
INSTITUTO TECNOLÓGICO Y DE ESTUDIOS SUPERIORES DE

MONTERREY

CAMPUS MONTERREY

GRADUATE PROGRAM IN

MECHATRONICS AND INFORMATION TECHNOLOGIES

A WRAPPER COMPONENT-BASED METHODOLOGY

FOR INTEGRATING DISTRIBUTED ROBOTIC SYSTEMS

THESIS

PRESENTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE ACADEMIC DEGREE OF

DOCTOR OF PHILOSOPHY IN

ARTIFICIAL INTELLIGENCE

BY

FEDERICO GUEDEA ELIZALDE

MONTERREY, N.L., MÉXICO , MAY 2008

A Wrapper Component-Based Methodology
for Integrating Distributed Robotic Systems

A Dissertation Presented by

Federico Guedea Elizalde

Submitted in partial fulfillment of
the requirements for the degree of

Doctor of Phylosophy
in the field of

Artificial Intelligence

Thesis Committee:

Fakhreddine Karray, University of Waterloo

Rogelio Soto Rodŕıguez, ITESM Campus Monterrey

Jose Luis Gordillo Moscoso, ITESM Campus Monterrey

Ricardo Ambrosio Ramı́rez Mendoza, ITESM Campus Monterrey

Santiago E. Conant Pablos, ITESM Campus Monterrey

Center for Intelligent Systems

Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

May 2008

Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

Division of Mechatronics and Information Technologies

Graduate Program in Mechatronics and Information Technologies

The committee members hereby recommend the dissertation presented by Federico

Guedea Elizalde to be accepted as a partial fulfillment of the requirements to be

admitted to the Degree of Doctor of Philosophy in Artificial Intelligence.

Committee members:

Dr. Rogelio Soto Rodŕıguez

Advisor

Dr. Fakhreddine Karray

Co-Advisor

Dr. José Luis Gordillo Moscoso

Member

Dr. Ricardo A. Ramı́rez Mendoza

Member

Dr. Santiago E. Conant Pablos

Member

Dr. Joaqúın Acevedo Mascarúa

Director of Research and Graduate Studies

School of Engineering

May 2008

Dedication

This thesis is dedicated to my wife Isabel Cristina, my son Omar Moisés, my parents

Melchor and Maŕıa Jesús, my brothers and sisters, and my in-laws for all the uncondi-

tional confidence, support, patience, encouragement and motivation they provided me

for pushing through this work.

Declaration

I hereby declare that I composed this dissertation entirely myself and that it describes

my own research.

Federico Guedea Elizalde

Monterrey, N.L., México

May 2008

Acknowledgements

I would like to thank Dr. Karray for several reasons. Firstly, he allowed me to continue

my doctoral studies as a visiting scholar in Systems Design Engineering Department

and Pattern Analysis Machine Intelligence Laboratory at the University of Waterloo

(UW) for more than 2 years. Secondly, as my co-advisor, he provided access to many

vital resources such as current related journals and publications, software, and the arm

manipulators and mobile robot which played an important role in part of my research.

I would like to thank Rogelio Soto for allow me to work in this field. He granted me the

freedom to explore various frameworks when trying to define my research project and

he helped me to secure a position as a visiting scholar at the University of Waterloo.

I would also like to thank my committee members Dr. Jose Luis Gordillo, Dr. Ricardo

A. Ramı́rez and Dr. Santiago Conant Pablos for taking the time to review my thesis.

Their support was very important. Dr. Gordillo and Dr. Conant provided many

recommendations to improve my final writing.

The doctoral program coordinators Rogelio Soto and Hugo Terashima also helped me

on numerous occasions.

I would like to thank Insop Song and Haikal Alhichiri whom I feel fortunate to have

met. During my years at UW, Insop was an incredible colleague who supported me in

my work. His support and friendship was invaluable. During the following years his

motivation and ideas were essential to my research and I have the fortune to work in

several projects with him.

During my stay at Canada I met many persons, but certainly my family and I are

very happy to know John & Sydney Henderson. They were and they are our family in

Canada. We were blessed with their unconditional love, help and guidance. Through

them we met other persons who also gave us all their love, such as Jack & Betty Strauss

and Ron & Dorothy Worth.

I would like to thank to my family at Monclova: My parents Melchor and Maŕıa Jesus,

my brothers and sisters Isabel, Melchor Jr., Irene, Sergio and Jorge, whose love and

support I could always count on. Also, thanks to Lichis for her unconditional caring

and her parents Don Cande and Doña Hermelinda.

Finally, I would to thank to the most important people in my life, my wife and my son.

Thanks Cristy and Omar Moisés, for giving me new dreams to pursue. I am always so

proud of all my family. They were my main motivation and inspiration each and every

day that allowed me to continue and finish this dissertation.

Abstract

Building an intelligent robot system has been an extensive research area. There are

many advances in components needed to construct a robotic system, such as vision

systems, sensory systems, and planning systems among others. Integration of these

components represents a big challenge for robot designers, because each component

comes from different vendors and they run with different interfaces or under different

operating systems. This will be even more difficult if the overall system development

has to deal with environmental uncertainties or changing conditions. In these cases,

new tools and equipments are necessary to adapt the initial configuration to the new

changing requirements. Each added component increases the complexity of integration

due to the interconnection required with the previous components.

This thesis research presents a novel approach to solve the integration problem using

the concepts of distributed framework and distributed computing systems. We named

this methodology DWC (Divide-Wrap-Connect). This methodology is based on the

mechanisms used by standard middleware software to provide transparency and porta-

bility among different operating systems and languages. The idea is to define software

modules named Wrapper Components, which are object-oriented modules that create

an abstract interface for a specific class of hardware or software components. These

modules are the components of a bigger system.

Basic steps in this methodology are: a) Divide, b) Wrap and c) Connect. The creation

of Wrapper Components is the core activity of the second step (b) but its design is af-

fected by the first and third step of this methodology. We provide some basic definitions

in order to clarify the scope of different design alternatives. Furthermore, we present

how using standard mechanisms from distributed computing such as Event services and

Naming services, the third step (c) is improved.

We tested our approach by solving an experimental classical AI problem, block-world

problem. The intelligent functions are object recognition, environment recognition,

planning, tracking capabilities, tasks control and robot arm control. These functions

were developed into several components and a coordinator module. This coordinator

modules interacts with the user and the other components in order to solve the block-

world problem. The construction of the system was done in an incremental way showing

the benefits of this methodology.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 4

1.3 Thesis Statement . 5

1.4 Methodology proposed . 6

1.5 Scope of the Thesis . 7

1.6 Dissertation outline . 8

2 Literature Review 11

2.1 TCA . 11

2.2 GLAIR . 12

2.3 CIRCA . 13

2.4 TelRIP . 13

2.5 ISAC . 14

2.6 AuRA . 14

2.7 ARCO . 15

2.8 CAMPOUT . 15

2.9 MIRO . 15

2.10 OROCOS . 16

2.11 MOBILITY . 17

2.12 TELECARE ROBOTIC SYSTEM . 17

i

2.13 TELEROBOTIC FRAMEWORK . 17

2.14 Other middleware software . 17

2.15 Summary . 20

3 Distributed Robotic Systems 21

3.1 Introduction . 21

3.2 Main Features . 22

3.3 Challenges . 23

3.4 Robot Networks . 25

3.4.1 Layered Protocols . 25

3.5 CORBA specification . 25

3.6 Summary . 27

4 Methodology for Integration of Distributed Wrapper Components 29

4.1 Definitions . 29

4.1.1 Component definition oriented to operation vs to concept 31

4.2 Application Development Based in Components 32

4.2.1 Integrating legacy systems with distributed applications 33

4.3 Proposed Methodology . 34

4.3.1 Dividing . 34

4.3.2 Wrapping (Encapsulating) . 41

4.3.3 Connecting . 48

4.4 Wrapper Components Features . 53

4.5 Summary . 54

5 Building an Intelligent Distributed Robotic System 55

5.1 Problem Definition . 55

5.2 Dividing into Distributed Components 55

5.2.1 Dividing the Distributed Robotic System into modules 56

5.3 Encapsulating the components . 62

5.3.1 Robot Server Interface . 63

5.3.2 Vision Server Interface . 66

5.3.3 Planner Server Interface . 68

5.4 Connecting the components . 71

5.4.1 Connecting a remote operated robot 73

5.4.2 Connecting a remote operated vision system 74

5.4.3 Connecting an autonomous robotic system 75

5.5 Summary . 75

6 Experimental Setup and Results 79

6.1 Integration of a remote operated robot 79

6.1.1 Description of main components 80

6.1.2 Off-line setup or tasks . 84

6.1.3 Starting sequence of servers . 86

6.1.4 Main operations . 88

6.2 Integration of a remote operated vision system 96

6.2.1 Recognizing objects . 96

6.2.2 Finding objects . 100

6.2.3 Tracking multiple objects . 101

6.2.4 General operation and communication scheme 104

6.3 Integration of an autonomous distributed robotic system 106

6.3.1 Off-line tasks . 107

6.3.2 On-line operation . 110

6.3.3 Robot Server Commands . 115

6.3.4 Integral Example: Grasping an object 116

6.4 Results and Discussions . 118

6.4.1 Remote Operated Robot . 118

6.4.2 Vision Server . 120

6.4.3 Autonomous distributed robot system 121

7 Conclusions 124

7.1 Initial questions . 124

7.2 Limitations . 126

7.3 Scope of Applicability . 127

7.4 Comparative issues . 128

7.5 Future research . 130

7.5.1 CORBA/e for Embedded Applications 130

A CORBA specification 132

A.1 History . 134

A.2 CORBA Architecture . 134

A.3 Interfaces and Services . 135

A.3.1 CORBA Naming Service . 137

A.3.2 CORBA Event Service . 141

A.4 CORBA in the market . 142

B Robot Servers 145

B.1 Generic commands . 146

B.2 Retract and Extend commands . 146

B.3 Movement computation for Extend/Retract commands 146

B.4 Turn command . 151

B.5 Turn EF and Turn Wrist commands . 152

B.6 Linear Movements, MoveH and MoveV commands 152

B.7 Implementing the robot servers . 152

B.7.1 CRS Robot arm implementation. 153

B.7.2 Retract command implementation in CRS robots 155

B.7.3 Motoman UP6 arm implementation 158

C Vision Server 161

C.1 Fundamental stages for image processing 162

C.1.1 Image Acquisition . 162

C.1.2 Image Pre-processing . 162

C.1.3 Segmentation . 163

C.1.4 Representation and codification 163

C.1.5 Acknowledge and Interpretation 164

C.2 Data image capture/transmission level 164

C.3 Image Object information wrapping level 165

C.3.1 Constraints . 165

C.3.2 Learning an object in an image stream 166

C.3.3 Finding an object in an image stream 168

C.3.4 Tracking objects in an image stream 168

C.4 General operation of the Vision Server 168

D Planning Server 173

D.1 Planning Systems . 173

D.2 Fundamental state of Planning processing 175

D.3 Main modules for Planning Server Wrapper component 176

D.4 Wrapper component CORBA IDL . 176

List of Tables

2.1 Characteristics of the different distributed robotic systems 19

3.1 Challenges to face when creating a distributed robotic system 24

3.2 OSI Protocol Summary . 26

4.1 Development characteristics of component-based systems 33

4.2 Outcomes of the dividing process . 39

4.3 Outcomes of the Wrapping process . 47

4.4 Communication patterns . 49

4.5 Selection of Communication patterns . 50

5.1 Applying the dividing process . 62

5.2 Communication design matrix for a remote operated robot 74

5.3 Communication design matrix for a remote operated vision system 74

5.4 Communication design matrix for an autonomous robot system 76

6.1 Physical limits and number of axes for the robot arm manipulator 81

6.2 Differences on pan-tilt units abstracted into the IDL interface 82

6.3 Computational resources used in a remote robot operation. 86

6.4 Frame timing for video stream. 91

6.5 Operations defined for the block-world problem 108

7.1 Comparison between monolithic approach vs distributed approach. 129

7.2 Comparison between non-abstract vs abstract approaches. 129

vi

A.1 Feature comparison between several middleware technologies 144

B.1 Physical limits and number of axis for each robot arm manipulator. . . . 145

B.2 Geometric parameter for each robot arm manipulator. 147

B.3 Relationship between angles θ1 and θ2 and their robot arm counterparts. 150

B.4 Changes on formulation according to selection of Extend/Retract. 151

B.5 Number of functions for each type of object in the CRS API definition. . 154

C.1 Main parameters defined to identify a solid object. 167

C.2 Response Messages transmitted for each command of the vision server . . 172

List of Figures

1.1 Complex process with multiple single process interacting. 2

1.2 Modular manager components applied for complex process 3

1.3 Basic steps on DWC methodology . 7

1.4 Proposed structure for a Wrapper Component 7

2.1 Task Control Architecture (TCA) created at Carniege Mellon. 12

2.2 Schematic representation of the agent architecture under GLAIR concept. 13

2.3 CIRCA: The Cooperative Intelligent Real-Time Control Architecture. . . 14

2.4 OROCOS software development model. 16

3.1 Distributed Robotic Components . 22

3.2 Robots and accessories at PAMI-Lab at University of Waterloo 24

3.3 Object Request Broker (ORB) interface 27

4.1 Different ways of accessing or getting a robot position. 30

4.2 Main steps followed when defining wrapper components 34

4.3 Physical constraints of the components needed to create a robotic system. 35

4.4 Splitting of a task into several parallel and concurrent tasks 36

4.5 Abstract functionality of similar parts in system construction. 37

4.6 Interconnections between components and subsystems 38

4.7 Flow diagram to divide a system into several components. 40

4.8 Basic elements in a Wrapper Component. 41

4.9 Two different abstract interfaces for moving a robot. 42

viii

4.10 Monitoring and Configuration methods 43

4.11 Data Transformation task . 44

4.12 Data Interpretation task . 44

4.13 Data Distribution task . 45

4.14 Hardware/Software Implementations . 46

4.15 Main components and structure of CORBA application diagram. 48

4.16 Mixture of communication patterns for Cue vision processing. 51

4.17 Mixture of communication patterns in a small example. 52

4.18 Communication design matrix . 52

4.19 Conceptual scheme to create an application using Wrapper Components. 53

5.1 Classical block-world problem. 56

5.2 Heterogeneous and distributed robotic components. 56

5.3 First step of proposed methodology-Option A. 58

5.4 First step of proposed methodology-Option B. 58

5.5 First step of proposed methodology. 59

5.6 Final arrangement for our Distributed Robotic System. 61

5.7 Operational approach and Conceptual approach 63

5.8 Two spherical robot from CRS Robotics. 64

5.9 Basic Robot IDL interface definition. 65

5.10 Different wrapping levels for computational vision tasks. 66

5.11 Basic Vision IDL interface definition to command a generic vision server 68

5.12 PICK-UP operator description in STRIPS language. 70

5.13 Wrapper component for planning system 71

5.14 Planning IDL interface definition . 72

5.15 Third step of our methodlogy: Connecting components 72

5.16 Communication scheme for a remote operated robot 73

5.17 Communication scheme for a remote operated robot 75

5.18 Communication scheme for the autonomous robot system 76

6.1 Main components of a remote operated robot arm. 80

6.2 User interface used for interaction with a robot arm manipulator. 81

6.3 Robot Server Console for a CRS-F3 arm manipulator. 82

6.4 Basic Pan-Tilt unit IDL interface definition. 83

6.5 Distributed wrapped components . 83

6.6 Experimental set up at the Pattern Analysis and Machine Learning Lab. 84

6.7 Largest distance used for testing . 85

6.8 Movie Editor for analyzing robot sequence frames 85

6.9 Starting sequence for a Remote Operated Robot 87

6.10 SAVE and READY command execution. Part-I 89

6.11 SAVE and READY command execution. Part-II 90

6.12 Moving the robot. Part-I . 92

6.13 Moving the robot. Part-II . 93

6.14 Moving the robot. Part-III . 94

6.15 Moving the robot. Part-IV . 95

6.16 TRAINING command execution: Part-I. 98

6.17 TRAINING command execution: Part-II. 99

6.18 TRAINING command execution: Part-III 100

6.19 FIND command execution . 101

6.20 TRACK command execution, part - I . 102

6.21 TRACK command execution, part - II 103

6.22 Vision Server communication outline. 105

6.23 Operation Modes for the Vision Server 105

6.24 Vision Server components . 105

6.25 Main wrapper component for a robotic system 106

6.26 Main objects used in the block-world problem 107

6.27 Starting sequence for an Autonomous Remote Commanded Robot 109

6.28 Coordinator connections with other modules or wrapper components. . . 110

6.29 User goal command sent to the coordinator module. 112

6.30 Coordinator send two commands to the Vision Server 112

6.31 Coordinator responses a failure to get the user goal 113

6.32 Coordinator sends information to the planner and ask for a plan 113

6.33 The planner server responds to the coordinator. 114

6.34 Coordinator is executing an operation. 114

6.35 Coordinator states for moving robot arm 116

6.36 GRASP command execution . 117

6.37 GRASP command execution with changes on the environment, Part-I. . . 119

6.38 GRASP command execution with changes on the environment, Part-II. . 120

A.1 IDL file processing for different development environments. 133

A.2 Object Request Broker (ORB) interface 133

A.3 Main components of OMG specification 135

A.4 Accessing an object implementation through its object reference. 137

A.5 Naming Service Context and Object Reference 138

A.6 Naming Context Sequence . 139

A.7 Event channel using the Push Model . 142

A.8 Publish/Subscriber communication type 143

B.1 Basic Robot IDL interface definition . 147

B.2 CRS-F3 arm manipulator working ranges 148

B.3 Motoman UP6 working range and dimensions 148

B.4 CRS-F3 arm geometric parameters for Extend/Retract commands. . . . 149

B.5 Motoman UP6 arm geometric parameters. 149

B.6 Physical representation for Extend command options. 151

B.7 Software bus concept using CORBA. 153

B.8 CRS robot arm interface definition. 154

B.9 Procedure to check robot type . 155

B.10 Retract command code implementation for CRS-F3, part 1. 156

B.11 Retract command code implementation for CRS-F3, part 2. 157

B.12 Retract command code implementation for Motoman UP6, part 1. 159

B.13 Retract command code implementation for Motoman UP6, part 2. 160

C.1 Basic Vision IDL interface definition . 161

C.2 Fundamental stages on image processing. 162

C.3 Image Transmission using an event channel. 165

C.4 Stereo images used for the learning process. 166

C.5 Object parameter obtained from the learning process. 167

C.6 Object template selected to store it as a bitmap file. 167

C.7 Steps carried out to find a specific object. 169

C.8 Tracking object process. 170

C.9 Vision Server communication scheme. 171

D.1 An example of the block world. 174

D.2 Experimental set up. 174

D.3 Data transformation from vision server to planning server. 175

D.4 Fundamental modules for planning server wrapper component. 176

D.5 Plan system interface and access mechanism. 177

D.6 Planner IDL interface. 178

Chapter 1

Introduction

This dissertation presents a methodology to integrate a variety of applications, tools

and systems from different disciplines such as Distributed Computing, Computer Vision,

Artificial Intelligence and Robotics.

Nowadays, there is a plethora of robotic systems which are configured with a privately

owned closed architecture. Integrating these systems with other components such as

vision, sensors, planning systems, factory database information systems is a challenge

that requires specific ad-hoc design. The interfaces between components are such that

any change in the configuration or specification of the overall system requires redesign

and implementation.

Researchers have proposed different alternatives to integrate robotic systems. These are

designed to work for specific tasks and environments but have constraints and limitations

that make it difficult to integrate new robotic components (Chapter 2.0).

In this chapter we outline the main motivations of the research, the specific problem to

be addressed, the methodology we are proposing, the scope of this thesis, and an outline

of the dissertation.

1.1 Motivation

This research is addressed to create a Distributed Robotic System (DRS) that has better

performance with less effort of integration. Then, why is this necessary? Certainly, there

are many types of robotic systems nowadays, and each one is designed with a specific

task in mind. However, there are some areas that can be benefited by using new tools.

The following is a list of these areas:

1

2

• There are many real problems that can not be solved by only one entity, but they

can only be partially solved by many entities that interact under a common global

goal or goals. In these cases it is very difficult to find an entity that knows all the

details that concern the main problem. In other words, each entity has a limited

knowledge about all problem details that arise in the time. Some examples of

these systems would be a team work or any other team with multiple players,

i.e. a production line, the construction of a building, a manufacturing robotic

cell, and others. In these examples, a task division can be visualized based on

some specialized skills and/or hierarchical order. The later is necessary in order

to coordinate and to control the multiple tasks realized by each entity. Figure

1.1 shows a complex process with multiple single processes interacting. One of

the main methods of solving complex problems is to divide them in some way in

order to create modular components. These modules can be coordinated through

manager or supervisor components that communicate with each other. Figure 1.2

shows this behavior. Even though, the design for these main components is made

to achieve a predefined behavior or to meet a specific goal. Any system deviation

from this behavior is seen as a perturbation and human operator intervention is

required. In other cases, the goal can be changed and a new program or design

is required, so the human intervention takes precedence again, but now from the

system designers.

Module(a) Module(b) Module(d) Module(f)

Module(c) Module(e)

Module(a) Module(b) Module(d) Module(f)

Module(c) Module(e)

Figure 1.1: Complex process with multiple single process interacting.

• Developing large and distributed robotic applications is a very challenging job. If

this work is carried out in university laboratories then the challenge is increased.

Laboratories tend to acquire robotic equipment for specific projects and sometimes

with limited budget. Also, the lab is used by different team projects. All of the

above situations create a mixture of equipment from different vendors that are

not compatible, or even worse, totally incompatible. Then, how can this robotic

equipment being integrated with the other robots in the lab?

• There are few facilities with suitable environment for the development, implemen-

tation and evaluation of components, protocols, and operational modes required

on tele-robotic systems [Skubic et al., 1995]. The research on robotic system inte-

gration issues has been slow to assess the impact of new component technologies.

Introduction 3

Module(a) Module(b) Module(d) Module(f)

Module(c) Module(e)

Master
Control-1

Master
Control-2

Module(a) Module(b) Module(d) Module(f)

Module(c) Module(e)

Master
Control-1

Master
Control-2

Figure 1.2: Modular manager components (Master controls) applied for complex process.

Furthermore, the technology for creating such environments is relatively immature.

Most of the current capabilities are based in point-to-point remote operations and

have been proven to be useful research environments. However, ground-based

applications (e.g. hazardous operations), space applications (e.g. ground-to-air

control), and the ground-based development process (including evaluations) re-

quire system configurations with greater degrees of freedom, i.e. connectivity of

multiple sites with different functions.

• In countries with less infrastructure and resources, it is desirable to link facilities

and resources from different sources, such as government, industry, and the univer-

sity, so that a collaborative research and development environment can be realized

with associated sharing of resources [Garćıa-Zubia et al., 2005; Esche et al., 2003;

Trevelyan, 2004].

This will enhance the educational setting available to graduate students, or will

help the industrial companies with specific experiments, where they can moni-

tor closely but without need to stay on site. DRS research is a good basis to

link research at different locations. It enables students to access equipment that

would not be possible to access from their local universities [Deniz et al., 2003;

Casini et al., 2003; Wong et al., 1999; Benmohamed et al., 2004].

• Industrial applications using robotic systems have demonstrated their utility in

many repetitive tasks, such as car manufacturing, production of pharmaceutical

and packaging systems. In these cases the robotic environment must be very

structured to avoid failures. However, there are other applications where the

tasks are ill-defined or the environment is unknown to a certain degree, such as

space exploration or hazardous operations (e.g. bomb deactivation, management

of radioactive materials, etc.). Because of these factors, the robotic application

4

must have a greater deal of surviving under these circumstances. Integration of

more sensory systems is necessary, in addition to better algorithms that increase

the dexterity of the robot. This represents a challenge, and a time consuming task

for the robot designer, it is mainly because of the closed controller architecture

of the robotic components. Certainly, it is desirable to have a plug-and-play

component that can be integrated in several minutes rather than days or months.

All of the above examples demand new tools or approaches from areas other than robotic

control and automatic control systems. These must be included in the design of dis-

tributed robotic control systems, in order to incorporate intelligent components that

improve the overall system performance. The main questions motivating this research

are:

• How to integrate different types of robotic components?

• What is the structure that these components must have to work as a team?

• What are the tools that these systems must have to adapt for uncertain environ-

ments?

1.2 Problem Statement

Distributed Robotic Systems (DRS) is a very wide and multi-disciplinary research area.

The applications in this area vary from (i) operation of autonomous vehicles in different

types of environment, (ii) the organization of tasks for modular or reconfigurable robots,

(iii) distributed intercommunication units, just to mention some examples. Generally,

it is expected that DRS is capable of the tasks that are impossible for single robots

(such as carrying objects that are large compared to the scale of one robotic unit), and

it is more reliable and as well be self-repairable due to their modularity of construction,

and in addition to reduced cost. Service robots interact closely with humans in a wide

range of situations, applying both skills and knowledge to cooperative tasks. Thus, the

robot control systems must be equipped with the resources for intelligent action. These

resources are presented in the modern robotics literature as separate ideas, solutions,

and mechanisms. What is needed is the architecture for coherently combining them into

an integrated system [Beni and Wang, 1991].

Because of the large number of related fields with common concepts, it is easy to see that

many problems arise when designing a DRS. More specifically the following problems

are among the most often considered in relation to the design:

• Communication among intelligent robotic components.

Introduction 5

• Physical connection of autonomous modules.

• Reconfiguration of the system to deal with new environments.

• Methods of distributing intelligence and control among the components.

• Actual construction of the robotic components (hardware implementation).

• Hierarchical control.

From this list, the most important item is the construction of the robotic units. This

step determines the scope of the other related problems. The second is the emphasis

on communication, i.e. creating effective means for the units to form a cooperating

system. The third is the emphasis on algorithms, i.e. realizing ways of accomplishing the

tasks. In this thesis, the communication problem is addressed as part of the integration

problem. The solution to the communication problem is significantly dependent on

the physical construction since it is usually difficult to port communication systems

designed for a specific hardware into another. Besides the physical dependency, the

solution of this problem must provide a platform for the next stage, i.e. the realization

of distributed algorithms or distributed software components.

1.3 Thesis Statement

In order to provide an effective solution for the integration and communication problems

when designing a DRS, an Integration Methodology is proposed. This methodology is

based on concepts from the area of Distributed Computing. In this Thesis, we pro-

pose the use of Commercial-off-the-Shelf (COTS) middleware components to construct

a communication framework for DRS. Specifically it is the use of mechanisms created

by the area of distributed computing. These mechanisms offer the advantage of using

the best software methodologies for a set of well-known distributed computing prob-

lems and provides solutions in a modular way. the Common Object Request Broker

Architecture (CORBA) specification [OMG, 2000] is one example. This specification is

Object-Oriented and is very suitable for robotic applications. Many researchers from

different research areas have been improving the CORBA specification in order to match

specific problems found in the daily communication process.

By using standard specifications the application designer does not have to deal with all

intrinsical details of communication problems, but it has to create software components

that can be reusable, easy to modify, configurable, easy to maintenance and easy to

integrate. In this sense, although it is possible to use a solid middleware specification,

it doesn’t solve the integration between components just by applying the specification.

6

Usually, software packages are libraries provided by the software’s vendor or programs

created by other persons in the company, or they come with the equipment (i.e robot

software). Each package provides a specific interface to interact with it and in many

cases all methods or functions provided are not used totally. To face all these aspects

is necessary to encapsulates the main issues of each package and put them in modules

that can be easily accessed by all entities into a system. Our proposed methodology is

focused in these issues.

1.4 Methodology proposed

This dissertation proposes a methodology to integrate robotic components provided

by different vendors, and which software modules could run in different platforms and

different operating systems.

The methodology consists of three phases or steps: Divide, Wrap and Connect. See Fig-

ure 1.3. We named it DWC and it is based on Wrapper Components (WC). A Wrapper

Component is an object-oriented module. It encapsulates the main issues and functions

of each robotic component of the DRS. The main attribute of a Wrapper Component is

its abstraction level definition. At high level abstraction the Wrapper Component offers

a better structure for easy integration and reuse. At low level abstraction the Wrapper

Component is more difficult to exchange or modify. To implement these Wrapper Com-

ponents we selected CORBA specification as the software bus to communicate them (to

connect them). Although, similar middleware specifications or products can be used,

such as ICE from zeroC [ZeroC, 2002],[Henning, 2004]. This speeds up the development

time due to they are using the same communication bus but there are also other as-

pects that we must take into account for a better performance. The loosely coupled

and asynchronous operation of a component simplifies the system model at a high level.

Over-specification at system’s higher level can lead to a non robust operation; thus a

collection of asynchronously executing components is more stable.

We propose the use of Wrapper Components to construct and to integrate distributed

robotic systems. These components are built based on CORBA specification and CORBA

services. Under this scheme, the wrapper components are defined through the Inter-

face Definition Language (IDL) provided by CORBA specification, see Figure 1.4. The

main idea behind this approach is to go farther than just creating simple IDL interfaces

for each robotic component. For example, instead of creating a specific interface for

each function of a determined component, it is better to define a set of abstract func-

tions for similar robotic components. Although the idea looks simple the implications

are not simple, but the final product is easier to be connected into the whole sys-

Introduction 7

Component-A

Component-C

Component-B

Component-E

Component-
D

Module or System

WC-A

WC-C

WC-B

WC-E

WC-D

WC-A

WC-C

WC-B

WC-E

WC-D

Dividing Wrapping Connecting

Module or System

Figure 1.3: Basic steps on DWC methodology

tem. We proved these properties during the implementation of the CONCORD project

[Song et al., 2004].

Transformation/
Interpreter Code

Hardware/Software
Implementation

IDL
Interface

WRAPPER COMPONENT

STRUCTURE

Transformation/
Interpreter Code

Hardware/Software
Implementation

IDL
Interface

WRAPPER COMPONENT

STRUCTURE

Figure 1.4: Proposed structure for a Wrapper Component

1.5 Scope of the Thesis

The research performed in this work concentrates on the issues involved during the

creation of Wrapper Components. We define the internal structure of a Wrapper Com-

ponent and we explain how this component could be easily replaced or updated without

modifying other modules of the distributed robotic system. The main contributions are

on the structure of the Wrapper Components and the mechanisms used to connect them

according to the tasks to realize.

We concentrate our research in the creation of Wrapper Components for three main

components involved in the creation of Intelligent Distributed Robotic systems: Robot

Server, Vision Server and Planning Server.

We tested these components in an incremental approach by integrate them in several

8

ways to perform different tasks. First we created a Remote Robot Manipulation system

in which the intelligence is on the human-side and CORBA middleware is used to provide

the communication mechanisms for robot commands and visual feedback. In this case

the interface for a Robot Server is defined. Second, we concentrated on the creation of

a Vision System. This system is able to be operated remotely and it can learn several

objects selected by a human operator. Once the objects are learnt the system can find

them and track them. In this stage a Vision System Server is defined. Third, the

previous two systems are integrated together with a planning system and a coordinator

component to provide an autonomous robot operation. This autonomous behavior is

tested using the classical block-world problem on Artificial Intelligence.

At last, the robot server was used in other two projects using the same wrapper inter-

face. These projects are related to robot collaboration in a master-slave configuration

[Li et al., 2005], and remote robot operation through speech recognition following a spe-

cific command language for the robot server [El-Khalil et al., 2004].

1.6 Dissertation outline

The body of this dissertation consists of eight chapters and four appendices. Chapter 2

presents a chronological literature review of similar distributed robotic systems designs

and implementations, we highlighted the evolving development of these approaches, and

how the Integration issue is tackled using middleware software. Chapter 3 presents a

definition of Distributed Robotic System and its main advantages and challenges. Also a

brief description of CORBA specification is presented. Chapter 4 presents the method-

ology proposed to construct “building blocks” by means of the definition of wrapper

components and by using CORBA services. Chapter 5 presents the application of the

methodology to define the main wrapper components to integrate a distributed robotic

system. Here the methodology exposed in Chapter 4 is applied. Chapter 6 presents

the integration experiments and measures of the components defined in Chapter 5 using

an incremental approach. This approach exposes the advantage of reusable code and

flexibility on the design. This is our main contribution and we explain the key issues

needed to be successful when different components must work together to achieve more

complex tasks. The dissertation concludes with Chapter 7, which reviews the contribu-

tions of our work and discusses interesting directions for future work.

Four appendices provide additional details on features of the implementation and testing

domains. Appendix A explains in more details the CORBA specification and some of

the services used in this work. Appendix B details how the robot servers are built and

Introduction 9

exposes the advantages of an abstract design. Appendix C explains the abstract level

of functionality of the vision server for robot applications and how the communication

is established to provide almost a real-time response. Although computer vision is a

very large research area, there are some constraints in the robotic systems that reduce

the usefulness of vision algorithms, so the challenge is to find a way to improve the

vision algorithm for this kind of applications. Appendix D provides an overview of the

planning system and details how a legacy software planner (Graphplan algorithm) can

be wrapped to be used into a distributed environment. This is a key tool to provide

certain level of intelligence to the robotic system.

10

.

Chapter 2

Literature Review

In the literature, there are several approaches to create solutions for distributed intel-

ligent robotic systems. The followings are some of the main works in this field. They

are shown in chronological way in order to observe their evolving development. Curi-

ously, much of the work is done for mobile robots and a few ones are developed for arm

manipulators.

2.1 TCA

TCA [Simmons et al., 1990]: The Task Control Architecture (TCA), created at Carnegie-

Mellon University (CMU) by the beginning of 1990’s, simplifies building task-level con-

trol systems for mobile robots. Its primary application was focused in the Ambler

six-legged walker (funded by NASA). By “task-level”, we mean the integration and co-

ordination of perception, planning and real-time control to achieve a given set of goals

(tasks). TCA provides a general control framework (shown in Figure 2.1), and it is

intended to be used to control a wide variety of mobile robots. TCA provides a high-

level, machine independent method for passing messages between distributed machines.

