. Also, the schemes 

using the MRAC-H∞GS-LPV controller showed a faster adaptation than the MRAC-LPV schemes. 
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Figure 94. Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear Process 

MRAC-LPV Controllers with a gradual-sensor fault of 166% and a gradual-actuator fault of 20% for 

the operating points φ1=0.6 and φ2=0.6. 

 In Figure 94, for gradual additive faults, the MRAC-H∞GS-LPV and the MRAC-LPV Controller 

based on MIT rule and on Lyapunov theory are compared. While both controllers are working in the 

operating point φ
 
     and φ

 
    , a gradual-sensor fault of 166% was introduced at time 5000 seconds and 

a gradual-actuator fault of 20% was introduce at time 15000 seconds. In addition, a change in the operating 

point was performed at time 10000 seconds. In this Figure, it can be observed that the MRAC-H∞GS-LPV 

and the MRAC-LPV were unfeasible against the sensor fault because the tank level limit is 30 cm and these 

controllers were beyond this limit. On the other hand, the MRAC-H∞GS-LPV and the MRAC-LPV based on 

Lyapunov theory were able to accommodate the sensor and the actuator faults. But the MRAC-H∞GS-LPV 

based on Lyapunov theory showed a faster adaptation performance in comparison with the MRAC-LPV.  

 In addition, to compare the Nonlinear Process controller based on the MIT rule and the Nonlinear 

Process controller based on Lyapunov theory the Mean Square Error (MSE) was calculated for all the 

experiments. The results are shown in Table 22. 
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Table 22. MSE Results of the comparison between the Nonlinear MRAC-LPV and the Nonlinear 

MRAC-H∞GS-LPV MIT and Lyapunov based design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operating Point  
1
=0.3 and  

2
=0.5 

 MRAC MIT based design MRAC Lyapunov based design 

Methodology 
Sensor Faults (3.3%) 

and Actuator Faults (20%) 

Sensor Faults (3.3%) 

and Actuator Faults (20%) 

MRAC-LPV 0.0379 0.0325 

MRAC-H∞GS-LPV 0.0300 0.0244 

 
Sensor Faults (166%) 

and Actuator Faults (20%) 

Sensor Faults (166%) 

and Actuator Faults (20%) 

MRAC-LPV 1.0810 0.1324 

MRAC-H∞GS-LPV 1.1672 0.1178 

Operating Point  
1
=0.6 and  

2
=0.6 

 MRAC MIT based design MRAC Lyapunov based design 

Methodology 
Sensor Faults (3.3%) 

and Actuator Faults (20%) 

Sensor Faults (3.3%) 

and Actuator Faults (20%) 

MRAC-LPV 0.0330 0.0253 

MRAC-H∞GS-LPV 0.0278 0.0210 

 
Sensor Faults (166%) 

and Actuator Faults (20%) 

Sensor Faults (166%) 

and Actuator Faults (20%) 

MRAC-LPV 1.0799 0.1348 

MRAC-H∞GS-LPV 1.1316 0.1193 
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4.7 Experiments and Results using the Coupled-Tank System as testbed 

implementing Multiplicative Faults 

In addition to the above experiments multiplicative faults were tested. This type of faults is 

represented as a degradation of the nominal system. For example, actuator multiplicative fault is represented 

as follows: 

                                                                           (154) 

where    represent the system input with the actuator fault,   represents the degradation percentage of the 

actuator, and   is the nominal system input. The above type of faults were implemented in each of the 

following proposed schemes based on the MIT rule and on the Lyapunov theory: MRAC-LPV Controller and 

H∞ Gain Scheduling MRAC-LPV Controller (MRAC-H∞GS-LPV) for LPV systems, MRAC-LPV Controller 

and H∞ Gain Scheduling MRAC-LPV Controller for nonlinear systems, MRAC-LPV Controller for LPV 

systems and MRAC-LPV Controller for nonlinear.  

 

4.7.1 Multiplicative Faults applied in the LPV System 

First, the multiplicative faults were tested in the LPV system. The results of these experiments are 

shown in Table 23. These results explain if the methodologies are robust, fault tolerant or degraded against 

the simulated fault and also demonstrate the Mean Square Error (MSE).  

Table 23. Results of experiments using multiplicative sensor (5000 seconds) and actuator (15000 

seconds) faults in the MRAC-LPV and MRAC-H∞GS-LPV methodologies based on MIT rule for LPV 

systems. 

Methodology 
MSE Sensor and Actuator Faults 

0 = 100% 0.1 = 90% 0.5 = 50% 0.95 = 5% 

MRAC-LPV based on 

MIT rule 

FT SF 

D AF 
MSE=1.57169 

FT SF 

D AF 
MSE=1.27322 

FT SF 

D AF 
MSE=0.39341 

FT SF 

D AF 
MSE=0.00425 

MRAC-LPV based on 

Lyapunov theory 

FT SF 

D AF 

MSE=1.57128 

FT SF 

D AF 

MSE=1.27283 

FT SF 

D AF 

MSE=0.39308 

FT SF 

D AF 

MSE=0.00415 

MRAC-H∞GS-LPV based 

on MIT rule 

R SF 

D AF 

MSE=1.57158 

R SF 
D AF MSE=1.27321 

R SF 
D AF MSE=0.39381 

R SF 
D AF MSE=0.00514 

MRAC-H∞GS-LPV based 

on Lyapunov theory 

R SF 
D AF MSE=1.57130 

R SF 
D AF MSE=1.27293 

R SF 
D AF MSE=0.39353 

R SF 
D AF MSE=0.00486 

AF=Actuator Fault, D=Degraded, FT=Fault Tolerant, R=Robust, SF=Sensor Fault 

 In Table 23, it is observed that none of the implemented methodologies was absolutely fault tolerant 

to the combination of sensor fault (5000 seconds) and actuator fault (15000 seconds). For example, the 

MRAC-LPV based on Lyapunov theory was Fault Tolerant for the sensor fault and was degraded for the 

actuator fault. On the other hand the MRAC-H∞GS-LPV based on MIT rule and based on Lyapunov theory 

are robust against the sensor fault and degraded against the actuator fault. The next figures represent the 
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implementation of the above experiments. In addition single multiplicative faults in sensors and actuators 

were also tested, see Appendix B. 

From Figure 95 to Figure 98, it can be observe that for the combination of multiplicative faults in 

sensors at time 5000 and multiplicative faults in actuators at time 15000 of 100%, 90%, 50% and 5%, the 

MRAC-H∞GS-LPV controller was robust against the multiplicative faults in sensors and became degraded 

after the multiplicative faults in actuator. On the other hand, the MRAC-LPV scheme was fault tolerant to the 

multiplicative faults in sensor and also became degraded after the occurrence of the multiplicative faults in 

actuator. The above apply for the methodologies based on the MIT rule and the methodologies based on the 

Lyapunov theory. Also, it can be observe that both controllers (MRAC-H∞GS-LPV and MRAC-LPV) were 

able to manage the change in the operating point at 10000 seconds. 

 

Figure 95. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

100%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the LPV system. 
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Figure 96. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

90%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the LPV system. 
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Figure 97. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

50%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the LPV system. 
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Figure 98. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%, 

for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 seconds 

for the LPV system. 

 

4.7.2 Multiplicative Faults applied in the Nonlinear System 

After testing the multiplicative faults in the LPV system, these types of faults were tested using the 

nonlinear system instead of the LPV system. The results of these experiments are shown in Table 24. These 

results explain if the methodologies are fault tolerant or degraded and also show the Mean Square Error 

(MSE). In addition, from Figure 99 to Figure 102 the experiments showed in Table 24 are represented. 
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Table 24. Results of experiments using multiplicative sensor (5000 seconds) and actuator (15000 

seconds) faults in the MRAC-LPV and MRAC-H∞GS-LPV methodologies based on MIT rule for 

nonlinear systems. 

Methodology 
MSE Sensor and Actuator Faults 

100% 90% 50% 5% 

MRAC-LPV based on 

MIT rule 

Degraded 

MSE=3.5676 

Fault Tolerant 

MSE=0.5057 

Fault Tolerant 

MSE=0.0379 

Fault Tolerant 

MSE=0.0281 

MRAC-LPV based on 

Lyapunov theory 

Degraded 
MSE=3.5675 

Fault Tolerant 
MSE=0.5055 

Fault Tolerant 
MSE=0.0321 

Fault Tolerant 
MSE=0.0278 

MRAC-H∞GS-LPV based 

on MIT rule 

Degraded 

MSE=3.5559 

Fault Tolerant 

MSE=0.3447 

Fault Tolerant 

MSE=0.0318 

Fault Tolerant 

MSE=0.0179 

MRAC-H∞GS-LPV based 

on Lyapunov theory 

Degraded 
MSE=3.5551 

Fault Tolerant 
MSE=0.3442 

Fault Tolerant 
MSE=0.0302 

Fault Tolerant 
MSE=0.0171 

 

  

Figure 99. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

100%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 
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 In Figure 99, for the combination of multiplicative sensor fault of 100% at 5000 seconds and 

multiplicative actuator fault of 100% at 15000 seconds, it can be observe that the four controller became 

degraded after the occurrence of the multiplicative sensor fault and non of the controllers were able to return 

to the desired tank level.  

 

Figure 100. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

90%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 

 In Figure 100, for the combination of multiplicative sensor fault of 90% at 5000 seconds and 

multiplicative actuator fault of 90% at 15000 seconds, it can be observe that MRAC-H∞GS-LPV based on the 

MIT rule and based on Lyapunov theory were able to accommodate both types of faults and could tolerate the 

change in the operating point. On the other hand, the MARC-LPV based on the MIT rule and on Lyapunov 

theory controllers were able to accommodate the multiplicative sensor fault but could not accommodate in 

time the multiplicative actuator fault. The H∞GS helps the MRAC to achieve a faster adaptation mechanism.  
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Figure 101. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

50%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 

 In Figure 101, for the combination of multiplicative sensor fault of 50% at 5000 seconds and 

multiplicative actuator fault of 50% at 15000 seconds, it can be observed that the four different controllers 

could accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in 

the operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes 

using Lyapunov theory. Also, the schemes using the MRAC-H∞GS-LPV controller showed a faster adaptation 

than the MRAC-LPV schemes. 
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Figure 102. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%, 

for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 seconds 

for the nonlinear system. 

 In Figure 102, for the combination of multiplicative sensor fault of magnitude 0.95 at 5000 second 

and multiplicative actuator fault of 5% at 15000 seconds, it can be observed that the four different controllers 

could accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in 

the operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes 

using Lyapunov theory. Also, the schemes using the MRAC-H∞GS-LPV controller showed a faster adaptation 

than the MRAC-LPV schemes.  
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4.8 Manipulated Variable Analysis for the Coupled Tank System 

The next figures show different experiments that were realized to analyze the manipulated variable. 

These experiments were carried on in the operating point φ1=0.35 and φ2=0.35 and different types and 

sizes of faults were applied. 

 

Figure 103. Comparison between the manipulated variable and the system output of the MRAC-LPV 

schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) and an additive 

actuator fault (15000 seconds) of 10% in the operating points φ1=0.35 and φ2=0.35 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 

 

Figure 104. Comparison between the manipulated variable and the system output of the MRAC-LPV 

schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 5% and an 

additive actuator fault (15000 seconds) of 15% in the operating points φ1=0.35 and φ2=0.35 and a 

change in the operating point at time 10000 seconds for the nonlinear system. 
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Figure 105. Comparison between the manipulated variable and the system output of the MRAC-LPV 

schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 20% and an 

additive actuator fault (15000 seconds) of 5% in the operating points φ1=0.35 and φ2=0.35 and a change 

in the operating point at time 10000 seconds for the nonlinear system. 

 

Figure 106. Comparison between the manipulated variable and the system output of the MRAC-H∞GS-

LPV schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) and an 

additive actuator fault (15000 seconds) of 10% in the operating points φ1=0.35 and φ2=0.35 and a 

change in the operating point at time 10000 seconds for the nonlinear system. 
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Figure 107. Comparison between the manipulated variable and the system output of the MRAC-H∞GS-

LPV schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 5% and 

an additive actuator fault (15000 seconds) of 15% in the operating points φ1=0.35 and φ2=0.35 and a 

change in the operating point at time 10000 seconds for the nonlinear system. 

 

Figure 108. Comparison between the manipulated variable and the system output of the MRAC-H∞GS-

LPV schemes based on Lyapunov theory, applying an additive sensor fault (5000 seconds) of 20% and 

an additive actuator fault (15000 seconds) of 5% in the operating points φ1=0.35 and φ2=0.35 and a 

change in the operating point at time 10000 seconds for the nonlinear system. 

In the above figures the behavior of the manipulated variable under different experiments can be 
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water level, when a positive fault occurs the pump voltage decreases in order to take the tank level to the 

desired value. Also, when the operating point change, the pump voltage increases to increase the tank level. 

And finally, when a positive actuator faults appears the pump voltage decreases to decrease the tank level and 

return it to the desired value. 
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4.9 Comparison with Similar Approaches 

Some other MRAC approaches in the last years have been developed. All of them are different from 

the one proposed in this research. Cho et al. (1990) published a method for FTC systems using a pole 

assignment controller and a MRAC controller to guarantee the system performance in the presence of a fault. 

This scheme is different from our work because it did not use any artificial intelligence method such as ANN 

or GA optimizer. Jia & Jingping (1997) introduced a MRAC based on a PID controller and a GA, in which 

the GA was used to optimize the PID parameters. This scheme was used in a Continuous Stirred Tank Reactor 

system (CSTR), and an Artificial Neural Network trained by the GA was used to estimate the state value of 

the CSTR. The differences between this scheme and the one presented in this research is that the Artificial 

Neural Network in Jia & Jingping (1997) is used as an estimator of the plant and in this research the Artificial 

Neural Network is used as a trajectory controller to follow the ideal system trajectory (normal operation 

mode). Ahmed (2000) presented an Artificial Neural Network based state feedback MRAC for a type of 

nonlinear plants. This methodology uses a time varying pseudo-linear feedback control in which the gain of 

the state feedback is generated from the ANN output. This scheme is different from the proposed structure 

presented in this research, first because it did not uses a GA to optimize a PID controller and also because the 

ANN is used just to approximate the controller parameters not as a trajectory controller. Zhu et al. (2000) 

presented an MRAC application with an aged actuator in order to identify vulnerable devices or control 

parameters on stability. This scheme did not use any artificial intelligence method (ANN or GA) and neither 

uses a PID controller. Thanapalan et al. (2006) introduces a MRAC and quaternion based adaptive attitude 

control (QAAC) in order to determinate and isolates faults. This scheme did not use an ANN controller and 

neither uses a GA optimizer to obtain the best PID controller parameters. Zhang and Li (2006) proposed a 

single neuron PID-MRAC based on Radial Basis Function (RBF) Neural Network on-line identification. In 

this approach, the RBF Artificial Neural Network is used to identify the system on-line in order to built the 

reference model and develop the controller parameters self-learning employing a single neuron controller. 

