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Abstract

It is well known that success during robotic assemblies depends on the correct execution
of the sequence of assembly steps established in a plan. In turn, the correct execution of
these steps depend on the conformance to a series of preconditions and postconditions
on the states of the assembly elements and in the consistent, repeatable, and precise
actions of the assembler (for instance, a robotic arm). Unfortunately, the ubiquitous
and inherent real-life uncertainty and variation in the work-cell, in the assembly robot
calibration, and in the robot actions, could produce errors and deviations during the
execution of the plan.

This dissertation investigates several issues related to the use of geometric information
about the models of component objects of assemblies and the process of contact forma-
tion among such objects for tackling the automatic planning of sensing strategies. The
studies and experiments conducted during this research have led to the development of
novel methods for enabling robots to detect critical errors and deviations from a nominal
assembly plan during its execution. The errors are detected before they cause failure of
assembly operations, when the objects that will cause a problem are manipulated. Hav-
ing control over these objects, commanded adjustment actions are expected to correct
the errors.

First, a new approach is proposed for determining which assembly tasks require using
vision and force feedback data to verify their preconditions and the preconditions of
future tasks that would be affected by lack of precision in the execution of those tasks.
For this, a method is proposed for systematically assign force compliance skills for
monitoring and controlling the execution of tasks that involve contacts between the
object manipulated by the robot arm in the task and the objects that conform its direct
environmental configuration. Also, a strategy is developed to deduce visual sensing
requirements for the manipulated object of the current task and the objects that conform
its environment configuration. This strategy includes a geometric reasoning mechanism
that propagates alignment constraints in a form of a dependency graph. Such graph
codes the complete set of critical alignment constraints, and then expresses the visionand
force sensing requirements for the analyzed assembly plan. Recognizing the importance
of having a correct environment configuration to succeed in the execution of a task that
involve multiple objects, the propagation of critical dependencies allow to anticipate
potential problems that could irremediably affect the successful execution of subsequent
assembly operations. This propagation scheme represents the heart of this dissertation
work because it provides the basis for the rest of the contributions and work. The
approach was extensively tested demonstrating its correct execution in all the test cases.

Next, knowing which are the tasks that require preventive sensing operations, a sen-
sor planning approach is proposed to determine an ordering of potential viewpoints to
position the camera that will be used to implement the feedback operations. The ap-
proach does not consider kinematic constraints in the active camera mechanism. The
viewpoints are ordered depending on a measure computed from the intersection of two
regions describing the tolerance of tasks to error and the expected uncertainty from
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an object localization tool. A method has been posed to analytically deduce the de-
scriptions of inequalities that implicitly describe a region of tolerated error. Also, an
algorithm that implements an empirical method to determine the form and orientation
of six-dimensional ellipsoids is proposed to model and quantify the uncertainty of the
localization tool. It was experimentally shown that the goodness measure is an adequate
criterion for ordering the viewpoints because agrees with the resulting success ratio of
real-life task execution after using the visual information to adjust the configuration of
the manipulated objects.

Furthermore, an active vision mechanism is also developed and tested to perform visual
verification tasks. This mechanism allows the camera move around the assembly scene
to recollect visual information. The active camera was also used during the experimen-
tation phase.

Finally, a method is proposed to construct a complete visual strategy for an assembly
plan. This method decides the specific sequence of viewpoints to be used for localizing
the objects that were specified by the visual sensing analyzer. The method transforms
the problem of deciding a sequence of camera motions into a multi-objective optimiza-
tion problem that is solved in two phases: a local phase that reduces the original set of
potential viewpoints to small sets of viewpoints with the best predicted success proba-
bility values of the kinematically feasible viewpoints for the active camera; and a global
phase that decides a single viewpoint for each object in a task and then stitch them
together to form the visual sensing strategy for the assembly plan.
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Chapter 1

Introduction

1.1 Motivation

The interest in systems that automatically generate robot programs for assembly tasks

is growing due to the wider use of industrial robots in assembly applications [69]. This

interest has been motivated by the desire to reduce costs in small batch manufacturing

applications and to reduce time to reach rapidly changing markets.

The successful execution of assembly plans by robots is of fundamental importance

in modern manufacturing industries. In most of the cases, such success is reached by

surrounding the assembly cell by hard automation devices that guarantee the conditions

assumed by the plan. This devices increase the cost and reduce the flexibility of the

system.

No matter how many factors were taken into account during the automatic assembly

planning process, the failure of its blind execution and otherwise, the cost of the hard

engineering required to ensure its success, remains one of the most motivational facts

for the development of new approaches and techniques to cope with real life uncertainty

and errors during assembly plan execution. The roll of the hard engineering is precisely

to reduce or eliminate the uncertainty and errors that, otherwise, would modify the

state of the system in an unexpected way and produce failure.

In an ideal world, uncertainty – a level of variability in an action’s outcome or mea-

surement result – can be ignored. If uncertainty is absent, the assembly planner can

define tasks that guarantee success and its verification during execution is not required.

Unfortunately, ideal worlds only exist in simulated environments, where most of the

task planners do their job. Robot plan execution outside the simulated environment

had to deal with real world uncertainty. Uncertainty transform real plan execution in

an error-prone task.

1
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Commonly, to reduce the requirements of hard automation devices and still succeed in

making a robot execute an specific assembly plan, the sequence of operations gener-

ated by the task planner (whether human, computational, or some combination) has to

include an intermingled sequence of assembly-action/sensory-feedback/adjusting-action

commands, so that the assembly execution advance could be monitored and deviations

from the plan (if any) could be prevented or corrected [6].

There are several proposals for coping with uncertainty using sensory information during

assembly planning and plan execution [64]. Every one working under a set of specific

assumptions and restrictions. From them it can be concluded that the development of

domain-independent planners is currently beyond the scope of our technology and that

task-oriented domain knowledge is required to generate successful plans.

1.2 Problem Statement and Context

Fully automated assembly task planning suffers of combinatorial explosion which makes

it inappropriate in most realistic situations. Kavraki et al. [54] proved, that the prob-

lem of automatically generating assembly sequences is NP-complete even in the two-

dimensional case. Adding uncertainty and the requirement of including sensory-feedback

operations does not make it better. To deal with this problem, several clues and con-

straints have to be inserted into the system to reduce its complexity at a manageable size.

Natural constraints come from geometry and physics of a domain-specific knowledge;

artificial constraints are simplifying assumptions that together with heuristics work as

focusing hints to reduced sets of partial or full potential solutions.

An assembly plan describes a sequence of steps that have to be performed by a robot

in order to assemble a group of parts. In this dissertation these parts are modeled as

polyhedral objects that are manipulated by a robot arm, also referred as manipulator,

one at the time.

The manipulation process of an assembly part by the robot is composed, basically, by

a series of transit, grasping, transfer and ungrasping operations. A transit operation is

an assembly step where the manipulator moves without carrying an object. A grasping

operation is an assembly step where the manipulator takes control over an object by

grabbing it with is end-effector (gripper or hand). This object is subsequently known as

the manipulated object. A transfer operation is an assembly step where the manipulator

moves carrying the manipulated object. Finally, a ungrasping operation is an assembly

step where the robot release the manipulated object loosing its control. The mating

process among the assembly components is performed during the transfer operations.

The motion of an object can be performed in free-space (moving without touching other

objects) or in contact-space (moving while touching other objects). The type and source
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of sensing data will depend on the category in which an object’s motion falls.

The configurations of the parts – their position and orientation – specified in a nominal

assembly plan are expected to be reached while performing transfer operations. During

some of these assembly steps, the manipulated object enters in contact – a state or

condition of touching or of being in immediate proximity – with some stationary objects.

These objects are subsequently known as environmental objects. It is also expected that

the fixed condition and pose of the environmental objects is maintained during and

after the execution of such steps. A convenient way to take into account the robot

actions during transit operations is considering its hand and fingers as mating parts

that generate temporal contact states – configuration of contacts between the assembly

components – when grasping new objects. In this way, the robot’s gripper can be

considered as the manipulated object and the object to be grabbed as an environmental

object in an insertion operation.

It is well known that success during robotic assemblies depends on the correct execution

of the sequence of assembly steps established in a plan. In turn, the correct execution of

these steps depend on the conformance to a series of preconditions and postconditions

on the states of the assembly elements and in the consistent, repeatable, and precise

actions of the assembler (for instance, a robotic arm). Unfortunately, the ubiquitous

and inherent real-life uncertainty and variation in the work-cell, in the assembly robot

calibration, and in the robot actions, could produce errors and deviations during the

execution of the plan. In those cases, either the planned configuration of the manipulated

object is not accurately achieved or the configurations of some environmental objects are

modified by the physical interaction with the manipulated object, during the execution

of an assembly step.

The roll of hard automation devices, such as fixtures, automatic feeders, re-orienting

devices and ad-hoc grippers and tools, is, precisely, to reduce the uncertainty with

respect to the location and configuration of the assembly elements. In this way, the

conditions expected in an assembly plan are assured. Planning, constructing and using

such devices is a very interesting and complex problem by itself. Furthermore, its

presence and use increase the work-cell cost and resistance to change, then reducing

the work-cell’s flexibility. However, it is not always possible nor convenient to eliminate

them from a work-cell, because uncertainty would introduce the possibility of errors and

deviations from absolute expected conditions.

Alternatively, the inclusion of sensors and sensing strategies could allow to eliminate

some of these automation devices by getting information about sources of uncertainty.

Sensors used to monitor the assembly plan execution, in conjunction with a relaxation in

the requirement of absolute positioning, transforms a conformant process – a sensorless

process – into a contingency process – a conditional process including sensing actions [80]

– that adapts to detected divergences from the plan and react to them. The price to
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pay for the earned flexibility is a reduction on the reliability of the plan execution.

Strictly speaking, uncertainty affects all the tasks, however, every assembly operation

has a capacity to tolerate certain amount of error: objects offer some resistance to

be moved, insertion slot configurations include some clearance for insertion, the robot

arm allows some passive compliance, etc. Then, not necessarily all assembly operations

require of sensing verification.

This dissertation presents an approach to the automatic planning of sensing strategies

to cope with potential problems to be caused by real-life uncertainty and errors during

assembly task execution. The approach assumes the use of force feedback operations to

perform force compliance tasks, determine visual sensing requirements, and implement

visual sensing strategies to detect and prevent (or at least reduce) the possibility of

failure during the execution of the assembly operations. Several computer programs

that implement the introduced methods were developed. The problem starts with a

nominal assembly plan, i.e. a sequence of assembly tasks that would execute successfully

in the absence of uncertainty, and propose a visual sensing strategy that maximize the

possibilities of success of the tasks by characterizing, modeling, and minimizing the

uncertainty from different physical sources with respect to the task tolerances.

1.3 Research Questions

The main motivation for this dissertation was the discovery that assembly is not a trivial

endeavor for a robot. The assembly plan and assembly execution by a robot requires of

a trade-off between the reliability and the flexibility of the solutions. Then, it is worth a

try finding new approaches to avoid failure or at least increase the possibilities of success

in the robotic execution of an assembly operation while reducing the requirements of

hard automation.

The questions which motivated and guided the research presented in this dissertation

are the following:

• Why does a robot fail to execute an assembly plan?

• What is the roll of hard engineering devices such as fixtures in the successful

execution of assembly plans?

• Is it possible to eliminate some of these devices by using sensing?

• What are the consequences of eliminating some of these devices?

• Do all the assembly operations need of sensing?
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• What are the most difficult assembly tasks for a robot?

• Is it enough with using sensing in these tasks?

• Which other tasks require of sensing?

• Which type of sensory information is needed for a task?

• What sensory information is needed for task’s sensing?

• Which are the assembly elements that contain such information?

• When is it recommended to use vision?

• What visual information is required?

• How is this information obtained?

• What is the best visual sensing strategy to get such information?

• How can the selected strategy be implemented?

• What kind of vision sensor to use?

• How is this sensor controlled during sensing?

• What to do in the case of detecting an error or deviation from the assembly plan?

1.4 Solution Overview

This dissertation presents an innovative approach to the automatic planning of sensing

strategies to help in the successful execution of assembly plans by robots. Figure 1.1

depicts a graph that describes the solution strategy followed during the development

of this research. The contributions of this work were constructed around four main

elements: a sensing analyzer, a sensor planner, a design of an active vision mechanism,

and a sensing planner. The figure also shows the chapters of this document where each

of the elements are described.

1.4.1 Sensing Analysis

The sensing analyzer determine which tasks require of sensing operations, what sensing

information needs to be gathered by the sensors, and from which objects could this

information be obtained. As shown in Figure 1.1, the sensing analyzer recibes as input

the nominal assembly plan specification and the CAD models of the assembly parts, and
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Figure 1.1: Overview of Solution Strategy.

produces as output a sensing requirements specification. The most important output

is a coded form of the sensing requirements in the Insertion and Contact dependency

graph (ICdg), which is detailed in Chapter 3.

The criteria used to decide which tasks require of sensing operations is that of reaching

specific contact-state relations among mating objects. It is realized that the nature of

mating operations is very important, specially those which resulted of what is known

as fine-motion planning (planning of jam-free sliding motions to achieve a goal config-

uration of a set of spatial relationships between assembly parts [16]), e.g. peg-and-hole

operations. These tasks have a low-tolerance to errors during their execution and are

considered the most difficult tasks for a robot. Such assembly operations usually require

of adaptive behaviors in accordance with a planned maneuvering strategy.

To have success in a fine-motion operation a series of preconditions have to be met. To

fulfill such preconditions, additional tasks could require of using sensing feedback oper-

ations, e.g. sensing tasks are recommended to ensure that expected insertion configura-

tions are obtained for future insertion operations. Then the recognition of fine-motion

tasks ,during the sensing analysis, fires up a backward reasoning process to recognize

new operations where sensing verification is needed.

The type of required sensing information depends on the purpose of the task, the time

in which it is obtained, the intention of the information, and the available sensors. In
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this dissertation, the sensing strategies assumes the use of force and vision sensors. The

use of force feedback data is recommended during the task execution to detect force

patterns due to contacts while performing guarded and compliant motions. The use

of vision feedback data is recommended before some specific tasks in order to verify

preconditions and, if necessary, adjust the configuration of manipulated objects in a

preventive fashion.

The nominal assembly plans for this dissertation are restricted to binary plans, which are

also linear and sequential, that describe a totally-ordered sequence of assembly steps (see

Appendix B for definitions of assembly terms). The sensing analysis module determine

when is recommendable to use visual sensing operations and force sensing skills through

an analysis of the contact state formation process. The type of assembly operations in

such plans can be recognized and classified by the type of contact state transition that

produces as result of added or reduced contacts with the environment.

This thesis assumes the existence and use of force control mechanisms that implement

certain force compliance skills. Actually, to accomplish some of the experiments a limited

force control program was developed to execute guarded motions using a wrist sensor.

The sensing analysis module determine when to use such sensing operations, but do not

enter in further details about how to actually implement more elaborated sensing skills.

The main contributions of this dissertation are in the planning of visual sensing strate-

gies. Vision is employed to deduce the configuration of objects in a scene from intensity

images. Vision is utilized to discover conditions on the configuration of the objects that

would preclude reaching some projected contact relations. The sensory information is

used to deduce, through a geometric reasoning process, the relative constraining rela-

tions of some objects with respect to other currently assembled objects or with objects

to be assembled in future tasks.

Since the assembly is carried out in an structured and known environment following

a pre-planned sequence of steps, the job of the visual sensing operations is reduced to

object localization, and more precisely, to object pose refinement. The plan prescribe a

pose where each object is expected to be found. The visual tasks can not completely

avoid pose uncertainty of the observed objects, then the computed configurations include

certain amount of error. The sensing analyzer determine the most important pose

parameters from the recognition of the critical dimensions of the task that generated

the sensing requirements. Then this information is used to compose a criterion for

deciding the configuration of the sensor.

The objects that contain the visual sensing information are those that participate in

insertion operations and those involved in assembly operations where a manipulated

object enters in contact with multiple objects in the environment. Every task in which

an object participates would potentially add constraints in its pose relations with respect
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to pre-assembled objects and the environment. To avoid undo-redo operations, an object

has to satisfy all the constraints resulting from the sensing analysis of the full plan.

1.4.2 Sensor Planning

The sensor planner determine the goodness of a finite set of viewpoints to position and

orient a single camera. The camera is used to get intensity images for localizing the

assembly parts containing critical information for verifying the preconditions of assembly

operations. As shown in Figure 1.1, the sensor planner recibes as input information

from three sources: the ICdg, the CAD models of the assembly parts, and the sensing

uncertainty models quantified for each potential viewpoint. It outputs a viewpoint

implicit order described by the computed goodness measure.

For this work, a visual sensing strategy is defined as a sequence of sensor configurations

to be performed before an assembly step that requires of preventive vision. This sequence

is supposed to describe the best viewpoints and sensor parameters to use for observing

the objects that could affect the immediate or future success of the execution of assembly

steps.

A good sensor configuration is defined as a set of parameter values that minimize the

pose estimation errors, with respect to a set of critical dimensions of a task. Instead

of only minimizing the uncertainty of the pose estimation, the criterion used to eval-

uate the different alternatives of sensor configurations maximize a predicted success

probability (Psp) value. A Psp value is computed by quantifying the portion of the

sensor’s uncertainty representation that fall inside a region of tolerated error for an

assembly operation. The sensor’s uncertainty is obtained by quantifying an approxi-

mated uncertainty model representation. Such quantification is realized from a series

of empirically realized pose refinement experiments over target objects. The region of

tolerated error for an assembly operation is represented by a set of inequalities obtained

from the analytical description of the relation of geometric features in contact of the

participant objects in a mating operation. Both representations are described in the

same parametric space.

In general, there are an infinite number of sensor configurations that could be used to

determine the pose of an object. However, in this work a generate-and-test approach to

sensor planning was chosen. Then, the number of alternative sensor configurations was

limited to a discrete number corresponding to the number of triangles in a tessellated

sphere (a viewing sphere) around the target object in its center. The size of the sphere

and the number of tessels is predefined. The sensor is localized in the center of each

tessel and is oriented looking through the center of the sphere. The Psp measure

is computed for each sensor configuration and every alternative is sorted based in a

Psp descending order. Before deciding the best configuration, a feasibility analysis
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has to be done following the resulting order. This feasibility analysis will verify if a

sensor configuration satisfy a set of kinematic constraints imposed by an active camera

mechanism.

1.4.3 Active Camera Design

An active vision design was developed to implement the visual feedback operations for

robotic assemblies. Since the selected visual locatization tool localize 3-D objects over

single intensity images, a camera-in-hand was realized. As shown in Figure 1.1, the

active camera design used as input the models of the camera and the robot that carries

it. The design outputs the active camera model which is instantiated by executing a

series of calibration processes. A detailed description is given in Chapter 5.