Although TCA has no built-in control functions for particular robots (such as path

planning algorithms), it provides control functions, such as task decomposition, moni-

toring, and resource management, that are common to many mobile robot applications

[Simmons, 2000].

11

12

HERO Robot

Controller

Path
Planner

General
Planner

Perception
Query

Handler

World Map
Builder

Overhead
Camera

User Interface

Central
Control

Message
Routing
Table

Resource
Schedule

Task tree

HERO Robot

Controller

Path
Planner

General
Planner

Perception
Query

Handler

World Map
Builder

Overhead
Camera

User Interface

Central
Control

Message
Routing
Table

Resource
Schedule

Task tree

Figure 2.1: Task Control Architecture (TCA) created at Carniege Mellon.

2.2 GLAIR

GLAIR [Hexmoor et al., 1993a; Hexmoor et al., 1993b]: A Grounded Layered Archi-

tecture with Integrated Reasoning (GLAIR) for Autonomous Agents was developed

by Hexmoor et.al., in the University of Buffalo starting the 1990’s. This architecture

is based on the concept of embodiment; the process of acquiring concepts that carry

meaning in terms of the agent’s own physiology. In this sense, the agent’s sensors and

actuators information is matched against a specific representation based on some ex-

tracted features. GLAIR is a general multi-level architecture for autonomous cognitive

agents with integrated sensory and motor capabilities. These levels are: Knowledge

level, Perceptuo-Motor level and Sensori-Actuator level. The first level corresponds to

the conscious part of the robot behavior meanwhile the other two levels work in a un-

conscious manner. Figure 2.2 shows this multi-layer model. There are several features

in the different levels:

• The levels in this architecture are semi-autonomous and work in parallel.

• Conscious reasoning guides the unconscious behaviors and unconscious levels,

which are engaged in perception and motor processing.

• Unconscious levels can alarm when an important event occurs and they can take

control if necessary.

Literature Review 13

K-Level
Processes &

Representations

PM-Level
Processes &

Representations

SA-Level
Processes

Knowledge

Level

(Conscious)

Perceptuo-

Motor Level

(Unconscious)

Sensori-

Actuator

(Unconscious)

Control Flow

Data Flow

Actuators Sensors

K-Level
Processes &

Representations

PM-Level
Processes &

Representations

SA-Level
Processes

Knowledge

Level

(Conscious)

Perceptuo-

Motor Level

(Unconscious)

Sensori-

Actuator

(Unconscious)

Control Flow

Data Flow

Actuators Sensors

Figure 2.2: Schematic representation of the agent architecture under GLAIR concept.

2.3 CIRCA

CIRCA [Musliner et al., 1993]: The Cooperative Intelligent Real-Time Control Archi-

tecture (CIRCA) was created by Musliner et.al., with one objective in mind: combine

the reasoning power of unrestricted Artificial Intelligence (AI) methods with the ability

to make hard performance guarantees. In this sense, the architecture is divided in two

main subsystems: A Real-Time subsystem (RTS) and an Artificial Intelligent subsystem

(AIS), as it is shown in figure 2.3. A distinctive feature of CIRCA is that it is based

on memoryless and unclocked reactive execution engine, but nevertheless manages to

meet hard real-time constraints. The AIS develops executable reactions plans that will

assure system safety and attempt to achieve systems goals when interpreted by the RTS.

Both AIS and RTS work in parallel or concurrently. This implies a close communication

scheme between these two subsystems, but the architecture doesn’t mention about the

requirements for this connection.

2.4 TelRIP

TelRIP [Skubic et al., 1995]: The Universities Space Automation and Robotics Consor-

tium (US- ARC), formed by several Universities in Texas and the NASA space agency,

14

Real-Time
Subsystem

AI Subsystem

World Model

Sensor
Data

Feedback Data

SchedulerEnvironment

Control
Signals

Reaction schedules

Reaction
schedules

Selected
reactions

Real-Time
Subsystem

AI Subsystem

World Model

AI Subsystem

World Model

Sensor
Data

Feedback Data

SchedulerEnvironment

Control
Signals

Reaction schedules

Reaction
schedules

Selected
reactions

Figure 2.3: CIRCA: The Cooperative Intelligent Real-Time Control Architecture.

has been working in the design and implementation of a Telerobotic Construction Set

(TCS) to enable the building of modular telerobotics networks. These modules exchange

data using the Telerobotic Interconnection Protocol (TelRIP), which was developed by

Rice University. TelRIP is a mechanism that uses the producer/consumer approach

to deliver data objects. The main contribution of this mechanism is its capability to

measure and monitor the communication performance. This includes message tracing,

timestamping, and data logging.

2.5 ISAC

ISAC [Bishay et al., 1995]: In this work, intelligent behavior emerges from the interac-

tion of atomic agents in the Intelligent Machine Architecture (IMA). Each atomic agent

acts locally, based on its internal state, and provides a set of services to other agents

through various relationships. The communication among the different agents is classi-

fied in a) one-way data-flow (or observer) communication for Sensor atomic agents b)

master-slave communication for Sequencer agents and c) command-in and position-out

communication for Actuator agents.

2.6 AuRA

AuRA [Arkin and Balch, 1997]: The Autonomous Robot Architecture (AuRA) was de-

veloped in the mid-1980’s as a hybrid approach to robotic navigation. Arkin et.al.

proposed two main and distinct components, which are a) a deliberative hierarchical

planner and b) a reactive planner. The system exposes a collection of behaviors spec-

ified and instantiated by the hierarchical planner in the high level of control. These

deliberative behaviors are mixed with a basic reactive behavior to control the move-

Literature Review 15

ment of the robot.

2.7 ARCO

ARCO: Sanz et.al., used CORBA as the middleware for their multi-mobile robot re-

search work in the project called ARCO, Architecture for COoperation of mobile plat-

forms [Sanz et al., 1999]. The authors remark that the issue of Integration is one of

the biggest problems to tackle in the development of large and complex systems using

artificial components. This problem is addressed using modular, generic, flexible and

compatible components. Sanz et.al.,proposed a methodological core called Integrated

Control Architecture, ICa [Sanz et al., 2001] based on CORBA characteristics.

2.8 CAMPOUT

CAMPOUT [Pirjanian et al., 2000]: CAMPOUT stands for Control Architecture for

Multi-robot Planetary OUTposts. This is an architecture that consists of a set of key

mechanism and architectural components to facilitate development of multi-robot sys-

tems for cooperative and coordinated activities. These are a) Modular Task Decomposi-

tion, b) Behavior Coordination Mechanisms c) Group Coordination, and d) Communi-

cation Infrastructure. CAMPOUT has been used for the development of reconfigurable

robotic systems [Pirjanian et al., 2002], mainly for tasks in space exploration, such as

Mars exploration. The communication facilities are provided using UNIX-style sock-

ets. They consist of the following core functions: Synchronization, Data exchange and

Behavior exchange.

2.9 MIRO

MIRO: Utz [Utz et al., 2002], developed the Middleware for Mobile Robots (MIRO)

using CORBA. MIRO is structured into three architectural layers: a) The MIRO De-

vice Layer which provides object-oriented interfaces for all robot’s sensors and actuators,

b)MIRO Service Layer which provides generic services for sensors and actuators through

CORBA interfaces and event-based communication, c) MIRO Class Framework which

provides a number of functional modules for mobile robot control, such as mapping, self

localization, behavior generation, path planning, logging, and visualization facilities.

MIRO uses TAO [Schmidt et al., 1997], the ACE (Adaptive Communication Environ-

ment) for ORB package implementation of CORBA.

16

2.10 OROCOS

OROCOS [Bruyninckx, 2001; Bruyninckx, 2002]: Bruyninckx et.al., used CORBA for

the Open Robot Control Software (OROCOS) project. OROCOS is an European

project, started on September 1st, 2001. Three laboratories are participating: the

Katholieke Universiteit Leuven (KULeuven, Belgium, project contractor), the Labo-

ratory for Analysis and Architecture of Systems (CNRS/LAAS, France) and Kungl

Tekniska Hgskolan (KTH, Sweden). The project aims at producing an open source soft-

ware framework for robots, by providing a functional basis for general robot control.

The software is intended to be platform independent, but it is also thought of as ap-

plication independent. OROCOS is based on the definition of generic components, so

the integration of them is carried out smoothly. Inside OROCOS, the inter-component

communication is an important part of the whole framework. Communication patterns

form a framework in itself, within the OROCOS framework. They assist the Com-

ponent Developer, the Application Builder and the End User in building and using

distributed components in such a way that the semantics of the interface is predefined

by the patterns, irrespective of where they are applied (see Figure 2.4). OROCOS

is rooted in SmartSoft [Schlegel and Worz, 1999], a component approach for robotics

software based on communication primitives as core of a robotics component model.

Dynamic wiring of components at run-time is explicitly supported by a separate pat-

tern which tightly interacts with the communication primitives. This makes the major

difference to other approaches. The patterns are based on the “SmartSoft” framework.

OROCOS::SmartSoft is the name of the CORBA based implementation of the commu-

nication patterns.

Component
Description

Execution
Engine

Execution
Control

Other application Code1

Code2

Code3

Builder

Developer

S
ys

te
m

User

Component
Description

Execution
Engine

Execution
Control

Other application Code1

Code2

Code3

Builder

Developer

S
ys

te
m

User

Figure 2.4: OROCOS software development model.

Literature Review 17

2.11 MOBILITY

One of the first commercial robotic systems using CORBA specification is provided by

RWI (Real World Interface) [RWI, 1999]. The company sells a set of mobile robots using

the CORBA 2.0 specification. The interesting part is the way it creates the access to

the different robotic component of the system. They develop MOBILITY as its main

middleware component. With this component, users from different locations can access

the robot functions through a wireless communication scheme. All of the robots have

the same interface but the number of components varies according to the model.

2.12 TELECARE ROBOTIC SYSTEM

Jia et.al.[Jia et al., 2003] developed a basic telecare robotic system using CORBA spec-

ification. With this system it is possible to supply some basic services to aid the aged

or disabled staying alone at home or small-scale distributed facilities. Main services

are: Intelligent reminding, Data collection and surveillance or robotic services such as

delivering of drug, juices or other things to the place where the the disabled or aged is.

2.13 TELEROBOTIC FRAMEWORK

Al-Mouhamed et.al.[Al-Mohamed et al., 2003] developed a telerobotic system using the

classic client-server approach. They proposed a reliable real-time connection between

a master(client) and a slave(server) using Distributed Components (.NET Remoting).

These components communicate each other using SOAP (Simple Object Access Protocol)

and .NET Remoting. .NET Remoting is provided by Microsoft, and it represents an

evolving step rooted on DCOM (Distributed Component Object Model).

2.14 Other middleware software

In our work we selected CORBA as the middleware component. This standard is rooted

in previous models coming from the main software companies.

1. Microsoft’s Distributed Component Object Model (DCOM) [Corporation, 1999].

This is a service that lets remote objects be treated as if they were local. DCOM

transparently handles communication between atomic components, which are con-

structed from COM (Component Object Model) objects.

18

2. SUN Microsystems’ Java Remote Invocation Method (RMI), for java applications.

3. Remote Procedure Call (RPC), one of the first distributed techniques for making

“transparent” function calls in procedural modules.

Literature Review 19

Table 2.1: Characteristics of the different distributed robotic systems

System Orientation Communication Object/Data Robot Middleware

type type oriented type

TCA Tasks Centralized & Data Mobile NA

Internal

GLAIR Agents Internal Data Mobile NA

CIRCA Functions NA Data Mobile NA

TelRIP Modules Unix-socket Data Mobile NA

ISAC Agents distributed Data Arm NA

AuRA Behaviors Internal Data Mobile NA

ARCO Components Distributed Object Mobile CORBA

CAMPOUT Components Unix-socket Data Mobile NA

MIRO Functional Distributed Object Mobile CORBA

Layers

OROCOS Components Distributed Object Mobile CORBA

MOBILITY Components Distributed Object Mobile CORBA

TELECARE Services Distributed Object Mobile CORBA

TELEROBOTIC Components Distributed Object Arm .NET

FRAMEWORK

20

2.15 Summary

A chronological list of distributed robotic systems has been presented. The manner in

how the authors divided the system varies from agents, components, functional entities,

layers and behaviors or a mixture of them. Most of the aforementioned architectures

tackled the issue of Intelligent Behavior by integrating these “smart” agents, compo-

nents or functions into the design of the system. These agents, components or functional

entities must operate on parallel or concurrently in order to achieve hard real-time con-

straints. Although most of the systems accomplished the goal or goals for what they

were created, it is observed that the duplication of these systems is not an easy task.

Furthermore, it is also observed how the use of middleware software is taking place in

order to overcome the communication problem between these components or entities

that are located in different platforms or use different operating systems. In the other

hand, it is observed that most of the systems are oriented to mobile robots and a few

ones focused on arm manipulators. In this work we are more oriented to arm manipu-

lators.

Most of the aforementioned architectures provide a set of agents, or pseudo-agents to

accomplish specific tasks or goals. In their minimum expression, they are called “atomic

agent”. All of the above works use different approaches of the agent concept and use

a mixture of different relationships. Next, based on the platform, they select the com-

munication media among these agents. As it is observed more and more systems are

designed using a middleware software as its communication media. But using this mid-

dleware software “as it is” doesn’t mean that the different entities necessarily can be

reused on other projects or systems. For this reason, our approach in this work is fo-

cused on developing “building blocks” that can be used to create more complex systems,

possibly agent-based systems. To develop these blocks an integration methodology is

proposed. In this sense, we leave the door open to construct not just intelligent, but

also complex systems for specific application areas.

To clarify the characteristics of a Distributed Robotic System and the challenges to face

we provided a definition of these characteristics in the next chapter.

Chapter 3

Distributed Robotic Systems

3.1 Introduction

Since the first years of the computer era, the topic of distributed systems has been under

intensive research. With the advent of the Internet, better communication equipment

and faster and more capable computer systems, the possibilities for using distributed

equipment put the computer science on another scale of evolution. However, the main

advantages and challenges stay the same. A natural distributed system is a set of mul-

tiple, possibly different, robotic systems. This type of system has certain characteristics

that make it very special. This chapter offers a review of distributed robotic systems

(DRS) and the challenges we have to overcome to offer a better solution for the end user

or for a specific task.

What is a distributed Robotic System (DRS)?

A general distributed system is a collection of independent computers or CPUs that

appear to the users of the system as a single computer or a single system. Examples of

this type of collection are:

a) a network of workstations allocated to users,

b) a pool of processors in the machine room allocated dynamically

c) a set of robots in a manufacturing cell.

d) a set of space exploration robots.

From here, we have that a distributed robotic system is a subset of a general distributed

system. Also, we can define a distributed robotic system as a single robot controller that

21

22

interacts with other distributed components, such a vision system. In this case, there is

a single user interface but there are several embedded system behind scene. Figure 3.1

shows this idea.

User Interface

Robot
Controller

Pan-Tilt
Controller

Camera

Arm
Manipulator

User Interface

Robot
Controller

Pan-Tilt
Controller

Camera

Arm
Manipulator

Figure 3.1: Distributed Robotic Components

Why Distributed?

Having several robots and components scattered through a laboratory, or distributed in

several networks, we can achieve some benefits such as:

• Economics: Microprocessors offer a better price/ performance than mainframes.

• Speed: A distributed system may have more total computing power than a main-

frame.

• Inherent distribution: Some applications involve spatially separated machines,

such as a set of robots in a manufacturing cell.

• Reliability: If one machine crashes, the system as a whole can still survive.

• Incremental growth: Computing power can be added in small increments.

3.2 Main Features

Distributed robotic systems show many features, and among the most important we

have the following:

a) Concurrent Execution: Multiple robots can process information in parallel.

Distributed Robotic Systems 23

b) Independency: Each robot works in its own Operating System and with its own

resources.

c) Failure Management: The whole system doesn’t fail if a robot computer crash.

d) Communication: The robots must have the ability to communicate with each other

and they could be or could not be synchronized (no global clock).

e) “Virtual” robot system: The end user is not concerned with the number of robotic

systems working for him. This is called Transparency.

There are several types of Transparency.

• Access: Local and remote resources are accessed using identical operations.

• Location: Resources are accessed without knowledge of their location.

• Concurrency: Several processes operate concurrently using shared resources

without interference among them.

• Failure: Several minor faults can be hidden from the users.

• Mobility: The movement of resources and clients within a system (also called

migration transparency).

• Performance: The system can be reconfigured to improve performance.

• Scaling: The system and applications can expand in scale without change to the

system structure or the application algorithms.

3.3 Challenges

Although distributed robotic systems offer a set of very desirable features, this is not

achieved without cost or difficulty. There are several challenges that the researchers

must face to create a reliable and useful distributed robotic system. Table 3.1 shows

these challenges. Furthermore, the integration of Distributed Robotic Systems is a very

challenging problem. In universities, laboratories and companies we can find:

• many types of robots (SCARA, spherical, cartesian),

• many vendors,

• several team projects with different budget tackling similar problems,

24

• proprietary closed operating systems,

• proprietary protocols for monitoring and data file transfer,

• heterogeneous accessories, such as servo-grippers, vision subsystems and pan-tilt

units.

An example of previous description is given with the equipment found in the Pattern

Analysis and Machine Intelligence Laboratory (PAMI-Lab) at the University of Water-

loo. This is shown in Figure 3.2

Table 3.1: Challenges to face when creating a distributed robotic system

Aspect Challenge Description

Heterogeneity Are different network types, hardware,

and operating systems compatible?

Openness Can you extend and re-implement the system?

Scalability Can the system behave properly if

the number of “robots” and components increase?

Failure Management How does the system responses to partial robot or component failures?

Concurrency When there are multiple robots or subsystems sharing resources,

how does the system maintain the integrity of the resources

and a properly operation without interference?

PAMI-NT2
QNX

COCONUT
WIN-2000

DECAF
VxWORKS

CRS F3CRS F3

Robot Controller

Stereo Cameras

COCOA
WIN-2000

PAN-TILT
U1

PAN-TILT
U2

CRS T265

Robot Controller

LATTE
WIN-2000

The Internet
Internet

PAMI-NT2
QNX

PAMI-NT2
QNX

COCONUT
WIN-2000
COCONUT
WIN-2000

DECAF
VxWORKS

DECAF
VxWORKS

CRS F3CRS F3

Robot Controller

CRS F3CRS F3

Robot ControllerRobot Controller

Stereo Cameras

COCOA
WIN-2000
COCOA

WIN-2000

PAN-TILT
U1

PAN-TILT
U2

CRS T265

Robot Controller

CRS T265

Robot ControllerRobot Controller

LATTE
WIN-2000

LATTE
WIN-2000

The Internet
Internet

The Internet
Internet

The Internet
Internet

Figure 3.2: Robots and accessories at PAMI-Lab at University of Waterloo

Distributed Robotic Systems 25

3.4 Robot Networks

A DRS is based mainly on a robotic networks with some subsystems distributed in it.

Given two components or robots located possibly in the same robotic network or in

different networks, the following questions come up:

• How are the request and response transmitted between the requestor and the

server?

• How do the request and reply messages move through the network?

• What are the modes of communication between the requestor and the responder?

Similar to human behavior, robotic networks have a set of communication protocols to

facilitate the transfer and reception of messages among computers. A protocol defines

the format and the order of messages sent and received among network entities, and the

actions taken on message transmission and receipt. In the machines all communication

activity is governed by protocols. In this sense, the International Organization for Stan-

dardization (ISO for its Greek root) creates the Open Systems Interconnection (OSI)

layered protocols for computer networks.

3.4.1 Layered Protocols

The OSI specification divides functionality into different layers and allows each layer to

provide one function. Table 3.2 shows the main functions and some examples of well

known implementations for each layer.

3.5 CORBA specification

CORBA specification is a set of distributed systems standards promoted by the Ob-

ject Management Group (OMG) [OMG, 2000]. The idea behind CORBA is to allow

applications to communicate one with another no matter where they are or who has

designed them. The basic idea is to create an interface that can be used or understood

by every application on different equipment. To achieve this goal an Interface Definition

Language (IDL) is created. The CORBA specification follows a Client/Server approach.

Usually the Server describes its services through this interface. Every application that

needs to share its executable code must create an IDL file to be distributed over the

network (see Appendix A for more information).

26

Table 3.2: OSI Protocol Summary

Layer Description Examples

Application Protocols that are designed to meet the HTTP, FTP

communication requirements of specific SMTP,

applications, often defining the interface CORBA IIOP

to a service.

Presentation Protocols at this level transmit data Secure Sockets (SSL)

in a network representation that is CORBA Data Rep.

independent of the representations used

in individual computers (which may differ).

Encryption is also performed in this layer,

if required.

Session At this level reliability and adaptation

are performed,

Transport This is the lowest level at which messages TCP, UDP

(rather than packets) are handled.

Messages are addressed to communication ports

attached to processes, Protocols in this layer

may be connection-oriented or connectionless.

Network Transfers data packets between computers in a IP,

specific network. In a WAN or an inter-network ATM virtual circuits

this involves the generation of a route passing

through routers. In a single LAN no routing

is required.

Data link Responsible for transmission of packets between Ethernet MAC, PPP

nodes that are directly connected by a physical ATM cell transfer

link. In a WAN transmission is between pairs

of routers or between routers and hosts.

In a LAN, it is between any pair of hosts.

Physical The circuits and hardware that drive the network. Ethernet base-band

They transmit sequences of binary data by analog signalling, ISDN

signalling, using amplitude or frequency modulation

of electrical signals (on cable circuits),

light signals (on fibre optic circuits) or other

electromagnetic signals (on radio and microwave

circuits).

Distributed Robotic Systems 27

Object
Adapter

ORB CoreORB Core

Client Object Implementation

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

IDL
Skeleton

Dynamic
Skeleton
Interface

Standard Interface

Per-Object type
Generated Interface

There may be Multiple
Object Adapters

ORB Dependent Interface

Object
Adapter
Object

Adapter

ORB CoreORB Core

Client Object Implementation

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

IDL
Skeleton

Dynamic
Skeleton
Interface

Standard Interface

Per-Object type
Generated Interface

There may be Multiple
Object Adapters

ORB Dependent Interface

ORB CoreORB Core

Client Object Implementation

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

IDL
Skeleton

Dynamic
Skeleton
Interface

Standard Interface

Per-Object type
Generated Interface

There may be Multiple
Object Adapters

ORB Dependent Interface

Figure 3.3: Object Request Broker (ORB) interface

CORBA is based on an Object Request Broker (ORB), a mechanism through which

distributed software and their clients may interact. It specifies an extensive set of bus-

related services for creating and deleting objects, accessing them by name, storing them

in persistent store, externalizing their states, and defining ad-hoc relationships between

them. This module takes care of the interfaces and makes the changes needed to transmit

and to marshal data, as is shown in Figure 3.3. CORBA specification provides a method

of creating interfaces between equipments to facilitate their communication. It is based

also on an object-oriented design and implementation.

3.6 Summary

Distributed Robotic Systems consist of autonomous robotic systems and components

that work together to make the complete system functions as a single robotic system or

a coordinated team. They offer a set of good features that permit the increase of power

processing at low cost. In order to provide a good performance many challenges must

be overcome to create a reliable system. The challenges are based on the number of

operating systems, communication aspects, transparency and management of failures.

Normally, robotic systems come with their own customized or proprietary system, so

integration of any other component becomes a difficult task. In the past, researchers

28

created their own interfaces to connect each equipment, and still it is a normal practice.

Most of the aforementioned architectures provide a set of agents, or pseudo-agents to

accomplish specific tasks or goals. In their minimum expression, they are called “atomic

agent” or “actors”. All of the above works use different approaches of the agent concept.

Next, based on the platform, they select the communication media among these agents.

This is not our case. Our approach is to focus on developing “building blocks” that can

be used to create more complex systems, possibly agent-based systems. In this sense,

we leave the door open to construct not just intelligent, but also complex systems for

specific application areas. Nowadays there are several middleware technologies that alle-

viates the burden of communication issues to solve. These middleware softwares appear

on the top levels of the OSI standards. CORBA specification is one of them and its

main structures and functionality was briefly described. But CORBA doesn’t build the

application itself, it is just a middleware that alleviates many problems related to com-

munication issues. In order to create software modules that can be easily integrated it is

required to apply very good design practices from the very beginning of the development

cycle. In the other hand, in the robotics area there are many legacy, proprietary, and

closed systems that need to be integrated in order to work as a distributed robotic team.

Then, a methodology that deals with this kind of problems and that uses CORBA as

the communication bus is proposed in the next chapter.

Chapter 4

Methodology for Integration of

Distributed Wrapper Components

The component-based development approach is becoming more and more popular for

creating Internet-based applications [Mecella and Pernici, 2001]. In this chapter, a

methodology based on wrapper components is presented as a modular approach in order

to create building blocks of complex applications. Distributed Robotic Systems by using

legacy systems or new object oriented modules are some examples. Their characteristics

and applicability are discussed in this chapter.

4.1 Definitions

In order to have a consistent understanding of the methodology some definitions adapted

from [Mecella and Pernici, 2001] and [D’Souza and Wills, 1998] are needed.

Component: A coherent package of software artifacts that can be independently de-

veloped and delivered as a unit and that can be composed, unchanged, with other

components to build something larger. For one component to replace another, the

replacement component need not work the same internally. However, the replace-

ment component must provide at least the service that the environment expects of

the original and must expect no more than the services the environment provides

the original. The replacement must exhibit the same external behavior, including

quality requirements such as performance and resource consumption.

Provided and required interfaces: A component is specified explicitly through the

definition of its interfaces. A provided interface describes what the client can

expect from the component. In the other hand a required interface describes

29

30

what the component expects from the environment. The interaction among the

components is only established through these interfaces.

Abstraction Level: Different models support different abstraction levels. One way to

measure this concept is through the semantic and technological coupling. For low

abstraction levels corresponds a closer (tight) coupling. For example, Figure 4.1

shows how the position information of a robot can be accessed. Mainly the access

can be done:

1. Through accessing a register in the robot controller.

2. Through a remote procedure call (e.g., Get(Location,. . .))

3. Through an object class “robot” expressed in an IDL middleware.

CRS-F3

Robot Controller

Position=R0;

Position=Get_Location(Robot_Id);

Position=Robot_F3.Position()

Figure 4.1: Different ways of accessing or getting a robot position.

For a component to plug-replaceable, it is essential that the component specifications be

self-contained and symmetrical; in this way we can design reliably using parts without

knowledge of their implementations. The abstraction levels shown in Figure 4.1 are

different. The first one shows how the information is physically registered in the host

system, meanwhile the last scheme facilitates the access to the information but it doesn’t

show details about how the information is internally managed. Component software

demands a complete separation of interface specifications from their implementations.

The interface specs, rather than the source code, define what a component will provide

and expect when used.

Interfaces developments made ad-hoc for a specific application is costly, difficult to

maintain and it limits the scope of the application to a few cases. Due to this, two

modeling schemes based on object technologies are defined. The first one is based on

the operation and the second is based on the concept.

Methodology for Integration 31

4.1.1 Component definition oriented to operation vs to con-

cept

In this section definitions of these two types of components are discussed, based mainly

on the state of the object. Before this some basic definitions are given:

Association property: The component specification is composed of attributes/properties.

These properties/attributes are considered as part of the object state in a compo-

nent instance if it is necessary to keep its value between two any invocations of its

services/methods in such component instance.

Completed State Component: The specification of this component provides the

state association. The management of the component’s state is carried out by

the server in a distributed application.

Stateless component: In this case, any of the following situations can occur:

a) The component specification provides the associative property but the man-

agement of the component’s state is carried out by the client in a distributed

application.

b) The component specification does not provide the associative property. It is

a pure function.

Based on this, Concept-Based components are defined as ones whose objects are a

representation of the real world. These are completed state components. On the other

hand, Operation-Based components are ones without a direct association with the

real world, but whose operations in objects of the real world are modelled. These are

stateless components.

Examples of previous definitions are:

a) A robot object in which methods to read its position and to command it are present.

The commands change the state of the robot. This is a concept-based component.

Last option on Figure 4.11 outline this type of component.

b) The other example is a generic operation, which can be applied to similar objects.

The operation needs the object reference and pertinent data to execute the operation.

There is a return code indicating if the operation was successful or failed, or in case

of query the information requested is received. This last example is very common in

many of the legacy systems, so the operation-based component can be visualized as

access components. Second option of Figure 4.11 represents this type of component.

32

4.2 Application Development Based in Components

A component can be defined as a “design unit (at any level), for which the internal

structure is defined. It has a name associated with it and there are some design guide-

lines to integrate this component and to illustrate how it can be reused”. This is a

general definition but we can describe it in more specific detail:

Conceptual Component: It is a model/scheme (or subset) that can be reused, fol-

lowing an object modeling approach. This could be specified with the Unified

Modeling Language (UML) [Rumbaugh et al., 2000].

Software Component: a coherent software package that can be developed and de-

livered independently. It has explicit and well defined interfaces for the services

that it provides and for the expected services from others components. This kind

of component can be composed of subcomponents but without modifying the ex-

ternal interface. The term instance of a component is used to distinguish the

specification from its executable. In an object oriented approach, a component is

a set of classes assembled together to be delivered as a simple software unit.

An aspect of modelling components is the granularity to which the components are

defined. The trend is to have more fine components. Prior to this, a subsystem was

considered as component in a bigger system. With this new trend, we have smaller

components but with a better utilization for various applications. For example, a com-

ponent to sort any kind of data, or a component to create graphs in any environment is

now possible.

The biggest obstacle for the component-based development is the necessity of a common

framework, i.e. a definition of the “world where the component will live”. Recently, new

emerging technologies based on internet, provide the backbone for the effective develop-

ment of components. These developments are based on distributed computing technolo-

gies, on middleware software and they are object oriented, specifically in the message

transmission between these objects. CORBA specification is one of these technologies,

and we selected as our development platform.

Methodology for Integration 33

4.2.1 Integrating legacy systems with distributed applications

Legacy systems are defined as applications with a critical value which have already been

in production. According to this definition most of the current systems are of this type.

The proposed re-engineering strategies to deal with these systems are the following:

a) Integrate

b) Migrate

In the first option, the old systems are integrated into new applications creating new

interfaces. In the second case, the old systems are replaced progressively until a totally

new software application is achieved.

The interfaces generated for the old systems are denominated wrapper interfaces ,

and we have two types:

Access Interface, in which there is only a mapping between the data and the path

access to them, and

Integration Interface, in which new interfaces are generated and they provide a

higher level of abstraction. Also, these interfaces can have a subset of access

interfaces.

The following Table 4.1 shows the characteristics to be taken into account during the

development of systems based in the above components.

Table 4.1: Development characteristics of component-based systems through legacy

systems [Mecella and Pernici, 2001]

Characteristic Concept-Based Operation-based

Wrapper type Integration Access

Design Complexity High Low

Development time Long Short

Integration Logic Distributed Centralized

Application Composition Easy Difficult

Application development time short long

Number of active instances High Low

In systems developed with concept-oriented components, there could be a big number of

low level layers that affect the overall performance. CORBA has this problem, and the

34

different software developers focus their marketing effort to differentiate their products.

In our case, in robotic industrial applications a Real-Time CORBA [OMG, 2000] is

proposed.

4.3 Proposed Methodology

Our methodology follows three basic steps, as is shown in Figure 4.2:

1. Dividing

2. Wrapping (Encapsulating)

3. Connecting

These steps are related in such way that the definition or results of each one affects

the performance and scope of the other. Furthermore, due to the fact that we will use

CORBA as a middleware in order to connect different modules, some considerations

must be taken into account.

Component-A

Component-C

Component-B

Component-E

Component-
D

Module or System

WC-A

WC-C

WC-B

WC-E

WC-D

WC-A

WC-C

WC-B

WC-E

WC-D

Dividing Wrapping Connecting

Module or System

Figure 4.2: Main steps followed when defining wrapper components

4.3.1 Dividing

There are several considerations when dividing a system. We will mention the properties

that we consider a key issue for a better design of a component. Dividing a system into

Methodology for Integration 35

small subsystems is an old practice to deal with big projects. In many cases a common

sense policy is followed or a top-down strategy is applied in order to have a well separated

and defined modules. In this methodology we propose some indexes for a set of criteria

in order to have a better understanding of the dividing process. At the end of this stage

is expected to have a table with a number of well defined modules.

Physical constraints

Diving a system or application could be done in a conceptual fashion, but in most of the

cases we will find a physical partition at different levels. For instance we will need to

integrate Commercial-off-the-Shelf (COTS) software or legacy systems that use specific

hardware, libraries or platform. In some cases, there are subsystems that cannot share

limited resources, such as communication ports or memory. In this sense, the parts in a

system could coexist in the same hardware (PC or main-frame) or in a distributed man-

ner using different operating systems or platforms. Then a system designer must deal

with all kinds of software components instead of doing these components from scratch.

Figure 4.3 shows some examples of physical constraints. Usually, each component has

its own CPU, its own communication interface and its own operating system. In many

cases they must communicate each other through a CPU in the middle.

The index for this type of division is named as

Npc = Number of components separated by physical constraints

LATTE
WIN-2000

CRS F3

Robot Controller

CPU Controller
inside mobil robot

PAMI-NT2
QNX

Pan-Tilt
UnitStereo

Camera

LATTE
WIN-2000

CRS F3

Robot Controller

CPU Controller
inside mobil robot

PAMI-NT2
QNX

Pan-Tilt
UnitStereo

Camera

Figure 4.3: Physical constraints of the components needed to create a robotic system.