This method did not use a GA to optimize the PID controller; also, the PID controller is not used as a 

feedforward controller, and the RBF ANN was used to build the reference model. In our case, the reference 

model was constructed using real data system identification from an Industrial Heat Exchanger and the ANN 

controller is used as a trajectory control. Bayati (2008) presented a MRAC based on the PID-GA 

combination. The GA is used to obtain the best PID parameters. The difference between the new proposed 

structure and this method is that it did not use an Artificial Neural Network controller. Hongjie & Bo (2008) 

showed a MRAC controller based on an on-line Artificial Neural Network and a traditional PID controller 

used for servo system tracking control. In this scheme, the Artificial Neural Network controller was 

implemented to reduce the unknown model dynamics, the disturbances and parameter variations. The 

Artificial Neural Network weights and the MRAC parameters are updated using Lyapunov stability theory. 

The differences from this scheme and the one proposed in this research are that the Hongjie & Bo (2008) 

scheme did not use a GA to optimize the PID controller. Moreover, the controller is not a complete PID since 

it is just a Proportional Controller and the ANN is used to reduce the unknown model dynamics and it is not 
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used as a trajectory control. Demetriou et al. (2009) developed a theoretical framework of the MRAC design, 

adaptive parameter identification and automated fault detection of a positive real infinite dimensional system 

in which for each design problem the well-posedness and stability were investigated. Tan et al. (2011) 

presented a discrete-time multiple-model MRAC scheme for adaptive actuator failure compensation, this 

scheme has the capacity to achieve faster and accurate compensation of failure uncertainties. This scheme is 

different than the one proposed in this thesis because it does not combine the MRAC with other methods such 

as ANN, robust control, nonlinear control or LPV systems.   

 In the case of Robust H∞ controller, although there are some publications where the H∞ technique has 

been combined with other schemes (Hwang & Chen, 1998; Lian et al., 2002; Yu, 2004; Miyasato, 2007; 

Miyasato, 2008), to the best of our knowledge there are no reports concerning the combination of MRAC with 

H∞.  

 For the MRAC controller for LPV systems (or LPV controls) just a few studies had been developed. 

In Hsu (1990), a Variable Structure MRAC controller (VS-MRAC) was proposed. The benefit of this type of 

controller is a nicer transient behavior, a disturbance rejection capability, nonlinearities or parameter 

variations insensitivity and robustness against unmodeled dynamics. The difference between a Variable 

Structure (VS) system and an LPV system is that VS case is based on switching functions that creates a 

sliding surface. If the surface is accomplishing the switching function maintain the trajectory on the surface, 

the desired system dynamics is achieved. In Hsu et al. (1994), a VS-MRAC control was also developed. This 

structure uses only input and output data. Also, the controller showed a high-gain stability property which 

guarantees the elimination of the chattering when linear zones are induced. In Yan et al. (2006), an output 

feedback VS-MRAC controller was developed. This methodology is based on a classic VS-MRAC structure 

with a high gain switching mechanism to adapt the VS control signal. The advantages of this methodology are 

to guarantee a pre-specified steady-state and transient performance specifications for tracking error, the high 

frequency gain sign is not required a priori, the reference model of the MRAC controller does not need to be 

strictly positive real and the plant input disturbance can be rejected completely.  

 Miyasato (2006) presented a Model Reference Adaptive Controller for polytopic LPV systems in 

fixed polytopes denoted by convex hulls of extreme systems (uncertainties of system parameters). In this 

methodology, the control input is represented by a weighted sum of the extreme systems control signals and 

the weights are regulated adaptively. In addition, stabilizing signals are aggregated to manage the time-

varying components effect in uncertain processes and to stabilize the plants. These signals are developed as a 

solution of nonlinear H∞ control problem for a virtual system. This methodology is different from the one 

proposed in this work (MRAC-H∞ Gain Scheduling-LPV) because the LPV system is also a polytopic system 

but the control input is composed of the feedforward update rule  θ  , the feedback update rule  θ   and the 

output of the H∞ Gain Scheduling controller. Also, the H∞ control problem is solved using the H∞ Gain 

Scheduling LPV method and not a simple H∞ control. In Miyasato (2008), to guarantee stability just a 

Lyapunov positive definite function is established and in our work to guarantee stability the MIT rule and the 

Lyapunov theory method are used.   
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 In Abdullah & Zribi (2008), a model reference control for LPV systems was developed. The used 

LPV system parameters can be measured on-line and are bounded. The development of this type of control 

was divided into parts: the first part was to design the matrix coefficients of the controller. To obtain these 

coefficients singular value decomposition (SVD) was employed. The second part was the design of the state 

feedback controller gain; in order to acquire this gain a LMIs methodology was used. One of the main 

differences between the methodology in Abdullah & Zribi (2008) and the one proposed in this work is that the 

model reference control used in Abdullah & Zribi (2008) is not a model reference adaptive control. In 

addition, the control law parameters in our case can be obtained through the feedforward update rule  θ  , the 

feedback update rule  θ   and the output of the H∞ Gain Scheduling LPV controller and not with SVD or 

LMIs. Another important difference is that Abdullah & Zribi (2008) do not use H∞ Gain Scheduling LPV 

Control. Finally, Montes de Oca et al., (2009) proposed a FTC design using LPV admissible model matching; 

this strategy is an active technique and requires the detection and estimation of the fault by a FDI scheme, 

then the controller can be redesigned. The faults are expresses as changes in the system dynamics and also are 

considered as scheduling variables in the LPV model to allow the controller reconfiguration. The main 

different with the schemes proposed in this thesis are the following: First, the schemes proposed in this thesis 

are passive because are designed off-line. Second, the different presented schemes (MRAC, MRAC-ANN, 

MRAC-LPV, MRAC-H∞GS-LPV,etc) do not need and FDI block because the MRAC has the ability to detect 

and start to accommodate the fault by itself and third the scheme proposed by Montes de Oca et al. (2009) 

does not combine any technique as the ones proposed in this thesis. 

Table 25. Summary of comparison with similar approaches. 

Author Methodology Application Advantages Disadvantages Differences 

Cho et al. 

(1990) 

Pole 

assignment + 

MRAC 

Simple 2
nd

 

order plant 

Ensures the 

performance of 

set-point 

tracking 

The failure is only 

in one of the two 

controllers. 

Do not use any 

AI method. 

Hsu (1990) VS-MRAC Plants with 

arbitrary 

relative 

degree 

Nicer transient 

behavior, 

disturbance 

rejection 

capability, 

robustness 

Only additive 

changes were 

proved. 

The VS is based 

on switching 

functions that 

creates a sliding 

surface. 

Hsu et al. 

(1994) 

VS-MRAC Plants with 

arbitrary 

relative 

degree 

High-gain 

stability is 

achieved 

High frequency 

noise must be 

compensated. 

The VS is based 

on switching 

functions that 

creates a 

sliding. Surface 

Jia & 

Jingping 

(1997) 

MRAC + PID 

optimized by 

GA + ANN 

CSTR 

system 

Satisfying 

Control Effects 

Long 

Computational 

Time due to the 

use of the GA. 

The ANN was 

used as an 

estimator of the 

plant. The GA 

trained the 

ANN. 

Ahmed 

(2000) 

ANN + 

MRAC 

 

Nonlinear 

Plants 

Good tracking 

performance + 

fast 

Only local 

stability was 

proved. 

The ANN is 

used to 

approximate the 
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 convergence controller 

parameters. 

Zhu et al. 

(2000) 

MRAC + aged 

actuator 

Reactor 

Regulating 

System 

(Nuclear 

Plant) 

Successful 

dealing against 

the worst tested 

situation 

Limited 

simulation results. 

Lack of formal 

stability analysis. 

Do not use any 

combination 

with the 

MRAC. 

Miyasato 

(2006) 

MRAC + H∞ + 

LPV 

Continuous 

System 

The adaptive 

control systems 

are uniformly 

bounded, and 

that the tracking 

error converges 

to an arbitrary 

small residual 

region. 

Only 

mathematical 

procedure was 

showed (no 

simulations or 

experiments yet). 

The H∞ is not a 

Gain 

Scheduling 

Controller. 

Thanapalan 

et al. (2006) 

MRAC + 

Quaternion 

based adaptive 

attitude 

control 

Satellite 

Formation 

Flying 

Increase 

operational 

safety 

The limitations of 

system 

reconfiguration 

due to signal 

constraints are not 

established yet. 

The MRAC is 

not combined 

with any 

proposed 

scheme of this 

thesis. 

Yan et al. 

(2006) 

Output 

Feedback VS-

MRAC 

Second order 

systems 

Guarantee a pre-

specified 

steady-state and 

transient 

performance 

specifications 

for tracking 

error 

Amplitude of the 

ultimate switching 

control remains 

constant 

and can be 

eventually large / 

Unmodeled 

dynamic are not 

tested 

Based on 

switching 

schemes. 

Zhang & Li 

(2006) 

PID-MRAC + 

RBF ANN 

Second order 

system  

High control 

accuracy and 

good dynamic 

performance 

The stability 

analysis was not 

mention at all. 

The RBF-ANN 

is used to 

identify the 

system. 

Abdullah & 

Zribi (2008) 

Model 

Reference 

Control 

Coupled-

Tank System 

Simulation and 

experimental 

results indicate 

that the 

proposed 

scheme works 

well. 

Only changes in 

reference models 

are tested. 

Uses SVD and 

a state feedback 

controller gain. 

Bayati 

(2008) 

MRAC + PID-

GA 

Power 

System 

Oscillations 

Mitigation 

The stability 

analysis was not 

mention at all. 

Different 

MRAC 

combinations 

except MRAC 

+ PID. 

Hongjie & 

Bo (2008) 

MRAC + 

ANN + 

Proportional 

Controller 

Servo 

System 

Reduction of 

plant sensitivity 

to parameter 

variation and 

disturbance 

The ANN 

controller is used 

in one part of the 

system. 

The ANN 

structure inside 

the MRAC. The 

use of only a 

Proportional 

controller. 

Demetriou 

et al. (2009) 

MRAC Positive real 

infinite 

dimensional 

Well-posedness 

and stability 

analysis 

Only additive 

faults were tested. 

The MRAC is 

not combined 

with any 
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system proposed 

scheme of this 

thesis. 

Montes de 

Oca et al. 

(2009) 

AMM Two-degree 

of Freedom 

Helicopter 

Allow the 

controller 

design to be 

defined by a set 

of admissible 

faults. 

The active 

controller requires 

the fault 

estimation. 

Completely 

different 

structure - Need 

a FDI block. 

Sang & Tao 

(2009) 

MRAC SISO and 

Multivariable 

MRAC 

systems 

Robustness of 

the desired 

closed-loop 

performance of 

stability and 

asymptotic 

tracking 

In SISO MRAC 

the performance 

is not achieved for 

large reduction in 

actuator 

effectiveness. 

The MRAC is 

not combined 

with any 

proposed 

scheme of this 

thesis. 

Tan et al. 

(2011)  

Discrete-

MRAC 

Aircraft 

flight control 

Faster and 

accurate 

compensation of 

failure 

uncertainties 

Continuous-time 

system with 

actuator failures 

are not presented 

yet (under study). 

The MRAC is 

not combined 

with other 

methods. 
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5 Stability Analysis 

5.1 LPV Stability Analysis 

To analyze the stability of the LPV systems the Quadratic Lyapunov Stability method is used 

(Gahinet et al., 1994). This method helps to analyze linear time-varying systems, such has: 

                                                                              (155) 

To ensure the stability of the above system, a sufficient condition for asymptotic stability is the 

existence of a positive-definite quadratic Lyapunov function: 

                                                                        (156) 

and 

        
  
                                                                (157) 

throughout the state trajectories. This means that: 

                                                                        (158) 

                                                                        (159) 

for all the times t. 

Evaluating the quadratic stability is not tractable in general since equation (159) places an infinite 

number of constraints on Q. Therefore, equation (159) is reduced to a finite set of LMI constraints in the next 

cases: 

1. A(t) and E(t) are fixed affine functions of time-varying parameters p1(t), …, pn(t). 

                                                                    (160) 

                                                                     (161) 

 Equation (160) and (161) represent an affine parameter-dependent model. 

2.  A(t) + jE(t) ranges in a fixed polytope of matrices 

                                                                       (162) 

                                                                       (163) 

with αi(t)≥0 and          
     The above is referred as a polytopic model. 

The first case is for those system in which the state-space equations depend affinely on time-varying 

parameters, and the second case is for time-varying systems modeled by an envelope of LTI systems. In 

conclusion, a Quadratic Lyapunov function will guarantee stability for arbitrarily fast time variations. 
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The LMI conditions for quadratic stability are (Barmish, 1983; Boyd & Yang,  1989; Horisberger & 

Belanger, 1976): 

For affine models, consider the parameter-dependent model 

                                                                          (164) 

                          

                          

where  

                                                                             (165) 

and  

                                                                          (166) 

represent the set of corners of the parameter box. The dynamical system (equation 164) is quadratically stable 

if there exist symmetric matrices Q and        
  in such a form that 

                         
     for all                         (167) 

     
       

       for i=1, …, n                                             (168) 

                                                                          (169) 

                                                                          (170) 

On the other hand, for polytopic models, the polytopic system: 

                                                                          (171) 

                                    

is quadratically stable if there exist a symmetric matrix Q and scalars         such that 

     
       

       
       

        for                                   (172) 

                                                                         (173) 

 

       
   
       

                                                         (174) 

All the above LMI conditions are necessary and sufficient for quadratic stability when: In the affine 

case, no parameter pi enters both A(t) and E(t), which means, Ai=0 or Ei=0 for all i. This implies that 

equations (168) and (169) can be suppressed and is enough to verify equation (159) at the corners   of the 

parameter box. On the other hand, for the polytopic case, either A(t) or E(t) is constant and is enough to 

compute equations (165) and (166) for      . 
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5.1.1 LPV Plant Open Loop Stability Analysis 

Consider the following plant: 

           

                                 
                                            (175)    

where: 

                and                 

The stability will be measured using the resultant plants of the above system: 4 plants using the 

extremes values of    and    were obtained (see Table 25). 

Table 26. Resulting plants at the corners of the parameter box. 

