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Abstract
This research is leading to solve a real problem in High Speed Machining processes (HSM), specifically in the

peripheral milling process. Nowadays, the machining processes have increased their complexity by considering
the HSM, because of the high dimensional precision, high surface quality, and the minimum cost in the demanded
products.

The general scope of this research is: Design and implement an intelligent monitoring and supervisory control
system for peripheral milling process in HSM. The main objectives of this research are defined as follows:

• Implement a general model to predict the surface roughness by considering several aluminium alloys, cutting
parameters, geometries, and cutting tools.

• Design and implement a monitoring and diagnosis system for the cutting tool wear condition during the
machining process.

• Design and develop an intelligent process planning system, which includes a merit variable to compute the
optimal cutting parameters and a decision-making module to recommend some actions in agreement with the
cutting tool wear condition.

The design and implementation of the system implied to make research, exhaust experiments, and write several
papers to validate the proposal ideas and algorithms. The main contributions can be summarized as follows:

• A complete data acquisition system was implemented in a machining center HS-1000 Kondia. Several sensors
were installed to characterize the surface roughness (Ra) and flank wear of the cutting tool with the process
state variables. The Mel Frequency Cepstrum Coefficients (MFCC) computed from the process signals were
used for modelling the Ra with ANN models.

• Related with the Ra modelling, the most important factors affecting the Ra were deduced by applying the
screening factorial design. Also, Response Surface Methodology was applied with excellent results for mod-
eling the Ra. The models were computed for a new, half-new, half-worn, and worn cutting tool condition.
Multi-sensor and data fusion were used to build ANN models with excellent results.

• New ideas based in the Hidden Markov Models (HMM) and the MFCC were developed for monitoring and
diagnosis the cutting tool wear condition for peripheral milling process in HSM. The system was implemented
for recognizing on-line four cutting tool wear conditions: new, half-new, half-worn, and worn condition.

• The design and implementation of the intelligent monitoring and process planning system (IMPPS) repre-
sented the main module of the intelligent monitoring and supervisory control system. In this module, Genetic
Algorithms with the RSM models were used to compute the optimal cutting parameters in Pre-process op-
erating mode with excellent results. Another contribution was the implementation of the Markov Decision
Process in the optimization process. This algorithm recommends optimal actions for minimizing the operation
cost during the production of specific workpieces.
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Chapter 1

Introduction

In the world, machining processes (turning, milling, and drilling) are the most widespread metal shaping processes
in mechanical manufacturing. Machine tools are essential for reproducing the technologies required in an industrial
economy. Currently, worldwide investment in metal-machining machine tools holds steady or continues to increase
year after year, [Childs et al., 2000], for the following reasons:

1. The metal machining is capable of high precision: part tolerances of 50 µm and surface finish of 1 µm are
readily achievable.

2. The machining process is very versatile: complicated free-form shapes with many features, over a large size
range, can be made more cheaply, quickly, and simply by controlling the path of a standard cutting tool rather
than by investing considerable time and cost in making a dedicated moulding, forming or die casting tool.

3. Also, the mechanical micro-machining has been defined as an important and relevant process owing to its
ability to fabricate micro parts out of a greater range of materials and with more varied geometry than is
possible with lithography and etching.

Next-Generation Manufacturing refers to the application of new concepts, models, methodologies, and information
technologies, with the goal of preparing manufacturing companies to become more competitive in a global and
networked environment, [Molina et al., 2005]. Then, one important characteristic of future manufacturing equip-
ment will be its ability to adapt to changing environments and conditions. This implies the opportunity to build
an intelligent machine to achieve a goal or keep the performance under stochastic process conditions. An intel-
ligent system must posse basic features and capabilities such as sensory perception, pattern recognition, learning
and knowledge acquisition, inference from incomplete information, and adaptation. For these reasons, the great
economies of the world want to lead production and technology in machining centers, and during the last decades,
research and development has been conducted in three areas:

• Advances in machine tools (machine technology)
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• Organization of machining (manufacturing systems)

• The cutting edge (materials technology)

1.1 Motivation

Given the importance of machining to most industries, and in order to keep the competitive edge and satisfy various
customer needs, innovative manufacturing techniques have to be developed by further integration of information and
manufacturing technology. In summary, through different research, several opportunities areas have been identified
for present and future industrial applications. These areas are related to the following items:

1. Modelling of machining operations are relevant to improve the machining performance, workpiece quality,
and attaining high productivity and/or low production cost. The use of more than one sensor for monitoring
the process gives more interesting features to model the process. These systems are called multi-sensors
systems, and the information acquired will be combined in order to get a sensor fusion.

2. Monitoring of the machining processes is very important in order to achieve safety, prevent fatal damage,
and prevent rejects. In [Tönshoff et al., 1988] it was demonstrated that the effective machining time of the
machine tool was increased from 10 % to 65 % by using a monitoring system. Then, is a great opportunity to
contribute with a cutting tool condition monitoring system in order to reduce operating cost.

3. Optimization and process modelling are two important issues in the metal cutting process because the machin-
ing process is variable owing to multiple factors (e.g. cutting tool-wear, vibrations, and other disturbances).
In a CNC machining center the selection of the optimal cutting parameters is important to reduce the costs
and allow high product quality. Also, control strategies are very important in the optimization process and
machining operations. Two kinds of control approach are identified, i.e. on-line and off-line control. Adaptive
control is a kind of on-line control, and it is applied for time-varying systems with large uncertainty concern-
ing the process dynamic characteristics and disturbances. The on-line control received much attention in the
1970s and 1980s, [van Luttervelt and Peng, 1999]. However, at that time, knowledge of metal cutting was not
sufficient, an accurate tool wear model was not available, and sensor and computer technology was not devel-
oped far enough. Currently, successful development and implementation of process monitoring and control
demands high flexibility of the machine tool controller and open architecture controls in the CNC machining
center, [Liang et al., 2004]. To date, various transducers, signal processing schemes, control strategies, and
actuators have been proposed and extensively investigated. In the area of machining process sensing, research
has focused primarily on the monitoring of tool condition, chatter and part quality.

Nowadays, the machining processes with high speed (HSM) is one of the modern technologies, which in com-
parison with conventional cutting enables to increase efficiency, accuracy, and quality of workpieces and at the
same time to decrease costs and machining time. Major advantages of HSM are reported as: high material removal
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rates, the reduction in lead times, low cutting forces, reduced number of technological operations, less workpiece
distortion and increased precision of the part, [Cus et al., 2007].

The HSM is being mainly used in three industry sectors owing to their specific requirements:

• The first industry sector deals with machining aluminium to produce automotive components, small computer
parts, or medical devices. This industry needs fast metal removal, because the technological process involves
many machining operations.

• The second sector is aircraft industry which involves machining of long aluminium parts by removing a great
amount of material from prismatic block, [de Lacalle Marcaide et al., 2004].

• The third industry sector is the die mould industry which requires dealing with finishing of hard materials. In
this category is important to machine with high speed and to keep high accuracy.

The HSM is the result of numerous technical advances ensuring that milling has become faster conventional
milling and has gained importance as a cutting process. This implies to define a new paradigm: it is impor-
tant to maximize the metal removal rate, minimize the cutting tool-wear rate and maintain the surface quality
and dimensional precision of all the machined parts in HSM. Also, in several researches [Liang et al., 2004],
[Narita et al., 2004], and [Erol et al., 2000] define the future of the machine tools as follows:

• The machine tool must be a smart machine with the capacity to develop intelligent functions to enhance the
manufacturing process.

• The machine tool must be available to realize the effective, reliable, and superior manufacturing system.

• New development and technology must be conducted in the process level. The process level is related to the
phenomena that occurs in the interaction of the cutting tool and workpiece.

To evaluate and implement these considerations in a machine tool, it is first important to define: What does an
intelligent machine mean?

Intelligent machine, as defined by [Haber et al., 1998], is a computationally efficient procedure combining one
or more intelligent techniques (ANN, fuzzy logic, etc.) and expert criteria (e.g. operator knowledge) with one or
more higher resolution levels, which basically manipulate cutting conditions (spindle speed, feed, etc.) and should
be monitoring tool status and finished surface quality, as well as increasing productivity through higher metal re-
moval rate.

1.2 Problem description

In agreement with the previous section, the following problems can be found in the industry of the metal cutting
processes.
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1. The HSM defines new concepts and strategies of the mechanical design, the design of new related frameworks
with the monitoring, control, and supervision of the machining process. Furthermore, the selection of the op-
timal machining parameters is important for the operation of the HSM. Currently, for conventional machining
there is enough information (e.g., machining databases, handbooks) to select the proper cutting parameters for
specific cutting tools and workpiece materials. However, for HSM there is no available information to select
the cutting parameters, so the heuristic operation is exploited based on the operator’s experience. Cutting
parameters based on estimations have a direct impact on the metal cutting economics. High operating costs,
low productivity, and poor quality of the product result from non-optimal cutting conditions, where there is a
great opportunity to develop new models that can be integrated with optimization techniques for computing
optimal cutting parameters in HSM.

2. The quality concept implies keeping consistent tolerances in the dimensional precision and the surface finish
of the parts. For this reason, the surface roughness (Ra) has received great attention in the metal cutting
process. Several research works have been developed to predict the Ra and monitor the cutting tool condition
In-process operating mode. However, the experimentation made in the majority of these works over Ra and
flank wear (V B) only consider a specific combination of cutting tool and workpiece material. Therefore,
several authors have pointed out the importance of building databases with information of different materials
and cutting tools for a complete domain in the machining process.

3. In [Rehorn et al., 2005] it is mentioned that the amount of down time owing to cutter breakage on an average
machine is between 6.8 % and 20 %. Even if the tool does not break during machining, the use of dull or
damaged cutters can put extra strain on the machine tool and cause a loss of quality in the workpiece. It is
very much appreciated that cutting tool condition monitoring system optimizes the operating cost with the
same quality of the product.

4. There is a need to design and develop an intelligent monitoring and process planning system that allows the
prediction of the Ra and recommends the optimal cutting condition, Pre-process, and In-process operating
mode. Also, it must be available to recommend optimal policy to operate the CNC with minimum cost.

1.3 State of the art

This section presents only a short description of the main research studies related with the optimization processes,
surface roughness, and cutting tool wear. Chapter 2 presents a general classification of the different techniques and
methodologies used to model the surface roughness and to predict the cutting tool wear condition in machining
processes.

1.3.1 Optimization systems

Optimization techniques in metal cutting processes are essential to respond to serious competition and increasing
demand for quality product in the market. In [Mukherjee and Ray, 2006] a review of optimization techniques in
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metal cutting processes is presented, and a general framework for process parameter optimization is discussed.
Some applied optimization methods are the Taguchi method, response surface methodology, mathematical iterative
search algorithm, Genetic Algorithms, and simulated annealing. Furthermore, different objective functions used in
the optimization of the machining conditions include: minimum production cost, maximum production rate, increase
tool life, maximum profit rate, and weighted combination of several objective functions. Cutting constraints that
should be considered in machining economics include: tool-life constraint, cutting force constraint, power, chip-
tool interface temperature constraint, and surface finish constraint. A complete classification of the optimization
techniques will be discussed in Chapter 2.

1.3.2 Surface roughness

Surface roughness (Ra) has received serious attention for many years. It has been an important design feature and
quality measure in many situations, such as parts subject to fatigue loads, precision fits, fastener holes and esthetic
requirements. Some geometric models to represent the surface roughness have been developed, and they take into
consideration certain aspects from the theory of machining such as process kinematics, cutting tool properties, chip
formation mechanism, etc.. Other research works are based on multiple regression analysis, where the obtained
models allow the prediction of the Ra as a function of different factors, such as feed rate, spindle speed, depth of
cut, tool nose radius, vibration, hardness, etc.. These models are applied only for a specific combination of cutting
tool and workpiece material. Systematic methods, concern with the planning of experiments, collection and analysis
of data are the Response Surface Methodology and Taguchi techniques. These are used for Design of Experiments
(DoE), and they are the most wide spread methodologies for the Ra prediction problem and optimization process.

Also, a number of studies on the application of Artificial Intelligence (AI) have been applied in CNC machining
for determining optimum cutting parameters and for modelling the Ra. These AI techniques have been used to
minimize machining errors such as tool breakage, tool wear, and surface roughness.

1.3.3 Cutting tool wear

Tool wear is defined as a gradual loss of tool material at workpiece material and tool contact zones. The monitoring
of cutting tool states may be classified into direct and indirect methods. Several works related with the indirect
monitoring of the cutting tool wear are based on techniques such as Artificial Neural Networks (ANN), Bayesian
networks (BN), multiple regression approaches, and stochastic methods. At the feature extraction level, the most
frequently used techniques are the computation of average values or trends, power values in spectral bands, or
statistical features. The Tool Condition Monitoring (TCM) system must include applications where prior knowledge
or cutting data could not exist. Artificial intelligence, ANNs, fuzzy logic systems, and Genetic Algorithms should
be some options to solve this situation.
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1.4 Research objectives

HSM represents a modern technology which is used in important industry sectors, such as, automotive industry for
machining aluminium components, the aircraft industry for machining aluminium parts, and the die mould industry
which requires high surface finishing and high dimensional precision. relevant researches have been reported in this
field with important advances in the following areas:

1. In optimization processes, applied models are based on Taguchi methods, and response surface methodology,
and using Genetic Algorithms, and simulated annealing, the optimal cutting parameters are computed by con-
sidering different objective functions (i.e., minimum production cost, maximum production rate, maximum
tool-life). However, there is a great opportunity to design and implement intelligent monitoring systems and
process planning systems in HSM.

2. In surface roughness, several models have been developed (mechanistic, statistical, etc.) to estimate the Ra

as function of different factors. However, they have been only applied at specific combination of workpiece
and cutting tool. The cutting tool wear condition has not been considered in the models.

3. The monitoring of the cutting tool wear condition also presents important researches using Artificial Intelli-
gence techniques for indirect monitoring of cutting edge. It is necessary to improve models to estimate the
cutting tool wear condition by considering new feature extraction from different process state signals and
increasing the performance of models for recognizing different states of the cutting tool wear condition.

The general scope of this research is defined as: Design and implement an intelligent monitoring and supervisory
control system for peripheral milling process in high speed machining. The system must compute the optimum
cutting parameters as a function of a merit variable. Also, the system must allow the monitoring of the cutting tool
wear condition and the surface roughness during the machining process. Figure 1.1 shows the proposal architecture
with the blocks required to develop the different functions of the system.

The main objectives of this research are:

1. Design and implement an intelligent monitoring and process planning system in peripheral milling process for
HSM. The proposal implies to use a multi-sensor system in the CNC machining center for recording several
process state variables (i.e., forces, vibration, and acoustic emission) during the machining process. Statistical
and artificial intelligence techniques must be applied to integrate an intelligent system and build new models
for monitoring and diagnosing the surface quality and the cutting tool wear condition.

2. Implement new models to estimate the surface roughness (Ra) by considering several aluminium alloys, cut-
ting parameters, geometries, and cutting tools. The most relevant factors that affect the Ra must be selected,
and the Design of Experiments must be defined with the objective of building a model for covering a machine
domain with the aforementioned considerations.

3. Predict the optimal cutting parameters Pre and In-process operating mode for maintaining the surface rough-
ness quality. With the statistical models and using artificial intelligence techniques, the intelligent system
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Figure 1.1: Diagram of the intelligent monitoring and supervision system used to control the milling parameters
based on Ra and cutting tool wear condition. The process state signals are recorded and used for monitoring the
cutting tool wear condition (module 3). The surface roughness module (module 2) estimates the Ra in Pre-process
operating mode. The intelligent planning module (module 4) computes the optimal parameters in Pre-process and
In-process operating mode. Finally, the optimal parameters are used in the cutting process.

must allow for computing the optimal cutting parameters and guarantee the same surface quality during the
tool’s lifetime.

4. Design and implement a monitoring and diagnostic system for the cutting tool wear condition during the
machining process. New methodologies for computing feature vectors from the process signals and a new
approach based on a speech recognition system will be applied to classify and recognize the cutting tool wear
condition. This system must be reliable, robust, and high performance to identify the tool wear condition.
Related with the CNC operation, the system must allow to change the worn tool in time and reduce the tool
costs with a precise exploitation of the tool’s lifetime.

5. Design and develop an intelligent process planning system that includes a merit variable to compute the
optimum cutting parameters and a decision-making module to recommend some actions in agreement with
the cutting tool wear condition. HSM systems demand advanced features such as intelligent control under
uncertainty. The intelligent control must guide the actions of the operator in peripheral milling processes and
yield several benefits in the operation of the CNC machining center (e.g., minimum production cost, maximum
production rate, increase tool life). It is an important module that several authors have been proposed in the
process level.
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1.5 Outline

This research is organized as follows:

- Chapter 2 defines important concepts of the machining theory, surface roughness, cutting tool wear condition,
and the state of the art in machining processes.

- In Chapter 3 a description of the intelligent monitoring and supervisory control system is included with a
description of the main modules. Also, the complete data acquisition system module is presented.

- In Chapter 4, the design of experiments is defined with a complete analysis for computing the surface rough-
ness models with RSM.

- Chapter 5 presents the modelling of the cutting tool wear and the implementation of the indirect monitoring
system to predict the cutting tool condition.

- In Chapter 6 the intelligent monitoring and process planing system is developed as is the decision-making
module to recommend actions at minimum cost.

- Chapter 7 presents contributions and conclusions of the research and some guidelines for future work are
presented.

- References. This section presents the papers, proceedings, technical reports, international norms, and books,
which were consulted and analyzed during the development of this research.

- Appendix A. A description of the concepts related with the mechanical cutting process is included.

- Appendix B. The behaviour of the accelerometers and acoustic emission signals is explained. Technical
information of the sensors, amplifiers, and data acquisition boards is included.

- Appendix C. This appendix defines the specifications of the different aluminium alloys.

- Appendix D. The procedure for measuring the Ra, flank wear, and run-out is described.

- Appendix E. A complete description of the statistical analysis of the screening factorial design is presented.

- Appendix F. The ANOVA results of the modeling analysis with RSM for all cutting tool wear conditions is
presented.

- Appendix G. This appendix presents the concepts, recommendations, and different tool-life parameters, which
were computed during the experimentation in the CNC Kondia machining center.

- Appendix H. The theory of the Hidden Markov Models is presented.

- Appendix I. The appendix presents the machining costs for computing the optimal policy and minimizing the
production costs.

- Appendix J. A list of publications is included in this appendix.



Chapter 2

State of the Art

2.1 Introduction

This chapter defines important basic concepts about the theory of the machining process, and includes a discussion
of the most relevant research in the fields of surface roughness, cutting tool wear condition, and optimization systems
in machining processes.

2.2 Basic concepts of machining processes

Milling is one of the most important metal cutting processes, and its application in the mold/die manufacturing
processes is very important in the automotive and aeronautic industries. A complete description of milling machines,
types of milling cutters, and milling operations can be found in [Boothroyd and Knight, 2006], [Childs et al., 2000],
[de Lacalle Marcaide et al., 2004], and [Trent and Wright, 2000]. For this research work, a vertical milling machine
was used. Figure 2.1 shows the milling machine with the main components and movements.

2.2.1 Cutting operation and parameters

In milling, the main cutting motion is the rotation of a multi-toothed cutter that machines a workpiece that performs
translative feed motions. The geometry of milling operations considers two basic modes: (a) face milling, and (b)
peripheral milling. The peripheral milling implies two cutting operations, depending on the relation between the
direction of the rotation of the cutter and the direction of the feed: (a) up-milling, and (b) down-milling. Figure 2.2
shows the milling operations and the cutting operations. The down-milling operation was selected because it allows
a high surface quality. In peripheral milling, the relative motion of the cutting edge with respect to the workpiece
is a sum of the rotation of the cutter with speed n (rpm) and the translation with feed rate vf (mm/min). The
peripheral speed of the cutter is called the cutting speed vc (m/min). The feed per tooth fz is the distance that
cutter advances across the workpiece during one revolution. The feed per tooth is also called the chip load, and it is

9
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Figure 2.1: Main components and movements of the vertical milling machine
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Figure 2.2: The face and peripheral milling are basic geometric modes of milling operations. Also, two important
milling operations are up and down milling.

A type of peripheral milling is called end milling. An end mill is a cutter of a smaller diameter (usually between
5 mm and 30 mm diameter) clamped in overhang, and its length is several times its diameter. For the end milling,
the thickness of the removed layer from the workpiece is the radial depth of cut ae and the width of the workpiece
is the axial depth of cut ap. Before starting up the CNC machining center, it is very important to set up the milling
operation, and this implies defining the following parameters:
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1. The cutting speed:

vc =
π ×Dtool × n

1000
(m/min) (2.2)

2. The number of revolutions of the spindle:

n =
vc × 1000
π ×Dtool

(rpm) (2.3)

3. The feed per tooth:
fz =

vf

n× z
(mm) (2.4)

where Dtool is the cutting tool diameter, vf is the feed rate, and z is the number of teeth. The operator must specify
the fz , n, and z.

2.2.2 Surface roughness

Surface roughness (Ra) is a widely used index of product quality and in most cases a technical requirement for
mechanical products. Ra is of significant interest in the manufacturing process because it determines the friction
between two surfaces, how the surface wears, how it retains lubricant, and how it holds a load. To illustrate the con-
cept of the Ra, Figure 2.3 shows the surface finish imperfections during the machining process. These imperfections
are defined in Appendix A.

Roughness

Waviness

Lay

Nominal

Surface

Surface Texture =

        Roughness + Waviness

Figure 2.3: Surface shape after the machining process with different imperfections.

Currently, some geometric models allow for computing the surface roughness. In [Boothroyd and Knight, 2006],
the final surface roughness during a practical machining operation is defined as the sum of two independent effects:

1. The ideal Ra, which is a result of the geometry of the tool and the feed speed.

2. The natural Ra, which is a result of the irregularities in the cutting operation.
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Ideal surface roughness

The ideal surface roughness represents the best possible finish that may be obtained only if built-edge, chatter,
inaccuracies in machine-tool movement, and so on, are eliminated. The idealized model is depicted in Figure 2.4.
The Surface Roughness (Ra) can be evaluated by the sum of the areas above and below the mean line divided by
the evaluation length (L). Analytically, Ra is given by:

Ra =
1
L

∫ L

0

| z(x) | dx (2.5)

Workpiece

Machined

Surface

Cuttting

tool

re

Mean line

z

x
x dx

L

feed

Figure 2.4: Idealized model of surface roughness for a cutting tool. The waviness is the result of the cutting tool
through the machined surface.

Natural surface roughness

In practice, it is not usually possible to achieve only an ideal surface roughness, and normally the natural surface
roughness forms a large proportion of the actual roughness. The factors that contribute to natural surface roughness
are: a) built-up edge; b) chatter of the machine tool; c) inaccuracies in machine tool movements; d) irregularities in
the feed mechanism; e) defects in the structure of the work material; d) discontinuous chip formation when brittle
materials are machining. It is very important to control the previous factors to reduce the natural surface roughness
during the machining process.
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2.2.3 Cutting tool wear

Cutting tool life is one of the most important economic considerations in metal cutting. In roughing operations the
various tool angles, cutting speeds, and feed rates are usually chosen to give an economical tool life. The life of a
cutting tool can be defined by considering the following actions:

1. The gradual or progressive wearing away of certain regions of the face and flank of the cutting tool. Figure
2.5 shows the progressive wear in two distinct areas: (a) wear on the tool face characterized by the formation
of a crater, and (b) wear on the flank.

2. Failures bringing the life of the tool to a premature end, which is called tool breakage.

Chip

Workpiece

Tool

Flank wear

Crater wear

Flank

Face

Figure 2.5: Several areas of the cutting tool that present wear during the metal cutting process.

A complete description of the crater wear and flank wear, and other concepts are including in Appendix A.

2.3 State of the art in surface roughness

Section 2.2.2 defines the Ra as the combination of the ideal and natural roughness. There are several factors
affecting the Ra, and they are separated in different groups as depicted in the fish bone of Figure 2.6. Surface
roughness has been investigated for many years. In [Benardos and Vosniakos, 2003] the authors divided the different
research into four major categories: machining theory, experimental research, design of experiments, and artificial
intelligence. With this classification, a summary of the most important ideas, and methodologies for Ra modelling
will be discussed.
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Figure 2.6: Classification of the factors that affect the Ra of a workpiece. Machining parameters and cutting
phenomena groups present more damage than other groups over the Ra.

2.3.1 Machining theory approach

This approach follows the theory of machining that considers process kinematics, cutting tool properties, chip
formation mechanism, and so on. Two modelling methods are considered: geometric and mechanistic. For the
mechanistic model, enough knowledge of the physical mechanism is required to deduce the form of the functional
relationship between the output and the input of a process. Geometric modeling is based on the motion geometry of
a metal cutting process regardless of the cutting dynamics.

In [Kim and Chu, 1999] a texture superposition method to evaluate the surface asperity of milled surfaces is
presented. The geometric roughness was expressed as a function of the feed per tooth, the path interval, the depth of
cut, and the geometries of the tool and workpiece. The authors concluded that for flat and end-milling with a small
fillet radius, the cutter marks are important factors to influence the surface quality of a precision machined surface.
In [Lee et al., 2001] a method for the simulation of the machined surface in high-speed end milling is presented. A
geometric model was used for modeling the end mill offset and tilt angle. The end milling process was examined
by discretizing it angle by angle and flute by flute, and after dividing the end mill into axial segments, slice by
slice. An accelerometer is used to monitor the vibrational state, and the amplitude and frequency of the principal
harmonics are obtained from the signal analysis. An algorithm and programming method are used to simulate the
machined surface (Ra) by considering cutting parameters, cutter and workpiece geometry, run-out parameters, and
the vibration signals. In [Jung et al., 2004], the authors dealt with the geometrical surface roughness in ball-end
milling. They applied a rigid method to predict the machined surface roughness. The equations of the ridges were
given as function of the tool radius, the feed per tooth and the rotation angle of the cutting edges. The results were
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compared with a simulation method. The method can be useful for evaluating the geometrical machining error
of ball-end milling process. Other geometrical models based on different factors (i.e., speed, feed, and depth of
cut) have been developed by [Boothroyd and Knight, 2006] for estimating the surface roughness. An example for
estimating the surface roughness in turning process, is given by,

Ra =
f2

32re
(2.6)

where Ra is the ideal arithmetic average surface roughness, f is the feed, and r is the cutter nose radius. This model
assumes a large nose radius and slow feed. For a zero nose radius and relatively large feed, the following model is
recommended ([Boothroyd and Knight, 2006]):

Ra =
f

4(cotα + cotβ′)
(2.7)

where α and β
′

are the major and end cutting edge angles. In the case of multi-point cutting tools used in the milling
process and under ideal conditions, the surface roughness can be obtained by assuming that the cutting tool has only
one tooth. The equation proposed by [Boothroyd and Knight, 2006] is given by,

Ra =
0.0642
Dtool

(vf

n

)2

(2.8)

where vf is the feed speed, Dtool is the cutting tool diameter, and n is the rotational frequency of the cutter.

2.3.2 Experimental approach

This approach implies to conduct experiments with the most important factors affecting the surface quality. Regres-
sion analysis is employed to build models. Important research is discussed in this section.

Research based on multiple regression analysis was presented by [Lou et al., 1998] to predict the surface rough-
ness as a function of the feed rate (four levels), spindle speed (seven levels), and the depth of cut (three levels).
The multiple regression model was a three-way interaction type. The experiments were done in a vertical machin-
ing center, specifically for the end-milling process, and the workpiece material was 6061 aluminium. The model
was trained with 84 specimens, and tested with 24 samples. The success of the model to predict Ra was 90%. In
[Savage and Chen, 1999] was developed a multilevel recognition system was developed to evaluate surface rough-
ness In-process and in real time. The workpiece material was 6061 aluminium and 1018 steel. The regression model
considered seven variables: feed rate, depth of cut, spindle speed, vibration average per revolution, tool diameter,
tool material, and workpiece material. Eight multiple-regression equations were developed from the training data
collection. The system presented a performance of 82% by using a testing data set. Based on a regression model,
[Barber et al., 2001] found that Ra is a quadratic function of tool service time. The authors assumed an empirical
model to fit the arithmetic surface roughness to a quadratic function of the tool service time. The experiments were
made for the face milling process and the workpiece material was 4140 steel. When the tool life based on flank
wear reaches 0.35 mm, it reaches its failure criterion. Three models were defined to compute the surface roughness
with the quadratic function of the tool service time. In [Abouelatta and Madl, 2001], a correlation between Ra and
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vibration signals in turning is presented. It was found that models with cutting parameters and tool vibrations are
more accurate than those depending only on cutting parameters. The workpiece material was steel. Four regression
math models were computed for certain selected surface roughness: Ra, Rt, and Rsk. The independent variables
were: feed, speed, depth of cut, tool overhang, tool nose radius, approach angle, workpiece diameter, workpiece
length, and tool vibration levels (maximum autocorrelation, maximum power spectrum density, and the frequen-
cies at which they occur). An empirical model for surface roughness prediction in finish turning is presented in
[Feng and Wang, 2003]. A nonlinear regression analysis was used to define the relationship between Ra and the
following factors: workpiece hardness, feed, tool nose radius, depth of cut, and cutting speed. Two levels were
defined for each factor, and a full factorial design was used to facilitate model construction. The workpiece ma-
terial was 8620 Steel (86 HRB), and 6061 Aluminium (52 HRB). The mean absolute percent error between the
measured and estimated Ra was 19.06%. A multiple regression analysis for modelling the Ra was proposed by
[Ertekin et al., 2003]. Three different materials (i.e., 6061 − T6 Aluminium, 7075 − T6 Aluminium, and ANSI-
4140 Steel) were machined on a vertical CNC milling machine, and several process variables were acquired to find
the best correlate with the surface roughness and dimensional accuracy (bore tolerance). Fresh tools were used for
each material and the machining continued until tools wore out. Specific values of the spindle speed, cutting speed,
feed rate, and radial and axial depths of cut were defined for each material. The most significant features were the
RMS values of the vertical force and AEDC signal. Finally, multiple regression analysis was applied to compute a
3rd order model of the Ra as a function of the vertical force and AEDC features. The model provided a regression
coefficient of 99%.

In [E D Kirby and Chen, 2004], the authors developed an In-process Ra surface roughness prediction system
using an accelerometer and multiple regression techniques for a CNC lathe operations. The experiments involve
a basic factorial design, with three factors (spindle speed, feed rate, and depth of cut) and four response variables
(surface roughness, and the vibration signals in X,Y, and Z axes). The workpiece material was 6061 − T6511
Aluminium alloy. The Pearson correlation was computed between the factors and surface roughness, and ANOVA
was performed between the factors and vibration signals. The correlation coefficient of the regression model was
0.96. The mean absolute error between the measured and estimated Ra was 10.77%. In [Sai and Bouzid, 2005]

regression models were developed to describe the roughness, and to compute the optimal cutting parameters. The
workpiece material used in the face milling process was 1042 Steel (160 HV). The studied factors were cutting
speed and feed per tooth, while the depth of cut and cutting tool diameter were constants. Two regression models
were obtained for computing the surface roughness Ra and the maximum height of surface profile Rt. The authors
validated that roughness increases with the feed due to increased cutting forces and strains. For small values of
cutting speed, the roughness increases due to the formation of built-up edge, and for high values of cutting speed,
the roughness increases due to vibrations.

2.3.3 Design of experiments approach

This approach constitutes a systematic method concerning the planning of experiments, collection, and analysis of
data with near-optimum use of available resources. The optimization of the cutting parameters is very important



State of the Art 17

to maintain high surface quality and low production costs. Optimization process is required to be undertaken in
two stages: (i) modelling input-output and In-process parameter relationship, and (ii) determination of optimal or
near-optimal cutting conditions. The Response Surface Methodology (RSM) and Taguchi techniques for Design
of Experiments (DoE) are the most wide-spread methodologies for the Ra prediction problem and optimization
process.

In [Fuh and Chang, 1997], a dimensional-accuracy model in peripheral milling of aluminium is postulated as a
second order equation and developed in terms of the workpiece hardness, the cutting speed, the feed, and radial and
axial depths of cut. The RSM with an orthogonal rotatable central composite design is used to build a quadratic
model and to minimize the number of experiments. The tests were performed on a vertical machining center, and
five different aluminium alloys (5052 − O, 6061 − T4, 6061 − T6, 2024 − T3, and 7075 − T3) were selected in
the experimentation. The mean absolute percent error was 8.13% with a standard deviation of 3.18%. The research
in [Suresh et al., 2002] deals with the study and development of a Ra prediction model for machining mild steel,
using RSM. A second order mathematical model was developed for Ra prediction, and the selected factors were
cutting speed, feed, depth of cut, and nose radius of the cutting tool. Full factorial design was applied for the
experimentation, and some conclusions about the factor effects on the Ra were the following: (i) The Ra decreases
with an increase in cutting speed and increases as feed increases; (ii) The Ra increases with an increase in depth of
cut and nose radius.

A statistical model is presented in [Ozcelik and Bayramoglu, 2006], where the Ra is estimated in a high speed
flat end milling process. A rotatable central composite design was considered with the RSM to compute a second
order model. The most significant variables were the total machining time, depth of cut, step over, spindle speed,
and feed rate. The experiments were carried out in wet conditions on a Deckel high speed CNC milling center,
and the workpiece material was 1040 steel. The cutting tool was used until it reached a maximum flank wear of
VBmax ∼ 0.1mm. The standard error between experimental and estimated values was 13.4%, and the adjusted
coefficient of multiple correlations was 87.9%. In [Öktem et al., 2006] the Taguchi optimization method was applied
to model the Ra in terms of process parameters when milling the mold surfaces of 7075− T6 Aluminium material.
Milling experiments were carried out on a Deckel Maho CNC milling machine. Five factors (feed per tooth, cutting
speed, radial and axial depths of cut, and machining tolerance) and three levels were defined for the experimentation,
and by using the Taguchi optimization method and an L18 orthogonal array, only 18 milling experiments were done.
ANOVA computed the significant effects of the factors on the Ra: machining tolerance of 96.035%, radial depth of
cut of 2.152%, axial depth of cut of 1.537%, feed of 0.177%, and cutting speed of 0.092%.

2.3.4 Artificial intelligence approach

There have been a number of studies on the application of Artificial Intelligence (AI) techniques in Computer Nu-
merical Control (CNC) machining for determining optimum or appropriate cutting parameters, and for modelling the
surface roughness in the machining processes. These AI techniques have been used to minimize machining errors
such as tool breakage, tool deflection, tool wear, surface roughness, and to automatically adapt and optimize the ma-
chining parameters based on sensor information, thus yielding a high surface quality, high productivity or minimum
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cost. In [Park and Kim, 1998] a review is presented of AI-based techniques for providing a better understanding of
the importance of these techniques in machining control.

In [Azouzi and Guillot, 1997a] the authors combined the ANN modeling, statistical tool, and sensor fusion tech-
nique to estimate on-line Ra and Dimensional Deviations (DD) during the turning process. The design of experi-
ments considered cutting parameters (feed, speed, and depth of cut), process conditions (coolant, cutting tool wear,
and material properties) and only one type of cutting tool and workpiece material (AISI−1018 steel). The Taguchi
optimization method was applied with an L16 orthogonal array. During the machining processes several process
variables were acquired (forces, vibration, acoustic emission, and tool deflections). The authors concluded that ra-
dial and feed forces present the highest correlation with the DD and Ra, and they can be used in the fusion model.
Different ANN models were evaluated, and the best ANN model was built using the feed, depth of cut, and the ra-
dial and feed forces from sensors. The Ra was assessed with an error varying from 2 to 25% under different cutting
conditions and parameters. In [Tsai et al., 1999] the authors proposed an In-process surface recognition system for
Ra prediction of the end milling process and 6061−T6 aluminium alloy. The factors and levels were the following:
4 levels of spindle speed, 4 levels of feed rate, and 3 levels of depth of cut. The rotation and vibration were also
collected simultaneously by the proximity sensor and the accelerometer, respectively. The vibration average per
revolution (VAPR) was considered as the fourth independent variable in the model to predict the Ra. Different ANN
structures were proposed to select the best model. The 4 × 5 × 1 structure presented the lowest RMS among the
structures with one hidden layer, and the 4 × 7 × 7 × 1 structure was better than other structures with two hidden
layers. The accuracy of prediction was 92.07% and 96.07% for the 4× 5× 1 ANN model and 4× 7× 7× 1 ANN
model, respectively. The average absolute percent error for the testing data set was 4.13% and 0.73% for each ANN
model.

In [Benardos and Vosniakos, 2002], a neural network modelling approach is presented for the prediction of Ra

in the CNC face milling process. The used factors were the following: depth of cut, the feed rate, the cutting
speed, the engagement of the cutting tool, the cutting tool wear, and the cutting forces. The Taguchi optimization
method with orthogonal arrays was used for planning the DoE. The experiments were conducted in a Deckel Maho
CNC milling machine. The workpiece material was series 2 aluminium alloy. A L27 orthogonal array for the six
factors was defined for the DoE. The Levenberg-Marquant algorithm was selected for training the ANN models.
Owing to the nine factors considered as inputs to the ANN model, a L32 orthogonal array was selected to define
the 32 different models to be tested. The Mean Squared Error (MSE) was used to select the best ANN model. The
5 × 3 × 1 structure with an average MSE = 1.86% was selected, with the following factors: the feed per tooth,
the Fx component of the cutting force, the depth of cut, the engagement of the cutting tool, and the cutting fluid.
Also, [Lee and Chen, 2003] presented an online surface recognition system based on the ANN model, and the effect
of vibration produced during the turning process. The factorial design was performed in the DoE, and the factors
and levels considered were the following: spindle speed with 4 levels, feed rate with 7 levels, and depth of cut
with 3 levels. During the experimentation, a triaxial accelerometer and a proximity sensor were used to acquire the
vibration signals and the spindle rotation. A Pearson correlation was performed to compute the most significant
correlation between the cutting parameters and the Vibration Average Per Revolution (VAPR). Finally, a statistical
analysis was carried out to find the most significant vibration direction related to surface roughness. The transformed
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radial (x) vibration was found the most relevant on Ra. With the cutting parameters and the radial vibration, different
ANN models were defined to compute Ra. Based on the RMS error of the training and testing data sets, the best
structure for prediction Ra was 4 × 7 × 7 × 1. The prediction accuracy of the ANN model was 96.3%, including
testing and validation data sets. In [Özel and Karpat, 2005] an ANN model to predict Ra and tool flank wear over
the machining time in finish hard turning is presented. The authors studied the effects of cutting edge geometry,
workpiece hardness, feed rate and cutting speed on Ra and tool wear in the finish dry hard turning of AISIH13 steel.
Full factorial design was applied to define the experiments with four factors, two levels, and 16 replications. A feed
forward multilayer neural network was developed to predict the Ra, and the Levenberg-Marquardt method was used
together with Bayesian regularization in training at the ANN. First, the Ra and tool wear are predicted by using direct
cutting parameters, tool edge, hardness, cutting speed, feed rate, and cutting length as input parameters. The model
structure was 5×15×2 and the average RMS error was 7.98% on the test data. Secondly, the geometry of the cutting
tool changes to chamfered and honed tool edge geometry, and the mean value of the cutting forces were included
as inputs. The defined structures for these models were 7 × 10 × 1 and 7 × 13 × 1. The average RMS errors were
9.3% and 5.5% for Ra prediction with chamfered and honed tools, respectively. Even though previous works exhibit
satisfactory results, more general and practical solutions are needed. Exploiting sensor fusion techniques could be
a great opportunity. Sensor fusion modeling is a problem of signal estimation, interpolation, and prediction. Fusion
techniques can be classified into three different groups: (1) fusion based on probabilistic models such as Bayesian
reasoning; (2) fusion based on least-squares techniques such as Kalman filtering, optimal theory, and regularization;
(3) intelligent fusion that includes fuzzy logic, artificial neural networks, etc.. The third group will be exploited in
this research.

2.3.5 Comparison and limitations of the research on surface roughness

Tables 2.1, 2.2, 2.3, and 2.4 present a comparison of the different research by considering the main factors affect-
ing the Ra, sensor signals, and the model implemented for each approach. Table 2.1 shows a comparison of the

Table 2.1: Machine theory approach. Comparison of the studied factors over Ra and the implemented models.

Sensor Signals Model
Process Studied Factors over Ra (Processing Features) Approach References

Milling feed per tooth, path interval, fillet Geometric [Kim and Chu, 1999]

radius, runout, and depth of cut model
End Cutting parameters, tool geometry, Accelerometer Geometric [Lee et al., 2001]

milling workpiece geometry, vibration (frequencies amplitudes) model
End Cutter radius, feed per tooth, Geometric [Jung et al., 2004]

milling rotation angle of cutter edges model

research related to the machining theory and milling processes. The computed models can estimate the ideal Ra
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with excellent results. However, they can only be used for conventional CNC machining centers and only consider
new cutting tools. A mechanistic model can be developed only if enough knowledge is know of the physical mech-
anism, [Azouzi and Guillot, 1997a]. The surface roughness depends of many factors (cutting parameters, cutting
tool geometry, workpiece material, process uncertainty, etc.) and it is complicated to understand the physics of
the cutting process in HSM for computing a mechanistic model. The mechanistic and geometric models did not
consider the cutting tool wear condition, and they can be used to estimate the ideal Ra. Tables 2.2 and 2.3 present
a comparison of the results in the experimental approach and design of experiments for estimating Ra. Ra models
were computed to be used in the machining process with normal speeds (conventional CNC), and almost all of them
did not consider the cutting tool wear condition. Additionally, the authors did not apply a screening factorial design
to confirm the most significant factors over Ra. The evaluation of Ra was made by considering only one parameter
in its assessment. Finally, table 2.4 shows a comparison of the results in the artificial intelligence approach. The
Ra models were computed to be used in conventional CNC machining centers, and the experiments only considered
one type of cutting tool and workpiece material. The majority of the models did not consider the cutting tool wear
condition to predict the Ra. From the reported research works, nobody considered the effect on the geometric path
(curvature) on the Ra.