36

Performance

Another consideration to split a system is the requested performance (i.e response time)

to achieve certain goals. In this case, we are talking about the CPU usage when multiple

tasks are running in the same single CPU. This could be the case when the system cannot

respond on time because of internal delays or worst, because of the internal blockage of

resources. Then it will be necessary to put the components in different CPUs or use a

better CPU scheduling algorithm, Figure 4.4 depicts this idea.

The index for this type of division is named as

Np = Number of components separated by performance issues

Single Computer or CPU

General
Code

°task 1
°task 2
°
°
°
°task n
°task n+1

Multiple Computer or CPU’s

Specific
Code

°task n
°task n+1

Specific
code

°task 3
°task 4

Specific
code

°task 1
°task 2

Single Computer or CPU

General
Code

°task 1
°task 2
°
°
°
°task n
°task n+1

Multiple Computer or CPU’s

Specific
Code

°task n
°task n+1

Specific
code

°task 3
°task 4

Specific
code

°task 1
°task 2

Multiple Computer or CPU’s

Specific
Code

°task n
°task n+1

Specific
code

°task 3
°task 4

Specific
code

°task 1
°task 2

Figure 4.4: Splitting of a task into several parallel and concurrent tasks to enhance

system’s performance.

Abstraction

The development of a system is a task where the main parts of such system must be

defined. This definition process provides an outline of the functions and the attributes

of these parts. Next, each part is subsequently divided into smaller subsystems with

their own functions and attributes. Functions and attributes of a child subsystem could

be a subset of the parent system. This partition activity can continue in the different

subsystems until certain level is achieved. During this process we may find that some

subsystems could have similar functions and attributes. Figure 4.5 shows this idea.

Functions F1-a, F1-b and F1-c are similar. In this case we can make an abstraction

from the main functions for the set of subsystems. This abstraction can be parame-

Methodology for Integration 37

terized in such way that with minimum changes the abstract function can supply the

functionality requested by every subsystem. The abstraction process can be applied to

classify different types of robot. For instance, it is possible to have mobile robots and

arm manipulators. Each type of robot would have a specific instruction or command

set, that can be applied to all robots pertained to the same type.

The index for this type of division is named as

Nf = Number of components separated by functional abstraction

Dividing a process by functional abstraction creates components at different levels. In

our case we only distinguish two levels: Level-1, it refers to all components or subsys-

tems identified as primary elements to create a specific system; Level-2, it refers to all

subcomponents that compound a bigger component or a subcomponent that can be

used in several components. In the last case this subcomponent can be referred as a

generic component (GC). In Figure 4.5 F2, F3 and F4 are just simple subcomponents,

meanwhile F1-x is a generic subcomponent.

System

Main
Module

Module-B

F1-b F3

Attributes-B

Module-C

F1-c F4

Attributes-C

Module-A

F1-a F2

Attributes-A

F1-x

Abstract
Function

System

Main
Module

Module-B

F1-b F3

Attributes-B

Module-B

F1-b F3

Attributes-B

Module-C

F1-c F4

Attributes-C

Module-A

F1-a F2

Attributes-A

F1-xF1-x

Abstract
Function

Figure 4.5: Abstract functionality of similar parts in system construction.

Interconnections

Dividing a system into subsystems generates smaller and bounded components that are

easier to manage and to build, but at the same time the number of interconnections

38

among these components could grow rapidly (see figure 4.6). This situation could create

communication problems when we have one-to-many relationships, i.e. the management

of open-close sessions of each connection and its continuous checking for abnormal end-

ing. Here we can take advantage of one of the services provided by CORBA, specifically

Event Service. This service is explained in detail in appendix A, Section 3.2.

The index used for this case is related to each component

Nci
= Number of connections of the component i

System-A

Component-A

Component-B

System-B

Component-C

Component-F
Component-D

Main System

Figure 4.6: Interconnections between components and subsystems

The dividing process can be checked using the flow diagram shown in figure 4.7. The

first considerations are the physical constraints, followed by the performance requested.

The last two considerations are related to some extent. For example, creating many

functional abstraction will lead to an increment on interconnections, in the other hand

if we keep a small number of interconnections the component of the system will connect

easier but the number of exchange modules will be reduced. This means that a small

subcomponent is easier to exchange than a bigger subcomponent.

With this reduced number of counters it is possible to compute the following indexes,

where Nwc1 is the total number of wrapper components at level-1, Nwc2 is the total

number of wrapper components at level-2, and Nwc is the total number of wrapper

components at any level The wrapper component concept is explained in the next section

of this chapter.

Complexity Index

Icpx =

∑
Nwc1∑

Nwc1 +
∑

Nwc2

=

∑
Nwc1

Nwc

(4.1)

Methodology for Integration 39

If Icpx is equal to 1, that means that only Level-1 components have been defined for

the system, reducing the complexity but at the same time reducing the possibility of

exchange subcomponents.

Structural Index

Istruct =
Npc + Np + Nf

Nwc

(4.2)

If Istruct is equal to 1, it means that each component only have one criteria for its

partition. On the other hand if the Istruct is close to 3, then it means that each component

applies for all partition criteria.

Connection Index

Icnx =

∑
Nci

Nwc ∗ (Nwc − 1)
(4.3)

If each component connects will all Nwc−1 components, then the index Icnx has a value

of 1. If each component connects only with one component, then the index Icnx will

have a value of 1/(Nwc − 1).

The information generated at the end of this stage is shown in the Table 4.2

Table 4.2: Outcomes of the dividing process, these include the counting for the different

indexes
Component Component Physical Performance Abstract Connections

Name level (1,2) Constraint Functionality

Component-1 Level-1
√

NA NA Nc1

Component-2 Level-1 NA
√

NA Nc2

Component-3 Level-2 NA NA
√

Nc3

Component-4 Level-1 NA
√ √

Nc4
...

...
...

...
...

...
Component-n Level-2

√ √ √
Ncn

Total Total Total Total Total Total
Number of Components Physical Performance Abstraction Number of

Components for each Components Components Components connections
level

Nwc =
∑

Nwci Nwci Npc Np Nf Nc =
∑

Nci

40

Physical
Constrain?

Performance
Problem?

Split into
Subsystems

Split into
Subsystems

Yes

Yes

No

No

Many Similar
Functions?

Make an
abstraction

Many 1-n
Interconnections?

Use CORBA
Services

End

Start

Yes

No

Yes

No

Figure 4.7: Flow diagram to divide a system into several components.

Methodology for Integration 41

4.3.2 Wrapping (Encapsulating)

As the name suggests, a Wrapper Component (WC) is a programming module that

encapsulates an abstract functionality for specific hardware or software modules in the

system. There are different models depending on the abstraction level: Conceptual

Approach or Operational Approach as we explained in section 4.1.1. In our methodology,

the basic configuration of a Wrapper Component consists of three main blocks:

• IDL (Interface Definition Language) interface

• Transformation/Interpreter Code, and

• Hardware/Software object/Library Implementation.

Figure 4.8 shows these blocks, where a robot is considered for the hardware/software

object implementation.

Robot Controller WC

Robot Object
Implementation

Transformation/
Interpreter Code

IDL
interface

Figure 4.8: Basic elements in a Wrapper Component.

IDL Interface

This is an interface definition for a particular class of components; its actual definition

is a key issue to construct reusable and easy to connect components. We define three

basic functionalities for this interface: abstraction, monitoring, and configuration.

Abstraction: By abstraction we refer to the particular functions (methods) set that a

specific component class must have without taking into account the implementa-

tion details. The abstraction level could start from an access level where there is

42

a mapping one to one with a legacy system, until a higher level, as it is shown in

Figure 4.1. A small number of powerful services is preferred over a large number

of single services. Furthermore the abstraction on the interface must facilitate

the integration and management of the component as a replaceable unit. Figure

4.9 shows two robotic interfaces with a small number of methods or services. In

option (a) the designer must know the right axis to move for a specific robot, and

somehow it must look for the way to move several axes at the same time, mean-

while in option (b) the designer only needs to use a single method according to

the movement to realize. Option (a) is more operation oriented while option (b)

is conceptual oriented.

interface Robot {
void MoveAxis(Axis_num,…);

}

(a) Operation oriented

interface Robot {
void Retract(…);
void Extend(…);
void Turn(…);
void MoveH(…);
void MoveV(…);
void Turn_EF(…);
void Turn_Wrist(…);

}

(b) Conceptual oriented

interface Robot {
void MoveAxis(Axis_num,…);

}

(a) Operation oriented

interface Robot {
void Retract(…);
void Extend(…);
void Turn(…);
void MoveH(…);
void MoveV(…);
void Turn_EF(…);
void Turn_Wrist(…);

}

(b) Conceptual oriented

Figure 4.9: Two different abstract interfaces for moving a robot.

Monitoring: By monitoring we refer to the general functions that every component

must have to query its internal states. This monitoring could be by request or

depending on the application must be started and stopped through some config-

uration methods. Figure 4.10 shows an interface definition which includes this

feature. A start/stop monitoring is explained when we develop the vision server,

see Appendix C for details.

Configuration: Finally, configuration represents the capability of changing the inter-

nal attributes of the component according to external requirements. Usually, these

changes will affect the behavior of the component. In the case of the robot inter-

face, there is a method to learn a specific position or location. See Figure 4.10.

In the case of a vision component, this could be the rate at which the images are

captured or transmitted. Other configuration could be if the image is captured in

color or monochromatic.

Methodology for Integration 43

interface Robot {
void Retract(…);
void Extend(…);
void Turn(…);
void MoveH(…);
void MoveV(…);
void Turn_EF(…);
void Turn_Wrist(…);
void Home(…);
void Ready(…);
void Speed(…);
void Learn(…);
void Goto(…);
void Gripper(…);

void get_status{…};
void get_Position{…};

}

Configuration

Method

Monitoring

Access

interface Robot {
void Retract(…);
void Extend(…);
void Turn(…);
void MoveH(…);
void MoveV(…);
void Turn_EF(…);
void Turn_Wrist(…);
void Home(…);
void Ready(…);
void Speed(…);
void Learn(…);
void Goto(…);
void Gripper(…);

void get_status{…};
void get_Position{…};

}

Configuration

Method

Monitoring

Access

Figure 4.10: Monitoring and Configuration methods for accessing and configuring the

information of a robot server.

Transformation/Interpreter Code

This element requires more effort compared to the other elements when implementing

a wrapper component. Basically, in this part of the component, the component builder

(people in charge of the development of this part) has to do the following basic tasks:

Data transformation, Data Interpretation, Data Distribution, Data Collection and Data

Processing.

Data Transformation: This corresponds to wrapping all differences on data definition

between the interface and the object implementation. For example, if the object

implementation manages the position of an axis using a long integer data type but

the interface is declared as a float data type, the transformation code makes this

change on the data type both ways. Figures 4.11 and 4.12 show this idea.

Data Interpretation: In many cases due to the different abstraction levels between

the component’s interface definition and the current legacy system there is not

a matching one-to-one of the functions. Then an interpretation or translation is

required in order to achieve the service offered in the interface definition. For

example, if there is a function to move a robot by extending the arm and this

function doesn’t exist in the legacy robot API definition, then it is necessary to

execute a set of primitive provided functions to achieve the required service. A

44

Float data for
PAN-TILT unit
35.65 Degrees

Transformation
Code

Long value
For counts

35.65 Degrees

Data type
defined on the
Interface

Data type
provided by the
API legacy
software

Float data for
PAN-TILT unit
35.65 Degrees

Transformation
Code

Long value
For counts

35.65 Degrees

Data type
defined on the
Interface

Data type
provided by the
API legacy
software

Figure 4.11: Data transformation task between the interface definition and the object

implementations.

more detailed example of this case is explained in Appendix B. Other example is

moving the wrist of the robot. Figure 4.12 depicts this idea. The wrist axis number

is different for two different types of robots. The interpretation task selects the

right axis according to the type of robot.

Wrist(+60°)

Robot
Type ?

Move(axis_5, 2731 pulses)

Move(axis_6, 5461 pulses)

Type (a) Type (b)

Axis 5 has 16384
counts or pulses
per revolution

Axis 6 has 32768
counts or pulses
per revolution

Wrist(+60°)

Robot
Type ?

Move(axis_5, 2731 pulses)

Move(axis_6, 5461 pulses)

Type (a) Type (b)

Axis 5 has 16384
counts or pulses
per revolution

Axis 6 has 32768
counts or pulses
per revolution

Figure 4.12: Data Interpretation task carried out to select the right axis when moving

the wrist of an arm manipulator.

Data Distribution: This task refers to the data distribution among the different sub-

systems that compose a wrapper component. This is analog to the courier service

provided in a corporative building. Normally a package with letters and docu-

ments arrives to a specific area or department. Next, the information is classified

and separated according to the different areas on the building and smaller packages

Methodology for Integration 45

are delivered. In a robotic system, it could be the case that different background

process are running on parallel or concurrently and they need or supply different

types of information. For example, a subsystem for managing a database of lo-

cations coexists with the motion controller subsystem. An abstract function such

as LEARN(position) could request the current position to the motion controller

and then pass this information to the database manager. Figure 4.13 depicts the

general concept of this task. In some cases, the data distribution is forward while

in more complex components requires extra processing.

IDL
interface

IDL Interface

H/S-I

T/I-C
T/I-C

H/S-I H/S-I

IDL
interface

IDL Interface

H/S-I

T/I-C
T/I-C

H/S-I H/S-I

Figure 4.13: Data Distribution task carried out to delivery information to the different

subsystems in a complex component. T/I-C stands for Transformation/Interpreter Code

and H/S-I stands for Hardware/Software Implementation. Inside a Wrapper Component

could coexist several H/S-I and T/I-C, but this is hidden to the external users.

Data Collection: This is the opposite task to the previous one. Here the data from

the different subsystems is collected, sometimes formatted or arranged into data

structures to reply the information through the interface.

Data Processing: Finally, data processing task corresponds to all computing steps

used for formatting, data sorting, numerical calculation, parsing, concurrency

management or any other computation tool used to process the information.

Hardware/Software Object implementation

Integration into the whole system is demanded for this element. Usually, this element

is defined for a specific hardware or it is supplied by a specific vendor. In most of the

cases, this component is provided “as is” with an Application Program Interface (API)

definition. However, it is difficult for specific purposes, and sometimes impossible, to

access the low level code. Examples of these elements could be robot motion or control

libraries, image processing libraries or database libraries. Most of them are in binary

46

format and it is difficult to determine their code or disassemble them. Depending on

the type of element, this could coexist in the same CPU where the Wrapper Compo-

nent is launched, or it could be running in a different CPU with a communication link

provided to be accessed by the Wrapper Component. Figure 4.14 shows these cases.

Usually, option (b) is found in all elements or components that implies a hardware inte-

gration, meanwhile option (a) is found in software libraries of intangible elements, such

as database libraries, image processing libraries, or math libraries, among others.

Robot Controller

Robot Server

CRS-F3

Proprietary OS.

(a) External CPU used to wrap
the robot services

(b) Same CPU used to wrap
Planning Services

Planner
Server

Graphplan
subrutines

Communication link
Serial, Ethernet, Firewire, etc

Planner Server

Robot Controller

Robot Server

CRS-F3

Proprietary OS.

(a) External CPU used to wrap
the robot services

(b) Same CPU used to wrap
Planning Services

Planner
Server

Graphplan
subrutines

Communication link
Serial, Ethernet, Firewire, etc

Planner Server

Figure 4.14: Hardware/Software Implementations and the different options of their

locations. (a) The Robot Server Interface can not be located in the same CPU due

to its proprietary and closed operating system, usually in this type of components a

communication interface is provided by the vendor for a specific media. (b) Both the

Planner Server and the planning subroutines are located in the same CPU. Usually in

this type of component, the libraries and the wrapper component are developed under

the same language, platform and operating system.

The outcomes expected for the Wrapping stage are summarized in Table 4.3. For each

IDL interface definition we can have an abstraction level based on the relationship

between the input functions of the component to wrap and the final number of output

functions defined on the IDL interface.

Abstraction Index

Iabstract =
Out− functions

In− functions
(4.4)

When this index is equal to 1, it means that the component is defined as an Access

Methodology for Integration 47

Component. This is normal in components with a few number of functions or meth-

ods. When this index is below 1/2, it means that the component has some abstraction

functionality and it wraps most of the main functions of the original component. Usu-

ally a low value in this index represents a big effort on the Transformation/Interpreter

codification.

Table 4.3: Outcomes of the Wrapping process

Component IDL Interface Transformation/ Hardware/

Name Definition Interpreter Code Software

Integration

Component-1
√ √

Hardware

Component-2
√ √

Software
...

...
...

...

Component-n
√ √

Both

48

4.3.3 Connecting

Due to the aforementioned components were encapsulated using CORBA specification,

the communication among them is supported transparently by the different ORB ven-

dors. However, there are some aspects or characteristics in the connection that we

can improve using different services from CORBA, namely Naming Services and Event

Services.

CORBA is a software bus that integrates different types of operating systems and pro-

gramming languages. It acts similar to a hardware bus that connects different interface

boards. CORBA follows the Client-Server approach to connect two applications. As

shown in figure 4.15, a client invokes an operation on the server side as if it is a local

object. A client stub marshals a parameter, and the ORB (Object Request Broker) core

locates and delivers the request to a server. A server skeleton demarshals the request,

and an object adapter calls the function. After the operation finishes, the server skeleton

marshals return values. The ORB core delivers the return values to the client, and the

client stub demarshals it. Lastly, the client obtains return values from the server object.

This type of connection is known as Request/Reply.

Object Request Broker (ORB) core, Software Bus

IDL
Stub

ORB
Interface

IDL
skeleton

Object
Adapter

Client Server
(Object Implementation)

Resolve initial
Object Reference Resolve initial

Object Method
Invocation return

In args
Operaction

Out args
Return

Figure 4.15: Main components and structure of CORBA application diagram.

Communication Features

Although a Request/Reply connection is very common and useful in many situations

and applications, there are other communication patterns that can be used to improve

the behavior of the the whole system. In Table 4.4 several communication patterns are

Methodology for Integration 49

Table 4.4: Communication patterns

Pattern Relationship Initiative Service Communication

Provider

SEND Client/Server Client Server One-way (not blocking)

QUERY Client/Server Client Server two-way (blocked)

PUSH Publisher/Suscriber Server Server 1-to-n distribution

EVENT Client/Server Server Server Asynchronous

WIRING Master/Slave Master Slave Dynamic Component

Wiring

described (taken from [Bruyninckx, 2001]). In the table, the Request/Reply pattern

is characterized by the QUERY pattern. In all cases (except the WIRING pattern)

the service is provided by the Server. The relationship between who initiate the com-

munication and how many are involved in the communication defines the pattern to

use.

Selection of a Communication Scheme

Given the above table, we define several variables that can help us to determine which

communication scheme is the best for a particular application. The variables defined

are:

Number of addressees: This is the number of addressees that will receive the infor-

mation. Only two options are defined, a) one-to-one, and b) one-to-many.

Type of synchronization: This is a boolean variable and two options are also defined

in this variable, a) Synchronous (blocking) and b) Asynchronous (not blocking).

In the synchronous mode, the Client waits for the completion of the invocation

on the Server side. This is a very risky operation in a distributed environment, so

some considerations must be taken into account for de-blocking the process in case

a failure come up from the network. Usually, a watchdog timer scheme is used in

this case, or an Exception thread can be issued to deal with a big delay. In the

asynchronous mode, the client doesn’t wait for the completion of the invocation

but it must check in the near future if the requested service was completed.

Balance of data transmission (BDT): This is related to the amount of data trans-

mitted in both ways. Defining two levels for this variable (LIGHT, HEAVY),

four combinations are possible: a) (LIGHT, LIGHT), b) (LIGHT, HEAVY) c)

(HEAVY, LIGHT) and d) (HEAVY,HEAVY). Where the left element corresponds

50

Table 4.5: Selection of Communication patterns based on number of addressees and

synchronization.

Number of Addressees Synchronization Communication Pattern

Synchronous

(Blocking) QUERY

One-to-One

Asynchronous

(Not Blocking) SEND

Synchronous

(Blocking) Not

Available

One-to-Many

Asynchronous PUSH

(Not Blocking)

EVENT

to the Client and the right element corresponds to the Server. This variable is

used to define a combination of communication patterns.

With these variables we can select one or possible two communication patterns to es-

tablish an effective communication behavior. For selecting one communication pattern

the following Table 4.5 is used.

For selecting a mixture of communication patterns, we use the BDT variable. This

variable is useful only when an unbalance is present on the communication. Then, only

a) (LIGHT, HEAVY) and b) (HEAVY, LIGHT) combinations are verified. In option

(a) the Client sends a specific request that is answered by bringing big amount of data.

This is the common case for searching a topic into the Internet using any searching

machine. But the information requested can be answered in a periodic way. In this

case, it is much better to have two communication channels, one for requesting and

the other for answering. Here the combination of a SEND pattern with a PUSH or

EVENT pattern is desirable. The SEND pattern can be used as a START/STOP of

the PUSH or EVENT pattern. This configuration is developed in this thesis work for

managing the vision system. See appendix C for more details. In option (b) the Client

sends a big package of information and only receives as response a short answer. This

is the case when many data records are processed to give a true/false answer or to

identify a specific object from a database list. The mixture of patterns for this case

could be a PUSH or EVENT to send the information to many Servers, instead of many

Methodology for Integration 51

Clients, then each Server processes the information according to its main functionality,

and next a short answer is passed through a SEND pattern. Figure 4.16 depicts this

idea used in [Guedea et al., 2002]. In appendix A there is a more detailed description

of CORBA services, we can see that PUSH and EVENT patterns are the same as the

Publisher/Suscriber defined in this appendix.

Event
Channel

Image
Server

Motion

Color

Edge

TCD

Decision-
Taker

Feature

Cue-processor

PUSH

Pattern

SEND

Pattern

Event
Channel

Image
Server

Motion

Color

Edge

TCD

Decision-
Taker

Feature

Cue-processor

PUSH

Pattern

SEND

Pattern

Figure 4.16: Mixture of communication patterns for Cue vision processing.

A final matrix for communication design is created in this stage. The matrix contains

the components and their connections in both row and column. On each matrix in-

tersection, the column at the left corresponds to the source component, meanwhile the

element at the first row corresponds to the component receptor. Then based on the char-

acteristics of this connection a communication scheme is selected. In our design, we are

not considering the WIRING case due to this represents a dynamic connection among

components which is out of scope for this dissertation. An example of how this matrix

would look is shown in figure 4.18. In this example, three components are defined. The

component 1 has two output connections, connection one is with component 2 using the

QUERY scheme, and the other connection is with component N using SEND scheme.

Component 2 only has one output connection but it can receive messages from compo-

nent N. Component N, connects with the components 1 and 2 in a Publisher/Suscriber

scheme (see figure 4.17).

52

Comp1

Comp2 CompN

SENDQUERY

PUSH

Comp1

Comp2 CompN

SENDQUERY

PUSH

Figure 4.17: Mixture of communication patterns in a small example.

Comp11 Comp12 Comp21 Comp22 CompN1

Comp11 NA NA QUERY NA NA

Comp12 NA NA NA NA SEND

Comp21 QUERY NA NA NA NA

CompN1 NA PUSH NA PUSH NA

Figure 4.18: Communication design matrix

Methodology for Integration 53

4.4 Wrapper Components Features

The standard features for these components are reusability, connectivity, generality and

flexibility. We are adding abstraction, and manipulation. CORBA specification allows

us to achieve connectivity at least for three aspects:

• platform, i.e. actual computational architecture,

• operating systems

• programming languages

Abstraction and reusability are related properties. Reusability looks for making inter-

changeable modules, while abstraction helps to create these modules. The more abstract

a module is, the more general its definition is. On the other hand, if we can manipulate a

component on-the-fly, then we can achieve certain degree of flexibility. Figure 4.19 shows

the conceptual scheme of using Wrapper Components to create application modules. In

the example the modules are defined for a mobile robot. The border line between

components resembles the concept of a special interface among the components. These

components can connect each other using CORBA middleware. The functions of each

component are well defined and isolated; we can replace them by a new version or a

new brand.

Robot Motion
(WC)

Planning
System
(WC)

Sonar (WC)

Vision
(WC)

Main Robot
*WC

Application : Mobile Robot

*WC=Wrapper Component

Figure 4.19: Conceptual scheme to create an application using Wrapper Components.

54

4.5 Summary

In this chapter two general approaches to build wrapper components are described:

operation-based and concept-based approaches. For intra-organization development it

is better to use operation-based approach. For developing of robotic application we

suggest to use concept-based approach. Next, our proposed methodology of three steps:

Divide, Wrap and Connect, is described as a tool to create wrapper components that will

be easier to integrate into the whole system by using the CORBA specification. When

we apply this concept to the robotics area, in which several robots could be accessed

from different locations and users, or where these robots must realize a collaborative

work, it is necessary to have a loose coupling. This leads to the use of concept-oriented

components, and more specific, to integration of wrapper components. In the following

chapter many of the ideas presented in this chapter are implemented or developed to

create a set of wrapper components that will be able to tackle a classical problem from

the area of Artificial Intelligence.

Chapter 5

Building an Intelligent Distributed

Robotic System

The aim of this thesis is to provide a methodology to create complex robotic applications

by integrating distributed and heterogeneous components. If one or several components

could perform tasks that belong to the area of Artificial Intelligence, then we can expect

that the created system will perform intelligently. In order to demonstrate these ideas,

we created a smart distributed robotic system that is able to perform a task in the

well-known block-world scenario.

5.1 Problem Definition

A set of blocks is given and each block has a geometric figure centered on one of its

sides (see Figure 5.1). None of the figures is repeated. To start the job, the robotic

system receives a command from the operator (or user) that is to arrange the blocks in

a specific order (final goal). The robotic system must respond if, given an initial state

the goal is reachable or not. In case the goal is reachable, the robot arm manipulator

proceeds to achieve the new block arrangement (final goal).

5.2 Dividing into Distributed Components

There are many ways to attack the previous problem. Each one depends on the available

resources, hardware and software constraints, strategies, and individual or collective

knowledge from the personnel involved. We developed and structured the problem

according to our resources: a CRS-F3 6-DOF robot arm manipulator, a Videre Design

55

56

(a) Initial State (b) Final Goal

Figure 5.1: Classical block-world problem.

stereo camera, a Pan-Tilt unit where the camera is mounted, a set of generic x86 platform

computers, and a mixture of operating systems (Windows 2000, Windows XP, QNX).

Some of them are shown in figure 5.2 with the names associated to each computer.

COCOA
WIN-2000

DECAF
QNX

USER
WINDOWS-XP

VIDERE-DESIGN
STEREO CAMERA

ROBOT
CONTROLLER

CRS-F3

COCONUT
WIN-2000

Figure 5.2: Heterogeneous and distributed robotic components.

In order to achieve the final goal (block arrangement) without any human intervention,

the distributed robotic system must perform the following tasks: object recognition,

planning, and movement of the arm according to vision feedback. It must also react

to unexpected changes in the environment. Given these conditions, we started our

components definition applying the first step of our proposed methodology: Dividing.

5.2.1 Dividing the Distributed Robotic System into modules

There is a natural or physical separation among some components but there are also

others components that are intangible. First, we start with the physical separation of

three components: a) The robot arm controller, b) the stereo video camera and c) the

Pan-Tilt unit. The arm controller and the Pan-Tilt unit come with their own CPU and

Building an Intelligent Distributed Robotic System 57

operating system. Both of them provide an Application Program Interface (API) to

connect with them through a serial connection. In order to improve the performance

and to test the benefits of our approach, we decided to attach two different CPU’s and

operating systems to each one. The robot arm controller will be accessed through a

CPU using a WINDOWS 2000 operating system, meanwhile the Pan-Tilt unit will be

accessed through a CPU using a QNX operating system. The video camera is provided

with a high-speed communication media but it needs a IEEE 1934 card or chipset into

the CPU. In our case, we used a IEEE 1934 card and we also select another CPU besides

de CPUs used for robot arm and pan-tilt unit. In this part of the selection process we

could select to use the same CPU attached to the robot arm, due to the libraries or API

functions were developed for WINDOWS and for UNIX. But after some preliminary

tests we found that the demanded resources of the image processing step is high and

it could affects the performance of the robot arm. At last we have 3 CPU’s attached

or assigned to three different hardware resources. This partition is based solely on the

physical and performance criteria. For each one of this hardware component, we define

three different servers: the Robot server, the Vision server and the Pan-tilt server. A

more detailed description is exposed below and there are two appendixes B and C for

Robot server and Vision server, respectively.

As we mentioned the previous partition is based on physical and performance criteria,

but we need a component to plan the sequence of actions to achieve a specific goal. Then

a Planning server is devised, this is a software component and it can be considered as

an abstract entity. Furthermore, we found that in order to synchronize all activities, at

least one component must provide the function of coordinator. Although, at first glance

this partition looks obvious, we had other two options over the table. One option, named

option (A), would increase the robot server capabilities by integrating the coordination

and planning functionalities into one single component. This will reduce the number

of components but also it will reduce the chance of exchange components. Figure 5.3

depicts this idea.

The other option (B) is less integrated and only consider the coordination capability

included with the motion control of the robot. The planning function is considered

as another component. This scheme reduces the centralization aspect of option (A)

and increases the number of interconnections among the components. There are four

components at level-1 and two subcomponents at level-2. Figure 5.4 depicts this idea.

Finally, we also have to establish that the components must interact among themselves

using a Client-Server approach. Until now, we have only defined the servers side, but

it is necessary to include one or several clients that start the operation of the overall

system. One basic client is the component that allow the operator or user to control and

58

Coordinator

Planning
Arm

Motion Control

Super Robot

Server
Vision
Server

Pan-Tilt
Server

Coordinator

Planning
Arm

Motion Control

Super Robot

Server
Vision
Server

Pan-Tilt
Server

Figure 5.3: First step of proposed methodology, Option A. In this case a Super Robot

server is defined. The communication links are reduced and at the same time more

centralized. three components of first level are defined and three subcomponents at

level-2. Client modules (components) are not included

Coordinator

Arm
Motion Control

Robot

Server

Vision
Server

Pan-Tilt
Server

Planning

Coordinator

Arm
Motion Control

Robot

Server

Vision
Server

Pan-Tilt
Server

Planning

Figure 5.4: First step of proposed methodology, Option B. In this case a more divided

approach than option A is considered. The communication links are more distributed.

Building an Intelligent Distributed Robotic System 59

to configure the operation of the system; we referred it as the User Interface or Graphical

User Interface (GUI). Next, we have some implicit Client-Server relationships between

some components. For instance, the coordinator is a client of the planning server and

of the vision server. The planning server is also a client of the vision server, as we will

shown later. The final result, is a set of servers and clients which have a specific function.

Figure 5.5 shows the final division with the main components that we defined for this

application, Pan-tilt server is not shown in this figure. Here, we decided to separate the

coordinator component from the arm motion controller. This separation will give us the

option to change the robot server depending on the robot to manage. Furthermore, we

will have the opportunity to change the coordinator according to the problem to attack

without worrying about which robot is attached.

 Vision
Server

Robot
Server

Planning
Server

User
GUI

Coordinator

Distributed
Robotic
System

Figure 5.5: First step of proposed methodology. Final division, in this case several

clients and servers are defined at level-1. Different form options A and B, here the

coordinator is managed as another component

Following we will describe briefly what are the main services and aspects of each com-

ponent. Next section gives more details on the interface for each component, and ap-

pendices B, C and D give more detailed information for Robot Server, Vision Server

and Planning Server, respectively.

Robot Server.

This component hides all intrinsic details to move the arm manipulator and provides a

generic interface to manipulate any kind of arm manipulator. In order to achieve this

flexibility, an abstract interface for any kind of arm manipulator is defined on the next

section. This approach makes high level design easier but increases the programming

complexity for this server. Although the robot server acts as a “zombie” (just follow

commands without analyzing), it has some real-time issues that makes its programming

a challenge. A more detailed explanation is described on Appendix B.

60

Vision Server.

This component provides four basic vision tasks: Image Acquisition, Image delivery (or

transmission), Object Recognition and Object Tracking. Each task is managed as a

different wrapping level as we will explain in section 5.3.2. These tasks can be requested

by other components such as, the coordinator, the planning server and/or the User

GUI. The amount of data and the frequency of each data set is managed using different

communication schemes, this is explained on Chapter 6. A more detailed explanation

about how this services are implemented is provided in Appendix C.

Planning Server.

The main function of this server is to provide a sequence of actions in order to achieve

a given final goal from an initial state or condition. This sequence of actions is possible,

if and only if the final goal is reachable. In order to generate a plan, the planning server

must request some information from the vision server in order to ascertain the initial

condition. Next, a sequence of actions is delivered to the coordinator component. The

main challenge in the development of this component is the translation between different

data formats and the synchronization with the other components.

Coordinator.

In other articles we named this component as a “brain controller” [Guedea et al., 2006b]

or “task controller” [Guedea et al., 2004], but due to the different activities that it

realizes, we renamed it as the “coordinator” of the robotic system. Basically, its main

functions are to start and control the robot movements according to the actions sent

by the planning server and the visual information received from the vision system.

Previously, the coordinator passed along the information about the final goal to the

planning server. This goal is received from the GUI component.

User GUI.

This component is an artifact to provide an interface between the robotic system and

the user or operator. It aids in configuring each one of the components of the robotic

system, so instead of receiving information from a single source, the client makes con-

nections with the different servers in different ways, as we will explain later in the next

chapter.