Plants 
Laplace Transfer 

Function 

State Space 

Transfer Function 

Plant 1 

( 
1
 0.1 and  

2
 0.1): 

 
G1=

0.01058

s2 0.1017s 0.002586
 

   
         
               

           
      

 
  

                                           

Plant 2 

( 
1
 0.1 and  

2
 0. ): 

 
G2=

0.01082

s2 0.3559s 0.01551
 

   
         
              

           
      

 
  

                                           

Plant 3 

( 
1
 0.  and  

2
 0.1): 

 
G3=

0.06489

s2 0.3559s 0.01551
 

   
        
              

           
      

 
  

                                           

Plant 4 

( 
1
 0.  and  

2
 0. ): 

 
G4=

0.06489

s2 0.6102s 0.09309
 

   
        
             

           
      

 
  

                                           

 

To calculate the quadratic stability of the above plants, the following Matlab® code was used. 

- First, the four state space matrices A are defined: 

 

>> A1=[-0.05085,0;0.05085,-0.05085]; 

>> A2=[-0.05085,0;0.05085,-0.3051]; 

>> A3=[-0.3051,0;0.3051,-0.05085]; 

>> A4=[-0.3051,0;0.3051,-0.3051]; 

 

- Second, the polytopic system is defined as: 

>> s1 = ltisys(A1) 

    
          
                

   
  

>> s2 = ltisys(A2) 
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>> s3 = ltisys(A3) 

    
         
               

   
  

>> s4 = ltisys(A4) 

    
         
             
   

  

>> polsys = psys([s1 s2 s3 s4]) 

 
 
 
 
 
 
 
 ∞ 0  0.05085 0 2 0  0.05085 0 2 0  0.3051 0 2 0  0.3051 0 2

1 0 0.05085  0.05085 0 0 0.05085  0.3051 0 0 0.3051  0.05085 0 0 0 3051  0.3051 0

4 0 0 0  ∞ 0 0 0  ∞ 0 0 0  ∞ 0 0 0  ∞

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
 
 
 
 
 
 

 

 

- Third, the quadratic stability is calculated using: 

>> [tmin,P] = quadstab(polsys) 

Solver for LMI feasibility problems L(x) < R(x) 

    This solver minimizes t  subject to  L(x) < R(x) + t*I 

    The best value of t should be negative for feasibility 

 Iteration   :    Best value of t so far  

1 0.045331 

2 -0.012013 

Result:  best value of t:    -0.012013 

f-radius saturation:  0.000% of R = 1.00e+008 

This system is quadratically stable 

tmin = -0.012013412684107 

The value of the matrix P is 

   
              
              

  

Denoting the LMI system represented by equations (173) and (174) by A(x) < 0, the function 

quadstab evaluates its feasibility by minimizing τ subject to A(x) < τ and returns the global minimum ―tmin‖ 

of this problem. Therefore the system is quadratically stable if and only if tmin < 0.  
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5.1.2 Maximizing the Quadratic Stability Region of the LVP Plant 

 

In order to maximize the stability region of the LPV plant, the following theory is used:  

- First E matrix need to be constant and each parameter pi(t) ranges in an interval              . 

- Second, the center and radius of each interval is represented by    
 

 
     

 
  and    

 

 
     

 
 . 

- Third, the maximal quadratic stability region is defined as the largest portion of the parameter box in 

which the quadratic stability can be established. The above means the largest dilatation factor such 

that the system is quadratically stable whenever                      . 

The computation of the above theory is the following. The LPV system is transformed in an LTI 

form: 

>> s0=ltisys([0 0;0 0],[0.2127;0],[0 1], [0]) 

 

    

         
    
    
     

  

 

>> s1=ltisys([-.5085 0;0.5085 0],[0;0],[0 0], [0],0) %Phi1 component 

    

             
            

    
     

  

 

>> s2=ltisys([0 0;0 -0.5085],[0;0],[0 0], [0],0) %Phi2 component 

    

       
             
    
     

  

>> Phi1min=.1; Phi1max=.6; 

>> Phi2min=.1; Phi2max=.6; 

>> pv=pvec('box', [Phi1min Phi1max; Phi2min Phi2max]) 

    
         
         

  

>> affsys = psys(pv,[s0 s1 s2] 

 
 
 
 
 
 
 
 ∞    0.2127 2 0  0.5085 1i   2 0     0 0 2 1 0.1 0.6 0 0

    0 0 0 0.0505      0  0  0.5085 1i 0 0 2 0.1 0.6  0

    0 0 0 0   0 0 0 0 0 0 0 0 0 0 0

    0  ∞ 0 0    ∞ 0 0 0 0  ∞ 0 0 0 0 0

    0 0 0 0   0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0   0 0 0 0 0 0 0 0 0 0 0

     0 0 0 0   0 0 0 0 0 0 0 0 0 0 0 
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To calculate the maximal stability margin of the parameter box, the next command is used: 

>> [marg,P] = quadstab(affsys,[1 0 0]) 

Solver for generalized eigenvalue minimization  

 Iterations   :    Best objective value so far  

1 

     2 

    3 

      4 

     5                 309.375000 

    6                 146.808105 

      7                 101.297593 

***                 new lower bound: -4926.595947 

     8                  22.509389 

***                 new lower bound: -1117.669819 

      9                   4.647148 

    10                   3.206532 

***                 new lower bound:  -556.511336 

     11                   2.212507 

***                 new lower bound:   -66.758202 

     12                   2.190382 

***                 new lower bound:   -32.272847 

     13                   2.168478 

     14                   1.614029 

***                 new lower bound:    -2.015697 

     15                   1.597889 

     16                   1.259115 

***                 new lower bound:    -0.161549 

     17                   1.224548 

     18                   1.147979 

***                 new lower bound:    -0.119306 

     19                   1.128178 

     20                   0.885332 

***                 new lower bound:     0.516723 

     21                   0.885332 

     22                   0.816218 

     23                   0.755383 

***                 new lower bound:     0.524422 

    24                   0.755383 
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     25                   0.740948 

***                 new lower bound:     0.643162 

     26                   0.739420 

     27                   0.733404 

***                 new lower bound:     0.692649 

     28                   0.732767 

     29                   0.726499 

     30                   0.724912 

***                 new lower bound:     0.693690 

     31                   0.724912 

    32                   0.724424 

     33                   0.721063 

***                 new lower bound:     0.709444 

     34                   0.720699 

***                 new lower bound:     0.709807 

Result:  feasible solution 

           best value of t:     0.720699 

           guaranteed absolute accuracy: 1.09e-002 

           f-radius saturation:  0.000% of R = 1.00e+008  

Termination due to SLOW PROGRESS: 

           the gen. eigenvalue t decreased by less than 

           1.000% during the last 5 iterations. 

Quadratic stability established on  138.7541%  of the prescribed parameter box 

marg = 1.3875 

   
               
              

  

The above means that the system is quadratically stable on 138.7541% of the parameter box. If marg ≥ 

1 the system is quadratically stable in the entire specified parameter box. 
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5.2 Stability Assumptions for the MRAC controller 

The objective of the Model Reference Adaptive Controller is achieve if the input of the plant ―u‖ is 

selected so that the closed-loop transfer function from the reference ―r‖ to the plant output ―yp‖ has stable 

poles and is equal to the transfer function of the reference model. When the above is accomplished the plant 

output matches the output of the reference model exponentially fast. 

   
  

    
                                                         (176) 

- The plant model is strictly proper and minimum phase (i.e. have stable zeros).  

- The design of the controller requires the knowledge of the coefficients of the plant transfer function 

G(s).  

- The reference model has the same degree as the corresponding plant polynomial. 

- The reference model is stable and minimum phase. 

- The input signal of the controller ―uc‖ must be pe rsistently exciting to achieve the desired value of 

the system (reference model). 

If the plant is represented by: 

    

    
   

     

     
                                                             (177) 

- Ap and  p are coprime Hurwitz polynomials. 

- The roots of  p are the open left-half s-plane. 

- The sign of Kp is known and assume to be positive. 

- The reference model is a strictly positive real transfer function. 

- Ar and  r (A and B from the reference model) are a controllable pair. 

- The reference model is monic and stable. 

- The reference model is Hurwitz polynomial (i.e. its zeros have strictly negative real parts). 

- The persistency excitation (PE) of the input signals in the adaptive loop guarantees the exponential 

stability of the unperturbed error system and eventually the local stability of the closed-loop time 

variant plant. 

 

5.2.1 Lyapunov Stability Theorem for the Design of the MRAC Controller 

As mentioned in Chapter 2, the Lyapunov theory in the design of an MRAC controller was 

introduced because the MIT rule does not guarantee the stability of the closed-loop system. To design an 

MRAC controller using Lyapunov theory, the first step is to derive a differential equation for the error that 

contains the adaptation parameters. Then, a Lyapunov function and an adaptation mechanism need to be 

established to reduce the error to zero. The Lyapunov derivative function dV/dt is usually negative 
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semidefinite. Therefore, to determine the parameter convergence is necessary to establish persistently 

excitation and uniform observability on the system and the reference signal (Astrom & Wittenmark, 1995).  

 The Lyapunov stability theorem establishes the following: If there exists a function V: Rn R being 

positive definite and its derivative: 

  
       

     
       

                                              (178) 

is negative semidefinite, then the solution        to 

  
                                                                             (179) 

is stable. If       is negative definite the solution will be asymptotically stable. V denotes the Lyapunov 

function for the system. If: 

  
                                                                  (180) 

the solution is globally asymptotically stable. 

Therefore, the following procedure was realized: 

Process model:  

                                                                         (181) 

Reference model: 

                                                                             (182) 

Control law: 

                                                                           (183) 

Error:  

                                                                           (184) 

Then, the error dynamics is represented by: 

(185)       

                         
 

  
                          

 

   
                                                 

To simplify the mathematical notation yreference=yr and yprocess=yp. 
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Substituting   
 
  

 
-  and   

 
   

 
-   from equation 22, equation 23 is obtained:              
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Replacing   θ   -θ    in the above equation and placing the error terms in the left side of the 

equation, equation 188 is obtained: 

 

   
      

   

   
  

 

  
      

 

   
     

 

  
      

  

  
   

   

   
   

 

  
     

 

   
            (188) 

The control objective is that the Process Model most be equal to the Reference Model (a1=a1r, a0=a0r, 

and b=br), then: 
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The proposed Lyapunov function is quadratic in tracking error and controller parameter estimation 

error since it is expected that the adaptation mechanism will drive both types of errors to zero (tracking error 

and error in the controller parameters estimation). From the equation error dynamics (see equation 192) the 

proposed Lyapunov function is: 

           
 

 
     

  
 

   
         

  
 

   
      

                                 (193) 

where br, γ and a1r>0. 

Equation 193 will be zero when the error is zero and the controller parameters are equal to the 

desired values. The above Lyapunov function is valid if the derivative of this function is negative. Thus, the 

derivative of equation 194 is: 

       
  

  
 

 

 
         

   

  
 

 

 
      

   

  
                                      (194) 

Substituting equation 192 in the above equation, and rearranging the similar terms, equation 195 is 

obtained.  

(195) 
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If the adaptation parameters are updated as: 

   

  
                                                                      (199) 

   

  
                                                                       (200) 

Then 

     
   

   
     

                                                               (201) 

It can be seen that equation 37 is negative semidefinite which implies  ( )≤ ( ). This ensures that e, 

θ1 and θ1 are bounded. Since a1r>0, a0r>0 and uc is bounded then yr is bounded and therefore yp=e+yr is 

bounded as well. From the boundedness and convergence set theorem it can be concluded that the error   will 

go to zero (Astrom & Wittenmark, 1995). Since            is positive definite and  

V =-e
d
2
e

dt2
-a0re

2                                                               (202) 

Then according to the theorem of Lyapunov uniform asymptotic stability of non-autonomous 

systems, the equilibrium point      is uniformly stable. 
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Theorem of Lyapunov uniform asymptotic stability of non-autonomous systems 

Let     be an equilibrium point of a system described by           and      a domain 

containing it. Let             be a continuously differentiable function that satisfies 

                                                                          (203) 

          
      

                                                        (204) 

For all      and    , where      ,       and       are continuous positive definite functions 

of  . 

Then     is uniformly asymptotically stable and   is called a Lyapunov function. Furthermore, if 

       , then     is uniformly stable. 

Corollary: 

Suppose that the assumptions of the above theorem hold for all      and         for     

 , then     is globally uniformly asymptotically stable (Astrom & Wittenmark, 1995). 

 

Theorem of boundedness and convergence set 

Let               and suppose that        is locally Lipschitz on        . Let   a 

continuously differentiable function such that  

                                                                         (205) 

And 

  

  
 

  

  
 

  

  
                                                              (206) 

     ,      , where    and    are class   functions defined on       and      is continuously on  . 

Furthermore, it is assumed that 
  

  
 is uniformly continuous in  . Then, all solutions to 

  

  
        

with          
           are bounded and satisfy           as     (Astrom & Wittenmark, 1995). 
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5.3 Stability Assumptions for H∞ Gain scheduling controller 

 As mentioned in Chapter 4, the designed gain scheduled controller        (see Figure 109) must 

satisfy the vertex property and the closed-loop system should be stable for all admissible parameters 

trajectories      (Apkarian & Gahinet, 1995; Apkarian et al., 1995, Becker & Packard, 1994; Packard, 1994). 

 

Figure 109. H∞ Gain Scheduling Controller representation. 

 Where        represents the H∞ Gain Scheduling Controller,        is the parameter dependent 

plant, and     represents a time-varying vector of physical parameters.  

 The above is implicit in the design of the H∞ Gain Scheduling Controller, because first to enforce the 

performance and robustness requirements, the following loop-shaping criterion was used: 

 
   
    

 
 

                                                                (207) 

 Where            and the H∞ norm is in terms of input/output Random Mean Square gain 

which is the largest input/output gain over all bounded inputs      (Willems, 1971; Anderson & 

Vongpanitler, 1973; Vidyasagar, 1992). Then, for loop-shaping purposes an augmented plant associated with 

the above criterion was created using the following commands (see section 4.5): 

[pdP,r]=sconnect('r','y=K','K:r-y','G:K',pdG); 

Paug=smult(pdP,sdiag(w1,w2));  

 Where pdP and Paug represent polytopic models. Therefore, the H∞ Gain Scheduling Controller was 

computed with the next command: 

[gopt,pdK]=hinfgs(Paug,r,1e-2,1e-4); 

 The above computation gave a value of        (gopt=0.0024), which means that the performance 

specification are achievable, and pdK returns the polytopic description of the controller with the         

performance. Therefore, the closed-loop system of the designed gain scheduled controller is stable for all the 

admissible parameters trajectories     .  