The active camera mechanism is composed by a pan-tilt camera fixed to a manipulator’s

hand. The camera can rotate horizontally (pan) and vertically (tilt) to adjust its viewing

direction. For this dissertation, the manipulator that carries the camera was a Cartesian

robot arm of five degrees of freedom, but only three of them, those that translate

the camera where used. The other two are used only to define an initial attitude for

the camera. The pan-tilt camera allows a reduced range of rotation with respect to

horizontal and vertical rotation axes. The manipulator has a well defined parallelepiped

workspace. These features define the kinematic constraints that are used to decide the

feasibility of reaching a predefined viewpoint during the sensing planning stage.

Some of the most important and hard jobs on building an active camera mechanism is

that of calibrating the system for every possible viewpoint. In this thesis, the viewpoints

are fixed with respect to the object to be observed, but the object configuration can

change due to uncertainty, which means that the configuration of the viewpoints can

not be fixed with respect to the camera mechanism, and this precludes the possibility

of calibrating the system for every viewpoint off-line. The solution implemented in

this work was modeling the active camera mechanism in a way to adjust its calibration

parameters dynamically.

The camera calibration model includes a set of intrinsic and extrinsic parameters de-

fined as a function of the mechanical and photometric characteristics of the sensor and

its pose with respect to a coordinate system of reference. In general, the calibration

model is only an approximation to reality, and consequently, calibration is proposed

and solved as an optimization problem. As a result, usually, any change in the sensor

state requires of a full re-calibration, if this is not done, the new calibration data would

include additional error in its measurements. To minimize this effect while avoiding to

perform a full recalibration procedure, the calibration schema followed in this thesis was

one that for a non-calibrated viewpoint, the values for the intrinsic parameters are de-

cided as a function of the intrinsic parameters for the closest calibrated viewpoint, while
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the extrinsic parameters are computed from the camera attitude and the manipulator

position.

After deciding the best feasible sensor configuration (viewpoint) to observe an object

and to perform its pose refinement, the calibration of the active camera mechanism and

its configuration are adjusted, and the object is localized.

1.4.4 Visual Sensing Planning

The visual sensing planner construct a complete visual strategy for an assembly plan.

This method decides the specific sequence of viewpoints to be used for localizing the

objects that were specified by the visual sensing analyzer. As shown in Figure 1.1, the

visual sensing planner recibes its input information from four sources: the ICdg, the

CAD models of the assembly parts, the active camera model, and viewpoint implicit

order. It outputs a total and definite preventive sensing strategy describing the sequence

of camera motions to use during the execution of the original nominal assembly plan.

The proposed method transforms the problem of deciding a sequence of camera motions

into a multi-objective optimization problem that is solved in two phases: a local phase

that reduce the set of potential viewpoints to small sets of viewpoints with the best Psp

values of the kinematically feasible viewpoints for the active camera; and a global phase

that decides a single viewpoint for each object in a task and then stitch them together

to form the visual sensing strategy for the assembly plan. Additionally to the Psp

values, the multi-objective optimization method try to minimize a measure of the level

of occlusion from the considered viewpoints and the distance that the camera has to

be moved. A dynamic programming approach was selected to perform the optimization

process.

1.5 Main Contributions

This dissertation investigates several issues related to the use of geometric information

about the models of component objects of assemblies and the process of contact forma-

tion among such objects for tackling the automatic planning of sensing strategies. The

studies and experiments conducted during this research have led to the development of

novel methods for enabling robots to detect critical errors and deviations from a nominal

assembly plan during its execution. The errors are detected before they cause failure of

assembly operations, when the objects that will cause a problem are manipulated. Hav-

ing control over these objects, commanded adjustment actions are expected to correct

the errors.
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The main contributions of this thesis are the following:

• A method to systematically deduce assembly skill primitives and force compliance

skills requirements for assembly tasks.

• Introduction of a graph representation that codes the sensing requirements of an

assembly plan.

• A method to propagate direct and indirect translational and rotational dependen-

cies among environmental objects.

• A method to analytically describe a region of tolerated error for assembly tasks.

• An algorithm to quantify and represent the uncertainty of a template matching

localization tool that works on intensity-images.

• A method to evaluate potential viewpoints to locate the camera for localization

tasks.

• Development of an active camera mechanism for visual verification tasks.

• A method to construct preventive vision strategies for a complete assembly plan.

1.6 Literature Review and Background

1.6.1 Assembly Execution using Vision and Force Feedback
Data

Common assembly tasks executed by humans combine the assembler’s experience and

information of their sensory mechanisms. Industrial robots with the capability to inte-

grate a priori information and sensor data, acquire knowledge, and perform reasoning

would be ideal for the factory of the future. In this respect, current robot systems

should use internal and external multi-sensor information for controlling and monitor-

ing the robot-manipulation tasks. For this, research has been prompted in combining

both force and vision sensor data and knowledge-based processing methods to obtain

more intelligent behavior in robot-based work cells [53, 84, 102].

Vision is a useful robotic sensor since it mimics the human sense of seeing and allows to

get measures of the environment without touching. Its usefulness has been demonstrated

since the early work of Shirai and Inoue [89] for correcting the position of a robot through

a visual feedback loop. The accuracy of a visual control solution depends on the accuracy

of the visual sensor and the robot. The two major approaches for using vision are the
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alternating loop of picture taking and robot motion, and the closed-loop position control

referred as visual servoing, first introduced by Hill and Park [36]. A review of control

based on visual feedback can be found in [43]. Most research in visual control has

concentrated on free motion control.

Other useful robotic sensors are force and tactile sensors. These sensors are indispensable

for performing assembly tasks in contact space. The two major approaches to force

control are the impedance control approach proposed by Hogan [42] and the hybrid

control proposed by Raibert and Craig [76]. Successful systems, using both approaches,

have been developed for cases where the knowledge of the environment is exact, however,

robots are far less effective in applications where the environment and object position

are not accurately controlled [43].

The programming difficulty and the lack of sensor integration have kept the creation of

sensor-based robot programs as a great challenge. This challenge has been confronted by

many researchers by constructing skill libraries and behaviors as source of robust task-

achieving programs [104]. Several researchers have proposed robot control primitives.

Smithers and Malcolm [91] proposed behavior-based modules for programming robotic

assembly in which uncertainty is resolved at run-time. Steward et al. [94] developed

a reconfigurable module (Chimera) based in a theory of computation for sensor-based

robotics. Other researchers continued developing the skills or elementary operations

needed for effective use of robots [34, 52, 8]. Morrow et al. [65] developed a sensori-

motor command layer to combine sensing and action to apply to many tasks within

a domain. They included four vision-driven primitives based on visual servoing tech-

niques, to enforce positioning constraints; and four force-driven primitives to perform

tasks in the presence of contacts.

Tominaga and Ikeuchi [103] proposed a method to make robust observations against

noise by decomposing motion trajectories into small segments based in face contact

analysis and allocating an operation element referred to as sub-skill. They selected their

four motion sub-skills from the basic motions proposed by Suehiro in [96]. Mosemann

and Wahl [66] also presented a method to decompose complex sequences for assembly

operations into skill primitives for enabling a system to execute the operations in a real

robot workcell. The skill primitives are elementary sensor-based robot movements(like

“MoveTo”), system commands (like “OpenGripper”) and sensor functions (like “Loca-

teObject”). To classify the type of assembly operation, they used features like local

depart spaces, symbolic spatial relations, and the necessary tools. Other works about

synthesizing and using skill-primitives to decompose and execute assembly tasks are

documented in [68, 90, 39, 59].

In assembly tasks, a robot falls into difficulties if it monitors the task only by vision,

force, or touch sensor [1]. Some works on using multiple sensor capabilities have focused

on integration of vision and force sensor information. Allen [4] developed a system
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that uses both of stereo vision and touch sensor information. His system maintains a

model database of the objects and the fusion of vision and touch information is used

for matching the sensing data with the model database. Ishikawa et al. [51] presented a

multi-sensor method of vision and force information to estimate contact position between

a grasped object and the other objects in the environment. Nelson and Khosla [71]

combined the force and vision feedback using the so called vision and force resolvabilities.

The term resolvability refers to the ability of a sensor to resolve object positions and

orientations. Collani et al. [107] presented a neuro-fuzzy model to integrate vision and

force control in the execution of assembly tasks. They used uncalibrated cameras.

1.6.2 Contact-State Analysis and Identification

The contact-state identification problem is a very important problem for the automatic

planning of assembly tasks under uncertainty and the automatic planning of sensing

strategies for helping during their robotic execution.

The representation of a contact state between two objects is usually done in terms

of the involved topological elements, i.e. faces, edges and vertices. In [60], Lozano-

Pérez presents the contact states as a set of contact primitives that are defined as point

contacts, i.e. vertex-edge in 2-D objects and vertex-face contacts in 3-D objects. Desai

and Volz [19] defines the contact primitives, called elemental contacts, as a pair of

topological elements, and a contact state as a set of elemental contacts called contact

formation. Contact analysis is simplified with these primitives, since less primitives

are required to describe a contact state. Further on, Xiao [110] introduces principal

contacts as those elemental contacts necessary for characterizing motion freedom, and

the contact formation as a set of principal contacts.

Besides configuration information, force information is also used for contact identifica-

tion. Hirai et al. [38, 37] deal with the estimation of contact states from force information

by using state classifiers based on geometric models of the objects, and which are for-

mulated with the theory of polyhedral convex cones. This theory originally by Tucker

and Goldman [57] has also been used by Paul [74] to partition the contact space into a

set of finite topologically distinct states, and Hirukawa et al. [40] to analyze the freedom

of an object in contact.

Brost and Mason [11] present the dual representation, which is a method for analyzing

planar contact problems that represent planar motions and forces by acceleration cen-

ters. This graphical method allows the reasoning about sets of feasible contact motions,

and the sets of forces consistent with those contact motions. Other approaches use force

information to estimate the contact position when the geometry of the manipulated

object is assumed to be unknown [56, 35].
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Contact state identification in the presence of uncertainties is complex because several

contact states may be compatible with the sensed information. Desai and Volz [19]

presents an algorithm to verify termination conditions of compliant guarded motions

which has an static and an active phase based on an hypothesis and test scheme. Simi-

larly, Spreng [93] uses test motions for verifying contact hypothesis in terms of motion

freedoms. The determination of all the possible contact states due to the uncertainties

is not a trivial problem. Rosell et al. [78] presents a procedure that computes the set of

contact configurations for planar assembly tasks using the knowledge of the robot con-

figuration and taking into account modeling and sensing uncertainty. This procedure

complements their procedure based in force information [7]. To avoid the complexity

of finding the contact hypothesis for assembly tasks in the space (i.e. with 6 DOF),

Xiao and Zhang [111, 112, 113] introduce a method for growing polyhedral objects by

its location uncertainties in physical space, and implement an algorithm for finding all

principal contacts possibly established between their features.

Other approaches that model the assembly tasks as discrete event dynamic systems,

focus on the recognition of the contact events. McCarragher et al. [63] use a process

monitor based on Hidden Markov Models for this purpose, and similarly Eberman [25]

presents a statistical, model-based contact-state observer.

1.6.3 Visual Sensor Placement and Sensing Strategies

The quick growth of automation in manufacturing industry requires that computer vi-

sion play an important role in assembly automation. Then, determination of viewpoints

and viewing strategies become critical for achieving full automation and high efficiency

in assembly execution. The relevant work on sensor placement, which do that, can be

categorized into model-based and nonmodel-based. Nonmodel-based sensor placement

is used for 3-D object reconstruction and modeling, while model-based sensor placement

is used in assembly execution, inspection, object recognition, dimension measurement,

etc. [14].

In model-based vision tasks, researchers try to find an admissible domain of viewpoints

to place the sensor to look at one or several object features [15]. The works can be

divided in those that use a generate-and-test strategy, like the HEAVEN system of

Sakane and Sato [82], and those that use a synthesis approach, like the Machine Vision

Planner (MVP) system of Tarabanis et al. [101].

The generate-and-test strategy discretize the space for sensor positions, like HEAVEN

that uses a tessellated sphere of pre-given radius for inspecting an object. Other systems

that follow this approach are the Vision Illumination Object (VIO) system [81], and the

Illumination Control Expert (ICE) system [85]. Trucco et al. [105] reported GASP

(General Automatic Sensor Planning), a generate-and-test system for sensor planning
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which is used to compute the optimal positions for inspection tasks. GASP uses a

feature inspection representation to compute a viewpoint based on feature visibility,

using an approximated model, and measurement reliability, based on an experimental

quantitative assessment. The feature inspection representation is computed off-line and

is used by GASP to compute on-line plans that they call inspection scripts.

In the other hand, the synthesis approach model the constraints as analytical func-

tions, describing spaces that satisfy several constraints, like MVP that determine sensor

locations and sensor parameters for viewing a set of surfaces and avoiding occlusion,

conforming to feature detectability constraints such as: visibility – for the features to

be detectable from the sensor; field of view – for the features to fall onto the active

area of the sensor; focus – for the features to be into the focus range of the sensor; and

spatial resolution – for the features to appear of an appropriated size. Additional con-

straints include illuminability – for the features to be detectable by the sensor; dynamic

range for the image irradiance from the features to be inside of the dynamic range of

the sensor; and contrast – for edges features to present an adequate disparity in image

intensity values. Tarabanis et al. [100] presents an excellent survey of research in the

area of vision sensor planning.

Hutchinson and Kak [44] proposed a method to planning sensing strategies dynamically,

based on the system’s current best information about the world. They apply the concept

of entropy from Shannon’s information theory [87] to minimize the remaining ambiguity

in proposed sensing operations. To do this the system formulates object hypotheses and

assesses its relative belief in those hypotheses using the Dempster-Shafer Theory [86],

an approach to reasoning with partial evidence. Abrams et al. [3] also extended MVP

to perform dynamic sensor planning in an environment in which objects are moving.

They basically break a task into intervals an determine a single viewpoint to monitor

each interval. To solve the occlusion problem, the system computes the volumes swept

by all moving objects during the intervals, and computes viewpoints which avoid the

occlusion by these swept volumes [2].

Zhang [114] proposed a method for determining an optimal two-dimensional spatial

placement of multiple sensors participating in robot perception tasks. The method

assumes that the sensor uncertainties are specified in terms of their covariance matrices.

Then using an interpretation that the uncertainty in each sensor represents an ellipse, the

method determines the sensor placement to minimize the uncertainty of the consensus

estimate by minimizing the area of the uncertainty ellipse.

Briggs and Donald [10] proposed algorithms for computing the regions from which a

sensor has unobstructed or partially obstructed views of a target in a goal. They ap-

plied these algorithms to the Error Detection and Recovery problem [23] for recognizing

whether a goal or failure region has been achieved. Khawaja et al. [55] proposes an algo-

rithm for the automatic placement of camera and light. The algorithm, which applies a
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generate-and-test approach, is trained with synthetic images generated from information

about the properties of the material of the object to observe, contact information from

a CAD model of an assembly, and a physical lighting model. Reed and Allen [77] pre-

sented a constraint-based sensor planning method for scene modeling. They integrated

sensor imaging constraints, occlusion constraints, and sensor placement constraints to

determine admissible viewpoint to improve the quality of the model.

Gu et al. [32] proposed a sensor placement approach for dimensional inspection. Their

method is based on robustness measure computed from models for displacement errors

and the quantization error. The robustness measure is computed as the ratio between a

maximum permissible entity inspection variance, and the actual entity inspection vari-

ance. Sheng et al. [88] developed a CAD-based camera-planning system for dimensional

inspection in automotive manufacturing. They find feasible viewpoints combining recur-

sively a two vision-sensor-planning methods without considering kinematic constraints

of the inspection robot. The kinematics constraints are integrated in a second step by

assigning a kinematics performance measure to candidate viewpoints.

Miura and Ikeuchi [64] also use a robustness measure to evaluate feasible visual sensing

strategies. Its predicted success probability is computed from the clearance for insertion

tasks and a quantified uncertainty model of the sensor used during the execution of

assembly tasks.

There are other researchers that use genetic algorithms for sensor placement solutions.

Chen and Li [13, 14] proposed a method to plan model-based sensor tasks, mainly

for industrial inspection. They construct an optimal sensor placement graph with a

genetic algorithm that uses a min-max criterion, and then determine the shortest path

for achieving the sensing operations over the graph. The nodes of the sensor placement

graph represent viewpoints and the edges represent shortest collision-free paths between

the viewpoints. The edges are labeled with weights that represent the corresponding

distances. Olague and Mohr [72] use a multicellular genetic algorithm to solve the

problem of determining where to place the cameras to minimize the error in the detection

3-D points in reconstruction tasks. They describe the camera errors as ellipsoids.

Active Sensing in robotics try to give answer to the next aspects: (1) where to locate

the sensors, and (2) how to decide for actions, to minimize costs and maximize infor-

mation gain. Typical tasks where active sensing is useful are tasks executed in less

structured environments where the uncertainties are that important that they influence

the task execution. Examples are: industrial robot tasks [30], mobile robot navigation

in a known map [79], vision applications for active selection of camera parameters [20],

reinforcement learning [98], etc. Denzler and Brown [18] use Shannon’s information

theory to select information-gathering actions to maximize information that reduce un-

certainty and ambiguity about state estimation. They apply the approach to object

recognition using an active camera for sequential gaze control and viewpoint selection.
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Other related works for viewpoint selection in object recognition include [83, 9, 73].

1.7 Thesis Organization

This chapter provided an overview of the entire thesis, the research context and back-

ground information. The rest of this dissertation is organized as follows:

The next two chapters provide a description of a novel approach to the construction of

preventive visual sensing strategies from descriptions of nominal assembly plans. The

proposed approach is based on an analysis of the contact-state formation process pro-

duced by the sequence of assembly steps specified in the assembly plan. Chapter 2

describe the foundations of the analysis, and deals with the deduction of vision and

force sensing requirements for the manipulated object of a current assembly task. Chap-

ter 3 completes the description of the sensing analysis module by introducing a graph

representation that codes the full sensing requirements, and presents a propagation

scheme and a method for determining critical alignment constraints among objects in

the environment of a task. The method propagates critical translational and rotational

constraints by defining new dependency relations between the assembly parts.

Chapter 4 describes a proposed sensor planning strategy based in the computation of

a success measure calculated from the representations of the task tolerance to errors

in the configurations of the assembly parts, and the uncertainty in the measurement

results obtained from an object localization tool. This success measurement describes

the goodness of a set of potential viewpoints considered for position the sensor (a camera)

for a visual feedback operation. Chapter 5 describes an active camera mechanism devised

to execute the visual sensing tasks and propose a method to obtain full visual sensing

strategies for complete nominal assembly plans. Finally, Chapter 6 summarizes the

conclusions and contributions of this research, and provides suggestions for future work.
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Chapter 5

Active Placement and Sensing
Planning

To implement the visual sensing strategies proposed by the sensing analyzer and realize

the sensor configurations prescribed by the sensor planner an active-camera mechanism

had to be developed. The goals of this chapter are to describe a camera-on-hand mecha-

nism developed and used for the present work and a present a proposed sensing planner

to construct a total and definite sensing strategy for a complete assembly plan.