Building an Intelligent Distributed Robotic System 61

As we mentioned, there is a physical separation among some components but because

of the location transparency provided by CORBA specification, some components can

be working in the same computer (to save resources). We can also have the components

separated (to increase concurrency). In our case we tried to further separate the com-

ponents in order to improve the distributed issue. It shows how CORBA can manage

this situation seamlessly. The final arrangement for these components is shown in figure

5.6, and the outcomes for this stage are shown in Table 5.1.

COCOA
WIN-2000

DECAF
QNX

USER
WINDOWS-XP

VIDERE-DESIGN
STEREO CAMERA

ROBOT
CONTROLLER

CRS-F3

COCONUT
WIN-2000

ROBOT
SERVER

VISION
SERVER

PLANNING
SERVER

USER
GUI

Internet

COORDINATOR

Figure 5.6: Final arrangement for our Distributed Robotic System.

Resulting Indexes

Given the previous definitions for our distributed robotic system the following indexes

are computed according to Section 4.3.1:

Complexity Index

Icpx =

∑
Nwc1∑

Nwc1 +
∑

Nwc2

=
6

6 + 0
= 1 (5.1)

This number indicates a low interchange of components among them for this project,

but any component can be changed without affecting the definition of the others.

Structural Index

62

Table 5.1: Outcomes of the dividing process for the Distributed Robotic System.

Component Component Physical Performance Abstract Connections
Name level (1,2) Constraint Functionality

Robot Server Level-1
√

NA NA 1
Vision Server Level-1

√ √
NA 3

Planning Server Level-1 NA NA
√

2
Pan-Tilt Server Level-1

√ √ √
1

Coordinator Client Level-1 NA
√ √

4
GUI Client Level-1 NA NA

√
3

Total Total Total Total Total Total
Number of Components Physical Performance Abstraction Number of

Components for each Components Components Components connections
level

Nwc = 6 Nwc1 = 6 Npc = 3 Np = 3 Nf = 4 Nc = 14
Nwc2 = 0

Istruct =
Npc + Np + Nf

Nwc

=
3 + 3 + 4

6
= 1.667 (5.2)

This number reveals that some components are divided using more than one criteria.

Connection Index

Icnx =

∑
Nci

Nwc ∗ (Nwc − 1)
=

14

6 ∗ 5
= 0.467 (5.3)

This number indicates that some of the components have more than one single connec-

tions, creating a moderated mesh of connections.

5.3 Encapsulating the components

In the methodology proposed the second step is to encapsulate (wrap) each component,

so they can interact with each other through a standard middleware specification, in this

case CORBA. The main results of this step are the IDL interface of each component and

this implies also the communication scheme to use. The wrapping process must deliver

an interface with the following properties: Abstraction, Monitoring and Configuration.

We will describe how these properties are developed in the Robot Server, the Vision

Server and the Planning Server. Coordinator and User GUI can be seen as the clients

of the servers and they do not provide a specific service to wrap. Pan-tilt server is

explained in next chapter due its simplicity, and because it is used only on the first

Building an Intelligent Distributed Robotic System 63

stage of the development. This unit is kept fixed for the following stages in order to

facilitate some computations.

5.3.1 Robot Server Interface

For this thesis an arm manipulator is used as the robot component. Our goal is to define

an interface that would be abstract enough, so that we can use the same interface for

most arm manipulators types. In general, we can visualize any arm manipulator as

a) a set of links and junctions (Operational approach) and

b) a copy of the human arm (Conceptual approach)

In the first case, the interface could be abstract enough to deal with most kind of arm

manipulators but the high level design effort increases too much. In the second case, we

can command the arm as if we are playing the “put the tail on the donkey” game, i.e.

we can extend, retract, move the arm left or right, just to mention basic movements.

An example of the above statements is shown in Figure 5.7.

(b) Conceptual Approach(a) Operational Approach

Interface robot {
Void Extend(int dist);
Void Retract(int dist)
Void Move_Left(int dist);
Void Move_Right(int dist);

}

Interface robot {
Void Move_Joint(int id, int joint, int dist);
int get_dim(int id, int joint);

}

(b) Conceptual Approach(a) Operational Approach

Interface robot {
Void Extend(int dist);
Void Retract(int dist)
Void Move_Left(int dist);
Void Move_Right(int dist);

}

Interface robot {
Void Move_Joint(int id, int joint, int dist);
int get_dim(int id, int joint);

}

Figure 5.7: Operational approach and Conceptual approach when defining an interface

for a robot server.

From the previous example, the implications in the operational approach is that client

must know which axis to move depending on the displacement desired. Meanwhile in

the conceptual approach there is only a distance to move. Furthermore, moving axis by

axis it may be possible to reach a specific point but it requires a big effort to make a

straight move just using the operational approach. On the other hand, using Move left()

or Move Right() the robot can move several axes at the same time, but this is hidden

to the client.

Other difference in the implications could be the type of robot (cylindrical, polar, spher-

ical, SCARA or gantry), the number of axes , must industrial spherical robots has 6

axes and SCARA robots have 4 axes, but they can have an extra axis for a track or

64

one axis less, see Figure 5.8. The number of axes defines which axis will be the wrist

where the end-effector will be installed. Because of all this implications, we defined the

following function set for a generic arm manipulator: (see Figure 5.9). In this interface

definition, functions Speed() and Learn() are used to configure some variables into the

robot, meanwhile Monitor() and Finish() are two methods used to monitoring the sta-

tus of the robot. Function Speed() configures the global speed of the arm manipulator

and function Learn() is used to create a set of previously defined locations reached by

the arm. Function Monitor() returns the current real-time position of the robot in an

axis-based format, and function Finish() reports if the robot has finished its last move-

ment.

With this interface definition we have 17 functions or methods. For the Robot CRS-F3

which has 182 functions in total, the Abstract Index using only these numbers is:

Abstraction Index

CRS-F3 Iabstract =
17

182
= 0.093 (5.4)

this represents a big effort on the codification of the robot server. For the Motoman

Robot this number is

Abstraction Index

Motoman Iabstract =
17

82
= 0.207 (5.5)

this represents a less effort than the CRS-F3.

θ1

θ2

θ3

θ4

θ5 θ6

θ5

θ4

θ3

θ2

θ1

Τ6 Τ7

(a) T265 (b) F3

Figure 5.8: Two spherical robot from CRS Robotics with a different number of axes and

different position of wrist axis.

Building an Intelligent Distributed Robotic System 65

// IDL Robot Definition
interface Robot {
// Basic function to get the status of the robot
void get_status(out string status);
// Basic function to command an action to the robot
void do_action(in string action);
///
// COMMANDS TO MOVE THE ARM MANIPULATOR
//

void Retract(in long distance, out boolean result);
void Extend(in short direction, in long distance, out boolean result);
void Turn(in short direction,in short degrees, out boolean result);
void MoveH(in short direction, in long distance, out boolean result);
void MoveV(in short direction, in long distance, out boolean result);
void Turn_EF(in short direction,in short degrees, out boolean result);
void Turn_Wrist(in short direction,in short degrees, out boolean result);
void Home(out boolean result);
void Ready(out boolean result);
void Speed(in short velocity, out boolean result);
void Learn(in long var, out boolean result);
void Goto(in long var, out boolean result);
void Gripper(in long dist, out boolean result);
void Monitor(out float x, out float y, out float z,

out float rx, out float ry, out float rz,
out float j1, out float j2, out float j3, out float j4,
out float j5, out float j6, out float j7, out float j8);

void Finish(in short option);
};

// IDL Robot Definition
interface Robot {
// Basic function to get the status of the robot
void get_status(out string status);
// Basic function to command an action to the robot
void do_action(in string action);
///
// COMMANDS TO MOVE THE ARM MANIPULATOR
//

void Retract(in long distance, out boolean result);
void Extend(in short direction, in long distance, out boolean result);
void Turn(in short direction,in short degrees, out boolean result);
void MoveH(in short direction, in long distance, out boolean result);
void MoveV(in short direction, in long distance, out boolean result);
void Turn_EF(in short direction,in short degrees, out boolean result);
void Turn_Wrist(in short direction,in short degrees, out boolean result);
void Home(out boolean result);
void Ready(out boolean result);
void Speed(in short velocity, out boolean result);
void Learn(in long var, out boolean result);
void Goto(in long var, out boolean result);
void Gripper(in long dist, out boolean result);
void Monitor(out float x, out float y, out float z,

out float rx, out float ry, out float rz,
out float j1, out float j2, out float j3, out float j4,
out float j5, out float j6, out float j7, out float j8);

void Finish(in short option);
};

Figure 5.9: Basic Robot IDL interface definition to command a generic arm manipulator.

66

5.3.2 Vision Server Interface

Encapsulating computational vision services is a though issue. There are different stages

during the image processing and each one provides a specific service for others compo-

nents.

Computational vision can be divided as three sequential main tasks: (see Figure 5.10)

• Image Capture and Enhancing,

• Feature Extraction or Segmentation and

• Data interpretation

Each task can be “wrapped” and due to they are sequentially executed, the later one

encapsulates the previous one. This provides different wrapping levels. A low level cor-

responds to the first task, Image Capture and Enhancing, and a higher level corresponds

to Data interpretation. Usually low levels correspond to large data processing meanwhile

high levels correspond to small data processing but more complex computation.

 Capture &
Enhancing

Feature Extraction
Or

Segmentation

Data
Interpretation

Wrapping Level 1

Wrapping Level 2

Wrapping Level 3

Figure 5.10: Different wrapping levels for computational vision tasks.

Each task may have its own interface, and according to the equipment used (physical

camera) it may also have its own setup parameter list. But all these configuration levels

increase the complexity of the vision server. So, instead of thinking in how many ways

an equipment could be adjusted, we considered the main services we can have from

any vision system (abstract functionality). Furthermore, the services requested must

be aligned with the required application. In this particular application (block-world

problem) there is a need to recognize a set of objects and their location based on pixel

information.

Building an Intelligent Distributed Robotic System 67

In this research, the vision system will be used with other robotic components to en-

hance the dexterity of an arm manipulator. Given this scenario, it is observed that the

response time of the vision system must be in the range of seconds (less than 2 seconds)

or milliseconds, instead of tens of seconds or minutes. It is necessary to reduce the

computational effort of the algorithms to match the required speed for specific tasks.

In order to meet this requirement, some limitations are imposed into the environment

and the objects around the arm manipulators. These limitations come from the specific

hardware currently installed in the laboratory and some imposed constraints (structured

environment).

The vision system besides providing a fast response, it also has to realize different task

in order to be useful for other distributed components. These tasks are classified as

• Object Recognition, and

• Object Tracking

They correspond to the higher wrapping level 3, i.e. data interpretation. We decided

that each task can be executed locally (through a console scheme) or remotely. The last

option must be done using a high-speed network connection to meet the response time

requirement.

In order to recognize a set of objects, the vision system must learn the main character-

istics of these objects, and it is difficult to do this without supervision. For this reason

there is a special command (learn()) directed to the vision system indicating which

object must be learned. Once the object is learned and its main features are stored

in an object database, it can be located just asking for it by name. In this case, the

feedback result is true or false depending on whether the object is found in the current

image stream or not. If the result is true then its current position is returned.

Finding an object is an expensive task in computational terms. The vision system has

to look for all similar objects and then it makes a careful selection after checking more

parameters. This procedure is full described in appendix C. So, in order to save time

and to meet the time requirements we provide another function called Track(). In this

case the premise is to look for the object in the last reported position. This search is

faster and different from find() command. Tracking an object is a function that works

temporally and it can be started several times for the same object or different objects.

The vision system keeps a list of all object requested and sends the information in a

periodic and structured way through a specific channel. This is done using one of the

services provided by CORBA, event service. This communication is stopped using the

command EndTrack(). Finally, due to the system could learn many kinds of objects,

there is a special command to inform which are the learned objects. This command is

68

named Get().

Given this context, we used a wrapping level 3 to define the vision server commands and

to hide the internal details about how the system store, retrieve and process the image

information. This IDL interface is shown in Figure 5.11. Furthermore, the commands

are defined in a non-block manner. This avoid possible conflicts when several objects

are requested at the same time by several clients. In the next chapter we will describe

how to deal with the integration issues.

// IDL Vision Server Definition
interface ImageServer
{

void Learn(in short x, in short y, in string name);
void Find(in string name);
void Track(in string name);
void EndTrack();
void GetObj();

};

// IDL Vision Server Definition
interface ImageServer
{

void Learn(in short x, in short y, in string name);
void Find(in string name);
void Track(in string name);
void EndTrack();
void GetObj();

};

Figure 5.11: Basic Vision IDL interface definition to command a generic vision server

5.3.3 Planner Server Interface

Planning is one of the activities that exposes a certain degree of intelligence, due to

the selection of actions under specific conditions and goals [Russell and Norving, 2002].

Research in this area has been done for manufacturing plants in order to optimize the

use of resources and timing constraints. There are many types of planning problems

and approaches. Examples of planning problems are configuration planning solving for

packing pallets into a truck, route planning in networks, path planning of robot, and

solving puzzles. Task planning has different challenges when applied to robotics. An

intelligent robotic unit has to decide the next action given the current situation of the

environment. The context information is acquired by mean of robot’s sensory system

and/or through a specific command. Although the robot or the set of robots have a

main goal to achieve, there are specific situations that need to be managed first, possibly

in the opposite way to the final goal. For example, let us consider a case where there are

several robots trying to “hunt” a prey in an environment with many obstacles. Suppose

the robots know the exact position of the prey. Even under these simple considerations,

the robots need to make a path to avoid the obstacles between them and the prey, and

they also need to avoid paths where they block themselves. A global planner for these

situations can be useless because of the stochastic behavior of the environment. In this

case a reactive planner or multi-path planner must be necessary to improve the behavior

Building an Intelligent Distributed Robotic System 69

exposed by the robotic units.

In this work, we developed a generic planner using the Graphplan developed by Blum

et.al.,[Blum and Furst, 1997]. Graphplan is a planner based on STRIPS-like domains

which uses a compact structure called Planning Graph. This planner always returns

the shortest-possible partial order plan, if it exists, or states that no valid plan exists.

To generate desirable actions to accomplish given goals, we need to represent a given

problem. A fact describes a particular situation. An action, operator, describes how

the action changes the given facts before and after. A goal is a set of facts that should

be true.

The Blocks-World is a classical example of artificial intelligence research. It consists

of labelled blocks; in our experiments (see Chapter 6.0), different shapes are attached

on blocks, such as a circular shape and a triangle shape. In the formulation of this

problem, there is a manipulator that can perform the following actions: pick up, put

down, stack, and un-stack. Unlike simulated experiments in artificial intelligence, in our

experiment we actually use a robot manipulator that performs these actions with the

help of visual feedback from a stereo camera. Figure 5.1 shows a picture of the block

world with shape−labelled blocks. As we described before, the robot server does not

have the previous commands defined in this section. For this reason we called these

actions as Macro-tasks, and they are executed using micro-tasks. These micro-tasks are

actually the commands defined on the robot server interface and vision server interface,

and they are requested by the coordinator module. Next chapter will explain in detail

this approach.

In the STRIPS-like planning domain, operators have pre-conditions, add-effects, and

delete-effects, all of which are conjuncts of propositions, and have parameters that can

be instantiated to objects in the world. Operators do not create or destroy objects, and

time is represented by events. In a planning problem we have:

• A STRIPS-like domain (a set of operators)

• A set of objects

• A set of propositions (literals) called Initial Conditions

• A Set of Problem Goals which are propositions that are required to be true at the

end of a plan.

An action, is a fully-instantiated operator. For instance, the operator ’Grasp ?x’ may

instantiate to the specific action ’Grasp block-A’. An action taken at event t adds to the

world all the prepositions which are among its Add-Effects and deletes all the proposi-

tions which are among its Delete-Effects. For example, pick-up (x) operator has precon-

70

dition of on(x, Table), clear(x), and arm-empty. The effect of pick-up(x) is holding(x).

Figure 5.12 shows this operator in STRIPS language.

(operator
PICK-UP
(params (<ob1> OBJECT))
(preconds

(clear <ob1>) (on-table <ob1>) (arm-empty))
(effects

(holding <ob1>)))

(operator
PICK-UP
(params (<ob1> OBJECT))
(preconds

(clear <ob1>) (on-table <ob1>) (arm-empty))
(effects

(holding <ob1>)))

Figure 5.12: PICK-UP operator description in STRIPS language.

There are different types of planning systems such as Partial-Order-Planner (POP),

Graphplan, and SATplan. POP uses least commitment search space. Graphplan ex-

ploits relaxed problem, then searches. SATplan translates to logic, and then uses sat-

isfiability algorithms. In our research, we adapt Graphplan, because it always returns

a shortest possible partial-order plan [Blum and Furst, 1997]. Some of the advantages

of Graphplan are that it always finishes and it is faster than POP. The main idea of

Graphplan is to solve a relaxed problem. It converts the information to propositional

representation. Then it constructs a graph with levels which have time steps. Graph-

plan, then, identifies simple inconsistencies between pairs of actions.

Design and Integration of Cooperative Planning System

Since our main research focus is to integrate multiple robots and to build cooperative

robots, we have decided to use an existing graphplan program. In order to use existing

code and to reduce the complication of using the code, we designed a wrapper planner

component. The wrapper component hides all the details of the planning system, and

provides outside interface to other robots and modules.

As shown in Figure 5.13, to wrap the existing planning system program i.e. graphplan

algorithm code, we need to have two components. The first component is a data con-

version component. In this case, it converts visual information in LISP format from the

vision server (see details in appendix C) and from the user (through the coordinator

module) into data that the planning system can understand. The second component

is data communication component, with this the outside module can ask for planning

operation and retrieve the actions that accomplish the planning goal. Through this in-

terface the clients send their information (facts, operators and objects) and request the

plan to achieve a specific goal. In appendix D we expand the explanation of this IDL

interface which is by far more elaborated than previous interfaces. Figure 5.14 shows

the complete IDL definition.

Building an Intelligent Distributed Robotic System 71

Plan
Server

Data conversion
for

Planning system

Data conversion

Interface with
other modules

Wrapper component for Planning Systems

Figure 5.13: Wrapper component for planning system

5.4 Connecting the components

Once each component is defined and wrapped, the next question is how to connect them.

In this stage we will apply the third step of our methodology: Connecting. Connecting

components can be seen as assembling a puzzle (Figure 5.15) or assembling a lego toy.

In the first case the components are assembled following certain pattern matching in

color and shape, meanwhile in the second case the assembling is realized following a

given path or sequential operations. We will use the second case, and we will provide

an incremental approach in this integration. By using the client-server approach under

CORBA this is a straight way to connect them and it is already implemented. But

depending on the application we can use other communication schemes, as they are

described on section 4.3.3.

Our final goal is to tackle the block-word problem, and in order to achieve this goal we

split the problem into smaller subproblems. Basically, we devise three subsystems:

• a remote-operated robot,

• a remote-operated vision system, and

• the final autonomous robotic system

for each one, there are some specific details on the services provided by the servers

that other scheme rather than client-server approach is required. Following are the

communication schemes selected for each subsystem.

72

module GPLAN{
struct Token { string item; };
typedef sequence<Token> tokenList;

struct Fact { tokenList item; };
typedef sequence<Fact> factList;
typedef sequence<Fact> paramList;
typedef sequence<Fact> precondList;
typedef sequence<Fact> effectList;
struct Operation
{

string name;
factList param;
factList precond;
factList effect;

};
typedef sequence<Operation> opSeq;
struct Facts
{

factList types;
factList initials;
factList goals;

};

struct Plans { string name; };
typedef sequence<Plans> planList;

interface OpInterface {
// read operation file and save into OP_LIST
void getOperations (inout opSeq OP_LIST_clt);
// read facts file and save into FACT_LIST
void getFacts (inout Facts FACT_LIST_clt);
// read facts file and save into PLAN_LIST
void getPlan (inout planList PLAN_LIST_2clt);
void startPlan ();

};
};

module GPLAN{
struct Token { string item; };
typedef sequence<Token> tokenList;

struct Fact { tokenList item; };
typedef sequence<Fact> factList;
typedef sequence<Fact> paramList;
typedef sequence<Fact> precondList;
typedef sequence<Fact> effectList;
struct Operation
{

string name;
factList param;
factList precond;
factList effect;

};
typedef sequence<Operation> opSeq;
struct Facts
{

factList types;
factList initials;
factList goals;

};

struct Plans { string name; };
typedef sequence<Plans> planList;

interface OpInterface {
// read operation file and save into OP_LIST
void getOperations (inout opSeq OP_LIST_clt);
// read facts file and save into FACT_LIST
void getFacts (inout Facts FACT_LIST_clt);
// read facts file and save into PLAN_LIST
void getPlan (inout planList PLAN_LIST_2clt);
void startPlan ();

};
};

Figure 5.14: Planning IDL interface definition

WC-A

WC-C

WC-B

WC-E

WC-D

WC-A

WC-C

WC-B

WC-E

WC-D

Module

Figure 5.15: Third step of our methodlogy: Connecting components

Building an Intelligent Distributed Robotic System 73

5.4.1 Connecting a remote operated robot

In this subsystem we visualize three main servers and one single user, see Figure 5.16.

The robot server is waiting for commands to start its movements. The communication

between the robot server and the user follows the client-server approach. The user starts

the communication by sending a specific command to the robot server, then depending

on the command it could wait for an answer. Same case is for the communication be-

tween the pan-tilt server and the user, although in this case is one-way. The relationship

between these two components is more of the MASTER-SLAVE type. The user assumes

that the pan-tilt server executes the command. Meanwhile, the communication between

the vision server and the user is managed as a publisher-subscriber approach. In this

scheme we use the Event service provided by CORBA, see more detailed information in

Appendix A. We selected this type of communication because the information transmit-

ted through this channel is the image frame captured at specific rate. This represents

the wrapping level 1 for the vision system (see Section 5.3.2) where only capturing and

enhancing processes are realized.

The resulting communication matrix for this subsystem is shown in Table 5.2. The GUI

component has three connections, but one connection is not directly established, mean-

while the other components only have one connection. The communication between the

user and the vision server can be managed as a PUSH or EVENT type. Last option rep-

resents a client-server communication based on events, but eventually the vision server

can attend or send the image frame data to any other component connected through

the channel. In this way it is better to define it as a PUSH type communication. Tak-

ing this issue into consideration, it can be visualized that there is not explicit interface

between the user and the vision server. Instead of this, there is a set of specific inter-

faces to connect to an Event channel. These interfaces are already provided in CORBA

specification. The only information needed is the IOR address of the Event Channel.

Pan-Tilt
Server

Robot
Server

Vision
Server

GUI
Event

Channel
Pan-Tilt
Server

Robot
Server

Vision
Server

GUI
Event

Channel

Figure 5.16: Communication scheme for a remote operated robot.

74

Table 5.2: Communication design matrix for a remote operated robot

GUI Robot Vision Pan-Tilt

Server Server Server

GUI1 NA QUERY NA NA

GUI2 NA NA NA SEND

Robot Server1 SEND NA NA NA

Vision Server1 PUSH NA NA NA

Pan-Tilt Server1 NA NA NA NA

5.4.2 Connecting a remote operated vision system

In the previous subsystem, there is not a explicit need to manipulate the vision server

from a remote location, although a basic configuration change could be pursued such

as the frame rate of the capturing process. Even though, there are some services de-

fined in section 5.3.2 that can be requested from a remote location. In this case the

client could be the user (operator) or other component defined previously, such as the

coordinator. We distinguish two types of communication, which are related to the type

of information transmitted and the frequency and operation of them. Basically, there

are image data and object data information transmitted. First one, image data trans-

mission, is started from the vision server console and it uses a specific channel to send

this information to all possible clients connected through this channel. Second one,

object data transmission, is started under request of a client. This request is always of

a SEND type and the information is transmitted through a second event channel. De-

pending on the command, the information transmitted could be the answer for a simple

question (QUERY) or the START/STOP action of a sequence of periodic information

(PUSH). The final communication scheme for this subsystem is shown in Figure 5.17

The resulting communication matrix for this subsystem is shown in Table 5.3.

Table 5.3: Communication design matrix for a remote operated vision system

GUI Vision

Server

GUI1 NA SEND

Vision Server1 PUSH NA

Vision Server2 PUSH NA

Building an Intelligent Distributed Robotic System 75

Vision
Server

Vision
Client

Event Channel
Image data

Event Channel
Object data

SEND

PUSH

PUSH

Vision
Server

Vision
Client

Event Channel
Image data

Event Channel
Object data

SEND

PUSH

PUSH

Figure 5.17: Communication scheme for a remote operated vision system.

5.4.3 Connecting an autonomous robotic system

Based on the previous subsystems, two more components are integrated with the two

previous subsystems in order to create the final robotic system. These components are:

the planning server and the coordinator client. The coordinator realizes the orchestra-

tion of the different components and provides also an user interface to manipulate the

vision system. The planning server is included to plan the sequence of actions given an

initial state and a predefined set of operators. The initial state is given by the coor-

dinator to the planning server. Then, several new interconnections are devised on this

new arrangement. In Figure 5.18 it is shown in detail the information transmitted on

the new arrangement. First at all, the coordinator replaces the functions realized by the

user in the two previous subsystems. Next, the new connections are established with

the planning server. Basically, there is a connection with the planning server to SEND

commands with information for the planning server or a request for starting the plan-

ning process. In this final arrangement the coordinator has 6 connections, but two of

them are implicit. This refer to the connections established through the event channels.

5.5 Summary

Through this chapter we described how a complex robotic system can be divided into

different modules, and how they are transformed into wrapper components to facilitate

the design process and to provide inter-operability among them using different com-

munication patterns. The IDL interfaces for robot server, vision server and planning

server were defined. Also, two different subsystems were analyzed separately and next

they were integrated into a final robotic system. The main concepts for each component

76

Vision
Server

Coordinator
GUI

Event Channel
Image data

Event Channel
Object data

SEND

PUSH

PUSH

Robot
Server

Planning
Server

Vision Commands

Robot

Commands

Plans:

Sequence of

operations

Facts, operators

requests

QUERY

&

SEND

SEND

SEND

Vision
Server

Coordinator
GUI

Event Channel
Image data

Event Channel
Object data

SEND

PUSH

PUSH

Robot
Server

Planning
Server

Vision Commands

Robot

Commands

Plans:

Sequence of

operations

Facts, operators

requests

QUERY

&

SEND

SEND

SEND

Figure 5.18: Communication scheme for the autonomous robot system.

Table 5.4: Communication design matrix for an autonomous robot system

Coordinator Robot Vision Planning

GUI Server Server Server

Coordinator GUI1 NA NA SEND NA

Coordinator GUI2 NA SEND NA NA

Coordinator GUI3 NA QUERY NA NA

Coordinator GUI4 NA NA NA SEND

Vision Server1 PUSH NA NA NA

Vision Server2 PUSH NA NA NA

Robot Server1 QUERY NA NA NA

Planning Server1 SEND NA NA NA

Building an Intelligent Distributed Robotic System 77

and stage were exposed and more specific details can be founded in the appendices B,

C and D. Even though, the integration and testing of these components represents a

big effort if we decided to integrate them in a single step. To overcome this challenge,

next chapter deals with this task using an incremental approach which will be explained

through a set of experiments.

78

.

Chapter 6

Experimental Setup and Results

In previous chapter we disassembled the problem of the block-world case into smaller

subsystems following the three basic steps of our methodology: Dividing, Wrapping

and Connecting. These subsystems were developed independently but with a common

objective. This approach reduces the complexity problem. The idea is to proof that

modular components with limited capabilities can be assembled together with less effort

if they share some basic standards mechanisms. At the end, with simple functions the

overall system could behave in a better way. Now, we will describe in some detail the

experiments carried out to test each subsystem first and then the final integration. The

subsystems can be developed using an approach of Console-Server. This means, that

each module can be checked and tested without using any communication scheme at

the beginning. Indeed, this saves a lot of time during the debugging process due to it is

not necessary to establish a connection with the client side.

The experiments corresponds to the following subsystems:

1. Create a remote operated robot

2. Create a remote operated vision system for object recognition and tracking

3. Create an autonomous robot system

6.1 Integration of a remote operated robot

In this experiment the goal is to move a robot through the internet. This means, the

user is located in a remote place. It is not at the same location of the robot. In

order to move any kind of robot (SCARA, Polar or spherical) a generic user interface is

developed. This interface has the commands defined for the robot in previous Chapter

79

80

5 (see Figure 5.9. Also, a vision system with its pan-tilt unit is required. The unique

function of this system is to provide a visual feedback of the robot movements. We want

to test the connectivity of the system (image transmission and command transmission)

and the manipulation of the remote robot. The way how the robot is executing every

command is explained in Appendix B.

6.1.1 Description of main components

This work was presented at [Guedea et al., 2003a]. In this case, we integrated a robot

server, an image server (just for image transmission) and a pan-tilt unit (see Figure

6.1). Table 6.1 shows the physical or mechanical limits of the 6 DOF robot (CRS-F3)

and the number of axis. There is a track of 5 meters where the robot displaces. This

track has assigned the axis number 7. The main issue is to manipulate the robot arm

remotely using CORBA as the middleware bus. The user interface concentrates and

interacts in one window with three components: the robot arm, the pan-tilt unit and

the image server.

Robot
server

Image
server

Pan-tilt
server

Robot Graphic
User Interface

Ethernet

Figure 6.1: Main components of a remote operated robot arm.

The interaction between the robot server and the user interface is of the type client-

server. Most of the methods supplied by the robot server are manipulated using spring

slides into the user’s window design or single buttons for single actions. Only the slide

representing and configuring the robot speed is static. Figure 6.2 exposes these features.

In Figure 6.3 there is an image of the robot server console. Here the user can start

and stop the robot server. Each command received on the robot server is displayed and

the current position of each axis is shown. The button “Get Control” means that the

Server will take control of the robot controller instead of the teach pendant. The button

“Start Server” starts the Robot Server and after this step all commands can be accessed

Experimental Setup and Results 81

Table 6.1: Physical limits and number of axes for the robot arm manipulator

Axis CRS-F3

1 -180◦ to +180◦

2 -135◦ to + 45◦

3 -135◦ to +135◦

4 -180◦ to +180◦

5 -135◦ to +135◦

6 51 turns or

± 18,432 ◦

7 5000 mm

Figure 6.2: User interface used for interaction with a robot arm manipulator.

82

through the Internet. With this step the Robot.ref file is created.

Figure 6.3: Robot Server Console for a CRS-F3 arm manipulator.

Regarding the pan-tilt server, it has few operations and its IDL interface hides all internal

conversions. For this experiment we worked with two similar pan-tilt units which have

different counting ranges and resolutions, Table 6.2 shows these differences. Figure 6.4

shows the IDL interface. It can be visualized that all commands are of the type SEND,

none of the functions returns a value and the same case happen for the parameters of

each function.

Table 6.2: Differences on pan-tilt units abstracted into the IDL interface

PTU-46-17.5 PTU-46-70 Any

Pan -3090 to +3090 -12404 to 12403 -159 ◦ to +159 ◦

Tilt -911 to +3090 -3674 to 12448 -47 ◦ to + 31◦

Speed 300◦/sec 60◦/sec 0-100 % V max

Resolution 3.086 arc min 0.771 arc min Depends on windows interface

Finally, the image stream is acquired using one service of CORBA specification: Event

Service. In this case the image server is always running and sending the image stream

through a channel created specifically for this information. It wraps the information

according to level 1 shown in Section 5.3.2. The raw image is compressed to JPEG

format and the ratio compression is about 10 percent of original size. A schematic

image with the ORB as a software bus is shown in Figure 6.5.

Experimental Setup and Results 83

// IDL Pan-Tilt unit Definition
interface PT_control
{

void pt_init(); // initialization
void pt_close(); // close port
void set_pan_speed(in short speed);
void set_tilt_speed(in short speed);
void set_pan_pos(in short pos);
void set_tilt_pos(in short pos);
void set_pan_rel_pos(in short rpos); // relative position
void set_tilt_rel_pos(in short rpos); // relative position
void reset_all();
void reset_pan();
void reset_tilt();

};

// IDL Pan-Tilt unit Definition
interface PT_control
{

void pt_init(); // initialization
void pt_close(); // close port
void set_pan_speed(in short speed);
void set_tilt_speed(in short speed);
void set_pan_pos(in short pos);
void set_tilt_pos(in short pos);
void set_pan_rel_pos(in short rpos); // relative position
void set_tilt_rel_pos(in short rpos); // relative position
void reset_all();
void reset_pan();
void reset_tilt();

};

Figure 6.4: Basic Pan-Tilt unit IDL interface definition.

 Robot Server
F3

Image Server
Camera

Event-Channel
For Image

Pan-Tilt Unit
Server

ORB bus

Robot Graphic
User Interface

Figure 6.5: Wrapped components needed to build a remote operated robot arm using

CORBA specification.

84

6.1.2 Off-line setup or tasks

This experiment was tested twice; one test was performed with all components execut-

ing in a local area network of the Pattern Analysis Machine Learning Lab (PAMI-LAB)

(see Figure 6.6) and the other test was realized with the Graphic User Interface (GUI)

located in a computer of the Center of Intelligent System at the ITESM, Campus Mon-

terrey (see Figure 6.7). In the last case the distance between the GUI and the servers

is approximately 3,000 km. The camera is located about 2 meters distance from the

center point of the robot base. In order to capture several images, a slow movement on

the robot is configured (speed at 10 % of the maximum range).

Stereo-Camera

Pan-Tilt
unit

End-Effector
Robot-1

Objects

Stereo-Camera

Pan-Tilt
unit

End-Effector
Robot-1

Objects

Figure 6.6: Experimental set up at the Pattern Analysis and Machine Learning Lab.