 The stability analysis of the whole control system (MRAC-H∞GS-LPV) could not me computed due 

to the complexity of the closed loop system. For this reason, the stability was proved by design, which means 

that the proposed controller is integrated by an MRAC based on Lyapunov theory and a H∞ Gain Scheduling 

Controller that are already stable.  
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6 Conclusions 

6.1 Industrial Heat Exchanger  

6.1.1 Comparison between MRAC-ANN-PID, MRAC-H∞, MRAC-SMC, MRAC-ANN, 

MRAC-PID and MRAC 

 In general, the MRAC-ANN-PID methodology showed the best results because it was robust against 

sensor and imperceptible against actuator faults of 5%, 15% and 25% with a very low error between the 

reference model and the process model. This method was the best scheme because is a combination of two 

types of controllers: the PID controller optimized by the GA with the best parameters to handle the fault, and 

the ANN that was trained to follow the desired system trajectory no matter the fault size. In addition, the 

MRAC-H∞ approach was robust against certain types of faults (5% and 15% of abrupt and gradual sensor 

faults) and it was fault tolerant to the rest of fault types (25% of abrupt and gradual sensor faults and 5%, 15% 

and 25% of abrupt and gradual actuator faults). Also, the MRAC-SMC resulted in a good FTC scheme 

because it was robust against sensor faults (5%, 15% and 25%) because has the lower MSE, but it was fault 

tolerant for some actuator faults (5% and 15%) and was degraded for actuators faults of 25%. The other three 

approaches (MRAC-ANN, MRAC-PID and MRAC) were degraded for abrupt and gradual actuator faults, 

and just one of them (MRAC-ANN) was robust against abrupt and gradual sensor faults. Also, the 

manipulated variable was plotted and in this figures it can be observed how the system compensate the fault. 

 

6.2 Coupled-Tank System 

6.2.1 Comparison between MRAC-ANN4OP-LPV, MRAC-4OP-LPV and MRAC-H∞4OP-

LPV based on the MIT rule and on Lyapunov theory 

In the evaluation of the first operating point φ
 
     and φ

 
    , when the abrupt sensor fault of 

23.3% was applied the MRAC-ANN4OP-LPV based on the MIT rule and based on Lyapunov theory was 

robust, the MRAC-H∞4OP-LPV and MRAC-4OP-LPV based on MIT rule and based on Lyapunov theory 

resulted to be fault tolerant (the fault was corrected immediately). In addition when the abrupt actuator fault 

of 1% was applied the MRAC-ANN4OP-LPV based on the MIT rule and on Lyapunov theory could not 

accommodate the faults (the system remained oscillating), the MRAC-H∞4OP-LPV based on Lyapunov 

theory and on MIT rule was fault tolerant (the fault was corrected in less than 2500 seconds). And also, the 

MRAC-4OP-LPV based on MIT rule was fault tolerant, the fault was corrected after 15000 second in the 

scheme based on the MIT rule and 12500 second in the scheme based on Lyapunov theory.   

In the evaluation of the third operating point φ
 
     and φ

 
    , when the gradual sensor fault of 

10% was applied the MRAC-ANN4OP-LPV based on the MIT rule and based on Lyapunov theory was 

robust, the MRAC-H∞4OP-LPV based on MIT rule and on Lyapunov theory was fault tolerant (the fault was 

accommodated immediately) and the MRAC-4OP-LPV based on MIT rule and based on Lyapunov theory 
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resulted to be degraded. In addition when the gradual actuator fault of 1% was applied the MRAC-H∞4OP-

LPV based on MIT rule and on Lyapunov theory was fault tolerant (the fault was accommodated in less than 

4000 seconds), the MRAC-ANN4OP-LPV based on the MIT rule and on Lyapunov theory could not 

accommodate the fault and the MRAC-4OP-LPV based on MIT rule could not accommodate the fault (the 

system remained oscillating) and the MRAC-4OP-LPV based on Lyapunov theory was fault tolerant (the fault 

was accommodated in 2000 seconds). 

In general, for sensor faults the MRAC-ANN4OP-LPV methodology showed the best results because 

it was fault tolerant against the applied sensor faults no matter the value of the operating point between the 

operating ranges. This method resulted the best scheme because is a combination of two type of controllers, 

one is a Model Reference Adaptive Controller (MRAC) and the other one is an Artificial Neural Network 

designed to follow the ideal trajectory (non-faulty trajectory). Both controllers were designed to work in the 4 

operating points of an LPV system giving them the possibility of control each of these operating points. On 

the other hand, for actuator faults the MRAC-H∞4OP-LPV was the best scheme because it was fault tolerant 

to the applied faults and also could accommodate the faults faster than the MRAC-4OP-LPV scheme. 

 

6.2.2 Comparison between MRAC-H∞GS-LPV and MRAC-LPV based on the MIT rule and 

on Lyapunov theory 

6.2.2.1 Additive Faults 

For the operating point φ1=0.3 and φ2=0.5 with an additive abrupt sensor fault of 3.3% (5000 

seconds) and an abrupt actuator fault of 20% (15000 seconds), the MRAC-H∞GS-LPV based on MIT rule and 

on Lyapunov theory was robust to the sensor fault, was fault tolerant to the actuator fault and could tolerate 

the change in the operating point at 10000 seconds. On the other hand, the MRAC-LPV based on MIT rule 

and on Lyapunov theory was fault tolerant and could tolerate the change in the operating point at 10000 

seconds. Then, if the additive abrupt sensor fault was changed to 166% (5000 seconds) and the abrupt 

actuator fault remains with 20% (15000 seconds) the MRAC-H∞GS-LPV based on MIT and on Lyapunov 

theory was fault tolerant to the sensor and to the actuator fault and the MRAC-LPV based on MIT rule and on 

Lyapunov theory became degraded. 

For the operating point φ1=0.6 and φ2=0.6 with an additive gradual sensor fault of 3.3% (5000 

seconds) and gradual actuator fault of 20% (15000 seconds) the MRAC-H∞GS-LPV based on MIT rule and 

on Lyapunov theory was robust to the sensor fault, was fault tolerant to the actuator fault and could tolerate 

the change in the operating point at 10000 seconds. In addition, the MRAC-LPV based on MIT rule and on 

Lyapunov theory was fault tolerant and could tolerate the change in the operating point at 10000 seconds. 

Then, if the additive abrupt sensor fault was changed to 166% (5000 seconds) and the abrupt actuator fault 

remains with 20% (15000 seconds) the MRAC-H∞GS-LPV and the MRAC-LPV based on MIT rule and on 

Lyapunov theory were fault tolerant and could tolerate the change in the operating point at 10000 seconds. 

In general the MRAC-H∞GS-LPV showed better results because is a combination of two type of 
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LPV controllers, one is a Model Reference Adaptive Controller (MRAC) and the other one is a H∞ Gain 

Scheduling Controller, both controllers were designed for an LPV system giving them the possibility of 

controlling any desired operating point between the operation range of the dependent variables (φ
 
 and φ

 
).  

6.2.2.2 Multiplicative Faults 

It was observed that in the operating point φ1=0.3 and φ2=0.5, with multiplicative sensors faults of 

100%, 90%, 50% and 5% at time 5000 seconds and multiplicative actuator faults of 100%, 90%, 50% and 5%  

at time 15000 seconds and a change in the operating point at time 10000 seconds, the MRAC-H∞GS-LPV 

scheme was robust against the multiplicative sensor fault but the system output became degraded after the 

occurrence of the multiplicative actuator faults. On the other hand, the MRAC-LPV scheme was fault tolerant 

to multiplicative sensor faults and also the system output remained with an offset after the occurrence of the 

multiplicative actuator fault. The above applies for all the tested faults magnitudes and for the schemes based 

on the MIT rule and based on Lyapunov theory. 

 

6.2.3 Comparison between the MRAC controllers using the nonlinear model of the system 

6.2.3.1 Additive Faults 

 The value of γ used was 0.003 because a smaller value of γ decreases the chattering in the system 

output (see Appendix C). For the operating point φ1=0.3 and φ2=0.5 with an additive abrupt sensor fault of 

3.3% (5000 seconds) and an abrupt actuator fault of 20% (15000 seconds), the four different controllers could 

accommodate the fault and tolerate the change in the operating point. But in the impact of the fault is bigger 

than the schemes using Lyapunov theory. Also, the schemes using the MRAC-H∞GS-LPV controller showed 

a faster adaptation than the MRAC-LPV schemes.  

Then, if the additive abrupt sensor fault was changed to a 166% (5000 seconds) and the abrupt actuator fault 

remains with a 20% (15000 seconds) the MRAC-H∞GS-LPV and the MRAC-LPV were unfeasible against the 

sensor fault because the tank level limit is 30 cm and these controllers were beyond this limit. On the other 

hand, the MRAC-H∞GS-LPV and the MRAC-LPV based on Lyapunov theory were able to accommodate the 

sensor and the actuator faults. But the MRAC-H∞GS-LPV based on Lyapunov theory showed a faster 

adaptation performance in comparison with the MRAC-LPV.  

 For the operating point φ1=0.6 and φ2=0.6 with an additive gradual sensor fault of 3.3% (5000 

seconds) and gradual actuator fault of 20% (15000 seconds) the four different controllers could accommodate 

the fault and tolerate the change in the operating point. But in schemes based on the MIT rule the impact of 

the fault is bigger than the schemes using Lyapunov theory. Also, the schemes using the MRAC-H∞GS-LPV 

controller showed a faster adaptation than the MRAC-LPV schemes. Then, if the additive gradual sensor fault 

was changed to 166% (5000 seconds) and the gradual actuator fault remains in 20% (15000 seconds) the 

MRAC-H∞GS-LPV and the MRAC-LPV were unfeasible against the sensor fault because the tank level limit 

is 30 cm and these controllers were beyond this limit. On the other hand, the MRAC-H∞GS-LPV and the 
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MRAC-LPV based on Lyapunov theory were able to accommodate the sensor and the actuator faults. But the 

MRAC-H∞GS-LPV based on Lyapunov theory showed a faster adaptation performance in comparison with 

the MRAC-LPV.  

 In general, the MRAC-H∞GS-LPV controller based on Lyapunov theory was the best scheme 

because was able to accommodate the fault in less time than the other schemes and also the fault impact was 

lower in comparison with the other schemes. 

6.2.3.1 Multiplicative Faults 

 For the combination of multiplicative sensor fault of 100% at 5000 seconds and multiplicative 

actuator fault of 100% at 15000 seconds, it can be observe that the four controller became degraded after the 

occurrence of the multiplicative sensor fault and non of the controllers were able to return to the desired tank 

level. If the of multiplicative changed to a multiplicative sensor fault of 90% at 5000 seconds and 

multiplicative actuator fault of 90% at 15000 seconds, it can be observe that MRAC-H∞GS-LPV based on the 

MIT rule and based on Lyapunov theory were able to accommodate both types of faults and could tolerate the 

change in the operating point. On the other hand, the MARC-LPV based on the MIT rule and on Lyapunov 

theory controllers were able to accommodate the multiplicative sensor fault but could not accommodate in 

time the multiplicative actuator fault. The H∞GS helps the MRAC to achieve a faster adaptation mechanism. 

If the multiplicative fault decreases to a 50%, it can be observed that the four different controllers could 

accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in the 

operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes using 

Lyapunov theory. Also, the schemes using the MRAC-H∞GS-LPV controller showed a faster adaptation than 

the MRAC-LPV schemes. Finally, for the combination of multiplicative sensor fault of 5% at 5000 second 

and multiplicative actuator fault of 5% at 15000 seconds, it can be observed that the four different controllers 

could accommodate the faults (multiplicative sensor and multiplicative actuator) and tolerate the change in 

the operating point. But in the schemes based on the MIT, the impact of the fault is bigger than the schemes 

using Lyapunov theory. Also, the schemes using the MRAC-H∞GS-LPV controller showed a faster adaptation 

than the MRAC-LPV schemes.  

In general, the controllers presented in this research: 

- Allow the system availability in spite of the presence of a fault, for example the MRAC-ANN-

PID was robust against the tested sensor faults and the actuator faults were imperceptible due to 

the combination of an AI and an Adaptive control technique. And the MRAC-H∞GS-LPV was 

robust and fault tolerant against sensor faults and fault tolerant for actuator faults.  

- The implemented controllers in most cases were able to accommodate a fault between certain 

fault magnitude thresholds. 

- The systems used to test the control schemes (Industrial Heat Exchanger and Coupled-Tank 

System) had stable plants because all the poles were in the left-half s plane. 
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- For the Industrial Heat Exchanger, the MRAC-PID-ANN methodology showed the best results 

because was robust against the tested sensor faults and the actuator faults were imperceptible 

with a very low error between the reference model and the process model; this method resulted 

the best scheme because is a combination of two type of controllers: the PID controller 

optimized by the GA with the best parameters to handle the fault, and the ANN that was trained 

to follow the desired system trajectory and its control structure adds robustness to the system.  

- The computational time to train the ANN and to obtain the PID parameters using the GA was 

excessively long (48 hrs for the GA); this was the main reason for not incorporating these 

schemes in the second part of the investigation. 

- For additive faults, the MRAC-H∞GS-LPV controller based on Lyapunov theory was able to 

deal with the tested abrupt and gradual faults in actuators and sensors of nonlinear processes 

represented by LPV models and by the nonlinear process, and could accommodate the tested 

faults for any operating point between the operating ranges of the LPV system. 

- For multiplicative faults, the MRAC-H∞GS-LPV controller based on Lyapunov theory was in 

general the best controller, because was the one that could handle the faults more properly 

because is a combination of an MRAC design with the Lyapunov theory which adds closed loop 

stability to the system and also the controller has an H∞ gain scheduling controller that was 

design to be stable for the operating points between the operating range.  

- The schemes tested using the nonlinear system presented some chattering due to the 

nonlinearities of the system, but the schemes based on Lyapunov theory and specifically the 

scheme that combines MRAC with H∞ gains scheduling control based on Lyapunov theory 

were able to deal and decrease the chattering. The chattering decreases if the γ in the MRAC 

controller decreases. 

- The Lyapunov theory implemented to design the MRAC controllers guarantees closed-loop 

stability. 

- The MRAC-H∞GS-LPV was demonstrated to be stable by design because the MRAC based on 

Lyapunov theory controller guarantees closed-loop stability and the H∞ Gain Scheduling 

controller was also designed to be stable along the specifies parameter trajectories. 

- The combination of the MRAC controller with other schemes becomes an Active + Passive 

FTC because the MRAC accommodates the fault on-line but the combinational controllers (for 

example: H∞) are passive controller because were designed off-line. 

- The multiplicative faults in comparison with the additive faults applied in the LPV system of 

the Coupled-Tank system had more impact in the case of actuator faults, because after the 

occurrence of the fault the system became degraded and could not accommodate the fault. On 

the other hand, the multiplicative faults in comparison with the additive faults applied in the 

nonlinear system of the Coupled-Tank system had more impact in the case of 100% of fault 

because after the sensor fault the system was degraded and could not accommodate the fault, in 

the other fault cases the controller was able to accommodate the fault.  
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7 Future Work 

As a continuity of this thesis the following future work will be realized: 

- Quantify the values of the fault that can be tolerated by the FTC scheme, using an LPV Gain 

Scheduling methodology in order to establish an accepted fault range (Patton & Klinkhieo, 2010). 