2.4 State of the art in the cutting tool wear condition

The cutting tool wear condition is an important factor in all metal cutting processes. However, direct monitoring sys-
tems are not easily implemented because they require ingenious measuring methods. For this reason, indirect mea-
surements are needed for estimation of the cutting tool wear. Different signals coming from sensors in machine tools
are used for monitoring and diagnosis of the cutting tool wear condition. Several research works [Koren et al., 1999;
Erol et al., 2000; Liang et al., 2004] concluded that future manufacturing systems will have special characteristics
such as intelligent functions, to enhance the manufacturing process; the ability to perform an effective, reliable, and
superior manufacturing procedure, and new process level technology, mainly in the process monitoring and control
field. One of the main goals in a Computer Numerically Controlled (CNC) machining center is to find an appropri-
ate trade-off among the cutting tool condition, the surface quality, and productivity. In [Sick, 2002b] it is mentioned
that any manufacturing process can be optimized significantly using a reliable and flexible tool monitoring system.
There are important contributions for cutting tool monitoring systems based on Artificial Neural Networks (ANN),
the Bayesian Network (BN), multiple regression approaches, and stochastic methods. A cutting tool monitoring ap-
proach was presented by [Owsley et al., 1997]. A feature extraction from vibrations during the drilling is generated
by a Self-Organizing Feature Map (SOFM). The pre-processing of the signals implies a spectral feature extraction
to obtain time-frequency representation. The features are the inputs of a Hidden Markov Model (HMM) classifier.
A methodology based on the frequency domain is presented by [Chen and Chen, 1999] for on-line detection when
a cutting tool breaks. The frequency domain presents two important peaks at low frequencies, which are compared
to compute a ratio that could be an indication for monitoring tool breakage. [Atlas et al., 2000] also used HMM
for evaluation of the tool wear in milling process. The feature extraction from vibration signals was the root mean
squared, energy, and its derivative. The cutting tool conditions were worn and no-worn. The reported performance
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Table 2.2: Experimental approach. Comparison of the studied factors over Ra and the implemented models. AC=
Accelerometer, PS= Proximity Sensor, DY= Dynamometer, AE= Acoustic Emission, and RA= Regression Analysis.

Sensor Signals Model
Process Studied Factors over Ra (Processing Features) Approach References

End Spindle speed, feed rate, and Multiple [Lou et al., 1998]

milling depth of cut RA
Milling Tool wear, depth of cut, feed AC, PS (Average Multiple [Savage and Chen, 1999]

rate, tool diameter, spindle speed vibration per RA
vibration, workpiece material revolution)

Face Tool service time, feed rate Empirical [Barber et al., 2001]

milling model
Turning Rotational speed, feed rate, tool AC (maximum auto- Geometric [Abouelatta and Madl, 2001]

geometry, depth of cut, diameter, (correlation, power model
workpiece length, and vibration frequencies)

Turning Hardness, cutter nose radius, Nonlinear [Feng and Wang, 2003]

feed, spindle speed, depth of cut RA, ANN
End Spindle speed, cutting speed, DY, AC, AE (frequency Multiple [Ertekin et al., 2003]

milling axial and radial depths of cut analysis, mean forces) RA, ANN
Turning Spindle speed, feed rate, depth AC, (mean vibration Multiple [E D Kirby and Chen, 2004]

of cut amplitude) RA
Face Cutting speed, feed rate, tool Regression [Sai and Bouzid, 2005]

milling service time math model

was around 93 %. In [Mesina and Langari, 2001] a proposal based on a Neuro-fuzzy system was used to predict the
condition of the cutting tool in a milling process. The system was configured to diagnose sharp and worn cutting
tools. Another work, based on HMM, is presented by [Wang et al., 2002] in which the feature vectors were extracted
from vibration signals by using wavelet analysis.

[Sick, 2002a] proposed a new hybrid technique for cutting tool wear monitoring in turning which fuses a physi-
cal process model with an ANN model. The physical model describes the influence of cutting conditions on measure
force signals and it is used to normalize those force signals. The performance for the best model was 99.4% for
the learning step and 70.0 % for testing step. Haber and Alique, [Haber and Alique, 2003] developed an intelligent
supervisory system for cutting tool wear prediction using a model-based approach. The dynamic behaviour of the
cutting force is associated with the cutting tool and process conditions. First, an ANN model is trained considering
the cutting force, the feed rate, and the radial depth of the cut. Second, the residual error obtained from the measure
and predicted force was compared with an adaptive threshold in order to estimate the cutting tool condition. This
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Table 2.3: Design of experiments approach. Comparison of the studied factors over Ra and the implemented models.

Sensor Signals
(Processing Model

Process Studied Factors over Ra Features) Approach References

End Hardness, cutting speed, feed RSM [Fuh and Chang, 1997]

milling rate, axial and radial depths (statistical
of cut model)

Turning Cutting speed, depth of cut, RSM [Suresh et al., 2002]

milling feed and tool nose radius
Flat Tool machining time, depth of RSM [Ozcelik and Bayramoglu, 2006]

milling cut, step over, spindle speed,
feed rate

Flat Feed per tooth, cutting speed, Taguchi [Öktem et al., 2006]

end radial and axial depth of cut, optimization
milling and machining tolerance method

Table 2.4: Artificial Intelligence approach. Comparison of the studied factors over Ra and the implemented models.
AC= Accelerometer, DY= Dynamometer, AE= Acoustic Emission.

Sensor Signals Model
Process Studied Factors over Ra (Processing Features) Approach References

Turning Cutting speed, feed, depth of DY, AC, AE ANN [Azouzi and Guillot, 1997a]

cut, cutting fluid flow, tool (Average frequency
wear, workpiece diameter value)

End Spindle speed, feed, depth of AC (Average ANN [Tsai et al., 1999]

milling cut, average vibration amplitude per rev.)
Face Depth of cut, cutting speed, DY ANN [Benardos and Vosniakos, 2002]

milling feed rate, wear of cutting tool (mean, max, and min
cutting fluid, cutting forces forces values)

Turning Spindle speed, depth of cut, AC (Average ANN [Lee and Chen, 2003]

feed rate, and vibration vibration per rev.)
Turning Hardness, edge radius, feed, DY ANN and [Özel and Karpat, 2005]

cutting speed, and machining (mean force value) regression
length models
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condition can be new, half-worn, and worn cutting tool. In [Saglam and Unuvar, 2003], the authors worked with a
multilayered ANN for monitoring and diagnosis of the cutting tool condition and surface roughness. The obtained
success rates were 77 % for tool wear and 80 % for surface roughness. In [Dey and Stori, 2004], a monitoring
and diagnosis approach based on a Bayesian Network (BN) is presented. This approach integrates multiple process
metrics from sensor sources in sequential machining operations to identify the causes of process variations. The BN
was trained with a set of 16 experiments, and the obtained performance was evaluated with 18 new experiments.
The BN diagnosed the correct state with 60 % confidence level in 16 of 18 cases. In [Haber et al., 2004] an inves-
tigation of cutting tool wear monitoring in a High Speed Machining process is presented based on the analysis of
different signals. They used sensorial information coming from dynamometers, accelerometers, and acoustic emis-
sion sensors in order to obtain the deviation of representative variables. The tests were designed at different cutting
speeds and feed rates to determine the effects of a new and worn cutting tool. Data were transformed from time to
frequency domain using the Fast Fourier Transform (FFT) algorithm. They concluded second harmonic of the tooth
path excitation frequency in the vibration signal is the best indicator for cutting tool wear monitoring.

2.4.1 Limitations on the research works in the cutting tool wear condition

Table 2.5 summaries the discussed approaches in this section. Once again, the proposal models are limited to be
used in CNC conventional, and almost all the models only used the vibration signals to estimate the flank wear of
the cutting tool. It is important to include other process signals and new feature extraction from the acquired signals
for improving the performance of intelligent monitoring system.

Table 2.5: Comparison of different research efforts in cutting tool condition monitoring. AC = Accelerometer, DY
= Dynamometer, AE = Acoustic Emission, SP = Spindle Power.

Sensor Recognition
Process Monitoring States Signals Methods References

Drilling Tool wear AC HMM [Owsley et al., 1997]

End Milling Tool Breakage (Normal,Broke) AC FFT [Chen and Chen, 1999]

End Milling Tool wear (worn, no-worn) AC HMM [Atlas et al., 2000]

Turning Tool wear Process ANN [Sick, 2002a]

(Wear value) parameters
Face Milling Tool wear, Surface Roughness DY ANN [Saglam and Unuvar, 2003]

Milling Tool wear Process ANN [Haber and Alique, 2003]

(New,half worn, worn) parameters
Milling Tool wear (New, worn) AE, DY,AC FFT [Haber et al., 2004]

Face Milling Tool wear (Low-high) AE, SP BN [Dey and Stori, 2004]
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2.5 State of the art in the optimization systems

This section presents important research works related with different optimization methods and modelling tech-
niques to compute the optimal cutting parameters in the machining processes. In [Chua et al., 1993] research is
presented to study the effects of depth of cut, feed rate and cutting speed of the tool life, and cutting forces and
power consumption during the turning of the medium carbon steel workpieces. Full factorial design was applied,
and mathematical models for the prediction of the tool life and cutting forces were computed by using multi-
ple regression analysis. From the ANOVA analysis, the model for the tool life was computed with a correlation
coefficient of 0.9083. For the forces model, the correlation coefficient was 0.997. These mathematical models
were required to compute the optimal cutting conditions by using a sequential quadratic programming technique.
[Carpenter and Maropoulos, 2000] described a procedure to select tools for rough and finish milling operations in a
CNC machining center. First, the cutting data are generated for each tool using an iterative method in the permis-
sible depth/width/feed space for good chip control. Second, the cutting data are refined by a set of technological
constraints, which include tool life, surface finish, machine power, and available spindle speeds and feeds. The opti-
mization criterion is selected by the user and it could be minimum cost, maximum production rate or predefined tool
life. In [Dereli et al., 2001], the authors described an optimization system called Cutting Parameters Optimization
System (CPOS). The system was developed by using a two-stage methodology. In the first stage, a tentative number
of passes and depth of cuts to be removed are determined through a method called volume sectioning. In the second
stage, the cutting speed and feed for each pass are optimized by using Genetic Algorithms (GA). The cutting tools
are selected from respective tool libraries. The optimization strategy is based on minimum production time and
minimum production cost and incorporates several technological constraints, such as power, surface finish, speed,
feed limitations, etc.. The percentages of the cost and time-saving were found to be 33% and 39%, respectively.

In [Suresh et al., 2002], a second order mathematical model was developed for Ra prediction. The RSM method-
ology was used for modelling the Ra as a function of the cutting speed, feed, depth of cut, and nose radius of the
cutting tool in turning operations. The mathematical model was taken as an objective function and was optimized
using a Genetic Algorithmic (GA) approach. With the GA approach, a combination of high cutting speed, low feed,
and moderate depth of cut and nose radius were selected for a better Ra. In [Mursec and Cus, 2003], a general
algorithm is implemented for the selection of optimal cutting conditions (feed rate, cutting speed, and depth of cut)
and calculating the number of required cuts and time machining. The algorithm consists to follow several sequential
steps. First, it uses various technological databases to select the cutting parameters. Secondly, specific working
conditions are compared with the limitations of the machine tool, the cutting tool, the workpiece, the cutting condi-
tions, and the necessity of minimization of the machining costs. In [Zuperl et al., 2004] a new hybrid optimization
technique is presented based on the maximum production rate criterion and ten technological constraints. A general
algorithm, called OPTIS, is used in conjunction with the ANN model in order to solve the complex optimization
problem. The OPTIS selects the optimum cutting conditions from commercial databases with respect to minimum
machining costs. The optimal machining parameters (cutting speed, feed rate, and depth of cut) are selected in order
to optimize an objective function for turning processes. [Tzeng and Chen, 2005] proposed a two-phase optimization
strategy based on the Taguchi dynamic characteristic theory. Experimental results showed that the machining time
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can be reduced with low process variance and increased robustness of the CNC milling processes. The Taguchi
method coupled with Principal Component Analysis (PCA) in the process optimization of high speed CNC milling
processes is presented in [Yih-fong, 2005]. Optimal process conditions are selected for producing the best dimen-
sional precision, surface roughness, and tool wear. The select factors are milling type, cutting speed, feed per tooth,
film material, tool material, number of teeth, rake angle, and helix angle, which are designed in a L18 orthogonal
array and carried out in the experiments.

After OPTIS, [Zuperl et al., 2006] proposed an adaptive neural controller for on-line optimal control of a milling
process. The milling state was estimated by the measured cutting force, and the feed-rate was selected as the
optimized variable. Tool wear and tool breakage were prevented by adjusting the feed rate. In [Tansel et al., 2006],
a Genetically Optimized Neural Network Systems (GONNS) was proposed for the selection of optimal cutting
conditions from experimental data in milling processes, and it was was tested in two different conditions. First,
optimal operating conditions were found to keep the cutting forces in the desired range, while the metal removal
rate was maximized in micro-end milling. Second, optimal operating conditions were calculated to obtain the best
possible compromise between the surface roughness of the machining time. A Deckel Maho with five axis was
used, and the workpiece material was 6061 aluminum. The ANN models allow computing of the metal removal
rate and feed direction cutting force for the first case and the surface roughness and machining time for the second
case. In both cases, a Genetic Algorithm (GA) was used to maximize the metal removal rate and minimize the
surface roughness. In [Palanisamy et al., 2007] a mathematical model was developed based on both the material
behavior and the machine dynamics to determine cutting force for end-milling operations. Furthermore, a genetic
algorithm was introduced to optimize the cutting parameters for minimizing machining time and maximizing tool
life for a constant material removal rate. The experiments were carried out on a Star Mill-ATC milling machine and
the workpiece material was mild steel.

2.5.1 Limitations on the optimization systems

Table 2.6 shows a comparison of the research works in optimization of machining process. It is observed that several
optimization criterions have been used for computing the optimal cutting parameters. However, these approaches
have been implemented with the support of different databases and libraries for selecting the cutting tools and
optimal cutting parameters for conventional CNC machining centers. Additionally, different AI techniques have
been implemented in the optimization systems. One limitation is that they have not included a decision-making
block to recommend optimal actions at the CNCs operator.

2.6 Analysis of the contributions

Even though there is enough research to predict Ra, more general and practical solutions are needed owing to new
materials and cutting tools that are employed in HSM. Furthermore, exploiting sensor fusion techniques should be
a great opportunity. Specifically, intelligent fusion that includes fuzzy logic, artificial neural networks, and genetic
algorithms must be used to model the Ra. In this field, the contributions will be focused on the following items:
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Table 2.6: Summary of the optimization research works in the machining process.

Reference Machining Optimization Process Objective Function

[Chua et al., 1993] Turning Sequential quadratic Cutting speed, feed rate, and
programming technique tool life.

[Carpenter and Maropoulos, 2000] Milling Iterative method Minimum cost, predefined tool
life, maximum production rate.

[Dereli et al., 2001] End, Face Volume sectioning Minimum production time
milling and GA and cost.

[Suresh et al., 2002] Turning Response Surface Minimum surface roughness.
Methodology and GA

[Mursec and Cus, 2003] Turning, Data from tool Minimize the machining cost.
milling manufactures

[Zuperl et al., 2004] Turning OPTIS algorithm Maximum production rate and
and ANN minimize machining costs.

[Tzeng and Chen, 2005] Milling Taguchi dynamic High machining efficiency and
characteristic theory geometrical accuracy.

[Yih-fong, 2005] Milling Taguchi method and Process conditions (milling type,
PCA cutting speed, feed per tooth, etc.)

[Zuperl et al., 2006] Milling Adaptive neural Regulate the cutting force
controller by adjusting the feed rate.

[Tansel et al., 2006] Milling GONNs and Maximum metal removal rate
ANN and minimize surface roughness.

[Palanisamy et al., 2007] End Mathematical model Minimum machining time and
milling and GA maximize tool life.

- Define important factors which directly affect the surface roughness and build statistical models by consider-
ing several materials and cutting tools in the peripheral end milling process.

- Include the concept of the geometric curvature during the cutting process. It could be an important factor
affecting the Ra.

- Select important information of the process state variables and apply sensor fusion techniques to improve the
estimated Ra of the models.

- The models must consider the cutting tool wear condition to predict the surface roughness.
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In the field of indirect cutting tool wear monitoring, several suggestions of directions that should be exploited
in future research are presented. At the feature extraction level, the most frequently used techniques are the compu-
tation of average values or trends, power values in different adjacent spectral bands or statistical features (variance
or standard deviation). It is relevant to propose other techniques to compute the features from recorded signals that
allow the characterization of the different cutting tool conditions during the tool life. The future of a Tool Condition
Monitoring (TCM) system will have to be based on inexpensive, simple, and rugged sensors and methodologies. An
important contribution could be the implementation of the TCM in the aeronautic and automotive industries.

It is very important to consider the integration of machine tool and cutting process dynamics with TCM systems.
Also, the future of the TCM systems must include applications where prior knowledge or cutting data may not exist.
Artificial Intelligence, ANNs, fuzzy logic systems, and GAs should be some options to solve this situation. With
respect to the optimization methods in the metal cutting process, process planners continue to experience great dif-
ficulties owing to lack of performance data on the numerous new commercial cutting tools with different materials,
geometry, resistance and effective chip breaking. Furthermore, specific data on relevant machining performance
measures such as tool life, surface roughness, and chip form, etc. are hard to find owing to a lack of predictive
models for these measures. The determination of optimal cutting conditions is regarded as the only way of ensuring
maximum technical and economic efficiency of production. Additionally, a decision-making block is recommended
to predict optimal actions for the operator and minimize the operation costs.



Chapter 3

Intelligent Monitoring and Supervisory
Control System

3.1 Introduction

Milling processes have been improved with the introduction of new technologies such as High Speed Machining
(HSM), new cutting tool materials, and high precision sensing devices. Nowadays, peripheral milling processes
in HSM require to be operated with Optimum Cutting Data (OCD), which take into account both economic and
technical limitations of the CNC machining center [Tönshoff et al., 1988]. Also, technical information about the
OCD in HSM is not available in handbooks or databases. Therefore, the cutting parameters are estimated with
a direct impact on the metal cutting economics: high costs, low productivity, and poor quality of the product.
Operation with OCD and the need of technical information for computing optimal cutting parameters are some
reasons for modelling the behavior of the Ra as a function of the Cutting Conditions (CC), Geometric Parameters
(PG), Cutting Parameters (PC), and cutting tool wear condition. Additionally, the inexperience of the operator has a
direct impact on the performance and reliability of the CNC machining center because the cutting tools are not used
to their full tool-life capability, the poor quality of the Ra is not detected on time, and the training curve in the CNC
operation has a huge impact in the effective machining time, among others.

Currently, there is a need to develop an Intelligent Monitoring and Process Planning System to determine the
optimal cutting parameters in milling operations, especially in HSM and giving support to the operator of the CNC.
A proposal to design and implement a Supervisory Control System for the Peripheral Milling Process in HSM is
presented in this chapter.

28
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3.2 Intelligent monitoring and process planning system

A cost-effective supervisory system implies the design and integration of an intelligent monitoring and process
planning system, as shown in Figure 3.1. The system estimates the surface roughness and recommends the OCD
before running the CNC machining center (Pre-process). During the machining process (In-process), the Ra is
computed by using the process state signals, and the system should be adapted to the needed changes in the cutting
parameters and maintain the Ra quality. The system integrates four main modules (see chapter 6), in which Ra and
the cutting tool condition are key variables. The modules are:

• Data acquisition system. During the machining process, several process variables are measured with multiple-
sensors (accelerometers, acoustic emissions, and dynamometer). The LabView program is used as HMI to
monitor and record the process variables during the machining process.

• Surface roughness. The surface roughness is estimated (RP
a ) as a function of CC , PC , PG, and the flank

wear of the cutting tool. The parameters are defined by the operator to compute the desired value of Rd
a. The

statistical models are described in Chapter 4.

• Cutting tool wear monitoring. This module predicts the cutting tool wear condition by using the process
variables. It is very important to know when a tool ceases to produce workpieces with excellent surface quality
before it damages workpieces. Chapter 5 develops the recognition system for the cutting tool wear condition.

• Intelligent process planning system. The system computes optimal cutting parameters by considering tool
life, minimum surface roughness, and including a decision-making block to recommend operator’s actions
that minimize production cost. Chapter 6 presents a complete description of control of the Ra in Pre-process
and In-process operating mode. The results of validation tests are also included.

3.3 Data Acquisition System

The data acquisition module was implemented in the machining center HS-1000 Kondia. Several sensors were
installed to improve the reliability of the intelligent monitoring and diagnosis system. The sensors have reliable
frequency bandwidth, good signal to noise ratio, and signals with reliable correlation to the process state.

3.3.1 Experimental set-up and sensors

The experiments were conducted in a HSM center HS-1000 Kondia with a 25 KW drive motor, three axis, a max-
imum spindle speed of 24, 000 rpm, and a Siemens open Sinumerik 840D controller. The CNC machining center
is shown in Figure 3.2. During the experiments, several HSS end mill cutting tools (25o helix angle, and 2-flute)
from Sandvik Coromant were selected for the end milling process, and different workpiece materials (aluminium
with hardness from 70 to 157 BHN) were used for the experimentation. The workpiece materials and cutting tools
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Figure 3.1: An intelligent monitoring and supervisory control system can provide cost effective control of milling
parameters based on surface roughness and cutting tool condition. The process state signals are recorded (module
1) and used for monitoring the cutting tool wear condition (module 3). The Ra module (module 2) estimates the
Ra in Pre-process operating mode. The intelligent planning module (module 4) computes the optimal parameters in
Pre-process and In-process operating mode.

are defined in Table 3.1. These materials were selected because they have important applications in the mold/die
manufacturing industry. Several cutting tool diameters (from 8 to 20 mm) were also used.

The Data Acquisition System consists of several sensors, amplifiers for conditioning, and filtering the signals,
two data acquisition boards, and LabView software for controlling the data acquisition system. Figure 3.2 shows the
complete experimental set-up. Figure 3.3 depicts all the sensors for monitoring the peripheral milling process.

3.3.2 Sensors, amplifiers, and data acquisition boards

Several research works have used multiple sensors to monitor and control different process parameters in the metal
cutting process ([Dimla, 2000], [Azouzi and Guillot, 1997b], [Ghosh et al., 2007]). Multiple sensors (accelerome-
ter, acoustic emission, and dynamometer) installed in the CNC machining center will be described in this section.
Table 3.2 shows a list of the sensors installed on the CNC machining center.

Accelerometer (vibration signals)

For measuring the vibration between the workpiece and cutting tools, two PCB Piezotronics accelerometers model
353B04 were fixed on the workpiece in X and Y axis directions (see Figure 3.4). These sensors record the vibration
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CNC HS-1000 KONDIA AMPLIFIERS

HMI-LABVIEW
DAQ BOARDS

NATIONAL INSTRUMENT

BOARD

Figure 3.2: Experimental set-up: CNC machining center, amplifiers, DAQ boards, and LabView program.

Table 3.1: Workpiece materials and cutting tools

Workpiece Materials Cutting Tools
Aluminium Average Diameter

alloy hardness (BHN) Sandvik code (mm)
AW5083−H111 70 R216.32− 08025−AP12AH10F 8
AW6082− T6 95 R216.32− 10025−AP14AH10F 10
AW2024− T3 110 R216.32− 12025−AP16AH10F 12
AW7022− T6 139 R216.32− 16025−AP20AH10F 16
AW7075− T6 157 R216.32− 20025−AP20AH10F 20
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Figure 3.3: The Data acquisition system is shown with the different sensors (Accelerometers, Acoustic Emission,
and Dynamometer), the charger amplifiers, and the acquisition boards. A LabView program was used to control and
record the different process state signals during the experimentation.

signals during the cutting process. The accelerometers have a sensitivity of 10 mV/g in a frequency range from
0.35 to 20, 000 Hz, and the measurement range is 500g. The technical information of the sensors is presented in
[Acc-PCB, 2006]. Another three Brüel & Kjær piezoelectric accelerometers (one model 4370 in Z axis, and two
model 4371 in X and Y axis) were installed on a ring fixed to the spindle of the CNC machining center, Figure 3.4.
The sensors were fixed inside of the ring to protect them from chips and harsh environment. The characteristics of
these sensors (see [Acc-Brüel & Kjær, 2006]) are: charge sensitivity of 98± 2% pC/g (model 4370), and 9.8± 2%
pC/g (model 4371); resonance frequency of 16 KHz for the model 4370 and 42 KHz for the model 4371. The
acquired signals from the AC sensors are conditioned by different amplifiers (charge or voltage). For the AC sensors
fixed on the workpiece, a Nexus conditioning amplifier 2693 model from Brüel & Kjær was used. For each Brüel
& Kjær piezoelectric accelerometer a Kistler charge amplifier type 5011B was used. The amplifier converts the
electrical charge yielded by the piezoelectric sensor into a proportional voltage signal. The amplifier configuration
is presented in Appendix B.
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Table 3.2: Characteristics of the sensors installed on the CNC machining center

Qty Sensor (Model) Characteristics Localization

2 PCB piezotronics accelerometers Sensitivity: 10mV/g y&x axis Workpiece
(353B04) Frequency range: 0.35− 20000Hz

2 Kistler Piezotron Acoustic Sensitivity: 700V/(m/s) One fixed on the spindle;
Emission (8152B1) Frequency range: 50− 400KHz another fixed on the

hydraulic clamping
1 Kistler 3-Component force Force range: -7.5 pC/N in x, y Fixed on the hydraulic

Dynamometer (9257B) axis, -3.5 pC/N in z axis clamping
Natural frequency: 3.5KHz

3 Brüel and Kjær piezotronics Charge sensitivity: 98± 2pC/g All fixed on the ring
accelerometers (4370 and 4371) Resonant frequency: 16KHz in the CNC spindle

(4370), 42KHz (4371)

Charge Accelerometer  Bruel

and Kjaer type 4371

(installed in X and Y-axis)

Charge Accelerometer

Bruel and Kjaer type

4370 (installed in Z-axis)

Kristler Piezotron

Acoustic Emission

Sensor type 8152 B1

Kristler Piezotron

Acoustic Emission

Sensor type 8152 B1

PCB Piezotronics

Accelerometer type 

353B04 (installed in

X and Y-axis)

Figure 3.4: The accelerometers and acoustic emission sensors were fixed in a ring (up plot), and it was fixed on the
CNC’s spindle. Another acoustic emission sensor (see lower right plot) was attached to the back of the hydraulic
clamp. Two accelerometers were directly attached to the workpiece material.



34

Acoustic emission

Several research works, [Li, 2002], [Kannatey-Asibu and Dornfeld, 1982], [Guo and Ammula, 2005], have shown
that AE has been successfully used to detect tool wear, fracture in cutting tools, and quality of surface roughness.
AE signals can be classified into two types ([Kannatey-Asibu and Dornfeld, 1982] and [Guo and Ammula, 2005]):
continuous signals and burst-type signals. Burst-types are a result of slip-line formation and surface microcracks,
while signals present high amplitude and low frequency. Continuous type are associated with internal mechanisms
activity (such as tensile test of specimens) and with shearing on the wear of the tool flank. These signals present
lower amplitude and high frequency. The AE signals were recorded with a Kistler Piezotron Acoustic Emission
8152B1 model ([Kistler-AE, 2006]). It was installed on a ring in the CNC’s spindle. The AE has a frequency
range from 50 to 400 KHz and sensitivity of 700 V/(m/s). Figure 3.4 shows the AE installed on the ring and
on the CNC table. The high frequency output signals from the AE-Piezotron sensors must be processed with an
AE-Piezotron coupler. The AE-Piezotron coupler with built-in RMS converter and limit switch has been designed
for the processing of high-frequency sound emission signals from Kistler Piezotron AE sensors. The coupler output
signals are the following analog signals: AE-Out (filter), AE-Out(RMS) and a digital output signal (limit switch).
The coupler supplies power to the sensor and processes the sound emission signal. During the experimentation
the AE-out (filter) signal was selected to be recorded. Technical information (see [Kistler-AE-Coupler, 2006]) of
Piezotron coupler is given by:

• For the AE-out signal frequency range from 15 to 1000 KHz, 5% of accuracy, and output voltage of ±5 V .

• For the AE-RMS signal frequency range from 10 to 1000 KHz, 3% of accuracy, and output voltage of 0 to 5
V .

Dynamometer

The cutting forces are important owing to the forces could be correlated to tool wear and surface roughness. The
force becomes important in worn tool conditions as a result of the variations produced owing to friction between
a tool flank and the workpiece. A Kistler 3-Component Dynamometer, 9257B model, was used to measure the
cutting forces [Kistler-Dy, 2006]. The main technical characteristics are forces range ±5 KN , sensitivity for the X
and Y Forces at −7.5 pC/N , Z-Force at −3.5 pC/N , and natural frequency at 3.5 KHz. A multi-channel charge
amplifier type, 5070A from Kistler, was used to amplify the force signals. The amplifier configuration is shown in
Appendix B.

Data acquisition boards

The signals were acquired with two data acquisition boards. Two boards were used because the required sampling
rate for the AE sensors was higher than the other signals. The data acquisition boards were the following:

1. A high speed multifunction DAQ NI-6152 card was used to record the signals from accelerometers and forces;
it ensures a 16−bit accuracy at a sampling rate of 1.25 MS/s.
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2. A CompuScope 1602 card for a PCI bus with two analog input channels, 16bit resolution, and a sampling rate
of 2.5 MS/s.

The data acquisition boards are depicted in Figure 3.3, and technical information can be found in [NI-DAQ, 2006]

and [Gage-Compuscope, 2006].

3.3.3 Pre-processing of the signals

The process signals recorded during the machining process contain abundant information related to tool status and
surface roughness. This information can be fundamental frequencies, frequency bandwidth, amplitude, energy,
and sensitivity to detect chatter condition, cutting tool wear, and the surface finishing. On the other hand, for
the estimation of the surface roughness and cutting tool condition, several research works have reported different
processing methodologies to capture and pre-processing the signals. In [Azouzi and Guillot, 1997b], the authors
used dynamometer, accelerometers and acoustic emission sensors. All the signals were acquired at a frequency of
880 Hz. The signals were required to estimate on-line surface roughness and dimensional deviations during the
turning process. In [Ertekin et al., 2003] the authors used different sensors to control the dimensional accuracy and
surface roughness in the CNC milling process. The acceleration and force signals were acquired with a sampling
rate of 10 KHz and 2048 samples points per signal. The AE signals were recorded with a sampling rate of 1 MHz.

Relevant information from the accelerometers and dynamometer signals

Several tests were done to determine the correct sampling rate and the required adjustments for the amplification
system. The first test was defined to identify the tooth passing frequency for each process signal. The force and
acceleration signals were recorded at a sampling rate of 40, 000 Hz with the amplification system described in
section 3.3.2. In the time domain, the signals were transformed at the frequency domain by applying the Fast
Fourier Transform (FFT), and the Power Spectral Density (PSD) was computed. Figure 3.5 shows the recorded
signals during the cutting process with a new cutting tool (experiment number 02 and second replicate of the DoE,
Chapter 4, Section 4.7). The cutting conditions for this experiment are defined in Table 3.3. Figure 3.6 shows the
frequency domain of the process state variables and where the cutting frequency is shown of each signal. Also,
additional information can be observed in the plots (energy, amplitude, frequency bandwidth, etc.) to characterize
the process. The first test was validated with these results.

The second test was defined to compare the behavior of the signals with different flank wear of the cutting tool.
Figure 3.7 depicts the frequency domains obtained from different sensors (accelerometers in the workpiece, and
spindle, and Y axis force) and for different cutting tool conditions. The signals correspond to the cutting conditions
defined in Table 3.3. The plots of frequency domain of other cutting tool conditions are shown in Appendix B.

The observed behavior during this experimentation, with different states of the cutting tool condition, is de-
scribed as follows:

• The frequency domain for the Y axis workpiece accelerometers shows that second harmonic of the tooth
passing frequency is dominant (1200 Hz) for low frequencies. The amplitude is almost constant for the



36

Table 3.3: Cutting conditions of the selected experiment (number 02 and second replicate, Chapter 4, Section 4.7).

Cutting Conditions Value-Units

Feed per tooth (fz) 0.1 mm/tooth
Cutting speed (vc) 565 m/min
Spindle speed (n) 18000 rpm

Radial depth of cut (ae) 4 mm
Workpiece hardness (HB) 94 mm

Cutting tool diameter (DTool) 16 mm
Geometry path Concave

AccX-Workpiece AccY-Workpiece

AccX-Spindle AccY-Spindle AccZ-Spindle

Force-X Force-Y Force-Z

Time(s) Time(s) Time(s)

N
e
w
to
n
s

V
o
lt
s

V
o
lt
s

Figure 3.5: Process signals recorded during the cutting process with fresh cutting tool. The AccX − Y Workpiece
plots show the vibration recorded from the accelerometers installed on the workpiece. The AccX − Y −Z Spindle
plots depict the vibration signals from the accelerometers fixed to the spindle. The ForceX − Y −X plots show
the behaviour of the cutting forces during the cutting process.
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Figure 3.6: Power spectral density (PSD) plots in the frequency domain of the signals. The harmonics of the tooth
passing frequency are shown for each signal. The first harmonic (600 Hz) is observed in the cutting force signals,
and the second harmonic (1200 Hz) is dominant in the vibration signals.

new and half-new cutting tool condition, and it decreases for the half-worn condition. However, for the
worn cutting tool condition, the amplitude presents a significant increase with respect to the new cutting tool
condition. Also, it is observed that an important frequency bandwidth between 10 to 20 Khz can be used to
characterize the different states of the cutting tool condition.

• The frequency domain for the Y axis accelerometer in the spindle shows a similar behavior for the sensors
installed in the workpiece. However, the plots do not show all the signal spectrum owing to the limitations
in the frequency range of the sensors. These signals could not be adequate to identify the cutting tool wear
condition, and the correlation with the surface roughness could be unsatisfactory.

• The frequency domain of the Y Force signals depict a constant increase in the amplitude of the first harmonic
(600 Hz) with the evolution of flank wear in the cutting tool. These signals are recommended to evaluate the
surface roughness and cutting tool wear condition.
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Figure 3.7: Power spectral density (PSD) plots in the frequency domain of specific signals for the experiment
number 02 and different states of the cutting tool condition. For the acceleration Acc− Y -Workpiece and Force−
Y signals, a similar behaviour is observed in the amplitude of the second and first harmonics, respectively: The
amplitude is high for new cutting tool condition, it decreases for half-new and half-worn condition, and finally
presents a higher amplitude value for the worn cutting tool condition. The amplitude for the Acc−Y Spindle signal
always decreases from new until worn cutting tool condition.

Relevant information from the Acoustic Emission signals

Several tests were made to determine the correct sampling rate for the AE sensors. The signals were recorded with a
sampling rate of 1 MHz and the output signal from the AE-Piezotron coupler was the AE-out signal, with a frequency
range from 15 to 1000 KHz, 5% of accuracy, and an output voltage of ±5 V. The first step was to determine the
sampling rate for the AE signals. During the cutting process of a straight path, the AE signals were recorded with a
different sampling rates. The cutting conditions were vf = 1200 mm/min, n = 18000 rpm, ae = 2 mm, and ap = 5
mm. Figure 3.8 shows three plots of the same experiment, but with different sampling rates: 200 KHz, 500 KHz,
and 1 MHz respectively. Figure 3.9 depicts the frequency domain of each experiment, and where it is observed,
the third experiment allows for the capture of complete frequency bandwidth of signals. From results, the selected
sampling rate was 1 MHz.
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Figure 3.8: AE-signals recorded with different sampling rate during the machining process of a straight path.

The second test with the AE was defined to determine the correlation between two AE sensors (one installed in
the spindle and the other attached to the back of the workpiece). By considering the signals obtained in experiment
number 02 (see Chapter 4, Section 4.7), several frames were selected to compute the power spectral density of
both signals. The cross-correlation between the two signals in the frequency domain was computed to demonstrate
that both signals present similar behaviour for the frequency bandwidth during the machining process. Figure 3.10
defines the following observations: (a) At 0.1 seconds the frequency bandwidth is shown owing only to the CNC
rotational speed (i.e., there is not cutting process); (b) At 0.2 seconds the bandwidth between 140 and 180 KHz
appears, and it corresponds with the cutting process; (c) and (d) At 0.3 and 0.4 seconds, the plots show the decrease
in frequency amplitude owing to the turn off of the CNC.

Finally, Figure 3.11 shows the power spectral density in the frequency domain of the AE signals at different
cutting tool wear conditions. Other results are depicted in Appendix B with different cutting tool conditions.

3.3.4 Feature vectors extracted from vibration, forces, and acoustic emission signals

The process signals contain abundant information which can be used to recognize the cutting tool condition during
the machining process. The signal features describe the power level of the signals in a given time interval and can
be classified in the following domains:

Time domain. These are computed from the force and vibration signals. Some examples are: average values or
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Figure 3.9: Power spectral density (PSD) of the AE signals. Three different tests were defined to compute the
sampling rate for the AE signals.

Root Mean Square (rms) values in certain time intervals, changes in signal levels such as increments or decrements,
crest factors, and polynomial approximations of force and vibration signals.

Frequency domain. The determination of spectral features is based on a discrete windowed Fourier Transform,
which is the total power level of a signal with or without a static component and the power in different spectral
bands.

Statistical domain. The signals are non-stationary, but they are assumed to be stationary during short time
intervals, for which features are computed. Features that describe the probability distribution of random process are
the mean, variance, standard deviation, skew, and kurtosis.

Time-frequency domain. These features are usually computed by applying the wavelet transforms. The use of
wavelet coefficients as features allow the time resolution to be adapted for analysis of local frequency of the signal.
The selected features represent the signal characteristics that could be sensitive to tool wear in a compact form.

The feature selection process is very important because it can reduce the cost of recognition by reducing the
number of features that need to be collected and also improve the classification accuracy of the system. The selection
process is not necessarily trivial. Using all possible features is not practical because irrelevant features add noise to
the classifier, making the diagnostic task harder or computationally expensive. This section describe a new approach
to compute important features of the process signals based on the Mel Frequency Cepstrum Coefficients (MFCC).
In speaker identification systems the MFCCs define the speaker characteristics (features) of a speech segment.
In [Davis and Mermelstein, 1980], [Wong and Sridharan, 2001], and [Molla and Hirose, 2004] used the MFCCs in
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Figure 3.10: AE Signals in the time domain and Power spectral density of AE-signals. The plots show the correlation
between the AE-Spindle and AE-Workpiece signals at different times. Figure (a) shows only the power spectral
density of the spindle speed before starting the cutting processes. Figure (b) depicts the frequency bandwidth owing
to the cutting process, and Figures (b) and (c) show only the power spectral density of the spindle speed after the
cutting process.

different modeling techniques (ANN, HMM, etc.) to implement robust speech recognition systems. These features
will be used to identify the cutting tool wear condition by using the HMMs and ANN models.

Mel frequency cepstrum coefficients

The cepstrum techniques are suited for the analysis of data contain echoes (wavelets) or reverberations of a fun-
damental wavelet whose shape need not be known a priori. The power cepstrum is usually used to determine the
arrival times of the fundamental wavelet and its echoes and their relative amplitudes. In speech recognition systems
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Figure 3.11: The plots depict the power spectral density for the AE signals at different cutting tool wear conditions
of experiment number 02. The plots show the frequency bandwidth for the cutting process and the variation in the
amplitude for the 153 KHz harmonic at different cutting tool wear condition.

the cepstrum analysis has given better results that any other model. The main advantage of cepstrum analysis is
its homomorphic properties, the ability to separate the transfer function of the vocal tract from the input signal.
[Childers et al., 1977] defined the cepstrum of a function as the power spectrum of the logarithm of the power
spectrum of a signal in a time domain. Several authors ([Davis and Mermelstein, 1980], [Molla and Hirose, 2004],
and [Zigelboim and Shallom, 2006]) have demonstrated that an important improvement in the speech recognition
systems could be obtained if they use the so-called mel-cepstrum. A mel is a unit of measure of perceived pitch or
frequency of a tone. The Mel Frequency Cepstrum Coefficients (MFCC) is based on the nonlinear human perception
of sound. It utilizes a filter bank to perform a nonlinear frequency mapping of the spectrum of each speech frame.
The procedure for computing the MFCC of a process signal consists of different steps (see Figure 3.12), and it can
be summarized as follows:

1. A small segment of the signal is selected to compute the MFCC. The selected segment, of N samples is
divided into short frames and windowing of Nf samples.

2. The Discrete Fourier Transform is applied for computing the energy spectrum.

X(k) =
N∑

n=1

x(n)ω(n−1)(k−1)
N (3.1)

where, ωN = e(−2πi)/N .

3. The magnitude of the energy spectrum is transformed to a logarithm scale,

χ(k) = log|X(k)| (3.2)
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4. The next step considers a mapping between the real frequency scale (fHz) and the perceived frequency scale
(fMel). Psychophysical studies have shown that human perception of the frequency content of sounds does not
follow a linear scale [Molla and Hirose, 2004]. The defined constants in the logarithmic transformation are
computed by considering the relation, 100 KHz to 3000 mel-frequency scale [Wong and Sridharan, 2001],

fMel = 2595 ∗ log

(
1 +

fHz

700

)
(3.3)

5. A triangular bandpass filter bank is applied to smooth the scaled spectrum. The output of each filter is given
by,

Y (i) =
Nf /2∑

k=0

χ(k)φi(k) (3.4)

where 1 ≤ i ≤ Np, with Np = number of filters, and,

ΣNf /2
k=0 φi(k) = 1 (3.5)

is a triangular weighted function associated with the ith filter.

6. Finally, the MFCC are computed using the inverse discrete Fourier Transform:

MFCCc =
Np∑

j=1

Y (j)cos
(

π

Np
(j − 0.5)c

)
(3.6)

where c defines the cepstrum coefficient number (c = 1, 2, . . . , Nc), and Nc defines the total number of
cepstrum coefficients.

The result is a seven-dimension vector, where each dimension corresponds to one parameter. MFCC were
computed by using the VOICEBOX: Speech Processing Toolbox for MatLab [Brokes, 2006]. The selected programs
require the following configuration and parameters:

• The selected segment is divided into short frames and analyzed with a rectangular or hamming window in
time domain.