In order to record the information and actions followed by the user (ITESM Monterrey

location), a screen capture program (HyperCam) was used in its computer to save a

video of the operations. Next, this video movie is processed using a free video editor,

see Figure 6.8. The idea is to determine when the frames change on the stream. The

capturing is realized using a 30 frames per second rate. The screen capture program is

configured under Windows-XP/2000 as a real-time task priority.

In Table 6.3 there is a description of the computational resources used for each com-

ponent. Vision Server and Event Service were running in the same computer to avoid

delays on the transmission. Robot Server and GUI were running on the same computer

when the testing was local. Pan-Tilt server was running alone in the QNX machine.

We tested our system using two “flavors” of CORBA implementations. Computers with

Experimental Setup and Results 85

CSI, ITESM
Campus Monterrey

PAMI-LAB, UW
Waterloo

CSI, ITESM
Campus Monterrey

PAMI-LAB, UW
Waterloo

Figure 6.7: Largest distance used for testing the remote operation of the robot. The

Vision Server and Robot server are located at the PAMI-LAB, while the Graphic User

Interface is (GUI) located at the Center for Intelligent Systems (CSI). The GUI window

is captured using a screen capture program (HyperCam).

Figure 6.8: Movie Editor for analyzing robot sequence frames

86

Table 6.3: Computational resources used in a remote robot operation. Most of the

computers names are related to coffee flavors.

Component Computer Operating Platform

Name System

Robot Server COCOA WIN-2000 Pentium-IV 2 GHz, 528 MB

Vision Server COCONUT WIN-2000 Pentium-IV 2 GHz, 528 MB

GUI any WIN-XP/2000 Pentium-IV 2 GHz, 528 MB

Pan-Tilt Server DECAF QNX Neutrino 6.2 Pentium-Pro 200 MHz, 64 MB

Event Service COCONUT WIN-2000 Pentium-IV 2 GHz, 528 MB

WINDOWS 2000 have installed the libraries provided by ORBACUS version 4.1, which

is compliant with CORBA 2.0 specification. The computer with QNX used TAO version

1.5 (The ACE for ORB) with ACE (Adaptive Communication Environment) version 5.5,

which also is compliant with CORBA 2.0 specification.

6.1.3 Starting sequence of servers

The sequence to operate this subsystem is the following:

1. Starting of the Event Channel (IOR for Event is created, Event.ref).

2. Starting of the Image Server (IOR file is not required).

3. Starting of the Pan-tilt server (IOR for pan-tilt is created, Pantilt.ref).

4. Starting of the Robot server (IOR for Robot is created, Robot.ref).

5. Sending all IOR reference files to the user’s PC.

6. Starting of the GUI client.

When the GUI client starts it will exit if the robot server (Robot.ref) is not available.

With the pan-tilt server and Event service it will only check their status but it will not

exit if they are not available. In order to connect the GUI client with the servers, it is

necessary to send (transmit) all the *.ref files from these servers to the current directory

where the GUI client is running. Figure 6.9 depicts this sequence.

Experimental Setup and Results 87

VIDERE-DESIGN
STEREO CAMERA

COCOA
WIN-2000

ROBOT
CONTROLLER

CRS-F3

ROBOT
SERVER

COCONUT
WIN-2000

IMAGE
SERVER

QNX

PAN-TILT
SERVER

Internet

USER
WINDOWS-XP

USER
GUI

4 Robot.ref

is created
1 Event.ref

is created into

COCONUT’s CPU

3 Pantilt.ref

is created

5 Robot.ref, Pantilt.ref y
Event.ref are sent to the
user´s PC.

2 Image Server

is started

6 User GUI

is launched

VIDERE-DESIGN
STEREO CAMERA

COCOA
WIN-2000

ROBOT
CONTROLLER

CRS-F3

ROBOT
SERVER

COCOA
WIN-2000

ROBOT
CONTROLLER

CRS-F3

ROBOT
SERVER

COCONUT
WIN-2000

IMAGE
SERVER

QNX

PAN-TILT
SERVER

Internet

USER
WINDOWS-XP

USER
GUI

USER
WINDOWS-XP

USER
GUI

4 Robot.ref

is created
1 Event.ref

is created into

COCONUT’s CPU

3 Pantilt.ref

is created

5 Robot.ref, Pantilt.ref y
Event.ref are sent to the
user´s PC.

2 Image Server

is started

6 User GUI

is launched

Figure 6.9: Starting sequence for a Remote Operated Robot. IOR reference files are

sent to the user’s PC before the Client interface is launched.

88

6.1.4 Main operations

In this subsystem, the operator moves the robot arm remotely using a set of basic com-

mands. These commands can be applied to several robot arm configurations such as:

spherical, SCARA and gantry. The operator moves the arm to pick up a piece using

the image feedback provided by the vision server. He also can manipulate the pan-tilt

unit to move the camera.

The main issue about CORBA implementation in this subsystem is the management of

the Event Service channel and the IOR reference information. The image server is man-

aged through a console and it can connect and disconnect at any time from the Event

Channel. It does not care about how many clients are connected. Once the references

files are sent to the location of the GUI Client, we started the remote operation of the

robot.

Saving current position and moving to ready position.

The first operation is to save the current robot position into an internal variable. Next,

the READY button is pressed to move the robot to the ready position. Depending on

the robot, this position could be an alignment of the axis to form a vertical alignment or

a 90 degree alignment. CRS-F3 robot makes a 90 degree position. The following images

(Figures 6.10 and 6.11) shown the information displayed by the movie editor at different

frame snap shots. For each change on the image the number frame is registered. The

difference between consecutive changes is recorded and the elapsed time is computed.

Table 6.4 shows the elapsed time recorded from frame 272 to frame 423. It can be

observed that the delay time for the client side is in average 0.56 seconds while there is

a maximum lag time of 1 second. There is also a delay time since the robot controller

receives the command and the robot starts its movement.

Experimental Setup and Results 89

(a)Frame 144 (b)Frame 272

(c)Frame 288 (d)Frame 304

Figure 6.10: SAVE and READY command execution. Part-I. The first two images

shown the frame number where the LEARN(SAVE) and READY button are depressed,

respectively. The next two frames shown the frames where the robot images in the

picture changed.

90

(a)Frame 315 (b) Frame 327

(c)Frame 357 (d) Frame 378

(e)Frame 393 (f) Frame 408

Figure 6.11: SAVE and READY command execution. Part-II. The images shown in the

different frames describing when the robot images changes in the small square.

Experimental Setup and Results 91

Table 6.4: Frame Timing for video stream of SAVE(LEARN) and READY commands.

Image Difference Elapsed Event description

time (sec)

Frame 144 - - LEARN button depressed

Frame 272 - - READY button depressed

Frame 288 16 0.533 1st change of robot position

Frame 304 16 0.533 2nd change of robot position

Frame 315 11 0.367 3rd change of robot position

Frame 327 12 0.400 4th change of robot position

Frame 357 30 1.000 5th change of robot position

Frame 378 21 0.700 6th change of robot position

Frame 393 15 0.500 7th change of robot position

Frame 408 15 0.500 8th change of robot position

Frame 423 15 0.500 9th change of robot position

Moving robot with different commands

Next operation is to move the robot using different commands such as: Move Horizontal

(left or right), Move Vertical (Up or Down), Extend/Retract the arm. The following

images (Figures 6.12 and 6.13) shown these movements. In figure 6.12, Frame 514 shows

the instant when the slide is pressed. Next, the slide is moved to right until the number

254 is shown on the text box (Frame 587), this means 254 millimeters. Frame 589 shows

when the slide is released, at this moment the value at the display returns to zero. The

following frames shown when the robot starts the movement. The number of frame

indicates when the image is updated on the interface. In figure 6.13, it can be visualized

how the end-effector is getting out of the view. Next section shows the frame shots

where the pan-tilt unit is moved to keep the robot inside the image view.

In figures 6.14, 6.15, the robot is moved down to reach an object.

92

(a)Frame 514 (b)Frame 587

(c)Frame 589 (d)Frame 595

(e)Frame 619 (f)Frame 635

Figure 6.12: Moving the robot. Part-I. In this sequence, the robot controller receives a

command to move to the right side from the point of view of the user.

Experimental Setup and Results 93

(a)Frame 648 (b) Frame 664

(c)Frame 678 (d) Frame 709

(e)Frame 737 (f) Frame 752

Figure 6.13: Moving the robot. Part-II. This sequence of images shows the total move-

ment of the robot to the right side.

94

(a)Frame 1515 (b)Frame 1619

(c)Frame 1621 (d)Frame 1652

(e)Frame 1667 (f)Frame 1680

Figure 6.14: Moving the robot. Part-III. In this sequence, the robot controller receives

a command to move move the arm down. The images shown how the slide to move

the robot arm up-down is pressed and depressed. A positive number indicates a UP

movement, while a negative number is a DOWN movement.

Experimental Setup and Results 95

(a)Frame 1696 (b)Frame 1784

(c)Frame 1801 (d)Frame 1818

(e)Frame 1834 (f)Frame 1846

Figure 6.15: Moving the robot. Part-IV. In this sequence, the robot controller receives

the last commands to reach an object moving down the arm.

96

6.2 Integration of a remote operated vision system

In previous system the image server was a single source of image stream that does not

have any direct interaction with the user interface. The information flows through the

event channel at specific rate. The user only needs to connect or disconnect from the

channel, and more users can do the same action. Now, in order to improve the dexterity

of the robotic system is necessary to increase the capabilities offered by the vision system

to the wrapping level 3 shown in section 5.3.2.

Next level integration compounds the inclusion of three main vision capabilities: ex-

tracting objects’ features, finding objects and tracking of them into the image stream.

The first capability is executed as an off-line task, but it can be used in a remote mode

or console mode.

In this experiment we want to test the capabilities of the vision system to be operated

remotely. Then, the three previous capabilities will be tested using a small set of blocks

with basic shapes. The vision system is composed of a stereo camera from videre design

company. It has a frame rate of 10 images per second when using in color mode, although

in each sample is sending a pair of images (left and right). The resolution of these images

is 320 × 240 pixels in RGB color.

6.2.1 Recognizing objects

There are many ways to extract the visual properties of specific objects. Due to we

will demonstrate how to manage the block-world problem, then the main objects are

labeled blocks. These blocks are shape-labeled, it means each blocks has a specific shape

marked in one or several sides. Each block is a white cube with a black geometric figure

inside of it. This preparation is not by chance, we try to reduce the vision problems

by providing color contrast in the images. Also, the images are processed in grey scale

to reduce processing time. In this application there is a special object, this is the end-

effector of the arm manipulator. This object is always the first object on the list of

learned objects. The parameters computed for each object are: area, perimeter, Hu

moments and a number of features (corners). Also a template image of the object is

saved. In order to select the object to learn we include another restriction on the object

characteristics, it must be a solid object or solid shape. An interesting point in this

function is that the user is selecting the object from the image stream provided by the

vision server. To accomplish this function the user interface is prepared to send the

LEARN (TRAIN) command when the user clicks inside of the selected object. In this

way the vision server starts the learning process from the point selected by the user.

The first step is a filling object algorithm that is shown to the user through the image

Experimental Setup and Results 97

stream. Due to there are many sources of noise in the image, the training process uses

an average of 10 processed images frames. At the end the user can accept or reject

the parameter set for the object and he can assign a name to the learned object if it is

accepted. If the object name already exists the vision system creates a second parameter

set for this object. The vision system does not check if the object learned has similar

characteristics of a previous one. This is a decision of the user. In the following figures

6.16, 6.17 and 6.18 it is shown a sequence for the learning object process.

98

(a) (b)

(c) (d)

(e) (f)

Figure 6.16: TRAINING command execution, Part-I. In (a) and (b) it is shown the

option to activate and deactivate the learning (training) process. Once the learning

mode is activated the user can select the object to learn by clicking inside the object

(c). In (d) the selected object change to red color indicating that the system is gathering

data to obtain object parameters. Object parameters are obtained in two steps indicated

by fulfilling the object area (d) and next by coloring the border (e). Each step process

10 images in order to filter noise. Once the parameters are processed, they are displayed

in a small window and an object name is requested (f).

Experimental Setup and Results 99

(a) (b)

(c) (d)

(e) (f)

Figure 6.17: TRAINING command execution, Part-II. In the following sequence more

objects are learned. In (a) the block with a circle is selected and its parameters are

shown in (b). In (c) the block with a triangle is selected and its parameters are shown

in (d). In (e) the block with a cross is selected and its parameters are shown in (f).

100

(a) (b)

Figure 6.18: TRAINING command execution, Part-III. The user can request for a list

of learned object. In (a) the option to request for the list is selected. In (b) a small

window with the list of objects is shown.

6.2.2 Finding objects

Once a set of objects is learned and their parameters are saved into a database, the next

step is to provide a capability for finding them (object recognition). This function is

executed for each object in three stages:

• First, a complete search in all image is realized using template matching method.

In this case the template is positioned at the upper-left corner and it is moved

through the image making a difference computation at pixel level. Appendix C

explains in more detail what parameters can be adjusted to increased the compu-

tation speed or resolution performance. In the first stage a list of points with a

lower value are stored depending on certain threshold.

• Second, the list is processed to eliminate all neighbor points that correspond to

the same object. An Euclidian distance measure is computed and if this data is

lower than a specific threshold one of the two pair of points is discarded.

• Third, the final object is selected using a weighted discrimination algorithm. For

this procedure, each characteristic of the objects is compared with the correspond-

ing parameter saved in the database. The difference is weighted according to the

object to find. At the end, the object with the minimum difference and below a

threshold is selected.

If no points are selected after the third step then the object cannot be found. If one

point is selected, then this point represents the closer-to-center position of the object

Experimental Setup and Results 101

into the image. This point is shown as a cross mark in the object. Figure 6.19 shows

this process.

(a) (b)

(c) (d)

Figure 6.19: Finding object process. For this process the FIND option is selected (a).

In (b) a list of learned objects is shown. The user select the object to find, in this case

the End-Effector (c). Finally, after a short time the object is found and a cross mark is

shown inside the object (d).

6.2.3 Tracking multiple objects

Finding one object is a computational expensive task. Finding several objects and

tracking them could be more expensive. To deal with this problem the tracking function

is executed in two stages:

• First, for each object a complete search is realized to find its center position. This

is done using the previous finding command.

• Second, using the center point of the object the next search is reduced using a

different heuristic. Basically, the search is started from previous position and using

102

the interline method [Guedea et al., 2003b]. This method follows the contour of

the object and recognize some invariant and features. Basically, it tracks the next

center position of the object and uses some heuristics to determine if the object

is valid. Usually, with some changes on the lighting the object can be lost for one

frame and recovered in the next frame.

A searching list is built in order to keep tracking of multiple objects, including the

end-effector. Due to the vision system is a stereo system, two tracking procedures are

performed, one on each image frame (left, right). Once both objects (left and right) are

tracked, a depth distance is computed. This distance is calculated from the center of

the camera to the center of the object.

(a) (b)

Figure 6.20: Tracking object process, Part-I. The system has a list of objects to track

where the first object is by default the End-Effector if it must be tracked (a). Then a

chaining list is used to keep information about the last central point registered for each

object. In each subsequent frame the object is located using the interline method (b),

the vision system mark the center position with a + sign. Furthermore, it indicates

which is the contour pursued.

Experimental Setup and Results 103

(a) (b)

(c) (d)

Figure 6.21: Tracking object process, Part-II. In the following sequence the End-Effector

has an initial position marked in the bottom of the figure (a). Next on (b) the robot

arm is moved using a vertical slide. In (c) the new position is displayed on the remote

interface. Finally in (d) the STOP-TRACK option is selected.

104

6.2.4 General operation and communication scheme

With the previous capabilities, the vision server is now ready to provide the services

to any client in the network. These services are provided by using the image channel

aforementioned (Section 6.1) and by using the interface defined in Section 5.3.2 (Figure

5.8). Now, another channel is added to send periodic information about finding and

tracking processes, which are executed through commands sent by the clients, Figure

6.22 shows these communication channels. This communication approach provides a

loosely coupled method which facilitates the design of inter-connected components.

Due to the different services provided by the vision system there are several operation

modes and some of them are exclusive. Basically we have the following modes:

CONNECT The vision system is connected to both channels: Image Channel, where

only raw and compressed images frames are sent and Data Channel where the

information about some commands (FIND and TRACK) is answered.

DISCONNECT The vision system stops sending information through the previous

channels.

LEARNING In this mode the vision system waits for an initial position to start a

learning process. The image is changed from color to grey scale mode.

FINDING In this mode the vision system is searching a specific object. If the object

is found the system returns its center position on pixels.

TRACKING In this mode the vision system periodically tracks a list of objects. The

searching time depends on the size of the list. The data returned is a list of objects

with its track situation (OK, FAIL) and its center position if the object is OK.

In Figure 6.23 there is a graph explaining these modes. CONNECT and DISCONNECT

modes are exclusive. CONNECT mode can coexist with the other modes. LEARNING,

FINDING and TRACKING modes are exclusive, only one of them is active at one time.

These operation modes are configured in this way to avoid multiple functions on the

server side. Although this configuration could limit the interaction with several clients,

by using ORB the information could be distributed through the Event-Channels as it

is shown in Figure 6.24.

Experimental Setup and Results 105

Figure 6.22: Vision Server communication outline.

DISCONNECT

CONNECTSEND
RAW

IMAGE

SEND
MODIFIED

IMAGE

Activate
LEARNING

Deactivate

NOT
SEND
IMAGE

SEND
MODIFIED

IMAGE

FINDING

StartSearch SendObjectInfo SENDMODIFIEDIMAGE
TRACKING

SendObjectsInfoStartTracking
Connect Disconnect

Figure 6.23: Operation Modes for the Vision Server.

 Event-Channel
A

ORB

Vision Client
User Interface

Event-Channel
B

Vision Server
Camera

Image
Stream

Objects
Information

Client
requests

Figure 6.24: Vision Server (wrapper component) with CORBA Event Services and the

user interface.

106

6.3 Integration of an autonomous distributed robotic

system

This work was presented at [Guedea et al., 2006a]. This is the final goal that we are

pursuing to enhance the behavior of a robotic system. Mainly, we want to improve the

dexterity of a robot by adding more “intelligent” components. But this addition is not

simple or easy, each component has its own input and outputs and it is necessary to

adapt them in a comprehensive manner. In previous sections we explained how to incor-

porate a robot arm remote manipulation with image surveillance and then how a vision

server with capabilities for object recognition and tracking objects was developed. Now

we will show how all these components and a new component, planning server, are inte-

grated to manage the block-world problem. The main components are shown in Figure

6.25. In our design we decide to create a component which is in charge of orchestrate

all activities. This component is named “Coordinator”, in previous papers was called

“brain controller” [Guedea et al., 2006a] or “task controller” [Guedea et al., 2004]. This

component or module will be described in detail in the following sections.

Vision
Server

Robot
Server

Planning
Server

User
GUI

Coordinator

Autonomous Distributed Robotic
System

Figure 6.25: Main wrapper components to built the autonomous robotic system.

Experimental Setup and Results 107

6.3.1 Off-line tasks

Before remote operation of the robot arm manipulator could be started some off-line

tasks must be executed. First, we must “teach” the system about the objects to manage.

This activity can be realized using a Console-Server or Client-Server approach. In the

first case the vision system provides a GUI with two images (left, right) and a set of

button functions. In the second case only left image is displayed and basic button

functions are provided. Second task corresponds to the setup and configuration of

the planner server. This is a console-server interaction where the user defines which

actions, objects, and states will be needed in order to create a sequence of operations

to accomplish the goal. The last task is to provide an ordered servers activation. This

must be done using the Naming Service from CORBA specification.

Learning objects

In order to manipulate blocks, first we need to learn the visual characteristics of these

objects. In our block-world there are four shapes and the End-Effector. Basic shapes

are one black circle, one black triangle, one black cross, and one black square. The

End-Effector has a white triangle shape. Figure 6.26 shows three of these objects and

the End-Effector in their initial position.

Figure 6.26: Main objects used in the block-world problem.

108

Configuring operations, objects and states into the planner

The planning server is a general purpose planner. In this sense, it needs to be setup for

each planning scenario. This implies to define the set of operations (actions), the set

of objects to which operations apply, and the set of possible states for each object. In

this application, the operations are related to the activities realized by the robot arm

manipulator. The set of objects is the same set of blocks learnt by the vision system,

including the End-Effector. Objects states are related to the relative position among

blocks, End-Effector and some environment elements, such as the table where the blocks

are placed, also there are some status related to End-Effector. Instead of using the same

set of commands defined in the IDL robot interface, a subset of macro operations is de-

fined. Table 6.5 shows a summary of these configurations and the possible states for

some objects.

Table 6.5: Operations defined for the block-world problem

Operation Parameters Preconds Effects

Pick-Up (< obj > OBJECT) (clear < obj >) (holding < obj >)

(on-table < obj >)

(arm-empty)

Put-Down (< obj > OBJECT) (holding < obj >) (clear < obj >)

(arm-empty)

(on-table < obj >)

Stack (< obj1 > OBJECT) (clear < obj2 >) (arm-empty)

(< obj2 > OBJECT) (holding < obj1 >) (clear < obj1 >)

(on < obj1 > < obj2 >)

Unstack (< obj1 > OBJECT) (on < obj1 > < obj2 >) (holding < obj1 >)

(< obj2 > OBJECT) (clear < obj1 >) (clear < obj2 >)

(arm-empty)

Experimental Setup and Results 109

Servers sequence activation

In this configuration several servers are need. In order to avoid IOR’s file transferring,

a Naming Service is used, together with several Event services. Figure 6.27 shows

this sequence. The first server to be activated must be the Naming Server. Next, the

event services for vision services are activated and they register on the Naming server.

Following these activations is the vision system, which connects its outputs for raw

image transfer and image information responses. Finally, robot server and planner are

started and their IOR references are registered. The coordinator is not a server itself. It

is a client for the servers and it works like a “bridge” between the user and the robotic

system. The last servers (vision, robot, and planner) can be started in any sequence

after the Naming and Event servers but must be ready before the coordinator program

is launched.

Figure 6.27: Starting sequence for an Autonomous Remote Commanded Robot. IOR

references from event services, and servers are registered in the Naming server. At the

end the user graphics interface gets the IOR references from this source to communicate

with the different entities.

110

6.3.2 On-line operation

In this robotic application the main goal of the system is to arrange a set of blocks

according to user instruction. This instruction is provided through a command line

window where the user establishes the goal using a LISP format. Once this instruction

is received into the coordinator module, it starts a sequence of activities to accomplish

the task. In order to manipulate blocks, first its necessary to identify each block’s

position in the current situation or configuration. Second, the actual physical position

information is converted into information that the planner module can understand.

Physical location information is abstracted as which block is on top of which block.

Based on these facts, the planner module is asked to generate a plan, i.e a sequence

of actions that the manipulator has to follow. As it was mentioned all these steps are

orchestrated by the coordinator module, which queries the block position, asks parsing

and conversion, requests plan generation, and commands the manipulator to move it at

the same time that it is receiving visual feedback.

Communication schema

As shown in Figure 6.28, The coordinator has two event channel connections and one

IDL interface connection with the vision server, one interface with robot server, and

one interface with planning server. Thus, it can initiates blocks manipulation by asking

vision information, existing blocks and their positions. Then using block class member

functions, it processes the low-level vision information, requests planning operation to

planning server. After receiving planned actions from the planning server, the coordi-

nator sequentially sends the commands to the robot server. As the robot server moves

the block, the coordinator checks if each operation goes correctly.

 Graphic User
Interface

Coordinator Planning
Server

Vision
Server

Robot
Server

Facts, operator,
requests

Plans:
sequence of
operations

Robot
Commands

Event Channel- 1

Event Channel- 2

Vision Commands

Vision Image Stream

Vision Objects
Information

User
Command System

Response

Figure 6.28: Coordinator connections with other modules or wrapper components.

Experimental Setup and Results 111

General Operation

To start the system operation the user must send a command to achieve a specific goal,

i.e. a final block arrangement. Figure 6.29 shows an example of this user instruction.

This command is received by the coordinator which starts the following sequence of

operations:

a) It asks to the vision server for the objects stored in its database. To performs this

operation a GET OBJECTS command is sent. See Figure 6.30 (a).

b) If the objects are in the database then it asks to the vision server for “FIND” these

objects in the current image stream. See Figure 6.30 (b).

c) If all objects are found then it is possible to generate a plan (step d), if not, then

the coordinator responds to the user that there is no way to achieve the goal. See

Figure 6.31.

d) With the information received from the “FIND” command, the coordinator converts

(parsing) this information and makes the data fit to GPLAN IDL interface. In other

words, it sends the facts taken from the vision system to the planning server. See

Figure 6.32 (a).

e) With the current facts and operators in the planning server, and also the goal infor-

mation, the coordinator requests to the planning server for a plan, i.e. a sequence of

operations. See Figure 6.32 (b).

f) The planner server can respond with two answers: a) there is a feasible plan or b)

there is not plan to get the final goal from current situation and operators. In the first

case, the next operation is described in step (g), for the second case, the coordinator

responds to the user that it is not possible to achieve the goal from current situation.

See Figure 6.33.

g) Once all objects are found and there is a plan to achieve the goal, the coordinator

requests to the vision server for “TRACK” specific objects according to the current

operation and also commands the robot to execute a sequence of commands. These

commands are the services provided by the robot server. Next section explains how

these commands are executed. See Figure 6.34.

h) Once the current operation is realized, the coordinator ask the planner server for

the next operation. Once all operations are realized the autonomous robotic system

completes the goal, and the coordinator sends a responds to the user that the goal

was achieved.

112

Graphic User
Interface

Coordinator

User Goal
Command

System
Response

(on-table cross) (on circle cross)
(on triangle circle) (arm-empty)

Figure 6.29: User goal command sent to the coordinator module.

Coordinator
Vision
Server

Event Channel- 1

Event Channel- 2

Vision Command (GET_OBJECTS)

Vision Image Stream

Vision Objects
Information

(OBJECTS LIST)

(a)

Coordinator Vision
Server

Event Channel- 1

Event Channel- 2

Vision Command (FIND OBJECTS)

Vision Image Stream

Vision Objects
Information

(OBJECTS INFO)

(b)

Figure 6.30: Coordinator sends two commands to the Vision Server. In (a) it is asking

for the object’s list. In (b) it is asking for the position of each object.

Experimental Setup and Results 113

Graphic User
Interface

Coordinator

System
Response
(FAIL)

Figure 6.31: Coordinator responses a failure to get the user goal due to it is not possible

to locate all objects.

Coordinator
Planning
Server

Facts, operator,
requests

OBJECTS INFO

(a)

Coordinator
Planning
Server

Facts, operator,
requests

QUERY A PLAN

(b)

Figure 6.32: Coordinator sends information to the planner and asks for a plan. In (a)

it is sending the object information. In (b) it is requesting for plan to achieve a specific

goal.

114

Coordinator
Planning
Server

Plans: (FAIL)

(a)

CoordinatorPlanning
Server

Plans: (OK)

First OPERATION

(b)

Figure 6.33: The planner server responds to the coordinator. In (a) it is impossible to

achieve the user goal, a FAIL response is sent. In (b) it is possible to achieve the goal

and the first operation of the plan is sent.

Coordinator
Vision
Server

Robot
Server

Robot Commands

UP; DOWN

EXTEND

RETRACT

CLOSE

OPEN

Event Channel- 1

Event Channel- 2

Vision Command
(TRACK OBJECTS)

Vision Image Stream

Vision Objects Information

(OBJECTS POSITION LIST)

Figure 6.34: Coordinator is executing an operation. This execution is performed in an

initial stage, and next in a cyclic manner. First, the coordinator asks to the vision

system for “TRACKING” a set of objects. Usually two objects are tracked at the same

time. Next, according to the information provided by the vision system, the coordinator

moves the robot arm using a set of basic robot commands. Not all commands are shown

in the figure.

Experimental Setup and Results 115

6.3.3 Robot Server Commands

The operations generated by the planning server are not direct commands to the robot

server. The coordinator must translate these operations in a sequence of micro-tasks for

the robot server. These micro-tasks are not fixed or tied to a specific planning operation.

They vary according to the current information sent by the vision server. It is necessary

to have a control scheme to select the right robot command according to the position

of each object.

Most of planner operations are converted to basic operations such as GRASP, OPEN

and CLOSE micro-tasks. Let be the current micro-task “GRASP Rectangle”, then the

coordinator must do two basic operations:

a) Align End-effector with the Rectangle object, and

b) Close the gripper.

We designed a simple control schema where an approximation method is used to align

the position of the objects. Figure 6.35 shows this idea. The process to align two objects

is realized according to five states (0 to 4), the error measures in pixels, and the depth

measure. The computed values are Err X, Err Y, and Err D for depth difference.

State 0 Due to it is difficult to estimate if there is a blockage from the current position

of the End-Effector to the position of the “Rectangle”, then a first movement

is to go UP if the End-Effector is below a minimum distance. This movement

corresponds to state 0 (initial).

State 1 From a top position the coordinator tries to align first the objects in the pixel

axis x.

State 2 The coordinator tries to align objects according to depth measure.

State 3 The coordinator makes an approaching in pixel axis y going down.

State 4 In all previous states the coordinator makes a raw approximation (high gain),

between the two objects using vision feedback information. In this state a finest

alignment is done (low gain). Once the distance between the objects center is

below a threshold the alignment is finished.

In state 4 there is a validation to check if the movement to close Err X is done us-

ing TURN command or MOVE HR command. TURN command gives a larger grained

movement than MOVE HR. Also, if for some reason the object is moved the coordinator

will compensate the error accordingly.

116

State 0 (Initial)

Err_Y >
min_Y MOVE_UP

State 1 (Aligning in X)

Err_X > 0 TURN

TURN

State 2 (Aligning in Depth)

Err_D > 0 EXTEND

RECTRAC

State 3 (Approaching in Y)

Err_Y > 0 DOWN

Figure 6.35: First states to approach the End-Effector or object position relative to

other object.

6.3.4 Integral Example: Grasping an object

In previous sections a detailed explanation about how to setup the vision system, the

planner and how to command the robot was given. In this section a small example is

described to visualize the information provided by the vision system while the coordi-

nator is trying to grasp an object.

Figure 6.36 shows nine images for this example. First, in (a) the initial state of the

system is shown. In (b) a tracking command for the circle block is issued. This is proof

by the white cross in the middle of the circle. Next, in (c) a tracking command for

the End-Effector is issued. Before starting a tracking, a find operation is executed and

due to tracking and finding operations are mutually exclusive the system stops previous

tracking. In (d) both objects End-effector and circle block are tracked. In (e) the robot

arm starts the alignment process but due to both objects are very close in axis x and

depth measure there is not a significant movement among them. In (f) the robot arm

is moving down, it is in state 3 closing the gap on the axis y. A very small movement

can be observed comparing the line on the robot base against the End-Effector. In

(g) the coordinator gets into the state 4 where the movements are very small. In (h)

the coordinator stops the tracking due to all errors are below a specific limit threshold.

Finally in (i) the coordinator commands the robot to “close” the gripper.

Experimental Setup and Results 117

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.36: GRASP command execution. Initial state is shown in (a). Next a circle

tracking command is issued in (b). In (c) there is a temporal suspension of the track

process while the vision system is finding the End-Effector. In (d) both object are

tracked. In (e) the alignment process is started. In (f) the robot is moving down. In

(g) the system is in state 4. Stop tracking is shown in (h), while in (i) the coordinator

ask the robot to close the gripper.

118

Proving dexterity of the robot for changes in the environment

The previous section shows the sequence followed for the system to grasp an object. In

this case, only the robot arm is moving meanwhile the objects in the environment keep

fixed or static. In the following Figures 6.37,6.38 a small sequence where the object to

pursue is intentionally moved is presented. In the image Dr. Song’s hand is moving

the object. First using a small artifact and then using only the hand. As result, the

measured distance on pixels between the center points of two objects is changing. These

objects appear with a border line on them. Then, the robot arm is trying to adjust this

distance by executing the corresponding movement command.

6.4 Results and Discussions

6.4.1 Remote Operated Robot

Moving robots remotely has some important aspects to take into account. First, the

naming service and the event service must start first. Second, object implementations

(servers) for each component are started. Third, when the servers are ready the Robot

Graphic User Interface (RGUI) interface can be started. The robotic system is located

at the Pattern Analysis and Machine Intelligence Laboratory (PAMI-Lab) at the Uni-

versity of Waterloo, Canada. The first test was to move the robots using a Local Area

Network. This test worked fine, the vision feedback delay is not perceived by the opera-

tor. Only a movement delay is caused by the same arm manipulator controller when it is

executing a move command, as it was mentioned before only one move command a time

can be executed. Next, the system was tested moving the robots from the Center for

Intelligent Systems located at ITESM Campus Monterrey, Mexico. Here, the latency

on the Internet affects the vision feedback, but still the time response is kept under

working conditions. Besides this delay on the vision system, only other problem arose

in the second test. This is related to the pan-tilt server. Specifically, this is about how

the Inter-operable Object Reference (IOR) is created. In this case, the computer used as

the pan-tilt server is defined into a local domain, in such way that only computers from

the local domain can access the object server implementation. This problem was fixed

by changing the domain definition of the computer without modifying the applications.

Due to this was the first application we developed, the training time for learning CORBA

functionality and implementing its functions took around three months.

Experimental Setup and Results 119

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.37: GRASP command execution with changes on the environment, Part-I. The

following images shows when the artifact to move appears on the screen (a). Next, in

(b) the block is moved to the left (from the user view point). In (c) the artifact is taked

apart. In (d) and (e) is observed how the robot arm is correcting its path moving to

the left (again from the user point of view). In (e) and (f) Dr. Song’s hand is taking

the object and move it to other position, specifically a little bit to the back and to the

right. In (g) the robot is correcting the path. Next, in (h) Dr. Song is not taking

the object any more. In (i) it can be observed a small misalignment between the two

objects’ centers.