- A new FTC is proposed for future work (see Figure 110). This scheme consists of an FDI block that 

uses DPCA + Contribution Plots (Tudón et al., 2010; Tudón et al., 2011). After the identification and 

isolation of the fault an MRAC will be chosen from a bank of multiple MRAC model depending on 

the value of the fault (Tan et al. 2011). Each MRAC model has a different reference model according 

to the fault magnitude and according to the fault affectation in the system. To save computational 

effort the adaptation mechanism will be active just after the detection and quantification of the fault. 

In the FDI block, the DPCA detect the fault and the Contribution Plots isolate the fault. Figure 111 

shows the procedure of these methodologies (Tudón et al., 2010, Tudón et al., 2011).  

 

Figure 110. FDI + MRAC FTC Scheme. 
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Figure 111. DPCA and Contribution Plots methodologies (Tudón et al. 2010). 

 

- To improve the fault tolerant capabilities of the MRAC schemes that use an ANN, it is 

recommended to prove this controller with other ANN architectures. The ANN architecture 

used in this investigation is a two-layer feed forward neural network. 

- Test the LPV control schemes in a real physical experiment to corroborate the fault tolerant 

capabilities of the proposed schemes. 

- Implement the proposed schemes in different types of systems to corroborate and compare the 

results of this thesis. 

- Design an analytic methodology to establish the fault tolerant threshold. 

- Establish the global stability. 
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Obtain a new measurement vector

Normalize the new data vector

Project the data vector in the T2 space

Compare the projection 

with an established threshold

Project the data vector in the Q space

Compare the projection 

with an established threshold

If both statistics are greater than their 

thresholds: A fault is detected.

If both statistics are lower than their 

thresholds: The system is in normal 

operating conditions.

Else: False Alarm.
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Appendix A 

Three Fault Tolerant Control (FTC) schemes based on Model Reference Adaptive Control (MRAC) 

for Single Input-Single Output (SISO) processes are compared in an experimental study. The first structure, 

named MRAC-MIT, is based on an MRAC design using the MIT rule, the second scheme, named MRAC-

LYA, is based on an MRAC design using the Lyapunov theory, and the third scheme is a Variable Structure 

MRAC (VS-MRAC) modified with a Saturation Function and a PI controller (VS-MRAC-SAT-PI) (Cruz-

Reynoso R, 2010). The three FTC controllers were implemented and tested first in an Industrial Heat 

Exchanger (simulation) and then in a Coupled-Tank System (real physical implementation). In order to 

compare the performance of these schemes, different types of additive faults (abrupt and gradual faults) 

implemented in sensors and actuators with different magnitudes were tested. Results showed the robustness of 

the three MRAC-based FTC schemes to different fault scenarios. 

To test the different approaches proposed in this research, two different experiments were developed. 

First, the three schemes were tested in an Industrial Heat Exchanger, these experiments are all simulated. 

Second, another experiment using a Coupled-Tank system is chosen. This experiment was tested in 

simulation and in a real physical Coupled-Tank system.  

Industrial Heat Exchanger 

The first system used as testbed (shown in Figure A.1) is a shell and tube Industrial Heat Exchanger 

that has two inputs: water and steam flows controlled by pneumatic valves (FSV1 and FSV2, respectively). 

The water pass inside the tubes at room temperature and the steam pass through the tube walls in order to 

transfer heat to the water.  In addition, the industrial heat exchanger has one output, in which the water 

temperature is measured by a thermistor (TT2). Variations in water and steam flows are determined by flow 

transmitters (FT1 and FT2, respectively).  

 

Figure A. 1. Industrial Heat Exchanger used in the experiments. 

 

To obtain the continuous model of this process, an identification experiment was performed, where a 

Pseudo Random Binary Sequence (PRBS) was applied to water and steam valves, and variations in water 

temperature were recorded. With the data obtained in the PRBS test, the identification was achieved using 

Matlab®. The following model was obtained: 

FSV1

TT1 FV1 FT1

TT2

FV2 FT2
FSV2

Water 

Inlet
Water 

Outlet

Condensed

Steam

Inlet
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where Gp represents the Process Model, Gsteam and Gwater describes the steam and water model of the industrial 

heat exchanger, respectively. T(s) describes the Water Temperature at the exit and Fsteam(s) and Fwater(s) 

represent the steam and water flow, respectively. 

 

Model Reference Adaptive Controller for the Industrial Heat Exchanger 

In order to derive an MRAC for the Industrial Heat Exchanger, it is important to take in account the 

two second order systems: steam and water systems. With the background theory presented in Section II, the 

following equations were developed: 

(213) 

                         
       

                    
                    

         

                              
            

(214) 

                         
         

                    
                    

           

                               
            

 

Using equations (213) and (214), the error can be redefined as:                    

                      
         

                              
                                                  (215) 

                      
           

                               
                                                 (216) 

 

Therefore, the error partial derivatives with respect to the adaptive feedforward (θ1) and adaptive 

feedback (θ2) gain are specified as equation 217 for the steam process and equation 218 for the water process: 

  
   
   

       

                              
              

  
   
     

         

                              
            (217) 

(218) 

  
   
   

         

                               
              

  
   
     

    

                               
                        

 

Consequently, the Process characteristic equation can be transformed into equations (219) and (220), 

because the MRAC system aim is to approximate the Process Model with the Reference Model. 
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                                                                        (219)      

                                                                    (220) 

 

Finally, from equations (219) and (220), the error partial derivatives are transformed; and employing 

the MIT rule, the update rules for the adaptive feedforward (θ1) and adaptive feedback (θ2) gain are obtained 

as follows: 

(221) 

         
   

  
      

                 

                    
      and  

   
  
    

                 

                    
                      

(222) 

         
   

  
      

                 

                    
      and  

   
  
    

                 

                    
                       

 

 On the other hand, for the MRAC controller based on Lyapunov theory for the Industrial Heat 

Exchanger no matter if is for the steam process or for the water process the difference is that the adaptive feed 

forward (θ1) and the adaptive feedback (θ2) update rules are: 

   

  
                                                                      (223) 

   

  
                                                                       (224) 

 With the above equations the controller of Figure A. 2 was implemented. 

 

VS-MRAC-SAT-PI for the Industrial Heat Exchanger 

In order to achieve the VS-MRAC-SAT-PI controller proposed in this research for the Industrial 

Heat Exchanger, first, a simple VS-MRAC controller was designed. This controller is implemented following 

the method presented in (Hsu, 1988) and (Hsu, 1990). The principal characteristic of this methodology is that 

it uses commutation function as sign functions. Then, a second structure was proposed (VS-MRAC-SAT). In 

this structure the original scheme is modified substituting the sign functions by saturation function. This 

modification is recommended to smooth the control signal and to avoid high frequency oscillations known as 

chattering. Finally, the third and last scheme, which is the one proposed in this research adds a Proportional 

Integer (PI) controller to the original VS-MRAC controller. This scheme uses sign functions to realize the 

commutation. 
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Figure A. 2. Fault Tolerant MRAC Controller Structure. 

 

For the first structure (VS-MRAC), to obtain a reference model for the steam and water system with 

unitary gain and a settling time of 2500 seconds and 1600 seconds, respectively, the M(s) is defined as: 

          
 

       
 

        

             
                                              (225) 

          
 

       
 

        

             
                                             (226) 

Considering that am takes the value of 0.002632 for the steam system and a value of 0.004112 for the 

water system and that the design method indicates that ω0>>am, the value of ω0 is 

                                                                    (227) 

                                                                     (228) 

Using ζ=0.456 for both systems (steam and water) and ω0=0.01316 and ω0=0.02026 for the steam 

and water systems, respectively, the following filter transfer function is obtained: 

            
  
 

          
 

        

                     
                               (229) 
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                               (230) 

From the Industrial Heat Exchanger second order model, the values of a1=0.004299 and 

a1=0.007815 for the steam and water systems, respectively, are obtained. Therefore the polynomial L(s) is 

define by 

                                                                      (231) 

                                                                     (232) 

From the multiplication of the above equations by their respective reference model, the following 

equations are form: 

        
                       

                     
                                                 (233) 

        
                        

                     
                                                 (234) 

The value of k1 is selected as 1, therefore the value of k0 is represented by 

         
  

  
 

 

        
                                                     (235) 

         
  

  
 

 

        
                                                     (236) 

Then, the sign of the classical VS-MRAC scheme is changed by a saturation function (VS-MRAC-

SAT). The saturation function will behave as a sign function just when the absolute value of the input signal 

is higher that the design parameter value  . If the input signal has an absolute value lower than  , the output 

signal from the saturation function is equal to the input signal multiplied by the parameter k0 or k1. The value 

of  0 and  1 was determined in an empiric form from the simulation of the system ( 0=0.01 and  1=2 for the 

steam and water system). Finally, the proposed scheme presented in this research is a VS-MRAC with a 

Saturation function and a PI controller (VS-MRAC-SAT-PI). In this structure a PI controller is added to the 

VS-MRAC-SAT structure. The PI controller aP, cP, aI and cI parameters were selected in an empiric form 

through simulation (aP=1, cP=320, aI=1.6, cI=0.99 for the steam system and aP=1, cP=320, aI=1.6, cI=0.99 

for the water system). Finally, the VS-MRAC-SAT-PI is represented by Figure A. 3. 



169 

 

 

Figure A. 3. VS-MRAC-SAT-PI Structure for the Industrial Heat Exchanger. 

 

Coupled-Tank System 

A real Coupled-Tank system control station was used to design; implement and test the proposed 

controller (see Figure A.4). 
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Figure A. 4. Physical Implementation of the Coupled-Tank System. 

In Figure A.5 a schematic diagram of the Coupled-Tank control station is represented. This system 

consist in a pair of coupled cylindrical tanks interconnected by the inferior part, both tanks have a height of 

0.8 m and a diameter of 0.15 m. A pneumatic control valve (FCV) regulates the flow of water that feeds tank 

T-1, this valve is controlled by a current signal that varies from 4 to 20 mA. The water level is measured in 

tank T-2 using a level transmitter (LT) which delivers a current signal from 4 to 20 mA. The water discharge 

is located in Tank T-1. The sensor and control signals are generated and acquired using a data acquisition card 

NI-PXI from National Instruments. After processing, the control variable measures the percentage of valve 

opening and the process variable measures the percentage of the tank capacity. The implementation of the 

controllers is realized using Matlab® and Labview®. The control objective is to regulate the input flow in a 

way that the liquid level in Tank T-2 follows a reference signal. The control system must be able to follow the 

reference signal in spite of the presence of level sensor and control valve faults.   

 

Figure A. 5. Coupled-Tank System Control Scheme Schematic Diagram. 

To obtain a transfer model of the above scheme a PRBS test was applied to the Coupled-Tank 

system. From the results of the PRBS test and using the Identification Control Toolbox of Matlab®, the 

following second order transfer function was obtained. 

      
             

                   
                                                       (237) 
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Model Reference Adaptive Controller for the Coupled-Tank System 

Two different MRAC were designed for the Coupled-Tank System, an MRAC based on the MIT rule 

and an MRAC based on the Lyapunov theory. 

The reference model used in both controllers was chosen in order to have a maximum peak (MP) of 

overshoot of 20% and a settling time (ts) of 60 seconds. A reference model that achieves the above 

characteristic is: 

      
       

                  
                                                          (238) 

Based on the theory explained in the Background theory section, the adaptation laws of the MRAC based on 

the MIT rule for the above reference model are represented by (see figure A. 6): 

   
  
      

               

                    
                                                 (239) 

   
  
    

               

                    
                                                    (240) 

 

On the other hand, the adaptation laws for the MRAC base don Lyapunov theory are given by (see 

figure A. 6): 

   

  
                                                                      (241) 

   

  
                                                                       (242) 

 

Figure A. 6. Coupled-Tank MRAC scheme based on MIT rule and based on Lyapunov theory. 
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VS-MRAC-SAT-PI for the Coupled-Tank System 

In order to achieve the VS-MRAC-SAT-PI for the Coupled-Tank system, the following procedure 

was realized. For the first structure (VS-MRAC), to obtain a reference model with unitary gain and a settling 

time of 60 seconds M(S) is defined as: 

          
 

       
 

    

        
                                                  (243) 

Considering that am takes the value of 0.2 and that the design method indicates that ω0>>am, the 

value of ω0 is 

                                                                       (244) 

Using ζ=0.707 and ω0=1, the following filter transfer function is obtained: 

       
  
 

          
 

 

           
                                                 (245) 

From the Coupled-Tank system second order model, the value of a1=0.3746, therefore the 

polynomial L(s) is define by 

                                                                     (246) 

From the multiplication of the above equation by the reference model, the following equation is form: 

        
           

            
                                                       (247) 

The value of k1 is selected as 20, therefore the value of k0 is represented by 

   
  

  
                                                                  (248) 

Then, the second structure (VS-MRAC-SAT) was developed. The value of  0 and  1 was determined 

in an empiric form from the simulation of the system ( 0=0.01 and  1=0.5). And finally, the proposed scheme 

presented in this research (VS-MRAC-SAT-PI) was developed. The values of PI parameters (aP, cP, aI and cI) 

were selected in an empiric form through simulation (aP=10, cP=0.2, aI=20 and cI=0.3) (see Figure A.7.).  
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Figure A. 7. VS-MRAC-SAT-PI Structure for the Coupled-Tank System. 

Results 

To test the above approaches, two different types of faults are introduced in the considered testbed 

case. The first type of fault is an additive abrupt fault and the second type of fault is an additive gradual fault. 

All types of faults are introduced in actuator and sensors. An additive fault will modify the quantity of the 

nominal value by the addition of a quantity f(t). An abrupt additive fault in actuators represent, for instance, a 

pump stuck or in sensors a constant bias in measurements. A gradual additive fault could be a progressive loss 

of electrical power in pump or a drift in the sensor measurements. 

As mentioned before, the above type of faults were tested in two different systems: a simulated 

Industrial Heat Exchanger and a real physical Coupled-Tank System. In each system, the three developed 

schemes were tested (MRAC based on MIT rule, MRAC based on Lyapunov theory and VS-MRAC-SAT-

PI).  