• The filters bank is evaluated with triangular shaped filters in Mel domain. The number of filters could be
20 or 40. These values are recommended in research of speech recognition system ([Childers et al., 1977],
[Davis and Mermelstein, 1980], [Wong and Sridharan, 2001], and [Zigelboim and Shallom, 2006]).

• The Mel coefficients could include the 0’th order cepstral coefficient or the log energy.

• The number of coefficients could be 12, 10 or 6. These coefficients could also include the delta coefficients
and the delta-delta coefficients.
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Figure 3.12: Feature extraction process. The process state variables (signals) are segmented and divided in short
frames. A Discrete Fourier Transform and a mapping between the real frequency and the Mel frequency are com-
puted. Then a bandpass filters bank is applied for smoothing the scaled spectrum. Finally, the MFCC are computed
by using the inverse discrete cosine transform.

Figure 3.13 shows the MFCC computed from the Accy signal (Y-axis acceleration in the workpiece) . Different
parameters were used to compute and compare the MFCC of the signal. The cutting tool condition was new, and
the cutting conditions and geometric parameters were: fz = 0.025, ae = 3, Dtool = 12, HB = 110, Curv = 0.0,
and 2024 Aluminium Alloy. The observed behaviour in the MFCC(Figure 3.13) can be summarized as follows:

1. There is a different behaviour of MFCC if the rectangular or Hamming window in time domain is used.

2. The variation in magnitude of MFCC after of the coefficient number 7 is almost null. Only the first 7 coeffi-
cients will be considered to characterize the signals.

3. The number of filters affects the behaviour of the signal. Both configurations (i.e. 20 and 40) will be evaluated
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Figure 3.13: MFCC computed from the acceleration (Accy) process signal, with different parameters and configura-
tion: (a) Rectangular window, 13 coefficients, 0’th order cepstral coefficient, and 20 filters; (b) Rectangular window,
6 coefficients, 0’th order cepstral coefficient, and 20 filters; (c) Hamming window, 6 coefficients, log energy, and 20
filters; (d) Hamming window, 6 coefficients, log energy, and 40 filters; (e) Hamming window, 10 coefficients, log
energy, and 40 filters; (f) Hamming window, 6 coefficients, log energy, delta coefficients, and 40 filters.

to determine which is better in the pattern classification.

4. The delta coefficients present a flat behavior, and they will not be considered for characterization of the signals.

MFCC for vibrations and force signals

Specifically for vibrations and force signals, the process signals were recorded with a sampling rate of 40 KHz,
and the MFCC were computed with the following two configurations:

1. A rectangular window in time domain and a triangular shaped bandpass filter with 20 filters. The feature
vector considers the first element as the 0’th order cepstral coefficient and 6 Mel-cepstrum coefficients.

2. Hamming window in time domain and a triangular shaped bandpass filter with 40 filters. The feature vector
considers the first element as the log energy and 6 Mel-cepstrum coefficients.
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Figure 3.14 depicts the MFCC computed for the different cutting tool conditions (new, half-new, half-worn,
and worn), the process state signal as the acceleration in Y-axis, and experiment number 17 (fz = 0.025, ae = 3,
Dtool = 12, HB = 110, Curv = 0.0, and 2024 aluminium Alloy). Two different plots are used to evaluate the
behaviour of MFCC for different cutting tool conditions. It is observed that log energy is high for new cutting tool
condition, and it is almost constant for other cutting tool conditions. The first coefficient decreases with flank wear.
The second coefficient is ' 0 for new cutting tool condition and changes among 0 and 5 for other cutting tool
conditions. This behavior allows for characterization of the evolution of flank wear.

Appendix B depicts the MFCC as computed for other cutting tool conditions.

MFCC for acoustic emission signals

The acoustic emission signals were pre-processing to compute the MFCC by considering two configurations:

1. A rectangular window in time domain and a triangular shaped bandpass filter with 20 filters. The feature
vector considers the first element as the 0’th order cepstral coefficient and 6 cepstrum coefficients.

2. A hamming window in time domain and a triangular shaped bandpass filter with 40 filters. The feature vector
considers the first element as the log energy and 6 Mel cepstrum coefficients.

Figure 3.15 depicts the MFCC computed for different cutting tool conditions (new, half-new, half-worn, and
worn), the process state signal as the acoustic emission signal (fixed on the spindle), and experiment number 08
(fz = 0.1, ae = 4, Dtool = 16, HB = 94, Curv = −0.025, and 6082 aluminium alloy). Two different plots are
shown to evaluate the behaviour of the MFCC with the evolution of flank wear in the cutting tool.

3.3.5 PCA Theory

Principal Components Analysis (PCA) is a technique of multivariate linear data analysis. The objective of PCA is to
reduce the dimensionality of a data set while retaining as much as possible of variation in the data set. PCA has been
applied in data compression, image analysis, visualization, pattern recognition, regression, process monitoring, and
fault detection ([Yue and Tomoyasu, 2004], [Tien et al., 2004],[Detroja et al., 2006]), and is a common technique
for finding patterns in data of high dimension.

The basic approach in PCA is simple. First, the n-dimensional mean vector (µ) and the n× n covariance matrix
(Σ) are computed for the full data set. Next, the eigenvectors and eigenvalues are computed and sorted according to
decreasing eigenvalue. It is e1 (eigenvector) with eigenvalue λ1, e2 with λ2 until the last eigenvector en with λn. If
the original variables are correlated, it is possible to summarize most of the variability present in the n variable space
in terms of a lower p dimensional subspace (p << n). Here p defines the number of principal components, and
it also represents subspace governing the signal. The other dimensions are only noise. Finally, the last step is pre-
process data according to the selected PCA, and the linear combinations of the original variables are TP = TP

′
+ε,

where the columns of P (n× p) are the principal component loadings; T (m× n) representing the original data set,
and the columns of TP (m × p) are the scores for each observation, with ε as the residual error. An application of
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Figure 3.14: The MFCC computed from the acceleration (Accy) process signal and the cutting conditions corre-
spond to the experiment number 17. The parameters and configuration were a Hamming window, 6 coefficients, log
energy, and 40 filters.
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Figure 3.15: The MFCC computed from the acoustic emission (AE spindle) process signal and the cutting con-
ditions correspond to the experiment number 08. The parameters and configuration were a Hamming window, 6
coefficients, log energy, and 40 filters.
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the PCA will be described by using the original data set obtained for all the experiments with half-worn cutting tool.
The data set is defined by:

1. The matrix T (110, 12) with all values that correspond with cutting conditions, cutting parameters, geometric
parameters (fz ,ae,Dtool,HB, Curv), and seven MFCC, for each sensor.

2. The matrix TR(110, 4) with the different parameters computed for characterizing the surface roughness for
each experiment.

Consider the TR matrix that uses four different parameters to characterize the surface roughness (Ra, RSm,
Rq , and Rz). Table 3.4 shows some samples of these parameters. Previously, data set was normalized.

Table 3.4: Parameters to characterize the surface roughness of the test pieces machined with a half worn cutting
tool.

Exp. Ra RSm Rq Rz

1 −0.1701 −0.6175 −0.1737 −0.2107
2 −0.0659 −0.6130 −0.0778 −0.0218
3 −0.1701 −0.6175 −0.1737 −0.2107
4 −0.1400 −0.6806 −0.1430 −0.1521
...

...
...

...
...

107 −0.2449 −0.1752 −0.2417 −0.3116
108 −0.2947 0.0005 −0.2949 −0.3776
109 −0.3385 −0.0340 −0.3377 −0.4406
110 −0.2419 −0.0299 −0.2537 −0.3735

The PCA were computed by using the following MatLab functions princomp and prepca. The first output of
the princomp function contains the coefficients for the four principal components, and are the eigenvectors of the
covariance matrix. The E matrices are:

E =




0.4617 0.2539 −0.5282 0.6659
0.4843 −0.8748 0.0143 0.0092
0.4724 0.2471 −0.4048 −0.7429
0.5737 0.3306 0.7463 0.0682


 (3.7)

The third output defines the variance explained by the corresponding principal components. This variance is
represented by the eigenvalues and they are sorted according to their decreasing value. They are:
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λ =




0.33895 0 0 0
0 0.12712 0 0
0 0 0.00528 0
0 0 0 0.000089


 (3.8)

By considering the variance, the percent of total variability explained by each principal component can be com-
puted as 71.89, 26.96, 1.12, 0.019. With this information, it was observed that using only the first and second
principal component, the variability of the data set can be explained as 98.85%, and the last two principal compo-
nents are not required. The second output of the princomp function contains the scores of the original data mapped
into the new coordinate system defined by the principal components. This output is the same size as the input data
matrix. Figure 3.16a shows both the principal component coefficients for each variable and the principal component
scores for each observation. The plot shows the scores as a function of the two principal components. Each of the
four variables is represented in this plot by a vector, and the direction and length of the vector indicates how each
variable contributes to the two principal components in the plot. The prepca MatLab function also performs a prin-
cipal component analysis and retains only those components that contribute with a specific percent to the variance in
the data set. Figure 3.16b shows the results computed with prepca function and retained the 98% of the variability.
It was observed that both figures show the same behaviour.

Results with only two PCAResults with four PCA

(a) (b)

Figure 3.16: The plots show the scores of the original data (surface roughness parameters) mapped into the new
coordinate system defined by the principal components. Similar behaviour is observed in the scores which were
computed with four PCA (left-plot) and only two PCA (right-plot).
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3.4 Analysis of the results

With respect to the data acquisition system, the following results are considered relevant:

1. Installed accelerometers (AC) in the workpiece present excellent mechanical and electrical characteristics to
acquire vibration signals during the cutting process.

2. Acquired forces with the dynamometric platform correspond with the tendency of the flank wear. The forces
will increase with the dulling of the cutting tool. The mechanical and electrical characteristics of the dynamo-
metric platform allow to capture the cutting forces in the HSM process.

3. Installed AC sensors in the ring (fixed to the spindle) do not have a satisfactory frequency bandwidth. Figure
3.6 depicts that the frequency domain is not totally shown in the PSD graph. It is necessary to increase the
sampling rate to capture all the frequency bandwidth and to confirm that sensors are not limited by their
resonance frequency.

4. The tendency shown in the signals owing to the evolution of the cutting tool wear condition is satisfactory,
and the features obtained from the signals allow the characterization of four states of the cutting tool wear
condition.

5. Obtained features from signals allow for their characterization by using only seven MFCCs. It was not neces-
sary to compute the delta and delta-delta coefficients.

6. The PCA technique was applied to reduce the dimensionality of data set by using only the components that
retain maximum variability of the data set.



Chapter 4

Surface Roughness Monitoring Module

4.1 Introduction

Currently, experimentation in the majority of research on Surface Roughness (Ra) only considers a specific combi-
nation of cutting tool and workpiece material. Several authors ([van Luttervelt and Peng, 1999], [Mursec and Cus, 2003],
[Zuperl et al., 2004], and [Jawahir and Wang, 2007]) have pointed out the importance of building databases with in-
formation about different materials and cutting tools and the computing models by considering a wider domain in
the machining process. Different methodologies were analyzed and evaluated to estimate Ra, and a methodology for
computing robust Ra models is proposed, which can be used off and on-line during the machining process. The mod-
els will be used to estimate the Ra value as a function of several factors and process variables. [Tönshoff et al., 1988]

pointed out that more generic use of process models is possible when the model constants are adapted to different
machine tools, material batches, and environment conditions. In agreement with proposal of this research, a Design
of Experiments (DoE) will be defined for covering a machining domain for several cutting tools and workpiece
materials in High Speed Machining (HSM).

4.2 Selection of the materials and test pieces for the experimentation

In the mold/die industry the peripheral milling process is an important cutting process, where the geometric path can
be defined as as simple straight line, concave or convex curvature. In the aeronautic and automotive industry it is
necessary to consider a wider domain in hardness and mechanical properties owing to the multiple requirements and
applications of the workpieces. Therefore, five different aluminium alloys were selected for the experimentation.
Table 4.1 presents the selected aluminium alloys and Appendix C describes their characteristics, properties and
chemical compositions.

52
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Table 4.1: Aluminium Alloys selected for the experimentation.

Alloy Hardness Applications
5083−H111 70 BHN Extrusion processes: Flat bar, bulb angle, and tee sections.
6082− T6 90 BHN Extrusion process (Flat bar, and tee sections)
2024− T3 120 BHN Aircraft fittings, gears and shafts, bolts, computer parts, missile parts, etc.
CERTAL 140 BHN Industrial tools, molds, and mechanical structures.

7075− T6 150 BHN Gears, shafts, regulating valve parts, keys, aerospace and defense applications.

4.3 Test pieces for the experimentation

The workpiece material was acquired in test pieces with the dimensions 170 × 100 × 25 mm, and the designed
geometries were the following:

1. For the concave path for the peripheral milling process, the geometry was specified with two radii: (a) a small
box with a radius equal to 20 mm, and (b) a big box with a radius equal to 40 mm. Figures 4.1a, and 4.1b
show these geometries.

(a)

(b)

(c)

(d)

Figure 4.1: Test pieces designed for the experimentation with concave and convex paths. (a) small box with radius
equal to 20 mm; (b) big box with 40 mm radius; (c) small island with 20 mm of curvature radius; (d) big island with
a curvature radius of 40 mm.

2. For the convex path, the geometry was also specified with two radii: (a) a small island with a radius equal to
20 mm, and (b) a big island with a radius equal to 40 mm. Figures 4.1c, and 4.1d depict these geometries.

3. The straight path geometry was defined to consider an infinite radius. Figure 4.2 shows the test pieces with
the straight path and different cutting tool diameters.
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Figure 4.2: Test pieces used for the experimentation with the straight path.

4.4 Measurement of the surface roughness

The profile parameters that allow the characterization of the Ra are defined in this section, and the recommended
methodology for measuring these parameters is described in Appendix D. The measurement of the Ra is supported
by the norms [ISO 4287:1997(E/F), 1997] and [ISO 4288:1996(E), 1996]. Figure 4.3 shows the variables required
to compute the profile parameters. These parameters are:

1. Rz is the sum of the height of the largest profile peak height Zp and the largest profile valley depth Zv within
a sampling length.

2. Rt is the sum of the height of the largest profile peak height Zp and the largest profile valley depth Zv within
the evaluation length.

3. Ra is the arithmetical mean of the absolute ordinate values Z(x) within a sampling length.

4. Rq is the root mean square value of the ordinate values Z(x) within a sampling length.

5. RSm is the mean value of the profile element widths Xs within a sampling length.

The equipment for measuring the Ra was a portable Surfcom type 130A. The selected sampling length and
evaluation length for the Ra assessment were 0.8 and 4 mm, respectively. Also, the λc profile filter which defines the
intersection between the roughness and waviness components must be equal to the sampling length (0.8). Appendix
D describes the procedure to compute these values. Roughness is a dominant surface feature. In manufacturing,
roughness is caused by the material’s microstructure and the action of the cutting tool. From the different parameters
previously defined, the most common parameter is Ra. It reflects the average height of roughness component
irregularities from a mean line. Ra provides a simple value for accept/reject decisions.

4.5 Screening factorial design

In many manufacturing applications the number of potential input variables (called factors) is large and sometimes
unknown, therefore, a process characterization (screening) is used to reduce the input variables by identifying the
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Figure 4.3: Example of the obtained profile from the Ra measurements with the Surfcom type 130A. The profile
shows the following variables: Z(x) absolute ordinate value at specific x value, Zp height of the largest profile peak,
Zv height of the largest profile valley, Xs distance between peak to peak.

main independent variables that affect product quality. This reduction allows to focus process improvement efforts
on the really key variables. Screening may also suggest the best or optimal settings for these factors and indi-
cate if the response can be computed with a lineal or quadratic model. Optimization experiments can be done to
compute the best settings and define the nature of the curvature. Chapter 2 identified Ra as dependent in several
factors in any machining process. Owing to the large number of factors in the process, a screening design is re-
quired in a first experimental stage to compute the critical variables of Ra. In agreement with important research by
[Fuh and Chang, 1997], [Savage and Chen, 1999], [Ertekin et al., 2003], [Öktem et al., 2006] and the defined do-
main for the peripheral milling process, eight factors were selected for the screening design. Those factors were the
following: fz , vc, Dtool, ap, ae, HB, R, and convex (I) and concave (C) path (I/C). Two levels and a fractional
factorial design were used to screen for the really important factors that influence Ra. The factors and levels are
shown in Table 4.2.

Table 4.2: Factors and levels defined for the screening design.

Factors Low Level High Level Units

fz 0.04 0.13 mm/rev/tooth

vc 500 850 m/min

ap 5 10 mm

Dtool 12 16 mm

ae 1 5 mm

HB 65 145 HB

R 20 40 mm

I/C Convex Concave undimensional
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If full factorial design is defined, responses are measured at all combinations of the factor levels. However, this
may result in a prohibitive number of experiments (e.g., a two-level full factorial design with eight factors requires
256 experiments). To minimize time and cost, it is necessary to exclude some of the factor level combinations if these
have no effect on the fitting of the response. Fractional factorial designs are useful in factor screening because they
reduce down the number of experiments to a manageable size. Choosing the best fraction often requires specialized
knowledge of the process under study. The DoE was computed by considering eight factors, two levels, 1/8 fraction,
32 runs, and zero center points. The obtained DoE is depicted in Table 4.3. Four replicates were considered for each
experiment, and during the machining process, the following process signals were recorded: accelerations, acoustic
emission, and forces. The Ra was measured with the procedure described in the Appendix D.

4.5.1 Statistical analysis

Standard screening using fractional factorials provides an inexpensive way to determine which factors from a long
list significantly affect system performance. The fractional factorials are based on experimental plans because they
are computed by only a fraction of the prototypes that would constitute all combinations of levels for all factors of
interest (full factorial). The selected fractional factorial must be proposed by an expert in the process, because he
can reasonably assume that certain high-order interactions are negligible, and the information on the main effects
and low-order interactions may be obtained by running only a fraction of the complete factorial experiment (see
[Montgomery, 2001], [Allen, 2006]). With the experimental results, the next step is to apply an Analysis Of Variance
(ANOVA), which offers a standard approach for analyzing significance of factors and/or model terms that addresses
the multiplicity of the tests. Therefore, with the DoE and the observed Ra for each condition, the procedure to select
the most relevant factors is defined in Figure 4.4. A complete description of the above steps is explained as follows:

1. The ANOVA will be computed by considering the main effects, two and three way interactions. The ANOVA
implies to compute the following variables:

• The Degrees of Freedom (DF ). The DF for the levels (a) of each factor is a − 1. The DF for the
experimental error is n− 1, where n is the number of replicates. The DF for the total sum of squares is
N − 1, where N is the total number of observations (na).

• The explained variation or regression sum of squares (SSR) is given by

SSR =
n∑

j=1

(R
′
a −Ra,avg)2j (4.1)

where (R
′
a − Ra,avg) is defined as the difference between the predicted of the jth data value and the

average value.

• The unexplained variation or the error sum of squares (SSE) is given by

SSE =
n∑

j=1

(Ra,measured −R
′
a)2j (4.2)
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Table 4.3: Design of experiments for the screening design stage, and the measurement of Ra (µm) for each replicate.
The cutting tool wear condition was fresh.

Number fz vc ap Dtool ae HB R I/C Ra, 1 Ra, 2 Ra, 3 Ra, 4

1 0.04 500 5 12 1 65 20 Convex 0.4115 0.4053 0.4081 0.4270
2 0.13 500 5 12 1 145 40 Convex 0.3512 0.3632 0.3507 0.3415
3 0.04 850 5 12 1 145 40 Concave 0.2219 0.1778 0.1338 0.1567
4 0.13 850 5 12 1 65 20 Concave 0.3091 0.3177 0.3153 0.2921
5 0.04 500 10 12 1 145 20 Concave 0.1192 0.1132 0.1238 0.1146
6 0.13 500 10 12 1 65 40 Concave 0.3934 0.4061 0.3707 0.3918
7 0.04 850 10 12 1 65 40 Convex 0.1796 0.1812 0.1712 0.1705
8 0.13 850 10 12 1 145 20 Convex 0.4186 0.4378 0.4143 0.3685
9 0.04 500 5 16 1 65 40 Concave 0.1077 0.1191 0.1174 0.1243
10 0.13 500 5 16 1 145 20 Concave 0.2077 0.1935 0.1793 0.1654
11 0.04 850 5 16 1 145 20 Convex 0.1703 0.1684 0.1546 0.1653
12 0.13 850 5 16 1 65 40 Convex 0.4232 0.4354 0.4432 0.4432
13 0.04 500 10 16 1 145 40 Convex 0.1468 0.1546 0.1331 0.1321
14 0.13 500 10 16 1 65 20 Convex 0.8703 0.8397 0.8762 0.8637
15 0.04 850 10 16 1 65 20 Concave 0.1266 0.1464 0.1584 0.1410
16 0.13 850 10 16 1 145 40 Concave 0.2550 0.2404 0.2469 0.2213
17 0.04 500 5 12 5 65 20 Concave 0.1765 0.1570 0.1458 0.1682
18 0.13 500 5 12 5 145 40 Concave 0.3571 0.3312 0.3181 0.3071
19 0.04 850 5 12 5 145 40 Convex 0.1734 0.1589 0.1649 0.1787
20 0.13 850 5 12 5 65 20 Convex 0.3537 0.3312 0.3181 0.3071
21 0.04 500 10 12 5 145 20 Convex 0.3861 0.3639 0.3793 0.3670
22 0.13 500 10 12 5 65 40 Convex 0.2516 0.3477 0.6998 0.7142
23 0.04 850 10 12 5 65 40 Concave 0.1789 0.1743 0.1796 0.1925
24 0.13 850 10 12 5 145 20 Concave 0.4300 0.5171 0.4760 0.4769
25 0.04 500 5 16 5 65 40 Convex 0.2559 0.2026 0.2359 0.1832
26 0.13 500 5 16 5 145 20 Convex 0.3865 0.4259 0.4103 0.3939
27 0.04 850 5 16 5 145 20 Concave 0.1148 0.1066 0.1131 0.1131
28 0.13 850 5 16 5 65 40 Concave 0.4173 0.4065 0.4397 0.4074
29 0.04 500 10 16 5 145 40 Concave 0.1664 0.1940 0.1202 0.1202
30 0.13 500 10 16 5 65 20 Concave 0.3804 0.3655 0.3662 0.3662
31 0.04 850 10 16 5 65 20 Convex 0.2956 0.3247 0.3031 0.2994
32 0.13 850 10 16 5 145 40 Convex 0.3886 0.3714 0.3899 0.3433
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Screening factorial design

Apply the ANOVA to the experimental results

 and compute the statistical F and p-value

Compute the factor effects and select

the most relevants (Pareto chart)

Eliminate the factors and interactions

with p-value > 0.05

Once again, apply the ANOVA and compute

the statistical T-test and p-value

Consider the T-test to eliminate the factors

no relevant and with p-value > 0.05 

Refine the model to decide which factors and 

interactions could be eliminated and

select only the factors more significant over Ra

End

Start

Figure 4.4: Flow diagram to select the most relevant factors over Ra in the screening analysis.

where (Ra,measured −R
′
a) is the difference between the measured and predicted response.

• The total sum of squares (SST ) is given by

SST = SSR + SSE (4.3)

• The mean square (MS) is given by

MS =
SS

DF
(4.4)

• The statistical test is made by computing the F distribution,

Fo =
MSlevels

MSE
(4.5)

• p − value represents the probability of rejecting the null hypothesis when it is true. The smaller the
p − value, the smaller is the probability that you would be making a mistake by rejecting the null
hypothesis. A cutoff value often used is 0.05, that is, reject the null hypothesis when the p − value is
less than 0.05.

The results of the ANOVA are shown in Table 4.4.

2. From the Pareto chart must be selected the factors and interactions more significant. This implies to eliminate
the factors with small effect (small F value) and P − value > 0.05. From Figure 4.5, the factors and
interactions with a P − value > 0.05 were eliminated. Only the Dtool and ae factors were not canceled
owing to their influence with other important factors.
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Table 4.4: Analysis of Variance for Ra (coded units).

Degrees of Sum of Mean Squares Statistical p− value

Source Freedom (DF ) Squares (SS) MS F

Main Effects 8 2.18338 0.272922 130.64 0.000
2-Way Interactions 20 0.91351 0.045676 21.86 0.000
3-Way Interactions 3 0.04079 0.013596 6.51 0.000

Residual Error 96 0.20055 0.002089
Pure Error 96 0.20055 0.002089

Total 127 3.33823

3. Once again, compute the ANOVA for Ra, including the main effects and interactions charts. The following
variables are required to estimate the effects and coefficients for computing Ra:

(a) The effect of a factor is defined as the change in response produced by a change in the level of that factor
averaged over the levels of the other factor.

(b) The coefficients (Coef ) are computed for the linear multiple regression that will be used to compute the
estimated response.

Figure 4.5: Pareto chart of the standardized effects. The vertical red line on the chart divides the factors most
relevant in agreement with the p− value. The most significant factors are to the right of the red line.
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(c) The estimated standard error (SE) of the coefficients is given by

SE =
2σ√
n2k

(4.6)

where σ is the standard deviation of the predicted response, n the number of replicates, and k the number
of factors.

(d) The T − test is the most commonly used method to evaluate the difference in means by considering
each coefficient of the linear multiple regression. If Ti > Tα,DoF , then the coefficient in the regression
model is significant for the alpha level and the other coefficient.

From these charts it is important to make an analysis to select the main factors and its correlations with the
other factors. The new ANOVA results are shown in Table 4.5 and 4.6, and Figure 4.6.

From the upper plot in Figure 4.6 the following can be defined:

• The fz factor shows the highest impact over Ra, when it changes from minimum to maximum value.

• The I/C factor shows that Ra increases from concave to convex peripheral milling.

• The HB and R factors show a negative effect over Ra behavior.

• The axial depth (ap) shows a small effect over Ra.

• The vc factor shows a negative effect over Ra

• The Dtool and ae factors show a minimum affect over Ra

The lower plot in Figure 4.6 shows the effects over Ra owing to factor interactions. Important conclusions
can be defined.

• The cutting speed (vc) does not show a correlation with ap, Dtool, and ae factors for low or high values.
For vc high values there is no correlation with HB, R, and I/C factors, therefore, these factors and their
interactions can be eliminated. It is not relevant for Ra prediction.

• The fz factor shows a correlation with HB, ae, R, and I/C factors; these interactions must be included.

• The ap factor does not show correlation with Dtool, ae, and HB; this factor and its interactions must be
eliminated.

• The ae factor shows an excellent correlation with HB, fz , and I/C; this factor must be considered.

• The HB factor has excellent correlation with fz , I/C, and R.

The next step is to refine the model. This implies to evaluate which other factors and interactions should be
eliminated (see Appendix E) by computing once again the ANOVA. The final factors that were selected from this
analysis are the following: fz , Dtool, ae, HB, R, and I/C. The last two factors were fused into a new factor called
curvature (Curv). Curvature is computed as the inverse of the radius of the workpiece geometry, and its sign defines
the curvature type: positive for the convex path, negative for the concave path. The Curv is considered a new factor
because it has not been used in other research.
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Table 4.5: Estimated effects and coefficients for Ra (coded units). The estimated standard error (SE) is equal to
0.002177.

Coefficient
Term Effect Coef T-test p− value

Constant 0.29529 135.64 0.000
fz 0.20073 0.10037 46.10 0.000
vc -0.03532 -0.01766 -8.11 0.000
ap 0.05066 0.02533 11.63 0.000

Dtool -0.01001 -0.00501 -2.30 0.024
ae 0.01159 0.00579 2.66 0.009

HB -0.06917 -0.03458 -15.88 0.000
R -0.05501 -0.02751 -12.63 0.000

I/C 0.10648 0.05324 24.45 0.000
fz ∗ ap 0.04317 0.02158 9.91 0.000

fz ∗Dtool 0.04141 0.02070 9.51 0.000
fz ∗HB -0.02974 -0.01487 -6.83 0.000

v∗ae 0.03082 0.01541 7.08 0.000
vc ∗ I/C -0.06397 -0.03199 -14.69 0.000
ap ∗R -0.06810 -0.03405 -15.64 0.000

ap ∗ I/C 0.01769 0.00885 4.06 0.000
Dtool ∗ I/C 0.03985 0.01992 9.15 0.000
ae ∗HB 0.06349 0.03174 14.58 0.000
ae ∗R 0.01742 0.00871 4.00 0.000

ae ∗ I/C -0.05330 -0.02665 -12.24 0.000
HB ∗ I/C -0.03083 -0.01542 -7.08 0.000
R ∗ I/C -0.07058 -0.03529 -16.21 0.000

fz ∗ vc ∗ ae 0.03134 0.01567 7.20 0.000
fz ∗ vc ∗ I/C -0.01458 -0.00729 -3.35 0.001

4.6 Design of Experiments (DoE)

4.6.1 Factors and levels for the DoE

Chapter 2 defined that several groups of factors affect Ra. The first group is represented by the cutting conditions
(cutting speed, feed rate, axial depth of cut, etc); the second group is defined by the geometry of the cutting tool
(tool, diameter, helix angle, edge radius, number of flutes, etc.); the third group considers the workpiece material
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Figure 4.6: The eight factors are shown with the main effects plot for Ra in the upper plot. The effect of each factor
is defined as a change in response for applying the low and high level values.The lower plot defines the interactions
of the factors over the response Ra. The red line defines the tendency of the response with a high level value of the
factor and the other factors changing from low to high level value. The black line corresponds to the low level value
of the factors.

(hardness, ductility, etc) and path of the peripheral milling process (concave, convex or straight path); the last group
is represented by the uncertainty of the process owing to the variations in machine vibrations and repeatability,
work-holding devices, and other factors. Other variables also must be considered, but they are less important or
they can be controlled (coolant, thermal conditions, humidity, and so on). It is important to define which factors
represent the main effects over the Ra. This was made with the application of a screening factorial design. The
significant factors were: feed per tooth (fz), cutting tool diameter (Dtool), radial depth of cut (ae), hardness of the
workpiece material (HB), and the machining geometry curvature (Curv). The next steps must be made for the
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Table 4.6: Analysis of Variance for Ra (coded units)

Degrees Sum of Adjusted Sum Adjusted
Source of Freedom Squares of Squares Mean Squares Statistical p− value

(DF ) (SS) (AdjSS) (AdjMS) (F )

Main Effects 8 2.01424 1.66366 0.207957 385.63 0.000
2-Way Interactions 13 0.88788 0.89146 0.068574 127.16 0.000
3-Way Interactions 2 0.03733 0.03733 0.018665 34.61 0.000

Residual Error 100 0.05393 0.05393 0.000539
Lack of Fit 7 0.02403 0.02403 0.003433 10.68 0.000
Pure Error 93 0.02990 0.02990 0.000321

Total 123 2.99337

experimentation:

1. Run experiments with a sharp cutting tool. Record the following process variables:

• Acceleration signals in x and y − axis directly on the workpiece (Accx,wp, Accy,wp).

• Acceleration signals in x, y, and z − axis directly on the CNCs spindle (Accx,sp, Accy,sp, Accz,sp).

• Force signals.

• Acoustic emission signals in the table and spindle of the CNC.

• At the end of each test, the Ra was measured.

2. Machine harder aluminium alloys until the cutting tool reaches a specific flank wear.

3. Run another set of experiments with the cutting tool worn.

4. Repeat the steps 2 and 3 until Ra presents considerable damage or the cutting tool reaches the maximum
tool-life criterion, [ISO 8688-2:1989(E), 1989].

4.7 Modeling of the Ra using Response Surface Methodology

Response Surface Methodology (RSM) will be applied to define the runs of the experiments with the five factors.
RSM is an excellent statistical and mathematical technique for the modeling and analysis of models with several
factors that have a great influence in a response. Also, RSM can be used to optimize the process by including a
merit function (for example, to minimize the Ra). Eventually, the objective of RSM is to determine the optimum
operating conditions for the system or to determine a region of the factor space in which operating requirements are
satisfied. The proposal method is the standard response surface method, and it is based on the Central Composite
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Design (CCD) for the design of experiments matrices ([Allen, 2006], [Montgomery, 2001]). The CCD consists of a
2k−1 fractional factorial of resolution with nF runs, and nc center runs. Figure 4.7 shows the representation of the
CCD for k = 2 and k = 3 factors.

x1

x2

(+1,+1)

(+1,-1)(-1,-1)

(-1,+1)

(0, α)

(0, -α)

(α, 0)(-α, 0)
x1

x2

x3

α

Figure 4.7: Representation of the central composite designs for k = 2 and k = 3 factors. The figure shows the cube
points and levels of each factor. The distance α defines the rotatability of the DoE and it depends from the cube
points.

The CCD is a very efficient design for fitting the second-order model. There are two parameters in the design that
must be specified, the distance α of the axial running from the design center and the number of center points. Also,
for this method it is very important the rotatability for the second-order model provide good predictions throughout
the region of interest. This means that the model must have a reasonably consistent and stable variance of the
predicted response at points of interest. In [Montgomery, 2001], it is suggested that a second-order response surface
design should be rotatable. This implies that the variance will be the same at all points that are the same distance
from the design center. A CCD is made rotatable by the choice of α. The selection of α for rotatability depends
on the number of cube points in the design (nF ). [Allen, 2006] recommends the following value for α = (nF )1/4.
Rotatability is a spherical property, that is, it makes the most sense as a design criterion when the region of interest
is a sphere. However, it is not important to have exact rotatability to have a good design. The choice of α in the CCD
is dictated by the region of interest. When this region is a sphere, the design must include center runs to provide
reasonably stable variance of predicted response. Normally, three to six center runs are recommended. From among
theses considerations and recommendations, the α value was computed as nF = 2k−1 = 16, and α = (16)1/4 = 2.
From this value, five levels for the CCD were selected, and these are shown in Table 4.7.

Finally, the following parameters were defined to apply RSM: rotatable central composite design, with 16 points
(2k−1 = 16) on cube (k =number of factors), 10 points outside of cube, six central points, α = 2 as the radius of
the sphere, and four replicates. Table 4.8 defines the 32 runs that must be programmed during the experimentation.
Appendix F presents the four parameters that were measured to characterize the Ra for each test piece.
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Table 4.7: Factors and levels of the experimentation.

Levels fz Dtool ae HB Curv

mm/rev mm mm HBN mm−1

−2 0.025 8 1 71 −0.05
−1 0.05 10 2 93 −0.025
0 0.075 12 3 110 0
1 0.1 16 4 136 0.025
2 0.13 20 5 157 0.05

Table 4.8: The experiments for the central composite design (half fraction)

Run Order fz Dtool ae HB Curv Run Order fz Dtool ae HB Curv

1 -1 -1 -1 -1 1 17 -2 0 0 0 0
2 1 -1 -1 -1 -1 18 2 0 0 0 0
3 -1 1 -1 -1 -1 19 0 -2 0 0 0
4 1 1 -1 -1 1 20 0 2 0 0 0
5 -1 -1 1 -1 -1 21 0 0 -2 0 0
6 1 -1 1 -1 1 22 0 0 2 0 0
7 -1 1 1 -1 1 23 0 0 0 -2 0
8 1 1 1 -1 -1 24 0 0 0 2 0
9 -1 -1 -1 1 -1 25 0 0 0 0 -2
10 1 -1 -1 1 1 26 0 0 0 0 2
11 -1 1 -1 1 1 27 0 0 0 0 0
12 1 1 -1 1 1 28 0 0 0 0 0
13 -1 -1 1 1 1 29 0 0 0 0 0
14 1 -1 1 1 -1 30 0 0 0 0 0
15 -1 1 1 1 -1 31 0 0 0 0 0
16 1 1 1 1 1 32 0 0 0 0 0

4.7.1 RSM for the new cutting tool condition

Applying the results of the experimentation with the new cutting tool condition, the next step was to apply an ANOVA
by considering the four replicates. The following considerations were evaluated:

• The effects owing to the several factor combinations.

• The percent contribution of each factor, denoted by a statistical ”F” factor. This factor reflects the portion of
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Figure 4.8: Validation of the used information to build the Statistical Model with new cutting tool: (a) Normal
distribution of the residuals; (b) Normal probability plot; (c) Spread of points.

the total variation observed in an experiment attributed to each factor.

• The factors and their combinations with the p− value less to 0.05 (when the hypothesis is true and the effect
of the factor is representative).

The ANOVA results are described in Appendix E. Before applying an ANOVA, all the data set must be normalized
by considering ±1 level values (see Table 4.7) in the equation,

ξ̄ =
ξ −

(
ξ(level+1)+ξ(level−1)

2

)
(

ξ(level+1)−ξ(level−1)

2

) (4.7)

The analysis of variance was applied to confirm the squared error R2 = 0.8858 and the adjusted squared error
R2

adj = 0.876. The final fitted model is given by

Ra = 0.1139 + 0.06513× fz + 0.01913× f2
z − 0.0808×Dtool + 0.04961×D2

tool + 0.00896×HB2 −
− 0.0437× fz ×Dtool − 0.0138× fz ×HB + 0.01647×Dtool ×HB +

+ 0.01185× ae× Curv + 0.00937× Curv2 (4.8)

The range of the levels defines the domain where the model can be applied to predict the Ra. The model was
validated in agreement with the results shown in Figure 4.8. Figure 4.8a. depicts the normal distribution of the
residuals and it is observed that enough data was used to fit the model. Figure 4.8b. defines the normal probability
plot, and the tendency (straight line) shows the normality of the error distribution. Also, Figure 4.8c. shows an
excellent spread of points on either side of zero (No patterns are observed).

4.7.2 RSM for the half-new cutting tool condition

The DoE was reproduced with the half-new cutting tool condition, and the measurements of Ra were made in
agreement with the procedure described in Section 4.4. The RSM was applied to build the model for the half-new
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cutting tool condition. The ANOVA results are presented in Appendix F . The Ra is explained by the model with
R2 = 90.0% and the estimated parameters of model are significant in R2

adj = 88.7%. The fitted model is given by

Ra = 0.13829 + 0.0573× fz + 0.01273× f2
z − 0.08581×Dtool + 0.03293×D2

tool − 0.0435×HB +

+ 0.07571×HB2 − 0.0096Curv + 0.00935× ae− 0.02156× fz ×Dtool +

+ 0.01401× fz × Curv − 0.02427×Dtool × ae + 0.01059×Dtool ×HB +

+ 0.01281×Dtool × Curv + 0.01775×HB × Curv (4.9)

4.7.3 RSM for the half-worn cutting tool condition

By using half-worn cutting tool condition, the DoE was reproduced and the measurements of Ra were made for
each test piece. The RSM was required to build the model for this cutting tool condition. The ANOVA results are
presented in Appendix F . The Ra is explained by the model with R2 = 92.7%. The estimated parameters of the
model are significant in R2

adj = 91.60%. The fitted model is given by

Ra = 0.18102 + 0.07536× fz + 0.0284× f2
z − 0.0836×Dtool + 0.03139×D2

tool − 0.0068×HB +

+ 0.04364×HB2 + 0.00893ae− 0.03986× fz ×Dtool + 0.03416× fz ×HB −
− 0.03216×Dtool × ae− 0.02981×Dtool ×HB + 0.01686×Dtool × Curv +

+ 0.0079× ae×HB − 0.03216× ae× Curv + 0.0087× Curv2 (4.10)

4.7.4 RSM for the worn cutting tool condition

Finally, the DoE was reproduced with the worn cutting tool condition and the measured Ra was computed for each
test piece. Applying RSM, the model was built for this cutting tool condition. The ANOVA results are presented in
Appendix F . The Ra is explained by the model with R2 = 93.4% and the estimated parameters of the model are
significant in R2

adj = 92.50%. The final fitted model is given by

Ra = 0.21686 + 0.06362× fz + 0.02246× f2
z − 0.05339×Dtool + 0.02217×D2

tool − 0.02236×HB +

+ 0.02962×HB2 + 0.01674Curv − 0.02925× fz ×Dtool + 0.01303× fz ×HB +

+ 0.0208× fz × Curv − 0.00942×Dtool ×HB + 0.01582×Dtool × Curv − 0.01047× ae×HB −
− 0.01047× ae× Curv + 0.0175×HB × Curv (4.11)

4.7.5 Analysis of results with the RSM models

The objective of the RSM is to determine the optimum operating conditions for the system, which guarantee a
minimum Ra, or to define a region of the factor space in which the operating conditions are satisfied, and the Ra is
inside the defined threshold value. Figure 4.9 shows the quadratic behaviour of the response Ra as a function of the
defined factors. Therefore, an analysis may be performed to identify the path of improvement toward the vicinity of
the optimum.
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Figure 4.10A shows the effects of fz and Dtool on Ra. Now, it is observed that Ra increases with the fz owing
to increased cutting forces and strains. Ra decreases with an increase in cutting tool diameter (or cutting speed)
until it reaches minimum value. Then Ra increases with high cutting tool diameters (or high cutting speed) owing
to vibration increase forces and strains. Similar behaviour is observed in the results shown in [Barber et al., 2001],
[Suresh et al., 2002], and [Sai and Bouzid, 2005]. For a new cutting tool (Figure 4.10a), it was observed that Ra

always increases for cutting tool diameters from 16 to 8 mm. Ra increases an average of 60% for small fz values
and 300% for big fz values among the 16 and 8 diameters. Figure 4.10d shows the behaviour of the Ra for the
worn cutting tool condition, and the tendency is similar at the fresh cutting tool condition. Ra increases an average
of 12% for small fz values and 89% for big fz values. For all cutting tool worn conditions and 20 mm of diameter,
the Ra lightly decreases when fz increases, and finally increases for high fz values. Figure 4.10B shows that Ra

decreases as the workpiece hardness increases until reaching a minimum value, and then Ra increases with the
hardness. High values of hardness induce greater cutting forces and the possibility of tool deformation, and higher
Ra values are observed. It is important to evaluate this behaviour for computing minimum or maximum Ra values
with different combinations of the cutting parameters. Also, it is observed that cutting conditions for minimum Ra

changes with the evolution of the flank wear in the cutting tool. Figure 4.10h presents the behaviour of the Ra for
the worn cutting tool condition, where the minimum Ra is located between 110 and 136 BHN, and low values of
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Figure 4.9: The plots depict the quadratic behaviour of the response Ra as a function of the defined factors: fz , HB

and Dtool. Also, it is shown how the optimal conditions for minimum Ra value are changed with the evolution of
the cutting tool wear condition.
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fz . The Ra increases for high values of hardness. Also, for all cutting tool conditions, the minimum Ra is defined
for 110 BHN. Finally, Figure 4.11 depicts the quadratic behavior of the RSM and the regions where the minimum
Ra is located as a function of the main factors. These observations justify the selection of the RSM as the objective
function in the optimization process.
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Figure 4.11: Contour plot to show the effects of fz and DTool on Ra for all cutting tool conditions: a) New, (b)
Half-New, (c) Half-Worn, and (d) Worn.