120

(a) (b) (c)

(d) (e) (f)

Figure 6.38: GRASP command execution with changes on the environment, Part-II. In

this small sequence, in (a) the robot arm is making the alignment on axis X (a). Next it

is moving on axis Y (b) and (c). In (d) and (e) the robot arm is doing a small alignment

on depth. Finally, when the tracking process ends the image frame return to color mode

and there are not objects with borders (f) and the gripper is closed.

6.4.2 Vision Server

Creating a generic vision server for block-word problem manipulation has several chal-

lenges. First, there is a requirement to provide precise and fast response for tracking

objects. Second, the service can be required from more than one client. Due to these re-

quirements some constraints were imposed into the system to enhance its performance.

As we mentioned the objects were well defined and their representations were also easy

to distinguish. Even though, we had critic problem with illumination issues. Also, be-

cause of the size of the objects the statistic information was poor in the sense of most of

them expose the same behavior, in other words, most of them appear as a black spot in

the image. Due this we increased certain number of features to use them as a discrim-

ination aspect. We also used other approaches to weight the parameters according to

the information in the database, but the problem with this approach is that it increases

with the number of objects stored. In the other hand, the interline method used for

tracking is very fast to find the center point of the object but it has the drawback of

using a closed-contour. In some cases, when the illumination is poor the closed-contour

exceeds the maximum number of points allowed for an object.

The development time for this application was very reduced for CORBA issues, less

Experimental Setup and Results 121

than one month was necessary to integrate the client-server application. The biggest

time was in the tuning of the vision methodologies to manipulate the images frames.

For sending information to clients a LISP format was used. This format is very practical

because allows changing-length messages and also it allows different responses through

the same channel. The client can easily manipulate the information with simple parsing

methods to identify the type of message and to extract the required data. For tracking

objects, a constraint is imposed, if the end-effector is in the tracking listing then it

appears at the beginning of the list.

6.4.3 Autonomous distributed robot system

For this evolution stage the previous developments were used and integrated smoothly.

There is a key piece of code which is critical for the success of the integration and this

is the coordinator. But at the same time the effort carried out in this code is greatly

reduced by the way in how the system was divided and how the main functions of each

component were wrapped. A critical issue in any integration effort is the way different

entities communicate each other. In our case we tried to maximize decoupling among

components in order to reduce the blocking stages. A publisher/subscriber communi-

cation method using the Event Services results in a good decoupling mechanism which

provides a good performance for a small number of components. In our testing we only

have a problem with the latency which increases in the way more clients were subscribing

in the channel. We already observed these phenomena when we were processing an im-

age stream using several methodologies [Guedea et al., 2002]. Fortunately this problem

can be solved using commercial products which provide Notification Service and also a

multi-cast communication schema. In the other hand, the coordinator must react to the

information provided by the vision server to close the gap between the object positions,

but the robot server only can manage one command a time. We fixed this problematic

using a second object inside the robot component. In the case of CRS robot, the legacy

interface provides a mechanism to interact with the robot controller using two robot ob-

jects. The first robot object is used to command the arm, while the other robot object

is used to monitoring and stop current command when necessary. These objects create

a resource conflict that is partially solved by using semaphores for concurrency. Other

critical factor for integrating components is the number of connection points among

them, so one important thing we kept through all design steps was to have a minimum

but powerful and abstract number of functions. In the case of the vision server there

are only six functions while the robot server has only fourteen functions and some of

them very specific and easy to use. With respect to the planner, we decided not to send

all operation sequence to the coordinator, this means that the coordinator receives the

next operation once it has finished the previous one, and at this moment it can decide

122

based on the vision information, if the plan must be rebuilt or if it just execute next

operation. The current design provides an enhanced dexterity for the arm manipulator

and now, the distributed robotic system is capable of realizing a set or sequence of small

tasks to achieve a final goal without or minimum human intervention. Furthermore, the

arm manipulator is able to overcome some environmental changes while it is pursuing

the goal.

Experimental Setup and Results 123

.

Chapter 7

Conclusions

The integration of different components over a set of computers has been proposed

using an object-oriented Client-Server approach with a Wrapper Component integration

methodology. The Wrapper Component concept isolates the specific details of each

component and provides the necessary abstraction level to facilitate the design phase.

Furthermore, there is a matrix guide selection which help in the definition of the most

recommendable connection scheme according to the interaction among the components.

This architecture provides the advantage of reusable code for basic components, with the

option of providing maintenance without changing the other components. For example,

the Robot Server implementation can be modified to deal with other types of robots

without disturbing other applications, such as the robot graphic user interface. In

addition, this methodology speeds up the development process. In our project, a set of

different wrapper components to solve a classical block-world problem were implemented

and tested in three months once the interfaces were defined. Next, the same robot

interface was used to integrate the robot with other robots and equipment such as

commanding robot through speech-recognition, and commanding robot in a master-

slave configuration. In the first case, the integration effort took 8 hours. Meanwhile the

master-slave configuration took around one week.

7.1 Initial questions

Prior to our research we proposed several questions to be addressed:

• How to integrate different types of robotic components?

• What is the structure that these components must have to work as a team?

124

Conclusions 125

• What are the tools that these systems must have to adapt to uncertain environ-

ments?

After analyzing different works, projects and the research of other robotic teams, we

concluded that standardization is a key issue to integrate heterogeneous components.

We proposed to standardize the communication media between the different distributed

robotic components using a generic specification such as CORBA, as well as other

approaches like DCOM, and Java Beans, among others.

But CORBA is just a specification. By itself is not the solution to all kind of problems.

Then we proposed a simple but powerful methodology to create “building blocks”. We

named this methodology DWC (Divide, Wrap and Connect). Although at first glance

this looks simple, there are some implications in each step that affect the overall design.

Dividing is the most easiest task of the three steps. In many real situations the different

components are already divided by physical limitations, hardware, operating systems,

and performance issues among others.

Wrapping is the first difficult step when designing the IDL interface for the component

to be integrated. The definition of this interface is critical for the future integration of

this component into a larger and more complex system. This work still has some art

involved. We provide some steps to improve the definition of this interface:

• Abstraction, the IDL interface must be abstract enough to support not just the

current equipment or system, but to support other current equipment or future

changes in the equipment.

• Monitoring, each wrapper component must provide a mechanism to monitor its

current state. This is mandatory in order to provide a reconfiguration of the client

side with respect to the server side. This aspect helps to deal with the small

differences among object implementations.

• Configuration, each wrapper component must provide a mechanism to change its

current state according to the requirements of the environment.

Connecting is also a very important issue when integrating wrapper components. CORBA

already solves the problem of working on different platforms, with different operating

systems and languages. There are other services that can be explored to improve the

design of the component. We proposed the use of a loosely-coupled communication

mechanism named publisher/subscriber by using the Event Services. This mechanism

eases the communication of massive messages over the Internet and provides a non-

blocking scheme that relieves the server or client of complication regarding message

126

passing. Only in important issues a blocking message is used to ensure that only one

command is executed at a time, such as the robot server.

The way an IDL interface is defined affects both the wrapping issue and the communi-

cation scheme, so a trade-off between these two topics is always on the table.

Once the architecture and methodology are established, we answer the following ques-

tions by integrating components that have some tools from other fields of artificial

intelligence. The tools resemble some of the human activities such as decision-taking,

planning, learning, recognition, classification, among others. We wrapped and connected

a planning server to generate a sequence of operation (actions) based on a final goal and

the current state. We also developed a vision server which provides learning, recogni-

tion and tracking objects functions. Finally we orchestrated all these components by

mean of a coordinator module. We followed an incremental approach. First a remote

operated robotic system with limited vision capabilities was created. Next, the vision

system was enhanced and the interface for a generic planner was developed. Finally an

autonomous distributed robotic system was integrated with the previous components

to deal with the block-world problem. This integration is the proof that with includ-

ing “smart” components the overall system can behave in an intelligent manner under

specific circumstances.

Furthermore, we worked in other integration projects where our IDL interfaces were used

to command the robot server from other robots or from a natural language interface.

We did this without any change in our code.

7.2 Limitations

Although the methodology presented offer several advantages for the integration of

dissimilar components, its application is restricted in the communication part to the

services offered by the different implementations of CORBA, particulary Event Service.

In case we need to integrate components developed by other distributing technologies

such as DCOM or JavaBeans, then an intermediate element (i.e. translator) is necessary

to connect these technologies.

On the other hand, the methodology is presented as an Integration tool to facilitate

the connection between components, rather than a design tool or optimization tool for

a particular problem. In other words, the methodology provides a sequence of steps

to help in the definition of the component interface so the integration problem can be

tackled effectively, but not for helping in how to design the implementation of the com-

ponent, neither how to model a solution for a specific problem.

Conclusions 127

For example, on the vision system an abstract interface was defined to manage two types

of images information and two levels of abstraction (raw images and object tracking

information). But how the the images are processed (enhanced, compressed, decom-

pressed, filtered, etc.) and how the object tracking is implemented (template match-

ing, stereo processing, geometric models, data structures, etc.) are not defined by our

methodology.

In that sense, we can argue that the components will be able to connect each other

seamlessly but there is not guarantee that they will perform in an optimal way. To

construct an optimal system, there are other research works that can be observed,

such as [Borstel and Gordillo, 2004] for building Virtual Laboratories, [Li et al., 2005]

for building collaborative robotics, [Pablos, 2004] for creating optimal paths on object

manipulation of robotic assemblies, and some of the works shown in Chapter 2.

7.3 Scope of Applicability

We used our methodology to integrate a set of distributed entities to conform a robotic

system into a local area network. These entities were the robot system itself, a vision

system, a planning system and accessories such as pan-tilt units. These elements were

integrated to conform a distributed robotic system that can be managed remotely and

that can perform some autonomous tasks such as learning, recognizing and grasping

objects. Even though, the components can be located in different computers they were

visualized as a single system, i.e as a robotic cell, with several attributes and abilities.

Accessing the different components was transparent for the user or operator. But mul-

tiple concurrent access to the same resources is not prevented by our methodology. The

question here, is that if our methodology must include it or it must be considered by

another methodology or architecture. Due to we remarked the loose coupled scheme as a

better mechanism for integration, there is a trade-off to deal with when the distributed

system must have a tight security mechanism. The applicability of our methodology

will be diminished in this type of systems.

In this work, in order to integrate some components into the whole system, we use an

extra CPU for almost each closed system. But, if there is no space for an extra CPU

and there is not way to get into the closed system then our methodology does not help

to integrate these components. This could be the case of space mission equipment where

128

and extra CPU increases power demand, number of failure points and checking points,

an program complexity. Fortunately, some researchers are working on this matter and

it is explained on the next section.

In a general sense the methodology proposed in this work can be applied to integrate

equipment or isolated subsystems which can be wrapped under CORBA specification.

Besides the distributed robotic system, other good example could be the subsystems

found along a production line. Normally, these subsystems are connected in a local area

network for monitoring but the interaction among them is almost null. An operator is

the person in charge to command the different subsystems. Then the operator skills

and the subsystem functionality can be modelled and abstracted to create wrapper

components.

7.4 Comparative issues

In order to highlight the advantages and disadvantages of the previous proposal, we

present the following comparative Tables 7.1 and 7.2. The comparison is made against

a) a monolithic approach, and b) distributed but not abstract approach. Basically, in

a monolithic approach, all data processing is made in a sequentially way into a single

computer, which manages one robot set (mainly the robot controller and other periph-

eral equipment such as pan-tilt unit and/or a camera). This approach is constrained

to the capability of one single machine, so including more components or increasing the

data processing is not always possible without degradation of the robot performance.

On the other hand, with multiple separated or distributed equipment there are more

parallel processing capabilities and the only concern is the synchronization and inte-

gration among these components. CORBA services alleviate part of this problematic

through the Event Service, as it was shown in previous sections. When compared with

similar distributed approaches, we found that creating abstract functions is a very dif-

ficult problem, but once it is finished or implemented, it creates a solid foundation for

more complex systems.

Conclusions 129

Table 7.1: Comparison between monolithic approach vs distributed approach.

Aspect Monolithic Distributed

Modularity Limited to single CPU Limited to number of CPU available

Time Response Compromised when the Parallel Processing

number of components increase improves performance

Processing Power Single CPU Multiple CPU

Cost Low High

Communication Low requirements Critical factor

Maintenance Centralized Distributed

Table 7.2: Comparison between distributed non-abstract approach vs distributed ab-

stract approach.

Aspect Distributed non-abstract Distributed abstract

Modularity Normal Better

Development Time Short in small projects Longer for big projects

Reusable Code A single change in a component Single change in a component

could affect the whole system is limited to related modules

Maintenance Easy for small projects Easy for any project

130

7.5 Future research

Future research will focus on implementing this architecture on other computational

environments such as Unix systems and Java applications, or another Real-Time Oper-

ating Systems, such as VxWorks.

Future research work will be also addressed in the following topics:

1. Add new object components as mobile robots [RWI, 1999] to enhance the cooper-

ative work.

2. Use the Notification Service on the image server to provide a filtering service to

distinguish among RGB color images, gray images and two stereo images.

3. Use techniques of sensor integration to improve the information gathered from all

sensors.

4. Use the new CORBA/e specification to create embedded robotic components.

7.5.1 CORBA/e for Embedded Applications

Most of the wrapper features shown on this thesis come from the idea to use a “dedi-

cated” CPU connected through a serial link (low speed connection) with a closed-owned

system. Then for getting the wrapping benefits it is necessary to use an extra CPU with

a high performance but with a bottleneck on the communication link. This CPU con-

nects with the external world and provides the abstract interfaces of the services offered

by the wrapped component. Although the “dedicated” CPU does not have any other

applications competing for CPU resources, the true is that there are many background

operating system tasks consuming resources. The migration of CORBA’s services and

the ORB from this extra CPU to the equipment’s CPU represents a saving on hard-

ware and an increment on the communication performance due to the elimination on

the intermediate link. But migrating CORBA to an small embedded system requires to

overcome some hard challenges such as small footprint, adding of new communication

technologies and management of limited resources. Fortunately, a new CORBA speci-

fication has been released on recent date, this is CORBA/e for embedded applications

[Jacob, 2006][Giddings, 2006].

Conclusions 131

.

Appendix A

CORBA specification

CORBA specification is a set of distributed systems standards promoted by Object Man-

agement Group (OMG) [OMG, 2000]. The idea behind CORBA is to allow applications

to communicate one with another no matter where they are or who has designed them.

The basic idea is to create an interface that can be used or understood by every ap-

plication on different equipment. To achieve this goal an Interface Definition Language

(IDL) is created. The CORBA specification follows a Client/Server approach. Usually

the Server describes its services through this interface. Every application that needs to

share its executable code must create an IDL file to be distributed over the network.

The IDL file follows a nomenclature that is very similar to C++ or Java language. This

file is processed according to the development tool (C++, Java, Python, etc.) and plat-

form, Figure A.1 shows an example of these steps. This IDL file is very important due

to in a standardized format describes the data structure (if any), attributes, modules

and interfaces provided by the object implementation of the server side.

CORBA is based on an Object Request Broker (ORB), a mechanism through which

distributed software and their clients may interact. It specifies an extensive set of bus-

related services for creating and deleting objects, accessing them by name, storing them

in persistent store, externalizing their states, and defining ad-hoc relationships between

them. This module takes care of the interfaces and makes the changes needed to transmit

and to marshal data, as is shown in Figure A.2. CORBA specification provides a method

of creating interfaces between equipments to facilitate their communication. It is based

also on an object-oriented design and implementation.

132

CORBA specification 133

IDL
File

IDL Compiler
For C++

IDL Compiler
Java

IDL.h
IDL.c++

IDL.java

Module_a.c++

Module.java

Compiling
&

Linking

Compiling
&

Linking

Executable
Server
Code

Server

Client

Executable
Client
Code

IDL
File

IDL Compiler
For C++

IDL Compiler
Java

IDL.h
IDL.c++

IDL.java

Module_a.c++

Module.java

Compiling
&

Linking

Compiling
&

Linking

Executable
Server
Code

Server

Client

Executable
Client
Code

Figure A.1: IDL file processing for different development environments. The Server side

is developed under C++ and the Client side is developed under Java.

Object
Adapter

ORB CoreORB Core

Client Object Implementation

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

IDL
Skeleton

Dynamic
Skeleton
Interface

Standard Interface

Per-Object type
Generated Interface

There may be Multiple
Object Adapters

ORB Dependent Interface

Object
Adapter
Object

Adapter

ORB CoreORB Core

Client Object Implementation

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

IDL
Skeleton

Dynamic
Skeleton
Interface

Standard Interface

Per-Object type
Generated Interface

There may be Multiple
Object Adapters

ORB Dependent Interface

ORB CoreORB Core

Client Object Implementation

Dynamic
Invocation
Interface

IDL
Stubs

ORB
Interface

IDL
Skeleton

Dynamic
Skeleton
Interface

Standard Interface

Per-Object type
Generated Interface

There may be Multiple
Object Adapters

ORB Dependent Interface

Figure A.2: Object Request Broker (ORB) interface

134

A.1 History

The OMG has more than 800 member companies that have been working on the CORBA

standard for years. CORBA 1.1 was introduced in 1991 by the OMG and defined the

Interface Definition Language (IDL) and the Application Programming Interfaces (API)

that enable client/server object interaction within a specific implementation of an Object

Request Broker (ORB). CORBA 2.0 adopted in December 1994, defines true interoper-

ability by specifying how ORBs from different vendors can interoperate.

Since 1989, the OMG has been working to create standards for object-based component

software within a framework of its Object Management Architecture. The key compo-

nent is the Common Object Request Broker Architecture (CORBA). Since then, the

world has seen a growing list of CORBA implementations come to the market. Dozens

of vendors have recently announced support for the CORBA Internet Inter-ORB Proto-

col (IIOP), which guarantees CORBA interoperability over the Internet. Specifications

of several generally useful support services now populate the Object Services segment

of the architecture, and work is proceeding rapidly in specifying domain-specific tech-

nologies in many areas, including finance, health care, and telecommunications.

A.2 CORBA Architecture

The five main elements of the object management architecture, shown in Figure A.3,

are:

ORB: defines the object bus and is the middleware that establishes the client/server

relationships between objects. The ORB provides interoperability between ap-

plications on different machines in heterogeneous distributed environments and

seamlessly interconnects multiple object systems.

Object Services: define the system level object frameworks that extended the bus.

The include services such as security, transaction management, and data exchange.

Common facilities: define horizontal and vertical application framework that are used

directly by business objects. These deal more with the client than the server.

Domain interfaces: interfaces like common facilities but are specific to certain do-

main, such as manufacturing, medical, telecommunications, etc.

Application Objects: objects defined by the developer to solve the business problem.

These interfaces are not standardized.

CORBA specification 135

Object Request Broker (ORB)

Application objets
(Server Implementations)

Common facilities
(Naming Service, Event Service, …)

Domain Interfaces
(Manufacturing, Medical, …)

Object Services
(Client Implementations)

Object Request Broker (ORB)

Application objets
(Server Implementations)

Common facilities
(Naming Service, Event Service, …)

Domain Interfaces
(Manufacturing, Medical, …)

Object Services
(Client Implementations)

Figure A.3: Main components of OMG specification

For applications where such interfaces are not stable or static, there is an option to

manage Dynamic Interfaces , but this option requires more programming overhead.

A.3 Interfaces and Services

In this chapter we explain how to define a generic static interface for a robot and how

to use CORBA Naming Service. Naming Service is also a useful tool to look for the

current object references of specific implementations. Every time a Server application

starts, a new object reference for this application is created. Using Naming Service this

object reference is “registered” with a specific name. So, if a client application that

was “connected” with a previous server session (not longer available), tries to invoke

an operation, then the call will go through an exception error because of the previous

object reference is not working any more. To avoid the above mentioned problem, client

application can go through the Naming Service and “resolve” the new object reference

of the Server application using the corresponding name.

Our explanation begins with a very basic but generic interface definition for a Robot

Server and the steps carried out on both server and client implementation in order to

communicate. We used commercial ORB implementation provided by IONA: ORBA-

CUS. Next, the development evolves to include CORBA Naming Service.

Static Interface

In order to explain the basic components and procedures involved on CORBA complaint

136

applications, we will start with a very simple interface. This interface is created for our

Robot Server, and it has the following basic operations:

• Get status()

• Do action()

The first operation, Get status(), is used to monitor the internal status of the robot. In

this example, a state is returned as a string value. The default value is “NO ACTION”.

The second operation, Do action(), is the action commanded by the “Client” to the

Robot Controller. Any commanded action is taken as a new state for the Robot Server,

so any time the “Client” requests the status, the Robot Server returns the last com-

manded action or the default state if it is the first time. In real versions the status

changes according to the real action of the robot.

The IDL file that defines this interface is as follows:

// Robot.idl IDL(Interface Definition Language)

interface Robot {

void get_status(out string status);

void do_action(in string action);

};

In this example, the interface is defined forwardly to both server and client, and it is

called the Static Interface.

One of the main functions of the ORB is to look for objects requested of it, and to check

which operations are available from each object. When one object implementation

is using CORBA specification all transactions are based on an object reference. An

object reference is the unique and universal identification of the object implementation.

This is a standard definition shared by all operating systems, network protocols and

development tools.

The ORB receives the information about Object Server Implementation and stores that

information in its database. When a client application asks for that object the ORB

looks into its object database and responds according to the current situation. A client

application needs to invoke an operation using an object reference, and because of this,

it needs a way to know this object reference.

In the following example, reference files were used to solve this problem with the fol-

lowing steps, Figure A.4:

CORBA specification 137

Executable
Server
Code

Server’s
Computer

Executable
Client
Code

Object
Reference
File

1

Client’s
Computer

2

Object Reference
File accessed by
moving it to the
Client’s computer

3

Server services
invoked

Executable
Server
Code

Server’s
Computer

Executable
Client
Code

Object
Reference
File

1

Client’s
Computer

2

Object Reference
File accessed by
moving it to the
Client’s computer

3

Server services
invoked

Figure A.4: Accessing an object implementation through its object reference.

1. The Server writes an object reference in a common file, in this case named “Robot.ref”.

2. After this, the Client reads the file to get the reference and

3. finally invokes the operations through the ORB using that reference.

A.3.1 CORBA Naming Service

Using static interfaces we have the following problem: if the Server shuts down for

any reason, i.e. power off, a fault problem or a normally operated shutdown, it has

to start again and the reference for the new object implementation changes. Because

of this, the last reference is not longer working. Then, Client programs, with the old

reference, will not work either. They must start again and obtain the new reference.

To avoid or improve this behavior, the CORBA specification offers a service called

“Naming Service”. With this service, Server programs “register” their implementations

using names. Now Client programs only need to know two things; a) Where the naming

server is and b) the name of the specific implementation needed.

With the name, Client programs “resolve” the current reference and use it with its

operations. In our small example we have two operations:

• Get status()

• Do action()

These operations can be the same for any Robot Controller. Due to this, the Naming

Service uses the concept of Contexts. A context is like an environment for several specific

138

Robot_type_B Robo_type_A

Root Context
(Naming Server Object)

RA_1 RA_2 RB_1

RBA_1

Robot_type_BA

Context Object

Figure A.5: Naming Service Context and Object Reference

applications. For instance, we can define the context Robot Type A to identify all the

operations of robots type A. This can be shown as a hierarchical tree, where the root of

the tree is the Naming Service object. Then we can create branches for each different

kind of Robot and then give a special name (enumerated name for instance) for each

Robot Controller implementation. See Figure A.5.

In this scheme, Client programs only look for the name of the robots, for example:

Robot “RA 1”. Under this configuration Server and Client programs need to know in

advance the names for the object implementations, or at least the Client programs need

to know the object type. The Naming Service provides functions to travel through the

tree context.

Given the overview of this service, we have the following functions for each object of the

class of NamingContext:

• Bind new context()

• bind()

• resolve()

• unbind()

• rebind()

CORBA specification 139

Server Naming
Server

Client Bind_new_context (“NC1”)
1

Bind (“R1”) 2

Resolve (“R1”)

3

Unbind (“R1”)
Unbind(“NC1”)

4

Figure A.6: Normal sequence to register, resolve and unregister the object implementa-

tion.

We also have the following classes:

• BindingList

• BindingIterator

• BindingHolder

The last three classes allow travel through the tree context. The normal process to

register and to resolve the references is shown in Figure A.6. Here the first step is

to register the context for each kind of robot (step 1), or for the type of robot that

the Server supports. Then the Robot Implementation Controller named in this case

“R1” (step 2) is registered. After this, now the Client program can ask for the Robot

Implementation (step 3) or can list all the context and robot implementations registered

at this time in the Naming Services (step not shown). If everything is correct, then the

client can use the operations from this object.

Until now, everything works well but there are several scenarios that both, Server and

Client programs must deal with:

a) When the Clients start before the Server starts or after the Server shuts down.

b) When the Server shuts down improperly and when starting again provoke an Al-

readyBound error.

c) The method of shutting down the Server, when there are several object implemen-

tations working.

d) When the names and types for objects are mistyped or not the same as the original

agreement, i.e. by changing versions.

140

Dealing with different scenarios

In scenario (a) the problem is in the Client side, it has to decide if the application must

finish or wait for the Server application. The first decision is easier but in the second

one, the waiting time must be defined and under what circumstances the Client must

wait. In our example a prompt question is defined. For example the Client must keep

checking or decide to leave the application.

In scenario (b) the Server has to rebind all the names of the objects only, because the

context works like folders. Then, the programming steps must follow an “ask-bind”

approach, or a “bind-catch-rebind” approach. The first case is to check if the context or

object exists and then act in consequence. The second case is to do the bind and catch

the error. The second approach is followed because there is not any operation to check

if a context or object exists.

In scenario (c) part of the problem is solved using the approaches in (b) when the

Server is restarting. But to avoid the problem with Client programs using the object

implementations, it is necessary to wait for the completion of several threads. The

Server must also unbind all the contexts and objects registered. In our programs a

shutdown process is followed where the contexts and objects are deregistered (unbind

operation), then one must use the shutdown() function with a thread in Java or passing

the orb reference in C++. This makes the orb object returns. The exit() function is

added to exit fully. If the exit() function is not used, the Server program keeps in the

run() function thus doing nothing.

In scenario (d) although Server and Client programs must agree with the names, there

be a case where the Server could be changed for a new version. In this situation the best

thing to do is to use another kind of service: Trading Service. Under these circumstances

Server and Client programs must agree at least in the kind of object to build and to

use.

Although Naming Service improves the behavior of Client-Server Applications, there are

several pitfalls one may encounter using this service (taken from [Henning and Vinoski, 1999]).

Nil References: The OMG Naming Service permits you to advertise a nil reference,

so when you resolve a name, it is a good practice to test whether the reference

returned by resolve() is nil.

Transient References: You should advertise only persistent references in the Naming

Services. If you advertise transient references and your Server shuts down, the

bindings created by the server will dangle and make life difficult for clients.

Unusual Names: The Naming Services specification places no restrictions on the char-

acters that can be contained in a name component, and it even permits the empty

CORBA specification 141

string as a legal value of the id and kind fields. You should avoid the use of meta-

characters such as ’*’, ’?’, ’/’. Orphaned Context Take care when destroying a

context. You must use an inverse sequence, destroying first the leaves and then

the branches of the created context tree.

Iterator Pileup: If you iterate over a naming context, make sure that you call de-

stroy() when you are finished with the iterator.

Iterator lifetime: Although the specification does not require this, most implementa-

tions of the Naming Service are likely to use POA with the TRANSIENT policy

for iterators. This means that you cannot expect iterator references to survive

shutdown of the Naming Service.

Implementations limits: Many implementations of the Naming Service have restric-

tions on the length of a name component or the number of bindings per context.

Intervendor federation: If you federate Naming Service from different vendors, you

must check that all services can store all the names you use. If some vendors

places limits on the characters that may occur in a name component or on the

maximum length of a component, you may encounter inter-operability problems

between the implementations.

A.3.2 CORBA Event Service

Traditional CORBA requests between clients and servers are synchronous in nature.

This implies that the client and the target object are tightly coupled. Although it

could be desirable to have client’s thread of execution blocked until the server has

responded, there are other scenarios where a more asynchronous model would be better.

For example, in a vision system a client could be interested to receive an image stream

instead of requesting each image. An event-driven approach in this and other many

cases is more feasible than implementing the client to continually poll a server or many

servers for their state. In the other hand it could be the case where several clients are

registered with a server to receive specific notification about changes of the server status.

The server requires in this situation to have an updated list of connected clients, but this

increase the overhead and the complexity on the server side. Then a more decoupled

mechanism is necessary to overcome these difficulties.

The CORBA specification provides the Event Service to deal with the above situations.

The basic notion of the Event Service defines a consumer as an entity (object) interested

in being notified when a certain event has occurred. Conversely, it defines a supplier

as the entity in which the event actually occurs. Next both entities communicate each

other over an event channel. There are two general models defined for event channel:

142

Event
Channel

Consumer-1

Supplier

push

push

(Image Server)

Proxy Consumer
Interface

Proxy Supplier
Interface

(Image Client)

Direction of Event flow

Passive
Agent

Active
Agent

Consumer-2

Figure A.7: Event channel using the Push Model. In this example the Image Server is

the Active Agent who initiates the event delivery.

Push Model: The event is triggered in the supplier and it pushes a message through

the channel, next the channel sends the message to all consumers registered in the

channel. Figure A.7 depicts this model for an Image Server and Image Client.

Pull Model: The consumer requests the event channel a message which conversely

pass the request to the supplier or suppliers of the channel.

The event channel has several interfaces which help suppliers to blindly send the mes-

sages through the channel, and consumers can either periodically check the event chan-

nel (pull) or request to be invoked when a specific event occurs (push). In fact many

suppliers may be sending messages to many consumers, each without having explicit

knowledge of the other. This scheme provides a decoupled mechanism that alleviates

the burden of being waiting for a response.

For our purposes, we use the push model, and instead naming the producer/consumer

entities we use the publisher/subscriber entities. The event is initiated by data publishers

rather than data users, which makes data more fluent and free of much blocking. Second,

it is a non-blocking communication, so even if one of the data publishers is down,

subscribers can still running while the publisher is replaced by other back-up data

publisher without reconfiguring the system.

A.4 CORBA in the market

In the market there are several companies that have been adopted CORBA as its op-

tion to product development, and others have been taken the standard facilities such

CORBA specification 143

Publisher

Subscriber-1

Asynchronous
Non-blocking
Anonymous
No single point failure

Event
Channel

Subscriber-2

Subscriber-3

Subscriber-n

Publish/Subscribe type

Figure A.8: Publish/Subscriber communication type is asynchronous and non-blocking

communication.

as health care, financing, telecommunication, among others to create their own applica-

tions. Other companies implemented the ORB according to a specific standard version.

Among them is Orbacus, Orbix and OrbixWeb from IONA (for C++ and Java ap-

plications, respectively), NEO and JOE from SunSoft, HP ORB from HP, SOM from

IBM, Visibroker from Visigenic, Chorus/COOL ORB from Chorus, Dais from ICL Soft,

CORBA Plus from Expersoft, OminBroker from Object-oriented Concepts, OmniORB

from Olivette Research Labs, Distribute SmallTalks from ParcPlace just to mention a

few ones.

CORBA is not alone in the middleware’s market other technologies for object-oriented

or component design and development are also present. The most important come

from Microsoft’s Distributed Common Object Model, JavaBeans from Sun Microsys-

tems. Other technologies have a critical mass due its maturity in the market such as

Distributed Computing Environment (DCE), or due its success to create Internet Web

applications such as XML/WS. Table A.1 shows a comparison between them focusing

in important features.

144

Table A.1: Feature comparison between several middleware technologies

Technology M
at

u
ri
ty

P
er

si
st

en
ce

S
ec

u
ri
ty

O
b
je

ct
-O

ri
en

te
d

A
P
I

R
ea

l-
T

im
e/

E
m

b
ed

d
ed

M
u
lt
i-
la

n
gu

ag
e

M
u
lt
i-
p
la

tf
or

m

V
ar

ie
ty

V
en

d
or

s

J2EE 7
√ √ √ √ √ √ × √ √

DCOM 8
√ √ √ √ √ × √ × ×

DCE 14
√ × √ × √ × √ √ √

XML/WS 1 × × × × × × √ √ √

CORBA 13
√ √ √ √ √ √ √ √ √

Appendix B

Robot Servers

The robot server component is a wrapper component that implements the generic in-

terface definition established for this thesis work, this is shown in Figure B.1. During

the development of this project, three different robots were used with the same inter-

face. This appendix shows the details about the programming effort carried out to keep

the same functionality no matter what kind of robot is being used in the project. The

robots used were CRS-F3 with 6-DOF, CRS-T265 with 5-DOF and a Motoman UP6

with 6-DOF. Their main ranges and characteristics are outlined in Table B.1.

Although the three robots are jointed-arm type, the IDL interface defined as the generic

interface can apply to most of the arm manipulators in the market. We will describe

some of the main commands of the robot interface and how they are implemented in

the different robot types.

Table B.1: Physical limits and number of axis for each robot arm manipulator.