 

Simulation Results for the Industrial Heat Exchanger 

To test and compare the proposed schemes in the Industrial Heat Exchanger, the same operating 

conditions were applied for the three schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI). It is 

important to mention that the faults are introduced after the stabilization of the system. The total test time is of 

15000 seconds, the sensor or the actuator faults (abrupt or gradual for both cases) were introduced at 5000 

seconds. For sensor faults two different faults magnitudes were proved (5% and 15%). On the other hand, for 

actuator faults the magnitude of the faults were chosen as 1% and 5%. In addition the MSE error was 

calculated for each of the above experiments (see Table A-II). Figure A. 8 and Figure A. 9 shows the 

implementation of abrupt sensor and abrupt actuator faults, while Figure A. 10 and Figure A. 11 shows the 

implementation of gradual sensor and gradual actuator faults. 
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Figure A. 8. Abrupt Sensor Faults of 5% and 15% tested in the MRAC-MIT, MRAC-LYA and VS-

MRAC-SAT-PI schemes. 

 In Figure A. 8, it can be observed that the MRAC-MIT and the MRAC-LYA schemes were robust 

against abrupt sensor faults of 5% and 15%, while the VS-MRAC-SAT-PI scheme was fault tolerant for 

abrupt sensor faults of 5% but was degraded for abrupt sensor fault of 15%. 

 

Figure A. 9. Abrupt Actuator Faults of 1% and 5% tested in the MRAC-MIT, MRAC-LYA and VS-

MRAC-SAT-PI schemes. 
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 In Figure A. 9, it can be shown that the MRAC-MIT and the MRAC-LYA schemes became degraded 

after the occurrence of the abrupt actuator fault of 1% and 5%, while the fault of the VS-MRAC-SAT-PI 

scheme was imperceptible for both magnitudes (abrupt actuator faults of 1% and 5%). 

 

Figure A. 10. Gradual Sensor Faults of 5% and 15% tested in the MRAC-MIT, MRAC-LYA and VS-

MRAC-SAT-PI schemes. 

 

FigureA. 11. Gradual Actuator Faults of 1% and 5% tested in the MRAC-MIT, MRAC-LYA and VS-

MRAC-SAT-PI schemes. 
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 The same results of abrupt faults (Figure A. 8 and Figure A. 9) were obtained testing the gradual 

faults (see Figure A. 10 and Figure A. 11). 

 The summary of the above results can be observed in Table II. And Table III presents the result of 

the MSE from the above tested types of faults. 

Table A-II corroborate the results showed from Figure A. 8 to Figure A. 11 and the results of Table 

II, in which in general the best designed schemes for abrupt or gradual sensor faults were the MRAC-MIT and 

the MRAC-LYA schemes. And the best designed scheme for abrupt or gradual actuator faults was the VS-

MRAC-SAT-PI scheme. 

Table A- I. Summary of results of Abrupt or Gradual Faults 

Proposed Schemes 
Abrupt or Gradual Faults 

Sensor Faults Actuator Faults 

5% 15% 1% 5% 

MRAC-MIT R R D D 

MRAC-LYA  R R D D 

VS-MRAC-SAT-PI FT D R R 

D = Degraded System, FT = Fault Tolerant, R = Robust 

 

Table A- II. MSE of the different designed schemes 

Fault Type Fault 

Magnitude 

MRAC-

MIT 

MRAC-

LYA 

VS-MRAC-

SAT-PI 

Abrupt 

Sensor 
5% 0 0 0.00068 

15% 0 0 1.33095 

Actuator 
1% 0.00077 0.00068 0 

5% 0.00728 0.00951 0 

Gradual 

Sensor 
5% 0 0 0.00068 

15% 0 0 1.03483 

Actuator 
1% 0.00069 0.00068 0 

5% 0.00692 0.00951 0 

 

 

Results for the Physical Coupled-Tank System 

To test and compare the proposed schemes in the Coupled-Tank System, the same operating 

conditions were applied for the three schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI.  To test 

the schemes, the system was already stabilized at the 50% of water level of the total capacity of both tanks. 

Then a 10% of change in reference is performed. The faults are introduced after the stabilization of the 

system. The total test time is of 1200 seconds, the actuator fault was introduced at 400 seconds and the sensor 

fault was introduced at 800 seconds. For actuator faults two different faults magnitudes were proved (10% 

and 30%). On the other hand, for sensor faults the magnitude of the faults were chosen as 5% and 10%. In 

addition the MSE error was calculated for each of the above experiments (see Table A-V). 
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 First, the combination of abrupt actuator fault of magnitude 10% and abrupt sensor fault of 

magnitude 5% with the combination of abrupt actuator fault of magnitude 30% and abrupt sensor fault of 

magnitude 10% were tested (see Figure A. 12). The three FTC schemes were proved in the real Coupled-Tank 

system station. The value of  for the MRAC-MIT and the MRAC-LYA was selected as 0.001.  

 Second, the combination of gradual actuator fault of magnitude 10% and gradual sensor fault of 

magnitude 5% with the combination of gradual actuator fault of magnitude 30% and gradual sensor fault of 

magnitude 10% were tested (see Figure A. 13). The three FTC schemes were proved in the real Coupled-Tank 

system station. The value of  for the MRAC-MIT and the MRAC-LYA was selected as 0.001.  

 

 

Figure A. 12. Abrupt Sensor and Abrupt Actuator Faults in the MRAC-MIT, MRAC-LYA and VS-

MRAC-SAT-PI schemes. 
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Figure A. 13. Abrupt Sensor and Abrupt Actuator Faults in the MRAC-MIT, MRAC-LYA and VS-

MRAC-SAT-PI schemes. 

 

 The summary of the results of the above figures can be observed in Table A-III and Table A-IV.   

Table A- III. Summary of results of Abrupt Faults 

Proposed 

Schemes 

Abrupt Faults 

Fault Combination 1 Fault combination 2 

Actuator 

Fault 

10% 

Sensor 

Fault 5 

% 

Actuator 

Fault 30 

% 

Sensor 

Fault 10 

% 

MRAC-MIT FT FT FT FT 

MRAC-LYA  FT FT FT FT 

VS-MRAC-

SAT-PI 
FT FT FT FT 

FT=Fault Tolerant 

Table A- IV. Summary of results of Gradual Faults 

Proposed 

Schemes 

Gradual Faults 

Fault Combination 1 Fault combination 2 

Actuator 

Fault 10% 

Sensor 

Fault 5 

% 

Actuator 

Fault 30 

% 

Sensor 

Fault 10 

% 

MRAC-MIT FT FT FT FT 

MRAC-LYA  FT FT FT FT 

VS-MRAC-

SAT-PI 
FT FT FT FT 

FT=Fault Tolerant 
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 It can be observed from Figures A. 12 and Figure A. 13 and from Table A-III and A-IV that for 

abrupt faults the three proposed schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI) resulted fault 

tolerant to the two different combinations of faults tested in this research. Also, for gradual faults the three 

schemes were fault tolerant to actuator faults and to sensor faults, no matter the fault combination magnitude. 

 Table A-V presents the result of the MSE from the above combination of actuator fault and sensor 

faults. 

Table A- V. MSE of the different designed schemes 

Fault 

Type 

Actuator 

Fault 

Magnitude 

Sensor 

Fault 

Magnitude 

MRAC-MIT MRAC-LYA VS-MRAC-SAT-PI 

MSE 

Actuator 

Fault 

MSE 

Sensor 

Fault 

MSE 

Actuator 

Fault 

MSE 

Sensor 

Fault 

MSE 

Actuator 

Fault 

MSE 

Sensor 

Fault 

Abrupt 
10 % 5 % 0.5840 0.4690 0.6581 0.5354 0.0808 0.4054 

30 % 10 % 5.8530 2.0780 5.7538 2.4842 1.2220 2.5371 

Gradual 
10 % 5 % 0.1029 0.0059 0.1029 0.0047 0.0091 0.0072 

30 % 10 % 0.7477 0.0114 0.7673 0.0125 0.0434 0.0091 

 

Table A-V corroborate the results showed from Figure A. 12 and A. 13 and the results of Table A-III 

and A-IV, in which in general the best designed scheme for abrupt and gradual actuator faults of 10% and 

30% and for abrupt sensor fault of 5% and gradual sensor fault of 10% was the VS-MRAC-SAT-PI because 

has the lower MSE in the mentioned cases. On the other hand, for the abrupt sensor fault of 10% the best 

scheme is the MRAC-MIT and for gradual sensor fault of 5% the best scheme is the MRAC-LYA because 

have the lower MSE. 

 

Conclusions 

 For the experiments implemented in the Industrial Heat Exchanger, it can be observed that the 

MRAC-MIT and the MRAC-LYA schemes were the best schemes for abrupt sensor faults of 5% and 15% 

because both schemes were robust against these types of fault. On the other hand the VS-MRAC-SAT-PI 

scheme was fault tolerant for the abrupt sensor fault of 5% but was degraded for abrupt sensor fault of 15%. 

In the case of actuator faults, the MRAC-MIT and the MRAC-LYA schemes became degraded after the 

occurrence of the fault of 1% and 5%, while the VS-MRAC-SAT-PI scheme was robust for both fault 

magnitudes (abrupt actuator faults of 1% and 5%). In general, the same results were obtained for gradual 

faults. The MSE results (Table A-II) corroborate the above information, in which in general the best designed 

schemes for abrupt or gradual sensor faults were the MRAC-MIT and the MRAC-LYA schemes. And, the 

best designed scheme for abrupt or gradual actuator faults was the VS-MRAC-SAT-PI scheme 

 For the experiments implemented in the Coupled-Tank system, it can be observed that for abrupt 

faults the three proposed schemes (MRAC-MIT, MRAC-LYA and VS-MRAC-SAT-PI) were fault tolerant to 

the two different combinations of faults tested in this research (actuator faults of 10% and 30% and sensor 

faults of 5% and 10%). Also, for Gradual faults the three schemes were fault tolerant to actuator faults and to 
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sensor faults, no matter the fault combination magnitude. But, the MSE results (Table A-V) shows that in 

general the best designed scheme for abrupt and gradual actuator faults of 10% and 30% and for abrupt sensor 

fault of 5% and gradual sensor fault of 10% was the VS-MRAC-SAT-PI. And, for the abrupt sensor fault of 

10% the best scheme is the MRAC-MIT and for gradual sensor fault of 5% the best scheme is the MRAC-

LYA. 

 In summary, the controllers presented in this work allow the system availability in spite of the 

presence of a fault, because the implemented controllers were able to accommodate a fault between certain 

magnitude thresholds. 
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Appendix B 

First, this section explains the single multiplicative faults tested in the LPV system. The results of 

these experiments are shown from Table B-I and Table B-II. These results explain if the methodologies are 

robust, fault tolerant or degraded against the simulated fault and also demonstrate the Mean Square Error 

(MSE).  

Table B-I. Results of experiments using multiplicative sensor faults in the MRAC-LPV and MRAC-

H∞GS-LPV methodologies based on MIT rule for LPV systems. 

Methodology 
Sensor Faults Result and MSE 

100% 90% 50% 5% 

MRAC-LPV based 

on MIT rule 

Fault Tolerant 

MSE=0.00133 

Fault Tolerant 

MSE=0.00122 

Fault Tolerant 

MSE=0.00082 

Fault Tolerant 

MSE=0.00033 

MRAC-LPV based 

on Lyapunov  

Fault Tolerant 

MSE=0.00092 

Fault Tolerant 

MSE=0.00083 

Fault Tolerant 

MSE=0.00049 

Fault Tolerant 

MSE=0.00022 

MRAC-H∞GS-LPV 

based on MIT rule 

Robust 

MSE=0.00122 

Robust 

MSE=0.00122 

Robust 

MSE=0.00122 

Robust 

MSE=0.00122 

MRAC-H∞GS-LPV 

based on Lyapunov  

Robust 

MSE=0.00094 

Robust 

MSE=0.00094 

Robust 

MSE=0.00094 

Robust 

MSE=0.00094 
 

  In Table B-I, it is observed that the best methodologies are the MRAC-LPV and the MRAC-H∞GS-

LPV based on Lyapunov theory, because they are Fault Tolerant and Robust, respectively, against the sensor 

fault implemented at 5000 seconds and have the smaller Mean Square Error. 

Table B-II. Results of experiments using multiplicative actuator faults in the MRAC-LPV and MRAC-

H∞GS-LPV methodologies based on MIT rule for LPV systems. 

Methodology 
MSE Actuator Faults 

100% 90% 50% 5% 

MRAC-LPV based 

on MIT rule 

Degraded 

MSE=1.57069 

Degraded 

MSE=1.27232 

Degraded 

MSE=0.39292 

Degraded 

MSE=0.00425 

MRAC-LPV based 

on Lyapunov  

Degraded 

MSE=1.57058 

Degraded 

MSE=1.27221 

Degraded 

MSE=0.39281 

Degraded 

MSE=0.00415 

MRAC-H∞GS-LPV 

based on MIT rule 

Degraded 

MSE=1.57158 

Degraded 

MSE=1.27321 

Degraded 

MSE=0.39381 

Degraded 

MSE=0.00514 

MRAC-H∞GS-LPV 

based on Lyapunov  

Degraded 

MSE=1.57130 

Degraded 

MSE=1.27293 

Degraded 

MSE=0.39353 

Degraded 

MSE=0.00486 
 

 In Table B-II, it is observed that for actuator faults the four methodologies could not accommodate 

the fault. The actuator fault was introduced at time 15000 seconds. In Figure B. 1, Figure B. 2, Figure B. 3 

and Figure B. 4, it can be observe that for the multiplicative faults of magnitude 100%, 90%, 50% and 5% 

applied in the sensor, the MRAC-H∞GS-LPV controller was robust against this type of fault. The above apply 

for the methodology based on the MIT rule and the methodology based on the Lyapunov theory. In addition, 

the MRAC-LPV controller was able to accommodate the multiplicative sensor faults of the different fault 

magnitudes. On the other hand, for the multiplicative actuator faults of magnitude 100%, 90%, 50% and 5% 

both controllers (MRAC-H∞GS-LPV and MRAC-LPV) became degraded after the occurrence of the fault. 
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Also, it can be observe that in both cases (multiplicative sensor or multiplicative actuator faults) the 

controllers were able to have a change in the operating point at 10000 seconds. 

 

Figure B. 1. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 100% (multiplicative 
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sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the LPV system. 

 

Figure B. 2. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 90% (multiplicative 
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sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the LPV system. 

 

Figure B. 3. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 50% (multiplicative 
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sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the LPV system. 

 

Figure B. 4. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of magnitude 5% 
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(multiplicative sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and 

a change in the operating point at time 10000 seconds for the LPV system. 

 In addition to the experiments presented in this section, the error of these experiments was calculated 

and plotted, see the next figures.  

 

Figure B. 5. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of magnitude 100% 

(multiplicative sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and 

a change in the operating point at time 10000 seconds for the LPV system. 
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Figure B. 6. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of magnitude 90% 

(multiplicative sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and 

a change in the operating point at time 10000 seconds for the LPV system. 