Two theoretical models will be used to compare the performance of RSM models. One mathematical model is
given by [Boothroyd and Knight, 2006],

Ra =
0.0642(fzz)2

Dtool
(4.12)

[Dereli et al., 2001] and [Palanisamy et al., 2007] present another theoretical model to compute the arithmetic
value of the Ra in end milling process, and it is given by

Ra =
318(f2

z )
4Dtool

(4.13)

Figure 4.12 depicts the measured Ra versus the estimated Ra values computed with the RSM and the mechanistic
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Figure 4.12: Comparison of the results of the RSM model with two mechanistic models. The results correspond to
the new cutting tool condition, and a considerable error was observed between the measured and estimated Ra for
the mechanistic models.

models. The average percentage error was computed with the following equations

E =
ABS(Ra,meas −Ra,pred)

Ra,meas
× 100 (4.14)

ME =
n∑

i=1

Ei

n
(4.15)

where E is the absolute error and ME is the average percentage error. It is shown that the tendencies between the
Ra,meas and RaRSM are very similar with an average percentage error of 16.37%. The average percentage error
between the Ra,meas and Eqs. 4.12, and 4.13 is 35.9% and 79.83% respectively. It is obvious that Eqs. 4.12 and 4.13
do not consider many factors that can really affect the Ra. In addition to the feed per tooth and cutting tool diameter,
the statistical model (RSM) includes relevant factors such as depth of cut, hardness, and curvature of the machined
path. Figure 4.13 shows the measured Ra versus the estimated Ra computed with the RSM and the mathematical
models for different cutting tool conditions. Once again, an excellent similitude is observed between the Ra,meas

and RaRSM . Furthermore, it is shown how the average percentage error increases with the evolution of the flank
wear in the cutting tool (Table 4.9). Here, the importance of the flank wear is demonstrated in the prediction of
Ra, and empirical models cannot be used for the Ra estimation owing to the high error computed in the Ra.
Additionally, the RSM models were validated with new experiments. Table 4.10 shows the cutting conditions and
the results for the measured and estimated Ra values. The last column defines the absolute percentage error between
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Figure 4.13: Comparison of the measured Ra versus estimated Ra value. The results correspond to the following
cutting tool conditions: (a) Half-new; (b) Half-worn; and (c) Worn condition.

the measured and estimated Ra values. The geometric and cutting parameters were selected to define two evaluation
ranges: inside the cube of the DoE domain (0 − 50%) and outside the cube (> 50%). Each percentage of factors
is considered from the central value. Table 4.10 shows an excellent performance of the model, with an average
percentage error of 12.87% when the cutting conditions correspond with central points of the DoE (inside of the
cube). The test pieces with these conditions are P01 − 2024, P03 − 2024, P04 − 2024, and P05 − 2024. If
the cutting conditions are defined outside the cube, the deviation between the measured and estimated Ra values
increases. Also, Table 4.10 shows an increase of the average percentage error (71.37%) in the experiments outside
the cube. When the feed per tooth and hardness present a deviation greater than 50%, the average percentage error
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Table 4.9: Average percentage error between the measured and estimated Ra values with different models.

Cutting Tool Ra Ra Ra

Condition RSM Boothroyd Palanisamy, Dereli
New 16.37% 35.90% 79.83%

Half-New 16.87% 46.48% 83.32%
Half-Worn 14.92% 53.78% 85.69%

Worn 8.98% 56.31% 86.47%

increases from 12.87% to 95%. For this reason, these factors have a huge impact in the response (Ra). Also, the
HB and Dtool factors have an important impact on response Ra because the average percentage error increases
from 12.87% to 87.8% for a deviation greater than 50%.

4.8 Modeling of the Ra by using ANN

The statistical model computes the Ra by considering the cutting parameters, cutting tool geometry, and material
properties. This model predicts the Ra with minimum error when the factors are inside the RSM domain. There-
fore, these computed models can be used to predict the Ra before starting the metal cutting process. It is necessary
to include the process variables that allow prediction of Ra value during machining. A multi-sensor system and
data fusion techniques will be used to build the Artificial Neural Network (ANN) model. An estimator based on
multi-sensor and data fusion provides an improved and robust estimation. There are different frameworks for fusing
signal features such as mathematical functions, black-box models, rule-based fuzzy sets, ANN, etc. The ANN frame-
work was selected because it has several attractive properties such as universal function approximation capability,
insensitivity to noisy or missing data, and the ability to accommodate multiple non-linear variables for unknown
interactions. Among the various ANN models, feed-forward architecture is a classic model, and back-propagation
algorithm is an excellent training method for this architecture. The ANN model was built with the cutting parameters
and process variables monitored from sensors. Figure 4.14 depicts the proposed architecture for the ANN model. A
brief description of the normalized process of the input variables is discussed.

4.8.1 Input and Output variables selection

The input variables defined for the ANN model were the following: x1 = fz , x2 = Dtool, x3 = ae, x4 = HB, x5 =
Curv, and Seven Mel Frequency Cepstrum Coefficients (MFCC) computed from the different process variables.
Three different options were selected for the output layer: the first with only the Ra value, the second with Ra and
RSm values, and the third by considering the Ra, RSm, Rq , and Rz values. Figure 4.15 shows two experiments
with different cutting and geometric parameters, but with similar Ra value. For this reason, it is necessary to include
the other parameters (RSm, Rq , and Rz) in the output layer. These parameters allow a better characterization of the
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Table 4.10: Cutting parameters and conditions for the new experiments. Also, it is included the results of the Ra.

Cutting Tool fz Dtool ae HB Curv Ra,meas Ra,pred Error
Test piece Condition % % % % % µm µm %

P01-2024-Line New 0 0 0 2 0 0.1612 0.1546 4.21
P01-2024-Island New 0 0 0 2 74 0.1752 0.1756 0.25
P01-2024-Box New 0 0 0 2 38 0.1436 0.1599 11.35
P03-2024-Line Half-New 0 0 0 0 0 0.1582 0.1837 16.12

P03-2024-Island Half-New 0 0 0 0 167 0.1598 0.189 18.27
P03-2024-Box Half-New 0 0 0 0 111 0.145 0.1801 24.21

P04-2024-Island New 0 0 0 0 50 0.1955 0.1624 16.93
P05-2024-Box New 0 0 0 2 50 0.1504 0.164 9.04

P01-5083-Island Half-New 53 67 53 91 154 0.2384 0.4732 98.49
P01-7075-Line Half-New 76 133 76 112 0 0.2109 0.3621 71.69

P01-7075-Island Half-New 76 133 76 112 78 0.2685 0.5156 92.03
P01-6082-Island Half-Worn 67 0 67 49 77 0.1965 0.231 17.56
P01-6082-Box Half-Worn 67 0 67 49 37 0.1361 0.30133 121.40
P02-6082-Line Half-Worn 67 0 67 37 0 0.2591 0.2383 8.03

P02-6082-Island Half-Worn 67 0 67 37 77 0.3218 0.2008 37.60
P02-7075-Box Worn 10 67 100 93 57 0.1559 0.1363 12.57
P02-7075-Line Worn 10 67 100 93 0 0.1624 0.1874 15.39
P03-7075-Box Half-Worn 10 67 100 95 57 0.1277 0.2582 102.2

P03-7075-Island Half-Worn 10 67 100 95 44 0.1262 0.1573 24.64
P03-7075-Line Half-Worn 10 67 100 89 0 0.1091 0.1925 76.44

P01-CERTAL-Box Worn 67 67 50 79 37 0.1692 0.1377 18.60
P09-2024-Box Worn 48 133 50 0 63 0.1742 0.1975 13.38

P09-2024-Island Worn 48 133 50 0 42 0.25 0.2802 12.07

surface roughness pattern.

4.8.2 Preprocessing of the input variables

All the experimental data set were normalized to avoid numerical instability. The data was normalized with a mean
zero and a standard deviation equal to one (see Appendix F ). Additionally, another method for normalizing the data
set was used. The Bipolar sigmoidal normalization was employed because the minimum and maximum values are
unknown in real-time, and it is given by

z̄i =
1− e−yi

1 + e−yi
(4.16)
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Cutting and geometric parameters: 

fz = 0.05, Dtool = 16, ae = 2, HB = 93, Curv=-0.025

Cutting and geometric parameters: 

fz = 0.075, Dtool = 12, ae = 3, HB = 110, Curv=-0.05

Figure 4.15: The plot depicts two experiments with different cutting and geometric parameters. However, both
experiments present the same Ra value, but different Rz , and RSm values.
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where z̄i defines the new normalized input variable, and i = 1, 2..., n, is the number of the input variable. The
non-linear transformation prevents most values from being compressed into essentially the same values, and it also
compresses the large outer values.

4.8.3 Training ANN Model

Several tests were defined to select the best ANN model to estimate the Ra as a function of the cutting parame-
ters and some process variables represented by the MFCC. The considered MFCC were the 0′th order cepstral
coefficient, and six cepstrum coefficients. The selected process variables were the acceleration signals from the
workpiece and the cutting force signals. After an intensive searching procedure, four different ANN models were
selected, as depicted in Table 4.11. Neural networks learn from input data. These systems analyze new pattern
data according to previously-stored information and react to new data based on past input. Several learning meth-
ods have been developed for ANN. Among the various models training neural networks models, backpropagation
was selected because it is one of the best general purpose models ( [Tsai et al., 1999], [Lee and Chen, 2003], and
[Benardos and Vosniakos, 2002]). It is a supervised learning scheme by which a layered feed-forward network is
trained to become a pattern-matching engine. When the networks are given input, the updating of value activation
propagates forward from the input layer of the network, through each internal layer, to the output layer of the net-
work. The output then provides the ANN’s response. Neural networks can correct their internal parameters. The
correction mechanism starts with the output units and backpropagates through each internal layer to the input. This
process repeats until the weights of the network steps reach the final state, where the root mean square error ap-
proaches and converges on the acceptable minimum value. The ANN models were training with the data set taken
of the experimentation of each cutting tool wear condition, and by using each process variable (accelerometers in
X and Y axis in the spindle and workpiece, and the forces in X and Y axis). It was made only for the B(12, 12, 1),
C(12, 12, 2), and D(12, 12, 4) models. The information was randomly divided into two data set: 70% for the data
training and 30% for the data testing. Four combinations of data set were selected to compute an average perfor-
mance and to evaluate the generalization capacity of the ANN models. Table 4.12 presents the average computed
performance for all ANN models with the training data set.

Table 4.11: Architecture of the ANN models used to compute the Ra.

Variables of Number Hidden Variables of
ANN model Input Layer Layer and Neurons Output Layer

A(5, 5, 1) fz , Dtool, ae, HB, Curv 1− 5 Ra

B(12, 12, 1) fz , Dtool, ae, HB, Curv, and 7 MFCC 1− 12 Ra

C(12, 12, 2) fz , Dtool, ae, HB, Curv, and 7 MFCC 1− 12 Ra, RSm

D(12, 12, 4) fz , Dtool, ae, HB, Curv, and 7 MFCC 1− 12 Ra, RSm, Rq , Rz
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For the D(12, 12, 4) model, the PCA technique was applied to the input and output data vectors. This technique
was described in Chapter 4.

4.8.4 Testing ANN Model

Furthermore, the proposal models were validated with the testing data set. Table 4.13 shows the average performance
of the ANN models for the testing data set. It is shown that applying the PCA over the input and output data vectors,
the D(12, 12, 4) model increases its performance with respect to the other models. The highest average performance
was obtained when the MFCC are computed with the Fy force. For the four cutting tool wear conditions the average
performance was 85.31%.

Table 4.12: Performance of the ANN models for the training data set. The performance was computed by considering
the different combination of data set.

Cutting Cutting Cutting Parameters and MCFF
Tool Wear Parameters Accx,workpiece Accy,workpiece Fx,force Fy,force

Condition Model % % % % %
New A(5, 5, 1) 96.185

B(12, 12, 1) 100 100 100 100
C(12, 12, 2) 96.12 96.82 97.41 97.99
D(12, 12, 4) 97.93 98.34 98.09 97.89

Half-New A(5, 5, 1) 97.78
B(12, 12, 1) 100 100 100 100
C(12, 12, 2) 97.86 97.02 97.61 95.90
D(12, 12, 4) 99.44 99.16 98.06 98.51

Half-worn A(5, 5, 1) 83.13
B(12, 12, 1) 100 100 100 100
C(12, 12, 2) 97.34 94.54 93.28 92.58
D(12, 12, 4) 97.22 97.38 96.02 98.24

Worn A(5, 5, 1) 98.2
B(12, 12, 1) 100 100 100 100
C(12, 12, 2) 98.67 96.46 96.98 98.47
D(12, 12, 4) 99.09 97.81 98.92 99.09
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Table 4.13: Performance of the ANN models for the testing data set. The cutting parameters are fz , ae, Dtool, HB,
and Curv. The third column presents the results of the ANN model using only cutting parameters. The last four
columns present the average performance of the ANN models using both cutting parameters and MFCC from the
process signals.

Cutting Cutting Cutting Parameters and 7 MCFF
Tool Wear Parameters Accx,workpiece Accy,workpiece Fx,force Fy,force

Condition Model % % % % %
New A(5, 5, 1) 88.118

B(12, 12, 1) 73.49 70.42 80.31 88.18
C(12, 12, 2) 82 85.30 73.80 87.54
D(12, 12, 4) 85.12 84.43 83.30 90.87

Half-New A(5, 5, 1) 91.54
B(12, 12, 1) 74.09 76.99 73.47 76.02
C(12, 12, 2) 75.67 80.76 76.78 79.81
D(12, 12, 4) 78.91 78.33 77.29 80.40

Half-worn A(5, 5, 1) 91.93
B(12, 12, 1) 79.11 44.50 55.81 50.03
C(12, 12, 2) 74.63 74.86 75.52 77.74
D(12, 12, 4) 78.58 82.20 85.19 85.16

Worn A(5, 5, 1) 67.55
B(12, 12, 1) 79.97 77.10 68.49 71.48
C(12, 12, 2) 74.82 84.38 78.47 81.93
D(12, 12, 4) 67.10 83.87 85.56 84.81

4.8.5 Validation tests for the ANN models

First, the validation of the ANN models were determined by considering original data set from the DoE. Second,
new experiments with different cutting conditions were defined for validation. Table 4.14 shows four (R1, ..., R4)
replicates of the selected DoE for each cutting tool wear condition. The cutting conditions, and the geometric
parameters are fz = 0.05, ae = 2, Dtool = 16, HB = 90, 91, 93, Curv = −0.025, and 6082 aluminium alloy.
These values correspond to the central and extreme conditions of the DoE. From table 4.14 some observations can
be summarized:

• The measured Ra changes for each experiment, even though the cutting conditions and workpiece material
are the same. The maximum difference among the measured Ra for the same cutting conditions is 14%. This
behavior of the Ra is only reproduced when the models consider the process variables.
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Table 4.14: Selected experiments with measured and estimated Ra values computed with models A(5, 5, 1) and
D(12, 12, 4) for two different process variables: Accx,workpiece and Fy,force. The absolute percent error is shown
in the table.

Cutting Estimated Ra with ANN Models
Measured Tool A(5, 5, 1) D(12, 12, 4) Accx D(12, 12, 4) Fy

Exp03 Ra Condition Ra E(%) Ra E(%) Ra E(%)

E2-R1 0.127 New 0.129 1.57 0.126 0.78 0.112 11.81
E2-R2 0.113 New 0.129 14.16 0.110 2.65 0.114 0.88
E2-R3 0.108 New 0.129 19.44 0.113 4.63 0.110 1.85
E2-R4 0.122 New 0.129 5.73 0.104 14.75 0.112 8.19
E3-R1 0.167 H-New 0.155 7.18 0.172 2.99 0.171 2.39
E3-R2 0.191 H-New 0.155 18.84 0.079 58.63 0.172 9.95
E3-R3 0.179 H-New 0.155 13.40 0.175 2.23 0.146 18.43
E3-R4 0.179 H-New 0.155 13.40 0.126 29.61 0.160 10.62
E4-R1 0.234 H-Worn 0.165 29.48 0.214 8.54 0.241 2.99
E4-R2 0.235 H-Worn 0.165 29.78 0.188 20.00 0.310 31.92
E4-R3 0.241 H-Worn 0.165 31.53 0.221 8.29 0.230 4.56
E4-R4 0.227 H-Worn 0.165 27.31 0.213 6.16 0.254 11.89
E5-R1 0.266 Worn 0.223 16.16 0.285 7.14 0.272 2.25
E5-R2 0.272 Worn 0.223 18.01 0.255 6.25 0.284 4.14
E5-R3 0.267 Worn 0.223 16.47 0.269 0.74 0.284 6.36
E5-R4 0.272 Worn 0.223 18.01 0.249 8.45 0.290 6.62

• The estimated Ra with ANN models are better than the statistical models. The mean absolute percent errors of
each model with respect to the measured Ra are 17.6% for A(5, 5, 1) model (only cutting parameters), 11.36%
for D(12, 12, 4) model (cutting parameters + Acx), and 8.48% for D(12, 12, 4) model (cutting parameters +
Fy).

• Figure 4.16 depicts the comparison between the measured and estimated Ra. Here, it is observed that the
D(12, 12, 4) model with Fy process state variable follows a similar behaviour with the measured Ra.

New experiments with different cutting conditions were defined to validate the performance of the ANN models.
Table 4.15 presents the CC , PG, and PC for these experiments. Table 4.16 shows the results of the estimated Ra

with the ANN models.
The shown results in Table 4.16 are plotted in Figure 4.17. Some observations of these results are the following:

• The computed models with ANN and sensor fusion present a better performance than statistical models.
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Figure 4.16: Comparison of the Ra values obtained from the DoE with: (a) ANN model by using only cutting
parameters (A(5, 5, 1)), (b) ANN model with cutting parameters and Accx (D(12, 12, 4)), and (c) ANN model with
cutting parameters and Fy (D(12, 12, 4)).

Table 4.15: Cutting conditions and geometric parameters defined for the new experiments. These experiments were
used to validate the ANN models.

Experiment Tool Condition fz ae Dtool HB Curv

P1-2024-line/Island/Box New .075 3 12 109 0 /0.037 /−0.019
P3-2024-line/Island/Box Half-New .075 3 12 110 0 /0.083 /−0.0556
P4-2024-Island New .075 3 12 110 .025
P5-2024-Box New .075 3 12 109 −.025
P1-5083-line/Island/Box Half-New .047 2 8 71 0 /0.077 /−0.0588
P1-7075-line/Island/Box Half-New .115 4.5 20 158 0 /0.039 /−0.0183
P1-6082-line/Island/Box Half-Worn .04 4 12 89 0 /0.038 /−0.0185

• Even though the mean absolute percent errors are higher than results presented in Table 4.14, the models show
an excellent tendency in agreement with the measured Ra. The ANN model (D(12, 12, 4)) with the Fy,force

signal presents a better behaviour than other models.

• The results of the experiments from 9 to 14 in Table 4.16 present a bigger absolute percentage error than other
experiments because the cutting conditions correspond with extreme values, and they are within the limits of
the domain defined in the DoE.

4.9 Results and contributions

In relation to the Ra modeling, important contributions and results can be deduced from this chapter. Important
results are the following:
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Table 4.16: Results of the estimated Ra with the ANN models. The absolute percent error between the measured
and estimated Ra is shown.

Estimated Ra with ANN models
Measured A(5, 5, 1) D(12, 12, 4) Accx D(12, 12, 4) Fy

Experiment Ra Ra E(%) Ra E(%) Ra E(%)
1)P1-2024Line 0.161 0.147 8.69 0.139 13.66 0.083 48.44
2)P1-2024Island 0.176 0.160 9.09 0.220 25.00 0.154 12.5
3)P1-2024Box 0.144 0.148 2.77 0.136 5.55 0.104 27.77
4)P3-2024Line 0.158 0.190 20.25 0.220 39.24 0.132 16.45
5)P3-2024Island 0.160 0.174 8.75 0.283 76.87 0.123 23.12
6)P3-2024Box 0.145 0.200 37.93 0.300 106.89 0.166 14.48
7)P4-2024Island 0.196 0.156 20.40 0.099 49.48 0.164 16.32
8)P5-2024Box 0.150 0.150 0.00 0.197 31.33 0.025 83.33
9)P1-5083Line 0.238 0.614 157.98 0.302 26.89 0.416 74.79
10)P1-5083Island 0.238 0.532 123.52 0.263 10.50 0.365 53.36
11)P1-5083Box 0.202 0.461 128.21 0.359 77.72 0.357 76.73
12)P1-7075Line 0.211 0.331 56.87 0.132 37.44 0.298 41.23
13)P1-7075Island 0.268 0.268 0.00 0.110 58.95 0.186 30.59
14)P1-7075Box 0.147 0.160 8.84 0.072 51.02 0.339 130.61
15)P1-6082Line 0.163 0.297 82.20 0.139 14.72 0.337 106.74
16)P1-6082Island 0.196 0.323 64.79 0.117 40.30 0.170 13.26
17)P1-6082Box 0.136 0.134 1.47 0.177 30.14 0.107 21.32

• Response surface methodology was applied with excellent results for modeling the Ra. A rotatable central
composite design with 32 runs and four replicates was defined for the DoE, and after the ANOVA, a quadratic
model with the main interaction of factors was computed. For the new cutting tool condition, the Ra is
explained by the model with a performance of R2 = 90.0%. For the other three models, the Ra is computed
with the following performance: 90.0% for half-new cutting tool, 92.7% for half-worn cutting tool, and 93.4%
for worn cutting tool condition.

• The behaviour of the Ra with the variation of factors was compared with others research, with excellent
results. Ra increases with fz and decreases with an increase of the cutting tool diameter until it reaches a
minimum value. The Ra decreases as the workpiece hardness increases until it reaches a minimum value, and
then Ra increases with the hardness. Also, the Ra increases with the evolution of flank wear, and the models
can estimate the Ra with excellent results. The performance was compared with the mechanistic models of
other authors, and the average percentage error can be reduced from 86.47% to 8.98% by using proposed
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Figure 4.17: Comparison of the Ra values which were observed from new experiments, with (a) ANN model by
using only factors (A(5, 5, 1)), (b) ANN model with factors and Accx (D(12, 12, 4)), and (c) ANN model with
factors and Fy (D(12, 12, 4)).

models.

• Multi-sensor and data fusion were used to build ANN models with excellent results. By applying Principal
Component Analysis and the process signals, ANN models were computed with high performance, and they
can be used in In-process operating mode.

The contributions in the modeling of Ra are the following:

• The most important factors affecting the Ra were deduced by applying the screening factorial design. These
factors are fz , Dtool, ae, HB and Curv. The Curv factor is considered a new factor because it has never
been used in other research related to Ra. This factor allows the identification of path geometry from concave,
straight, and convex path.

• It was observed that Ra value increases with the evolution the flank wear. Four models were computed to
consider tool life, which allows the Ra to be estimated as a function of flank wear.

• An ANN model was developed based on cutting parameters and process state variables for monitoring the Ra
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in In-process operating mode. The relevant features of the process state variables were identified through the
computation of the MFCC.

• The consideration of four parameters to characterize the surface roughness allowed for the increase of perfor-
mance of ANN models. Similar Ra values can be computed by the ANN models, even though the cutting and
geometric parameters in the machining process are totally different. Therefore, it is relevant to characterize
the surface roughness with these parameters.

In addition to the contributions, it is important to include some limitations for the RSM and ANN models; they
are as follows:

• The estimation of the Ra with the RSM model is an excellent result only if the cutting and geometric parame-
ters are inside the defined cubic points in the DoE.

• It is important to mention that cutting conditions for the finishing operation were defined for the experiments.
This implies that models cannot be used in the roughing operation, where high material removal rates are
required during the cutting process.

• ANN models can be used only in In-process operating mode because they require the process state variables
to estimate the Ra.

• The RSM and ANN models cannot be used for the estimation of Ra in the machining of other materials (e.g.,
steel, copper, brass) because the cutting tools are different and the cutting parameters cannot be equals. It
is, therefore, necessary to define new conditions in the DoE, and with the obtained information, to build new
models.



Chapter 5

Cutting tool wear monitoring module

5.1 Introduction

This section focuses on the determination of wear, the most difficult of the tasks in a cutting tool wear condition
monitoring system. The importance of tool wear monitoring is implied by exchanging worn tools in time, and tool
costs can be reduced with a precise exploitation of the tool’s lifetime. However, cutting tool monitoring is not an
easy task for several reasons. Firstly, the machining processes are non-linear, time-variant systems, which makes
them difficult to model, and secondly, the signals obtained from sensors are dependent on a number of other factors,
such as machining conditions. Additional to the complexity of the process and the large number of machining
conditions (i.e. cutting conditions), signals from sensors in machine tools are disturbed for many reasons: outbreaks
at cutting edges, chatter, variances of tool geometry, properties of workpiece material, sensor non-linearity, noise of
digitizers, crosstalk effects between sensor channels, etc. Sensor-based approaches can be divided into direct and
indirect methods. Direct methods measure the actual values of certain wear parameters, whereas indirect methods
measure suitable process parameters, which are correlated with tool wear (e.g. cutting forces or vibrations). Another
important classification criterion for sensor-based methods depends on the monitoring period. In continuous or on-
line methods, significant parameters are measured throughout a cutting process, whereas in intermittent or off-line
methods the parameters are measured during intervals in the cutting process. An indirect and intermittent method is
proposed for cutting tool monitoring and diagnosis with intelligent features.

5.2 Cutting tool wear condition

Important concepts and recommendations about the cutting tool wear condition are described in the international
standard ISO-8688-2, ”Tool life testing in milling. Part 2: End milling”. Appendix G presents the main concepts
from the ISO-8688-2 norm and the methodology and process used to wear the cutting tool during experimentation.
It is necessary to identify and classify the cutting tool deterioration phenomena and where it occurs at the cutting

84
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edges. Figure 5.1 defines the terms related to the tool deterioration phenomena on end milling cutters.

a
p

Figure 5.1: The figure shows the area, where the flank wear is located, and the terms used to define the wear on the
end milling cutter (Figure taken from ISO 8688-2:1989(E)).

• Flank wear (V B): Loss of tool material from the tool flanks results in the progressive development of flank
wear land.

• Uniform flank wear (V B1): Wear land, which is normally of constant width and extends over the tool flanks
of the active cutting edge.

• Non-uniform wear (V B2): Wear land, which has an irregular width, and the original flank varies at each
position of measurement.

• Localized flank wear (V B3): Exaggerated form of flank wear which develops at a specific part of the flank.

The tool-life criterion can be a predetermined numerical value of any type of tool deterioration that can be
measured. If there are different forms of deterioration, they should be recorded, and when any of the deterioration
phenomena limits have been attained, the end of the tool life has been reached. Predetermined numerical values of
specific types of tool wear are recommended. These numerical values are:
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• For a width of the flank wear land (V B) the following tool life end points are recommended: a) uniform wear:
0.3 mm averaged over all teeth; and b) localized wear: 0.5 mm maximum on any individual tooth.

• When chipping occurs, it must be treated as V B3 and equal to 0.5 mm (tool-life end point).

Finally, flank wear measurement is carried out parallel to the surface of the wear land and in a direction per-
pendicular to the original cutting edge. Appendix D shows the procedure to measure the flank wear on the cutting
tool edges. Although the flank wear land on a significant portion of the flank may be of uniform size, there will be
variations in its value at others portions of the flanks depending on the tool profile and edge chipping. Values of
flank wear measurements shall be related to the area or position along the cutting edges at which the measurement
is made.

5.3 Methodology to wear the cutting tool

The design of experiments implies the use of new cutting tools, and the repetition of experiments with different
cutting tool wear conditions. Four different cutting tool wear conditions were defined to consider the total tool life:
new, half-new, half-worn, and worn. Therefore, it was necessary to define a methodology and process to wear the
cutting tool and to use the total tool life during the experimentation. The assessment of the flank wear was taken
as tool life criterion. The process to wear the cutting tool considers two working conditions: (a) the wear of the
cutting tool during the Design of Experiments (DoE) and (b) the wear of the cutting tool during the machining of
the straight path until the flank wear reaches a specific value. The process implies the following steps:

1. New cutting tools are specified and the DoE with four replicates is executed, as was defined in Chapter 4.

2. After running the DoE, the flank wear is measured and registered.

3. The cutting tools were worn by using several workpiece materials, and in the process flank wear was measured.
The cutting tools are worn until a specific flank wear value is reached.

4. The DoE is repeated with a new stage of cutting tool.

5. Steps 2, 3, and 4 are repeated twice. The flank wear is measured and registered at the end of each stage.

Several equations and parameters were defined to assess the flank wear during the experimentation, and they are
included in Appendix G.

5.4 Results of the tool life tests

During the machining process of the DoE, the machining time, the volume of the removed metal, and the number of
cycles of the cutting tools were computed. The results are presented in Appendix G. Also, the flank wear evolution
is shown in Appendix G. The uniform flank wear (V Bavg) represents the average value of the two cutting tool
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edges, and the maximum flank wear (V Bmax) corresponds to the higher value found in the cutting edges. With
these results, the range of flank wear to classify the four cutting tool conditions is defined in Table 5.1.

Table 5.1: Cutting tool wear condition and the flank wear observed during the experimentation.

Cutting Tool Wear Condition Uniform Flank Wear (mm)

New 0 ≤ V B < 0.07
Half-new 0.07 ≤ V B < 0.1
Half-worn 0.1 ≤ V B < 0.18

Worn 0.18 ≤ V B < 0.45

Figure 5.2 depicts the evolution of flank wear during the experimentation. The clustering of the data for each
cutting tool wear condition is observed. The top plot in Figure 5.2 shows the evolution of the V B versus the
machining length and the bottom plot in Figure 5.2 depicts the V B versus the volume of removed metal. Figure
5.3 shows the same plots as Figure 5.2, however instead of plotting average V B, maximum flank wear is shown.
The observed behaviour in Figures 5.2 and 5.3 justifies the selection of the four cutting tool wear conditions during
experimentation. The half-new condition represents the ending of the fast evolution of flank wear for the new cutting
edge, and the half-worn condition defines the beginning of the fast evolution of the worn cutting tool condition.
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Figure 5.2: Evolution of flank wear on the cutting edges. Right plot shows average flank wear versus the machining
length. The left plot shows average flank wear versus the volume of removed metal.

5.5 Hidden Markov Model approach

In this section one type of stochastic signal model, Hidden Markov Model (HMM) is described. This approach will
be used for modelling the gradual loss of tool material at contact zones with the workpiece. The assessment of flank
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Figure 5.3: Evolution of the maximum value of flank wear on the cutting edges. Right plots shows the maximum
V B versus the machining length. Left plot shows the maximum V B versus the volume of removed metal.

wear during the machining process is not an easy task because several factors are involved and there is not a direct
method for measuring cutting tool wear. A HMM framework is developed in order to identify V B based on the
process variable measurements. A complete description of the HMM can be found in Appendix H [Rabiner, 1989]

and [Mohamed and Garder, 2000]. A HMM is characterized by the following parameters:

• Ns is the number of states in the model. The states could be interconnected in such a way that any state can
be reached from any other state (Ergodic model). The individual states are S = S1, S2, · · · , SN , and the state
at time t as qt.

• M is the number of distinct observation symbols per state. The individual symbols are V = v1, v2, · · · , vM .

• A = aij is the state transition probability distribution. Where

aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N (5.1)

• B = bj(k) is the observation symbol probability distribution in state j. Where

bj(k) = P [vk at t|qt = Sj ], 1 ≤ j ≤ N, 1 ≤ k ≤ M (5.2)

• π = πi is the initial state distribution. Where

πi = P [q1 = Si], 1 ≤ i ≤ N (5.3)

A HMM requires the following parameters: Ns, M , specification of observation symbols, and the three proba-
bility measures, A,B, and π. For convenience the compact notation λ = (A, B, π) is used. These parameters are
learned by using the Baum-Welch algorithm.



Cutting Tool Wear Monitoring Module 89

5.5.1 Baum-Welch Algorithm

The Baum-Welch algorithm is an iterative process that uses the forward and backward probabilities to solve the
problem. The goal is to obtain a new model, λ = (A, B, π) to maximize the function,

Q(λ, λ) =
∑

Q

P (O, Q | λ)
P (O|λ)

log
[
P (O,Q|λ)

]
(5.4)

First, a current model is defined as λ = (A, B, π) and used to estimate a new model as λ = (A,B, π). Based
on this procedure, if λ is iteratively used in place of λ and repeats the calculus, then we can improve the probability
of O being observed from the model until some limiting point is reached. The result of the recalculation procedure
is called a maximum likelihood estimate of the HMM. At the end, the new set of parameters (means, variance, and
transitions) is obtained for each HMM. With the computed parameters for the HMM models, next step implies the
pattern recognition by using the observation sequences from sensors. A decoded algorithm is required to compute
the best state sequence that allows the identification of the cutting tool wear condition.

5.5.2 Viterbi Algorithm

In pattern recognition applications it is useful to associate an optimal sequence of states with a sequence of observa-
tions, given the parameters of the model. A reasonable optimal criterion consists of choosing the state sequence (or
path) that brings a maximum likelihood with respect to a given model. This sequence can be determined recursively
via the Viterbi algorithm. This algorithm allows to find the single best state sequence, Q = {q1 q2 · · · qT } for the
given observation sequence O = {O1 O2 · · · OT }, and it makes use of two variables:

1. The highest likelihood δt(i) along a single path among all the paths ending in state i at time t:

δt(i) = max
q1,q2,··· ,qt−1

P [q1 q2 · · · qt = i, O1 O2 · · ·Ot|λ]

2. A variable ψt(i) that allows keeping track of the best path ending in state j at time t.

Using these two variables, the algorithm implies the following steps:

1. Initialization
δ1(i) = πibi(O1) 1 ≤ i ≤ N

ψi = 0

2. Recursion
δt(j) = max

1≤i≤N
[δt−1(i)aij ]bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ], 2 ≤ t ≤ T, 1 ≤ j ≤ N
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3. Termination
P ∗ = max

1≤i≤N
[δT (i)]

q∗T = arg max
1≤i≤N

[δT (i)]

4. Path (state sequence) backtracking

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, · · · , 1

The Viterbi algorithm delivers the best states path, which corresponds to the observations sequence. This algo-
rithm also computes a likelihood along the best path.

5.6 Monitoring and diagnosis of cutting tool wear condition

This section presents the obtained results with the Hidden Markov Models for monitoring and diagnosis of cutting
tool wear condition during peripheral end milling process in HSM. Additionally, the Artificial Neural Network
approach was used to monitor and diagnose cutting tool wear condition. However, the results with HMM were better
than those obtained with the ANN approach shown in Appendix H. In agreement with the experiments, a database
was built with 441 experiments: 110 experiments with a new cutting tool, 112 with a half-new cutting tool, 110 with
a half-worn cutting tool, and 109 with a worn cutting tool. A Monte Carlo simulation for the training/testing steps
was implemented owing to stochasticity of the approach. The results correspond to an average of 10 runs. Different
training data sets (Tr) and testing data sets (Ts) were generated in agreement with Figure 5.4.

Experiments

Database

70% Training

Data Set

Trained

Process

Random

Selection

30% Testing

Data Set

Tested

Process

Compute

Statistics

Repeat 10 times
Ts

Tr

Models
Results

Figure 5.4: Procedure for computing the approach performance. A random simulation for splitting the experimental
data set in training/testing sets was implemented owing to the stochastic nature of the process.

5.6.1 Classification of the cutting tool wear condition by using HMM

The implemented flow diagram for monitoring and diagnosis of the cutting tool wear condition in In-process oper-
ating mode is shown in Figure 5.5. First, the signals are processed and split into two branches training and testing.
Second, the training branch produces the HMM parameters by using the Baum-Welch algorithm. Third, the testing
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branch uses the preprocessed signals and the HMMs to compute the P (O/λ) using the Viterbi algorithm for each
model. The model with higher probability is selected as the result.

Four continuous HMM (first order) were defined in agreement with different cutting tool wear conditions. Com-
puted parameters for each HMM were the initial state distribution, the transition model, and the observation model.
Hence, each HMM can be written as HMM(π, A, B). The transition model is usually characterized by a conditional
multinomial distribution A{aij}. The computed transition matrices with the Baum-Welch algorithm, considering
four states, is as follows:

• For the new cutting tool condition

A(4,4) =




0.0459 0.4135 0.2788 0.2617
0.0061 0.9939 0.0 0.0
0.0118 0.9939 0.0 0.0
0.0056 0.0 0.0 0.9944


 (5.5)

• For the half-new cutting tool condition

A(4,4) =




0.8553 0.0854 0.0403 0.019
0.0 1.0 0.0 0.0
0.0 0.0 0.9967 0.0033

0.0177 0.0 0.0089 0.9933


 (5.6)

• For the half-worn cutting tool condition

A(4,4) =




0.0001 0.282 0.4795 0.2384
0.0 1.0 0.0 0.0
0.0 0.0 0.9978 0.0022
0.0 0.0 0.0066 0.9934


 (5.7)

• For the worn cutting tool condition

A(4,4) =




0.8584 0.0554 0.0535 0.0327
0.0 0.9826 0.0174 0.0
0.0 0.0176 0.9824 0.0
0.0 0.0 0.0 1.0


 (5.8)

The observation distributions were selected to be continuous, and they were specified using a parametric model
family. It is common to represent P (Ot|qt) as a Gaussian for observation vectors

P (Ot = o|qt = Si) = ℵ(o; µi, Σi) (5.9)

where ℵ(o; µi, Σi) is the Gaussian density with mean µ and covariance Σ. Also, it is common to use weighted
mixture of Gaussian functions
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Figure 5.5: Flow diagram for monitoring and diagnosis of the cutting tool wear condition with continuous HMM.
The features from signals are separated into 2 branches. The training branch leads to HMM and the diagnosis branch
uses new observations and HMMs to recognize cutting tool condition.

bj(o) =
M∑

k=1

cjkℵ(o, µjk, Σjk) =
M∑

k=1

cjkbjk(o, µjk, Σjk) (5.10)

where cjk is the weight of the Gaussian k. It allows for a better representation of the behaviour of the process
signals. Therefore, the model can be described in terms of µjk, Σjk, and cjk, and the observation model is defined
as

bjk(ot, µjk, Σjk) =
1∏d

i=1

√
2πΣjki

e
− 1

2

Pd
i=1(

oti−µjki
Σjki

)2

(5.11)

The HMM framework was evaluated for different states and Gaussians in order to find the optimum performance
results. Three different configurations were defined for the HMM, in agreement with Section 5.5. The configuration
with acceptable performance was selected to be used in the monitoring and diagnosis system. The proposal configu-
rations were the following: 1) Three states, 2 Gaussians, and 7 MFCC of AE−Spindle; 2) Four states, 2 Gaussians,
and 7 MFCC of AE−spindle, and 3) Four States, 4 Gaussians, and 7 MFCC of AE−spindle.

First, the maximum likelihood estimation implies an iterative process to compute the set of parameters which
define each HMM. It was made by using the Baum-Welch algorithm. Figure 5.6 shows the iterative process for three
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different configurations of HMM. It is observed that the number of iterations increases if the number of states (Q)
and Gaussians (M ) also increase. However, the three configurations can be used for monitoring and diagnosis of
the cutting tool wear condition. The selected configuration must be chosen by considering the following: (a) The
selected number of Q and M must allow an acceptable performance in the pattern recognition; (b) High values of
Q and M must be avoided because it implies the consumption of enough processing time during the classification
process with the Viterbi algorithm.
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Figure 5.6: Number of iterations required to compute the HMM parameters as a function of the number of states
and Gaussians.

Figure 5.7 shows how the average performance increases if the number of states and Gaussians are also increas-
ing in the HMM approach. Figures 5.6, and 5.7 show that the HMM with four states and two Gaussians present
an excellent performance, and they were selected for the monitoring and diagnosis system of cutting tool wear
condition.

5.6.2 Performance of the HMM approach

With configuration defined for the HMM, the next step will be to select the process signal that allows a high per-
formance in the classification of cutting tool wear condition. First, the HMMs were built and evaluated for each of
eight process state signals and the MFCC were computed with the following configuration: Rectangular window
in time domain, triangular shape bandpass filter with 20 filters, the 0’th order cepstral coefficient, and six cepstrum
coefficients. Figure 5.8 shows the performance of the HMMs for each one of the process signals. In this test the
acoustic emission (AE) signal was the best process state variable, which allowed a high performance of the HMM
approach. For the AE-Spindle signal the average performance was 98.72% for training data set and 95.83% for
testing data set. Second, the HMM performance was computed with the process described in Section 5.6 owing to
the stochasticity of the approach.