5.1 The Active Camera Mechanism

An active-camera mechanism composed by a pan-tilt computer-controllable camera and

a Cartesian robot-arm was constructed to perform the visual sensing strategies generated

by the sensing analyzer. As shown in Figure 5.1 in this mechanism, a camera is fixed

to the robot hand. The robot moves the camera without rotation to achieve its target

position. The pan-tilt mechanism of the camera is used achieve its target orientation.

Based in the above model, a program was implemented to move and re-orient the camera

to commanded poses in world coordinates. It also actualize the calibration settings

accordingly. If the commanded position is outside the working space of the robot, it

tries to realize it by a projection that conserves the commanded orientation. The poses

are specified by two 3-D points, one to define the new viewpoint (position for the optical

center of the camera) and another to define the new viewing direction (see Figure 5.2).

Since the Cartesian manipulator just translates the camera, its working space is de-

scribed by a rectangular parallelepiped. Such volume restrains the allowed viewpoint

space for the active camera. This kinematic constraint together with the limits on the

pan and tilt rotation angles of the camera determine the reachable configurations for

the positioning mechanism.

145
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Figure 5.1: The Camera’s Positioning Mechanism.

Since the working space of the robot is a convex polyhedral, an easy way of checking if

the desired viewpoint is inside of it is through the signed distance of the point to every

one of its forming planes. The distance will be positive in a case where the point is in

the exterior half-space defined by the plane and pointed by its normal, negative if the

point is in the interior half-space, and zero if it is on the plane.

The signed distance can be computed by direct substitution in the plane equation

a x+ b y + c z + d = 0 (5.1)

obtained from its normal vector n = (a, b, c)T where ‖n‖ = 1.

5.2 Active Camera Calibration

In the general case, calibration is the process of adjusting the parameters of a quanti-

tative measurement or controlled instrument. The type of parameters and process are

determined by the type of instrument and the goal of its calibration. Its implementation

can be hard-wired, physically implemented, and/or performed by software.

In the case of the present robotic assembly system, all its components have to be cal-

ibrated. Every device has its own local coordinate system. The device measurement

interfaces are defined with respect to its local reference frame. In the general case, the
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Figure 5.2: Positioning Process.

calibration process define an special (possibly completely new) coordinate system (the

“world coordinate system”), to isolate the assembly plan from the specific local frames

of the devices, and then every device is calibrated so that its readings can be interpreted

and/or commands can be issued with respect to the same global reference frame.

The active camera for this work is composed by a pan-tilt computer-controlled camera

(SONY model EVI-G20) and a Cartesian robot arm (DAIKIN ROBOTEC). The camera

is fixed to the robot hand and is translated without rotation inside of the working range

of the robot, the orientation of the active camera is completed by the pan-tilt mechanism

of the camera.

The pan-tilt mechanism allows limited rotations around orthogonal axes almost per-

fectly aligned with respect to the vertical (pan: +/- 30 degrees) and horizontal (tilt:

+/- 15 degrees) axes of the camera (see fig. 5.3a). The robot allows five degrees of

motional freedom, three for translation and two for rotation (see fig. 5.3b). Since only

translation will be allowed during camera positioning, the rotational freedom will be

used only during the initial configuration to conveniently orient the camera for taking

the maximum advantage of the camera’s pan-tilt ranges.

In the context of computer vision, camera calibration is the process of determining

a set of intrinsic and extrinsic parameters that will account for the geometrical and

optical characteristics of the camera. To calibrate a camera the parametric model that

describe its behavior has to be selected or developed. Currently, several camera models

to capture the imaging properties of fixed-parameter and variable-parameter lenses have

been proposed. In the fixed type, the parameters are constants. In the variable type,

some of the parameters are dynamically adjusted by functions of the lens control settings.
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(a) Sony EVI-G20 camera and
its effective pan-tilt ranges.

(b) DAIKIN ROBOTEC Cartesian robot.

Figure 5.3: Active camera components.

For this dissertation, the camera is modeled by using an augmented Tsai’s fixed camera

model [106]. In addition to the conventional camera parameters proposed by Tsai, a set

of additional parameters was included to adjust the global pose of the camera after the

action of the robot and the camera’s pan-tilt mechanism.

5.2.1 Calibration of the Fixed Camera Model

The starting point to get a camera calibration model for the present camera positioning

mechanism is the Tsai model for fixed cameras. The Tsai’s fixed camera model is a

perspective-projection model based on the ideal pinhole camera originally proposed for

using off-the-shelf TV cameras and lenses (see fig. 5.4). It consist of five intrinsic

parameters that describe the image-formation process of the camera: the effective focal

length of the pin hole camera (f), a coefficient of radial distortion (k1), the coordinates

of image center (Cx, Cy), and a scaling factor to compensate for any uncertainty in the

ratio between the number of sensor elements on the CCD and the number of pixels in the

camera’s frame buffer in the x direction (sx), and six extrinsic parameters that define the

position (Tx, Ty, Tz) and orientation (α, β, γ) of the local 3-D camera coordinate frame.
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Figure 5.4: Tsai’s fixed perspective-projection camera model with radial lens distortion.

The relationship of a point in world coordinates (xw, yw, zw) and a image’s point (Xf , Yf )

is governed by the next sequence of four transformations.

The first transformation establish the relation between the point in world coordinates

to the points in camera coordinates (xc, yc, zc) by the rigid body transformation as

 xc

yc

zc

 = R

 xw

yw

zw

+

 Tx

Ty

Tz

 (5.2)

where

R = Rz(γ)Ry(β)Rx(α) (5.3)

is the 3 x 3 rotation matrix that is obtained as the product of basic rotation matrices

around the X, Y , and Z axes of the world coordinate system.

The second transformation define the relation between the camera coordinates and the

undistorted sensor coordinates (Xu and Yu) by using the ideal perspective projection

with the pinhole geometry

Xu = f
xc

zc

(5.4a)
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Yu = f
yc

zc

(5.4b)

The third transformation defines the relation between distorted (Xd, Yd) and undistorted

sensor coordinates under radial distortion as

Xu = Xd (1 + k1 ρ
2) (5.5a)

Yu = Yd (1 + k1 ρ
2) (5.5b)

where

ρ =
√
X2

d + Y 2
d (5.6)

The fourth and last transformation, is to determine the point coordinates on the image

plane from its distorted coordinates in the sensor as

Xf = d−1
x Xd sx + Cx (5.7a)

Yf = d−1
y Yd + Cy (5.7b)

where dx and dy are the effective center-to-center distances between the camera’s sensor

elements in the xc and yc directions.

The data for the model calibration consist of 3-D world coordinates of a set of feature

points on a calibration object (in mm) and the respective 2-D coordinates of the corre-

sponding intensity points in the image took with the camera. For this work, a box of

known dimensions was used as calibration tool (see Figure 5.1) and the non-coplanar

calibration strategy proposed by Tsai from points on three of the six faces of the box.

The world coordinate frame was fixed to one of the corners in the base of the calibration

tool.

The calibration is posed as an optimization problem where the purpose is to minimize

the sum of the squares of a system of nonlinear equations defined by the above described

world-to-camera transformations. A modified Levenberg-Marquardt method with a Ja-

cobian calculated by a forward-difference approximation is used to solve for the five

intrinsic and six extrinsic unknown camera calibration parameters.

5.2.2 Calibration of the Camera Manipulator

The relation among the world, camera, and robot that carries the camera is illustrated

in the Figure 5.5. In this section the interest is posed in the deduction of the 3-D rigid
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transformation Twr that defines the relation between the world and the robot coordinate

systems.
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Figure 5.5: Coordinate Frames Relations.

The relation between the world and the camera coordinate systems is described by the 3-

D rigid transformation matrix Twc where a world point pw is transformed into a camera

point pc as

Twc pw = pc. (5.8)

Twc is computed from the extrinsic parameters of the camera calibration model.

The robot-to-world relation is calibrated by following the next steps:

1. Translate the robot’s hand to several positions (T0,T1, ...,Tn) taking an image

of the calibration tool at each position. The calibration tool does not move. The

images have to include the three calibration planes.

2. Calibrate the fixed camera calibration model for each of the images.

3. Generate a system of n− 1 equations as explained next.

4. Solve the system for Trw.

The base transformation for the deduction of the relation is

pw = Trw pr (5.9)
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where Twr is the representation of the robot-to-world rigid transformation as a 4x4

homogeneous matrix, pw is a tri-dimensional vector representing a point in world coor-

dinates, and pr is the corresponding point in robot coordinates.

If there are two sets of corresponding points it can be solved for the elements of the

matrix by solving the over-constrained system. However the selected strategy was to

use the data from the calibration of the camera on different positions to generate the

world points, and although their corresponding robot points can not be gotten their

displacements from the robot commanded motion can be calculated. Then, instead of

using the base transformation 5.9, the following was used:

pwi − pwj = Trw (pri − prj) = Trw ∆rij (5.10)

where pwi and pwj are world points obtained from two calibrated camera positions,

pri and prj are their corresponding robot points, and ∆rij the displacement from the

commanded robot motions.

The world points are computed from the extrinsic parameters of the camera calibration

model as:

pwi = T−1
wci · pci = R−1

wci · pci −R−1
wci · twci (5.11)

where Rwci and twci are respectively the 3x3 rotation matrix and 3-D translation vector

that define the relation between the world and the ith camera frames. Using as camera

point of reference its optical center Oci (origin of its coordinate system) the expression

is simplified to

pwi = −R−1
wci twci. (5.12)

Since the commanded robot motion are pure translations, ∆rij is calculated as the

difference of the robot positions used to get the equation 5.10.

The rotation and translation parameters of the robot-to-world relation are estimated by

minimizing the sum of the square norms:

‖Rrw ∆rij + trw − (Oci −Ocj)‖2 (5.13)

where Rrw and trw represent the rotation matrix and the translation vector that describe

the target relation.
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5.2.3 Calibration of Pan and Tilt Rotation Axes

After the camera is moved and re-oriented, some of its parameters have to be modified.

The intrinsic and extrinsic parameters of the model that are affected depend on the

nature of the movement.

This section deals with the problem of pan and tilt axes calibration. The problem is

approached by establishing a series of simplifying assumptions and then relaxing some

of them to reduce the generated error by such approximations. The goal is to define a

set of functions parameterized by the pan and tilt commanded values and some possible

additional variables that will minimize the error obtained from the results of the world-

to-camera conversion process based on one calibrated camera pose, used as our model

reference, and the results obtained by calibrating the camera in each possible camera

pose.

The calibration data of reference is obtained with the camera in the home position for

the pan and tilt mechanism. In this position, the pan and tilt values are closest to

zero and simplifies the process of calibration by allowing to calibrate each rotation axis

independently, as it will be shown later.

Two assumptions are maintained during all the experiments. First, that the intrinsic

parameters are not affected by the camera’s panning and tilting actions. This simplifies

the analysis to the study of the effect on the extrinsic parameters, reducing the number of

variables to include in the calibration process. The new goal is to minimize the difference

among estimations of points in camera coordinates from their world coordinates obtained

using by the new model and those obtained by the camera calibrated in each pose.

Second, that pan and tilt actions are performed as pure rotations. This is the assumption

that reduces the problem to determining the descriptors of rotation axes.

The other two big assumptions are: first, that pan and tilt rotation axes pass through

the optical center of the camera (origin of the camera coordinate frame). In this case,

the optical center does not moves as a consequence of the pan and tilt actions and new

commanded positions for the active camera can be reached solely by the manipulator

irrespectively of the commanded change of attitude.

Second, that the pan and tilt rotation axes are aligned with those of the camera, the pan

axis with the Y camera axis, and the tilt axis with the X camera axis. Then, allowing

to describe the change in the camera orientation by a simple combination of two basic

rotation matrices.

Te last two simplifying assumptions are eliminated later.

Next, comes a description of the formulations and results under the different sets of

assumptions: first, using all the assumptions or what is further referred as full alignment ;
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second, by maintaining the alignment between axes, but eliminating the restriction of

passing by the optical center of the camera; and finally, by considering that the axes

would not be aligned with the camera axes, what is further referred as full unalignment.

A. Full Alignment

This is the case formulated above and the one originally used to develop the application

to move the camera to a new commanded pose.

Z (Optical Axis)

Y (Pan Axis)

X (Tilt Axis)

Camera
Optical
Center

Figure 5.6: Configuration of pan and tilt rotational axes under the assumption of full
alignment.

Since the pan axis is aligned to the Y camera axis, the tilt axis is aligned to the X

camera axis, and both axes pass through the origin of the camera frame (as illustrated

in Figure 5.6), its effect can be described as the single combination of basic rotation

matrices

Ry(p)Rx(t) (5.14)

which produce the following rigid transformation matrix


cos(p) sin(p) sin(t) cos(t) sin(p) 0

0 cos(t) − sin(t) 0
− sin(p) cos(p) sin(t) cos(p) cos(t) 0

0 0 0 1

 (5.15)

where p and t are the pan and tilt rotation angles, respectively.
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Figure 5.7: Motion of the optical center of the camera in world coordinates under
panning and tilting motion.

In this case, there is no requirement to include new parameters to the camera calibration

model in addition to the pan and tilt angles of the camera calibration data of reference.

B. Displaced Centers of Rotation

From a set of experiments it was realized that the optical center actually moves when the

camera is panned and/or tilted. And as it can be observed in Figure 5.7 the motion is

systematic, which makes evident that the pan and tilt rotation axes do not pass through

it.

This section eliminates the assumption that the rotation axes pass through the optical

center of the camera. Therefore, the origin of the camera coordinate system will move

as consequence of the panning and tilting actions. Then, its new position has to be com-

puted before determining the transition required by the robot to reach the commanded

camera position.

Since the axes alignment assumption is maintained, the problem is reduced to determine

the translation required to match the pan and tilt axes with its respective camera axes.

The translation required by the pan axis can be represented as the center of a circle

on the XY camera, with coordinates (xp, 0, zp)
T . Similarly, the translation required

by the tilt axis can be represented by the center of a circle on the ZY plane, with
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Figure 5.8: Configuration of pan and tilt rotational axes when they do not pass through
the optical center of the camera.

coordinates (0, yt, zt)
T . Figure 5.8 illustrates the new situation.

To estimate these parameters and those of the next section the camera is calibrated

while modifying the pan and tilt values. Since the initial idea was to calibrate the pan

axis independently from the tilt axis, two sets of data were taken: one maintaining the

tilt value as close to zero as possible, and the other doing the same with the pan values.

The methods of this section work with projections of the optical center of the camera

when calibrated in the different poses. The origins are first converted to world coordi-

nates by using the extrinsic parameters from the fixed camera calibration process and

then are converted to camera coordinates using the reference calibration data.

Next, four methods are presented that are used to determine the searched points. The

three first methods, solve for pan and tilt rotational reference points independently,

then reducing the problem to two dimensions. The fourth method solves for the four

unknowns simultaneously.

B.1 Best Circle Fitting

This method fits the best circle to the projection of the 3-D converted origins to the

target planes. It does not take into account the explicit pan and tilt values. In the ideal

case, it would not be necessary.

The equation of the circle applied to each case gives



5.2. ACTIVE CAMERA CALIBRATION 157

(x− xp)
2 + (z − zp)

2 = r2
p (5.16a)

(y − yt)
2 + (z − zt)

2 = r2
t (5.16b)

where xp and zp are the unknown coordinates of the center of the circle for the pan

rotation axis, yt and zt are the unknown coordinates of the center of the circle for the

tilt rotation axis, and rp and rt are the radii for the pan and tilt axes, respectively.

However, since the converted origins are supposed to describe a circle that pass through

the origin of the reference camera, the coordinates of the searched centers can be used

to compute the radii as

r2
p = x2

p + z2
p (5.17a)

r2
t = y2

t + z2
t (5.17b)

then, substituting equation 5.17 in equation 5.16 and simplifying

x2
i + z2

i − 2 (xi xp + zi zp) = 0 (5.18a)

y2
j + z2

j − 2 (yj yt + zj zt) = 0 (5.18b)

is gotten for each converted origin with coordinates (xi, 0, zi) from the ith camera pose

for pan axis calibration and (0, xj, zj) from the jth camera pose for tilt axis calibration.

These equations define a system that is solved by using a least-squared technique.

B.2 Center Averaging

In this case, a center of the circle described by the camera’s panning and tilting is

computed for each camera pose and the global pan and tilt centers are computed as an

average by

Cpan =

(∑n
i=0 xpi

n
, 0,

∑n
i=0 zpi

n

)
(5.19a)

Ctilt =

(
0,

∑m
j=0 ytj

m
,

∑m
j=0 ztj

m

)
(5.19b)
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for n camera poses for pan axis calibration and m camera poses for tilt axis calibration.

The values for (xpi, zpi) and (ytj, zti) are computes as follows:

The effect of rotating a 2-D point with respect to an arbitrary point (xc, yc) is computed

as

 1 0 xc

0 1 yc

0 0 1


 cos(θ) − sin(θ) 0

sin(θ) cos(θ) 0
0 0 1


 1 0 −xc

0 1 −yc

0 0 1


 x
y
1

 =

 x′

y′

1

 (5.20)

for a rotation of an angle θ. Applying equation 5.20 to the ith origin produces the

following system of two implicit equations with two unknowns

xc (1− cos(θi)) + yc sin(θi) = x′i (5.21a)

−xc sin(θi) + yc (1− cos(θi)) = y′i (5.21b)

after solving the system and simplifying the solution is

xc =
y′i + x′i cot( θi

2
)

2
(5.22a)

yc =
x′i − y′i cot( θi

2
)

2
(5.22b)

The individual pan and tilt centers of rotation are then computed associating origin’s

Z coordinate with equation’s X and origin’s X coordinate with equation’s Y for pan,

and origin’s Y with equation’s X and origin’s Z with equation’s Y for tilt.

B.3 SVD Center Fitting

This method is based on equations 5.21 that here is shown in matrix form for the ith

camera pose

[
(1− cos(θi)) sin(θi)
− sin(θi) (1− cos(θi))

] [
xc

yc

]
=

[
xi

yi

]
. (5.23)

When the converted origins are substituted on equation 5.23, linear systems of 2n equa-

tions with two unknowns for pan axis calibration and 2m equations for tilt are obtained.
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The systems are solved by computing the pseudo-inverse of the matrix by using the sin-

gular value decomposition technique and then multiplying by the vector of converted

origins’ coordinates.

B.4 Simultaneous Center Fitting

The last method used to find the reference points for pan and tilt rotation solves for

both reference points simultaneously. The other three methods solve for pan and tilt

separately using calibrated camera poses on specially selected camera planes to eliminate

the effect of the other unknowns.