 In Figure B. 5 and Figure B. 6, it can be observe that for the single multiplicative sensor fault of 

100% and 90% the error range between +/- 1 cm from the set point. On the other hand for the single 

multiplicative actuator fault of magnitude 100% and 90% the error represents approximately 2.5 cm of the 

system output. 
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In figure B. 7, it can be observe that for the single multiplicative sensor fault of 50% the error range 

between +/- 1 cm from the set point. On the other hand for the single multiplicative actuator fault of 50% the 

error represents approximately 1.5 cm of the system output. 

 

Figure B. 7. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of magnitude 50% 

(multiplicative sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and 

a change in the operating point at time 10000 seconds for the LPV system. 
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In figure B. 8, it can be observe that for the single multiplicative sensor fault of magnitude 5% the 

error range between +/- 1 cm from the set point. On the other hand for the single multiplicative actuator fault 

of magnitude 5% the error represents approximately 1 cm of the system output. 

 

Figure B. 8. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 5% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the LPV system. 
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In Figure B. 9 and Figure B. 10, for the combination of a multiplicative sensor fault and a 

multiplicative actuator fault both of 100% and 90%, the error represents approximately 2.5 cm of the system 

output.  

In figure B. 11, for the combination of a multiplicative sensor fault and a multiplicative actuator fault 

both of 50%, the error represents approximately 1.5 cm of the system output.  

In figure B. 12, for the combination of a multiplicative sensor fault and a multiplicative actuator fault 

both of 5%, the error represents approximately 1 cm of the system output. 

 

Figure B. 9. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

100%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the LPV system. 
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Figure B. 10. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

90%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the LPV system. 

 

Figure B. 11. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 
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50%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the LPV system. 

 

Figure B. 12. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%, 

for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 seconds 

for the LPV system. 
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Appendix C 

 The next figures show the results of the nonlinear model implementation using a value of γ = 10000 

with additive faults. Theses figure presented chattering and oscillation in comparison with the experiments 

when a value of γ = 0.003 was used. 

 

Figure C. 1 . Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear 

Process MRAC-LPV Controllers with an abrupt-sensor fault of 3% and an abrupt-actuator fault of 

20% for the operating points φ1=0.3 and φ2=0.5. 

 In Figure C.1, the MRAC-H∞GS-LPV and the MRAC-LPV Controller based on MIT rule and on 

Lyapunov theory are compared. While both controllers are working in the operating point φ
 
     and φ

 
    , 

an abrupt-sensor fault of 3% was introduced at time 5000 seconds and an abrupt-actuator fault of 20% was 

introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000 

seconds. In this figure, it can be observed that the MRAC-H∞GS-LPV based on MIT rule was robust against 

the sensor fault but the systems remained with oscillations after the change in the operating point. The 

MRAC-H∞GS-LPV based on Lyapunov theory was fault tolerant against the sensor fault, could tolerate the 

change in the operating point with certain oscillations and the actuator fault was imperceptible. On the other 

hand, the MRAC-LPV scheme based on MIT rule presented certain oscillations after the occurrence of the 

sensor fault, and was able to accommodate the fault after the occurrence of the actuator fault. Finally, the 

MRAC-LPV scheme based on Lyapunov theory presented certain oscillations after the occurrence of the 

sensor fault but was able to accommodate the fault after the change in the operating point and the actuator 

fault was imperceptible. 
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Figure C. 2. Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear Process 

MRAC-LPV Controllers with an abrupt-sensor fault of 160% and an abrupt-actuator fault of 20% for 

the operating points φ1=0.3 and φ2=0.5 . 

 In Figure C.2, the MRAC-H∞GS-LPV and the MRAC-LPV Controller based on MIT rule and on 

Lyapunov theory are compared. While both controllers are working in the operating point φ
 
     and φ

 
    , 

an abrupt-sensor fault of 160% was introduced in time 5000 seconds and an abrupt-actuator fault of 20% was 

introduce at time 15000 seconds. In addition, a change in the operating point was performed at time 10000 

seconds. In this figure, it can be observed that the MRAC-H∞GS-LPV based on MIT rule became unfeasible 

after the change in the operating point because it reached a value of +/- 60 and the maximum real physical 

value of the system output is 30.  In the MRAC-H∞GS-LPV based on Lyapunov theory after the occurrence of 

the sensor fault the system presented a small oscillation that was corrected after the occurrence of the actuator 

fault. On the other hand, the MRAC-LPV scheme based on MIT rule and Lyapunov theory became degraded 

after the occurrence of the sensor fault.  
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Figure C. 3. Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear Process 

MRAC-LPV Controllers with a gradual-sensor fault of 3% and a gradual-actuator fault of 20% for the 

operating points φ1=0.6 and φ2=0.6 . 

 In Figure C.3, the MRAC-H∞GS-LPV and the MRAC-LPV Controller based on MIT rule and on 

Lyapunov theory are compared. While both controllers are working in the operating point φ
 
     and φ

 
    , 

a gradual-sensor fault of 3% was introduced in time 5000 seconds and a gradual-actuator fault of 20% was 

introduced at time 15000 seconds. In addition, a change in the operating point was performed at time 10000 

seconds. In this figure, it can be observed that the MRAC-H∞GS-LPV based on MIT rule, the MRAC-LPV 

based on the MIT rule and based on Lyapunov theory schemas remained with oscillations problems after the 

occurrence of the sensor fault until the end of the simulation. On the other hand, the MRAC-H∞GS-LPV 

based on Lyapunov theory presented a small oscillation, since the beginning and during the sensor fault 

occurrence, almost unnoticed that is accommodated after the change in the operation point and the actuator 

fault was imperceptible. 
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Figure C. 4. Comparison between the Nonlinear Process MRAC-H∞GS-LPV and the Nonlinear Process 

MRAC-LPV Controllers with a gradual-sensor fault of 160% and a gradual-actuator fault of 20% for 

the operating points φ1=0.6 and φ2=0.6 . 

 In Figure C.4, the MRAC-H∞GS-LPV and the MRAC-LPV Controller based on the MIT rule and on 

the Lyapunov theory are compared. While both controllers are working in the operating point φ
 
     and 

φ
 
    , a gradual-sensor fault of 160% was introduced in time 5000 seconds and a gradual-actuator fault of 

20% was introduced at time 15000 seconds. In addition, a change in the operating point was performed at 

time 10000 seconds. In this figure, it can be observed that the MRAC-H∞GS-LPV based on MIT rule became 

unfeasible after the change in the operating point. The MRAC-H∞GS-LPV based on Lyapunov theory after 

the occurrence of the sensor fault presented a small oscillation until the end of the simulation. On the other 

hand, the MRAC-LPV scheme based on MIT rule and Lyapunov theory became degraded after the 

occurrence of the sensor fault. 

 

 In addition, to compare the Nonlinear Process MRAC MIT and the Nonlinear Process MRAC 

Lyapunov based design the Mean Square Error (MSE) was calculated for all the experiments. The results are 

shown in Table C-I. 
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Table C- I. MSE Results of the comparison between the Nonlinear MRAC-LPV and the Nonlinear 

MRAC-H∞GS-LPV MIT and Lyapunov based design. 

 

 On the other hand, the following figures show the results of the nonlinear model implementation of 

multiplicative faults using a value of γ = 10000: 

 

Figure C. 5. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 
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100%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 

 In Figure C.5, for the combination of multiplicative sensor fault of 100% at 5000 second and 

multiplicative actuator fault of 100% at 15000 seconds, it can be observe that MRAC-H∞GS-LPV based on 

the MIT rule was robust to the sensor fault but became unfeasible after occurrence of the actuator fault. The 

same applies for the MRAC-LPV based on the MIT rule. On the other hand, the MRAC-H∞GS-LPV based on 

Lyapunov was robust against the multiplicative sensor fault, but became degraded after the appearance of the 

actuator fault. The MRAC-LPV based on Lyapunov theory was fault tolerant to the multiplicative sensor fault 

but also became degraded after the occurrence of the actuator fault. 

 

Figure C. 6. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

90%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 

 In Figure C.6, for the combination of multiplicative sensor fault of 90% at 5000 second and 

multiplicative actuator fault of 90% at 15000 seconds, it can be observe that MRAC-H∞GS-LPV based on the 

MIT rule was fault tolerant to the sensor fault but became unfeasible after the change in the operating point. 

The MRAC-LPV based on the MIT rule presented and offset since the beginning of the simulation, was fault 

tolerant to the sensor fault but became unfeasible after the occurrence of the actuator fault. On the other hand, 

the MRAC-H∞GS-LPV based on Lyapunov was robust against the multiplicative sensor fault, presented some 

chattering after the change in the operating point and was fault tolerant to the actuator fault. The MRAC-LPV 
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based on Lyapunov theory presented some chattering since the beginning of the simulation and was fault 

tolerant to the multiplicative sensor and actuator fault. 

 

Figure C. 7. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

50%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 

 In Figure C.7, for the combination of multiplicative sensor fault of 50% at 5000 second and 

multiplicative actuator fault of 50% at 15000 seconds, it can be observe that MRAC-H∞GS-LPV based on the 

MIT rule was fault tolerant to the sensor fault but became unfeasible after the change in the operating point. 

The MRAC-LPV based on the MIT rule presented and offset since the beginning of the simulation, and 

presented chattering problems after the sensor fault. On the other hand, the MRAC-H∞GS-LPV based on 

Lyapunov was robust against the multiplicative sensor fault, presented some chattering after the change in the 

operating point and was fault tolerant to the actuator fault. The MRAC-LPV based on Lyapunov theory 

presented some chattering since the beginning of the simulation and was fault tolerant to the multiplicative 

sensor and actuator fault. 
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Figure C. 8. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%, 

for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 seconds 

for the nonlinear system. 

 In Figure C.8, for the combination of multiplicative sensor fault of 5% at 5000 second and 

multiplicative actuator fault of 5% at 15000 seconds, it can be observe that MRAC-H∞GS-LPV based on the 

MIT rule was fault tolerant to the sensor fault but became unfeasible after the change in the operating point. 

The MRAC-LPV based on the MIT rule presented and offset since the beginning. On the other hand, the 

MRAC-H∞GS-LPV based on Lyapunov was robust against the multiplicative sensor fault, presented some 

chattering after the change in the operating point and was fault tolerant to the actuator fault. The MRAC-LPV 

based on Lyapunov theory presented some chattering since the beginning of the simulation and was fault 

tolerant to the multiplicative sensor and actuator fault. In addition, the error from the multiplicative faults 

experiments was calculated and plotted. 

Table C-II shows the results of the above multiplicative fault experiments. These results explain if 

the methodologies are robust, fault tolerant, degraded, and unfeasible or if they have a chattering against the 

simulated fault and also demonstrate the Mean Square Error (MSE). In Table 24, it is observed that just a few 

methodologies were able to tolerate the combination of the multiplicative sensor (5000 seconds) and actuator 

(15000 seconds) faults implemented in the nonlinear system, for example the MRAC-H∞GS-LPV based on 

Lyapunov theory with a sensor and an actuator fault of 90% was robust against the sensor fault and was fault 

tolerant against the actuator fault. In general, the MRAC-LPV and the MRAC-H∞GS-LPV based on 
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Lyapunov theory presented the best behavior because the Mean Square Error was the lower in comparison 

with the methodologies using the MIT rule. In addition, most of the experiments presented some chattering 

effects due to the nonlinearities of the system. 

Table C- II. Results of experiments using multiplicative sensor (5000 seconds) and actuator (15000 

seconds) faults in the MRAC-LPV and MRAC-H∞GS-LPV methodologies based on MIT rule for 

nonlinear systems. 

Methodology 
MSE Sensor and Actuator Faults 

100% 90% 50% 5% 

MRAC-LPV based on 

MIT rule 

FT, C SF 

FT, UF  AF 
MSE=519.004 

FT, O SF 

UF, O  AF 
MSE=9.23630 

O, C SF 

C, O  AF 
MSE=2.71772 

O, R SF 

O, I  AF 
MSE=0.93032 

MRAC-LPV based on 

Lyapunov theory 

FT, C SF 

D  AF 

MSE=1.58337 

FT, C SF 

C  AF 

MSE=0.00863 

FT, C SF 

C  AF 

MSE=0.00537 

C SF 

FT, C AF 

MSE=0.00315 

MRAC-H∞GS-LPV based 

on MIT rule 

I SF 

FT, UF  AF 

MSE=2912047.96 

FT SF 

I  AF 

Unfeasible 
MSE=18.53418 

R SF 

I AF 

Unfeasible 
MSE=16.75147 

R SF 

FT AF 

Unfeasible 
MSE=29.95529 

MRAC-H∞GS-LPV based 

on Lyapunov theory 

FT, C SF 

D  AF 

MSE=1.94864 

R SF 

FT, C AF 

MSE=0.01223 

R SF 

FT, C AF 

MSE=0.03068 

R SF 

FT, C AF 

MSE=0.01669 

AF=Actuator Fault, C=Chattering, FT=Fault Tolerant, O=Offset, 

R=Robust, SF=Sensor Fault, UF=Unfeasible, I=Imperceptible 

 

In addition, single fault were tested. The results of these experiments are shown from Table C-III and 

Table C-IV. These results explain if the methodologies are robust, fault tolerant, degraded, and unfeasible or 

if they have a chattering against the simulated fault and also demonstrate the Mean Square Error (MSE).  

Table C- III. Results of experiments using multiplicative sensor faults in the MRAC-LPV and MRAC-

H∞GS-LPV methodologies based on MIT rule for nonlinear systems. 

Methodology 
Sensor Faults Result and MSE 

100% 90% 50% 5% 

MRAC-LPV based 

on MIT rule 

Chattering 

Offset 

MSE=1.35567 

Offset 

MSE=0.72602 

Offset 

Chattering 

MSE=4.36206 

Offset 

MSE=0.94201 

MRAC-LPV based 

on Lyapunov theory 

Fault Tolerant 

Chattering 

MSE=0.01065 

Fault Tolerant 

Chattering 

MSE=0.00870 

Fault Tolerant 

Chattering 

MSE=0.00527 

Chattering 

MSE=0.00238 

MRAC-H∞GS-LPV 

based on MIT rule 

Chattering 

Unfeasible 

MSE=16.2487 

Fault Tolerant 

Chattering 

Unfeasible 

MSE=18.5341 

Robust 

Chattering 

Unfeasible 

MSE=16.7514 

Robust 

Chattering 

Unfeasible 

MSE=29.9521 

MRAC-H∞GS-LPV 

based on Lyapunov 

theory 

Chattering 

MSE=0.01253 

Robust 

Chattering 

MSE=0.01230 

Robust 

Chattering 

MSE=0.01544 

Robust 

Chattering 

MSE=0.01257 

 

 In Table C-III, it is observed that the best methodologies are the MRAC-LPV and the MRAC-H∞GS-

LPV based on Lyapunov theory, because they are Fault Tolerant and Robust, respectively, against the sensor 

fault implemented at 5000 seconds and have the smaller Mean Square Error. When the nonlinear system is 
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used as the plant it can be shown that the output signal presents some chattering effect due to the 

nonlinearities of the system.  