The HMM performance with the testing data set and different configurations was evaluated. The observations
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Figure 5.7: Evaluation of the HMM performance with the testing data set and different configurations. The observa-
tions were computed with the MFCC from the acoustic emission signals in the CNC’s spindle. The figure shows the
results for each cutting tool wear conditions and similar performance is observed for different configurations. The
total average performance was 96.06% for HMM(7, 3, 2), 96.29% for HMM(7, 4, 2), and 97.21% for HMM(7, 4, 4).

were computed with the MFCC from the acoustic emission signals in the CNC’s spindle. The figure shows the results
for each cutting tool wear condition, and similar performance is observed similar for different configurations. The
tests were defined to evaluate the success of the HMMs with the following signals: Acoustic Emission in the spindle
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Figure 5.8: Evaluation of the HMM performance using different process state variables: vibrations, forces, and
acoustic emission signals. The results are shown for each cutting tool wear condition and a specific signal. It is
observed that acoustic emission signals represent the best option for monitoring the cutting tool wear condition.
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(AE − Sp), cutting force in Y axis of the dynamometric platform (Fy − Dy), and acceleration in Y axis in the
workpiece (Acy − Wp). Figure 5.9 shows the box and whisker plot for comparison of the obtained success of
the HMMs with training data set. The boxes have lines at lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of a box to show the extent of the rest of the data. The boxes are notched
to represent a robust estimate of the uncertainty about the medians for box-to-box comparison. It is observed that
the AE − Sp signal presents the highest performance for all cutting tool wear conditions. Also, figure 5.9 shows
the box and whisker plot for comparison of the obtained success of the HMMs with testing data set. Once again,
the best results were computed with the AE-Sp signal. For the AE-p signal the average performance was 98.15%
for training data set and 96.29% for testing data set. Third, the HMMs were built and evaluated with only the AE-
Sp, Fy-Dy, and Acy-Wp process signals, and the MFCC were computed with different configurations: hamming
window in time domain, triangular shaped bandpass filter with 40 filters, Log energy coefficient, and six MFCC.
Figure 5.10a shows the performance of HMMs for the training data set. This figure shows the box and whisker
plot for comparison of the obtained success of the HMMs with training data set. Figure 5.10b shows the box and
whisker plot for the testing data set. Once again the best results were computed for the AE − Sp process signal.
Average performance was 98.78% for training data set and 98.18% for testing data set. Results with the new MFCC
configuration are better than those computed with the first configuration of the MFCC. The performance increases
0.64% for training data set and 1.96% for testing data set specifically for the AE-Spindle signal.

N HN HW W N HN HW W N HN HW W

65

70

75

80

85

90

95

100

AE-Sp Signal Fy-Dy Signal Acy-Wp Signal

Cutting tool wear condition

Process signal

HMM (7,4,2)

Training data set

(a)

30

40

50

60

70

80

90

100 Testing data set
HMM (7,4,2)

N HN HW W N HN HW W N HN HW W

AE-Sp Signal Fy-Dy Signal Acy-Wp Signal

Cutting tool wear condition

Process signal
(b)

P
e
rf

o
rm

a
n
c
e
 (

%
)

P
e
rf

o
rm

a
n
c
e
 (

%
)

Figure 5.9: Performance of the HMMs with 10 runs and different process signals. These results correspond with
(a) the training data set, and (b) testing data set and all cutting tool wear conditions (N = new, HN = Half-New,
HW = Half-Worn, and W = Worn).

Finally, a classical test in a diagnosis system is to identify two alarms owing to a false classification of the cutting
tool condition. These alarms are False Alarm Rate (FAR) and False Fault Rate (FFR). FAR condition represents a
damage tool, but it is not true. FFR condition corresponds to a good state of the tool, but it is really damaged.
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Figure 5.10: Performance of the HMM with the MFCC computed with Hamming window, 40 filters, and Log energy
coefficient. The results correspond with (a) the training data set, and (b) the testing data set for all cutting tool wear
conditions (N = new, HN = Half-New, HW = Half-Worn, and W = Worn).

The FAR condition is not a problem in diagnosis, but it reduces productivity. However, the FFR condition might
represent a critical problem when the rate is high because the tool can break before it is replaced. Therefore, it is
recommended to have a low rate of FFR condition. Figure 5.11 shows the misclassification percentage owing to the
FFR condition. The classifier with the lowest percentage of FFR was with the AE sensors. The AE-Spindle shows
the lowest percentage of FFR condition (only 1.52% for the worn condition).

5.7 Analysis of the results and contributions

New ideas based in the Hidden Markov Models (HMM) and the Mel Frequency Cepstrum Coefficients (MFCC),
usually applied in speaker identification systems, were developed for monitoring and diagnosis of the cutting tool
wear condition for peripheral milling process in a HSM with excellent results. The system was implemented for
recognizing four cutting tool wear conditions: new, half-new, half-worn, and worn condition. The monitoring and
diagnosis system was designed and implemented to recognize the cutting tool wear condition on-line, using only
process state variables recorded during the machining process. Best results were obtained with signals coming
from AE-Spindle, with an average performance of 98.15% for training data set and 96.29% for testing data set.
The MFCC were computed by considering two configurations in the preprocessing stage. Basically, the number of
filters changed from 20 to 40, and they allowed for the capture of more information about the characterization of
cutting tool wear condition. With a bank of 40 filters, the performance of the HMM, increases to 98.18% for testing
data set.

The main contributions in the Tool Condition Monitoring (TCM) are the following:
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Figure 5.11: Evaluation of the misclassification percentage in FFR conditions. For specific signals, the FFR condi-
tion was computed. The lowest percentage of the FFR condition was obtained for the HMM using the AE signal.

1. The HMMs can be used to recognize the worn condition of five different cutting tool diameters in HSM with
five different hardnesses in the workpiece materials.

2. The characterization of AE signals with the MFCC allowed for a high performance of the HMM with only one
process signal. The MFCC, have not been used in previous research to recognize cutting tool wear condition.

3. The (TCM) system with the HMM approach and MFCC features can be utilized in the aeronautic and auto-
motive industry to maximize tool life and decrease operation cost.



Chapter 6

Intelligent monitoring and process
planning system

6.1 Introduction

Competitive business demands production systems based on intelligent machines because the aerospace and au-
tomotive industry must be able to manufacture accurate components and get it right the first time [Nacsa, 2001].
In [Balic, 2006] the main features of an intelligent CNC machine are defined by: prediction of operations, reduc-
tion of set up time, detection of cutting tool condition, acquisition of knowledge, and inference from incomplete
information.

This chapter presents the design and implementation of an Intelligent Monitoring and Process Planning System
(IMPPS) in HSM, which represents the main contribution of the Intelligent Monitoring and Supervisory Control
System. Figure 3.1 in Chapter 3 depicts the implemented supervisory control system. The system predicts the
Ra and suggests optimal cutting conditions before running the CNC machining center (Pre-process). Then, during
the machining process (In-process), the system adapts needed changes in cutting parameters and maintains the Ra

quality. The quality is considered an objective function. Furthermore, the planning system recommends an optimal
policy for minimum operation cost. Robust models based on statistical methods and Artificial Intelligence (AI)
techniques were computed to predict the surface roughness Pre and In-process operating mode (see Chapter 4).
Also, a pattern recognition system based on the HMM approach was implemented to monitor and diagnose the
cutting tool wear condition as described in Chapter 4. Furthermore, the decision-making block for computing the
optimal actions for the operator is described.

98
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6.2 Intelligent monitoring and process planning system

[Monostori, 2000] classifies the possible intelligent parts of a CNC in cutting tool monitoring, operation/machine
tool modelling, and adaptive control. The IMPPS considers these intelligent parts, and their main tasks are the
following:

1. In Pre-Process operating mode, the module estimates Rap with the statistical model and some factors de-
fined by the operator. The optimal cutting parameters are computed with a Genetic Algorithm (GA), which
guarantees a minimum Ra value.

2. For the In-Process condition, the module is based on the knowledge of cutting tool wear condition (V B), and
process state variables. Rap is estimated by using an ANN model.

3. Simultaneously, the module predicts the optimal policy that minimizes production cost. Based on this pol-
icy, this module guides the operator. The policy is constrained at different aluminium alloys, cutting tool
diameters, and cutting tool wear condition.

Figure 6.1 depicts the flow diagram implemented for steps 1, 2, and 3, where the cutting parameters are estimated
in agreement with the requirements of the operator and the cutting tool wear condition.
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Figure 6.1: Flow diagram of the IMPPS. This diagram shows the procedure to compute the optimal cutting condi-
tions in Pre-process and In-process operating modes. Also, the MDP is included in the flow diagram.
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6.2.1 Optimization process in Pre-process operating mode

The optimization process is mainly applied in Pre-process operating mode for computing the optimal cutting pa-
rameters. It is based on the statistical model for Ra and the Genetic Algorithm GA. The GA is probably the most
general approach of evolutionary computation methods. It is a population-based search optimization technique and
has been used as a powerful tool for optimizing cutting parameters in end milling process ([Suresh et al., 2002],
[Brezocnik et al., 2004], and [Palanisamy et al., 2007]).

The data processed by GA includes a set of strings (or chromosomes) with an infinite length in which each bit is
called a gene. A selected number of strings is called a population and the population at a given time is a generation.
The generation of the initial population of strings is done randomly. A binary encoding scheme is used to represent
the chromosomes with zeros or ones. The fitness value (objective function) of each member is computed. The
population is then operated by reproduction, crossover, and mutation to create a new population. One iteration of
these operators is known as a generation in the GA. The implementation of GA implies the following steps:

1. Coding. In order to use the GA to solve a problem, the variables fz , DTool, and ae are coded in string
structures. Binary-coded strings having zeros and ones are used. The length of the string is determined by the
desired solution accuracy. In the calculation, 8 bits are recommended for the strings, with excellent accuracy
for the selected variables.

2. Fitness function. GAs mimic the survival of the fittest principle. A fitness function F (x) is derived from the
objective function and is used in successive genetic operations. The independent variables for optimal cutting
parameters are: fz , DTool, and ae. The Ra is the response, and it allows for minimization of the fitness
function represented by the RSM model.

3. Apply the basic operation of GA:

• Reproduction. In this process individual strings are copied into a separate string, called the mating pool,
according to their fitness values, i.e., strings with a higher value have a higher probability of contributing
to the next generation.

• Crossover. After reproduction, the population is enriched with good strings from the previous generation
but does not have any new string. A crossover operator is applied to the population to hopefully create
better strings. The total number of participatory strings in crossover is defined by crossover probability,
which is the ratio of total strings selected for mating and population size.

• Mutation. It represents the occasional random alteration of the value of a string position. This means
changing 0 to 1 or vice versa on a bit by bit basis and with a small mutation probability. The need for
mutation is to keep diversity in the population.

After applying the GA operators, a new set of population is decoded and objective function values are calcu-
lated. It represents one generation of GA. Such iterations are continued until termination criterion is achieved.
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The GA was simulated with a computer program in MatLab and configured with the following parameters: 100
generations, population of 20, 0.8 crossover probability, and 0.2 mutation probability. The applied constraints at
independent variables were 0.025 ≤ fz ≤ 0.13, 1 ≤ ae ≤ 5, and 8 ≤ Dtool ≤ 20.

6.2.2 Optimization process in the In-process operating mode

In the In-process operating mode the optimization process computes only an absolute percent error between the
estimated Rp

a and the desired Rd
a

∆Error =
(Rp

a −Rd
a)

Rd
a

(6.1)

with this deviation, a new value of fN
z is computed with the equation

fN
z = fz ∗ (1−∆Error) (6.2)

Finally, the Ra is computed with the new fz value and the ANN model. During the In-process operating mode,
it is not recommended to change the values of the Dtool, HB, ae, and Curv parameters because they directly affect
the design of the machined part. For this reason, the fz parameter is the only one that can be modified. Also, Chapter
4 was demonstrated that by decreasing the fz , the Ra decreases for all cutting tool wear conditions. Additionally,
Chapter 4 defined the limits of fz value. With these considerations, the fz is a parameter that can be controlled
on-line and allows the minimization of the Ra.

6.3 Markov Decision Process

The Markov Decision Process (MDP) provides a framework for sequential decision-making in a stochastic envi-
ronment. The goal of the decision maker is to choose a sequence of actions to optimize a predetermined criterion.
Markov chains provide a useful tool for determining expected profits or cost associated with certain types of sys-
tems. The key characteristic of a Markov model is a probability law in which future behaviour of the system is
independent of past behaviour, given the present condition of the system. Therefore, the MDP is a controlled sto-
chastic process satisfying the Markov property with cost assigned to state transitions. A solution of the MDP is a
policy that mapping states to actions, and that determines the state transitions to minimize the cost according to the
performance criterion. A formal description of the MDP is as follows:

• S is a finite set of states of the machining process.

• A is a finite set of actions that the operator can do.

• P : S × A is the state transition probability distribution function. For each action and state of the machining
process, there is a probability distribution over the states of cutting process that can be reached after the
actions. The function P (s | s′, a) is defined as the probability of reaching state s starting in state s′ and given
action a.



102

• f is the instantaneous cost function, and it is defined for each action.

• R : S × A is a reward function. For each action in each state of the world, it assigns a real number. The
function is defined as the reward of executing action a in the state s.

• β is an action function, and it defines a vector that maps the state space into the action space, that is, an action
function assigns an action to each state.

• A stationary policy (π) is a policy that can be defined by an action function. The stationary policy is define
by the function β takeing action a(i) at time n, if Sn = i, independent of previous state, and previous action
and time n. The set of all (decisions) policies is denoted by ϑ.

• Non-stationary policy is a sequence of situation-action mappings indexed by time, i.e., the optimal sequence
of action may change when time advances.

The Expected Discount Cumulative Cost will be used to compute the optimal minimum cost. This option is
equivalent to using a present worth calculation for the basis of decision making. Let α be a discount factor such
that one dollar, for example, obtained at time n = 1 has a present value of α at time n = 0. If r is a rate of
return (interest rate), then α can be computed by α = 1/(1 + r). Let χ = xn; n = 0, 1, 2..., be a Markov Chain
with Markov Matrix P. Let f be cost function and let α be a discount factor. In [Feldman and Valdez-Flores, 2004]

and [Rajabi-Ghahnavie and Fotuhi-Firuzabad, 2006], the authors describe an algorithm to compute the optimal cost
function and the optimal policy that minimize the cost function. The expected total discounted cost is given by

E

[ ∞∑
n=0

αnf(xn) | x0 = i

]
=

[
(I − αP )−1f

]
(i) (6.3)

Therefore, the total expected discounted cost under the probability law specified by the policy (π), is given by

να
π =

[
(I − αPπ)−1fπ

]
(i) (6.4)

Thus, the discount cost optimization problem can be stated as follows: Find πα ∈ ϑ such that να
πα(i) = να(i)

where the vector vα is defined by

να(i) = min
πεϑ

να
π (i) (6.5)

The optimum discounted cost value and the optimal policy are computed with the following procedure:

• The expected discounted cumulative cost with respect to a state i for a particular policy π and fixed discount
factor α is defined by (for all i ∈ S)

να
π (i) = f

π(i)
i + α

∑

jεS

P
π(i)
ij νπ

(
Σα | j

)
(6.6)
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• The optimal total cost function is defined as

ν∗
(
Σα | i

)
= min

π
νπ

(
Σα | j

)
(6.7)

• The last equation satisfies the following optimal equations (for all i ∈ S)

ν∗(i) = min
kεA

[
fk

i + α
∑

jεS

P k
ijν

∗(Σα | j
)]

(6.8)

• The optimal policy can be found from the total cost function as follows (for all i ∈ S)

π∗(i) = arg min
kεA

[
fk

i + α
∑

jεS

P k
ijν

∗(Σα | j
)]

(6.9)

There are different algorithms to solve the MDP and analyze their running times. These algorithms are: Linear
programming, policy iteration, and value iteration. Only the last two algorithms will be presented in this section and
their results will be compared to decide which algorithm requires less iteration to solve the MDP.

6.3.1 Police iteration

The police iteration alternates between a value determination phase, in which the current policy is evaluated, and a
policy improvement phase, in which an attempt is made to improve the current policy. The algorithm applies the
following steps:

1. Let π′ be a deterministic stationary policy.

2. Create a loop with the following operations:

(a) Set π to be π′.

(b) Determine for all i ∈ S, ν(Σα|i) by solving the set of N (number of states) equations in N unknowns
described by Equation 6.6.

(c) For each i ∈ S if there exist some k ∈ A such that

fk

i + α
∑

j∈S

P k
ijν(Σα|j)


 < ν(Σα|i) (6.10)

then set π′(i) to be k otherwise set π′(i) to be π(i).

(d) Repeat loop if π 6= π′.

3. Return π.

Step 2b is the value determination phase and step 2c is the policy improvement phase.
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6.3.2 Value iteration

Value iteration algorithm works by computing the optimal total-cost function assuming first a non-stage finite hori-
zon, then a two-stage finite horizon, and so on. The computed total cost functions are guaranteed to perform at
optimal minimum cost. In addition, the policy associated with successive total cost functions will perform optimally
with a finite number of iterations. This algorithm is described as follows:

1. For each i ∈ S, initialize νo(Σα|i).

2. Set n to be 1.

3. While n < maximum number of iterations.

(a) For each i ∈ S and k ∈ A, let

νn(Σα|i, k) =


fk

i + α
∑

j∈S

P k
ijν

n−1(Σα|j)

 (6.11)

νn(Σα|i) = min
k∈A

νn(Σα|i, k) (6.12)

(b) Set n to n + 1.

4. For each i ∈ S,
π(i) = arg min

k∈A
νn(Σα|i, k) (6.13)

5. Return π.

The maximum number of iterations is either set in advance or determined automatically using an appropriate
stopping rule. The Bellman residual at step n is defined to be

max
i∈S

| νn(Σα|i)− νn−1(Σα|i) | (6.14)

By examining the Bellman residual during value iteration and stopping, when it gets below some threshold
ε′ = ε(1−α)/(2α), it is guaranteed that the resulting policy will be ε−optimal. The optimal total cost function and
the optimal policy were computed using the MDP Toolbox V 2.0 for MatLab. The toolbox includes both algorithms.

6.4 Implementation of the IMPPS

Figure 6.2 depicts the flow diagram of the IMPPS. The flow diagram defines the two conditions: Pre-process and
In-process. First, the operator defines CC , PC , and PG for machining the workpiece, and Rd

a is defined. The cutting
tool condition is considered as a new tool. Second, the module computes the Rp

a with the statistical module. If
Rp

a ≥ Rd
a, the GA is executed to compute new values of fz , ae or Dtool to minimize the Ra value. Third, during the

machining the process state variables are recorded, and the cutting tool monitoring module is executed to recognize
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Figure 6.2: Flow diagram for the intelligent monitoring, diagnostic of cutting tool condition and evaluation of the
optimal cutting parameters. In Pre-process operating mode the steps for computing the optimum cutting parameters
are defined. The In-process operating mode defines the steps for recognizing the cutting tool condition, computing
the Ra, and controlling the fz value to maintain the desired Ra.

the cutting tool wear condition. Fourth, in In-process condition, the AI models are used to compute the new value
of the Rp

a by considering the cutting tool wear condition. Once again, if Rp
a ≥ Rd

a an error is computed, the
fz value must be changed. With the ANN model, the Ra value is obtained with the new fz . The module makes
recommendations to continue with the same or new optimal cutting parameters for the next workpiece.
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6.5 Results

Several experiments were used to validate the IMPPS. First, the experiments include all the replicates obtained
during the full life of the cutting tool. Second, new experiments were implemented to validate different modules.

6.5.1 Validation with original experiments

Exploiting the data set used for modeling the Ra, the complete system was tested. The cutting conditions corre-
sponded with experiment number 3, and the four replicates (R1, R2, R3, R4) were used. For this experiment, the cut-
ting conditions and the geometric parameters are the following: fz = 0.05, ae = 2, Dtool = 16, HB = 90, 91, 93,
Curv = −0.025, and 6082 aluminium alloy. The experiments are classified according to cutting tool wear con-
dition: E2 for new, E3 for half-new, E4 for half-worn, and E5 for worn condition. Table 6.1 shows the selected
experiments and the results computed with intelligent monitoring and the process planning module. Results can be
summarized as follows:

• The cutting tool monitoring module recognized the cutting tool wear condition with a performance of 100%.

• Even though the cutting conditions are the same for all experiments, the measured Ra changes owing to flank
wear and other factors (vibration, chatter, run-out, etc). This behaviour is reproduced with excellent results
only if process state variables are included in the ANN models.

• The mean absolute percent error of each Ra model with respect to the estimated Ra is 11.81% for the RSM
model, 17.48% for the the ANN with only factors, 11.25% for the ANN with factors and Accx, and 8.59 for
the ANN with factors and Fy . The best assessment of Ra was observed with the last ANN model, therefore, it
will be used to compute the estimated Ra In-process condition.

6.5.2 Validation tests with new experiments

New experiments with different cutting conditions were defined in order to evaluate the system performance. Table
6.2 presents the new cutting conditions, and the test pieces are shown in Figure 6.3. The test pieces were designed to
consider three geometries for machining. Furthermore, the cutting conditions were defined to include central points,
limit points, and external points in agreement with the domain defined in the DoE. Table 6.3 shows the computed
results with the IMPPS.

Results are plotted in Figure 6.4, and they can be summarized as follows:

• The success of the cutting tool monitoring module was 88% for recognizing the cutting tool condition. Only
three experiments were badly classified. These are experiment numbers 16, 19, and 23.

• The mean absolute percent error of each Ra model with respect to the measured Ra is 59.82% for the RSM
model, 42.22% for the ANN with only factors (CP ), and 39.37 for the ANN with CP + Fy . In Figure 6.4 it
is observed that the ANN(CP + Fy) model shows an excellent tendency with respect to the measured Ra.
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Table 6.1: Experiments selected with the measured and estimated Ra values in Pre and In-process operating modes,
and the results of the monitoring cutting tool wear condition. CP = Cutting parameters.

Pre- In-processRaANN Absolute percent error
process Cutting Only CP CP

Ra,meas RaRSM Tool CP +Accx +Fy Only CP CP
Exp. µm µm Condition µm µm µm RSM CP +Accx +Fy

E2−R1 0.127 0.105 New 0.129 0.126 0.112 17.42 1.73 0.80 11.72
E2−R2 0.113 0.105 New 0.129 0.110 0.142 7.09 14.45 2.31 0.92
E2−R3 0.108 0.105 New 0.129 0.113 0.110 2.96 19.54 4.48 2.14
E2−R4 0.122 0.105 New 0.129 0.104 0.112 14.24 5.65 14.69 8.55
E3−R1 0.167 0.215 Half-New 0.155 0.172 0.171 28.41 7.42 3.18 2.49
E3−R2 0.191 0.215 Half-New 0.155 0.079 0.172 12.53 18.87 58.60 9.94
E3−R3 0.179 0.215 Half-New 0.155 0.175 0.146 19.81 13.62 2.46 18.65
E3−R4 0.179 0.215 Half-New 0.155 0.126 0.159 19.74 13.66 29.85 10.79
E4−R1 0.234 0.251 Half-Worn 0.165 0.214 0.241 7.22 29.37 8.63 2.842
E4−R2 0.235 0.251 Half-Worn 0.165 0.188 0.311 6.77 29.67 19.85 32.37
E4−R3 0.241 0.251 Half-Worn 0.165 0.221 0.232 4.11 31.42 8.12 3.54
E4−R4 0.227 0.251 Half-Worn 0.165 0.213 0.213 12.66 25.79 4.40 14.03
E5−R1 0.266 0.245 Worn 0.223 0.285 0.272 7.88 16.12 7.26 2.22
E5−R2 0.272 0.245 Worn 0.223 0.255 0.283 9.91 17.97 6.33 4.24
E5−R3 0.267 0.245 Worn 0.223 0.269 0.284 8.24 16.43 0.82 6.46
E5−R4 0.272 0.245 Worn 0.223 0.249 0.289 9.93 17.97 8.24 6.57

Evaluation length

for the Ra

Straight path

geometry (Line)

Convex path

geometry (Island)

Concave path

geometry (Box)

Evaluation length

for the Ra

Concave path

geometry (Box)

Evaluation length

for the Ra Straight path

geometry (Line)

Convex path

geometry (Island)

Test piece 01 Test piece 02 Test piece 03

Figure 6.3: Test pieces 01, 02, and 03 with machining geometries, straight, concave and convex paths.
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Table 6.2: Test pieces with the cutting conditions, and geometric parameters defined for the new experiments.

Cutting tool
Number Experiments Condition fz ae Dtool HB Curv

1, 2, 3 P1-2024-Line,Island,Box New 0.075 3 12 109 0, 0.037,−0.019
4, 5, 6 P3-2024-Line,Island,Box Half-New 0.075 3 12 110 0, 0.083,−0.556
7 P4-2024-Island New 0.075 3 12 110 0.025
8 P5-2024-Box New 0.075 3 12 109 −0.025
9 P1-5083-Island Half-New 0.047 2 8 71 0.077
10, 11 P1-7075-Line,Island Half-New 0.115 4.5 20 158 0, 0.039
12, 13 P1-6082-Island,Box Half-Worn 0.04 4 12 89 0.038,−0.0185
14, 15 P2-6082-Line,Island Half-Worn 0.04 4 12 94 0, 0.0385
16, 17 P2-7075-Box,Line Worn 0.08 5 16 150 −0.0286, 0
18, 19, 20 P3-7075-Box,Island,Line Half-Worn 0.08 5 16 151 −0.0286, 0.022, 0
21 P1-CERTAL-Box Worn 0.04 4 16 144 −0.0185
22, 23 P9-2024-Box,Island Worn 0.05 2 20 110 −0.0313, 0.0208
24, 25, 26 P3-5083-Line,Island,Box Half-Worn 0.05 2 16 67 0, 0.0357,−0.0192

• The results of experiment numbers 9, 10, 11, 24, 25, and 26 show a higher absolute percent error. It is owing
to cutting conditions corresponding to extreme values (limit points) of the machining domain defined in DoE.
However, it is observed that the ANN model can predict the Ra with less error for the same experiments.

6.5.3 Optimization in Pre-process operating mode

The optimization process in Pre-process operating mode was validated with several tests. In the first test the operator
defines cutting conditions, cutting parameters, geometric parameters, and the desired Rd

a value. Table 6.4 presents
information and data for the test. The Rp

a is computed and compared with Rd
a. With Rp

a > Rd
a the GA computes the

new value of fz to minimize Ra (see Figure 6.5a). With the new fz value, the Ra is computed, but it continues high.
The GA computes the new values of fz and Dtool that minimizes Ra, as depicted in Figure 6.5b. The new Ra value
continues high, and the GA executes another iteration to find new cutting conditions for fz , and ae, Figure 6.5c. The
final values of fz , Dtool, and ae allow minimizing the Ra. Results are shown in Table 6.4. In the second test the
operator knows the cutting conditions, cutting parameters, and geometric parameters, which guarantee Rp

a < Rd
a

(see Table 6.5). The operator requires the increase of the fz value from 0.075 to 0.1 and verifies that Ra is less than
Rd

a. The result is a high value of Ra and the GA computes the new fz to minimize Ra (see Figure 6.6). The final
results show that it is not possible to increase the fz value (see Table 6.5).

In the third test, the operator defines the cutting conditions, cutting parameters, geometric parameters, and the
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Table 6.3: Results of the estimated Ra in Pre and In-process operating mode for new experiments. CP = Cutting
parameters.

Pre-process Cutting In-process, RaANN Absolute percent error
Number of Ra,meas RaRSM Tool Only CP CP + Fy Only CP
Experiment µm µm Condition µm µm RSM CP +Fy

1) P1-2024-Line 0.161 0.155 New 0.147 0.083 4.21 8.71 48.73
2) P1-2024-Island 0.176 0.175 New 0.160 0.154 0.23 8.74 12.39
3) P1-2024-Box 0.144 0.156 New 0.148 0.104 11.35 3.29 27.72
4) P3-2024-Line 0.158 0.184 Half-New 0.190 0.132 16.12 20.37 16.54
5) P3-2024-Island 0.160 0.189 Half-New 0.174 0.125 18.27 8.84 21.80
6) P3-2024-Box 0.145 0.180 Half-New 0.200 0.166 24.21 38.04 14.76
7) P4-2024-Island 0.196 0.162 New 0.156 0.164 16.93 20.00 16.14
8) P5-2024-Box 0.150 0.164 New 0.150 0.026 9.04 0.17 82.87
9) P1-5083-Island 0.238 0.473 Half-New 0.533 0.365 98.49 123.5 53.07
10)P1-7075-Line 0.211 0.362 Half-New 0.331 0.298 71.69 57.04 41.29
11)P1-7075-Island 0.268 0.515 Half-New 0.268 0.186 92.03 0.01 30.77
12)P1-6082-Island 0.196 0.231 Half-Worn 0.323 0.169 17.56 64.43 13.88
13)P1-6082-Box 0.136 0.301 Half-Worn 0.264 0.252 121.4 93.85 85.05
14)P2-6082-Line 0.259 0.238 Half-Worn 0.296 0.239 8.03 14.43 7.64
15)P2-6082-Island 0.322 0.200 Half-Worn 0.322 0.238 37.60 0.19 25.87
16)P2-7075-Box 0.156 0.136 Half-Worn 0.289 0.292 12.57 85.38 87.62
17)P2-7075-Line 0.128 0.187 Worn 0.081 0.266 15.39 49.63 63.92
18)P3-7075-Box 0.136 0.258 Half-Worn 0.289 0.233 102.2 126.3 82.46
19)P3-7075-Island 0.126 0.157 New 0.227 0.219 24.64 80.03 74.17
20)P3-7075-Line 0.110 0.192 Half-Worn 0.287 0.148 76.44 163.4 35.47
21)P1-CERTAL-Box 0.169 0.137 Worn 0.175 0.274 18.60 3.51 62.07
22)P9-2024-Box 0.174 0.197 Worn 0.094 0.217 13.38 45.91 24.51
23)P9-2024-Island 0.250 0.280 Half-Worn 0.167 0.319 12.07 33.20 27.60
24)P3-5082-Line 0.150 0.532 Half-Worn 0.157 0.232 254.7 5.00 55.04
25)P3-5082-Island 0.195 0.619 Half-Worn 0.144 0.217 217.3 26.19 11.33
26)P3-5082-Box 0.138 0.500 Half-Worn 0.163 0.137 260.7 17.53 0.87

required Rd
a value (see Table 6.6).

The Rp
a is computed and compared with Rd

a. Owing to the Rp
a > Rd

a, the GA computes the new value of fz to
minimize Ra (see Figure 6.7a). With the new fz value the Ra is computed, but it continues high. The GA computes
the new values of fz and Dtool that minimizes Ra, as depicted in Figure 6.7b. The new Ra value is less to the Rd

a,
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Table 6.4: Optimal cutting conditions to minimize the Ra in Pre-process condition (7075 Aluminium alloy).

Cutting conditions Results of the Results of the Final optimal cutting
defined by Operator first running GA second running GA conditions with GA

fz = 0.115 fz = 0.06814 fz = 0.0425 fz = 0.04078
ae = 4.5 ae = 4.5 ae = 4.5 ae = 4.98

Dtool = 20 Dtool = 20 Dtool = 16 Dtool = 16
Curv = 0 Curv = 0 Curv = 0 Curv = 0
Rd

a = 0.28 Rd
a = 0.28 Rd

a = 0.28 Rd
a = 0.28

HB = 158 HB = 158 HB = 158 HB = 158
Tool Cond. = Half-New Tool Cond. = Half-New Tool Cond. = Half-New Tool Cond. = Half-New

Rp
a = 0.3622 Rp

a = 0.3174 Rp
a = 0.2815 Rp

a = 0.2741

Table 6.5: Evaluation of Ra with new cutting conditions to demonstrate if it is possible to increase fz value with
Rp

a < Rd
a. Workpiece material 2024 aluminium alloy.

Initial Cutting New Cutting Conditions Results of the
Conditions Defined by the Operator First Running GA

fz = 0.075 fz = 0.1 fz = 0.025
ae = 3 ae = 3 ae = 3

Dtool = 12 Dtool = 12 Dtool = 12
Curv = 0.037 Curv = 0.037 Curv = 0.037

Rd
a = 0.2 Rd

a = 0.2 Rd
a = 0.2

HB = 109 HB = 109 HB = 109
Tool Cond. = Fresh Tool Cond. = Fresh Tool Cond. = Fresh

Rp
a = 0.1756 Rp

a = 0.2775 Rp
a = 0.085
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and the final results are shown in Table 6.6. These results define an increase in Dtool, which implies an increase in
cutting speed. This condition allows an increase in the fz value, and thus the production rate.

6.5.4 Optimization in the In-process operating mode

During the In-process operating mode, the optimization process implies the modification of the fz parameter only
if Rp

a > Rd
a is satisfied. During on-line condition it is not recommended to change other parameters because these

affect directly the machining part design. This optimization process was validated by considering some experiments,
where the Rp

a computed in Pre-process operating mode was less than Rd
a. However, during the In-process operating

mode the intelligent system computed a high Ra value because the process state variables were considering in the
ANN model. Table 6.7 shows proposal experiments with cutting parameters, the Ra values computed in Pre-process
and In-process operating mode, and the new fz parameter computed to decrease the Ra value. The increase in
Ra could be owing to several reasons: changes in the workpiece hardness, worn edge of the cutting tool, chatter
condition, etc. In all these conditions it is recommended to decrease the fz parameter. Table 6.7 shows the Ra value
is acceptable when the fz is decreasing.
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Figure 6.4: Comparison between the measured and estimated Ra values by using (a) RSM, (b) ANN with only
Cutting Parameters (CP ), and (c) ANN with CP + Fy .
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Figure 6.5: Evaluation of optimum cutting parameters with GA in Pre-process operating mode: (a) Optimization
with fz , (b) Optimization with fz and Dtool, and (c) Optimization with fz and ae.

6.5.5 Optimal machining policy

An important task of the intelligent planning module must be to propose an optimal policy (actions) for operating
the CNC machining center. In this case, a methodology based on the Markov Decision Process (MDP) approach
was implemented to compute the expected total discount cost and the optimal policy. MDP was validated with the
experiments done in the Kondia machining center. The application of the MDP for computing the optimal policy
during the peripheral milling process is described as follows:

1. Identification of the stochastic process is represented by the state of cutting tool wear condition defined as

S = {s1, s2, s3, s4, s5} (6.15)

where the state of the cutting tool is: s1 for new tool condition, s2 for half-new tool condition, s3 for half-worn
condition, s4 is worn condition, or s5 defining tool breakage condition.

2. Definition of the action space with all possible decisions. Note that decisions are equal to actions. The action
space is defined with three possible actions

A = {a1, a2, a3} (6.16)

The actions represent the following:

• a1 means no action when the Ra < Rd
a. This action represents an aggressive condition because the

operator uses the cutting tool until it reaches maximum V B.

• a2 represents a conservative condition and the operator needs to change the cutting tool when the intelli-
gent monitoring system recognizes the worn cutting tool condition. Also, it is necessary to confirm that
Ra < Rd

a.
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Figure 6.6: Evaluation of the optimum cutting parameters with GA in Pre-process operating mode. Optimization
with fz .

Table 6.6: Optimal cutting conditions to minimize the Ra in Pre-process condition (6082 Aluminium alloy).

Cutting Conditions Results of the Results of the
Defined by Operator First Running GA Second Running GA

fz = 0.04 fz = 0.05032 fz = 0.0921
ae = 4 ae = 4 ae = 4

Dtool = 12 Dtool = 12 Dtool = 20
Curv = −0.0185 Curv = −0.0185 Curv = −0.0185

Rd
a = 0.25 Rd

a = 0.25 Rd
a = 0.25

HB = 94 HB = 94 HB = 94
Tool Cond.=Half-Worn Tool Cond.=Half-Worn Tool Cond. = Fresh

Rp
a = 0.2710 Rp

a = 0.2662 Rp
a = 0.174



114

• a3 means to always stop the machine and inspect the cutting tool, which is an intermediate condition
between a1 and a2 actions.

3. Evaluation of the cost function for each action, which is computed by considering three concepts:

(a) The Decision theory implies computing a decision cost based on a right or wrong action [Poole et al., 1998].

(b) The operation cost involves operator cost, depreciation, energy cost, and the operator’s labor [Childs et al., 2000]

and [Boothroyd and Knight, 2006].

(c) Cost of the cutting tool.

The cost function must be defined for all cutting tool wear conditions and actions. For this application the
parameters, cost and procedure for computing cost functions are defined in Appendix I. Cost function depends
on selected cutting tool diameter and workpiece material, therefore, cost was computed for the 6082 − T6
aluminium alloy and a cutting tool diameter of 16 mm. Experiments with these conditions were used to
determine the optimal policy by applying the MDP. These experiments are defined in Table 6.1.

• Cost function for the a1 action with 6082−T6 aluminium alloy and 16mm of tool diameter, is given by

fa1 = {44.15, 46.89, 49.28, 87.84, 320.52} (6.17)

The function defines the following:

(a) If a new cutting tool condition is recognized and a1 action is done by the operator, the cost is $44.15.

(b) If a half-new cutting tool condition is recognized, the operation cost is $46.89 for the a1 action.

(c) If a half-worn condition is detected, the operation cost is $49.28.

(d) If a worn condition is detected, the operation cost is $87.84.
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Figure 6.7: Evaluation of the optimum cutting parameters with GA in Pre-process operating mode: (a) The fz value
is computed to decrease the Ra, (b) New fz and Dtool values are computed to minimize the Ra.
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Table 6.7: Experiments used to validate the optimization process during the In-process operating mode.

Experiment Pre-process In-process New Value New Value
(Cc, Pc, PG) Ra,obs RaRSM RaANN Rd

a fz Rp
a

P2-2024-Island 0.1432 0.1822 0.2552 0.25 0.0734 0.1816
(fz = 0.075, ae = 3, Dtool = 12
HB = 111, Curv = 0.0213)
P1-7075-Box 0.1467 0.2906 0.3386 0.3 0.099 0.1116
(fz = 0.115, ae = 4.5, Dtool = 20
HB = 158, Curv = −0.0183)
P1-6082-Line 0.1629 0.2686 0.3376 0.3 0.0349 0.294
(fz = 0.04, ae = 4, Dtool = 12,
HB = 89, Curv = 0.0)
P9-2024-Box 0.1742 0.1975 0.2169 0.2 0.0457 0.15
(fz = 0.05, ae = 2, Dtool = 20,
HB = 110, Curv = −0.0313)
E4-P5-6082-Box R2 0.235 0.2509 0.31107 0.26 0.04 0.1657
(fz = 0.05, ae = 2, Dtool = 16,
HB = 90, Curv = −0.025)
E5-P5-6082-Box R1 0.266 0.245 0.2719 0.26 0.047 0.2434
(fz = 0.05, ae = 2, Dtool = 16
HB = 90, Curv = −0.025)
E5-P5-6082-Box R3 0.267 0.245 0.2842 0.26 0.045 0.2443
(fz = 0.05, ae = 2, Dtool = 16,
HB = 90, Curv = −0.025)

(e) Finally, for a broken cutting tool condition, the operation cost is $320.52.

• Cost function for the second action is

fa2 = {44.15, 46.89, 49.28, 300.37, 320.52} (6.18)

• The last cost function for the a3 action is

fa3 = {49.2, 51.94, 54.32, 52.60, 320.52} (6.19)

4. Evaluation of the transition matrices by considering the three actions during the machining process. P : S×A

is the state transition probability distribution function. For each action and state of the system there is a
probability distribution over the states that can be reached after the actions. These transition matrices were
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defined to reach the tool breakage condition from any state of the cutting tool. Tool breakage was included
to simulate random failure of the cutting tool, which can occur at any time during the machining process.
Function P (s|s′, a) is defined as the probability of reaching state s, given the state s′ and action a.

• The transition matrix for the first action was computed in agreement with evolution of cutting tool life
during the experimentation. It was estimated by considering the number of machined workpieces for
each cutting tool wear condition. The information was taken from Figure 5.2. The transition matrix is
given by

Pa1 =




0.951 0.048 0 0 0.001
0.026 0.932 0.041 0 0.001
0.001 0.02 0.921 0.055 0.003

0 0.001 0.05 0.944 0.005
0 0 0 0 1




(6.20)

• The transition matrix for the second action was computed to allow that system always gets back at the
first state (new tool) if cutting tool is changing to the worn condition. The transition matrix is

Pa2 =




0.951 0.048 0 0 0.001
0.026 0.933 0.04 0 0.001
0.001 0.02 0.921 0.055 0.003
0.849 0.02 0.01 0.12 0.001

0 0 0 0 1




(6.21)

• The transition matrix for the third action was computed by considering the system has a similar behavior
to the first action.

Pa3 =




0.951 0.048 0 0 0.001
0.026 0.932 0.041 0 0.001
0.001 0.02 0.921 0.055 0.003

0 0.001 0.05 0.944 0.005
0 0 0 0 1




(6.22)

5. Reward function (R = S × A) is computed as a function of the defined states and cost functions. It is given
by

R =




44.15 44.15 49.20
46.89 46.89 51.94
49.28 49.28 54.32
87.84 300.37 52.59
320.52 320.52 320.52




(6.23)
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6. The discount factor (α) is a function of the interest rate considered for a period of production. The required
time for producing several machining parts is very short and a rate of return of 8% could be used. Therefore,
a typical value of the discount factor is given by

α = 1/(1 + 0.08) = 0.925

The next step was to use the Markov Decision Process Toolbox v2.0 for MatLab. By using the transitions
matrices, the cost functions, and the Policy and Value Iteration algorithms, a test was done to determine which
algorithm is more efficient to solve the MDP and compute the optimal total-cost function, and the optimal policy.
The test considered two typical values of the discount factor and the results are shown in Table 6.8, and 6.9. From
these results, it is observed that both algorithms compute the same results for α = 0.9, and α = 0.925. However,
the Policy Iteration algorithm is more efficient, because the solution can be found with only 2 iterations.

Table 6.8: Results computed with the Policy Iteration algorithm.

α Optimal Value Number of Optimal Policy
Value Function ($) Iterations actions
0.9 {479, 509, 574, 620, 3205} 2 {1, 2, 1, 3, 1}

0.925 {659, 704, 803, 868, 4273} 2 {1, 2, 1, 3, 1}

Table 6.9: Results computed with the Value Iteration algorithm.