The full transformation caused when any of the axes pass through the optical center of

the camera is expressed as

T(xp, 0, zp)Ry(p)T(−xp, 0,−zp)T(0, yt, zt)Rx(t)T(0,−yt,−zt) (5.24)

which here is shown in full matrix form


cos(p) sin(p) sin(t) cos(t) sin(p) xp − xp cos(p)− sin(p) (zp − zt + zt cos(t) + yt sin(t))

0 cos(t) − sin(t) yt − yt cos(t) + zt sin(t)
− sin(p) cos(p) sin(t) cos(p) cos(t) zp + xp sin(p)− cos(p) (zp − zt + zt cos(t) + yt sin(t))

0 0 0 1


(5.25)

where p and t are the pan and tilt angles respectively.

Since the origins are used to perform the fitting, the expected position of the converted

origins of the camera at different poses is computed as the translation vector of ma-

trix 5.25.

The error, computed as the square distance between the expected and actual coordinates

of the converted origins, is minimized by using the same modified Levenberg-Marquardt

method used before to calibrate the fixed camera calibration model.

C. Full Unalignment

Finally, this section eliminates the assumption of alignment between the pan and tilt

axes and the camera’s Y and X axes. The new situation is illustrated in Figure 5.9.

There are several ways in which an arbitrary axis can be represented. We selected to

represent its orientation by two angles and its position by a point.
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Z (Optical Axis)

X Axis

Pan Axis

Tilt Axis

Camera

Tilt
Center
(0,Yt,Zt)

Pan
Center

(Xp,0,Zp)

Y Axis
Y Axis

X Axis

Pp & Pt

Tp

Tt

N(a,b,c)

Pan Alignment Angles (Pp, Tp)

Tilt Alignment Angles (Pt, Tt)

Figure 5.9: Configuration of pan and tilt rotational axes when they do not pass through
the optical center of the camera and are not aligned with the axes of the camera’s
coordinate system.

The points are defined as those where the axes intersect specific planes in the camera

reference: the ZX plane for pan and the YZ plane for tilt, then, presenting similar

elements to those of the last section.

The angles are defined so that they can align the rotation axis with specific camera axes

by a combination of two rotations. In the case of the pan axis, it is aligned with the Y

camera axis by first rotating it an angle pp with respect to the Y camera axis and then

rotating it an angle tp with respect to the Z camera axis. And in the case of the tilt

axis, it is aligned with the X camera axis by first rotating it an angle pt with respect to

the Y camera axis and then rotating it an angle −tt with respect to the Z camera axis

(see Figure 5.9).

Since the simultaneous fitting process of pan and tilt unknowns do not showed better

results, as will be shown later, the eight unknowns were fitted separately.

The new transformation matrix for that represents the effect of panning the camera is

computed as

Ry(pp)Rz(−tp)T(xp, 0, zp)Ry(p)T(−xp, 0,−zp)Rz(tp)Ry(−pp) (5.26)

which evaluated and simplified gives
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P [0][0] : cos(p) (cos(pp)
2 cos(tp)

2 + sin(pp)
2) + cos(pp)

2 sin(tp)
2

P [1][0] : −(((−1 + cos(p)) cos(pp) cos(tp) + sin(p) sin(pp)) sin(tp))
P [2][0] : −(cos(pp)

2 cos(tp) sin(p))− cos(tp) sin(p) sin(pp)
2 − sin(p

2)2 sin(2 pp) sin(tp)
2

P [0][1] : (−((−1 + cos(p)) cos(pp) cos(tp)) + sin(p) sin(pp)) sin(tp)
P [1][1] : cos(tp)

2 + cos(p) sin(tp)
2

P [2][1] : (cos(pp) sin(p) + (−1 + cos(p)) cos(tp) sin(pp)) sin(tp)
P [0][2] : cos(pp)

2 cos(tp) sin(p) + cos(tp) sin(p) sin(pp)
2 − sin(p

2)2 sin(2 pp) sin(tp)
2

P [1][2] : −((cos(pp) sin(p)− (−1 + cos(p)) cos(tp) sin(pp)) sin(tp))
P [2][2] : cos(p) (cos(pp)

2 + cos(tp)
2 sin(pp)

2) + sin(pp)
2 sin(tp)

2

P [0][3] : −(cos(pp) cos(tp) (−xp + xp cos(p) + zp sin(p))) + (zp − zp cos(p) + xp sin(p)) sin(pp)
P [1][3] : (−xp + xp cos(p) + zp sin(p)) sin(tp)
P [2][3] : cos(pp) (zp − zp cos(p) + xp sin(p)) + cos(tp) (−xp + xp cos(p) + zp sin(p)) sin(pp).

(5.27)

And, the new transformation matrix for that represents the effect of tilting the camera

is computed as

Ry(pt)Rz(tt)T(0, yt, zt)Rx(t)T(0,−yt,−zt)Rz(−tt)Ry(−pt) (5.28)

which evaluated and simplified gives

T [0][0] : cos(t) sin(pt)2 + cos(pt)2 (cos(tt)2 + cos(t) sin(tt)2)
T [1][0] : −(cos(tt) (sin(pt) sin(t) + cos(pt) (−1 + cos(t)) sin(tt)))
T [2][0] : −(cos(tt)2 sin(2 pt) sin( t

2)2)− sin(t) sin(tt)
T [0][1] : cos(tt) (sin(pt) sin(t)− cos(pt) (−1 + cos(t)) sin(tt))
T [1][1] : cos(t) cos(tt)2 + sin(tt)2

T [2][1] : cos(tt) (cos(pt) sin(t) + (−1 + cos(t)) sin(pt) sin(tt))
T [0][2] : −(cos(tt)2 sin(2 pt) sin( t

2)2) + sin(t) sin(tt)
T [1][2] : −(cos(tt) (cos(pt) sin(t)− (−1 + cos(t)) sin(pt) sin(tt)))
T [2][2] : cos(pt)2 cos(t) + sin(pt)2 (cos(tt)2 + cos(t) sin(tt)2)
T [0][3] : sin(pt) (zt− zt cos(t)− yt sin(t)) + cos(pt) (−yt + yt cos(t)− zt sin(t)) sin(tt)
T [1][3] : cos(tt) (yt− yt cos(t) + zt sin(t))
T [2][3] : cos(pt) (zt− zt cos(t)− yt sin(t)) + sin(pt) (yt− yt cos(t) + zt sin(t)) sin(tt).

(5.29)

As it can be observed, the expressions has became longer and more complex.

The first intention was to use the same fitting method used in the fourth method of

the last section, directly, by only changing the equations. However, the new system

demonstrated to suffer of many local minima and since the solution method performs a

process of successive approximations, it did not give good values.
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Then it was decided to solve the problem in two steps: first, to fit planes to the set

of converted origins, get the axes’ orientations, and then use the same strategy of the

fourth method of the last section to solve for the axes’ reference points by using the

transformation matrices 5.27 and 5.29.

The plane is fitted with equation

a x+ b y + c z + d = 0 (5.30)

with normal n = (a, b, c)T where ‖n= 1 by using a least square technique.

The orientation angles of the axes are calculated from the components of the normal of

the fitted plane. For the pan axis as

pp = arctan(sin(pp)/ cos(pp)) = arctan(−c/a) (5.31a)

tp = arccos(n · ȳ) = arccos(b) (5.31b)

where ȳ is a unit vector in the direction of the Y camera axis (0, 1, 0)T .

And for the tilt axis as

pt = arctan(sin(pt)/ cos(pt)) = arctan(−c/a), (5.32a)

tt =
π

2
− arccos(n · ȳ) =

π

2
− arccos(b). (5.32b)

5.2.4 Experimental Results

This section presents the effects of calibration of the pan and tilt rotation axes on the

accuracy of the active camera calibration model.

Since the initial idea was to calibrate the pan axis independently from the tilt axis, two

sets of data were taken: one panning the camera while maintaining the tilt value as

close to zero as possible, and the other tilting the camera while maintaining the pan

values as close to zero as possible.

The methods of the section that determine centers of rotation work with projections

of the optical center of the camera when calibrated in the different poses. The origins

are first converted to world coordinates by using the extrinsic parameters from the

fixed camera calibration process and then are converted to camera coordinates using

the reference calibration data.
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(mm)

Pan angle (in camera value)

Figure 5.10: Precision after Calibration of Pan and Tilt Rotation Axes when Camera is
Panned.

In the case of the method for full unalignment, the number of points had to be augmented

to get better estimates in the plane fitting process. This because small deviations with

respect to the true alignment is scaled by the distance from the camera, and as a

consequence produce bigger errors. To increase the number of points, instead of using

only the origins, a set of uniformly separated points on the optical axis (Z axis) of the

camera were used. This measure worked out very well.

The accuracy obtained after the calibration process is shown in Figure 5.10 for the

camera poses used for pan calibration, and in Figure 5.11 for camera poses used for tilt

calibration.

The plotted values were computed as follows:

1. A big set of randomly distributed 3-D points in world coordinates Pw is created.

2. Each point in Pw is converted to the camera frame of reference for the active

camera calibration model, giving Pc.

3. For each camera pose ci:

(a) Convert a point pwj from Pw to the coordinates in ci, by directly using its

pre-computed fixed camera calibration data, getting pi
wj.

(b) Convert its correspondent point pcj from Pc to the coordinates in ci by using

the active camera calibration model, getting pi
cj. This conversion applies the

transformation matrices described earlier for each case, but with negated pan
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Figure 5.11: Precision after Calibration of Pan and Tilt Rotation Axes when Camera is
Tilted.

and tilt angles. The negated angles are explained as the effect of rotating the

coordinate frame and not the points.

(c) Compute the error as the absolute distance between pi
wj and pi

cj and add it

to the total error for ci.

4. Compute the average error for each camera pose by dividing the total error by the

number of points.

In order to judge which method gives better results, two factors has to be observed.

One is the magnitude of the error and the other is the tendency of its growing while

getting away from the reference camera pose, that was selected as close to (0, 0) for the

pan and tilt values, respectively.

It can be observed, that the error tends to increase with the distance from the reference,

as was expected. This is because the models do not consider all the factors and in

the best case are only approximations. The better the approximation the smaller the

expected error. As an extreme illustration of this, it was included the plot of the average

error when using only the reference data (with legend fixed). The error grows so fast

that only a small portion appears in the figures. This obviously wrong approximation

shows the worst behavior under the pan and tilt actions.

Then, the accuracy of the model grows when the constraining assumptions are elim-

inated. An exception is the case of where the centers of pan and tilt rotation are

computed as an average. This case presents bigger errors and faster growing tendency
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than the case of full alignment. The reason for this is that this kind of computation

is an easy prey of noise, that in this case pulls out the position of the centers. When

the commanded rotation is small, a small error in the origin position computation can

finish fitting circles of huge radius.

Another thing that it can be observed in the figure is that the results obtained by

calibrating the pan and tilt independently or doing it at the same time are practically

the same, even when different fitting methods where used.

The method that gave the best (minimum) error and tendency behavior was the least

constrained; that which allows the pan and tilt axes be unaligned and do not pass

through the optical center of the camera, especially in the case of the tilt rotation axis.

However, most of the methods present a reasonably good results. This is because the

camera that was used has its pan and tilt axes almost perfectly aligned with the camera

axes, as could be noted from the plane fitting results, and they actually pass near the

optical center. The difference in the results would be more evident in the case of some

other devices.

5.3 Active Camera Adjustment

This section determines the correction in the controllable variables of the active camera

mechanism required to reach a new commanded position and orientation. The new cam-

era pose is given by two points in world coordinates, one being the viewpoint (position

for the camera’s optical center) and the other to be used for computing the new camera

attitude.

First the method computes the changes that will produce the new orientation and then

those that will correct the position of the viewpoint.

5.3.1 Correcting the Camera’s Attitude

In the proposed positioning mechanism, the final attitude is determined solely by the

camera. Therefore, new values for the pan and tilt angles have to be calculated after a

new camera pose is required. To do this, the current viewing direction and the new one

are converted to camera coordinates, and the rigid transformation Tpt that will align

both vectors is deduced from

 xd

yd

zd

 = Tpt

 xc

yc

zc

 (5.33)
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where (xd, yd, zd)
T and (xc, yc, zc)

T are the camera coordinates of the new desired and

current viewing directions, respectively.

The computation of the values for the pan and tilt rotation angles come from the form

of Tpt which, as was described before, is based on a valid set of assumptions.

Next the formulations and solutions for the first two cases are presented: (1) full

alignment: when the pan and tilt axes are aligned with the camera axes and pass

through its optical center, and (2) Displaced centers of rotation: when the axes

are aligned but do not pass through the optical center. The third case, where the axes

are not aligned is not included because its formulation and solution includes very large

equations and as it was shown in the experiments, the axes are almost perfectly aligned

for the camera used, so that its benefit is marginal.

A. Full Alignment

In this case, Tpt is computed as the rotation matrix

Rpt = Ry(θ)Rx(φ) =

 cos(θ) sin(θ) sin(φ) sin(θ) cos(φ)
0 cos(φ) − sin(φ)

− sin(θ) cos(θ) sin(φ) cos(θ) cos(φ)

 (5.34)

obtained from the pan angle θ and the tilt angle φ.

When the current and new viewing direction are represented by arbitrary vectors, the

following system of three equations is derived

xd = xc cos(∆θ) + yc sin(∆θ) sin(∆φ) + zc sin(∆θ) cos(∆φ) (5.35a)

yd = yc cos(∆φ)− zc cos(∆φ) (5.35b)

zd = −xc sin(∆θ) + yc cos(∆θ) sin(∆φ) + zc cos(∆θ) cos(∆φ) (5.35c)

where ∆θ and ∆φ are the correction pan and tilt angles, respectively.

Solving the above system we get

sin(∆θ) =
−zdxc ± xd

√
y2

c + z2
c − y2

d

x2
d + z2

d

(5.36a)

cos(∆θ) =
xdxc ± zd

√
y2

c + z2
c − y2

d

x2
d + z2

d

(5.36b)

∆θ = atan2(sin(∆θ), cos(∆θ)) (5.36c)
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and

sin(∆φ) =
−ydzc ± yc

√
y2

c + z2
c − y2

d

y2
c + z2

c

(5.37a)

cos(∆φ) =
ydyc ± zc

√
y2

c + z2
c − y2

d

y2
c + z2

c

(5.37b)

∆φ = atan2(sin(∆φ), cos(∆φ)) (5.37c)

Then, the new pan and tilt angles to be commanded to the camera are

θnew = θold + ∆θ (5.38a)

φnew = φold + ∆φ. (5.38b)

An alternative to the above general solution is to compute directly the absolute values

for the pan and tilt angles to be commanded aligning an specific vector to the desired

new viewing direction. Since the camera model assumes that the optical axis of the

camera is aligned with the camera’s Z axis, the vector (0, 0, 1)T can be used in place of

the current viewpoint orientation. In this case, the system to solve is

xd = sin(θ) cos(φ) (5.39a)

yd = − sin(φ) (5.39b)

zd = cos(θ) cos(φ) (5.39c)

which gives the following solution

sin(θ) = ± xd√
x2

d + z2
d

(5.40a)

cos(θ) = ± zd√
x2

d + z2
d

(5.40b)

θ = atan2(sin(θ), cos(θ)) (5.40c)
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and

sin(φ) = −yd (5.41a)

cos(φ) = ±
√
x2

d + z2
d (5.41b)

φ = atan2(sin(φ), cos(φ)) (5.41c)

these results can be easily verified by simple substitution on the above general equations.

Before sending the command to the camera, the angles have to be checked against

the kinematic constraints defined by the physical pan and tilt rotational ranges for the

specific camera.

After the correction and under the present assumptions, the extrinsic parameters of the

fixed camera calibration model can be recomputed as

R′
wc = Ry(−θ)Rx(−φ)Rwc (5.42a)

t′wc = Ry(−θ)Rx(−φ) twc (5.42b)

where R′
wc and t′wc are the new rotation matrix and translation vector, respectively.

Since in this case the optical center does not move, its position in world coordinates to

be used as the current viewpoint vc is obtained by

vc = −R−1
wc twc (5.43)

B. Displaced Centers of Rotation

In this case, the method solves for the alignment of the Z camera axis with the new com-

manded viewing direction in the camera coordinates of the camera calibration reference.

The problem is formulated as

 xd

yd

zd

 = T(xp, 0, zp)Ry(θ)T(−xp, 0,−zp)T(0, yt, zt)Rx(φ)T(0,−yt,−zt)

 0
0
1


(5.44)
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that generates the following system of three equations

xd = xp − xp cos(θ) + sin(θ) (−zp + zt + cos(φ)− zt cos(φ)− yt sin(φ))(5.45a)

yd = yt − yt cos(φ) + (−1 + zt) sin(φ) (5.45b)

zd = zp + xp sin(θ) + cos(θ) (−zp + zt + cos(φ)− zt cos(φ)− yt sin(φ)) (5.45c)

After solving for φ, by using equation 5.45b and a set of trigonometric identities, and

simplifying the expression, φ is computed as

φ = arccos

−yd yt + y2
t ± (−1 + zt)

√
−y2

d + 2 yd yt + (−1 + zt)2

y2
t + (−1 + zt)2

 . (5.46)

Since from equation 5.45b

sin(φ) =
yd − yt + yt cos(φ)

−1 + zt

(5.47)

then, substituting the result of equation 5.46 in equation 5.47 and simplifying the ex-

pressions

sin(φ) =
(−1 + zt) (yd − yt)± yt

√
−y2

d + 2 yd yt + (−1 + zt)2

y2
t + (−1 + zt)2

(5.48a)

cos(φ) =
−yt (yd − yt)± (−1 + zt)

√
−y2

d + 2 yd yt + (−1 + zt)2

y2
t + (−1 + zt)2

(5.48b)

φ = atan2(sin(φ), cos(φ)) (5.48c)

Now, solving and simplifying from equations 5.45a and 5.45c, the result is

sin(θ) =
xp (zd − zp) + α (−xd + xp)

x2
p + α2

(5.49a)

cos(θ) =
xp (−xd + xp)− α (zd − zp)

x2
p + α2

(5.49b)

α = zp − zt + (−1 + zt) cos(φ) + zt sin(φ) (5.49c)

θ = atan2(sin(θ), cos(θ)) (5.49d)
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where after substituting the values for cos(φ) and sin(φ) of equation 5.48 in α equation

and simplifying gives

α = zp − zt ±
√
−y2

d + 2 yd yt + (−1 + zt)2. (5.50)

Again, before sending the command to the camera, the obtained angles have to be

checked against the kinematic constraints defined by the physical pan and tilt rotational

ranges for the specific camera.

After the correction and under the current assumptions, the extrinsic parameters of the

fixed camera calibration model can be recomputed as

R′
wc = Ry(−θ)Rx(−φ)Rwc (5.51a)

t′wc = Ry(−θ)Rx(−φ) twc + Ry(−θ) (I−Rx(−φ))T(0, yt, zt) + (5.51b)

(I−Ry(−θ))T(xp, 0, zp)

where I is the 3x3 identity matrix.

This time, as result of the panning and/or tilting the camera, the optical center of

the camera moves, and this motion has to be considered when determining the robot

motion.