Table C- IV. Results of experiments using multiplicative actuator faults in the MRAC-LPV and 

MRAC-H∞GS-LPV methodologies based on MIT rule for nonlinear systems. 

Methodology 
MSE Actuator Faults 

100% 90% 50% 5% 

MRAC-LPV based 

on MIT rule 

Unfeasible 

MSE=3317.69 

Offset 

Chattering 

MSE=1.20246 

Offset 

MSE=0.93118 

Offset 

MSE=1.04342 

MRAC-LPV based 

on Lyapunov theory 

Chattering 

Degraded 

MSE=1.62418 

Chattering 

MSE=0.00327 

Chattering 

MSE=0.00338 

Chattering 

Fault Tolerant 

MSE=0.00318 

MRAC-H∞GS-LPV 

based on MIT rule 

Unfeasible 

MSE=2918.92 

Chattering 

Unfeasible 

MSE=5.01029 

Chattering 

Fault Tolerant 

Unfeasible 

MSE=13.38106 

Unfeasible 

Chattering 

MSE=1.82513 

MRAC-H∞GS-LPV 

based on Lyapunov 

theory 

Chattering 

Degraded 

MSE=2.22839 

Chattering 

Fault Tolerant 

MSE=0.02010 

Chattering 

Fault Tolerant 

MSE=0.02013 

Chattering 

MSE=0.02048 

 

 In Table C-IV, the actuator fault was introduced at 15000 seconds. It can be observed that some of 

the actuator faults implemented in the methodologies are unfeasible to the system, this mean that the results 

are above the physical capacities of the nonlinear system, for example, the MRAC-LPV based on MIT rule 

with an actuator fault of 100%. On the other hand, most of the methodologies presented some chattering 

effect. The best methodologies are the ones based on Lyapunov theory because they have the slower Mean 

Square Error. 

 In Figure C.9, it can be observe that for the multiplicative fault in sensors of 100% at time 5000 

applied to the nonlinear system. The MRAC-H∞GS-LPV based on the MIT rule became unfeasible after the 

change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks 

that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule. In 

addition both controllers presented chattering problems after the occurrence of the fault. On the other hand, in 

the MRAC-H∞GS-LPV based on Lyapunov after the occurrence of the multiplicative sensor fault, the system 

presented some reasonable chattering (+/- 0.2 cm) and could tolerate the change in the operating point. The 

chattering effects are due to the nonlinearities of the system. The same applies for the MRAC-LPV based on 

Lyapunov theory. For the multiplicative actuator fault of 100% applied at 15000, the MRAC-H∞GS-LPV and 

the MRAC-LPV based on the MIT rule became unfeasible after the occurrence of the fault. And on the other 

hand the MRAC-H∞GS-LPV and the MRAC-LPV based on Lyapunov theory became degraded after the 

presence of the fault. It is important to mention that just the schemes based on the Lyapunov theory were able 

to tolerate the change in the operating point having a controlled chattering of maximum +/- 1 cm.  
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Figure C. 9. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 100% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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Figure C. 10. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 90% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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 In Figure C.10, it can be observe that for the multiplicative fault in sensors of 90% at time 5000 

applied to the nonlinear system. The MRAC-H∞GS-LPV based on the MIT rule became unfeasible after the 

change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks 

that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule in 

which the system output reached a value of more than +/-30 at the beginning of the simulation and presents an 

offset during the simulation. On the other hand, in the MRAC-H∞GS-LPV based on Lyapunov was robust 

against the multiplicative sensor fault, but presented some reasonable chattering after the change in the 

operating point. The chattering effects are due to the nonlinearities of the system. The MRAC-LPV was fault 

tolerant to the multiplicative sensor fault but stayed with some reasonable chattering. For the multiplicative 

actuator fault of 90% applied at 15000, the MRAC-H∞GS-LPV based on the MIT rule became unfeasible 

after the occurrence of the fault. The MRAC-LPV based on MIT rule presented an offset since the beginning 

of the simulation and stayed with chattering problems (+/- 5cm) after the occurrence of the fault. On the other 

hand the MRAC-H∞GS-LPV based on Lyapunov theory presented some chattering (less than +/- 1cm) after 

the change in the operating point but was fault tolerant against the actuator multiplicative fault. In addition, 

the MRAC-LPV based on Lyapunov theory presented a chattering since de beginning of the simulation but 

also was fault tolerant to the multiplicative actuator fault. It is important to mention that just the schemes 

based on the Lyapunov theory were able to tolerate the change in the operating point having a controlled 

chattering of maximum +/- 1 cm.  

 In Figure C.11, it can be observe that for the multiplicative fault in sensors of 50% at time 5000 

applied to the nonlinear system, the MRAC-H∞GS-LPV based on the MIT rule became unfeasible after the 

change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks 

that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule in 

which the system output reached a value of more than +/-30 at the beginning of the simulation and presents an 

offset during the simulation and chattering problems (+/- 5 cm) after the occurrence of the fault. On the other 

hand, in the MRAC-H∞GS-LPV based on Lyapunov was robust against the multiplicative sensor fault, but 

presented some reasonable chattering after the change in the operating point. The chattering effects are due to 

the nonlinearities of the system. The MRAC-LPV was fault tolerant to the multiplicative sensor fault but 

stayed with some reasonable chattering. For the multiplicative actuator fault of 50% applied at 15000, the 

MRAC-H∞GS-LPV based on the MIT rule became unfeasible after the occurrence of the fault. The MRAC-

LPV based on MIT rule presented an offset since the beginning of the simulation. On the other hand the 

MRAC-H∞GS-LPV based on Lyapunov theory presented some chattering (less than +/- 1cm) after the change 

in the operating point but was fault tolerant against the actuator multiplicative fault. In addition, the MRAC-

LPV based on Lyapunov theory presented a chattering since de beginning of the simulation but also was fault 

tolerant to the multiplicative actuator fault. It is important to mention that just the schemes based on the 

Lyapunov theory were able to tolerate the change in the operating point having a controlled chattering of 

maximum +/- 1 cm. 
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Figure C. 11. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 50% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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Figure C. 12. Comparison between the system output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 5% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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 In Figure C.12, it can be observe that for the multiplicative fault in sensors of 5% at time 5000 

applied to the nonlinear system, the MRAC-H∞GS-LPV based on the MIT rule became unfeasible after the 

change in the operating point because it reached a system output value of +/- 100 cm and the high of the tanks 

that the system is representing is of 30 cm. The same applies for the MRAC-LPV based on the MIT rule in 

which the system output reached a value of more than +/-30 at the beginning of the simulation and presents an 

offset during the simulation. On the other hand, in the MRAC-H∞GS-LPV based on Lyapunov was robust 

against the multiplicative sensor fault, but presented some reasonable chattering after the change in the 

operating point. The chattering effects are due to the nonlinearities of the system. The MRAC-LPV was fault 

tolerant to the multiplicative sensor fault but stayed with some reasonable chattering. For the multiplicative 

actuator fault of 5% applied at 15000, the MRAC-H∞GS-LPV based on the MIT rule became unfeasible after 

the occurrence of the fault. The MRAC-LPV based on MIT rule presented an offset since the beginning of the 

simulation and also became unfeasible because it reached +/- 30 cm of variation in the system output at the 

beginning of the simulation. On the other hand the MRAC-H∞GS-LPV based on Lyapunov theory presented 

some chattering (less than +/- 1cm) after the change in the operating point but the actuator multiplicative fault 

was imperceptible. In addition, the MRAC-LPV based on Lyapunov theory presented a chattering since de 

beginning of the simulation but also was fault tolerant to the multiplicative actuator fault. It is important to 

mention that just the schemes based on the Lyapunov theory were able to tolerate the change in the operating 

point having a controlled chattering of maximum +/- 1 cm.  

The next figures represent the error for the experiments tested in the nonlinear system. In Figure 

C.13, it can be observe that for the single multiplicative sensor fault of 100% the error range between +/- 100 

cm from the set point in the MRAC-H∞GS-LPV based on the MIT rule, it varies +/-30 cm for the MRAC-

LPV based on MIT rule, varies +/- 5cm in the MRAC-LPV based on Lyapunov theory and varies +/- 2 cm in 

the MRAC-H∞GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative actuator 

fault of 100% the error represents approximately 800 cm of the system output for the schemes based on the 

MIT rule (MRAC-H∞GS-LPV and MRAC-LPV), it varies 30 cm from the system output set point in the 

MRAC-H∞GS-LPV scheme based on Lyapunov theory and it varies 10 cm in the MRAC-LPV scheme based 

on Lyapunov theory. In Figure C.14, it can be observe that for the single multiplicative sensor fault of 90% 

the error range between +/- 50 cm from the set point in the MRAC-H∞GS-LPV based on the MIT rule, it 

varies +/-5 cm for the MRAC-LPV based on MIT rule, varies +/- 4 cm in the MRAC-LPV based on 

Lyapunov theory and varies +/- 1 cm in the MRAC-H∞GS-LPV based on Lyapunov theory. On the other hand 

for the single multiplicative actuator fault of 90% the error represents approximately +/- 60 cm of the system 

output for the MRAC-H∞GS-LPV scheme based on the MIT rule, it varies +/- 5 cm of the system output for 

the MRAC-LPV scheme based on the MIT rule, it varies +/- 1 cm from the system output set point in the 

MRAC-H∞GS-LPV scheme based on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme 

based on Lyapunov theory. 
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Figure C. 13. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 100% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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Figure C. 14. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 90% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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In Figure C.14, it can be observe that for the single multiplicative sensor fault of 90% the error range 

between +/- 100 cm from the set point in the MRAC-H∞GS-LPV based on the MIT rule, it varies +/-10 cm for 

the MRAC-LPV based on MIT rule, varies +/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies 

+/- 3 cm in the MRAC-H∞GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative 

actuator fault of 90% the error represents approximately +/- 80 cm of the system output for the MRAC-

H∞GS-LPV scheme based on the MIT rule, it varies +/- 4 cm of the system output for the MRAC-LPV 

scheme based on the MIT rule, it varies +/- 3 cm from the system output set point in the MRAC-H∞GS-LPV 

scheme based on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme based on Lyapunov 

theory. 

In Figure C.15, it can be observe that for the single multiplicative sensor fault of 50% the error range 

between +/- 100 cm from the set point in the MRAC-H∞GS-LPV based on the MIT rule, it varies +/-10 cm for 

the MRAC-LPV based on MIT rule, varies +/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies 

+/- 3 cm in the MRAC-H∞GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative 

actuator fault of 50% the error represents approximately +/- 80 cm of the system output for the MRAC-

H∞GS-LPV scheme based on the MIT rule, it varies +/- 4 cm of the system output for the MRAC-LPV 

scheme based on the MIT rule, it varies +/- 3 cm from the system output set point in the MRAC-H∞GS-LPV 

scheme based on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme based on Lyapunov 

theory. 

In Figure C.16, it can be observe that for the single multiplicative sensor fault of 5% the error range 

between +/- 100 cm from the set point in the MRAC-H∞GS-LPV based on the MIT rule, it varies +/-5 cm for 

the MRAC-LPV based on MIT rule, varies +/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies 

+/- 3 cm in the MRAC-H∞GS-LPV based on Lyapunov theory. On the other hand for the single multiplicative 

actuator fault of 5% the error represents approximately +/- 30 cm of the system output for the MRAC-H∞GS-

LPV scheme based on the MIT rule, it varies +/- 4 cm of the system output for the MRAC-LPV scheme based 

on the MIT rule, it varies +/- 3 cm from the system output set point in the MRAC-H∞GS-LPV scheme based 

on Lyapunov theory and it varies +/- 3 cm in the MRAC-LPV scheme based on Lyapunov theory. 
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Figure C. 15. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 50% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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Figure C. 16. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a single fault of 5% (multiplicative 

sensor and multiplicative actuator fault) for the operating points φ1=0.3 and φ2=0.5 and a change in the 

operating point at time 10000 seconds for the nonlinear system. 
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In Figure C.17, it can be observe that for the combination of multiplicative sensor fault and 

multiplicative actuator fault both of 100% the error range between - 12000 cm from the set point in the 

MRAC-H∞GS-LPV based on the MIT rule, it varies - 400 cm for the MRAC-LPV based on MIT rule, varies 

+/- 5 cm in the MRAC-LPV based on Lyapunov theory and varies – 20 cm in the MRAC-H∞GS-LPV based 

on Lyapunov theory. In Figure C.18, it can be observe that for the combination of multiplicative sensor fault 

and multiplicative actuator fault both of 90% the error range between +/- 100 cm from the set point in the 

MRAC-H∞GS-LPV based on the MIT rule, it varies +/- 60 cm for the MRAC-LPV based on MIT rule, varies 

+/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies +/- 4 cm in the MRAC-H∞GS-LPV based 

on Lyapunov theory. In Figure C.19, it can be observe that for the combination of multiplicative sensor fault 

and multiplicative actuator fault both of 50% the error range between +/- 100 cm from the set point in the 

MRAC-H∞GS-LPV based on the MIT rule, it varies +/- 30 cm for the MRAC-LPV based on MIT rule, varies 

+/- 4 cm in the MRAC-LPV based on Lyapunov theory and varies +/- 4 cm in the MRAC-H∞GS-LPV based 

on Lyapunov theory. In Figure C.20, it can be observe that for the combination of multiplicative sensor fault 

and multiplicative actuator fault both of 5% the error range between +/- 100 cm from the set point in the 

MRAC-H∞GS-LPV based on the MIT rule, it varies +/- 30 cm for the MRAC-LPV based on MIT rule, varies 

+/- 3 cm in the MRAC-LPV based on Lyapunov theory and varies +/- 3 cm in the MRAC-H∞GS-LPV based 

on Lyapunov theory.  

 

Figure C. 17. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and on the Lyapunov theory with a combination of a multiplicative 

sensor fault (5000 seconds) and a multiplicative actuator faults (15000 seconds), both of 100%, for the 

operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 seconds for the 

nonlinear system. 
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Figure C. 18. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 

90%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 

 

Figure C. 19. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 
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50%, for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 

seconds for the nonlinear system. 

 

Figure C. 20. Comparison between the error output of the MRAC-H∞GS-LPV and MRAC-LPV 

Controllers based on the MIT rule and the Lyapunov theory with a combination of a multiplicative 

sensor fault at time 5000 seconds and a multiplicative actuator faults at time 15000 seconds both of 5%, 

for the operating points φ1=0.3 and φ2=0.5 and a change in the operating point at time 10000 seconds 

for the nonlinear system. 
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