α Optimal Value Number of Optimal Policy
Value Function ($) Iterations actions
0.9 {479, 509, 574, 620, 3205} 117 {1, 2, 1, 3, 1}

0.925 {659, 704, 803, 868, 4273} 160 {1, 2, 1, 3, 1}

In summary, the optimal total cost function was computed with the Policy Iteration algorithm and the function
is given by

ν∗ = {659, 704, 803, 868, 4273} (6.24)

Also, the optimal policy was computed with the Policy Iteration algorithm and it is given by

π = {a1, a2, a1, a3, a1} (6.25)

The optimal policy defines the following recommendations to the operator:

• If a new cutting tool condition is detected, the action a1 should be applied.
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• For a half-new cutting tool condition, the action a2 should be applied.

• For a half-worn cutting tool condition, the action a1 should be applied.

• For a worn cutting tool condition, the action a3 should be applied.

• For a tool breakage condition, the action a1 should be applied.

Given that MDP is a stochastic model defined by a Markov system, the transition matrices and an initial distri-
bution of the states (i.e.,s1, 0, 0, 0, 0) were simulated several times to compute the variability of the results. Figure
6.8a shows the simulation of the Markov chain by using the transition matrix of Eq.(6.20), which corresponds with
the aggressive condition. Figure 6.8a shows different states of cutting tool during the machining cycles and this
behaviour represents a normal evolution of flank wear (V B) in the cutting tool, while the operator does not take any
action and only waits for a possible tool breakage. It can happen when the cutting tool reaches the maximum worn
condition. Figure 6.8b depicts a situation where the tool breakage is detected during the simulation of the Markov
system.
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Figure 6.8: Simulation of the Markov system. (a) For an aggressive condition (Pa1). (b) For an aggressive condition
with the tool breakage condition. (c) For a conservative condition (Pa2).
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Figure 6.8c shows the simulation of the Markov chain by using the transition matrix of Eq.(6.21), which corre-
sponds with the conservative condition. Figure 6.8c depicts different states of the cutting tool during the machining
cycles. If a worn condition is recognized, the operator immediately changes the cutting tool, and the state of cutting
tool returns to a new condition. Figure 6.9 illustrates the results of the variability of the Markov system with 30
evaluations. The ”box and whisker” plot shows the comparative cost between the different actions and the optimal
policy determined by the MDP. The boxes are notched to represent a robust estimate of the uncertainty about the
medians for box-to-box comparison. These results demonstrate that the optimal policy presents the lower costs when
they are compared with the aggressive, intermediate, and conservative actions. In Figure 6.9 (right plot), the average
accumulative cost for the 100 machining cycles are USD $4973.79, $4755.87, and $4385.18 for actions a1, a3,
and optimal policy, respectively. Therefore, the potential savings are USD $588.6, and $370.7 for the a1-optimal
policy, and a3-optimal policy, respectively. To demonstrate that optimal policy allows to minimize the operation
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Figure 6.9: Comparison of costs for the different actions versus the optimal policy. Right plot depicts the variability
of the costs for actions a1, a3 and optimal policy. Left plot shows the variability of the costs for action a2, and
optimal policy.

cost, several experiments with the 6082 − T6 workpiece material and 16 mm cutting tool diameter were selected
in random form of the design of experiments. The Intelligent Planning Module always identified a Ra value less to
the recommended value (Rd

a ≤ 0.25 mm) for the selected experiments. Table 6.10 shows the results of one example
for a specific operation. The cutting conditions were fz = 0.05 mm/tooth, n = 18000 rpm, Vf = 1800 mm/min,
ae = 2 mm, and HB = 90−94 HBN. The first column in Table 6.10 presents the cutting tool condition recognized
by the intelligent monitoring Module. The second column defines the operation cost of the actions recommended
by the optimal policy. The following three columns define the operation costs for the aggressive, conservative and
intermediate actions.

From these results, it can be observed that optimal policy minimizes the production cost. During the machining
process of 6082−T6 aluminium alloy, the optimal policy saves the following amounts: $106 dollars with respect to
the first action; $743 dollars with respect to the second; and $65 dollars with respect to the third action. The cutting
tool life is approximately 40 minutes (machining time), and it can be used to produce 100 similar pieces. It means



120

Table 6.10: Comparison of the applied cost for 6082−T6 workpiece material and 16 mm cutting tool diameter. The
first first column defines the cutting tool wear condition, and the following columns correspond with the operation
cost of the optimal policy and the defined actions.

Cutting Tool Condition Optimal Policy a1 based Policy a2 based Policy a3 based Policy

Worn $52.60 $87.84 $300.37 $52.60
New $44.15 $44.15 $44.15 $49.20

Half worn $49.28 $49.28 $49.28 $54.33
Half new $46.89 $46.89 $46.89 $51.94

Worn $52.60 $87.84 $300.37 $52.60
Half worn $49.28 $49.28 $49.28 $54.33

New $44.15 $44.15 $44.15 $49.20
Worn $52.60 $87.84 $300.37 $52.60

Half new $46.89 $46.89 $46.89 $51.94
New $44.15 $44.15 $44.15 $49.20

Total $482.61 $588.35 $1225.93 $517.93

that it is possible to save ten times the aforementioned amounts. Therefore, if the optimal policy is applied, it is
possible to save 18% when it is compared with doing nothing (risky option); and 60% with respect to change the
cutting tool as soon as possible (conservative option).

6.6 Results and contributions

The design and implementation of the IMPPS represents the main module of the intelligent monitoring and super-
visory control system. The important tasks and results of the IMPPS are the following:

1. In Pre-process operating mode the module estimates Rp
a with the RSM model and computes the optimal

cutting parameters for minimizing Ra value by applying a Genetic Algorithm (GA).

2. In the In-process operating mode, the module uses the HMM to identify the cutting tool wear condition and
estimates the Rp

a by using the process state variables and the ANN model.

3. The Markov Decision Process was implemented and used to predict the optimal policy for minimizing the
production cost.

4. During the validation tests with DoE, the HMM with the AE-signal of spindle allows an identification of the
cutting tool wear of 100% of success. It is important to select the correct RMS model for estimation of Ra.
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5. During the validation tests with new experiments the HMM showed a performance of 88% for recognizing
cutting tool wear condition. It was acceptable because only extreme conditions were badly classified.

From the analysis of the results, important contributions can be summarized, and they are the following:

• The multi-sensor and data fusion applied in ANN models improve the estimation of Ra In-process operating
mode. The consideration of the four Ra parameters in the output layer of the ANN model improved the
estimation of Ra. The behaviour of the Ra is reproduced with excellent results, and the mean absolute
percent error between the measured and estimated Ra was reduced from 11.81% with RSM model to 8.5%
with ANN model.

• The implementation of a GA with RSM models was another important contribution because it allows for com-
puting the optimal cutting parameters in Pre-process operating mode with excellent results. This information
is relevant in the machining process to guarantee a minimum Ra.

• Another relevant contribution was the implementation of the Markov Decision Process (MDP) in the opti-
mization process. The MDP allows modeling decision-making under uncertainty where the actions of the
operator are partly under control. This algorithm recommends optimal actions for minimizing the operation
cost during the production of specific workpieces. Next step implies to evaluate the implementation of the
MDP in the automotive or aeronautic industry.



Chapter 7

Discussion and future work

This research was leading to solve a real problem in High Speed Machining (HSM) processes, specifically in the
peripheral milling process. Currently, the aeronautic and automotive industry demand machining of long aluminium
parts and high metal removal rates to produce components. The HSM is an excellent option owing to high dimen-
sional precision and high surface quality, which can be reached with this technology.

7.1 General contributions

The general scope of this research was to design and implement an intelligent monitoring and supervisory control
system for the peripheral milling process in high speed machining. The system must compute the optimum cutting
parameters as a function of a merit variable (surface roughness). Also, the system must allow for the monitoring
of cutting tool wear condition and surface roughness during the machining process. The main contributions of this
research were to:

1. Design and implement an intelligent monitoring and process planning system in the peripheral milling process
for HSM.

2. Implement a general model to predict surface roughness by considering several aluminium alloys, cutting
parameters, geometries, and cutting tools.

3. Design and implement a monitoring and diagnostic system for cutting tool wear condition during the machin-
ing process.

4. Design and develop an intelligent process planning system that includes a merit variable to compute the
optimum cutting parameters and a decision-making module to recommend some actions in agreement with
the cutting tool wear condition.
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7.2 Specific results and contributions

Specifically, for each module of the intelligent monitoring and supervisory control system, important results and
contributions are discussed in this section.

7.2.1 Important research results

From analysis done at the end of each chapter, the following list of results is defined for each module.

Data acquisition module

A complete data acquisition system was implemented in a CNC machining center HS − 1000 Kondia. Important
results are described as follows:

• Installed accelerometers (AC) in the workpiece presented excellent mechanical and electrical characteristics
to acquire the vibration signals during the cutting process. The signals allowed for the characterization of the
Ra in agreement with the cutting tool wear condition.

• Forces acquired with a dynamometric platform corresponds with the tendency of flank wear. The mechan-
ical and electrical characteristics of the dynamometric platform allowed capture of the cutting forces, with
excellent results, even thought the process is for high speed machining.

• The AC sensors installed in the ring (fixed to the spindle) did not have a satisfactory frequency bandwidth. It
is necessary to change the sensors for others with different mechanical and electrical characteristics.

• A new proposal to characterize process signals was implemented with excellent results. Mel Frequency
Cepstrum Coefficients computed from process signals were used to model the Ra with ANN models and
with the HMM approach to classify cutting tool wear condition.

Surface roughness monitoring module

Related with Ra modelling, important results were obtained. They are as follows:

• Response surface methodology was applied with excellent results for modeling the Ra. A rotatable central
composite design with 32 runs and four replicates was defined for the DoE, and after the ANOVA, a quadratic
model with the main interactions of factors was computed. For the new cutting tool condition, the Ra was
explained by the model with a performance of R2 = 90.0%. For the other three models, the Ra was computed
with performances of 90.0% for half-new cutting tool, 92.7% for half-worn cutting tool, and 93.4% for worn
cutting tool condition.

• The behaviour of Ra with variation of the factors was compared with other research, with excellent results. Ra

increases with fz , and decreases with an increase of the cutting tool diameter until to reach a minimum value.
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Ra decreases as the workpiece hardness increases until it reaches a minimum value, and then Ra increases
with the hardness. Also, the Ra increases with the evolution of flank wear, and the models estimated the Ra,
with excellent results. The performance was compared with the mechanistic models of other researchers, and
the average percentage error can be reduced from 86.47% to 8.98% by using proposal models.

• Multi-sensor and data fusion were used to build ANN models, with excellent results. By applying Principal
Component Analysis and process signals, ANN models were computed with high performance and they can
be used in In-process operating mode.

Cutting tool wear monitoring module

New ideas based on the Hidden Markov Models (HMM) and the Mel Frequency Cepstrum Coefficients (MFCC)
were developed for monitoring and diagnosis of cutting toll wear condition in HSM.

• The HMM approach was configured with four states and two Gaussians, and the HMM models were computed
with each process state signal. The best results were obtained with the signals coming from AE installed in
the spindle. By using the AE-Spindle signal, average performance was 98.15% for training data set and
96.29% for testing data set.

• The MFCC were computing by considering two configurations in the preprocessing stage. Basically, the num-
ber of filters changed from 20 to 40, and it allowed for capture of more information about the characterization
of cutting tool wear condition. The proposal values of the number of filters are typically used in speaker
identification systems. By using 40 filters, performance of the HMM was 98.18% for testing data set.

• Finally, HMM models with the lowest percentage of False Fault Rate (FFR) were computed with AE sensors.
The AE-Spindle shows the lowest percentage for FFR condition, with only 1.52% for worn condition.

Intelligent monitoring and process planning module

The design and implementation of the IMPPS represent the main module of intelligent monitoring and the supervi-
sory control system, resulting as follows:

• In Pre-process operating mode, the module estimates Rp
a with the RSM model and computes the optimal

cutting parameters for minimizing Ra value by applying a Genetic Algorithm (GA).

• In the In-process operating mode, the module uses the HMM to identify the cutting tool wear condition and
estimates the Rp

a by using process state variables and the ANN model.

• The Markov Decision Process was implemented and used to predict the optimal policy for minimizing pro-
duction cost.

• During validation tests with DoE, the HMM, with the AE-signal of spindle, allowed for identification of
cutting tool wear at 100% success. It is important to select the correct RMS model for estimation of Ra.
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• During validation tests with new experiments, the HMM showed a performance of 88% for recognizing cutting
tool wear condition. It was acceptable because only extreme conditions were badly classified.

7.2.2 Specific contributions of the research

Important contributions related to Ra modelling were realized during development of this research:

1. The most important factors affecting Ra were deduced by applying the screening factorial design. These
factors were fz , Dtool, ae, HB, and Curv. A new concept to consider a different geometric pattern was
defined with the Curv factor. This factor had never been used in other research related to Ra, and it had an
important effect on the estimated Ra.

2. Multi-sensor and data fusion were used to build ANN models, with excellent results. By applying the Principal
Component Analysis and process signals, ANN models were computed, resulting in high performance, and
they can be used in In-process operating mode.

3. An ANN model was developed based on cutting parameters and process state variables for monitoring Ra in
In-process operating mode. Relevant features of process state variables were identified through computation
of MFCC. Also, consideration of the Ra, RSm, Rq , and Rz parameters to characterize surface roughness
allowed for an increase of performance of ANN models. Similar Ra values can be computed by ANN models,
even though cutting and geometric parameters in the machining process are totally different. Therefore, it is
relevant to characterize surface roughness with these parameters.

With respect to the design and implementation of the cutting tool wear monitoring system, contributions were as
follows:

1. The designed HMMs can be used to recognize the worn condition of five different cutting tool diameters in
HSM with five different harnesses in workpiece materials.

2. Characterization of AE signals with MFCC allowed for a high performance of HMM with only one process
signal. The MFCC have not been used in previous research to recognize cutting tool wear condition.

3. The implemented methodology in the Tool Condition Monitoring (TCM) system, with the HMM approach
and MFCC features, can be exploited to be used in the aeronautic and automotive industry for maximizing
the tool life and decreasing operation cost.

Contributions of the IMPPS are as follows:

1. Multi-sensor and data fusion applied in ANN models improved the estimation of Ra in In-process operating
mode. Consideration of the four Ra parameters in the output layer of the ANN model improved the estimation
of Ra. The behaviour of the Ra was reproduced, with excellent results, and the mean absolute percent error
between the measured and estimated Ra was reduced from 11.81% with a RSM model to 8.5% with an ANN
model.
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2. Implementation of a GA with RSM models was another important contribution because it allowed for compu-
tation of optimal cutting parameters in Pre-process operating mode, with excellent results. This information is
relevant in the machining process to guarantee a minimum Ra. Estimation of these optimal cutting parameters
is important to satisfy quality assurance the first time during the machining process.

3. Another relevant contribution was the implementation of the Markov Decision Process (MDP) in the opti-
mization process. The MDP allows modeling decision-making following uncertainty, where the actions of the
operator are partly under control. This algorithm recommends optimal actions for minimizing operation cost
during production of specific workpieces. The next step implies evaluating implementation of the MDP in the
automotive or aeronautic industry.

7.3 Future work

Research presented in this thesis is the result of great effort to design and implement an intelligent machine in HSM.
This research represents a base from which implementation of the intelligent monitoring and supervisory control
system in different industry sectors (aeronautic, automotive, and mold/die). Therefore, the challenges and new
research fields will be mentioned for each module of the system, with the objective to improve and continue this
research in intelligent machines.

1. Data acquisition system module.

• With respect to installed sensors, it is necessary to change the accelerometer sensors fixed in the spindle.
It is recommended to increase the sampling rate and the resonance frequency range of sensors to obtain
a satisfactory frequency bandwidth. Signals recorded from these sensors should be adequate to charac-
terize cutting process. Therefore, performance of the ANN models must be better, and it could represent
an excellent option to eliminate fixed sensors at the workpiece.

• Recorded forces signals also represent a great option to exploit more features. First, the recorded forces
must be separated in the static and dynamic component, by applying some filters, and with those the
static components, compute the tangential and radial components of cutting forces. It should represent a
better correlation between Ra and cutting force and increase performance of ANN models. Second, the
same procedure must be applied to dynamic forces.

• Recorded signals must be processed with other techniques to compute new features that allow the finding
of new correlations between Ra and process state variables. An excellent option could be to apply
wavelet transformation, and evaluate if the wavelet coefficients are more sensitive to cutting tool wear
and Ra.

2. Surface roughness module. With respect to the statistical model (RSM), results were very satisfactory when
they were applied to the Pre-process operating mode. On the other hand, ANN models applied in the In-
process operating mode represent a great opportunity to experiment with other paradigms in dynamic neural
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networks. These new paradigms could be based on non-recurrent mechanisms like delay elements in feedfor-
ward directions (i.e. Time Delay Neural Networks, Adaptive time-delay neural networks). Other ANN models
are recurrent mechanisms based on a combination of delay elements in feedforward direction and feedback
connections, like the NARX networks (Non-linear autoregressive model with exogenous inputs).

3. Cutting tool wear monitoring module. The implemented Hidden Markov Models (HMM) approach to recog-
nizing the cutting tool wear condition presented an excellent performance (almost 100%) by using only the
AE-signals in the spindle. However, some observations and recommendations will be mentioned for future
work.

• For the AE-signals it is recommended to apply a bandpass filter for separating frequency bandwidth that
corresponds only with cutting process. If this option increases performance, it is necessary to compute
pre-processing time of the signal, and it must be compared with actual time.

• Currently, an ergodic HMM model is applied for cutting tool wear monitoring. For future work, other
types of the HMM model must be evaluated with more than two process signals. Other types are Factorial
HMM, Auto-regressive HMM, and hidden filter HMM. It is important to evaluate if these options could
increase performance for new experiments defined in the Chapter 6.

4. Intelligent monitoring and process planning module (IMPPS).

• The Genetic Algorithm (GA) was applied with excellent results, to compute the optimal cutting parame-
ters with the RSM model. To compute the optimal cutting parameters, the GA requires between 50 and
60 generations. It is necessary to make additional tests with parameters of the GA: number of genera-
tions, population size, crossover probability, and mutation probability. The objective will be to decrease
the number of generations to find optimal cutting parameters.

• An important function of the IMPPS is to compute optimal cutting parameters before the CNC starts
running. Therefore, it is relevant to integrate the IMPPS as one CAD/CAM system, which will allow
production of a G-Code and optimal cutting parameters at the same time for machining of a specific
workpiece.

• The Markov Decision Process (MDP) represents an important contribution in the optimization process.
It is necessary to find a real application in the industry, where different operator actions must be defined.
The cost function and transition matrixes must also be computed. With this information, the MDP will
compute the optimal policy that minimizes the operation cost. It will represent an important test to
validate application of the MDP.

• In general, it is important to validate the complete system in other machining centers. Machine tools have
multiple degrees of freedom and are mainly related with vibrations and dynamic loading of mechanical
structures. Therefore, it is important to compute performance of the proposal models (RSM, ANN, and
HMM) in different machine tools and estimate deviations with respect to the original HSM machining
center. It is important to evaluate the robustness of designed models.
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7.4 Concluding discussion

The presented research of the intelligent monitoring and supervision control system was the result of several research
works, which support final proposal models. A short description of these works is presented in this section.

1. The idea of indirect monitoring of the cutting tool wear condition was taken from a speech recognition sys-
tems that uses HMMs to recognize voice patterns. Several experiments were made with aluminium 6061 and
steel 1045, and two databases were obtained and used to build the models. Vibration signals among work-
piece materials and cutting tools were recorded and preprocessing to compute feature vectors (MFCC). The
diagnostic system with continuous HMM was validated with two recommended techniques Learning Vector
Quantization (LVQ) and ANN. The best results were obtained with continuous HMM.

2. With respect to the surface roughness (Ra) model, the idea was born with the concept to cover a complete
domain of the machining process in HSM for the finishing operation of components for the automotive and
aeronautic industry. The proposal considered the building of models for estimation of Ra off-line. The mul-
tiple sensors installed in the CNC were used to apply sensor and data fusion techniques. Several statistical
features were computed from the process signals and used to build the ANN models. Results were not sat-
isfactory, and the MFCC features were used to build the models, which were used the In-process operating
mode.

3. All the models were integrated into a complete intelligent monitoring and supervision control system. The
Markov Decision Process was selected to define a decision-making block in the intelligent monitoring and
process planning module. The main function of the MDP was to define an optimal policy during the peripheral
milling process. The objective of the optimal policy was to minimize production cost.
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Appendix A

Machining Process Concepts

This appendix describes important basic concepts in machining processes. The concepts are necessary to understand
and define the technical information related with the mechanical cutting process.

A.1 Important variables in machining processes

It is very important to set-up the milling operation before starting the CNC machining center. Therefore, some
concepts must be established in the set-up procedure, and they define the dynamic of the rotating milling tool, with
a diameter (Dtool) moving against the workpiece. The concepts are the following,

• Spindle speed (n = rpm) is the number of revolutions per minute of the milling cutter.

• Cutting speed (vc = m/min) indicates the surface speed at which the cutting edge machines the workpiece.

• Feed per minute or feed speed (vf = mm/min) is the feed of the tool against the workpiece. It is also called
the table-feed and machine feed. These variables are correlated by the following equations:

vc =
π ×Dtool × n

1000
(m/min) (A.1)

n =
vc × 1000
π ×Dtool

(rpm) (A.2)

• Feed per revolution (f) is a value used especially for feed calculations and determining the finishing capability
of the milling process. It is an auxiliary value indicating how far the tool moves during the rotation.

• Feed per tooth (fz) is an important key value in milling, because the milling cutter is a multi-toothed tool,
and a correct value is needed to ensure that each edge machines under satisfactory conditions. The capability
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of each tooth sets the limits for the tool. It defines the linear distance moved by the tool while one particular
tooth is engaged in cut. It is given by

fz =
vf

n× z
(mm) (A.3)

It is a vital factor in milling, because it is very decisive for metal removal per edge, load per edge, tool life,
and surface texture.

• The radial depth of cut (ae), and the axial depth of cut (ap), are defined for the peripheral milling.

• The volume of metal removed per time (V ) unit can be established using some of these definitions. The
volume is the depth of cut times the width of cut times the distance the tool moves along during the unit in
question [zw]. It is given by

V = ae× ap× vf (mm3/min) (A.4)

A.2 Surface Roughness

Every machining operation leaves characteristic evidence on the machined surface. This evidence represents the
form of finely spaced micro irregularities left by the cutting tool. Each cutting tool leaves its own individual pattern
which can be identified. This pattern is known as surface roughness. Important definitions related with the surface
finish imperfections are the following:

• Nominal surface is the intended surface. The nominal surface is usually shown and dimensioned on a drawing.
It does not include intended surface roughness.

• Surface texture is the combination of fairly short wavelength deviations of a surface from the nominal surface.
Texture includes roughness, waviness, and lay, that is, all the deviations that are shorter in wavelength than
form error deviations.

• Roughness includes the fines (short wavelength) irregularities of a surface. Roughness results from a particular
production process or material condition.

• Waviness defines the more widely space (longer wavelength) deviations of a surface from its nominal shape.

• Lay refers to the predominant direction of the surface texture. Ordinarily lay is determined by the particular
production method and geometry used.

A.3 Tool wear in metal cutting

Tool wear is defined as a gradual loss of tool material at workpiece material and tool contact zones. The progressive
wear of a tool can be evaluated in distinct ways:
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1. Crater wear occurs at the tool-chip contact area where the tool is influenced by a friction force of the moving
chip under heavy loads and high temperatures. At higher speeds (vc = 250 m/min to machine steel work-
piece) the temperature on the rake face of a carbide tool may reach over 1, 000oC. At these temperatures,
the atoms in the tool continuously diffuse to the moving chip. The temperature is greatest near the midpoint
of the tool-chip contact length, where the greatest amount of crater wear occurs due to intensive diffusion.
Crater wear can be minimized by selecting a tool material that has the least affinity to the workpiece material
in terms of diffusion. The use of lubricants also reduces the wear. Under very high speed cutting conditions,
crater wear is often the factor that determines the life of the cutting tool.

2. Flank wear is caused by friction between the flank face of the tool and the machined workpiece surface. At the
tool flank-workpiece surface contact area, tool particles adhere to the workpiece surface, and are periodically
sheared off. Adhesion of the tool and workpiece materials increase at higher temperatures. Abrasive wear
occurs when hard inclusions of work material or escaped tool particles scratch the flank and workpiece surface
as they move across the contact area.

3. Tool fracture is defined as the loss of a major portion of the tool wedge, which terminates the total cutting
ability of the tool. Chipping of the tool (i.e., the loss of small particles from the cutting edge of the tool) is
undesirable but does not prevent cutting totally. Chipping does, however, increases the friction on both the
rake and flank faces of the chipping tool. If it remains undetected, chipping eventually leads to total breakage
of the tool.

A.4 Mechanisms and causes in tool damage

Tool damage is due to several wear mechanism that may occur simultaneously. They can be listed as abrasion,
adhesion, diffusion, fatigue, and chemical wear. The importance and occurrence of the mechanisms can be classified
as a function of the cutting temperature, as shown in Figure A.1.
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The most important mechanisms in tool damage are discussed in this section.

1. Abrasion wear. Abrasion occurs when a harder material (e.g., the tool) shears away small particles from
the softer work material. However, softer work material also removes small particles from the tool material
although at a smaller rate. The hard tool particles are caught between the hard tool and soft work material,
and this causes additional abrasion wear.

2. Adhesion wear. When there is a relative motion between the two bodies that are the normal load, fragments of
softer work material adhere to the harder tool. The typical example in metal cutting is a built-up edge, which
usually occurs at low cutting speeds when part of the chip material welds to the cutting edge.

3. Diffusion wear. Solid-state diffusion occurs when atoms in a metallic crystal lattice move from a region of
high atomic concentration to one of low concentration. This process is dependent on the existing tempera-
ture, and the rate of diffusion increases exponentially with increases in temperature. In metal cutting, where
intimate contact between the work and tool materials occurs and high temperature exist, diffusion can occur
where atoms move from the tool material to the work material.

4. Mechanical damage. It is classified as wear or fracture depends on its scale. The mechanical damage is due
to the abrasion, adhesion, and diffusion wear. Now, we will explain the mechanical damage due to chipping
and fracture on the cutting tool. Chipping (sometimes called micro-chipping) is caused by mechanical shock
loading on a scale that leads to large fluctuations in cutting force. Fracture is classified into three types: early
stage, unpredictable and final stage. The early stage occurs immediately after beginning a cut if the tool shape
or cutting condition is improper. Unpredictable fracture can occur at any time if the stress on the cutting edge
changes suddenly, for example caused by chattering or an irregularity in the workpiece hardness. Final stage
fracture can be observed frequently at the end of a tool’s life in milling: then fatigue due to mechanical or
thermal stresses on the cutting edge is the main cause of damage.

A.5 Machining optimization

Analysis of production costs and production rates can be a complicated subject, and in many cases the analysis will
apply only to the particular operation in question. Empirical rules or guideline principles for choosing the optimum
cutting conditions for a given machining operation are discussed. The production time is defined as the average
time taken to produce one component, and the production cost is defined as the total average cost of performing
the machining operation on a component using one machine tool. In general, the production of a component will
involve several machining operations using a variety of machine tools (often called setups). The total cost will be
the sum of production costs for each machine setup.

Assuming the appropriate tool and cutting fluid were chosen for the machining of a batch of components, the
only cutting conditions to be determined are the cutting speed and feed. Considering these two cutting conditions,
at very low speeds and feeds will result in a high production time because of the long machining time. Alternatively,
very high speeds and feeds will result in a high production time because of the frequent need to change cutting tools.
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Clearly, an optimum condition will exist giving minimum production time. Similarly, an optimum condition will
arise for minimum production cost. At low speeds and feeds costs will be high because of the cost of using the
machine and operator for the longer machining times. At high speeds and feeds costs will be high because of the
cost of frequent tool replacement.

A.5.1 Choice of feed

When a finishing cut is to be taken, the appropriate feed will be that which gives an acceptable surface finish. In this
case the choice of feed is defined by the designer. In the case of roughing operation, from practical experience, the
recommendations are: if an increased production rate is required in rough machining, it will always be preferable to
increase the feed rather than increase speed. Of course, it is necessary to consider that an increase of feed increase
the tool forces, whereas an increase in cutting speed will not.

A.5.2 Choice of cutting speed

Two distinct criteria can be used in choosing the cutting speed for a machining operation: minimum production cost
and minimum production time. The optimum cutting speed implies to compute some mathematical expressions by
considering the following: 1) The nonproductive time which considers the time taken to load and unload each com-
ponent and to return the tool to the beginning of the cut; 2) The total machining time which defines the machining
time for the component; and 3) The total time involved in changing worn tools.

The effect of cutting speed on the cost of production can more clearly be shown in the form of a graph as depicted
in Figure A.2. This figure shows three important costs, and how an optimum cutting speed arises for a given set of
conditions.
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Appendix B

Sensors, amplifiers, and data acquisition
boards

B.1 Introduction

Important concepts and behaviour of the process signals are described for the accelerometers, acoustic emission
sensors, and configuration of amplifiers.

B.2 Accelerometers

Vibrations are produced by cyclic variations in the dynamic components of the cutting forces. Mechanical vibra-
tions generally result from periodic wave motions. The nature of the vibration signal arising from the metal cutting
process is such that it incorporates facets of free, forced, periodic and random types of vibration. Direct measure-
ment of vibration is difficult to achieve because its determining characteristic, the vibration mode, is frequency
dependent. Hence, related parameters such as the rate at which dynamic forces change per unit time (acceleration)
are measured and the characteristics of the vibration derived from the patterns obtained. Nowadays, the piezoelec-
tric accelerometer is universally used for vibration measurements. It has very wide frequency and dynamic ranges
with good linearity throughout the ranges. It is relatively robust and reliable so that its characteristics remain stable
over a long period of time. Piezoelectric measuring systems are active electrical systems. That is, the crystals pro-
duce an electrical output only when they perceive a change in load. For this reason, they are suitable for dynamic
measurements. The main characteristics of these accelerometers are:

• Sensitivity. It is the first characteristic considered. High sensitivity normally entails a relatively big piezoelec-
tric assembly and consequently a heavy unit. In normal circumstances the sensitivity is not critical problem
due to the preamplifiers can be designed to accept these low level signals.
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• Frequency range. Mechanical systems tend to have much of their vibration energy contained in the relatively
narrow frequency between 10 Hz to 1000 Hz but measurements are often made up of 10 KHz because
these are often interesting vibration components at these higher frequencies. Then, the frequency range of
the accelerometer must be selected to cover the range of interest. The upper limit of the frequency range
is determined by the resonant frequency of the mass-spring system of the accelerometer itself. With small
accelerometers the resonant frequency can be as high as 180 KHz, but for general purpose accelerometers,
resonant frequencies of 20 to 30 KHz are typical.

B.3 Acoustic Emission

During metal cutting, the workpiece undergoes considerable plastic deformation as the tool pushes through it. Within
the deformation zones (dislocations movements), strain energy is released as the bonds between the metal atoms are
disturbed. This released energy is commonly referred to as acoustic emission. [Rangwala and Dornfeld, 1991],
[Li, 2002] and define the following possible sources of AE during metal cutting processes: a) Plastic deformation
during the cutting process; b) Plastic deformation of the chip; c) Frictional contact between the tool flank face and
the workpiece; d) Frictional contact between the tool rank face and the chip; e) Collisions between chip and tool; f)
Chip breakage; and g) Tool fracture.

B.4 Amplifiers configuration

For the AC sensors fixed on the workpiece, a Nexus conditioning amplifier 2693 model was used. The Amplifier
can be reconfigurable at any time, to consider different input types (charge or voltage) in each of the available four
channels, [Nexus-Amplifier, 2006]. The human interface of the Nexus Amplifier allows to set up the following
parameters:

• Amplifier set-up: For setting up filters and gain for each individual channel.

• Transducer set-up: For selecting transducer type and entering calibrated sensitivity.

• Transducer supply: For setting up current supply, preamplifier/polarization voltages and cable length.

• Floating/correction: For selecting floating input/output and for entering application corrections.

• Store/Recall set-up: For storage/retrieval of five user-defined set-ups.

• Display set-up: For switching back-lighting on/off and adjusting the display contrast.

• Self-test: For testing the digital hardware.

For PCB Piezotronics accelerometers, 353B04 model, the Nexus amplifier must present the configuration shows
in Table B.1.
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Table B.1: Nexus amplifier configuration for the two DeltaTron channels (4)

Amplifier Setup: Transducer Setup:
ch1 4 0.1 KHz 22.4 KHz 1 V/g ch1 4 10.04 mV/g
ch2 4 0.1 KHz 22.4 KHz 1 V/g ch2 4 9.910 mV/g
Transducer Supply: Floating correction:
ch1 4 4 mA cable length 4 m ch1 4 50.0
ch2 4 4 mA cable length 4 m ch2 4 50.0

For each Brüel & Kjær piezoelectric accelerometers was used a Kistler charge amplifier ([Kistler-Amplifier, 2006])
type 5011B , and it implies to setup the following parameters: transducer sensitivity, scale, low pass filter activation,
and time constant for the high pass filter. Table B.2 defines the required parameters for each accelerometer. The
sensors were fixed on the ring installed in the spindle. For the Kistler 3-Component Dynamometer, a multi-channel

Table B.2: Parameters defined to configure the Kistler charge amplifier type 5011 (M.U.=Mechanical units).

AC −Xaxis AC − Y axis AC − Zaxis

Transducer sensitivity (pC/M.U.) 9.8 9.8 98
Scale (M.U./V ) 20 20 9.0

Low pass filter OFF OFF OFF
Time constant for HP filter (s) 1 1 1

charge amplifier type 5070A, from Kistler, was used to amplify the forces ([Kistler-Charge-amplifier, 2006]). The
Piezoelectric force sensors produce an electric charge which varies in direct proportion with the load acting on the
sensor. The charge amplifier converts the electric charge into a proportional voltage. To record the forces into an
acceptable range, the multi-channel amplifier was configuring with the parameters shown in Table B.3.

B.5 Behaviour of the process state variables in the frequency domain

B.5.1 Accelerometers and dynamometers signals

Several tests were done to determine the correct sampling rate and the required adjustments for the amplification
system. An excellent behavior in frequency domain and different cutting tool wear conditions was observed. A
similar behavior was observed for the experiments with different cutting parameters and geometry paths. Table B.4
presents the cutting conditions for different experiments, and Figures B.1, B.2, and B.3, B.4 show the frequencies
domain of the signals.
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Table B.3: Configuration parameters for the multi-channel amplifier type 5070.

X − Force Y − Force Z − Force

Channel 1 Channel 2 Channel 3

Sensitivity (pC/N ) −7.4 −7.5 −3.7
High Pass Filter DC(Long) DC(Long) DC(Long)

Low pass filter OFF OFF OFF
Range (N) 3000 3000 3000

Scale (N/V) 300 300 300

Table B.4: Cutting conditions for the experiments 07, 10, 25 and 17 (second replicate).

Cutting Conditions
Variable Exp-07 Exp-10 Exp-25 Exp-17

fz mm/tooth 0.05 0.1 0.075 0.025
Vc m/min 905 565.5 678.8 678.6

n rpm 18000 18000 18000 18000
ae mm 4 2 3 3

HB HBN 94, 90, 89, 90 138, 132, 144, 140 110, 111, 111, 110 111, 110, 110, 110
DTool mm 16 10 12 12

Geometry path Convex Convex Concave Straight

B.5.2 Acoustic Emission signals

Several tests were done to determine the correct sampling rate for the acoustic emission (AE). Figures B.5, B.6, B.7,
and B.8 show the power spectral density in the frequency domain of the AEs signals at different cutting tool wear
conditions.

B.5.3 MFCC computed for the process state variables

Figure B.9 shows the MFCC computed for different cutting tool conditions and the process state variable: cutting
force in Fy direction. Figure B.10 depicts the MFCC computed for the different cutting tool conditions (New, half-
new, half-worn, and worn), the process state signal is the acoustic emission signal (fixed under the workpiece), and
the experiment number 08.
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Figure B.1: Frequency domain of specific signals for the experiment number 07, with convex geometry and the four
states of the cutting tool condition.
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Figure B.3: Frequency domain of specific signals for the experiment number 25, with concave geometry and the
four states of the cutting tool condition.

New cutting tool Half-new cutting tool Half-worn cutting tool Worn cutting tool

A
m

p
li

tu
d

e
A

m
p
li

tu
d

e
A

m
p
li

tu
d

e

PSD AccY-WorkpiecePSD AccY-WorkpiecePSD AccY-Workpiece PSD AccY-Workpiece

PSD AccY-Spindle PSD AccY-Spindle PSD AccY-Spindle PSD AccY-Spindle

PSD Force-Y PSD Force-Y PSD Force-Y PSD Force-Y

frequency frequency frequency frequency

Figure B.4: Frequency domain of specific signals for the experiment number 17, with straight geometry and the four
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Figure B.5: Experiment number 07. Power spectral density for the AE signals and different cutting tool conditions.
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Figure B.6: Experiment number 10. Power spectral density for the AE signals and different cutting tool conditions.
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Figure B.7: Experiment number 25. Power spectral density for the AE signals and different cutting tool conditions.
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Figure B.9: MFCC computed from the cutting force (Fy) process signal and the cutting conditions correspond to
the experiment number 01. The parameters and configuration were: Hamming window, 6 coefficients, log energy,
and 40 filters.
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Figure B.10: MFCC computed from the acoustic emission (AE workpiece) process signal and the cutting conditions
correspond to the experiment number 08. The parameters and configuration were: Hamming window, 6 coefficients,
log energy, and 40 filters.



Appendix C

Aluminium Alloys

This appendix presents the characteristics, applications, and the chemical composition of the different aluminium
alloys that were used in the design of experiments.

Aluminium 5083-H111

Key words: EN-AW-5083−H111; Aluminium 5083−H111
Main characteristics: Good machinability, and excellent for extrusion processes. Compared with other

aluminium alloys its weight is low.
Applications: Extrusions are produced in the conventional flat bar, bulb angle, angle, and tee sections.

Chemical composition: Al = 92.4− 95.6%, Cr = 0.103%, Cu = 0.018%, Fe ≤ 0.3%, Mg = 4.549%,
Mn = 0.578%, Si = 0.106%, Ti = 0.025%, Zn = 0.004%, Ni = 0.004%

Mechanical properties: Important mechanical properties are: 70 BHN, ultimate tensile strength 275 MPa,
tensile yield strength 165 MPa, and elastic module 71× 103 MPa

Thermal properties: The thermal conductivity is 117 W/m−K
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Aluminium 6082-T6

Key words: EN-AW-6082, AlSi1MgMn; Aluminium 6082− T6; SS-EN-AW-6082.
Main characteristics: Effectively prevents the corrosion of acid, alkali and salt. Suitable for multi-purpose

applications.
Applications: Extrusions are produced in flat bar, bulb angle, angle, and tee sections.

Chemical composition: Al = 95.2− 98.3%, Cr ≤ 0.25%, Cu =≤ 0.1%, Fe ≤ 0.5%, Mg = 0.4− 1.2%,
Mn = 1.%, Si = 0.7− 1.3%, max Ti = 0.1%, max Zn = 0.2%

Mechanical properties: Important mechanical properties are: 90 BHN, ultimate tensile strength
290− 310 MPa, and tensile yield strength 250− 260 MPa.

Thermal properties: The thermal conductivity is 170 W/m−K.

Aluminium 2024-T3

Key words: Aluminium 2024− T3; UNS A92024; ISO AlCu4Mg1; DIN ALCuMg2;
ASME SB211.

Main characteristics: Good machinability, surface finish capabilities, a high strength material of adequate
workability.

Applications: Aircraft fittings, gears and shafts, bolts, clock parts, computers parts, couplings,
fuse parts, hydraulic valve bodies, missile parts, munitions, nuts, pistons, rectifier
parts, worm gears, fastening devices, orthopedic equipment, and structures.

Chemical composition: Al = 90.7− 94.7%, Cr ≤ 0.1%, Cu = 3.8− 4.9%, Fe ≤ 0.5%,
Mg = 1.2− 1.8%, Mn = 0.3− 0.9%, Si ≤ 0.5%, Ti ≤ 0.15%, Zn = 2.5%

Mechanical properties: Important mechanical properties are: 120 Brinell Hardness Number, ultimate tensile
strength 483 MPa, tensile yield strength 345 MPa, module of elasticity 73.1 GPa,
and 70% of machinability.

Thermal properties: The thermal conductivity is 121 W/m−K, and melting point 502− 638oC.

CERTAL Aluminium

Key words: CERTAL, Aluminium 7022; EN AW−7022; ISO AlZn5Mg3Cu.
Main characteristics: Excellent machinability, stability in the form, and high strength.

Applications: Industrial tools, molds for producing injection molded plastic parts, and some
mechanical structures.

Chemical composition: Al = 88− 92.4%, Cr = 0.1− 0.3%, Cu = 0.5− 1.0%, Fe ≤ 0.5%,
Mg = 2.6− 3.7%, Mn = 0.1− 0.4%, Si ≤ 0.5%, Ti + Zr ≤ 0.2%, Zn ≤ 2.0%

Mechanical properties: Important mechanical properties are: 140 BHN, ultimate tensile strength 460 MPa,
and tensile yield strength 340 MPa.

Thermal properties: The thermal conductivity is 120− 150 W/m−K.
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Aluminium 7075-T6

Key words: Aluminium 7075− T6; UNS A97075; ISO AlZn5.5MgCu; AA7075-T6.
Main characteristics: High strength material used for highly stressed structural parts.

Applications: Aircraft fittings, gears and shafts, fuse parts, meter shafts and gears,
missile parts, regulating valve parts, worm gears, keys, aircraft, aerospace and
defense applications, bike frames, and all terrain vehicle sprockets.

Chemical composition: Al = 87.1− 91.4%, Cr = 0.18− 0.28%, Cu = 1.2− 2.0%, Fe ≤ 0.5%,
Mg = 2.1− 2.9%, Mn ≤ 0.3%, Si ≤ 0.4%, Ti ≤ 0.2%, Zn = 5.1− 6.1%

Mechanical properties: Important mechanical properties are: 150 BHN, ultimate tensile strength 572 MPa,
tensile yield strength 503 MPa, modulus of elasticity 71.7 GPa, and 70%
of machinability.