The old optical center and origin of the camera coordinate frame moves to a position

with respect to the new coordinate system computed as

t′wc−R′
wc R

−1
wc twc = Ry(−θ) (I−Rx(−φ))T(0, yt, zt)+(I−Ry(−θ))T(xp, 0, zp). (5.52)

The position in world coordinates of the new origin of the camera system after the

attitude correction, and the new current viewpoint vc before the robot correction is

computed as

vc = −R′−1
wc t′wc

= R−1
wc (T(0, yt, zt)− twc) + R−1

wc R−1
x (−φ) (T(xp, 0, zp)−T(0, yt, zt))−

R−1
wc R−1

x (−φ)R−1
y (−θ)T(0, yt, zt).

(5.53)

5.3.2 Correcting the Viewpoint Position

In the described positioning system, the robot completes the camera’s new pose by

translation about its local coordinate system. To determine the correction required and
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the values for the new position to command the robot, the problem is worked out in the

world context.

The desired viewpoint vd is already given as input to the system in such reference and

the current viewpoint vc is calculated as shown before.

The required translation in world coordinates ∆tw is

∆tw = vd − vc = Trw ∆tr (5.54)

where Trw is the transformation matrix from robot to world coordinates and

∆tr = rs − rc (5.55)

is the required translation in robot coordinates, rs is the searched robot position, and

rc is the current robot position. Thus, to reach the new viewpoint position, the new

commanded robot position is obtained as

rs = R−1
wc(vd + R−1

wc twc) + rc (5.56)

After the robot correction, the camera’s attitude is not modified leaving the extrinsic

parameters of the camera calibration model for rotation unchanged, but the extrinsic

parameters for translation changes to

t′wc = twc −Rwc Rrw ∆tr. (5.57)

5.4 Preventive Visual Strategies for Robotic Assem-

blies

After determining the assembly steps that require of visual feedback operations and

knowing how to quantify a predicted success probability (Psp) for each viewpoint in

the viewing sphere of objects to be observed during the execution of the assembly

plan, to complete the preventive visual sensing strategy lacks to decide the sequence of

movements for the active vision sensor.

Each task in the new assembly plan includes a set of objects that have to be observed

to determine a potential adjustment in the configuration of the manipulated object of

the task. As explained in Chapter 4, each of these objects will be placed in the center
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of a discretized viewing sphere and for each viewpoint localized in the center of each

tessel of this sphere a Psp value will be computed.

The obtainment the sequence of movements for the sensor is a classic example of a multi-

objective optimization problem, since its solution pretends to maximize the probability

of success of the assembly operations and at the same time minimize the displacements

of the optical sensor. However, during the execution of the plan, the best viewpoint for

observing an object during a task could be far from the best viewpoint to observe an

object for the following task. Inclusive, sometimes during the same task, several objects

have to be localized in order to determine preventive adjustments in the manipulated

object, and best viewpoints could also be far from each other.

Other factors to consider in the construction of a criteria for determining the sequence

of viewpoints for the sensor are those related with the reachability of the viewpoints,

and also the possible variability in the real Psp values when a viewpoint is expected to

suffer a high level of occlusion. The first factor is related to the kinematic constraints of

the active sensor that limit the possible camera configurations and do not allow to reach

the position and orientation established by the viewpoint. The second factor is related

to the accuracy of the computed Psp value associated with a viewpoint; this value

is obtained from an uncertainty model of the sensor experimentally quantified. The

quantification of the parametric model of uncertainty is realized through localization of

isolated objects and using a technique that is robust to some degree of occlusion, but if

the level of occlusion is high the Psp values will degrade a lot.

To support the problem description and its implemented solution Figure 5.12 is used,

where viewing spheres of objects A and B had been simplified to viewing circles, and

where the work space of the active sensor, which has a parallelepiped shape in this work,

had been simplified to a rectangular region. In this figure, the viewpoints vi1,vi2, ...,vin,

in the viewing circle of the object are illustrated as small triangles oriented through the

circle center. The other kinematic constraint associated with the sensor orientation is

determined by the limitation of the pan and tilt angle ranges. The small rectangles that

appear in the center of the viewing circles represent bounding boxes – a simplification

of convex hulls – for the object to localize. This bounding boxes will be used to conform

collision and occlusion criteria.

The method to determine the viewpoints sequence to implement during the execution of

the assembly plan is based on an divide-and-conquer strategy of two stages. In the first

stage, and without considering the order of the assembly steps, obtains a reduced set

of the best viewpoints sequences for each of the assembly steps requiring of preventive

vision. In the second stage and considering now the sequence of steps of the assembly

plan, from each the reduced sets of viewpoints sequences, obtained in the first stage,

selects the best one to be implemented as part of the global strategy of preventive

vision. Dividing the problem in two stages its complexity is reduced, since this grows
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Figure 5.12: Elements for determining a viewpoints sequence to observe two objects.

exponentially with the number of assembly steps, the number of objects to observe, and

the number of reachable viewpoints by the active sensor.

5.4.1 First Stage: Selecting Viewpoints for Assembly Steps

First stage is subdivided into two sub-stages. In the first sub-stage reduce sets of

viewpoints are selected, where viewpoints are realizables and have good Psp values. In

the second sub-stage sequences of viewpoints are created from the sets obtained in the

first sub-stage.

The first sub-stage is implemented by following four-step procedure:

1. Conform to kinematic constraints. For each object i to observe, eliminate all the

viewpoints of its viewing sphere that can not be reached due to the kinematic

constraints of the sensor mechanism, i.e. eliminate every viewpoint vij which

falls out of the work space of the active sensor and/or which requires of rotation

angles that are bigger than those allowed by the pan-tilt mechanism of the camera.

Figure 5.12 depicts a situation where two objects must be observed, Object A and

Object B. Each of their viewing circles contain 16 viewpoints. The viewpoints

to be eliminated are those which fall outside the big rectangle; those that appear
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Figure 5.13: Selection of sets of viewpoints for each assembly step.

without a label. For explanation purposes, it is assumed that camera has a rotation

range of 180 degrees. Under this assumption, as shown in Figure 5.13(a), the

labeled viewpoints are maintained.

2. Avoid collisions. Eliminate viewpoints that fall inside bounding boxes of objects

to localize. In this way collisions between the objects and the sensor mechanism

are avoided. This step eliminate viewpoints vA6 and vB1 as illustrated in Fig-

ure 5.13(b).

3. Reduce viewing occlusion. Eliminate viewpoints for which a computed occlusion

index exceeds a predefined threshold to. Though the localization tool is robust

to partial occlusion, its performance degrade quickly when more than 25% of the

object to localize is occluded. Since the models of the objects used by the tool are
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composed by edgels, the index of occlusion is computed as a percentage of edgels

visible from a viewpoint that are occluded by other environmental objects in the

assembly scene.

The exact index of occlusion io can be computed as follows:

(a) Obtain the set Fo of all the polynomial faces of the environmental objects,

different from the object to localize, that could be occluding an otherwise

visible edgel. These faces are described by a normal vector nf with a com-

ponent in an opposite direction to the viewing direction dv when the camera

is in the analyzed viewpoint vij, s.t. nf · dv < 0.

(b) Review each edgel of the set of visible edgels Ev obtained from the 2DTM

model of the object to localize, to determine if the straight line segments

described between these and vij intersects any of the faces in set Fo. In case

of intersection, increase the counter co of occluded edgels.

(c) Compute the occlusion as io = co/|Ev|.

The exact computation of the occlusion index is expensive, so a more cost effective

form of computing an approximation to the index is modifying the first step of

the algorithm, so that instead of using the polynomial faces of the environment

objects, use the rectangular faces of the bounding faces of these objects. Doing

this, there is a risk to overestimate the index, however this would have an effect

similar to that of using a smaller occluding threshold value than the predefined

one to. Figure 5.13(c) illustrate the occluded regions for viewpoints vA5 and vB2

as shadowed regions of bounding boxes of objects to observe. As can be seen, the

level of occlusion of Object B observed from vB2 viewpoint is big, easily exceeding

any reasonable threshold, then this viewpoint is eliminated. However, the level of

occlusion in object A observed from vB2 viewpoint is very small and therefore this

viewpoint is preserved.

4. Select successful viewpoints. From set Vir of preserved viewpoints for object i, a

subset Vis is select to contain at most n viewpoints with the highest Psp values.

The n value is defined in agreement with quantity and Psp value criteria, the

size of the subset must be small to prevent a combinatorial explosion and the

Psp values must be high but not as to eliminate all the candidate viewpoints.

To implement these criteria new threshold have to be determined. Figure 5.13(d)

show Psp values for each of the preserved viewpoints, where the last viewpoint to

be eliminated in the case of using a reasonable threshold of 0.7 are depicted with

dashed lines, i.e. vA3, vA4, vB4, and vB5.

The second sub-stage of the first stage is implements by the following three step proce-

dure:
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1. Create viewpoint tuples. Create tuples of n viewpoints (n-tuples) each; the n value

is determined by the number of objects to observe in an assembly step. Tuples

are obtained as the Cartesian product of the reduced sets of viewpoints of the

preceding sub-stage; i.e. if in an assembly step only one object will be observed,

the set of tuples will contain a 1-tuple for each preserved viewpoint of viewing

sphere VA; if two objects will be observed during a step, the set of tuples will

contain a 2-tuple for each pair resulting from the Cartesian product VA × VB;

if three objects will be observed during a step the set of tuples will contain the

triplets resulting from the Cartesian product VA × VB × VC ; and so on.

2. Configure sequences. Each of the n-tuples obtained in the preceding step should

be converted in sequences of n viewpoints, where the order of these will be that

which requires of moving the sensor the smallest distance. The metric used is

computed as the sum of the Euclidean distances between pairs of viewpoints, i.e.

the sequence si obtained for the n-tuple i is defined as permutation π(j) of n!

possible permutations that for 1 ≤ i, j, k ≤ n,

‖π(j)‖ ≤ ‖π(k)‖, (5.58)

where j 6= k and

‖π(i)‖ =
n−1∑
p=1

dEuclid(vi,p, vi,p+1). (5.59)

3. Select best sequences. Select a reduced number ns of the best sequences obtained

in the preceding step using as decision criteria a combination of the contribution of

the viewpoints in the sequence to the success of the task, their indexes of occlusion,

and the required motion of the sensor. All this factors where already considered

in isolation to reduce the complexity of the problem, however they also have to be

used together to determine the best sequences.

The selection function Cs applied to sequence i, which contains ns(i) viewpoints,

is computed as

Cs(i) = α1λs(i) + α2δs(i) + α3γs(i) (5.60)

values α1, α2, and α3, where 0 ≤ α1, α2, α3 ≤ 1 y α1 + α2 + α3 = 1 , describe

the relative importance assigned to each of the criteria included in the selection

function. In this function the combination of Psp values quantified as λ(i) has

priority over the accumulated displacements of the sensor quantified as δ(i), and

this has priority over the combination of levels of occlusion quantified as γ(i), i.e.

α1 ≤ α2 ≤ α3. Expressions for the computation of the criteria where normalized
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to values between 0 and 1, where 0 is the worse value and 1 the best one. The

best viewpoints sequences are those that obtain the highest Cs(i) values.

The λs(i) criterion quantifies the composed probability of having success during

the execution of the assembly step if sequence i is utilized, as

λs(i) = Π
ns(i)
j=1 Psp(vp(si, j)) (5.61)

where function vp(si, j) returns the viewpoint j of sequence i.

The δs(i) criterion compute the required displacement for the sensor to implement

sequence i in order to quantify a norm for the average non-traveled space inside

the working space of the active sensor, as

δs(i) = 1− ‖π(i)‖
ns(i)dsensor

(5.62)

where dsensor is computed as the Euclidean distance between two 3d-points de-

scribing the parallelepiped box of the working volume of the active sensor.

Finally, the γs(i) criterion quantifies the average visibility of the objects to localize

from the viewpoints in sequence i, as

γs(i) =

∑ns(i)
j=1 1− io(vp(si, j))

ns(i)
. (5.63)

5.4.2 Second Stage: Constructing A Global Strategy

Once the best potential strategies (sequences of viewpoints) for each of the assembly

steps are known, a global strategy to be implemented for the assembly plan must be

constructed. For this stage the order or the assembly steps is crucial. The different

alternatives of visual strategies are constructed as chains of sequences of viewpoint

starting from an initial position of the active sensor.

This second stage is realized by an iterative algorithm similar to a beam local search

method in a space of states. In each step of the algorithm, the sequences of viewpoints,

obtained in the first stage, for the following assembly step requiring of preventive vision

are processed; i.e. at the end, the depth of the search tree will be at most equal as the

number of steps in the assembly plan. States in this search process describe incomplete

plans. The level of the search tree denotes the number of steps that have required of

preventive vision.

In a similar way to a beam local search, the algorithm keeps track of k states rather

than just one, as other local search strategies like hill climbing. In each search step,
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all the successors of the k states are generated. If all the steps in the assembly plan

requiring preventive vision were processed, the selection of the best strategy on this tree

level gives the visual strategy to implement. On the contrary, the best k successors of

the full list of successors are selected, and the process is repeated for the next assembly

step. Same evaluation function is used for both cases.

The function that obtains the successor states in the search creates a successor state for

each sequence selected in the first stage.

The decision of the k best successors is realized based on an evaluation function that

considers the same criteria used in the selection function for the best viewpoints of the

preceding stage. However, in this occasion it combines the criteria values of the past

stage and includes the distance required for the sensor reach the initial viewpoint of the

following sequence.

The evaluation function ge(i) for state ei is computed as

ge(i) = α1λe(i) + α2δe(i) + α3γe(i) (5.64)

where coefficients α1, α2, and α3 are the same as those of equation 5.60.

This time, the λe(i) criterion quantifies the average of expected execution success when

implementing the chain of sequences associated with the successor i, which was consti-

tuted from state i−1 after adding sequence j. The value λe(i) is computed by recursive

equation

λe(i) =
ne(i− 1)λe(i− 1) + λs(j)

ne(i)
(5.65)

where recursive equation ne(i) = ne(i − 1) + ns(i) returns the number of viewpoints

contained by the chain of sequences of state i, λe(0) = 0, and ne(0) = 0.

The δe(i) criterion quantifies the required displacement of the sensor to implement the

chain of sequences associated with state i by using the recursive equation

δe(i) =
ne(i− 1)(1− δe(i− 1)) + ns(i)(1− δs(i)) + dreach(si)

ne(i− 1) + ns(i) + 1
(5.66)

where δe(0) = 0, dreach(si) is the Euclidean distance between the last viewpoint of

sequence i − 1 and the first viewpoint of sequence i, and dreach(s1) is the Euclidean

distance between the initial position of the active sensor and the first viewpoint of the

first sequence.
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Finally, the γe(i) criterion quantifies an average of the visibility level for the chain of

sequences of viewpoint of state i by using the recursive equation

γe(i) =
ne(i− 1)γe(i− 1) + ns(j)γs(j)

ne(i)
(5.67)

where γe(0) = 0.
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Chapter 2

Sensing Analysis for Robotic
Assembly

This chapter presents the analysis realized to construct the foundations of a method for

the automatic generation of sensing strategies in robotic assembly. From the specifica-

tion of a sequence of steps, in a nominal assembly plan, a set of force and vision sensing

requirements are determined to monitor, control and correct the execution of that plan

by a robot arm. The analyzer determine appropriate sensing strategies for each assembly

task from a study of the transitions in the contact relations among the assembly ele-

ments. The geometric information, required to recognize the contacts formation process,

is obtained from CAD models of the parts and the environment.

The nominal assembly plans for this dissertation are restricted to binary plans, which

are also linear and sequential, that describe a totally-ordered sequence of assembly steps.

These plans are entered as input to the sensing analyzer. An assembly plan describe

the order in which each assembly component has to be manipulated by a robot arm

and the sequence of configurations through which these parts have to pass during the

mating process. An object configuration in the input plan describes its absolute pose

with respect to an arbitrary coordinate system of reference, the assembly frame. Every

assembly element is modeled as a polyhedral object.

As a result of the analysis, force sensing is prescribed during the execution of assembly

steps to monitor and control the robot actions when there are assembly elements in

contact, and visual sensing is prescribed for detecting and correcting deviations from

the original plan, before a task is realized. The use of preventive vision is expected

to prevent or at least reduce the probability of failure of current and future assembly

operations.

The output of the analyzer answer the following questions:

19



20 CHAPTER 2. SENSING ANALYSIS FOR ROBOTIC ASSEMBLY

• Which assembly steps require of force sensing?

• What type of force sensing operation is needed for such steps?

• Which assembly steps require of preventive vision?

• What kind of visual information is required?

• Which objects contain such information?

The visual sensing strategy is described in such a way that it can be used as input to a

sensor planning module presented in chapter 4. In it, visual information about critical

dimensions of assembly tasks is used to construct a criteria for the selection of the best

sensor configurations for performing the sensing tasks.

2.1 Analysis of Contact States Formation

Not all the assembly tasks require of sensing feedback information. The use of sensors

and sensing operations is needed only in those tasks where the amount of uncertainty

about the actual configuration of objects with respect to some planned tolerances is big

enough to put in risk their successful execution. In this dissertation, such dimensions

are called the critical dimensions of an assembly task.

In order to start giving answers to the research questions, the following additional ques-

tions have to be answered:

• What are the dimensions of an assembly operation?

• How can its critical dimensions be identified?

• Which type of sensing is required for a critical dimension?

• What kind of feedback information is needed to verify the satisfaction of the

constraints defined by a critical dimension?

2.1.1 Definitions

A system is a complex consisting of several elements with similar or dissimilar prop-

erties. The systems considered in an assembly context are capable of changing their

configuration. Such systems possess mobility. To describe a system that changes, the

values of certain parameters that describe the geometry or the state of the system at
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any value of time must be specified. These parameters are called coordinates. A num-

ber of coordinates can describe the configuration of the system. Not all the possible

coordinates are necessary to describe a system. The minimum number of independent

coordinates needed to describe the configuration of a system completely is the num-

ber of its degrees of freedom (DOF). Any set of coordinates that are independent and

are equal in number to the number of degrees of freedom of the system is called a set

of independent coordinates. Any remaining coordinates, which may be determined as a

function of the independent coordinates, are called dependent coordinates. The relations

between the dependent coordinates, when expressed analytically, are called equations of

constraint.

A dimension, in a geometric context, is any of the least number of independent coordi-

nates required to specify a point in space uniquely. That is why a point on a plane, a

bi-dimensional space or 2-D space, can be specified by two dimensions, which describe

its position with respect to the origin of a coordinate system of reference. Consequently,

a point in a tri-dimensional space, or 3-D space, require of three coordinates to describe

its position, or translation, with respect to the origin of a coordinate system of reference.