Axis / Name (For Motoman) CRS-F3 CRS-T265 Motoman UP6

1/S +/− 180◦ +/− 175◦ +/− 170◦

2/L −135◦ to +45◦ 0◦ to +110◦ −90◦ to +155◦

3/U +/− 135◦ −125◦ to +0◦ −170◦ to +190◦

4/R +/− 180◦ +/− 110◦ +/− 180◦

5/B +/− 135◦ +/− 180◦ +/− 135◦

6/T 51 turns NA +/− 360◦

7- Track 5000 mm 1000 mm NA

145

146

B.1 Generic commands

The first and second commands defined in the interface are generic commands to pro-

vide more flexibility according to the capabilities offered by each robot brand. Due

to its definition is a string value, a syntax in LISP or other scripting language can be

used to command specific actions (do action()) or to receive a message from the robot

(get status()). For example, the following code can be used to make a parameterized

circle movement:

do_action("CIRCLE p1, p2, p3");

or the client could be interested in receiving an acknowledge that a certain file command

was executed successfully:

get_status(FILE_CMD_STATUS);

where the FILE CMD STATUS is a string variable that is parsed to retrieve a specific

information.

B.2 Retract and Extend commands

Retract and Extend commands are two wrapping commands to move the arm in similar

way that a human arm. Two or more axis can be involved in this movement depending

on the robot to use. Figure B.2 shows the geometric dimensions used in the CRS-F3,

while Figure B.3 shows Motoman UP6. In both cases there are several configurable

options to move the arm a specific distance :

a) Horizontally or keeping the vertical distance. Increment/Decrement of axis x

b) Vertically or keeping the horizontal distance. Increment/Decrement of axis y

c) Across line c or keeping the slope angle (angle α). The line between two points

defined in the arm, ∆c, see figures B.4 and B.5.

B.3 Movement computation for Extend/Retract com-

mands

These movements are based in moving two axes: axes 2 and 3 for CRS-robots, or axes

L and U for Motoman robots. The angles related to these axes are θ1 and θ1, where

Robot Servers 147

// IDL Robot Definition
interface Robot {
// Basic function to get the status of the robot
void get_status(out string status);
// Basic function to command an action to the robot
void do_action(in string action);
///
// COMMANDS TO MOVE THE ARM MANIPULATOR
//

void Retract(in long distance, out boolean result);
void Extend(in short direction, in long distance, out boolean result
);
void Turn(in short direction,in short degrees, out boolean result);
void MoveH(in short direction, in long distance, out boolean result
);
void MoveV(in short direction, in long distance, out boolean result
);
void Turn_EF(in short direction,in short degrees, out boolean result
);
void Turn_Wrist(in short direction,in short degrees, out boolean
result);
void Home(out boolean result);
void Ready(out boolean result);
void Speed(in short velocity, out boolean result);
void Learn(in long var, out boolean result);
void Goto(in long var, out boolean result);
void Gripper(in long dist, out boolean result);
void Monitor(out float x, out float y, out float z,

out float rx, out float ry, out float rz,
out float j1, out float j2, out float j3, out float j4,
out float j5, out float j6, out float j7, out float j8);

void Finish(in short option);
};

// IDL Robot Definition
interface Robot {
// Basic function to get the status of the robot
void get_status(out string status);
// Basic function to command an action to the robot
void do_action(in string action);
///
// COMMANDS TO MOVE THE ARM MANIPULATOR
//

void Retract(in long distance, out boolean result);
void Extend(in short direction, in long distance, out boolean result
);
void Turn(in short direction,in short degrees, out boolean result);
void MoveH(in short direction, in long distance, out boolean result
);
void MoveV(in short direction, in long distance, out boolean result
);
void Turn_EF(in short direction,in short degrees, out boolean result
);
void Turn_Wrist(in short direction,in short degrees, out boolean
result);
void Home(out boolean result);
void Ready(out boolean result);
void Speed(in short velocity, out boolean result);
void Learn(in long var, out boolean result);
void Goto(in long var, out boolean result);
void Gripper(in long dist, out boolean result);
void Monitor(out float x, out float y, out float z,

out float rx, out float ry, out float rz,
out float j1, out float j2, out float j3, out float j4,
out float j5, out float j6, out float j7, out float j8);

void Finish(in short option);
};

Figure B.1: Basic Robot IDL interface definition to command a generic arm manipulator

Table B.2: Geometric parameter for each robot arm manipulator.

Parameter CRS-F3 CRS-T265 Motoman UP6

a 265 mm 254 mm 570 mm

b 270 mm 254 mm NA

m NA NA 130 mm

n NA NA 640 mm

148

Figure B.2: CRS-F3 arm manipulator working ranges (Courtesy of Thermo Corp).

Figure B.3: Motoman UP6 working range and dimensions (Courtesy of Motoman).

Robot Servers 149

a

b

c

d

h
θθθθ1

θθθθ2

αααα

Figure B.4: CRS-F3 arm geometric parameters for Extend/Retract commands.

a

b

c

d

h
θθθθ1

θθθθ2

αααα

n

m

Figure B.5: Motoman UP6 arm geometric parameters for Extend/Retract commands.

150

Table B.3: Relationship between angles θ1 and θ2 and their robot arm counterparts.

Angle CRS-F3 CRS-T265 Motoman UP6

1 90 + j2 j2 90 - L

2 90 + j2 + j3 90 + j3 90 - L + U - X

θ1 is measured from a horizontal reference line that pass through the center of axis 2

and θ2 is measured as the angle between links a and b. Due to the initial value of arm

axes varies according to manufacturing assembly we show in Table B.3 their relationship

with angles θ1 and θ2.

Because we will use links a and b, as our references, in Motoman case we need to compute

link b and angle θX . These values are given by the following formulation:

Link b (Motoman case):

b =
√

m2 + n2 (B.1)

Angle θX (Motoman case):

θX = cos−1(
m

b
) (B.2)

Given the above information there are several variables to compute:

Side c: here C = θ2 (from figure B.4 or figure B.5)

c2 = a2 + b2 − 2ab cos(θC) = a2 + b2 − 2ab cos(θ2) (B.3)

Angle θB,

θB = cos−1(
b2 − a2 − c2

−2ac
) (B.4)

Angle α,

α = θ1 − θB (B.5)

Vertical distance h,

h = c sin(α) (B.6)

Horizontal distance, d

d = c cos(α) (B.7)

In Table B.4 there is a formulation to each option mentioned above, also figure B.6

shows the physical representation of these options.

Given the formulation, there is a back-propagation in the formulas to obtain: first, the

new value cn and next, intermediate values until reach the new angles θ1 and θ1, which

in turns move the specific arm axes, as shown in Table B.3.

Robot Servers 151

Table B.4: Changes on formulation according to the option selected for Extend/Retract

commands.
Option Extend Retract

Keep distance h ∆d = d + δ ∆d = d− δ

Keep distance d ∆h = h + δ ∆h = h− δ

Keep angle c ∆c = c + δ ∆c = c− δ

a

b

c

∆∆∆∆c = c + δδδδ

Figure B.6: Physical representation of the different options for Extend (+) command.

The Extend and Retract commands are the more complex movements to compute due

the different options presented by each robot. Finally, there is a last consideration in

these movements and it refers to the side-effect they have over the tool pose. CRS-F3

and Motoman UP6 have mechanically independent movement on each axis, but not in

the case of CRS-T265. So, for CRS-F3 and Motoman UP6 we must compensate for the

change on the previous angles that affect the tool position moving the end-effector axis.

Meanwhile, in the CRS-T265 this side effect is mechanically compensated, although

there is a second (non desirable) side effect in this robot. In some movements it could

be the case that the angle θ1 or θ2 needs to move an angular distance that is far from

its physical limit, but due to the mechanical arrangement the end-effector move is on

its limit and the total movement can not be carried out.

B.4 Turn command

This command is very simple and it only moves the arm manipulator base clockwise or

counterclockwise. There is a simple configuration in this command to establish what

direction is positive or negative, and it depends only in the robot application. The

argument is given in degrees and it has a resolution of cents of a degree. In all cases the

axis to move is axis 1.

152

B.5 Turn EF and Turn Wrist commands

These commands move the End-Effector angle and Wrist Angle, respectively. The axis

number for each command varies according to the robot used. Also the limits vary as it

is shown in Table B.1. CRS-F3 has the wrist in axis 6 and it is able to make 51 turns

in any directions, meanwhile CRS-T265 has the wrist on axis 5 and only can make a

half-turn on each direction. Finally Motoman UP6 has the wrist on axis 6 and it is

able to make a complete turn on each direction. In the case of the End-Effector, both

CRS-F3 and Motoman UP6 have this element on axis 5 and they can turn 135◦ in both

directions, meanwhile CRS-T265 has the End-Effector on axis 4 and it only can move

110◦ in both directions.

B.6 Linear Movements, MoveH and MoveV com-

mands

Every robot has a base coordinates system. Although many arm manipulators makers

can translate this coordinates system to the tool or to an object, we keep this coordi-

nates system to move the robot Tool Center Point (TCP) along axis x and axis y. To

realize this movement we can do a complex computation similar to Retract or Extend

commands, but it is easier to get the current position in the coordinate system and

then define a new point with the increment distance. Similar to previous commands the

positive or negative direction can be configured according to the robot application.

B.7 Implementing the robot servers

In Chapter 2 we mentioned that the wrapper component hides the internal details about

how a component is built. In this work we have two types of application interfaces

provided by the different robot vendors. These interfaces will be “wrapped” in order

to have a standard set of functions for all robots. Figure B.7 depicts this idea. The

pulse shape represents the standard protocol between CORBA based application across

different languages and platforms. The CORBA interface for each robot represents the

developer design of an abstract interface which supports common features requested for

all kinds of robots. The interaction between the API-interface provided by the robot

vendors (object oriented in the case of CRS-F3 and function oriented in the case of

Motoman UP6) and the CORBA interface is the most complicated job realized by the

system integrator. Furthermore, in most of the cases the API interface provided by

the robot vendors runs in a PC which communicates with the robot controller through

Robot Servers 153

Software BUS (ORB)

CORBA
Interface

CORBA
Interface

CORBA
Interface

Object Oriented
API-Interface

Function Oriented
API-Interface

CRS-F3
Robot

Controller

Motoman UP6
Robot

Controller

Robot-GUI
Interface

Figure B.7: Software bus concept using CORBA to integrate two different robots using

the same IDL definition.

a different media, such as RS-232C (high-speed serial), Ethernet, or wireless. In the

following section we will explain some details about how this task is carried out in the

two robots used for this work.

B.7.1 CRS Robot arm implementation.

In the case of the CRS arm manipulators F3 and T265 they provided an object oriented

interface. As a matter of fact the interface defines a set of objects through which we

can reach different functionalities. Figure B.8 shows this concept.

There are several types of objects: one for managing basic arm manipulator func-

tions (CRSRobot), while other object is defined for data file management (CRSV3File,

CRSPath), operating system access (CRSRemote) and the last is used for managing

locations points (CRSLocation). Table B.5 shows the number of functions provided for

each type of object.

As it is shown in figure B.8, there are two user objects to manipulate the robot. One

object is used for moving the robot while the other object is used to monitor the position

and status of the robot controller. Both objects could access the same set of variables

inside the robot controller. This creates a concurrency problem that is solved using

semaphores for the shared variables. In this way the robot server can deliver an updated

154

Robot Controller

CRS-F3

Proprietary OS.

HCLServer

HCL

CRSRemote
Object

CRSRobot
Object

CRSV3File
Object

File Transfer
Daemon

Interface to
CROS

Robot
Server

Motion
Control
Engine

V3 File V3 File

Host PC

User
Object

User
Object

Robot Server
Implementation

To arm

C500C Controller

Robot Server

Figure B.8: CRS robot arm interface definition.

Table B.5: Number of functions for each type of object in the CRS API definition.

Object Type Number of functions associated Description

CRSRobot 126 For Robot Manipulation

CRSV3File 9 For Data Storage

CRSLocation 13 For Robot Location

CRSPath 5 For File Management

CRSRemote 29 For Operating System Command

Total 182

Robot Servers 155

//
//// To get control of Robot Controller
//
void RSRVMainForm::OnControl()
{

if (Control_Robot == FALSE)
{

Control_Robot = OnInitRobot();
if (Control_Robot == FALSE)
{

pButton4->EnableWindow(FALSE);
OnAdd("Unable to get the control of the robot controller");

}
else
{

pButton4->EnableWindow(TRUE);
OnAdd("Robot Controller accessed");
Robot->get_RobotType(&TR);
if (TR == robF3)
{

OnAdd("Robot type CRS F3 with 6-DOF and one Track");
a = 265.0; // length in mm
b = 270.0; // length in mm

}
else if (TR == robM1A)
{

OnAdd("Robot type T265 with 5-DOF and one Track");
a = 254.0; // length in mm
b = 254.0; // length in mm

}
Robot_status=IDLE;

}
}
else { OnAdd("Robot Control access is ready");}

}

//
//// To get control of Robot Controller
//
void RSRVMainForm::OnControl()
{

if (Control_Robot == FALSE)
{

Control_Robot = OnInitRobot();
if (Control_Robot == FALSE)
{

pButton4->EnableWindow(FALSE);
OnAdd("Unable to get the control of the robot controller");

}
else
{

pButton4->EnableWindow(TRUE);
OnAdd("Robot Controller accessed");
Robot->get_RobotType(&TR);
if (TR == robF3)
{

OnAdd("Robot type CRS F3 with 6-DOF and one Track");
a = 265.0; // length in mm
b = 270.0; // length in mm

}
else if (TR == robM1A)
{

OnAdd("Robot type T265 with 5-DOF and one Track");
a = 254.0; // length in mm
b = 254.0; // length in mm

}
Robot_status=IDLE;

}
}
else { OnAdd("Robot Control access is ready");}

}

Figure B.9: Procedure to check and to take control of the CRS robot controller.

position while there is a movement in place. Due to the robot can be access through

a pendant there is an initial procedure to check if the robot can be controlled, also

the robot server requests to the controller the type of robot connected in order to setup

specific parameters. These parameters correspond to the wrist axis and the links lengths

(a and b) to use in the computation of the Retract and Extend commands. Next figure

shows the code used for the initial procedure.

B.7.2 Retract command implementation in CRS robots

The following code shows some details about how the retract command is implemented

for the CRS robot. In this case the retract command is defined only has a horizontal

movement, i.e. the height h doesn’t change.

156

//
// Retract Command for CRS robots
void Robot_impl::Retract(CORBA::Long distance, CORBA::Boolean_out result)
{

char msg[200];
double dteta1,dteta2; // Angles of the triangle in Degrees
double teta1,teta2; // Angles of the triangle in Rad
double H; // Height of the arm
double a,b,c,d; // Links and arc c to compute
double pi,cn,dc;
double angC,angB,angH;
float j2,j3,djw;
CSingleLock RLock(&flagMove); RLock.Lock();
sprintf(msg,"Requesting Retract D=%d mm",distance);
ptr->Display(msg);
CSingleLock sLock(&(ptr->flagMutex));
//Read Shared variables using semaphores
sLock.Lock();

ptr->j1=eje1; ptr->j2=eje2; ptr->j3=eje3; ptr->j4=eje4;
ptr->j5=eje5; ptr->j6=eje6; ptr->j7=eje7; ptr->j8=eje8;

sLock.Unlock();
c = 0.0; pi = 3.1415926535; cn = 0.0;
j2 = ptr->j2; j3 = ptr->j3; a = ptr->a; b = ptr->b;
// Computing H and c
// This is to make the reference 0 degrees starting at joint 1.
if (ptr->TR == robF3)
{

dteta1 =(90.0 + ptr->j2);
dteta2 =(90.0 + ptr->j2 + ptr->j3);

}
else
{

dteta1 = ptr->j2;
dteta2 = 90.0 + ptr->j3;

}
// converting to radians
teta1 =dteta1*pi/180.0; teta2 =dteta2*pi/180.0;

// Values to calculate: Angle C, side c, height H, distance d. angB, angH
angC = pi - teta1 + teta2;
c = sqrt(a*a+b*b-2*a*b*cos(angC));
H = a*sin(teta1)+b*sin(teta2);
d = sqrt(c*c - H*H);
angB = asin((b*sin(angC))/c);
angH = asin(H/c);

sprintf(msg,"Computing Angle C=%7.3f, side(c)=%9.3f,
Height=%9.3f, and d=%9.3f",angC*180/pi,c,H,d);

ptr->Display(msg);
sprintf(msg,"Extra Computing Angle B=%7.3f and Angle H=%7.3f",

angB*180/pi,angH*180/pi);
ptr->Display(msg);

//
// Retract Command for CRS robots
void Robot_impl::Retract(CORBA::Long distance, CORBA::Boolean_out result)
{

char msg[200];
double dteta1,dteta2; // Angles of the triangle in Degrees
double teta1,teta2; // Angles of the triangle in Rad
double H; // Height of the arm
double a,b,c,d; // Links and arc c to compute
double pi,cn,dc;
double angC,angB,angH;
float j2,j3,djw;
CSingleLock RLock(&flagMove); RLock.Lock();
sprintf(msg,"Requesting Retract D=%d mm",distance);
ptr->Display(msg);
CSingleLock sLock(&(ptr->flagMutex));
//Read Shared variables using semaphores
sLock.Lock();

ptr->j1=eje1; ptr->j2=eje2; ptr->j3=eje3; ptr->j4=eje4;
ptr->j5=eje5; ptr->j6=eje6; ptr->j7=eje7; ptr->j8=eje8;

sLock.Unlock();
c = 0.0; pi = 3.1415926535; cn = 0.0;
j2 = ptr->j2; j3 = ptr->j3; a = ptr->a; b = ptr->b;
// Computing H and c
// This is to make the reference 0 degrees starting at joint 1.
if (ptr->TR == robF3)
{

dteta1 =(90.0 + ptr->j2);
dteta2 =(90.0 + ptr->j2 + ptr->j3);

}
else
{

dteta1 = ptr->j2;
dteta2 = 90.0 + ptr->j3;

}
// converting to radians
teta1 =dteta1*pi/180.0; teta2 =dteta2*pi/180.0;

// Values to calculate: Angle C, side c, height H, distance d. angB, angH
angC = pi - teta1 + teta2;
c = sqrt(a*a+b*b-2*a*b*cos(angC));
H = a*sin(teta1)+b*sin(teta2);
d = sqrt(c*c - H*H);
angB = asin((b*sin(angC))/c);
angH = asin(H/c);

sprintf(msg,"Computing Angle C=%7.3f, side(c)=%9.3f,
Height=%9.3f, and d=%9.3f",angC*180/pi,c,H,d);

ptr->Display(msg);
sprintf(msg,"Extra Computing Angle B=%7.3f and Angle H=%7.3f",

angB*180/pi,angH*180/pi);
ptr->Display(msg);

Figure B.10: Retract command code implementation for CRS-F3, part 1.

Robot Servers 157

// Now, we calculate the new distance
// delta has to be a parameter, right now is a cons tant of 100 mm.
if (abs(c - C_MIN) < 0.02)
{

sprintf(msg,"Arm Full Contracted... no action taken place");
ptr->Display(msg);
result = FALSE;

}
else
{

cn = c - distance;
if (cn < C_MIN) cn = C_MIN;
sprintf(msg,"Retracting HORIZONTAL"); ptr->Display(m sg);
// Calculating new angC and AngB
angC = acos((a*a+b*b-cn*cn)/(2*a*b));
angB = asin((b*sin(angC))/cn);
angH = asin(H/cn);
teta1 = angB + angH;
// Converting to degrees
dteta1 = teta1*180/pi; dc = angC*180/pi;
if (ptr->TR == robF3)
{

ptr->j2 = dteta1-90; ptr->j3 = dc - 180;
// To keep the end effector position
djw = -(ptr->j2 - j2 + ptr->j3 - j3);

}
else
{

ptr->j3 = dc; ptr->j2 = dteta1;
}
if (ptr->TR == robF3) ptr->j5 = ptr->j5 + djw;
sprintf(msg,"New angle J1=%7.3f (deg) and angle J2=% 7.3f(deg)”,ptr->j2,ptr->j3);
ptr->Display(msg);
ValidateLoc();
ptr->Tmp_Loc = ptr->Robot->GetJointToMotor(ptr->j1,p tr->j2,

ptr->j3,ptr->j4,ptr->j5,ptr->j6,ptr->j7,ptr->j8);
try
{

ptr->Robot_status= MOV_RETRACT;
ptr->Robot->Move(ptr->Tmp_Loc);

} catch(_com_error MyError)
{

sprintf(msg,"Error!: When trying to Retract ARM");
ptr->Display(msg);
sprintf(msg,"Description:%s",(LPCTSTR)MyError.Descr iption());
ptr->Display(msg);
CheckAbort();

}
result = TRUE;

}
RLock.Unlock();

}

// Now, we calculate the new distance
// delta has to be a parameter, right now is a cons tant of 100 mm.
if (abs(c - C_MIN) < 0.02)
{

sprintf(msg,"Arm Full Contracted... no action taken place");
ptr->Display(msg);
result = FALSE;

}
else
{

cn = c - distance;
if (cn < C_MIN) cn = C_MIN;
sprintf(msg,"Retracting HORIZONTAL"); ptr->Display(m sg);
// Calculating new angC and AngB
angC = acos((a*a+b*b-cn*cn)/(2*a*b));
angB = asin((b*sin(angC))/cn);
angH = asin(H/cn);
teta1 = angB + angH;
// Converting to degrees
dteta1 = teta1*180/pi; dc = angC*180/pi;
if (ptr->TR == robF3)
{

ptr->j2 = dteta1-90; ptr->j3 = dc - 180;
// To keep the end effector position
djw = -(ptr->j2 - j2 + ptr->j3 - j3);

}
else
{

ptr->j3 = dc; ptr->j2 = dteta1;
}
if (ptr->TR == robF3) ptr->j5 = ptr->j5 + djw;
sprintf(msg,"New angle J1=%7.3f (deg) and angle J2=% 7.3f(deg)”,ptr->j2,ptr->j3);
ptr->Display(msg);
ValidateLoc();
ptr->Tmp_Loc = ptr->Robot->GetJointToMotor(ptr->j1,p tr->j2,

ptr->j3,ptr->j4,ptr->j5,ptr->j6,ptr->j7,ptr->j8);
try
{

ptr->Robot_status= MOV_RETRACT;
ptr->Robot->Move(ptr->Tmp_Loc);

} catch(_com_error MyError)
{

sprintf(msg,"Error!: When trying to Retract ARM");
ptr->Display(msg);
sprintf(msg,"Description:%s",(LPCTSTR)MyError.Descr iption());
ptr->Display(msg);
CheckAbort();

}
result = TRUE;

}
RLock.Unlock();

}

Figure B.11: Retract command code implementation for CRS-F3, part 2.

158

B.7.3 Motoman UP6 arm implementation

In the case of the Motoman UP6 arm manipulator, the vendor provides a function-

oriented interface. It doesn’t manage the concept of objects. There is a set of global

variables that the functions can fill in during their execution or the programmer must

setup these variables before calling a function. Due to the robot controller can manage

several robots at the same time, it is necessary to get a handler for each robot. Depending

on which port the robot is connected it has a specific communication handler ID.

A joint movement function call using pulses has the following format:

BscPMovj (short nCid // Communication handler ID

double speed, // Move speed (mm/s or /s)

short toolno, // Tool number

double *pos // Target position storage pointer

);

The robot could use different types of grippers or tools and each one has a number

assigned. For normal gripper the tool number is zero (0). For moving the robot, it

is necessary to specify a target position. This position is defined using pulses, so the

implementation code must convert pulses to degrees or radians in order to perform any

geometric computation. Each axis has an index position inside an array of double values.

Robot Servers 159

///
// Retract
void Robot_impl::Retract(CORBA::Long distance,CORBA::Boolean_out result)
{

char msg[200], dir[20], data[10];
unsigned short * spRconf;
short sRobotPos2;
CString csConv;
spRconf=new unsigned short;
dpPosData=(double *) new double[11];
long dist;
double theta_L, theta_U; // Angles of the triangle in radians
double dtheta_L, dtheta_U; // Angles of the triangle in Degrees
double dtheta_LN, dtheta_UN; // Angles of the triangle in Degrees
double dtheta1, dtheta2; // Angles of the triangle in Degrees
double theta1, theta2; // Angles of the triangle in Radians
double pulsos_l, pulsos_L; // Pulses for axis L
double pulsos_u, pulsos_U; // Pulses for axis U
double djw, theta_x, dtheta_x;
double angC, angB, angH; // Angle of the triangle
double H; // Height of the arm
double a,b,c,d; // Links a and b, and Arc C to compute
double m, n; // Links m and n
double cn, dc, pi;
double cte1 = 360.0/484000.0; // For convesion of Degree vs. Pulses
double cte2 = 360.0/484000.0;
double cte3 = 360.0/283600.0; // Variables of BscMovj
double Speed = speedvar;
char cFrName[100] = "BASE"; // Coordinate Frame
unsigned short RConf=0;
unsigned short ToolNo = 00; // Short stores the tool number
double * dpTargetP; // Target position storage pointer
short sRobotPos3; // Return value from BscMovj
// Starting CODE
sprintf(msg,"Requesting to Retract in one amount of %ld",distance);
ptr->Display(msg);
c = 0.0; pi = 3.1415926535; cn = 0.0;

// Working with JOINT 1 //
sRobotPos2 = BscIsLoc(sComHandle, 1, spRconf, dpPosData);
pulsos_l = dpPosData[1]; pulsos_u = dpPosData[2]; // Get pulse counting
dtheta_L = pulsos_l*cte1; dtheta_U = pulsos_u*cte2; // converting to degrees
theta_L = dtheta_L * pi / 180.0; // Converting to radians
theta_U = dtheta_U * pi / 180.0;
// Links a, b and distance n and Computing value of b
a = 570.0; m = 127.0; n = 640.0; b = sqrt(m*m+n*n);
// Computing value of angle X
theta_x = atan2(m,n);
dtheta_x = theta_x * 180 / pi;
// Values of angles theta1 y theta2
dtheta1 = 90.0 - dtheta_L;
dtheta2 = - dtheta_L + dtheta_U + dtheta_x;
// converting to radians
theta1 =dtheta1*pi/180.0;
theta2 =dtheta2*pi/180.0;

///
// Retract
void Robot_impl::Retract(CORBA::Long distance,CORBA::Boolean_out result)
{

char msg[200], dir[20], data[10];
unsigned short * spRconf;
short sRobotPos2;
CString csConv;
spRconf=new unsigned short;
dpPosData=(double *) new double[11];
long dist;
double theta_L, theta_U; // Angles of the triangle in radians
double dtheta_L, dtheta_U; // Angles of the triangle in Degrees
double dtheta_LN, dtheta_UN; // Angles of the triangle in Degrees
double dtheta1, dtheta2; // Angles of the triangle in Degrees
double theta1, theta2; // Angles of the triangle in Radians
double pulsos_l, pulsos_L; // Pulses for axis L
double pulsos_u, pulsos_U; // Pulses for axis U
double djw, theta_x, dtheta_x;
double angC, angB, angH; // Angle of the triangle
double H; // Height of the arm
double a,b,c,d; // Links a and b, and Arc C to compute
double m, n; // Links m and n
double cn, dc, pi;
double cte1 = 360.0/484000.0; // For convesion of Degree vs. Pulses
double cte2 = 360.0/484000.0;
double cte3 = 360.0/283600.0; // Variables of BscMovj
double Speed = speedvar;
char cFrName[100] = "BASE"; // Coordinate Frame
unsigned short RConf=0;
unsigned short ToolNo = 00; // Short stores the tool number
double * dpTargetP; // Target position storage pointer
short sRobotPos3; // Return value from BscMovj
// Starting CODE
sprintf(msg,"Requesting to Retract in one amount of %ld",distance);
ptr->Display(msg);
c = 0.0; pi = 3.1415926535; cn = 0.0;

// Working with JOINT 1 //
sRobotPos2 = BscIsLoc(sComHandle, 1, spRconf, dpPosData);
pulsos_l = dpPosData[1]; pulsos_u = dpPosData[2]; // Get pulse counting
dtheta_L = pulsos_l*cte1; dtheta_U = pulsos_u*cte2; // converting to degrees
theta_L = dtheta_L * pi / 180.0; // Converting to radians
theta_U = dtheta_U * pi / 180.0;
// Links a, b and distance n and Computing value of b
a = 570.0; m = 127.0; n = 640.0; b = sqrt(m*m+n*n);
// Computing value of angle X
theta_x = atan2(m,n);
dtheta_x = theta_x * 180 / pi;
// Values of angles theta1 y theta2
dtheta1 = 90.0 - dtheta_L;
dtheta2 = - dtheta_L + dtheta_U + dtheta_x;
// converting to radians
theta1 =dtheta1*pi/180.0;
theta2 =dtheta2*pi/180.0;

Figure B.12: Retract command code implementation for Motoman UP6, part 1.

160

// Values to calculate:
// Angle C, side c, height H, distance d. angB, angH
angC = pi/2 + theta_x + theta_U;
c = sqrt(a*a+b*b-2*a*b*cos(angC));
H = a*sin(theta1)+b*sin(theta2);
d = sqrt(c*c - H*H);
angB = acos((b*b-a*a-c*c)/(-2.0*a*c));
angH = theta1-angB;
// Validation
if (abs(c-a-b) < 0.02)
{

sprintf(msg,"Arm full extended...no action taken place");
AfxMessageBox (msg);

}
else
{

// Now, we calculate the new distance
cn = c - dist;
if (cn > (a+b))
{

sprintf(msg,"Distance is out of range making a full extended");
AfxMessageBox (msg);
cn=(a+b);

}
sprintf(msg,"Extending AHEAD"); AfxMessageBox (msg);
angC = acos((a*a+b*b-cn*cn)/(2*a*b));
angB = acos((a*a+cn*cn-b*b)/(2*a*cn));
theta1 = angB + angH;
// Converting to degrees
dtheta1 = theta1*180/pi;
dc = angC*180/pi;
//New values of axis in grades
dtheta_LN = 90 - dtheta1;
dtheta_UN = dc-dtheta_x-90;
//To keep End-Effector Position
djw = -(dtheta_LN - dtheta_L) + (dtheta_UN - dtheta_U);
// Conversion to pulses
theta_L = dtheta_LN*pi/180.0; theta_U = dtheta_UN*pi/180.0;
pulsos_l = dtheta_LN /cte1; pulsos_u = dtheta_UN /cte2;
djw = djw/cte3;
dpPosData[1]=pulsos_l; dpPosData[2]=pulsos_u; dpPosData[4]=dpPosData[4]-djw;
// Retracting to new position //
sRobotPos3 = BscPMovj (sComHandle, Speed, ToolNo, dpPosData);

}
result = TRUE;

}

// Values to calculate:
// Angle C, side c, height H, distance d. angB, angH
angC = pi/2 + theta_x + theta_U;
c = sqrt(a*a+b*b-2*a*b*cos(angC));
H = a*sin(theta1)+b*sin(theta2);
d = sqrt(c*c - H*H);
angB = acos((b*b-a*a-c*c)/(-2.0*a*c));
angH = theta1-angB;
// Validation
if (abs(c-a-b) < 0.02)
{

sprintf(msg,"Arm full extended...no action taken place");
AfxMessageBox (msg);

}
else
{

// Now, we calculate the new distance
cn = c - dist;
if (cn > (a+b))
{

sprintf(msg,"Distance is out of range making a full extended");
AfxMessageBox (msg);
cn=(a+b);

}
sprintf(msg,"Extending AHEAD"); AfxMessageBox (msg);
angC = acos((a*a+b*b-cn*cn)/(2*a*b));
angB = acos((a*a+cn*cn-b*b)/(2*a*cn));
theta1 = angB + angH;
// Converting to degrees
dtheta1 = theta1*180/pi;
dc = angC*180/pi;
//New values of axis in grades
dtheta_LN = 90 - dtheta1;
dtheta_UN = dc-dtheta_x-90;
//To keep End-Effector Position
djw = -(dtheta_LN - dtheta_L) + (dtheta_UN - dtheta_U);
// Conversion to pulses
theta_L = dtheta_LN*pi/180.0; theta_U = dtheta_UN*pi/180.0;
pulsos_l = dtheta_LN /cte1; pulsos_u = dtheta_UN /cte2;
djw = djw/cte3;
dpPosData[1]=pulsos_l; dpPosData[2]=pulsos_u; dpPosData[4]=dpPosData[4]-djw;
// Retracting to new position //
sRobotPos3 = BscPMovj (sComHandle, Speed, ToolNo, dpPosData);

}
result = TRUE;

}

Figure B.13: Retract command code implementation for Motoman UP6, part 2.

Appendix C

Vision Server

The Vision server module is a wrapper component that implements the generic interface

definition established for this thesis work, this is shown in Figure C.1. From a general

point of view this component wraps two abstraction levels:

a) Data image capture/transmission wrapping level, and

b) Image Object information wrapping level

In order to describe how these services are wrapped, we briefly describe the fundamental

stages on image processing. Next, the following sections will describe the specific details

about how the parameters and knowledge was configured to overcome the problem

domain of a distributed robotic application.

// IDL Vision Server Definition
interface ImageServer
{

void Learn(in short x, in short y, in string name);
void Find(in string name);
void Track(in string name);
void EndTrack();
void GetObj();

};

// IDL Vision Server Definition
interface ImageServer
{

void Learn(in short x, in short y, in string name);
void Find(in string name);
void Track(in string name);
void EndTrack();
void GetObj();

};

Figure C.1: Basic Vision IDL interface definition to command a generic vision server

161

162

 Scenes from
problem domain

Information about
objects of interest

Image
Acquisition

Pre-processing Segmentation Representation Interpretation

Figure C.2: Fundamental stages on image processing.

C.1 Fundamental stages for image processing

In order to provide the aforementioned services, scenes from real word must pass by

several stages before useful information is extracted from them. These stages involve

hardware and software issues that limit the scope and performance of the vision system,

next Figure C.2 shows these steps.

C.1.1 Image Acquisition

Three elements are necessary to acquire digital images of video. The first one is a

physical device that is sensitive to the visible band of the electromagnetic spectrum and

that produces an analog electrical signal proportional to the level of energy perceived.