Thermal properties: The thermal conductivity is 130 W/m-K, and melting point 477− 635oC.



Appendix D

Measurement of Ra, flank wear and
run-out

D.1 Procedure to measure Ra

The quality of machined surface is characterized by the accuracy of its manufacture with respect to the dimensions
specified by the designer. Every machining operation leaves characteristic evidence on the machined surface, and it
is in the form of finely spaced micro irregularities left by the cutting tool. Therefore, measuring surface roughness
is vital to quality control of machining workpiece. The concept of Ra was defined in chapter 2 with the different
factors affecting its value. This section defines the parameters which allow to characterize the Ra, and the rec-
ommended methodology for measuring these parameters. The measurement of the Ra is supported by the norms
[ISO 4287:1997(E/F), 1997], and [ISO 4288:1996(E), 1996].

D.2 Surface profile parameters definitions

The surface roughness can be measured in different ways, and they are classified into three basic categories:

• Statistical descriptors that give average behavior of the surface height. For example, average roughness Ra;
the root mean square roughness Rq; the skewness Sk and the kurtosis K.

• Extreme value descriptors that depend on isolated events. Examples are the maximum peak height Rp, the
maximum valley height Rv , and the maximum peak to valley height Rmax.

• Texture descriptors that describe variations of the surface based on multiple events. An example for this
descriptor is the correlation length.

The profile parameters that allow the characterization of the Ra are the following:
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1. Rz is the sum of height of the largest profile peak height Zp and the largest profile valley depth Zv within a
sampling length.

2. Rt is the sum of the height of the largest profile peak height Zp and the largest profile valley depth Zv within
the evaluation length. Since Rt is defined over the evaluation length, the following will always be true:
Rt ≥ Rz .

3. Ra is the arithmetical mean of the absolute ordinate values Z(x) within a sampling length,

Ra =
1
l

∫ l

0

|Z(x)|dx (D.1)

4. Rq is the root mean square value of the ordinate values Z(x) within a sampling length,

Rq =

√
1
l

∫ l

0

Z2(x)dx (D.2)

5. RSm is the mean value of the profile element widths Xs within a sampling length,

RSm =
1
m

m∑

i=1

Xsi (D.3)

D.3 Methodology for assessment the surface texture

Surface texture parameters are not useful for the description of surface defects. Therefore, surface defects, e.g.
scratches and pores, shall not be considered during inspection of surface texture. To decide whether or not a work-
piece surface is in accordance with specification, a set of single values of the surface texture parameter, each deter-
mined from an evaluation length, shall be used. The assessment of the surface roughness of machined workpieces
can be carried out by means of different measurement techniques. In this work, a direct method will be used by
means of stylus type device. The equipment used for measuring the surface roughness was a portable Surfcom type
130A, and it is depicted in Figure D.1. The methodology for the assessment of the surface texture is in agreement
with [ISO 4287:1997(E/F), 1997].

D.3.1 Parameter estimation

Several parameters must be defined to measure surface roughness directly on the machined surface. First, an esti-
mate of the parameter’s value is calculated using the measured data from only one sampling length. An average
parameter estimate is calculated by taking the arithmetic mean of the parameter estimates from all the individual
sampling lengths. The standard number of sampling lengths is five for roughness profile parameters. For parameters
defined over the evaluation length, an estimate of parameter’s value is calculated from an evaluation length.
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LCD panel and printer

Stylus Tip

Portable compact unit

Figure D.1: Main parts of the portable Surfcom type 130A.

D.3.2 Evaluation length and measurement of the roughness profile parameters

When the direction of measurement is not specified, the workpiece shall be positioned so that direction of section
corresponds to the maximum values of height of the roughness parameters (Ra, and Rz). Measurements shall be
carried out on that part of the surface on which critical values can be expected; this can be assessed by visual
examination. Separate measurements shall be distributed equally over the part of the surface to obtain independent
measurements results. Figure D.2a shows three different patterns over the machined surface for measuring the
parameter values. Figure D.2b defines the selected central section for measuring the surface roughness.

(a) (b)

Figure D.2: Identification of the proposal areas for assessment the profile parameters. a) Different patterns identified
over the machined surface; b) Specific place for measuring the surface roughness with two evaluation lengths.

The surface texture of the workpiece under inspection can appear homogeneous or be quite different over various
areas. In areas where the surface texture appears homogeneous, parameter values determined over the entire surface
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shall be used for comparison with the technical product documentation. If there are separate areas with obviously
different surface texture, the parameter values which are determined on each area shall be used separately for com-
parison with the requirements in the technical product documentation. Now, it is necessary to estimate the size of
the sampling length and evaluation length that will be used for the assessment of the roughness profile parameters.
First, an estimation of the Ra or Rz values are defined by visual inspection, roughness comparison specimens, or
a direct measurement over the machined surface. The sampling length can be selected by using Tables D.1 and
D.2 (taken from [ISO 4287:1997(E/F), 1997]). The representative values of Ra and Rz obtained during the first

Table D.1: Roughness sampling lengths for the measurement of Ra for non-periodic profiles.

Ra (µm) Roughness sampling length (l), mm Roughness evaluation length (L), mm

0.006 < Ra ≤ 0.02 0.08 0.4
0.02 < Ra ≤ 0.1 0.25 1.25
0.1 < Ra ≤ 2 0.8 4
2 < Ra ≤ 10 2.5 12.5

Table D.2: Roughness sampling lengths for the measurement of Rz for non-periodic profiles.

Rz (µm) Roughness sampling length (l), mm Roughness evaluation length (L), mm

0.025 < Ra ≤ 0.1 0.08 0.4
0.1 < Ra ≤ 0.5 0.25 1.25
0.5 < Ra ≤ 10 0.8 4
10 < Ra ≤ 50 2.5 12.5

measurements, indicate that the sampling length and evaluation length must be 0.8 and 4 mm respectively. Also,
the λc profile filter which defines the intersection between the roughness and waviness components must be equal
to the sampling length (0.8). With these information, the procedure to assess the surface roughness is the following:

1. Define the area where the surface roughness will be measure. Figure D.2b shows that central section of the
machined surface presents the best pattern, and this area will be defined for the assessment of Ra.

2. Two evaluation lengths were defined in the central section for the measurements. For each evaluation length,
five measurements were made. Therefore, ten values were computed.

3. The measurements were made in two specific areas of the machined surface. Figure D.3 shows the sections
for the assessment of the Ra over the machined surface.

4. Five texture parameters were computed for each assessment: Ra, Rq , Rz , Rt, and RSm. Then, an arithmetic
mean value (for a specific section) was computed for each parameter by using the ten values.
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Figure D.3: Identification of the sections for measuring the Ra over the machined surface in the test pieces.

Figure D.4 depicts an example of the measurement made over a machined surface. The measurements results
were printed, and recorded in a computer file. Also, a photo was taken of the machined surface.

(a) (b) (c)
(d)

Figure D.4: Assessment of the surface roughness: (a) Measurement with the stylus tip of the Surfcom 130A; (b)
Register and printer of the information; (c) Storage of the information; (d) and taking of the photo of the machined
surface.

D.4 Measurement of the flank wear and run-out

The flank wear of the cutting tool was measured by using a stereoscopic microscope, a digital camera, and the Motic
Images software. Figure D.5 shows the complete equipment used for the measurement of the flank wear. The optical
characteristics of stereoscopic microscope can be defined as follows: the optical lenses allow a magnification of 20x,
the objective lens a magnification of 2x, and a manual magnification control of 4x. The digital camera is fixed over
an ocular lens with a magnification of 10x. All images were taken with a magnification of 40x, and the software
was calibrated to measure the flank wear with this magnification scale. The evolution of the flank wear in the 10
mm cutting tool is shown in Figure D.6.
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Figure D.5: Equipment for measuring the flank wear of the cutting edge.

The runout of the cutter edges was checked at the beginning of the experimentation. The recommended runout
shall not exceed of 0.05 mm for the radial runout condition. Figure D.7 depicts the dial used to assess the radial
runout for each cutting tool. Table D.3 presents the radial runout measured for all cutting tool edges. These values
were measured during all the cutting tool life, and it is observed that never the limit value (0.05 mm) was exceeded.

Table D.3: Assessment of the radial runout of the cutting tool edges. The radial runout was measured in millimeter.

Tool diameter (mm) New Half-new Half-worn Worn

8 0.001 0.0098 0.0175 0.0006
10 0.001 0.0107 0.008 0.0073
12 0.01 0.005 0.0135 0.006
16 0.011 0.0017 0.0 0.002
20 0.012 0.0123 0.02 0.02
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Figure D.6: Evolution of the flank wear for the 10 mm cutting tool.

Figure D.7: Assessment of the radial runout of the cutter edges. The cutting tool diameter is 20 mm.
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Statistical analysis of the screening
factorial design

Fractional factorial design was defined by using MINITAB software. Using MINITAB, the design of experiments
was computed by considering eight factors, two levels, 1/8 fraction, 32 runs, and zero center points. From the
experimental results, the next step is to apply an Analysis Of Variance (ANOVA). The initial part of this procedure
was defined in Chapter 4. Therefore, this appendix presents the results obtained for the refined model. In Chapter
4 was developed the procedure to eliminate the vc factor, and the next step is to apply the ANOVA for refining the
model. The results are shown in Table E.1, and E.2.

From the main effects plot was deduced that ap factor does not show a correlation with Dtool, ae and HB

factors. Therefore, the ap factor will be eliminated with its interactions, and then the ANOVA is applied to compute
the effects over Ra. The results are show in Table E.3, and E.4.

From Figure E.1 can be observed that Dtool and ae show minimum effect over Ra and they can be eliminated.
These factors will be eliminated with its interactions, and once again, the ANOVA is applied to compute the effects
over Ra. The results are show in Table E.5, and E.6.

From Table E.6, it is observed that the elimination of Dtool and ae factors present a negative impact over the
Ra prediction, and the lack of fit presents a low value of the F statistical and a high value of the p − value (the
hypothesis is not accepted). For this reason, these factors and their interactions can not be eliminated, because they
are important to estimate the Ra value.

Finally, the factors and interactions that are not relevant must be eliminated and by using the ANOVA demon-
strates that data do not lost the precision for computing the estimated Ra value.
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Table E.1: Estimated effects and coefficients for Ra with vc eliminated (coded units).

Term Effect Coef SE Coef T p− value

Constant 0.29330 0.004794 61.18 0.000
fz 0.19675 0.09838 0.004794 20.52 0.000
ap 0.04668 0.02334 0.004794 4.87 0.000

Dtool -0.00603 -0.00302 0.004794 -0.63 0.530
ae 0.00761 0.00380 0.004794 0.79 0.429

HB -0.06519 -0.03259 0.004794 -6.80 0.000
R -0.05899 -0.02950 0.004794 -6.15 0.000

I/C 0.10250 0.05125 0.004794 10.69 0.000
fz ∗ ap 0.03919 0.01960 0.004794 4.09 0.000

fz ∗Dtool 0.04539 0.02269 0.004794 4.73 0.000
fz ∗HB -0.02576 -0.01288 0.004794 -2.69 0.008
ap ∗R -0.07208 -0.03604 0.004794 -7.52 0.000

ap ∗ I/C 0.01372 0.00686 0.004794 1.43 0.156
Dtool ∗ I/C 0.04382 0.02191 0.004794 4.57 0.000
ae ∗HB 0.06747 0.03373 0.004794 7.04 0.000
ae ∗R 0.01344 0.00672 0.004794 1.40 0.164

ae ∗ I/C -0.05727 -0.02864 0.004794 -5.97 0.000
HB ∗ I/C -0.02685 -0.01343 0.004794 -2.80 0.006
R ∗ I/C -0.07456 -0.03728 0.004794 -7.78 0.000

Table E.2: Analysis of Variance for Ra with Vc eliminated (coded units).

Source DF Seq SS Adj SS Adj MS F P

Main Effects 7 1.95698 1.68099 0.240141 87.90 0.000
2-Way Interactions 11 0.74955 0.74955 0.068141 24.94 0.000

Residual Error 105 0.28685 0.28685 0.002732
Lack of fit 12 0.25695 0.25695 0.021413 66.61 0.000
Pure Error 93 0.02990 0.02990 0.000321

Total 123 2.99337
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Table E.3: Estimated effects and coefficients for Ra with ap eliminated (coded units).

Term Effect Coef SE Coef T P

Constant 0.29249 0.006615 44.22 0.000
fz 0.19514 0.09757 0.006615 14.75 0.000

Dtool -0.00442 -0.00221 0.006615 -0.33 0.739
ae 0.00599 0.00300 0.006615 0.45 0.652

HB -0.06357 -0.03178 0.006615 -4.81 0.000
R -0.06061 -0.03030 0.006615 -4.58 0.000

I/C 0.10088 0.05044 0.006615 7.63 0.000
fz ∗Dtool 0.04701 0.02350 0.006615 3.55 0.001
fz ∗HB -0.02414 -0.01207 0.006615 -1.82 0.071

Dtool ∗ I/C 0.04544 0.02272 0.006615 3.43 0.001
ae ∗HB 0.06908 0.03454 0.006615 5.22 0.000
ae ∗R 0.01183 0.00591 0.006615 0.89 0.373

ae ∗ I/C -0.05889 -0.02945 0.006615 -4.45 0.000
HB ∗ I/C -0.02524 -0.01262 0.006615 -1.91 0.059
R ∗ I/C -0.07617 -0.03809 0.006615 -5.76 0.000

Table E.4: Analysis of Variance for Ra with ap eliminated (coded units).

Source DF Seq SS Adj SS Adj MS F p− value

Main Effects 6 1.85805 1.65960 0.276600 52.29 0.000
2-Way Interactions 8 0.55875 0.55875 0.069844 13.20 0.000

Residual Error 109 0.57657 0.57657 0.005290
Lack of fit 16 0.54668 0.54668 0.034167 106.28 0.000
Pure Error 93 0.02990 0.02990 0.000321

Total 123 2.99337
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Figure E.1: (a)The seven factors considered with the main effects plot for Ra. (b) Interactions plot for Ra.
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Table E.5: Estimated effects and coefficients for Ra with Dtool and ae eliminated (coded units).

Term Effect Coef SE Coef T P

Constant 0.29662 0.008082 36.70 0.000
fz 0.20339 0.10170 0.008082 12.58 0.000
HB -0.07183 -0.03591 0.008082 -4.81 0.000
R -0.05235 -0.02618 0.008082 -3.24 0.002

I/C 0.10914 0.05457 0.008082 6.75 0.000
fz ∗HB -0.03240 -0.01620 0.008082 -2.00 0.047

HB ∗ I/C -0.03349 -0.01675 0.008082 -2.07 0.040
R ∗ I/C -0.06792 -0.03396 0.008082 -4.20 0.000

Table E.6: Analysis of Variance for Ra with Dtool and ae eliminated (coded units).

Source DF Seq SS Adj SS Adj MS F P

Main Effects 4 1.84534 1.83176 0.457941 57.06 0.000
2-Way Interactions 3 0.21709 0.21709 0.072362 9.02 0.000

Residual Error 116 0.93094 0.93094 0.008025
Lack of fit 8 0.07178 0.07178 0.008972 1.13 0.351
Pure Error 108 0.85916 0.85916 0.007955

Total 123 2.99337



Appendix F

Modeling analysis with RSM

This Appendix presents the analysis of variance of the computed results in the Response Surface Methodology
(RSM). The analysis was made for all cutting tool conditions.

F.1 RSM for the new cutting tool condition

The DoE was made with new cutting tool condition, and the measurements of Ra were made in agreement with the
procedure described in chapter 4. Table F.1 presents the four parameters that were measured to characterize the Ra

for each test piece. Using the results of the experimentation with the new cutting tool condition, the next step was
to apply an ANOVA by considering the four replicates. The following considerations were evaluated:

• The effects due to the several factor combinations.

• The percentage contribution of each factor, denoted by statistical ”F” factor. This factor reflects the portion of
the total variation observed in an experiment attributed to each factor.

• The factors, and their combinations with a p− value < 0.05 (i.e., the hypothesis is true and the effect of the
factor is representative).

The ANOVA results are shown in Table F.2, where the variability of Ra is explained by the model with R2 =
90.6% and the estimated parameters of model are significant in R2

adj = 89.5%. From this table, the factors with
a p − value < 0.05 were selected to fit the final model. After to select only the relevant factors, the analysis of
variance was applied to confirm an acceptable squared error R2 = 0.8858 and adjusted squared error R2

adj = 0.876.
The final fitted model is given by

Ra = 0.1139 + 0.06513× fz + 0.01913× fz2 − 0.0808×Dtool + 0.04961×D2
tool + 0.00896×HB2 −

− 0.0437× fz ×Dtool − 0.0138× fz ×HB + 0.01647×Dtool ×HB +

+ 0.01185× ae× Curv + 0.00937× Curv2 (F.1)
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Table F.1: Values of the considered factors for the experiments, and the measurements of the parameters that allow
to characterize the Ra for the sections. The cutting tool condition is sharp edge.

Section 01 Section 02
Exp fz Dtool ae HB Curv Ra RSm Rq Rz Ra RSm Rq Rz

1 0.050 10 2 93 0.025 0.115 152.6 0.142 0.70 0.147 157.9 0.184 0.91
2 0.100 10 2 93 −0.025 0.448 226.2 0.531 2.19 0.525 219.2 0.624 2.54
3 0.050 16 2 93 −0.025 0.126 275.0 0.155 0.70 0.104 271.8 0.128 0.65
4 0.100 16 2 93 0.025 0.190 226.2 0.228 1.02 0.230 309.4 0.273 1.16
5 0.050 10 4 94 −0.025 0.191 146.6 0.229 1.19 0.179 140.6 0.229 1.19
6 0.100 10 4 94 0.025 0.524 181.5 0.632 2.82 0.464 218.4 0.567 2.71
7 0.050 16 4 94 0.025 0.118 172.5 0.148 0.69 0.125 239.1 0.160 0.86
8 0.100 16 4 94 −0.025 0.224 350.8 0.264 1.15 0.155 261.9 0.190 0.96
9 0.050 10 2 136 −0.025 0.111 158.4 0.147 0.79 0.117 157.9 0.159 0.94
10 0.100 10 2 138 0.025 0.312 201.4 0.395 1.84 0.299 221.6 0.382 1.71
11 0.050 16 2 138 0.025 0.125 248.3 0.157 0.76 0.126 142.1 0.158 0.80
12 0.100 16 2 136 −0.025 0.160 224.8 0.202 1.03 0.140 229.4 0.177 0.88
13 0.050 10 4 134 0.025 0.145 122.9 0.190 0.98 0.165 92.1 0.215 1.19
14 0.100 10 4 135 −0.025 0.351 184.9 0.467 2.45 0.309 208.4 0.423 2.21
15 0.050 16 4 135 −0.025 0.094 201.6 0.122 0.65 0.077 120.1 0.113 1.02
16 0.100 16 4 134 0.025 0.149 213.9 0.195 1.02 0.154 193.0 0.208 1.06
17 0.025 12 3 111 0.000 0.097 188.8 0.121 0.64 0.088 335.2 0.113 0.65
18 0.130 12 3 111 0.000 0.320 232.7 0.399 1.75 0.365 265.9 0.452 2.00
19 0.075 8 3 110 0.000 0.414 184.6 0.497 2.04 0.526 190.1 0.069 0.26
20 0.075 20 3 110 0.000 0.163 271.3 0.198 0.87 0.148 240.7 0.184 0.81
21 0.075 12 1 111 0.000 0.156 227.7 0.193 0.98 0.129 215.9 0.165 0.86
22 0.075 12 5 111 0.000 0.142 177.2 0.178 0.95 0.156 226.9 0.204 1.06
23 0.075 12 3 70 0.000 0.172 193.3 0.215 1.18 0.195 239.2 0.241 1.30
24 0.075 12 3 154 0.000 0.282 151.2 0.356 1.67 0.404 148.9 0.479 1.91
25 0.075 12 3 110 −0.05 0.247 368.7 0.289 1.17 0.157 232.4 0.187 0.87
26 0.075 12 3 111 0.05 0.138 213.5 0.173 0.96 0.172 211.7 0.214 1.10
27 0.075 12 3 111 0.000 0.125 214.6 0.159 0.78 0.128 167.2 0.160 0.77
28 0.075 12 3 111 0.000 0.145 205.6 0.182 0.90 0.133 183.4 0.167 0.85
29 0.075 12 3 111 0.000 0.125 214.6 0.159 0.78 0.128 167.2 0.160 0.77
30 0.075 12 3 111 0.000 0.145 205.6 0.182 0.90 0.133 183.4 0.167 0.85
31 0.075 12 3 111 0.000 0.125 214.6 0.159 0.78 0.128 167.2 0.160 0.77
32 0.075 12 3 111 0.000 0.145 205.6 0.182 0.90 0.133 183.4 0.167 0.85
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Table F.2: Results of the ANOVA analysis: R2 = 0.906, R2
adj = 0.895 with 128 runs, and fresh cutting tool

condition. Response Surface Regression: Ra versus fz ,Dtool,ae,HB,Curv.

Estimated Regression Coefficients for Ra

Term Coef SE Coef T p− value

Constant 0.1139 0.006802 16.748 0.000
fz 0.0651 0.003661 17.790 0.000
Dtool −0.0808 0.003978 −20.324 0.000
ae 0.0044 0.003666 1.214 0.227
HB −0.0244 0.004195 −5.833 0.000
Curv 0.00358 0.003667 0.976 0.331
fzfz 0.01913 0.003086 6.200 0.000
DtoolDtool 0.04961 0.003585 13.837 0.000
HB ×HB 0.00896 0.004133 2.169 0.032
CurvCurv 0.00937 0.003380 2.772 0.007
fzDtool −0.0437 0.004406 −9.940 0.000
fzHB −0.0138 0.004454 −3.106 0.002
DtoolHB 0.01647 0.004447 3.704 0.000
aeCurv 0.01185 0.004490 2.639 0.010
S = 0.03592 R2 = 90.6% R2(adj) = 89.5%
ANOVA for Ra

Source DF Seq SS Adj SS Adj MS F p− value

Regression 13 1.3627 1.3627 0.10482 81.26 0.000
Linear 5 0.91715 0.9951 0.19903 154.30 0.000
Square 4 0.27667 0.2820 0.07052 54.67 0.000
Interaction 4 0.16888 0.1688 0.04222 32.73 0.000
Residual error 109 0.14060 0.1406 0.00129
Lack-of-Fit 31 0.11934 0.1193 0.00385 14.12 0.000
Pure Error 78 0.02127 0.0212 0.00027
Total 122 1.5033
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F.2 Modeling of the Ra with RSM and half-new cutting tool condition

The DoE was reproduced with the half-new cutting tool condition, and the measurements of Ra were made in
agreement with the procedure described in section 1.4 of this chapter. Table F.3 presents the four parameters that
were measured to characterize the Ra for each test piece. The values corresponds only to the first replicate. The
RSM was applied to build the model for the half-new cutting tool condition. Following the same steps described
in the previous section, the ANOVA results are shown in Table F.4, where the variability of Ra is explained by the
model with R2 = 90.0% and the estimated parameters of model are significant in R2

adj = 88.7%.
Table F.4 shows the terms with a p − value < 0.05, and they were selected to fit the final model. After to

select only the relevant factors, the analysis of variance was applied to confirm the squared error R2 = 0.90 and the
adjusted squared error R2

adj = 0.887. The final fitted model is given by

Ra = 0.13829 + 0.0573× fz + 0.01273× f2
z − 0.08581×Dtool + 0.03293×D2

tool − 0.0435×HB +

+ 0.07571×HB2 − 0.0096Curv + 0.00935× ae− 0.02156× fz ×Dtool +

+ 0.01401× fz × Curv − 0.02427×Dtool × ae + 0.01059×Dtool ×HB +

+ 0.01281×Dtool × Curv + 0.01775×HB × Curv (F.2)

The model was validated in agreement with the results shown in Figure F.1. Figure F.1a. depicts the normal
distribution of the residuals and it is observed that enough data were used to fit the model. Also, Figure F.1b. defines
the normal probability plot, and the tendency (straight line) shows the normality of the error distribution. Finally,
Figure F.1c. shows an excellent spread of points on either side of zero, with no patterns of increase or decrease.
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Figure F.1: Validation of the used information to build the Statistical Model by using a half new cutting tool:(a)
Normal distribution of the residuals; (b) Normal probability plot; (c) Spread of points.

F.3 Modeling of the Ra with RSM and half-worn cutting tool condition

The DoE was reproduced with the half-worn cutting tool condition, and the measurements of Ra were made for
each test piece. Table F.5 presents the four parameters that were measured for the assessment of the Ra for each
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Table F.3: Factors considered for the experiments, and the measurements of the parameters that allow the character-
ization of the Ra for the two sections. The cutting tool condition is half-new edge.

Section 01 Section 02
Exp fz Dtool ae HB Curv Ra RSm Rq Rz Ra RSm Rq Rz

1 0.050 10 2 92 0.025 0.252 126.6 0.311 1.41 0.268 112.7 0.325 1.51
2 0.100 10 2 91 −0.025 0.453 244.3 0.544 2.39 0.494 245.3 0.592 2.56
3 0.050 16 2 91 −0.025 0.167 154.6 0.214 1.32 0.157 134.8 0.198 0.98
4 0.100 16 2 92 0.025 0.280 195.9 0.354 1.71 0.284 186.5 0.359 1.56
5 0.050 10 4 91 −0.025 0.214 175.7 0.258 1.24 0.476 229.1 0.550 2.16
6 0.100 10 4 90 0.025 0.552 212.7 0.654 2.78 0.596 240.0 0.700 2.75
7 0.050 16 4 90 0.025 0.154 177.5 0.193 1.01 0.208 203.7 0.257 1.27
8 0.100 16 4 91 −0.025 0.240 308.7 0.313 1.50 0.225 214.5 0.292 1.36
9 0.050 10 2 133 −0.025 0.254 124.0 0.313 1.38 0.196 125.6 0.252 1.16
10 0.100 10 2 132 0.025 0.470 181.3 0.573 2.34 0.466 182.0 0.561 2.28
11 0.050 16 2 132 0.025 0.196 99.3 0.239 1.14 0.209 89.1 0.251 1.10
12 0.100 16 2 133 −0.025 0.158 236.4 0.197 1.00 0.174 255.4 0.231 1.20
13 0.050 10 4 139 0.025 0.142 111.9 0.185 0.96 0.273 129.0 0.348 1.77
14 0.100 10 4 139 −0.025 0.455 255.4 0.599 2.89 0.483 213.5 0.602 2.58
15 0.050 16 4 139 −0.025 0.090 145.9 0.115 0.63 0.097 179.7 0.126 0.72
16 0.100 16 4 139 0.025 0.206 192.9 0.264 1.41 0.251 179.2 0.321 1.50
17 0.025 12 3 111 0.000 0.153 160.0 0.193 0.93 0.139 128.5 0.179 0.96
18 0.130 12 3 111 0.000 0.333 241.8 0.422 1.91 0.354 251.6 0.441 1.99
19 0.075 8 3 109 0.000 0.358 186.1 0.443 2.16 0.395 189.3 0.468 1.98
20 0.075 20 3 109 0.000 0.126 205.6 0.158 0.75 0.127 227.8 0.162 0.80
21 0.075 12 1 111 0.000 0.153 163.1 0.198 1.03 0.157 163.1 0.200 1.04
22 0.075 12 5 111 0.000 0.170 169.3 0.214 1.16 0.184 160.0 0.238 1.15
23 0.075 12 3 69 0.000 0.286 165.5 0.365 1.84 0.286 168.6 0.363 1.76
24 0.075 12 3 154 0.000 0.341 135.6 0.412 1.79 0.356 147.9 0.431 1.90
25 0.075 12 3 111 −0.05 0.176 196.2 0.212 0.99 0.179 223.4 0.230 1.16
26 0.075 12 3 110 0.05 0.171 146.6 0.223 1.14 0.165 162.3 0.215 1.12
27 0.075 12 3 111 0.000 0.150 157.3 0.188 0.98 0.168 153.8 0.208 1.00
28 0.075 12 3 111 0.000 0.171 158.2 0.211 1.04 0.175 160.3 0.220 1.10
29 0.075 12 3 111 0.000 0.150 157.3 0.188 0.98 0.168 153.8 0.208 1.00
30 0.075 12 3 111 0.000 0.171 158.2 0.211 1.04 0.175 160.3 0.220 1.10
31 0.075 12 3 111 0.000 0.150 157.3 0.188 0.98 0.168 153.8 0.208 1.00
32 0.075 12 3 111 0.000 0.171 158.2 0.211 1.04 0.175 160.3 0.220 1.10



172

Table F.4: Results of the ANOVA analysis: R2 = 0.9, R2
adj = 0.887 with 128 runs, and half-new cutting tool

condition. Response Surface Regression: Ra versus fz ,Dtool,ae,HB,Curv.

Estimated Regression Coefficients for Ra

Term Coef SE Coef T p-value
Constant 0.13829 0.006773 20.417 0.000
fz 0.0573 0.004 14.324 0.000
Dtool −0.0858 0.004231 −20.278 0.000
ae 0.00953 0.004058 2.348 0.021
HB −0.0435 0.004565 −9.528 0.000
Curv 0.00966 0.004053 2.383 0.019
fzfz 0.01274 0.003356 3.796 0.000
DtoolDtool 0.03293 0.003781 8.708 0.000
HB ×HB 0.07571 0.005234 14.465 0.000
fzDtool −0.0215 0.004833 −4.461 0.000
fzCurv 0.01401 0.004918 2.849 0.005
Dtoolae −0.0243 0.004828 −5.026 0.000
DtoolHB 0.01059 0.00435 2.435 0.017
DtoolCurv 0.01281 0.004828 2.653 0.009
HBCurv 0.01775 0.004386 4.047 0.000
S = 0.03932 R2 = 90.0% R2(adj) = 88.7%
ANOVA for Ra

Source DF Seq SS Adj SS Adj MS F P − value

Regression 14 1.50224 1.50224 0.10730 69.40 0.000
Linear 5 0.88094 1.10216 0.22043 142.56 0.000
Square 3 0.49479 0.49247 0.49247 106.17 0.000
Interaction 6 0.12651 0.12651 0.12651 13.64 0.000
Residual error 108 0.16699 0.16699 0.16699
Lack-of-Fit 35 0.13758 0.13758 0.13758 9.76 0.000
Pure Error 73 0.02941 0.02941 0.02941
Total 122 1.66923

test piece. The RSM was applied to build the model for the half-worn cutting tool condition. Following the same
steps described in the previous sections, the ANOVA results are shown in Table F.6, where the variability of Ra is
explained by the model with R2 = 92.70% and the estimated parameters of model are significant in R2

adj = 91.60%.
Table F.6 shows the terms with a P-value< 0.05, and they were selected to fit the final model. After to select

only the relevant factors, the analysis of variance was applied to confirm the squared error R2 = 0.927 and the
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Table F.5: Factors considered for the experiments, and the measurements of the parameters that allow the character-
ization of the Ra for the two sections. The cutting tool condition is half-worn edge.

Section 01 Section 02
Exp fz Dtool ae HB Curv Ra RSm Rq Rz Ra RSm Rq Rz

1 0.050 10 2 93 0.025 0.225 106.6 0.284 1.40 0.272 107.3 0.332 1.50
2 0.100 10 2 90 −0.025 0.376 214.7 0.485 2.22 0.440 219.8 0.578 2.02
3 0.050 16 2 90 −0.025 0.233 120.1 0.287 1.47 0.202 121.1 0.255 1.50
4 0.100 16 2 93 0.025 0.334 206.2 0.419 1.94 0.386 175.8 0.473 1.92
5 0.050 10 4 94 −0.025 0.346 185.9 0.425 2.09 0.366 219.5 0.444 2.15
6 0.100 10 4 89 0.025 0.460 204.4 0.600 3.00 0.466 182.5 0.617 3.00
7 0.050 16 4 89 0.025 0.231 94.3 0.285 1.47 0.258 107.1 0.314 1.50
8 0.100 16 4 94 −0.025 0.260 251.9 0.332 1.53 0.240 282.3 0.316 1.74
9 0.050 10 2 145 −0.025 0.182 130.2 0.232 1.24 0.155 134.8 0.204 1.05
10 0.100 10 2 144 0.025 0.414 133.9 0.480 1.93 0.758 178.9 0.912 3.69
11 0.050 16 2 144 0.025 0.206 110.7 0.270 1.41 0.15 95.4 0.197 1.10
12 0.100 16 2 145 −0.025 0.165 228.0 0.204 1.05 0.161 222.2 0.208 1.08
13 0.050 10 4 144 0.025 0.290 99.5 0.368 1.72 0.284 110.7 0.364 1.86
14 0.100 10 4 145 −0.025 0.952 235.9 1.233 6.20 0.569 238.2 0.749 4.34
15 0.050 16 4 145 −0.025 0.121 136.6 0.159 0.88 0.127 135.5 0.162 0.86
16 0.100 16 4 144 0.025 0.218 202.3 0.290 1.43 0.232 186.9 0.309 1.48
17 0.025 12 3 110 0.000 0.153 151.6 0.197 1.06 0.183 200.8 0.233 1.17
18 0.130 12 3 110 0.000 0.448 251.4 0.570 2.64 0.409 259.9 0.505 2.16
19 0.075 8 3 109 0.000 0.387 165.7 0.489 2.41 0.391 169.9 0.498 2.43
20 0.075 20 3 109 0.000 0.137 148.7 0.172 0.90 0.205 200.7 0.258 1.25
21 0.075 12 1 110 0.000 0.152 160.7 0.191 0.95 0.181 158.8 0.228 1.15
22 0.075 12 5 110 0.000 0.188 160.1 0.235 1.16 0.193 144.4 0.241 1.18
23 0.075 12 3 70 0.000 0.315 176.6 0.4 1.88 0.351 149.9 0.433 1.94
24 0.075 12 3 152 0.000 0.294 132.9 0.368 1.83 0.342 133.9 0.424 1.99
25 0.075 12 3 111 −0.05 0.244 176.9 0.313 1.46 0.230 188.3 0.274 1.17
26 0.075 12 3 110 0.05 0.164 197.4 0.208 1.20 0.198 151.2 0.249 1.22
27 0.075 12 3 110 0.000 0.206 172.5 0.262 1.30 0.218 149.5 0.268 1.23
28 0.075 12 3 110 0.000 0.192 154.7 0.247 1.23 0.166 164.3 0.207 1.04
29 0.075 12 3 110 0.000 0.206 172.5 0.262 1.30 0.218 149.5 0.268 1.23
30 0.075 12 3 110 0.000 0.192 154.7 0.247 1.23 0.166 164.3 0.207 1.04
31 0.075 12 3 110 0.000 0.206 172.5 0.262 1.30 0.218 149.5 0.268 1.23
32 0.075 12 3 110 0.000 0.192 154.7 0.247 1.23 0.166 164.3 0.207 1.04
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Table F.6: Results of the ANOVA analysis: R2 = 0.927, R2
adj = 0.916 with 128 runs, and half-worn cutting tool

condition. Response Surface Regression: Ra versus fz ,Dtool,ae,HB,Curv.

Estimated Regression Coefficients for Ra

Term Coef SE Coef T p-value
Constant 0.18102 0.006818 26.551 0.000
fz 0.07536 0.003866 19.490 0.000
Dtool −0.0836 0.003906 −21.404 0.000
ae 0.00893 0.003727 2.397 0.018
HB −0.0068 0.003297 −2.061 0.042
Curv −0.00005 0.003725 −0.014 0.989
fzfz 0.0284 0.003452 8.227 0.000
DtoolDtool 0.03139 0.003451 9.096 0.000
HB ×HB 0.04364 0.003212 13.585 0.000
Curv × Curv 0.00869 0.003329 2.609 0.010
fzDtool −0.03986 0.004480 −8.896 0.000
fz ×HB 0.03416 0.003706 9.217 0.000
fz × Curv −0.00886 0.004543 −1.950 0.054
Dtoolae −0.03216 0.004457 −7.215 0.000
DtoolHB −0.02981 0.003644 −8.181 0.000
DtoolCurv 0.01686 0.004452 3.787 0.000
ae×HB 0.00789 0.003702 2.131 0.035
ae× Curv −0.03261 0.004549 −7.169 0.000
S = 0.03601 R2 = 92.7% R2(adj) = 91.6%
ANOVA for Ra

Source DF Seq SS Adj SS Adj MS F P − value

Regression 17 1.76656 1.76656 0.10391 80.13 0.000
Linear 5 0.91810 1.08802 0.21760 167.79 0.000
Square 4 0.41454 0.42201 0.10550 81.35 0.000
Interaction 8 0.43392 0.43392 0.05424 41.82 0.000
Residual error 107 0.13876 0.13876 0.00129
Lack-of-Fit 19 0.06300 0.06300 0.00331 3.85 0.000
Pure Error 88 0.07576 0.07576 0.00086
Total 124 1.90532 1.90532

adjusted squared error R2
adj = 0.916. The final fitted model is given by

Ra = 0.18102 + 0.07536× fz + 0.0284× fz2 − 0.0836×Dtool + 0.03139×D2
tool − 0.0068×HB +

+ 0.04364×HB2 + 0.00893ae− 0.03986× fz ×Dtool + 0.03416× fz ×HB −
− 0.03216×Dtool × ae− 0.02981×Dtool ×HB + 0.01686×Dtool × Curv +

+ 0.0079× ae×HB − 0.03216× ae× Curv + 0.0087× Curv2 (F.3)
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The model was validated in agreement with the results show in Figure F.2. Figure F.2a. depicts the normal
distribution of the residuals and it is observed that enough data were used to fit the model. Figure F.2. defines the
normal probability plot, and the tendency (straight line) shows the normality of the error distribution. Also, Figure
F.2c. shows an excellent spread of points on either side of zero, with no patterns of increase or decrease.
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Figure F.2: Validation of the used information to build the Statistical Model for the half worn condition:(a) Normal
distribution of the residuals; (b) Normal probability plot; (c) Spread of points.

F.4 Modeling of the Ra with RSM and worn cutting tool condition

The DoE was reproduced with the worn cutting tool condition, and the measurements of Ra were made for each test
piece. Table F.7 presents the four parameters that were measured for the assessment of the Ra for each test piece.
The RSM was applied to build the model for the worn cutting tool condition. Following the same steps described
in the previous sections, the ANOVA results are shown in Table F.8, where the variability of Ra is explained by the
model with R2 = 93.40% and the estimated parameters of model are significant in R2

adj = 92.50%.
Table F.8 shows the terms with a P-value< 0.05, and they were selected to fit the final model. After to select

only the relevant factors, the analysis of variance was applied to confirm the squared error R2 = 0.934 and the
adjusted squared error R2

adj = 0.925. The final fitted model is given by

Ra = 0.21686 + 0.06362× fz + 0.02246× fz2 − 0.05339×Dtool + 0.02217×D2
tool − 0.02236×HB +

+ 0.02962×HB2 + 0.01674Curv − 0.02925× fz ×Dtool + 0.01303× fz ×HB +

+ 0.0208× fz × Curv − 0.00942×Dtool ×HB + 0.01582×Dtool × Curv − 0.01047× ae×HB −
− 0.01047× ae× Curv + 0.0175×HB × Curv2 (F.4)

The model was validated in agreement with the results show in Figure F.3. Figure F.3a. depicts the normal
distribution of the residuals and it is observed that enough data were used to fit the model. Figure F.3b. defines the
normal probability plot, and the tendency (straight line) shows the normality of the error distribution. Also, Figure
F.3c. shows an excellent spread of points on either side of zero.
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Table F.7: Factors considered for the experiments, and the measurements of the parameters that allow the character-
ization of the Ra for the two sections. The cutting tool condition is worn edge.

Section 01 Section 02
Exp fz Dtool ae HB Curv Ra RSm Rq Rz Ra RSm Rq Rz

1 0.050 10 2 94 0.025 0.266 89.5 0.321 1.48 0.27 94.8 0.338 1.58
2 0.100 10 2 94 −0.025 0.392 245.9 0.507 2.34 0.43 220.5 0.573 2.89
3 0.050 16 2 94 −0.025 0.253 112.9 0.314 1.66 0.23 128.3 0.297 1.64
4 0.100 16 2 94 0.025 0.324 181.4 0.410 1.81 0.28 195.8 0.364 1.71
5 0.050 10 4 91 −0.025 0.375 182.4 0.450 1.95 0.34 236.5 0.415 1.80
6 0.100 10 4 90 0.025 0.474 157.4 0.612 2.97 0.48 206.8 0.623 3.14
7 0.050 16 4 90 0.025 0.244 115.4 0.303 1.56 0.25 100.6 0.318 1.52
8 0.100 16 4 91 −0.025 0.258 244.2 0.333 1.58 0.24 218.9 0.323 1.63
9 0.050 10 2 141 −0.025 0.189 137.3 0.242 1.19 0.22 118.4 0.292 1.48

10 0.100 10 2 139 0.025 0.593 177.1 0.720 3.17 0.52 176.9 0.634 2.68
11 0.050 16 2 139 0.025 0.248 99.9 0.312 1.58 0.23 95.3 0.297 1.40
12 0.100 16 2 141 −0.025 0.173 229.1 0.230 1.25 0.16 234.3 0.212 1.06
13 0.050 10 4 139 0.025 0.265 97.8 0.327 1.50 0.21 102.3 0.274 1.30
14 0.100 10 4 140 −0.025 0.526 231.1 0.679 3.24 0.57 236.2 0.736 3.55
15 0.050 16 4 140 −0.025 0.107 261.0 0.134 0.70 0.11 132.6 0.154 0.86
16 0.100 16 4 139 0.025 0.307 183.4 0.385 1.77 0.32 172.6 0.405 1.70
17 0.025 12 3 109 0.000 0.177 154.2 0.225 1.27 0.16 101.9 0.215 1.12
18 0.130 12 3 109 0.000 0.465 238.4 0.587 2.81 0.47 240.6 0.578 2.54
19 0.075 8 3 108 0.000 0.312 182.3 0.395 2.01 0.32 213.6 0.417 2.02
20 0.075 20 3 108 0.000 0.266 155.0 0.334 1.65 0.23 156.1 0.290 1.45
21 0.075 12 1 109 0.000 0.217 167.8 0.271 1.29 0.22 143.7 0.287 1.37
22 0.075 12 5 109 0.000 0.269 167.5 0.343 1.65 0.25 169.7 0.317 1.50
23 0.075 12 3 69 0.000 0.402 165.1 0.504 2.44 0.40 162.6 0.498 2.27
24 0.075 12 3 154 0.000 0.271 145.4 0.336 1.55 0.24 128.6 0.308 1.53
25 0.075 12 3 110 −0.05 0.260 190.5 0.322 1.43 0.26 207.9 0.331 1.60
26 0.075 12 3 110 0.05 0.215 145.0 0.279 1.42 0.22 120.7 0.281 1.44
27 0.075 12 3 109 0.000 0.245 136.0 0.303 1.48 0.25 165.2 0.327 1.66
28 0.075 12 3 109 0.000 0.231 164.1 0.297 1.44 0.25 138.8 0.332 1.65
29 0.075 12 3 109 0.000 0.245 136.0 0.303 1.48 0.25 165.2 0.327 1.66
30 0.075 12 3 109 0.000 0.231 164.1 0.297 1.44 0.25 138.8 0.332 1.65
31 0.075 12 3 109 0.000 0.245 136.0 0.303 1.48 0.25 165.2 0.327 1.66
32 0.075 12 3 109 0.000 0.231 164.1 0.297 1.44 0.25 138.8 0.332 1.65
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Table F.8: Results of the ANOVA analysis: R2 = 0.934, R2
adj = 0.925 with 128 runs, and worn cutting tool

condition. Response Surface Regression: Ra versus fz ,Dtool,ae,HB,Curv.