In the case of rigid objects in a geometric context, the number of dimensions required

has to specify its orientation in addition to its position. A rigid object is defined as

a system of particles for which distances between particles remain unchanged. If a

particle on such an object is located by a position vector fixed to the object, the vector

never changes its position relative to the object, even when the body is in motion. The

position and orientation of a rigid object, better known as its pose, completely specify

the spacial distribution of these particles. The orientation of a rigid object in a 2-D

space requires of one additional dimension to specify its rotation with respect to a point

of reference (usually the origin), s.t. three dimensions are required. In the case of a

3-D space, the specification of an object’s pose require of six dimensions, three for its

position and three for its orientation.

For this dissertation, the dimensions of an assembly operation are defined as the least

number of independent coordinates required to specify the pose of the object manipu-

lated by the robot arm and the poses of the objects in the environment that participate

in contact relations with the manipulated object. Before defining the critical dimen-

sions of assembly operations in this sensing analysis context, the success criteria of their

execution has to be formulated.

As will be explained later, an assembly operation can be characterized by a transition

between contact states. A contact state is deduced from the configuration of the features

in contact of mating parts. Under this context, an assembly plan execution will be

considered successful if after the last assembly step, all the expected contacts among

the assembly parts are attained; a condition that is also expected if every assembly step

succeed. Then, an assembly step is considered as successful if the transition between
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the expected contact states is realized.

This characterization of success for an assembly operation facilitates the segmentation of

the nominal plan and relaxes its dependency on the absolute positioning of the parts. If

the execution goal were to reach an absolute pose for an object, all the dimensions would

be equally important and the criteria to select an specific sensing strategy over others

should rely in the minimization of configuration error with respect to all dimensions of

the task.

With the new success characterization, to produce an specified contact state, what is

important is the relative position among the objects and their features in contact. Since

a contact is a directional phenomenon, it is expected that some dimensions become

more important than others. Then, the criteria to select an specific sensing strategy

relies, mainly, in the minimization of the configuration uncertainty with respect to these

dimensions.

In the previous terms and since the commanding event is the change of contact states,

a nominal assembly plan can be segmented by detecting the addition or reduction of

contacts. Uncertainty can potentially generate unexpected contacts during the execu-

tion of an operation. This is the fact that produces the requirement of using sensorial

information and transforms the conformant problem of executing an original sequen-

tial plan into a contingency problem where a partially observable environment where

actions are uncertain require of new perceptual information after performing certain

actions [80]. The new plan interleaves assembly steps with sensing tasks, and if needed,

with preventive or corrective actions.

Since in the case of contact relations between two objects, the pose of one object fully

or partially defines the pose of the other, it becomes clear that the number of DOF of

the pair is less than the total number of DOF of two free rigid objects. Therefore, a

contact relation describes a constraint that reduces the number of DOF in a system.

In the present work, a critical dimension of an assembly task is defined as a dimension

of an assembly operation associated with a DOF, to be constrained by future contacts,

where arbitrary small deviations from the planned configurations of participator objects

can violate its equations of constraint. Such violation usually produce failure in the task

execution.

2.1.2 Analyzing and Representing Contact States

In order to detect and use contact information for sensing analysis, contacts formation

have to be represented and analyzed in a convenient way.

The first step in creating a tool to generate sensing strategies without depending on spe-

cific objects is the identification of a reduced group of types of contact states. Ikeuchi
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et. al [49] used a taxonomy of contact states for objects in a polyhedral world subject

to pure translational movement that identifies all possible assembly relations based on

the directions of contact surface normals (in the two-dimensional case, the assembly

relations were considered among polygons by using normal directions at the interface

edge). The contact directions and possible movement directions were represented on the

Gaussian sphere. This taxonomy was originally used to develop the assembly plan from

observation (APO) method to program a robot. An APO system recognizes assembly

operations performed by a human operator in front of a vision sensor. As output, it

produces an assembly plan to reproduce the observed behavior using a robot manipu-

lator.

Originally developed to represent face contact relations, this taxonomy of contact-state

relations can be used to represent the translational constraint in the general case. In

this, contacts are represented by a set of one or more vectors indicating the directions of

contact [74]. The representation of the rotational constraint depends on the discovery

of rotation references (centers of rotation in 2-D space or axes of rotation in 3-D space)

under the presence of contacts. Miura and Ikeuchi [64] included one rotational DOF

with respect to the axis of symmetry for polyhedral and cylindrical objects in their

analysis of visual sensing planning for APO.

Contact States under Translational Constraint

The constraining effect in translational motion of contacts over a manipulated object

depends on its direction and can be represented by the constraint equation

n · 4T ≥ 0 (2.1)

where n denotes the contact direction, or constraint vector, and 4T the possible trans-

lational motion vectors. Though the equality depends on the frictional resistance to

motion generated among the contacting features, it will be ignored by this analysis

under the assumption of applying enough force to defeat the existent resistance.

The constraint vector and all the possible translational vectors can be represented on

the Gaussian sphere (a unit sphere where vector information can be mapped onto). A

single contact constrains any motion in a direction that has a component opposing to

its own, then reducing the freedom of the manipulated object to a half-space defined by

a bisecting plane orthogonal to its direction, or constraint plane.

To represent a single contact on a Gaussian sphere, all the vectors are translated so

that their starting points (their tails) are located on its center and their ending points

(their heads) on its surface. If all the vectors are rotated so that the constraint vector

is located on the north pole of the sphere, the translational freedom will be constrained
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to the northern hemisphere (see Figure 2.1). Small motions on the sphere’s equator

are expected to maintain the contact state and motions with a component through the

north pole to break it. In the case of multiple contacts with different directions, the

situation can be modeled by a system of linear equations similar to equation 2.1. The

simultaneous solution of these equations can be represented in the Gaussian sphere as

a polyhedral convex cone [31].

N N

Maintaining motion
directions

Constraining motion
directions

Detaching motion
directionsManipulated

object

Environmental
object

Figure 2.1: Gaussian sphere representation of a single contact constraint.

Following the above representation, the contact states of a manipulated object can be

classified depending in the number of completely unconstrained, partially constrained,

and completely constrained degrees of freedom (DOF). The completely unconstrained,

partially constrained, and completely constrained degrees of freedom are classified as

maintaining DOF, detaching DOF, and constraining DOF, respectively, obeying to the

expected result of allowing a differential translational motion. A maintaining DOF

indicates that there is no constraint component in that direction and that a very small

movement is not expected to cause a new contact. A detaching DOF indicates that a

constraining component exist in that direction and then a conveniently selected motion

can break the contact. In a constraining DOF there is no possibility of movement.

Using the above convention, each contact state can be classified by a triplet indicating

the number of maintaining, detaching, and constraining DOF. Considering only the

translational DOF, there are six possible combinations of DOF for the 2-D case and ten

possible combinations of DOF for the 3-D case. This combinations define the taxonomy

of six contact states depicted in Figure 2.2(a) for the 2-D case and the taxonomy of ten

contact states depicted in Figure 2.2(b) for the 3-D case.

Contact States under Rotational Constraint

The effect of a translation on a point is a linear displacement in a direction specified by

a single vector. In the case of a translated rigid object, which in the general case can

be described as a bounded set of points, all the points travel the same distance in the

same direction.
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S:  2  0  0

B:  1  0  1

D:  0  1  1 E:  0  0  2

C:  0  2  0

A:  1  1  0

(a) 2-D contact states. (b) 3-D contact states.

Figure 2.2: Contact states taxonomies for translation.

The effect of a rotation on a point is a circular displacement with respect to a reference.

In 2-D space, such reference is a point that represents a center of rotation. In 3-D space,

such reference is a vector that represents a rotation axis; in this case, the motion is in

a plane orthogonal to the rotation axis. Rotation can be in the clockwise or counter-

clockwise direction of a right- or left-handed coordinate system.

For a point, the direction of motion and the radius of the arc defined as product of

a rotation is proportional to the shortest distance to its reference. The length of the

described arc depends on the radius and the angle of rotation. This means that a rota-

tion affect differently the points that constitute an object, making them move different

distances and in different directions. This is why the object is not only displaced; it also

changes its orientation.

When there are contacts, the existence of a point trying to move in a constrained

direction as result of a rotation is enough to declare such rotation as constrained. A

rotational degree of freedom also can be completely unconstrained, partially constrained,

or completely constrained; but, in this case, the classification of maintaining, detaching,

or constraining DOF depends also in the selection of the rotation reference.
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2.1.3 Analyzing and Representing Assembly Tasks as Proce-
dure Graphs

Since the contact-state taxonomies defined for the translational case are complete, the

contact configuration of assembly elements at any time can be classified as one of the

proposed categories, and the effect of motion of a manipulated object identified with a

transition between two of those categories. The transition is determined by the type,

direction, and magnitude of the movement.

In some versions of APO systems, instead of continuously observing the human actions,

an image of the scene is taken at discrete periods of time, usually before and after an

assembly step. This causes that many information about the trajectory and manip-

ulation of the objects be lost during the blind periods. To cope with non-perceived

events, some assumptions about the type of transitions of contact states are done, e.g.

the monotonous increment of constraints (contacts) and the inclusion of assembly steps

to avoid the generation of multiple simultaneous contacts. Such assumptions and an

assembly by disassembly analysis were used in [49], [48], and [47] to obtain reduced

directional transition trees known as the procedure tree (Figure 2.3 show the procedure

trees used in APO systems for polygonal and polyhedral objects).

The changes in the contact-state relations that characterize a task are identified by tran-

sitions of DOF in the manipulated object. There are six possible types of transitions

between DOF: maintaining to detaching (M2D), maintaining to constraining (M2C), de-

taching to constraining (D2C), detaching to maintaining (D2M), constraining to main-

taining (C2M), and constraining to detaching (C2D). Figure 2.4 depicts typical opera-

tions related with every DOF transition.

Only the first three transition types– M2D, M2C and D2C –, further referred as restrain-

ing DOF transitions, were used in the mentioned versions of APO, due to the assumption

of the monotonous increment of constraints. In these cases, the manipulated object can

pass through a series of previous contact configurations before it reaches its final pose,

but once a contact is produced, it is maintained.

The last three transition types – D2M, C2M and C2D –, further referred as releasing

DOF transitions, are indicative of broken contacts. A reduction of contacts usually

means that the assembly plan included some previous assembly steps that moved a

manipulated object to a temporal contact configuration conveniently selected to reduce

its pose uncertainty by taking advantage of contacts with features of the environment,

to modify the grasping configuration, or to coordinate the ordered assembly of multiple

objects.

It is also possible that an assembly plan includes some steps that do not modify the

category of any DOF of the manipulated object. These kind of steps can not be char-
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S

D C

B A

(a) 2-D transitions. (b) 3-D transitions.

Figure 2.3: Procedure trees used in APO.

acterized by a change on the state of their DOF, but since some of them could require

of some kind of sensing information, they have to be considered and included in the

representation of transitions.

In general, after non-redundant operations that produce temporal contact configurations

to modify the grasping configuration on the manipulated object or to coordinate the

ordered assembly of multiple objects, the robot arm liberates (ungrasp) the manipulated

object. This is when a transfer operation becomes a transit operation: the manipulated

object becomes environmental and the robot hand becomes the manipulated object.

The type of nominal assembly plans expected as input for this study ensure that every

part that is assembled can be disassembled. This is true because (1) the assembly parts

are rigid objects, (2) only one part is manipulated at a time, and (3) the configuration

of an environmental object is not changed by the action of an assembly step.

The inclusion of assembly operations that involve releasing DOF transitions or that do

not produce any DOF transitions at all, transforms the procedure trees of Figure 2.3

into the procedure graphs of Figure 2.5. The 2-D procedure graph includes 5 nodes (the

contact states) and 13 edges (the transitions), while the 3-D procedure graph includes
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M2D

D2M

(a) M2D and D2M tran-
sitions.

C2D D2C

(b) D2C and C2D tran-
sitions.

M2CC2M

(c) M2C and C2M tran-
sitions.

Figure 2.4: Taxonomy of DOF transitions.

9 nodes and 36 edges.
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(a) 2-D transitions.
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(b) 3-D transitions.

Figure 2.5: Procedure graphs.

2.1.4 Assembly Skill Primitives

Every assembly task comprise some kind of motion. The effect of this motion on a

manipulated object’s DOF can be represented by the automaton shown in Figure 2.6.

This automaton includes three nodes that represent the constraining categories for a

DOF, six arcs that represent the six DOF transitions already described, and three

additional arcs that represent a preservation of the same state. The last three arcs,
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further referred as pseudo-transitions of DOF, are: maintaining to maintaining (M2M),

detaching to detaching (D2D), and constraining to constraining (C2C).

From an analysis of the typical operations associated with the traversal of the automa-

ton’s arcs, the following four assembly skill primitives were extracted:

MD

DD CD

M2M

D2M

M2D M2C

C2M

C2CD2D

D2C

C2D

Figure 2.6: Automaton representing the effect of an assembly step on a manipulated
object’s DOF.

move - an assembly skill primitive to displace an object in a completely unconstrained

manner. The object’s motion from its current pose to a new pose follows a pre-

defined trajectory. The move skill is required by tasks including M2M and D2M

DOF transitions.

make-contact - a move assembly skill primitive that finishes when a new contact is

produced between the manipulated object and the environment. The move-to-

contact skill is required by tasks including M2D DOF transitions.

insert - an assembly skill primitive to move the manipulated object into a low-tolerance

region where completely unconstrained DOF finish completely constrained. The

insert skill is required by tasks including M2C transitions.

slide - an assembly skill primitive to move an object while maintaining the contact with

at least one constraining surface (c-surface). The slide skill is required by tasks

including the rest of the DOF transitions – D2D, D2C, C2M, C2D, and C2C.

Taking the DOF transition analysis to the procedure graphs, it is realized that the

execution of some assembly operations require the concurrent use of multiple assembly

skill primitives. To identify skills for a particular task it is only needed to review the
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triplets used to classify the contact states before and after a task, identify every DOF

transition, and add one skill requirement for each DOF transition in accordance with

the automaton. Figure 2.7 depicts the required skills for the assembly operations in the

procedure graphs.
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M+M

M+I

M+S

M+C

S+C

M+S
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(a) 2-D skills.
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Figure 2.7: Assembly skill primitives.

2.1.5 Identifying Contact States

In the present work, the identification of contact states is fundamental. A contact state is

derived from the recognition of the features in contact of the assembly components. Such

recognition is required during the sensing analysis and the execution of sensing strategies.

Since in this work, only surface-to-surface contacts are considered, in both cases, the

recognition of features in contact (faces) are extracted by using a transformation from

body coordinate systems to face coordinate systems from known (or estimated) object

configurations.

During the sensing analysis stage, the contact states are deduced from the planned con-

figurations of CAD models of the assembly elements in the scene. For every assembly

step, the new contacts and contact states produced by this operation are used to de-

termine force and vision feedback requirements for each involved object. Furthermore,

two representations are constructed: one that describe the evolution of relative depen-

dencies among configurations of objects, and another, that describes objects’ freedom

of motion.
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The assembly relation between the manipulated object and several stationary envi-

ronmental objects is determined from contacting face pairs by analyzing the contact

directions of pairs. Contacting face pairs are extracted from the face configurations. A

contacting face pair is composed by a face of the object manipulated in the current task

and a face from an environmental object, which have surface normals opposite to each

other.

The contact directions are defined as the normal directions from the environmental faces

of contact face pairs. Face contact pairs are grouped into a set of contact directional

groups so that each group has face pairs with the same contact direction. By examining

the occurrence of directions, the contact state relation can be inferred based on the

following facts:

• Contact directions in 2-D contact states C and D, and in 3-D contact states F,

G, and H describe a full basis, s.t. contain two independent vectors in the 2-

D case and three independent vectors in the 3-D case. The difference between

them can be deduced by identifying the number of constraining DOF implied by

the contact directions. In the 2-D case, contact state C does not include any

constraining DOF, while contact state D include one constraining DOF. In the

3-D case, contact state F does not include any constraining DOF, contact state

G includes one constraining DOF, and contact state H includes two constraining

DOF.

The number of constraining DOF can be computed from the basis by counting the

axes where there are projections of the contact directions in both directions, s.t. if

x is a vector from the deduced basis associated with a constraining DOF, and di

and dj are two different contact directions that confirm this, then (di·x)(dj ·x) < 0.

• Contact directions in 2-D contact states A and B, and in 3-D contact states

C, D, and E describe an incomplete basis lacking one independent vector, s.t.

contain one independent vector in the 2-D case and two independent vectors in

the 3-D case. Again, the difference between them can be deduced by identifying

the number of constraining DOF implied by the contact directions. In the 2-

D case, contact state A does not include any constraining DOF, while contact

state B include one constraining DOF. In the 3-D case, contact state C does not

include any constraining DOF, contact state D includes one constraining DOF,

and contact state E includes two constraining DOF.

• Finally, contact state S of both cases, 2-D and 3-D, describes an assembly task

where the manipulated object does not participate in contacts with the environ-

ment.

• The maintaining DOF and detaching DOF can be determined from the same

analysis realized to determine the number of constraining DOF. A detaching DOF
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is associated with a basis vector where all projections of the contact directions are

in the same direction, and a maintaining DOF is associated with the vectors that

complement an incomplete basis.

During the sensing execution stage, the contact states are deduced from the observed

configurations of the assembly elements in the scene. In this stage, the dependency rep-

resentation constructed during the sensing analysis stage is used to adjust the observed

poses of the environmental objects to conform with the expected contact patterns.

Since vision is inherently uncertain, the independently estimated pose of the objects

has to be corrected to conform physically feasible assembly relations. In this disser-

tation, the method considered to perform the correction is the method proposed by

Suehiro et al [97]. The method basically corrects the motion parameters based on face

contact relations. A face contact equation is defined so that a vertex of one face is on the

plane including other contacting face. Contacting faces are recognized by considering

that two faces are in contact if the distance between them is smaller than a selected

threshold. Motion parameters are corrected by simultaneously solving the resulting sys-

tem of non-linear face contact equations. A Newton-Raphson method is used to solve

the system of non-linear equations. To defeat local minimums a first aproximation is

taken from observation.

2.2 Determining the Required Sensing for Robotic

Assembly

In order to succeed in the execution of an assembly plan a system that utilize sensing

information has to deal with problems resulting from the uncertainties in the robot

control, in the sensory information, and in the positioning of the parts to be assembled.

Furthermore, this situation is complicated by the need to implement a contact motion

control to deal with assembly tasks where the manipulated object is in contact with

objects in the environment.

The objective of using sensing feedback data can be preventive or corrective. The goal of

preventive sensing is recognizing conditions that would affect the successful performance

of present and future tasks. Such conditions define a set of constraints in the expected

outcome of the tasks. These constraints can then be used to construct the criteria

for the generation of the sensing strategy and the selection among alternatives. On

the contrary, the goal of corrective sensing is identifying the new state of an assembly

after an operation to decide if something went wrong and decide if additional steps are

necessary to recover from detected errors or deviations from the plan.

Preventive sensing is performed before and during the tasks and tries to predict future
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states from current conditions. If the predicted states do not comply with the plan,

preventive actions are effected. Corrective sensing is performed after the tasks to verify

if a planned state was reached. If the expected state was not reached, corrective actions

are effected.