The second element is a cable by which the electric signal is transmitted, and the third

is a digitizer, responsible for converting the electric signal from the physical device into

a digital form. Nowadays, the analog signal is already converted inside the physical

device and a bit stream (digital format) is sent through the cable following a standard

protocol (IEEE 1394). This improves the quality of the image but reduces the cable

distance available. The image acquired has a resolution established by the number of

pixels provided by the camera. In our case we used a stereo camera from Videre Design

with a resolution of 320H x 240V pixels, and color capability. The model camera is

STH-DCAM, and it has a frame rate of 15 frame per second (fps) using both cameras in

color mode. Due this factor we choose a 10 fps rate which is acceptable for our purposes.

C.1.2 Image Pre-processing

Once the image frame is captured, the following step is the image pre-processing. This

stage name is given to the low level abstraction operations in the images that do not

Vision Server 163

increase the quantity of information but suppress information that is not prominent for

the main analysis objectives of a given case. The main function is to improve the image

quality so there is a bigger chance to increase the opportunity of success of the following

processes. Typically, the techniques involve contrast enhancement and noise removal.

C.1.3 Segmentation

The third step is the segmentation that subdivides an image in its parts or constituent

objects. The level of this subdivision depends on the problem to resolve, this is, the

segmentation should be stopped when the objects of interest for an application have been

isolated. In general, automatic segmentation is a difficult task. Segmentation algorithms

have three common forms: “Methods based on edges”, “Techniques based on regions”

and, “Techniques based on thresholds”. Methods based on edges are centered in the

detection of contours. They delimit the edge of an object and segment the pixels inside

the contour as belonging to that object. Their weakness consists in connecting separated

or incomplete contours, which make them susceptible to failures. Techniques based on

regions, usually operate in the following form: the image is divided into regions grouped

by neighbor pixels with similar levels of intensity. The adjacent regions are united

under certain criterion that involves the homogeneity and sharpness of the borders of

the region. A very strict criterion provoke fragmentation, a little strict criterion causes

unwanted unions. Techniques based on thresholds segment the image pixel by pixel,

that is to say, they do not take into consideration the value of the neighboring pixels.

If the value of a pixel falls inside of the rank specified for an object the pixel belongs to

the segment. They are effective when the objects and the background of the image have

ranks of different values and a marked contrast exists among them. In this technique

the borders of blurry regions can cause problems.

The selection of a segmentation technique is determined by the particular characteristics

of the problem to resolve. The outputs of this phase are the values of the pixels that

form the border of a region or the region itself. In this thesis work the objective of

the segmentation is to extract the characteristics necessary of an object in movement in

order to separate it from other parts of the image.

C.1.4 Representation and codification

The knowledge about the problem domain is usually codified in a knowledge database.

This knowledge can be as simple as to detail the regions of an image where is known

that information of interest is located, limiting in this way the search scope that should

be carried out to find such information. In the other hand, the knowledge database can

164

be very complex, such as an interrelated list of all the possible defects in a material

inspection problem. The knowledge database guides the operation of each processing

module and guides the interaction and communication among them. In our case the

object obtained from the previous stage are identified by a set of parameters as we will

shown in the following sections.

C.1.5 Acknowledge and Interpretation

The computation in a high level includes the recognition and interpretation processes.

These two processes have a great similarity with intelligent knowledge. Most of the

techniques employed by the processes of low and intermediate level utilize an assembly

of well defined formulations. Nevertheless, the recognition and interpretation of the

information provided by those levels, become much less precise and more speculative.

This relative lack of comprehension is translated into a formulation with constraints

and idealizations whose main purpose is to reduce the complexity of the tasks, until

achieving a reasonable level. The final product is a system with operating capacities

extremely specialized. In our case these capacities correspond to the functions defined

in the Vision IDL interface.

C.2 Data image capture/transmission level

This is a basic service provided by the vision server in which the image stream captured

is compressed and send it through a specific channel. The channel is created using the

event service defined by CORBA specification. Figure C.3 shows the steps carried out

to provide this basic functionality.

Although there are several ways to transmit the image we decided to use a free length

format using a string data type from CORBA specification. The only inconvenience

with this alternative is that every zero value inside the stream must be transformed

to non-zero value in order to avoid undesired trim of the image. Depending on the

image data this transformation could generate an overhead in data and processing time

around a 5% of the data size to send. The reverse procedure must be executed to recover

the original image. Due to we are using a JPEG format some data will be lost in the

compression procedure. The image is 320W x 240H in size for an original size of 225

KB (three bytes are used for each pixel to manage RGB color), with the compression

procedure the image data is around 20 KB. This gives an 11:1 ratio compression.

Vision Server 165
Image
Server

Client-1

Image
Event

Channel

Client-2

Client-3

Client-n

Compressed
Image Frames

Figure C.3: Image Transmission using an event channel.

C.3 Image Object information wrapping level

To enhance the Distributed robotic system, the vision component is integrated to provide

the following functionalities:

1. Image feedback to human user

2. learn specific objects defined by the user

3. find and track selected objects

4. send object position feedback to the robot brain

The image feedback is provided by the previous wrapping level and the other function-

alities require more image processing. Due to these functionalities are required on a

real-time base some constraints are imposed in order to improve the response time of

the vision system.

C.3.1 Constraints

The objects to learn and to find must be solid objects (geometric figures), not overlapped,

and only their central point location is required. This location is referenced at pixel level

p(x, y). Due we are using a stereo-camera there is more information required, this is the

distance of the central point of the object to the center point of the camera base line.

166

Figure C.4: Stereo images used for the learning process. For calibration purposes the

left image is used as a reference while the right image is adjusted, this is observed by

the curvature on the bottom.

C.3.2 Learning an object in an image stream

The vision server provides to the user with the ability to decide which object to learn.

Using the image feedback the user can select an object (normally defined as an area)

using the mouse pointer. The point p(x, y) selected must be inside the object area.

The area selected is filled in with a specific color (red) to feedback the user about what

area is understood by the learning method. This step is repeated for 10 frames and the

computation for each frame is averaged. At the end, the area is outlined following its

contour and several parameters are defined for this object. In figure C.4 there are two

images showing these steps. Left image shows the filling process and right image shows

the contour line only. Figure C.5 shows the dialog window for the learning parameters

and Table C.1 shows the specific parameters calculated for each object. Mainly we

defined several Hu moments and some features. The features are defined as corners and

they are marked as small circles in the contour line (figure C.4). Also, the center point

of the object is marked as a cross. If the final data is agreed with the user appreciation,

then a name provided by the user is assigned and the object data is stored.

Each time an object is learned, a square image area containing the object is saved as a

template. The template is saved as a bitmap file where the filename is composed of the

object name and followed by its sample number. Figure C.6 depicts this idea.

Vision Server 167

Table C.1: Main parameters defined to identify a solid object.

Parameter Description

Name Object name provided by the user

Area Average area taken from 10 image frames

Perim Average perimeter taken from 10 image frames

NF Number of features associated with the object

M0 Hu moment 0

M1 Hu moment 1

M2 Hu moment 2

Num Number of samples taken for this object name

Figure C.5: Object parameter obtained from the learning process. In this case, these

parameters correspond to the geometric figure of a circle.

Template saved as a
bitmap file

Figure C.6: Object template selected to store it as a bitmap file.

168

C.3.3 Finding an object in an image stream

Finding an object is a process where the previous stored information of the object

is used to make a point-based segmentation. The segmentation is carried out by a

template match algorithm. This algorithm creates a dynamic list where possible central

point candidates are selected as possible object match. Next, due to neighbor points

represent the same object, there is a filter process to select separated points. The second

dynamic list is processed to evaluate the parameter of each object. In each comparison

the object with the minimum Euclidian distance from the original object’s parameter is

selected. Also, there is a defined error threshold to select the last object as a good or

bad matching. Figure C.7 shows the different stages of the Finding process.

C.3.4 Tracking objects in an image stream

Finding an object is a very expensive algorithm but once the object is located it is easy

to track it. For object tracking we are using the interline method [Guedea et al., 2003b]

which is a very fast process based on the object contour. With this method the central

point of the object and its pose can be computed in few steps. The computation cycle

is restricted to the contour size; that for our problem it is around 200 points at most for

the geometric figures of the block-world problem. To detect the contour the algorithm

starts in the previous central point of the object. The only drawback of this method

is that it is based on a closed contour, which some times (very often) is affected by

the environment illumination or object overlapping. Smooth movements of regular size

objects can be tracked without problem, but irregular movements such as drastic change

on the direction affect the tracking process. Once the vision server is tracking any object

it gets into a conditional loop to track a list of objects. This is a dynamic list which can

be expanded to track multiple objects. The processing time is increased proportionally

to the number of tracking objects. Figure C.8 shows different stages of the tracking

process.

C.4 General operation of the Vision Server

The above processes can be requested to the server in any order; the client could request

to learn one object, then it can request to start its tracking or just find its current

position. To deal with these requests the vision server has the following operation

modes:

IDLE: No image is captured and no image stream is sent.

Vision Server 169

(a) (b)

(c) (d)

Figure C.7: Steps carried out to find a specific object using a mixture of algorithms.

In (a) the triangle object is selected as the object to find using template matching.

Due the small size of the template several options are available as is shown in (b).

After a distance filter is applied only a few objects will be discriminated in (c). Finally

the triangle is selected using other object features as area, perimeter or the number of

corners, among others.

170

Tracking Objects
Pointer EndEffector x y status

NIL

Tracking Objects
Pointer EndEffector x y status

NIL

Circle x y status

(a) (b)

Figure C.8: Tracking object process. The vision system has a list of objects to track

where the first object is by default the End-Effector if it must be tracked. Then a

chaining list is used to keep information about the last central point registered for each

object. In each subsequent frame the object is located using the interline method.

CAPTURING: The vision system starts and keeps capturing images at predefined

rate (10 fps).

CONNECTED The vision system sends compressed images through a specific chan-

nel. (Image Channel).

LEARNING: The vision system learns a specific object indicated by the user through

the IDL interface or from the console.

FINDING: The vision system is looking for a specific object, the name of the object is

provided by the user. Once the finding process is ended the vision system responds

with OK or FAIL, depending if the object is localized or not. The last position of

the object is also reported.

TRACKING: The vision system tracks a list of objects and reports their position in

pixel dimensions, p(x, y), and their relative distance to the center of the camera.

The process is started with a single command and it can be issued for different

objects.

Some of the previous states could coexist but for safety operation the server cannot

be at learning mode and tracking mode at the same time. The tracking process can

manipulate several objects but there is only a single command to stop the tracking

of all of them, there is not command to stop tracking a specific object. A graphical

representation of the communication channels is shown in Figure C.9.

Finally, there is a single command which its function is to get the list of objects learned

by the vision system. The response is a list of objects that have been learned by the

Vision Server 171

Figure C.9: Vision Server communication scheme. Due to the intense and heavy traffic

of information, two different communication channels are defined for the vision system.

One channel is dedicated to transmit compressed image stream and the other channel

is used for object information. The vision system keeps a database of learned objects.

vision system which are stored in a database. This database could be shared with other

vision systems.

For each command of the IDL interface there is an asynchronous reply. The reply could

be a single response or a periodic response. Table C.2 shows the responses for each case;

all responses follow a LISP format.

The vision server can be accessed through its IDL interface; one or more clients can

request its services concurrently. In this thesis work the vision server is used without

any access control, due to several clients could request different objects. The channel

scheme helps to provide the services to many clients. Then, for future work it is necessary

to have a minimum control scheme to avoid mutually exclusive operations, i.e. one client

requesting to learn one object while other client is requesting to track another object.

172

Table C.2: Response Messages transmitted for each command of the vision server

Command Response

Learn(x, y, name) Single response

(LEARN “name” OK)

(LEARN “name” FAIL)

Find(name) Single response

(FIND “name” OK (x , y))

(FIND “name” FAIL)

Track(name) Periodic response

(TRACK number of objects

(“object name 1” OK (x, y, d)) . . .

(“object name n” FAIL)

)

EndTrack() Stop all messages of the tracking process

GetObj() (GET number of objects (“name 1”, . . . , “name n”))

Appendix D

Planning Server

The planning server module is a wrapper component that implements the generic in-

terface definition for planning tasks. The intelligent planning system in conjunction

with other components is designed and integrated into a cooperative robotic system.

This includes a vision server (a stereo camera system with pan-tilt unit), and a robot

server. CORBA is used to integrate these different modules. These are located on

different platforms, also are implemented into different operating systems. In order to

integrate distributed systems, CORBA IDL (Interface Description Language) is defined

as a planning system to connect and hide internal information to outside modules, i.e.

wrap existing modules. In this thesis, an existing graphplan planning program is used

with very few modifications. The graphplan module is wrapped by the IDL defined for

the PLANNING server and seamlessly connected with other modules. The main task

of the planner server is to provide a set of sequential actions that transform the initial

state of a set of objects into a final or goal state.

D.1 Planning Systems

A Planning system is an intelligent system that generates a sequence of actions to achieve

given goals [Russell and Norving, 2002]. There are many types of planning problems

and approaches. Examples of planning problems are configuration planning solving for

packing pallets into a truck, route planning in networks, path planning for robots.

To generate desirable actions to accomplish given goals, we need to describe a given

problem. A fact describes a particular situation, i.e. which is the current state of a set

of objects. An action, described by a operator-object duple, describes how this action

changes the given facts after its execution. Before the action can be executed some

pre-conditions must be true. A goal is a set of facts that should be true.

173

174

The Block World is a classic example of artificial intelligence research and we used it in

this thesis. It consists of labelled blocks. In our experiments, a different shape is attached

to each blocks, such as a circle and a triangle, instead of alphabetic characters. There is

a manipulator which can perform the following actions: pick up, put down, stack, and

un-stack. Unlike simulated experiments in artificial intelligence, in our experiment we

actually use a robot manipulator that performs these actions with the help of visual

feedback from a stereo camera. Figure D.1 shows an example of the block world with

shape-labelled blocks. Figure D.2 shows an actual experimental setting, manipulator

robot and block objects and stereo-camera unit.

(a) Initial State (b) Final Goal

Figure D.1: An example of the block world.

Stereo-Camera

Pan-Tilt
unit

End-Effector
Robot-1

Objects

Stereo-Camera

Pan-Tilt
unit

End-Effector
Robot-1

Objects

Figure D.2: Experimental set up.

One language used to represent a planning problem is STRIPS (Stanford Research In-

stitute Problem Solver). STRIPS rules describe most of the common action of classical

planning. They consist of operators (actions) with pre-conditions and effects. An op-

erator can be executed if a set of pre-conditions (previous state) are true. After the

Planning Server 175

execution some effects change the current state. We use STRIPS type fact and oper-

ation descriptions. For example, pick-up (x) operator has the pre-condition of on(x,

Table), clear(x), and arm-empty. The effect of pick-up(x) is holding(x).

There are different types of planning systems. Among them we have Partial-Order-

Planning (POP), Graphplan, and SATplan. POP uses least commitment search space.

Graphplan exploits relaxed problem, then searches. SATplan translates to logic, and

then uses satisfiability algorithms. In our research, we adapt Graphplan, because it

always returns a shortest possible partial-order plan [Blum and Furst, 1997]. Some of

the advantages of Graphplan are that it always finishes and is faster than POP. The

main idea of Graphplan is to solve a relaxed problem. It converts to propositional

representation. Then it constructs a graph with levels which has time steps. Graphplan,

then, identifies simple inconsistencies between pairs of actions.

D.2 Fundamental state of Planning processing

In order to manipulate blocks, the following stages are performed: First, we need to

identify each block’s current position. This information is obtained from the vision

server (See appendix C). Second, the actual physical position information is converted

into a format that the graphplan planning module can understand. Physical location

information is abstracted as to which block is on top of which block. Figure D.3 depicts

these steps. Based on these facts, then the graphplan planning modules is asked to

generate the sequence of actions so that the manipulator needs to follow in order to

accomplish the required goal positions of the blocks.

(TRACK 4
(Circle OK (211,344,87.5))
(Cross OK (277,351,87.1))
(Rectangle OK (281,344,86.5))
(Triangle OK (281,296,86.8))
)

Ontable(Cross), Ontable(Circle),
On(Triangle,Cross),
On(Rectangle,Triangle),
ArmEmpty

LISP Format from vision server STRIPS Format for planning server

Figure D.3: Data transformation from vision server to planning server.

176

D.3 Main modules for Planning Server Wrapper com-

ponent

Since our main research focus is to integrate multiple robots and build cooperative

robots, we have decided to use an existing graphplan program. In order to use existing

code and to reduce the complication of using the code, we designed a wrapper planner

component. The wrapper component hides all the details of the planning system, and

provides outside interface to other robots and modules.

As shown in figure D.4, to wrap the existing planning system program, we need to have

two sub-components. The first sub-component is a data conversion component. It con-

verts visual information and user commanded goal position information to the data that

the planning system can understand. The second component is a data communication

component. Then the outside module can ask for a planning operation and retrieve the

actions that accomplish the planning goal.

Plan
Server

Data conversion
for

Planning system

Data conversion

Interface with
other modules

Figure D.4: Fundamental modules for planning server wrapper component.

D.4 Wrapper component CORBA IDL

We design CORBA IDL (interface design language) to implement a wrapper component

for a planning system. Using this IDL definition, we have network stubs so that a server

and a client can communicate through a network. CORBA IDL provides a basic network

framework and we need to implement data conversion and task control module using

IDL framework.

Planning Server 177

Next we design a “BLOCK” class, which parses the low level vision information and

transforms it into a format that the planning system can understand. The next section

explains how the information is composed into the IDL for interfacing to the planning

system.

Planning system interface

Planning system is composed of two parts. One is the server part, which computes ac-

tual plan based on given “Operators” and “Facts”. The other part is the client, which

gets “Operator” and “Fact” inputs from files, from the user, or from other modules.

First, Client reads the “Operator” and “Fact (goal)”. It converts this information into

Plan systems’ own “GPLAN IDL sequence” (details will be found from the following

section). Then it sends “GPLAN IDL sequence” to the Plan Server. The Plan Server

reconverts GPLAN IDL sequence information into its own data list in order to compute

a plan. Now, the Client can request a plan. The Planning Server computes a plan based

on given Operator and Facts and returns the result. Finally, the Client can use the

returned plan, and converts this high level plan into lower level, i.e. a more detailed

plan in order that the robot can understand. In figure D.5 the summary of the planning

system interface is described.

Plan
Server

Client

1. Read “Operator” and “fact”

2. Convert “Operator” and “fact”
to GPLAN format (IDL)

3. Send GPLAN IDL data

4. Convert GPLAN IDL data to
Planner data list

5. Request plan

6. Compute plan based on
operator and fact

7. Reply plan

8. Convert replied plan into
detail plans for robots

Figure D.5: Plan system interface and access mechanism.

GPLAN IDL interface

GPLAN IDL is made mainly for information passing between Planning Server and

Client. In GPLAN IDL, there are three important things, one is opSeq sequence, which

stores Operator data, another is Facts struct, which stores Fact data (goal), and the

178

other is planList sequence, which stores computed plan. When Client requests to com-

pute a plan, it should send operator and facts using GPLAN IDL formats (opSeq se-

quence, Facts struct). Next the Planning Server returns a computed plan using the

planList sequence. In Figure D.6 the complete IDL Planning interface is shown.

// Planner IDL

module GPLAN{
struct Token { string item; };
typedef sequence<Token> tokenList;
struct Fact {tokenList item; };
typedef sequence<Fact> factList;
typedef sequence<Fact> paramList;
typedef sequence<Fact> precondList;
typedef sequence<Fact> effectList;
struct Operation
{

string name;
factList param;
factList precond;
factList effect;

};
typedef sequence<Operation> opSeq;
struct Facts
{

factList types;
factList initials;
factList goals;

};
struct Plans { string name; };
typedef sequence<Plans> planList;
interface OpInterface {

// read operation file and save into OP_LIST
void getOperations (inout opSeq OP_LIST_clt);
// read facts file and save into FACT_LIST
void getFacts (inout Facts FACT_LIST_clt);
// read facts file and save into PLAN_LIST
void getPlan (inout planList PLAN_LIST_2clt);
void startPlan ();

};
};

// Planner IDL

module GPLAN{
struct Token { string item; };
typedef sequence<Token> tokenList;
struct Fact {tokenList item; };
typedef sequence<Fact> factList;
typedef sequence<Fact> paramList;
typedef sequence<Fact> precondList;
typedef sequence<Fact> effectList;
struct Operation
{

string name;
factList param;
factList precond;
factList effect;

};
typedef sequence<Operation> opSeq;
struct Facts
{

factList types;
factList initials;
factList goals;

};
struct Plans { string name; };
typedef sequence<Plans> planList;
interface OpInterface {

// read operation file and save into OP_LIST
void getOperations (inout opSeq OP_LIST_clt);
// read facts file and save into FACT_LIST
void getFacts (inout Facts FACT_LIST_clt);
// read facts file and save into PLAN_LIST
void getPlan (inout planList PLAN_LIST_2clt);
void startPlan ();

};
};

Figure D.6: Planner IDL interface.

Bibliography

[Al-Mohamed et al., 2003] Mayez Al-Mohamed, Onur Toker, and Asif Iqbal. Design

of a multi-threaded distributed telerobotic framework. In Proceedings of the 10th

IEEE International Conference on Electronics, Circuits and Systesm, ICECS 2003,

volume 3, pages 1280–1283, December 14-17 2003.

[Arkin and Balch, 1997] R. C. Arkin and T. Balch. Aura: Principles and practices in

review. Journal of Experimental and Theoretical AI, 9(2-3):175–189, 1997.

[Beni and Wang, 1991] G. Beni and J. Wang. Theoretical problems for the realization

of distributed robotic systems. In Proceedings of the International Conference on

Robotics and Automation, volume 3, pages 1914–1920, Sacramento, California, April

9-11 1991.

[Benmohamed et al., 2004] Hcene Benmohamed, Arnaud Leleve, and Patrick Prevot.

Remote laboratories: New technology and standard based architecture. In Interna-

tional Conference on Information and Communication Technologies: From theory to

applications (ICCTA 04), pages 101–102, Damas, Syria, April 2004.

[Bishay et al., 1995] M. Bishay, M. E. Cambron, K. Negishi, R.A. Peters, and Kazuhiko

Kawamura. Visual servoing in isac, a decentralized robot system for feeding the

disabled. In IEEE, pages 335–340, 1995.

[Blum and Furst, 1997] A. Blum and M. Furst. Fast planning through planning graph

analysis. Artificial Intelligence, 90:281–300, 1997.

[Borstel and Gordillo, 2004] Fernando D. Von Borstel and José L. Gordillo. Modelo

genrico y modular para desarrollar laboratorios virtuales en telerobótica. In Proceed-

ings of IEEE Computer Science Society, IX Ibero-American Workshops on Artificial

Intelligence IBERAMIA 2004, pages 399–408, Puebla México, November 22-23 2004.

[Bruyninckx, 2001] H. Bruyninckx. Open robot control software: the orocos project. In

Proceedings of the 2001 IEEE International Conference on Robotics and Automation,

volume 3, pages 2523–2528, Seoul, Korea, May 21-26 2001.

179

180

[Bruyninckx, 2002] H. Bruyninckx. Orocos: design and implementation of a robot con-

trol software framework. In Proceedings of the 2002 IEEE International Conference

on Robotics and Automation, 2002.

[Casini et al., 2003] Marco Casini, Domenico Prattichizzo, and Antonio Vicino. E-

learning by remote laboratories: A new tool for control education. In Proceedings

of 6th IFAC Symposium on Advances in Control Education, pages 95–100, Oulu, Fin-

landia, June 2003.

[Corporation, 1999] Microsoft Corporation. Distributed Component Ob-

ject Model (DCOM). Microsoft Press, Redmont, Washington, 1999.

http://www.microsoft.com/com/tech/dcom.asp.

[Deniz et al., 2003] Dervis Z. Deniz, Atilla Bulancak, and Gokham Ozcan. A novel

approach to remote laboratories. In Conference of the ASEE/IEEE Frontiers in

Education, Boulder, CO, USA, November 5-8 2003.

[D’Souza and Wills, 1998] Desmond F. D’Souza and Allan Cameron Wills. Object, com-

ponents and frameworks with UML: a catalysis approach. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1998.

[El-Khalil et al., 2004] Ibrahim El-Khalil, Insop Song, Federico Guedea, Fakhri Karray,

and Yanquin Dai. Natural language interface for mobile robot navigation control. In

Proceedings of the 2004 IEEE Intl. Symposium on Intelligent Control, pages 210–215,

Taipei, Taiwan, September 2-4 2004.

[Esche et al., 2003] Sven K. Esche, Constantin Chassapis, Jan W. Nazalewicz, and Den-

nis J. Hromin. An architecture for multi-user remote laboratories. In World Trans-

actions on Engineering and Technology Education, volume 2, pages 7–11, 2003.

[Garćıa-Zubia et al., 2005] Javier Garćıa-Zubia, Diego López de Ipiña, and Pablo Ordu

na. Evolving towards better architectures for remote laboratories: a practical case.

In International Journal of Online Engineering, volume 1, 2005.

[Giddings, 2006] Victor Giddings. Not your fathers corba - an architecture for embedded

and real-time systems. RTC Magazine, October 2006.

[Guedea et al., 2002] F. Guedea, I. Song, F. Karray, and O. Basir R. Soto. Multi-agent

corba-based robotics vision architecture for cue integration. Proceedings of IEEE

International Conference on Systems, Man and Cybernetics, October 6-9 2002.

[Guedea et al., 2003a] F. Guedea, I. Song, F. Karray, and R. Soto. Enhancing dis-

tributed robotics systems using corba. Proceedings of the first conference on Hu-

manoid, Nanotechnology, Information and Control, Environment and Management,

HNICEM-2003, March 27-29 2003.

References 181

[Guedea et al., 2003b] F. Guedea, I. Song, F. Karray, and R. Soto. Real-time feature

extraction using interline method. Proceedings of the International Symposium on

Intelligent Control (ISIC’ 2003), pages 626–629, October 5-8 2003.

[Guedea et al., 2004] F. Guedea, I. Song, F. Karray, R. Soto, and R. Morales-Menéndez.

Wrapper components for distributed robotic systems. Proceedings of the Mexican

International Conference on Artificial Intelligence (MICAI) 2004, pages 882–891,

April 20-26 2004.

[Guedea et al., 2006a] F. Guedea, I. Song, F. Karray, and R. Soto. Building intel-

ligent robotic systems with distributed components. International Journal of Ad-

vanced Computational Intelligence and Intelligent Informatics (JACIII), 10(2):173–

180, March 2006.

[Guedea et al., 2006b] F. Guedea, I. Song, F. Karray, and R. Soto. Integration of dis-

tributed robotic systems. International Journal of Advanced Computational Intelli-

gence and Intelligent Informatics (JACIII), 8(1):7–13, January 2006.

[Henning and Vinoski, 1999] Michi Henning and Steve Vinoski. Advanced CORBA pro-

gramming with C++. Addison-Wesley, Reading, 1999.

[Henning, 2004] Michi Henning. a new approach to object-oriented middleware. IEEE

Internet Computing, 8:66–75, January-February 2004.

[Hexmoor et al., 1993a] H. H. Hexmoor, J. M. Lammens, and S. C. Shapiro. An au-

tonomous agent architecture for integrating “unconscious” and “conscious”, reasoned

behaviors. In Proceedings of Computer Architectures for Machine Perception, pages

328–336, Dec. 15-17 1993.

[Hexmoor et al., 1993b] H. H. Hexmoor, J. M. Lammens, and S. C. Shapiro. Em-

bodiment in glair: a grounded layered architecture with integrated reasoning for

autonomous agents. In Proceedings of The Sixth Florida AI Research Symposium

(FLAIRS 93), pages 325–329, April 1993.

[Jacob, 2006] Joseph M. Jacob. Corba/e: Not your father’s distributed architecture.

Electronic Design, page 18, June 2006.

[Jia et al., 2003] Songmin Jia, Yoshiro Hada, and Kunikatsu Takase. Development of

a network distributed telecare robotic systems using corba. In IEEE International

Conference on Robotics, Intelligent Systems and Signal Processing, pages 489–494,

Changsha, China, October 2003.

182

[Li et al., 2005] H. Li, F. Karray, O. Basir, and I. Song. An optimization algorithm

for the coordinated hybrid agent framework. In Proceedings of the 2005 IEEE Inter-

national Conference on Systems, Man and Cybernetics, volume 2, pages 1730–1735,

Hawaii, USA, October 10-12 2005.

[Mecella and Pernici, 2001] M. Mecella and B. Pernici. Designing wrapper components

for e-services in integrating heterogeneous systems. The VLDB Journal, 10:2–15,

2001.

[Musliner et al., 1993] D.J. Musliner, E.H. Durfee, and K.G. Shin. Circa: A cooperative

intelligent real-time control architecture. IEEE Transactions on Systems, Man and

Cybernetics, 23(6), March 1993.

[OMG, 2000] OMG. Common object request broker architecture and specification

(corba). Technical report, Object Management Group, Fall Church, USA, 2000.

[Pablos, 2004] Santiago E. Conant Pablos. On the task-driven generation of preventive

sensing plans for execution of robotic assemblies. PhD thesis, Instituto Tecnológico y

de Estudios Superiores de Monterrey, Campus Monterrey, Monterrey, N.L, December

2004.

[Pirjanian et al., 2000] P. Pirjanian, T.L. Huntsberger, A. Trebi-Ollennu, H. Aghaz-

arian, H. Das, S. Joshi, and P.S. Schenker. Campout: A control architecture for

multi-robot planetary outposts. In Proceedings of the SPIE Sensor Fusion and De-

centralized Control in Robotic Systems III, volume 4196, pages 221–230, Boston, MA,

Nov. 2000.

[Pirjanian et al., 2002] P. Pirjanian, C. Leger, E. Mumm, B. Kennedy, M. Garret,

H. Aghazarian, S. Farritor, and P. Schenker. Distributed control for a modular,

reconfigurable cliff robot. In Proceedings of the 2002 IEEE International Conference

on Robotics and Automation, pages 4083–4088, Washington, DC, May 2002.

[Rumbaugh et al., 2000] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Uni-

fied Modeling Language Reference Manual. Addison-Wesley, Object Technologies Se-

ries, Reading, MA, USA, 2000.

[Russell and Norving, 2002] S. Russell and P. Norving. Artificial Intelligence: A Modern

Approach, Second Edition. Prentice Hall, Upper Saddle River, New Jersey, 2002.

[RWI, 1999] RWI. Mobility 1.1, Robot Integration Software, User’s Guide. Real World

Interface, Jaffrey, NH, 1999.

[Sanz et al., 1999] R. Sanz, J.A. Clavijo, A. de Antonio, and M. Segarra. Ica: Middle-

ware for intelligent control. In Proceedings of the 1999 IEEE International Symposium

References 183

on Intelligent Control/Intelligent Systems and Semiotics, pages 387–392, Cambridge,

MA, Sept. 15-17 1999.

[Sanz et al., 2001] R. Sanz, M. Alonso, I. Lopez, and C.A. Garcia. Enhancing control

architectures using corba. In Proceedings of the 2001 IEEE International Symposium

on Intelligent Control, pages 189–194, Mexico City, Mexico, 5-7 Sept 2001.

[Schlegel and Worz, 1999] C. Schlegel and R. Worz. The software framework smartsoft

for implementing sensorimotor systems. In Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, IROS 1999, volume 3, pages

1610–1616, Kyongju, Korea, October 1999.

[Schmidt et al., 1997] D.C. Schmidt, A.S. Gokhlae, T.H. Harrison, and G. Parulkar. A

high-performance end system architecture for real-time corba. IEEE Communications

magazine, 35(2):72–77, February 1997.

[Simmons et al., 1990] R. Simmons, L.-J. Lin, and C. Fedor. Autonomous task control

for mobile robots. In Proceedings of 5th IEEE International Symposium on Intelligent

Control, 1990., volume 2, pages 663–668, Sept. 5-7 1990.

[Simmons, 2000] R. G. Simmons. Structured control for autonomous robots. IEEE

Transactions on Robotics and Automation, 10(1):34–43, February 2000.

[Skubic et al., 1995] M. Skubic, G. Kondraske, J. Wise, G. Khoury, R. Volz, and

S. Askew. A telerobotics construction set with integrated performance analysis. In

Proceedings of the 1995 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems,

volume 3, pages 20–26, Pittsburgh, PA, August 1995.

[Song et al., 2004] Insop Song, Federico Guedea, and Fakhri Karray. Distributed control

framework design and implementation for multi-robotic systems: A case study on

block manipulation. In Proceedings of the 2004 IEEE Intl. Symposium on Intelligent

Control, pages 299–304, Taipei, Taiwan, September 2-4 2004.

[Trevelyan, 2004] James Trevelyan. Lessons learned from 10 years experience with re-

mote laboratories. In International Conference on Engineering Education and Re-

search “Progress through Partnership”, Ostrava, Australia, 2004.

[Utz et al., 2002] Hans Utz, Stefan Enderle, Stefan Sablatng, and Gerhard Kraet-

zschmar. Miro - middleware for mobile robots applications. IEEE Transactions on

Robotics and Automation, 18:493–497, August 2002.

[Wong et al., 1999] Kwong K. Wong, Clive Ferguson, John Florance, Baliga Bantwal,

and Trevor Jones. Flexible delivery of practical learning experience through the in-

ternet: The remotely operated cnc machine teaching project. 1999.

184

[ZeroC, 2002] ZeroC. internet communication engine (ice) home page. [online]. Avail-

able: http://www.zeroC.com/ice.html, 2002.