Estimated Regression Coefficients for Ra

Term Coef SE Coef T p-value
Constant 0.21686 0.004303 50.399 0.000
fz 0.06362 0.002620 24.278 0.000
Dtool −0.05339 0.002784 −19.178 0.000
ae −0.00083 0.002638 −0.313 0.755
HB −0.02236 0.002456 −9.105 0.000
Curv 0.01674 0.002651 6.315 0.000
fzfz 0.02246 0.002143 10.482 0.000
DtoolDtool 0.02217 0.002433 9.111 0.000
HB ×HB 0.02962 0.002405 12.317 0.000
fzDtool −0.02925 0.003178 −9.206 0.000
fz ×HB 0.01303 0.002867 4.543 0.000
fz × Curv 0.02080 0.003247 6.407 0.000
DtoolHB −0.00942 0.002806 −3.356 0.001
DtoolCurv 0.01582 0.003178 4.979 0.000
ae×HB −0.01047 0.002865 −3.653 0.000
ae× Curv −0.01047 0.003251 −3.221 0.002
HB × Curv 0.01751 0.002875 6.091 0.000
S = 0.02549 R2 = 93.4% R2(adj) = 92.5%
ANOVA for Ra

Source DF Seq SS Adj SS Adj MS F P − value

Regression 16 1.00822 1.00822 0.06301 96.98 0.000
Linear 5 0.66311 0.70437 0.14087 216.81 0.000
Square 3 0.19460 0.19843 0.06614 101.80 0.000
Interaction 8 0.15051 0.15051 0.01881 28.95 0.000
Residual error 109 0.07082 0.07082 0.00065
Lack-of-Fit 29 0.04410 0.04410 0.00152 4.55 0.000
Pure Error 80 0.02673 0.02673 0.00033
Total 125 1.07904



178

0

F
re

q
u

e
n

c
y

Residual

(a)

-0.5 0.0 0.5

-3

-2

-1

0

1

2

N
o

rm
a
l 

S
c
o

p
e

Residual

(b)

20 40 60 80 100 120

Observation Order

(c)

R
e
si

d
u

a
l

-0.5 0.0 0.5

10

20
0.5

Residuals Versus the Order of the Data

(Response is Ra)

0.0

-0.5

Histrogram of the Residuals

(Response is Ra)

Normal Probability Plot of the Residuales

(Response is Ra)
3

Figure F.3: Validation of the used information to build the Statistical Model for the worn cutting tool condition:(a)
Normal distribution of the residuals; (b) Normal probability plot; (c) Spread of points.

F.5 Modeling of the Ra by using ANN

The modeling of Ra with ANN implies to pre-process the experimental data. First, the mean value of each variable
was computed as follows,

x̄ =
1
n

n∑

i=1

(xi) (F.5)

where the x̄ is the mean value of a specific input variable.
Then, the average distance from the mean of the data set to a point must be computed. It represents the standard

deviation, and it is defined as,

σ =

√√√√ 1
n− 1

n∑

i=1

(xi − x̄)2 (F.6)

Secondly, the data were normalized with a mean zero and a standard deviation equal at one;

ȳi =
xi − x̄

σ
(F.7)

where ȳi defines the normalized input variables, and i = 1, 2..., n, represents the number of the input variable.
Third, another method for normalizing the data set was used. The Bipolar sigmoidal normalization was em-

ployed, and it is given by,

z̄i =
1− e−yi

1 + e−yi
(F.8)

where z̄i defines the new normalized input variable, and i = 1, 2..., n, is the number of the input variable.



Appendix G

Tool-life testing procedure and parameters

This appendix presents the concepts, recommendations, and different tool-life parameters computed during the
experimentation in the CNC Kondia machining center. The Tool-life parameters were obtained for the different
Aluminium alloys and for the new, half-new, half-worn, and worn cutting tool condition.

G.1 Tool life testing procedure

This section is in agreement with the ISO-8688-2 to measure and assessment the tool-life condition. The ISO-8688-2
norm specifies some procedures for tool-life testing for end milling processes. The cutting conditions in end milling
can be considered under two categories:

a) Conditions as a result of which tool deterioration is due to wear.

b) Conditions under which tool deterioration is due to other phenomena such as edge fracture or plastic defor-
mation.

The tool life testing is conducted only for the tool wear condition. During the procedure to wear the cutting tool,
important recommendations must be taken:

1. Tool condition. The diameter of the tool should not be reduced below 90% of the original diameter.

2. Tool material. The recommended tool materials are: uncoated high-speed steel, non-cobalt alloyed or cobalt
alloyed, in accordance with ISO 4957. If the tool material is the test variable, the material classification and
as many characteristics as possible shall be reported.

3. Mounting the tool. The cutter shall be securely fastened in the chuck and the runout of the cutter shall be
carefully checked at the cutting edges. The maximum value of the runout at any point at the cutting edges
shall not exceed of 50µm for the radial runout condition. The actual runout shall be measured and recorded.

179
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4. Cutting conditions. The recommended cutting data must be chosen and combined in order to correspond and
emphasize the milling principles. The cutting conditions for tests in which the feed per tooth fz , the axial
depth of cut ap, and the radial depth of cut ae are not the prime test variables, shall be selected from table
G.1.

Table G.1: Recommended cutting conditions for end milling.

Cutting conditions Up milling Down milling
Axial depth of cut ap in mm 20 20
Radial depth of cut ae in mm 2.5 2.5

Feed fz in mm/tooth 0.08 0.125

In cases where the cutting conditions indicated in table G.1 cannot be achieved, other values as close as
possible to those indicated may be used. Other cutting conditions should be limited to the minimum values
given in table G.2.

Table G.2: Minimum limits of cutting conditions.
Cutting conditions End milling

Minimum feed per tooth fz in mm per tooth 0.05
Minimum axial depth of cut ap in mm 2a

Minimum radial depth of cut ae in mm 2b

aFor ap < 0.25Dtool the value of ae should be at least 0.25Dtool.
bFor ae < 0.25Dtool the value of ap should be at least 0.25Dtool.

In practical workshop situations the time at which a tool ceases to produce workpieces of the desired size or
surface quality usually determines the end of useful tool life. It is essential that tool life be defined as the total
cutting time of the tool to reach a specified value of tool-life criterion. Here, it is necessary to identify and classify
the cutting tool deterioration phenomena, and where it occurs at the cutting edges. The numerical values of tool
deterioration are used to determine tool life governs the quantity of testing material required and the cost of testing.
Before to explain the deterioration phenomena, some definitions are given.

• Tool wear: Change in shape of the cutting edge part of a tool from its original shape, resulting from progressive
loss of tool material during cutting.

• Brittle fracture (chipping): Occurrence of cracks in the cutting part of a tool followed by the loss of small
fragments of tool material.

• Tool deterioration measure: Quantity used to express the magnitude of a certain aspect of tool deterioration
by a numerical value.
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• Tool-life criterion: Predetermined value of a specified tool deterioration measure of the occurrence of a spec-
ified phenomenon.

• Tool life Tc: Total cutting time of the cutting part required to reach a specified tool-life criterion.

G.2 Methodology to wear the cutting tool

The process to wear the cutting tool considers two working conditions: (a) the wear of the cutting tool during the
Design of Experiments (DoE); and (b) the wear of the cutting tool during the machining of the straight path until
the flank wear reaches a specific value. The process implies to know the cutting conditions (Cc), cutting parameters
(Pc), and the geometric parameters (PG). This information allows to compute important parameters related with
the metal cutting process, and they will be described in this section. The geometries used in the experimentation
will be explained, together with the required equations to compute the tool-life parameters.

G.2.1 Convex geometry (Big Island)

The first geometry corresponds to a convex path (big island). Figure G.1 shows the geometry with the information
necessary to compute the parameters. Given the measurements b and a, the radius R can be computed for the convex

Tool
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RpathR

b

a
ae

Figure G.1: Machining of the convex geometry.

path. The equation is,

R =
a

2
+

b2

8a
(G.1)
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Given R, Dtool, and a values, the length of the arc that follows the cutting tool is defined as,

Lt = (R + Rtool)2cos−1

(
R− a

R + Rtool

)
(G.2)

where Rtool = Dtool/2. Given the feed rate (vf ) and the length of the cutting tool path, the machining time is
defined as,

tm =
Lt

vf
(G.3)

The immersion angle of the cutting tool is given by

∆φ = cos−1

[
1− 2ae

Dtool

]
(G.4)

The length of cut (lc) is given by
lc = Rtool(∆φ) (G.5)

The final length of the convex arc is defined as,

St = 2Rcos−1

(
R− a

R

)
(G.6)

The volume of removal metal is computed as,

V ol = ae× ap× St (G.7)

The number of cycles made by the cutting tool edge over the workpiece material is defined as,

nc =
St

fz2
(G.8)

The cutting edge time during the peripheral process is defined as,

te = tm
∆φ

360
(G.9)

G.2.2 Concave geometry (Big Box)

The second geometry corresponds to a concave path (big box). Figure G.2 shows the geometry with the required
information to compute the parameters. Given the measurements b, a1 and a2, the distance a is equal to (a1 − a2),
and the radius R, for the concave path, is computed with Eq. (G.1). Given R, Dtool, and a values, the length of the
arc that follows the cutting tool is defined as,

Lt = (R−Rtool)2cos−1

(
R− a

R−Rtool

)
(G.10)

where Rtool = Dtool/2. Given the feed rate (vf ) and the length of the cutting tool path, the machining time is
computed with Eq. (G.3). The immersion angle of the cutting tool is given by Eq. (G.4), and the length of cut
(lc) is computed with Eq. (G.5). The final length of the concave arc is computed with Eq. (G.6). The volume
of the removed metal is computed with Eq. (G.7), and the number of cycles made by the cutting tool edge over
the workpiece material is computed with Eq. (G.8). Finally, the cutting edge time during the peripheral process is
defined by Eq. (G.9).
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Figure G.2: Machining of the concave geometry.

G.2.3 Convex geometry (Small Island)

The third geometry corresponds to a convex path (small island). Given the measurements b and a, the radius R

computed with Eq. (G.1). Given R, Dtool, and a values, the length of the arc that follows the cutting tool is obtained
with Eq. (G.2). With the feed rate (vf ) and the length of the cutting tool path, the machining time is computed with
Eq. (G.3).

The immersion angle of the cutting tool is given by Eq. (G.4), and the length of cut (lc) is computed with Eq.
(G.5). The final length of the convex arc is computed with Eq. (G.6). The volume of the removed metal is deduced
with Eq. (G.7). The number of cycles made by the cutting tool edge over the workpiece material is computed with
Eq. (G.8), and the cutting edge time during the peripheral process is defined by Eq. (G.9).

G.2.4 Concave geometry (Small Box)

The forth geometry corresponds to a concave path (small box). Given the measurements b, a1 and a2, the distance
a is equal to (a1 − a2), and the radius R is given by Eq. (G.1). Given R, Dtool, and a values, the length of the arc
that follows the cutting tool is defined as,

Lt = (R−Rtool)
(

2π − 2cos−1 a−R

R−Rtool

)
(G.11)

where Rtool = Dtool/2. With the feed rate (vf ) and the length of the cutting tool path, the machining time is
computed with Eq. (G.3). The immersion angle of the cutting tool is given by Eq. (G.4).

The length of cut (lc) is computed with Eq. (G.5), and the final length of the concave arc is given by Eq. (G.6).
The volume of the removed metal is computed with Eq. (G.7), and the number of cycles made by the cutting tool
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edge over the workpiece material is given by Eq. (G.8). Finally, the cutting edge time during the peripheral process
is computed with Eq. (G.9).

G.2.5 Straight path geometry

The fifth geometry corresponds to a straight path. The machined length (Lt) is defined by the width of the aluminum
block. Given the feed rate (vf ) and the machined length, the machining time is given by Eq. (G.3). The immersion
angle of the cutting tool is computed with Eq. (G.4), and the length of cut (lc) is given by Eq. (G.5). The final length
of the cutting tool path is equal at,

St = Lt (G.12)

The volume of the removed metal is computed with Eq. (G.7), and the number of cycles made by the cutting tool
edge over the workpiece material is computed with Eq. (G.8). Finally, the cutting edge time during the peripheral
process is obtained with Eq. (G.9).

G.3 Results of the tool-life tests

The tool-life parameters were computed for each Aluminium alloy and the four cutting tool wear conditions. Table
G.3 with the results computed for the 6082 Aluminium alloy and new cutting tool condition.

The complete results of the flank wear evolution are shown in Tables G.4, G.5. The uniform flank wear (V Bavg)
represents the average value of the two cutting tool edges, and the maximum flank wear (V Bmax) corresponds to
the higher value found in the cutting edges.
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Table G.3: Tool-life parameters for the experiments with 6082−T6 Aluminium alloy and new cutting tool condition.
First column defines the workpiece hardness and number of the test piece. The cutting conditions are defined in
columns from 2 to 4. The values of the Tool-life parameters are included in columns from 5 to 12.

Mach. First Mach. Second Mach.
Test piece fz ae Dtool Time(s) St1 St2 lc V ol nc te lc V ol nc te

E2-01-6082 0.1 2 16 1.8 1.7 83 76 7.2 1250 417 0.26 5.8 764 382 0.19
IG-R45 0.05 2 10 3.3 3.1 83 77 5.8 1248 832 0.61 4.6 766 766 0.46
93 HBN 0.05 2 10 3.3 3.1 83 77 5.8 1248 832 0.61 4.6 766 766 0.46

0.1 2 16 1.8 1.7 83 76 7.2 1250 417 0.26 5.8 764 382 0.19
E2-02-6082 0.1 2 16 1.8 1.7 83 76 7.2 1246 415 0.26 5.8 765 383 0.19

IG-R45 0.05 2 10 3.3 3.1 83 77 5.8 1250 833 0.61 4.6 766 766 0.46
94 HBN 0.05 2 10 3.3 3.1 83 77 5.8 1250 833 0.61 4.6 766 766 0.46

0.1 2 16 1.8 1.7 83 76 7.2 1246 415 0.26 5.8 765 383 0.19
E2-03-6082 0.05 4 16 3.8 3.4 89 76 4.0 448 896 0.31 8.4 1530 765 0.57

IG-R45 0.1 4 10 1.8 1.5 89 76 3.2 448 448 0.18 6.8 1530 382 0.34
94 HBN 0.1 4 10 1.8 1.5 89 76 3.2 448 448 0.18 6.8 1530 382 0.34

0.05 4 16 3.8 3.4 89 76 4.0 448 896 0.31 8.4 1530 765 0.57
E2-04-6082 0.05 4 16 3.8 3.4 89 77 4.0 448 896 0.31 8.4 1532 766 0.57

IG-R45 0.1 4 10 1.8 1.5 89 76 3.2 447 447 0.18 6.8 1529 382 0.34
93 HBN 0.1 4 10 1.8 1.5 89 76 3.2 447 447 0.18 6.8 1529 382 0.34

0.05 4 16 3.8 3.4 89 77 4.0 448 896 0.31 8.4 1532 766 0.57
E2-05-6082 0.05 2 16 1.8 2.0 81 88 7.2 1224 816 0.26 5.8 879 879 0.24

CG-R35 0.1 2 10 1.1 1.2 81 87 5.8 1219 406 0.20 4.6 875 438 0.18
93 HBN 0.1 2 10 1.1 1.2 81 87 5.8 1219 406 0.20 4.6 875 438 0.18

0.05 2 16 1.8 2.0 81 88 7.2 1224 816 0.26 5.8 879 879 0.24
E2-06-6082 0.05 2 16 1.8 2.0 80 87 7.2 1206 804 0.26 5.8 867 867 0.23

CG-R35 0.1 2 10 1.1 1.2 80 87 5.8 1199 400 0.20 4.6 867 434 0.18
93 HBN 0.1 2 10 1.1 1.2 80 87 5.8 1199 400 0.20 4.6 867 434 0.18

0.05 2 16 1.8 2.0 80 87 7.2 1206 804 0.26 5.8 867 867 0.23
E2-07-6082 0.1 4 16 0.8 1.0 75 89 4.0 374 374 0.06 8.4 1774 443 0.17

CG-R35 0.05 4 10 1.9 2.4 75 87 3.2 375 749 0.20 6.8 1751 876 0.52
94 HBN 0.05 4 10 1.9 2.4 75 87 3.2 375 749 0.20 6.8 1751 876 0.52

0.1 4 16 0.8 1.0 75 89 4.0 374 374 0.06 8.4 1774 443 0.17
E2-08-6082 0.1 4 16 0.8 1.0 75 87 4.0 374 374 0.06 8.4 1748 437 0.17

CG-R35 0.05 4 10 1.9 2.4 74 88 3.2 372 745 0.20 6.8 1760 880 0.52
92 HBN 0.05 4 10 1.9 2.4 74 88 3.2 372 745 0.20 6.8 1760 880 0.52

0.1 4 16 0.8 1.0 75 87 4.0 374 374 0.06 8.4 1748 437 0.17
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Table G.4: Evolution of the flank wear during the experimentation in the CNC Kondia machining center. Cutting
tool diameters: 8 mm, 10 mm, and 12 mm.

Dtool = 8 mm
Cutting Tool Lt Mach.Time V ol nc tc V B V B

Condition mm min mm3 min avg max
E2-VB 600 0.220 6000 4000 0.036 0.027 0.033

Tool condition VB-01 41536 23.995 620040 276906 4.526 0.073 0.104
E3-VB 600 0.22 600 4000 0.036

Tool condition VB-02 69909 34.501 1042635 466060 6.504 0.101 0.123
E4-VB 600 0.22 6000 4000 0.036

Tool condition VB-03 84360 39.851 1256400 562400 7.509 0.235 0.362
E5-VB 600 0.22 6000 4000 0.036

Final values 84960 40.071 1262400 566400 7.545 0.332 0.389
Dtool = 10 mm

Cutting Tool Lt Mach.Time V ol nc tc V B V B

Condition mm min mm3 min avg max
E2-VB 600 0.220 6000 4000 0.036 0.072 0.097

Tool condition VB-01 41536 23.995 620040 431946 4.526 0.096 0.108
E3-VB 5240 0.19 65596 39335 0.357

Tool condition VB-02 87736 41.355 1300036 744348 7.411 0.116 0.129
E4-VB 5220 2.18 65248 39156 0.356

Tool condition VB-03 100008 46.147 1471064 830517 8.202 0.235 0.45
E5-VB 5250 2.19 65604 39372 0.357

Final values 105258 48.337 1536668 869889 8.559 0.43 0.468
Dtool = 12 mm

Cutting Tool Lt Mach.Time V ol nc tc V B V B

Condition mm min mm3 min avg max
E2-VB 6100 2.62 63682 47232 0.346 0.043 0.086

Tool condition VB-01 33380 12.724 472882 213987 1.87 0.089 0.126
E3-VB 6100 2.62 63810 47274 0.347

Tool condition VB-02 74558 28.336 1062862 495114 4.177 0.142 0.355
E4-VB 6100 2.62 63566 47141 0.345

Tool condition VB-03 98202 37.453 1389588 659215 5.503 0.199 0.47
E5-VB 6100 2.62 63726 47232 0.346

Final values 104302 40.073 1453314 706447 5.846 0.334 0.515
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Table G.5: Evolution of the flank wear during the experimentation in the CNC Kondia machining center. Cutting
tool diameters: 16 mm and 20 mm.

Dtool = 16 mm
Cutting Tool Lt Mach.Time V ol nc tc V B V B

Condition mm min mm3 min avg max
E2-VB 5260 2.2 65676 39576 0.277 0.065 0.071

Tool condition VB-01 25951 9.863 376041 176502 1.268 0.096 0.105
E3-VB 5250 2.19 65604 39381 0.276

Tool condition VB-02 72511 27.353 1061295 460683 3.523 0.13 0.139
E4-VB 5230 2.18 65401 39242 0.275

Tool condition VB-03 98593 37.256 1439476 615770 4.798 0.193 0.471
E5-VB 5250 2.19 65577 39384 0.276

Final values 103843 39.446 1505053 655154 5.073 0.214 0.573
Dtool = 20 mm

Cutting Tool Lt Mach.Time V ol nc tc V B V B

Condition mm min mm3 min avg max
E2-VB 600 0.22 4000 4000 0.022 0.029 0.03

Tool condition VB-01 27800 10.294 408000 166222 1.159 0.09 0.147
E3-VB 600 0.22 6000 4000 0.022

Tool condition VB-02 69610 25.777 1032150 399166 2.937 0.112 0.176
E4-VB 600 0.22 6000 4000 0.022

Tool condition VB-03 98074 36.317 1456110 557966 4.146 0.22 0.499
E5-VB 600 0.22 6000 4000 0.022

Final values 98674 36.537 1462110 561966 4.168 0.25 0.612



Appendix H

Theory of the Markov Hidden Models

Real world processes generally produce observable outputs which can be characterized as signals. The signals can
be discrete in nature (e.g., characters from a finite alphabet, quantized vectors from a codebook, etc.), or continuous
in nature (e.g., speech samples, temperature measurements, vibration signals, music, etc.). The signals can be
stationary or non-stationary. The signals can pure or can be corrupted from other signal sources. A problem of
fundamental interest is characterizing such real-world signals in terms of signal models. There are many reasons to
consider this issue. First, a signal model can provide the basis for a theoretical description of a signal processing
system that can be used to process the signal so as to provide a desired output. A second reason why signal models
are important is that they are potentially capable of letting us learn a great deal about the signal source. But, the most
important reason why signal models are important is that they often work extremely well in practice, and enable
us to realize important practical systems (e.g. prediction systems, recognition systems, identification systems, etc.).
Signal models can be divided into deterministic and statistical models. Deterministic models generally exploit some
known specific properties of the signal, and we only need to determine values of the parameters of the signal model
(e.g., amplitude, frequency, phase, etc.). Statistical models use the statistical properties of the signal. Examples
of such statistical models include Gaussian processes, Poison processes, Markov Processes, and Hidden Markov
processes. In this section, we are going to describe one type of stochastic signal model, Hidden Markov Model
(HMM). A complete description of the HMM can be found in [Rabiner, 1989], and [Mohamed and Garder, 2000].

H.1 Discrete Markov processes

Consider a system which may be described at any time as being in one of a set of N distinct states, S1, S2, S3,...,
SN . At regularly spaced discrete times, the system undergoes a change of state (possibly back to the same state)
according to a set of probabilities associated with the state. The time instants associated with the state changes as t
= 1, 2,...., and the actual state at time t as qt. A full probabilistic description of the above system would , in general,
requires specification of the current state (at time t), as well as all the predecessor states. For the special case of a
discrete, first order, Markov chain, this probabilistic description is truncated to just the current and the predecessor

188
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state, as shown in the following equation,

P [qt = Sj |qt−1 = Si, qt−2 = Sk, ....] = P [qt = Sj |qt−1 = Si] (H.1)

Furthermore we only consider those processes in which the right-hand side of Eq.(H.1) are independent of time,
thereby leading to the set of state transition probabilities ai,j of the form

aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N (H.2)

with the state transition coefficients having the properties

aij ≥ 0 (H.3)

N∑

j=1

aij = 1 (H.4)

Since, they obey standard stochastic constraints. The above stochastic process could be called an observation
Markov model since the output of the process is the set of states at each instant of time, where each state corresponds
to a physical event.

H.2 Extension to Hidden Markov Models

In this section, the concept of Markov models is extended to include the case where the observation is a probabilistic
function of the state, and the resulting model (which is called a hidden Markov model) is a doubly embedded
stochastic process with an underlying stochastic process that is not observable, but can only be observed through
another set of stochastic processes that produce the sequence of observations. To figure out this ideas, the following
example is presented.

Coin Toss Models. Assume that somebody is in a room behind a wall, and he can not see what is happening.
On the other side of the wall there is another person who is performing a coin tossing experiment. The person will
not comment anything about what he is doing exactly; he will only tell the result of each coin flip to the first person.
Thus a sequence of hidden coin tossing experiments are performed, with the observation sequence consisting of a
series of heads and tails, and it would be

O = O1O2O3 · · ·OT

= HHJJJHJJH · · ·H

where H stands for heads and J stands for tails.
Given the above scenario, the problem of interest is how do we build an HMM to explain the observed sequence of
heads and tails. The first problem one faces is deciding what the states in the model correspond to, and then deciding
how many states should be in the model. One possible choice would be to assume that only a single biased coin was
being tossed. In this case, the situation could be modeling as a two-state model, where each state corresponds to a
side of the coin (i.e., heads or tails). This model is depicted in Figure H.1a.
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(a) (b)

Figure H.1: (a) HMM with one coin and two states. (b) HMM with two coins and each state with two observations.

A second form of HMM for explaining the observed sequence of coin toss outcome is given in Figure H.1b. In
this case, there are two states in the model and each state corresponds to a different, biased, coin being tossed. Each
state is characterized by a probability distribution of heads and tails, and transitions between states are characterized
by state transition matrix. The physical mechanism which accounts for how state transition are selected could itself
be a set of independent coin tosses, or some other probabilistic events.

Given the choice among the three models shown in Figure H.1 for explaining the observed sequence of heads
and tails, a natural question would be which model best matches the actual observations. It should be clear that
the simple 1-coin model of Figure H.1a has only one unknown parameter, and the model of Figure H.1b has four
unknown parameters. Therefore, with the greater degrees of freedom, the larger HMMs would seem to inherently
be more capable of modeling a series of coin tossing experiments than would equivalently smaller models.

An HMM is characterized by the following parameters:

• Ns is the number of states in the model. Generally the states are interconnected in such a way that any state
can be reached from any other state. The individual states are S = S1, S2, · · · , SN , and the state at time t as
qt.

• M is the number of distinct observation symbols per state. The individual symbols are V = v1, v2, · · · , vM .

• A = aij is the state transition probability distribution. Where

aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N (H.5)

• B = bj(k) is the observation symbol probability distribution in state j. Where

bj(k) = P [vkatt|qt = Sj ], 1 ≤ j ≤ N1 ≤ k ≤ M (H.6)

• π = πi is the initial state distribution. Where

πi = P [q1 = Si], 1 ≤ i ≤ N (H.7)

Given appropriate values of N,M,A, B, and π, the HMM can be used as a generator to give an observation sequence

O = O1O2, · · · , OT (H.8)
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It can be seen from the above discussion that a complete specification of an HMM requires specification of two
model parameters Ns, and M , specification of observation symbols, and the specification of the three probability
measures A,B, and π. For convenience, it is used the compact notation

λ = (A,B, π) (H.9)

for the complete parameter set of the model.

H.2.1 Baum-Welch Algorithm

The Baum-Welch algorithm, see [Rabiner, 1989], is used to adjust the model parameters to maximize the probability
of the observation sequence given the model. The observation sequence used to compute the model parameters is
called a training sequence. The training problem is crucial in the applications of the HMMs, because it allows us to
optimally adapt model parameters to observed training data. The Baum-Welch algorithm is an iterative process that
uses the forward and backward probabilities to solve the problem. The goal is to obtain a new model, λ = (A,B, π)
to maximize the function,

Q(λ, λ) =
∑

Q

P (O, Q | λ)
P (O|λ)

log
[
P (O,Q|λ)

]
(H.10)

First, a current model is defined as λ = (A,B, π), and used to estimate a new model as λ = (A, B, π). The
new model must present a better likelihood than first model to reproduce the observation sequence. Based on this
procedure, if λ is iteratively used in place of λ and repeat the calculus, then we can improve the probability of O

being observed from the model until some limiting point is reached. The result of the recalculation procedure is
called a maximum likelihood estimate of the HMM. At the end, the new set of parameters (means, variance, and
transitions) is obtained for each HMM.

H.2.2 Viterbi Algorithm

In pattern recognition applications, it is useful to associate an ”optimal” sequence of states to a sequence of ob-
servations, given the parameters of model. In pattern recognition, the feature vector, representing the observations,
are known, but the sequence of states that defines the model is unknown. A ”reasonable” optimality criterion con-
sists in choosing the state sequence (or path) that brings a maximum likelihood with respect to a given model (i.e.,
best ”explains” the observation). This sequence can be determined recursively via the Viterbi algorithm. This al-
gorithm allows to find the single best state sequence, Q = {q1 q2 · · · qT } for the given observation sequence
O = {O1 O2 · · · OT }, and it makes use of two variables:

1. The highest likelihood δt(i) along a single path among all the paths ending in state i at time t:

δt(i) = max
q1,q2,··· ,qt−1

P [q1 q2 · · · qt = i, O1 O2 · · ·Ot|λ]
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2. A variable ψt(i) which allows to keep track of the ”best path” ending in state j at time t.

Using these two variables, the algorithm implies the following steps:

1. Initialization
δ1(i) = πibi(O1) 1 ≤ i ≤ N

ψi = 0

2. Recursion
δt(j) = max

1≤i≤N
[δt−1(i)aij ]bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ], 2 ≤ t ≤ T, 1 ≤ j ≤ N

3. Termination:
P ∗ = max

1≤i≤N
[δT (i)]

q∗T = arg max
1≤i≤N

[δT (i)]

4. Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, · · · , 1

The Viterbi algorithm delivers the best states path, which corresponds to the observations sequence. This algo-
rithm also computes a likelihood along the best path.

H.3 Monitoring and diagnose the cutting tool wear condition

This section presents the results that were obtained by applying the Artificial Neural Network (ANN) approach for
monitoring and diagnosing the cutting tool condition during the peripheral end milling process in HSM. A database
was built with 441 experiments: 110 experiments with new cutting tool, 112 with half-new cutting tool, 110 with
half-worn cutting tool, and 109 with worn cutting tool. A MonteCarlo simulation for the training/testing steps was
implemented due to the stochasticity of the approach. The results correspond to the average of 10 runs, where for
each run a different training data set (Tr) and testing data set (Ts) was generated.

H.3.1 Assessment of the cutting tool wear condition by using ANN

Additionally to the HMMs, classical approaches were implemented to compare both results. The cutting tool wear
condition was modeled with an ANN model. The application of ANN to on-line process monitoring systems has
attracted great interest due to their learning capabilities, noise suppression, and parallel computability. A com-
plete recompilation of research works in on-line and indirect tool wear monitoring with ANN are presented in
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[Sick, 2002b]. ANN is often defined as a computing system made up of a number of simple elements called neu-
rons, which possesses information by its dynamic state response to external inputs. The neurons are arranged in
a series of layers. Multi-layer feed-forward networks are the most common architecture. Furthermore, there are
several learning algorithms for training neural networks. Back-propagation has proven to be successful in many
industrial applications and it is easily implemented. The proposed architecture implies 12 input neurons, one hidden
layer with 12 neurons, and one output neuron. Figure H.2 shows the ANN model, where the input neurons represent
the following information: feed per tooth, tool diameter, radial depth of cut, workpiece material hardness, curvature,
and the MFCC vector (7 dimensions).

Figure H.2: ANN model implemented for monitoring and diagnosis the on-line cutting tool condition.

Feed-forward ANN model was applied with a ”tanh” activation function. The trained algorithm was classical
back-propagation. For computing, input data (fz , Dtool, ae, HB, Curv, and MFCC vector) was normalized and
output data was mapped to [−1, 1]. All the experimental data sets were normalized to avoid numerical instability.
First, the data set was normalized by considering the mean value (µ), and standard deviation (σ) with the following
equation,

f(x) =
x− µ

σ
= x (H.11)

A second normalized method was applied: bipolar sigmoidal. This method was used because the minimum
and maximum values are unknown in real-time. The non-linear transformation prevents most values from being
compressed into essentially the same values, and it also compresses the large outlier values. The bipolar sigmoidal
was applied with the following equation,

f(x) =
1− e(−x)

1 + e(−x)
(H.12)

With respect to the output neuron, the cutting tool condition, the values were mapped between the normalized
tool-wear and tool-wear condition (see Table H.1). Finally, the data set was randomly divided into two sets, training
(70%), and testing (30%) sets, in order to measure their generalization capacity.



194

Table H.1: Tool-wear from ANN model is mapped with the cutting tool wear condition.

Normalized cutting Cutting tool
tool condition condition

From +0.66 to +1.00 New
From 0.0 to 0.66 Half-new

From −0.66 to 0.0 Half-worn
From −1.00 to −0.66 Worn

The performance of the ANN model was computed for ten different sets of data, which were selected in random
form. The training and testing processes were programmed by using MatLab software. The obtained results corre-
spond to 8 different ANN models, all of them with the same architecture but different MFCC vector. The MFCC
were computed for each of the process signals (accelerometers, forces, and acoustic emission). Table H.2 shows the
computed results with different process signals. The obtained performance corresponds to an average value from
the ten data sets. Table H.2 shows that ANN model with Acoustic Emission signal (AE-Spindle) represents the best
model for testing data set, with a performance of 89.9% and Mean Squared Error (MSE) of 0.10075. Figure H.3
plots the obtained results of the diagnosis system, when the ANN model was tested for the prediction of the cutting
tool condition.

Table H.2: Performance of the ANN model with the training and testing data sets. The first two columns define the
success of the accelerometers on the workpiece. The next two, the success of the accelerometers installed on the
spindle. The last two columns define the success of the Acoustic Emission sensors.

Data Workpiece Spindle X4 Y AE
sets Acc−X Acc− Y Acc−X Acc− Y Force Force Spindle Workp.

Training 90.2% 94.5% 97.8% 98.7% 94.2% 97.6% 99.9% 99.2%
Testing 31.3% 33.8% 40.4% 47.2% 48.5% 48.0% 89.9% 69.7%

H.4 Conclusions

This Appendix defines new ideas for monitoring and diagnosis the cutting tool wear condition by using ANN model.
Feature vectors, based on the Mel Frequency Cepstrum Coefficients, were computed to characterize the process
signals during the machining processes. First, with the cutting parameters and MFCC, the cutting tool condition
was modeled with an ANN model. The feedfoward ANN model and back-propagation algorithm were used to define
the ANN model. The proposed architecture implies 12 input neurons and one output neuron (cutting condition). The
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Figure H.3: Monitoring and Diagnosis the cutting tool condition with the ANN(12,12,1) model. The MFCC were
computed for the acoustic emission signal (AEspindle).

best results were obtained by using the signals from the Acoustic Emission installed on the machine spindle. The
success rate for the ANN model was 89.9% for the testing data set. The best performance was obtained with the
HMM model.
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Machining cost

An important task of the intelligent planning module is to recommend an optimal policy (actions) for operating the
CNC machining center. A methodology based on the Markov Decision Process (MDP) was implemented to compute
the expected total discount cost and the optimal policy. The application of the MDP requires an evaluation of the
cost function for each action. The cost function must be defined for all cutting tool wear conditions and actions. For
this application, the parameters and cost are shown in Tables I.1, and I.2. These parameters and cost were observed
and registered during the experimentation with the cutting tools and materials defined in Chapter 4. The operating
cost was obtained off-line and they must be modified according at the specific machining operation in the industry.

Table I.1: Time constants obtained during the experimentation, and used to compute the cost functions.

Concept Symbol Time
Time for inspection of the cutting tool tins,tool 15 min

Time for inspection and changing of the cutting tool ttool 50 min
Average machining time of each workpiece tavg,m 1.2 min

Time for changing the workpiece of the CNC tworkp 20.0 min
Machining time of each cutting tool (8, 10, 12, 14, 16 mm) tm 45, 55, 40, 39, 36 min

Cutting edge time of each cutting tool (8, 10, 12, 14, 16 mm) te 8.6, 9, 5.8, 5, 4.2 min

The cost function depends of the selected cutting tool diameter and workpiece material. Therefore, the cost was
computed for the 6082 − T6 aluminium alloy and a cutting tool diameter of 16 mm. The experiments with these
conditions were used to determine the optimal policy by applying the MDP.

• Evaluation of the cost function for the first action.
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Table I.2: List of the cost required to compute the cost functions.

Concept Symbol Cost
Labor charge rate Lc $0.18254 USD/min
Machining cost Mc $0.833 USD/min

Rate to recover the capital cost of the machine Mt $0.1538 USD/min
Cutting tools cost (8, 10, 12, 16, 20 mm) Toolc $81.3, 114, 145.9, 236, 364.8 USD

Workpiece cost (5083, 6082, 2024, CERTAL, 7075) WPc $15, 15, 20, 26, 30 USD

a) Evaluation of the operation cost. The constant operation cost is given by

Opc,cte = (Lc + Mc) ∗ (tavg,m + tworkp) (I.1)

During the machining process, the cutting tool edge presents a flank wear, and it increases the friction
and cutting forces. Then, a power factor (Pf ) must be defined to consider an increment in the CNC
power due to these factors. The power factor was estimated by considering the observed behaviour in
the cutting forces. By using the power factor, the real operation cost is defined as,

Opc,real = Opc,cte ∗ Pf (I.2)

The total cost of the cutting tool is divided by the machining time, and it is equal to,

Tc,Wp = tavg,m ∗ Toolc)/tm (I.3)

Finally, the total operation cost is given by

Totc = Opc,real + WPc + Tc,Wp (I.4)

By using these equations, the total cost, for each cutting tool condition, are defined in Table I.3.

b) The decision theory implies to compute the cost due to the uncertainty decision (see Table I.4).

c) The cost function is computed with the cost shown in Table I.5. The cost function for a1 action, is given
by,

fa1 = {44.15, 46.89, 49.28, 87.84, 320.52} (I.5)

• Evaluation of the cost function for the second action.

a) Evaluation of the operation cost. The operation cost is equal to the cost of the a1 action, and it is shown
in Table I.3.

b) The decision theory implies to use the cost in Table I.4.
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Table I.3: Operation cost for the a1 action.

Cutting Constant Real
tool operation Power operation Workpiece Tool cost Total

condition cost factor cost cost /Workpiece cost
New $21.53 1.016 $21.89 $15 $7.26 $44.15

Half-new $21.53 1.143 $24.63 $15 $7.26 $46.89
Half-worn $21.53 1.254 $27.02 $15 $7.26 $49.28

Worn $21.53 1.174 $25.29 $15 $7.26 $47.55
Fracture $21.53 1.097 $23.63 $15 $7.26 $45.89

Table I.4: Cost for the decision theory. Actions a1 and a2.

Cutting tool condition Decision cost, (a1) Decision cost, (a2)
New, Half-new, Half-worn 0 0

Worn WPc + Opc,real = $40.29 $16.82
Tool fracture WPc + Opc,real = $38.63 $38.63

Table I.5: Total cost required to compute the a1 cost function.

Cutting tool condition
New Half-new Half-worn Worn tool breakage

Decision cost 0 0 0 $40.29 $38.63
Operation cost $44.15 $46.894 $49.283 $47.553 $45.891

Tool cost 0 0 0 0 $236.0

Cost function $44.154 $46.894 $49.283 $87.844 $320.521

Table I.6: Total cost required to compute the a2 cost function.

Cutting tool condition
New Half-new Half-worn Worn tool breakage

Decision cost 0 0 0 $16.82 $38.63
Operation cost $44.15 $46.894 $49.283 $47.553 $45.891

Tool cost 0 0 0 $236.0 $236.0

Cost function $44.154 $46.894 $49.283 $300.372 $320.521
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c) The cost function is computed with the cost shown in Table I.6. The final cost function, for the a2 action,
is given by,

fa2 = {44.15, 46.89, 49.28, 300.37, 320.52} (I.6)

• Evaluation of the cost function for the third action.

a) Evaluation of the operation cost. The operation cost for the third action is shown in Table I.3.

b) The decision theory implies to use the cost in Table I.7.

Table I.7: Decision theory cost for the a3 action.

Cutting tool condition Decision cost
New tins,tool ∗ (Lc + Mt) = $5.05

Half-new $5.05
Half-worn $5.05

Worn $5.05
Tool fracture $38.63

c) The cost function is computed with the cost shown in Table I.8. The final cost function, for the a3 action,
is given by,

fa3 = {49.2, 51.94, 54.32, 52.60, 320.52} (I.7)

Table I.8: Total cost required to compute the a3 cost function.

Cutting tool condition
New Half-new Half-worn Worn tool breakage

Decision cost $5.05 $5.05 $5.05 $5.05 $38.63
Operation cost $44.15 $46.894 $49.283 $47.553 $45.891

Tool cost 0 0 0 0 $236.0

Cost function $49.20 $51.939 $54.328 $52.598 $320.521



Appendix J

List of publications

The design and implementation of the intelligent monitoring and supervisory control system implied to research,
make exhaust experiments, and produce several publications to validate the proposal ideas and algorithms. The
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On-line Cutting Tool Condition Monitoring in Machining Processes using Artificial Intelligence. I-Tech.
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