Control sensing, a kind of corrective/preventive sensing, is utilized during an assembly

operation. In this case, the assembly actions are continuously monitored to control

the robotic operations which systematically react to changes in the feedback data, for

example, when implementing force or visual servoing.

As described in the section about transitions between contact states, there are six pos-

sible types of transitions between DOF, but, how can the knowledge of the transition

that characterize an assembly operation be used to decide if it requires of any kind of

sensing?. A starting point for answering this question was the recognition of the scope

of the different sources of feedback data.

Today, the use of touch and force sensors is still the preferred and best way to detect

contacts, since changes on the patterns and values of force and torque data is a conclusive

proof of the effects of contacts among objects. This information can be used to control

the execution of an assembly step. However, the local nature of force data makes it

useless in the absence of contacts. In the other hand, the global nature of visual data

makes it a more convenient source of information with preventive intentions. Through

vision, a representation of the state of the assembly can be created and maintained.

This representation can be used as a tool for predicting problematic future conditions

that could be solved in a current situation. The problem with vision is that it is not

good for detecting contacts, and commonly it is more expensive and less efficient than

force. In conclusion, the construction of a sensing strategy for robotic assembly requires

of a trade-off between the use of force and vision feedback data.

2.3 Force and Torque Sensing

Fine-motion planning deals with the determination of the trajectories to be followed

by the robot when the manipulated object is in contact with the environment, or when

it may be in contact due to the uncertainties being not small enough relative to the

clearances between the manipulated object and the environment [61]. Fine-motion tasks

are the most error-prone operations during the execution of an assembly plan.
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2.3.1 Using Force Compliance

The conventional way to detect contacts is by using touch, and force and torque sensors.

The use of other kinds of sensors (e.g. vision sensors) to detect contacts has a predictive

nature due to their inherent uncertainty. Though uncertainty is not strange to force

sensors, the detection of the forces generated by a contact is the definite indication of

its presence.

But the use of force feedback data is not always the best alternative to monitor and

control the execution of an assembly operation. Since humans can blindly perform many

complex assemblages, it can be initially said that force data contains enough information

to perform most tasks by recognizing the geometric clues in the structure of the assembly

environment through the analysis of the generated force patterns. However, it should

not be ignored the number and nature of human sensors together with the adaptive

behavior of human actions. The number of force sensors in a robot usually is reduced

and its use is also reduced to a few strategies.

The force and torque readings of a sensor depend on the specific relation between its

pose, the configuration of features in contact, the effect of gravity and friction, and the

intended direction of motion [109]. Its local nature and consequently its ambiguity is

characterized by such relation. When the local conditions of the task are ambiguous

from a sensor’s reference, the best and common strategy is a systematic search of dis-

ambiguating events (identification of specific force and torque patterns). The success

and efficiency of this search depends on the specific conditions of the task and the dis-

tance from the target configuration. The preferred way of dealing with the burden of a

controlled wandering (systematic search) strategy using force sensors is by getting some

kind of global information about the position and orientation of the contacting objects.

An strategy to execute an assembly plan under uncertainty usually assumes the use of

force sensing, either passive or active, during robot operations to perform constrained

motions, aborting jamming and maintaining contacts while moving. Compliance maps

reaction forces to corrective motions [62].

Force compliance can be used to perform a big variety of different manipulation tasks.

However, in the context of assembly plan execution considered in this dissertation, such

manipulation tasks can be classified into two categories in accordance to its nature and

pretended goal: guarded motions and compliant motions.

Guarded motions are those that follow a pre-programmed trajectory until new contacts

are detected. These motions avoid smashing events that could move an stationary

object, modifying its configuration, and inclusively damaging some assembly elements.

Compliant motions are those that occur when the manipulator’s pose is constrained

by the task geometry. Two methods are mainly used to produce compliant motions:
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passive mechanical compliance built into the manipulator, and force control – an active

compliance implemented in the software control loop. This motions are commonly

used to implement three robotic skills: (1) moving while maintaining contact of some

features of a manipulated object with one or more environmental surfaces (C-surfaces);

(2) coordinating the collaboration of multiple manipulators; and (3) obtaining an stable

prehension of objects.

Passive force mechanisms that work based on constraints derived under the assump-

tion of static equilibrium in the system have demonstrated their effectiveness to verify

contact states in the absence of uncertainty. However, in general, this is impossible

when affected by uncertainty. When the possible uncertainty can be predicted, a set of

possible contact configurations can be identified. Then an active force mechanism can

be used to eliminate some possibilities [19]. One way of implementing the passive force

mechanism is identifying the potential contact configurations from the computation of

uncertainty ranges of force and torque based on a model of bounded position and ori-

entation uncertainty. Theoretical bounds can be computed from the CAD model of the

objects for the expected topological contact configurations. Ambiguity, however, results

from intersecting force and torque ranges due to uncertainty.

As mentioned before, an strategy to implement an active force mechanism to verify

a contact state is identifying a set of disambiguating directions of motion. Changes

in force and torque data can then be used to eliminate or retain a potential contact

state. The determination of disambiguating directions is based on the recognition of

constrained directions of motion in one state that are unconstrained in the rest of the

possible states. Motions in such directions then are expected to reduce the sensed force

for some cases and augment it for others. The unconstrained regions have to be reduced

to include the amount of expected uncertainty in the pose of the objects.

2.3.2 Force Compliance Skills

To implement the assembly skill primitives required for the DOF transitions yield by

an assembly step, force/torque sensors are used to detect new contacts and to react to

tactile stimuli occurring during the motion. All the skills with exception of the move

assembly skill primitive require of force compliance capabilities. These force compliance

capabilities of the manipulator are assumed by this study. Actually, the move assembly

skill primitive require of positional control, but not necessarily of any kind of additional

sensing.

From an study of the literature about the synthesis and use of skill-primitives for the

execution of assembly tasks and an analysis of required force skills for implementing the

make-contact, slide, and insert assembly skill primitives described in this dissertation,

three force compliance skills are recognized (see Figure 2.8):
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(a) detect-contact skill. (b) configuration-
control skill.

(c) keep-contact skill.

Figure 2.8: Force compliance skills.

detect-contact - a force compliance skill that moves an object until a new contact

is produced against the assembly environment. Information about the change on

magnitude and directions of the force readings are used for this purpose. Several

patterns of change can be produced and predicted from an analysis of the geometry

of the contact relations, the coefficients of elasticity and friction of the contacting

surfaces, and a model of the inherent passive compliance in the manipulator.

configuration-control - a force compliance skill that corrects the configuration of the

features in contact through rotations of the manipulated object. Force and torque

information are used for this purpose. The objective here is establishing a relative

pose configuration between the contacting objects by changing the orientation of

the manipulated object.

keep-contact - a force compliance skill that moves an object while maintains contact

with constraining surfaces. Force and torque information is used for this purpose.

The ideal case is to move in a correct direction defined by the c-surface for the

task, however uncertainty can produce two problems: (1) moving in a detaching

direction which would break contacts, and (2) moving in a constraining direction

which would could move an environmental object or damage some assembly ele-

ment. Passive or active force control has to compensate for the changes in force

and torque patterns.

The make-contact assembly skill primitive requires applying a detect-contact force com-

pliance skill followed by a configuration-control skill. The detect-contact skill avoids

smashing events while monitoring an object motion, but due to uncertainty it is very

common that a perfect face-to-face contact is not produced. Usually, some face features
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(vertices or edges) of the manipulated object arrives first. The configuration-control

skill is used to correct this situation (see Figure 2.9).

1
2

detect-contact sub-skill

configuration-
control sub-skill

Figure 2.9: Implementing a make-contact assembly skill primitive through force com-
pliance skills

The slide assembly skill primitive only requires of the keep-contact force compliance

skill.

The insert assembly skill primitive is required by the most common automated me-

chanical assembly task and is the most difficult primitive to implement. Though, there

have been different proposals to perform it using only optical sensors [75] [64], it usually

requires of using the three force compliance skills.

An insertion task is frequently performed into low-tolerance regions where small er-

rors caused by uncertainty produce multiple contact configurations. One common way

to manage these situations is through planning systematic strategies to monotonically

approach a target configuration [22]. These strategies require of programming a set

of reactions to pre-conceived patterns of force and torque data readings that include

the detection of expected contacts (detect-contact skill), the adjustment of the manipu-

lated object’s configuration (configuration-control skill), and the motion in contact-space

(keep-contact skill) (see Figure 2.10).

Table 2.1 summarizes the results of the above force compliance analysis. It presents the

force compliance skills required to implement every assembly skill primitive. Using this

table is easy to systematically associate force compliance skills to assembly operations;

it is only necessary to determine a contact-state transition to know the assembly skill

primitives involved through Graph 2.7.
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34

1 2

Figure 2.10: Implementing insert assembly skill primitives through force compliance
skills

2.4 Visual Sensing

Vision sensors are a source of global feedback information. Through them the structure

and properties of a possibly dynamic three-dimensional world are described through the

process of one or multiple two-dimensional images. The images (colored or monochro-

matic) can be captured from one or multiple stationary or mobile cameras [27]. The

sensing process can be controlled (active) or non-controlled (passive).

2.4.1 Determining Assembly Relations by Vision

The problem of determining the geometrical relations among objects in contact is inher-

ently related with recognizing and locating objects in the scene. Since object recognition

is a fundamental problem in computer vision, a lot of work has been done in its behalf. It

has been recognized that the quality of the resulting vision programs is governed by the

organization of the sensed features, sensors, object representations, and image acquisi-

tion strategies [46]. Since in the present work, it has been assumed that the architecture

of the vision system has to be prepared in accordance with its goal and working envi-

ronment, this research belongs to the task-oriented school [45]. And since knowledge of

the objects is actively used for guiding the vision tasks during the recognition process,

it is classified as model-based vision.
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Table 2.1: Force compliance skills required by each assembly skill primitive.

Assembly skill Force Compliance
primitive skill

move
make-contact detect-contact

configuration-control
slide keep-contact

detect-contact
insert keep-contact

configuration-control

The typical way to detect the contact relations among objects by vision is through a

process of geometric reasoning and the use of threshold values. Since the recognition

results obtained by the vision system include certain amount of error, the topological

contact relations has to be extracted through examining the equations of candidate

features in contact (e.g. faces). The visual uncertainty will usually generate gaps or

intersections among the contacting elements [99]. For systems that work with rigid

objects and assuming a reduced uncertainty, these errors are expected to be small.

A convenient selection of threshold values can be utilized to recover correct contact

relations.

When the expected vision errors are big so that more than one contact state is consis-

tent with the observed scene, ambiguity is present. Visual ambiguity can be solved by

using an additional source of feedback information (e.g. force data). Then a reciprocal

relation has to be found among possible heterogeneous sources of sensing feedback data

to identify the contact relations during plan execution. For this reason, the conclusion

of fine-motion operations usually require using force sensors.

Under the assumption of working with a robotic system with the force compliance skills

described in the preceding section, vision is not strictly necessary to develop the assembly

skill primitives required to execute an assembly plan. However, it could be convenient

and then recommendable to use vision before carrying out some of them.

Vision could also be used to assist force compliance skills. In this respect, vision could

be used to reduce the positional uncertainty of the objects serving as a disambiguating

criteria in force data. In the case of the detect-contact skill, vision could be helpful to

discriminate among different contacting surfaces of similar geometry, e.g. to determine

which side of a hole has been reached in a peg-in-hole kind of assembly operation.

In the case of the configuration-control skill, vision could be helpful to determine the

grasping configuration and the contacting feature of the manipulated object.
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In the case of the keep-contact skill, vision could be helpful to discriminate about causes

for the changes on the force and torque patterns, e.g. to determine if a reduction of

force means that the manipulated object detached from the constraining surface, which

is an error, or if the manipulated object finish traversing the constraining surface, which

could be the objective of extracting a peg from a hole.

Vision could be also useful to assist force compliance when several force skills are used

concurrently, e.g. when make-contact and slide assembly skill primitives are performed

simultaneously, vision would be useful to determine if an increment on a detected force

is caused by reaching the target surface of the make-contact skill or by trying to move

against a constraining direction imposed by the slide skill.

The use of vision as an assistant to the force compliance skills is an example of visual

sensing with corrective intentions. This dissertation is more interested in using vision

with preventive intentions. As it was established in Chapter 1, the ultimate goal of this

research is using vision to increase the probabilities of success for the execution of an

assembly plan without modifying the main sequence of assembly operations commanded

in the plan. This means that the sensing analyzer has to take advantage of the periods

when the manipulator has control over the assembly parts, to perform some convenient

adjustments in their poses.

The analysis to identify the assembly skill primitives that require of preventive vision

is divided in two parts: one that analyzes an assembly operation isolated from the rest

of the plan, and another, that analyzes the roll of an assembly operation as part of

the full plan. In the first case, visual sensing requirements are determined considering

only the new contact relations produced by the task when an object is manipulated.

In the second case, visual sensing requirements are determined considering the contact

relations produced by tasks when an object participates as part of the environment.

Next section describes the visual strategy followed for the first case, while the next

chapter deals with the second case.

2.4.2 Preventive Vision for a Manipulated Object

Every assembly skill primitive needs of some kind of positional control and machine

vision is a global source for this. However, how accurate should this control be?. The

answer to this question is that it depends on the task at hand. Every assembly operation

supports certain amount of error. To always succeed, the accuracy of the positional

control strategy should be bigger enough to allow smaller errors than those tolerated by

the task.

A move assembly skill primitive transfers a manipulated object between two prescribed

poses. The transferred object is expected to finish in a completely unconstrained state
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with respect to the DOF that originated the skill requirement. In this case, relatively

small errors yield by positional uncertainty are not expected to produce failure, and

then, the cost of using preventive vision is not considered worth its marginal benefit.

A make-contact assembly skill primitive transfers a manipulated object until it enters in

a new contact relation and then corrects its configuration to ensure correct face contact

relations. As mentioned in the previous section, in this case, vision could be used as

an additional tool to discriminate among potential contacting surfaces of similar geom-

etry. Vision could also be useful in two additional situations: for operations including

small contacting regions, and for operations that include stability concerns on a partial

assembly.

centers of gravity

A

B

(a) Strong stability con-
figuration.

centers of gravity

A

B

(b) Weak stability con-
figuration.

centers of gravity

A

B

B

(c) Instability effect.

Figure 2.11: Task stability due to the partial assembly configuration.

The two first situations are related because the problem is that a small positional error

would make the operation to fail in reaching the planned contact region and would finish

in a different one. The problem with the third situation is that the center of gravity

of a partial assembly translates when new contacts appear and for partial assemblies

with weak stability conditions an error in the contacting position could make that some

elements fall apart as exemplified in Figure 2.11.

However, these three situations are not further considered in this study because, com-

monly, they are indicative of bad assembly planning decisions, or of unavoidable singular

assembly tasks requiring of visual and force servoing not exactly preventive vision as

proposed in this work. Then, preventive vision is not required to monitor the execution

of this assembly skill primitive, either.

A slide assembly skill primitive transfers a manipulated object while maintaining the

contact with at least one constraining surface. Vision is not good to detect contacts,

and then, it is not a good idea to use it for keeping contacts while moving. Stability can

be a concern when using this skill, too, because a sliding action continuously change the

position of the center of gravity of the partial assembly, but the use of preventive vision

is discarded for the same reason mentioned above: it is expected that the assembly
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planner produce a sequence of stable operations.

An insert assembly skill primitive is where the assembly plan executioner can really

take advantage of vision as a source of preventive feedback information. Insertion is a

low-tolerance operation where small errors typically cause failure. Insertion fails when

the inserting features enter in contact with adjacent faces to the inserting slot, instead

of penetrating the target region. This failure can be realized by monitoring the insertion

process until a first contact is detected. Force and torque data can be used to determine

success or failure.

Critical Dimensions for Translation

To succeed in an insertion operation, the inserting features has to conform with some

alignment constraints. Since an insert assembly skill primitive is required by operations

including maintaining to constraining DOF transitions, the absence of contacts before

the assembly operations, with respect to these DOF, makes force feedback data useless

to verify the fulfillment of such constraints. The job of vision will be then, to observe

the participant objects in the insertion and determine re-alignment adjustments on the

manipulated object to reduce the probabilities of error.

Figure 2.12 shows the contact-state transitions that require of visual sensing as high-

lighted arcs on the procedure graphs for the 2-D and 3-D cases. These are the transitions

that include the insert assembly skill primitive. As it can be observed, visual sensing is

recommended for a reduced group of assembly operations (only one for the 2-D case).

To successfully execute an insertion, the configuration of the features to be inserted and

the configuration of the insertion slots have to correspond and include certain amount of

clearance. Bigger clearances allow bigger pose errors during an insertion. The type and

magnitude of error tolerance of an insertion depends on the geometry of the features

involved, which means that positional errors with respect to some DOF should be more

important than others. Figures 2.13(a) and 2.13(b) depict such situations.

In the peg-in-hole example of Figure 2.13(a), an error in the position of the peg with

respect to the X axis of the coordinate frame of reference, is more important than errors

with respect to the Y and Z axes. Very small errors with respect to the X axis could

easily cause that the assembly operation fails by hitting neighboring faces to the hole,

but reasonable errors with respect to the Y and Z axes can be supported and still

succeed in the insertion. The X DOF of the peg represents what is further referred as

a critical dimension for visual verification of an assembly task. Figure 2.13(b) presents

a peg-in-hole operation where the critical dimensions are represented by the X and Y

DOF of the peg.

In conclusion: every M2C DOF transition in an assembly operation requires of using
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Figure 2.12: Tasks requiring visual sensing.

visual verification and includes at least a new critical dimension. The critical dimensions

will be used to compose a decision criteria for the sensor planning module of Chapter 4.

Critical Dimensions for Rotation

There is at least one additional critical dimension for both cases, the rotational DOF

with respect to the Z axis of the peg. An error in the attitude of the peg with respect

to this axis is equivalent to translating some of the peg vertices in the critical direc-

tions. Then, the first example would include two critical dimensions – the X translation

DOF and the Z rotation DOF – and the second example would include three critical

dimensions – the X and Y translation DOF and the Z rotation DOF. Actually, being

more rigorous in the rotational analysis, the example of Figure 2.13(a) should include

another critical dimension for rotation with respect to the Y axis; and similarly, the

example of Figure 2.13(b) should include two additional critical dimensions for rotation

with respect to axes X and Y.

In this work, the followed approach takes advantage of the constraining effect of contacts

for the definition of the rotation references, which are fixed as follows: for assembly in 2-

D space, the considered center of rotation for the polygon representing the manipulated

object is situated in the origin of its coordinate frame; and for assembly in 3-D space,

the possible rotation axes associated with critical dimensions, further referred as critical

rotation axes, for the polyhedral representing the manipulated object, are considered to
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Figure 2.13: Critical dimensions for the insert assembly skill primitive.
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Figure 2.14: Transition of assembly relations that include critical dimensions for rotation
in 2-D space

pass also through the origin of its coordinate frame.

The critical dimensions for rotation are also found in the tasks associated with the same

reduced set of transitions of assembly relations that describe the critical dimensions

for translation. Figure 2.14 depicts the only transition for assembly in 2-D space that

require to verify visually the orientation of the manipulated object, and Figure 2.15

illustrate the five transitions for assembly in 3-D space that require to verify visually

the orientation of the manipulated object with respect to some critical rotation axes.

Figure 2.15 depicts the critical dimensions as elements of coordinate frames drawn as

solid lines. The axes of the coordinate frames represent critical dimensions for transla-

tion, and the arrowed ellipses around the axes represent critical dimensions for rotation.

the insertion direction in each transition is aligned with the X axis. As can be noted in

this figure, the most constraining tasks in a single assembly step are those that describe

a transition from a contact state of type A to a contact state of type E, where the only

unconstrained dimension is the translation in the direction of insertion.
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Chapter 3

Preventive Vision for Robotic
Assembly

This chapter completes the method introduced in the previous chapter for identifying

the assembly tasks that require of preventive vision. A geometric reasoning mechanism

is developed to discover additional preventive vision requirements. These new require-

ments apply to some tasks in which their manipulated objects participate as part of the

environment of other tasks. These environmental objects conform, directly or indirectly,

some critical configurations required for the successful execution of future failure-prone

tasks.

It also introduces a graph representation to express direct and indirect dependencies,

among assembly elements, caused by insertions and contacts. This graph is used to

support the method that constructs a preventive vision strategy for the full assembly

plan. Next, this chapter details the strategy used to construct the graph and determine

the visual feedback information required by each assembly step.

The approach and method has been implemented as a computational system. This

chapter finishes by presenting several examples solved by the system. Every example

describe the nominal assembly plan analyzed, the graphical illustration of the assembly

steps (as obtained from the system), an illustration of its final ICdg, and the modified

assembly plan including force and vision sensing requirements.

3.1 Preventive Vision for Environmental Objects

An assembly task is executed in an environment composed by stationary objects known

as environmental objects. Some of them are fixed since the very first beginning of

the assembly process. These objects are commonly limited to a planar table, but it

could include some other objects, like hard automation devices which could be used

47
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to reduce some sources of uncertainty. The assembly environment also could include

parts assembled previously that form part of the partial assembly. Since this research

is not interested in planning additional assembly operations, the possible adjustments,

resulting from configuration errors and inconsistencies observed by the vision system

with respect to the assembly plan, are restricted only to modify the configuration of

manipulated objects. This includes the pre-assembled environmental objects during

their manipulation by the robotic assembler.

The sensing analyzer considers the definition of new visual requirements for environ-

mental objects in order to achieve the following two goals:

1. Succeed in insertion operations, because the success depends not only in the posi-

tion control of the manipulated object, it is also important that the environmental

conditions for the insertion exist.

2. Succeed in producing all the expected contacts among the assembly elements dur-

ing the execution of every operation.

The analysis of preventive vision for insertion tasks assumes that every expected contact

actually exist, then, the accomplishment of the first goal depends on the achievement

of the second one.

3.1.1 Visual Sensing for Insertion Condition

In an insertion operation, the assembly environment contains inserting features as in

Figure 3.1(a), or insertion slots as in Figure 3.1(b), or inclusively in some cases it contains

both of them, inserting features and insertion slots (further referred as insert features)

as in Figure 3.1(c). The manipulated object complements the insertion geometry with

its own inserting features and insertion slots.

To succeed in an insertion task, the insert features of the environment have to correspond

and be aligned with the insert features of the manipulated object. The configuration of

the inserting and insertion features is further referred as the insert configuration.

When the insert configuration includes features of only one environmental object, there

is not need to add new visual sensing requirements for it; only the manipulated object

configuration would have to be adjusted to compensate for any observed difference with

respect to the environmental object’s pose. However, when the insert configuration is

formed by two or more environmental objects, an indirect insert dependency is defined

among them. If any of these environmental objects is a pre-assembled part, then, it is

possible that new visual sensing requirements have to be included into its preventive
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Figure 3.1: Configurations for insertion.

visual sensing strategy. These sensing requirements would have to be fulfilled when this

object is manipulated.

An indirect insert dependency describes some alignment constraints among the objects

that participate in an insert configuration. In some cases, the contact relations among

these objects enforce the fulfillment of all the alignment constraints, and then, there is

not need to add new visual sensing requirements for them. In some other cases, the

environmental objects are not touching each other, and then, the only way to check if

the alignment constraints have been fulfilled is by visually verifying every constraint.

Still, there are cases where some of the environmental objects are in contact but the

contact relations are not enough to enforce the fulfillment of all the alignment constraints

described by the indirect insert dependency. In this last case, some of the alignment

constraints are enforced by the contacts and others have to be verified visually.

Figure 3.2 presents three cases of a peg-in-hole operation where two environmental ob-

jects form the insertion slot. Although, every operation includes two critical dimensions

that describe the alignment constraints for the peg (one for translation and one for

rotation), the number of critical dimensions for the environmental objects vary. The

numbers of the objects describe the assembly order.

Figure 3.2(a) illustrates a situation where the contacts among the environmental objects

ensure a correct insert configuration, s.t. vision is not needed to verify the correct

alignment constraints on the environment. Figure 3.2(b) illustrates a situation where

the contact among the environmental objects eliminates one of the alignment constraints

(the rotational one) for the insertion; to verify the fulfillment of the second one, vision

is required. Figure 3.2(c) illustrates a situation where the complete absence of contacts
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Figure 3.2: Vision to verify indirect insert dependencies.

among the environmental objects requires of using vision to verify both of the alignment

constraints imposed by the insertion, in this case, the X position and orientation of

object 2 with respect to object 1.

3.1.2 Visual Sensing for Contact Prescription

In this dissertation, the execution of an assembly operation is considered successful if

all the expected contacts are achieved. This means that even in the case of assembly

operations that do not include insert assembly skill primitives, some of these could fail

because not necessarily all the expected contacts would be achievable. To achieve all

the expected contacts, the configuration of the contacting features on the environment

has to correspond with the configuration of the contacting features on the manipulated

object. The configuration of the contacting features is further referred as the contact

configuration.

When a contact configuration includes features of only one environmental object, there

is not need to add new visual sensing requirements for it; only the manipulated object

configuration would have to be adjusted, using force sensing, to compensate for any

sensed difference in the force and torque patterns. Instead, when the contact configu-

ration is formed by two or more environmental objects, an indirect contact dependency

is defined among them. If any of these environmental objects is a pre-assembled part,

then, it is possible that new visual sensing requirements have to be included into its
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preventive visual sensing strategy. These sensing requirements have to be fulfilled when

this object is manipulated.

An indirect contact dependency describes some alignment constraints among the objects

that participate in a contact configuration. In some cases, the contact relations among

these objects enforce the fulfillment of all the alignment constraints, and then, there is

not need to add new visual sensing requirements for them. In some other cases, the

environmental objects are not touching each other, and then, the only way to check

if the alignment constraints has been fulfilled is by verifying visually every constraint.

Still, there are cases where some of the environmental objects are touching each other

but the contact relations are not enough to enforce the fulfillment of all the alignment

constraints described by the indirect contact dependency. In this last case, some of the

alignment constraints are enforced by the contacts but others have to be verified using

vision.
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Figure 3.3: Vision to verify indirect contact dependencies.

Figure 3.3 presents three cases where the make-contact assembly skill primitive is used

to form a two objects contact configuration. Although, every operation includes two

critical dimensions that describe the alignment constraints for the manipulated object

(one for translation and one for rotation), the number of critical dimension for the

environmental objects vary.

Figure 3.3(a) illustrates a situation where the contacts among the environmental objects

ensure a correct contact configuration, s.t. vision is not needed to verify the alignment

constraints on the environment. Figure 3.3(b) illustrates a situation where the contact

among the environmental objects eliminates one of the alignment constraints (the rota-
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tional one) for the make-contact skill; to verify the fulfillment of the other one, vision

is required. Figure 3.3(c) illustrates a situation where the complete absence of contacts

among the environmental objects requires of using vision to verify both of the align-

ment constraints imposed by the make-contact skill, in this case, the Y position and

orientation of object 2 with respect to object 1.

3.2 Insert and Contact Dependency Graph

In the above section was learn that to support the successful execution of certain in-

sertion operations and move-to-contact operations, vision should be used to verify that

conditions in the environment are adequate. Such conditions were described as configu-

ration dependencies among environmental objects forming certain insert configurations

and contact configurations. To ensure the right conformation of such configurations, the

dependency analysis has to be propagated backwards to the objects that conform the

environment of those environmental objects, and so on. To store and structure all the

discovered dependencies an insert and contact dependency graph (ICdg) is introduced.

An ICdg is a labeled, direct graph where nodes represent objects and arcs represents

alignment constraints. The alignment constraints are extracted from an analysis of

the insert relations and contact relations resulting from the operations described into

a nominal assembly plan. The direction of the arcs answer to the assembly order, and

then, describes a dependency of the configuration of one object (the arc’s source) on the

configuration of another (the arc’s target).

The ICdg is constructed and used, during the sensing analysis stage, as a tool for

determining the critical dimensions for the manipulation of objects. A manipulation

operation without critical dimensions do not need of its visual verification.

The ICdg is also used, during the sensing execution stage, for adjusting the observed

configurations of the objects to conform with all the alignment constraints defined by

past, current, and future relations originated by insertions and contacts among the

assembly elements.

3.2.1 Elements of an Insert And Contact Dependency Graph

An ICdg could include two types of nodes and three types of arcs. One type of nodes is

added for each environmental object that is not moved during the full assembly process.

A second type of node is added for each manipulated object. The knowledge of the type

of a node will be useful during the sensing analysis and execution of the sensing tasks.

The object related to nodes of the first type do not need to be observed because their



3.2. INSERT AND CONTACT DEPENDENCY GRAPH 53

poses are usually known since the starting of the assembly, e.g. a work table. They can

act like fixed constraining references for the other objects.

When an assembly operation requires of using vision, the pose of some environmental

objects related to the nodes of the second type would need to be observed. Since

the observed poses will include certain amount of error, a process to adjust the pose

parameters has to be performed. The adjustments must be realized before executing

the manipulation task, in order to conform to the expected direct and indirect assembly

relations.

An ICdg include three types of arcs devised to record the nature of the dependency

between the objects they link. Two types of arcs record alignment constraints that de-

scribe direct relations originated from contacts and insertions produced during current

and past manipulations of the objects involved. These arcs are generated between the

manipulated object and one or more environmental objects. The third arc type records

alignment constraints that describe both indirect insert dependencies and indirect con-

tact dependencies among environmental objects that directly or indirectly participate

and then affect the success of current and future manipulations. Figure 3.4 depicts

typical situations, in a 2-D space, that generate each of the arc types.

The labels of the arcs indicate the constrained DOF of the source node that can be

described as a function of the DOF of the target node. Between two nodes not linked

by any arc, do not holds any alignment dependency, which means that errors in the

definition of the pose of one of the objects is not expected to affect the mating operation

of the other.

Figure 3.4(a) depicts a subassembly produced by a make-contact assembly skill primi-

tive. The subassembly includes a relation among three objects. The relation is between

a manipulated object (Object C ) and two environmental objects (objects A and B). As-

suming a common coordinate reference frame for the three objects, conveniently aligned

with the contact direction, the solid arcs, between Object C and objects A and B, rep-

resent alignment constraints due to their contacting faces. The attributes of the arc, Y

and θ, describe the DOF constrained by the contact relation. This means that if the

pose of Object A or Object B is known, the values for the Y positional parameter and

the θ rotational parameter of Object C can be deduced. In this case, the face contact

relation is not enough to determine a value for the X positional parameter, which stays

as the only unconstrained DOF.

Furthermore, objects A and B were not related before the current operation. For suc-

ceeding in getting both face contacts is not enough to control the pose of Object C.

Additional alignment requirements, for this operation, are that Object B must have

the same orientation than Object A (same value for θ parameter) and that their edges

that would contact Object C must be collinear, restricting the Y position of Object B
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Figure 3.4: Types of arcs used to record alignment constraints that describe relations
among objects in 2-D space.

with respect to the Y position of Object A. Y and θ are the constrained DOF in this

contact relation, and since there are not contacts between the environmental objects

that could help to verify the alignment constraints imposed by the task, these DOF

describe the critical dimensions requiring preventive vision. A dashed arc, from the

latter pre-assembled environmental object to the other environmental object, is used to

represent this type of dependency relation. The most important result here is that the

contact with multiple objects produce these kind of arcs by propagating the alignment

constraints up to the constraining objects.

Figure 3.4(b) depicts a configuration produced by the insertion of a manipulated object

(Object C ) into an insertion slot formed by two environmental objects (Objects A

and B). Again, assuming a common coordinate reference frame for the three objects,

conveniently aligned with the direction of near contacts produced by the insertion, the

solid arcs between Object C and objects A and B represent alignment constraints due

to their near contacting faces. Usually, insertion operations include some clearance (a

separation) between the inserting features and the features of the insertion slot, but

since insertion is a low tolerance operation, deviation from the planned configurations
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could be fatal. Then assuming a successful insertion, similar alignment constraints to

those described by actual contacts are assumed. In the illustrated insertion case, the

near contacting faces are aligned in such a way that the constrained DOF are X and θ.

Also, in this case, objects A and B were not related before the current operation. For

succeeding in the insertion, controlling the pose of Object C is not enough. Additional

alignment requirements, for this operation, are that object B have the same orientation

than object A (same value for θ parameter) and that the orthogonal distance (related

to the X parameter) between the opposing faces describing the insertion slot is not

reduced. X and θ are the constrained DOF in this insert relation, and since there are

not contacts between the environmental objects that could help to verify the alignment

constraints imposed by the task, these DOF describe the critical dimensions that need of

using visual sensing. A dashed arc from the latter pre-assembled environmental object

to the other environmental object, is used to represent this type of dependency relation.

Again, this kind of arcs also result from the propagation of the alignment constraints

up to the constraining objects.
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Figure 3.5: Types of arcs used to record alignment constraints that describe relations
among objects in 3-D space.

In the case of assembly operations in a 3-D space, the motion parameters involved are

six, three translational DOF, for describing position, and three rotational DOF, for

describing orientation. These constrained DOF are presented in Figure 3.7. The same
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three types of arcs are used to express the dependency between inserting and contacting

objects. Figure 3.5 illustrates typical situations that produce each kind of arc.

The sensing analyzer takes advantage of the configuration of the features in contact to

determine the alignment constraints that require of using vision. When an object enters

in contact with other objects, its freedom of motion is reduced. As seen, this reduction

depends on the type of contact among the objects. Figure 3.6 depicts the different types

of contact relations that could be formed between two objects in the 2-D and 3-D cases.

edge - edge

vertex - edge vertex - vertex

(a) 2-D contact types.

edge-edge

Surface-surface edge-surface vertex-surface

vertex-edgevertex-vertex

(b) 3-D contact types.

Figure 3.6: Types of contact relations between polyhedral objects.

As mentioned before, in this study, the contact relations are limited to those described

by edge-edge contacts in the 2-D case or those described by surface-surface contacts

in the 3-D case. These are also referred as face contact relations. A 2-D edge-edge

contact eliminates two possible critical dimensions, the rotational DOF and one trans-

lational DOF with respect to a coordinate frame of reference where one coordinate axis

is conveniently aligned with the normal of the contacting edges (see Figure 3.7(a)). A

3-D surface-surface contact eliminates three possible critical dimensions, two rotational

DOF and one translational DOF with respect to a coordinate frame of reference where

one coordinate axis is conveniently aligned with a normal of the contacting surfaces (see

Figure 3.7(b)).

An ICdg is constructed incrementally by following the assembly steps order. It starts

containing only the nodes associated with fixed environmental objects and evolves

through the addition of new nodes and arcs. A new node is introduced to the ICdg
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Figure 3.7: Constraining effects of face contact relations.

for each assembly part manipulated by the robot for the first time. New arcs de-

scribing direct dependency relations are introduced as consequence of tasks including

make-contact assembly skill primitives and insertion assembly skill primitives.

Since the same object can be manipulated several times by the robot, a decision had to

be taken with respect to the evolution of the structure of the ICdg. The alternatives

considered were:

1. Add a new node each time an object is manipulated, and consequently, have

several nodes associated with the same object in the same ICdg, each with its own

dependency arcs;

2. Maintain only one node for each object in the ICdg, and add new arcs for new

dependency relations and erase arcs associated with broken dependency relations;

3. Maintain only one node for each object in the ICdg, and add new arcs for new

dependency relations and for each maintained dependency relation, indexing each

arc with the number of the assembly step in which it was added; and

4. Generate a new ICdg for each assembly step.

The second option was discarded because it would forget dependencies that could be

critical and require of preventive vision. The fourth option was discarded because it is

similar to the first one, but includes more redundancy that is needed. Finally, the third

option was discarded because even being a little less redundant than the first option,

it makes more difficult and inefficient the bookkeeping and access to the information
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in the data structure. In conclusion, a new node with its own arcs is added for each

assembly step, inclusive when its manipulated object had already been manipulated in

previous steps.

3.2.2 Propagation of Alignment Constraints

As shown in the preceding section, the propagation of alignment constraints in an ICdg

starts from a currently manipulated object up to the environmental objects. A constraint

propagation pattern involves at least three objects and is fired up by at least one of the

following three conditions:

First condition: an object is inserted or enters in contact with multiple environmental

objects making the object configuration to depend upon theirs and the defined

dependencies include common constrained DOF.

For example, Figure 3.8(a) illustrates the result of an operation that puts Object C

in contact with environmental objects A and B. After the operation, X DOF of

Object C can be described from the correspondent DOF of objects A or B. If

Object B is a pre-assembled object that was manipulated more recently than

Object A, an indirect dependency of Object B with respect to Object A was

made explicit (dashed arc). A constraint produced by this reason will be further

referred as joining constraint.

Second condition: an object is inserted or enters in contact with multiple environmen-

tal objects, and when analyzing the dependency between a pair of environmental

objects is realized that one of the objects depends on the other and this other

already depends on a third environmental object; in both cases the dependencies

include common constrained DOF.

For example, Figure 3.8(b) illustrates the result of an operation that puts Object E

in contact with the environmental objects B and C, while Object B was already a

dependent of environmental Object A. Since both dependencies include the same

X constrained DOF and assuming that Object A was manipulated before Object

C, Object C will inherit the dependency of Object B on Object A. An indirect de-

pendency of Object C with respect to Object A was made explicit(dashed arc). A

constraint produced by this reason will be further referred as inherited constraint.

Third condition: an object is inserted or enters in contact with multiple environmen-

tal objects, and when analyzing the dependency between a pair of environmental

objects is realized one of two situations: one of the objects depends on the other

and depends on a third object, or the object on which the other depends has

already a third object that depends on it. In both situations the pairs of depen-

dencies include common constrained DOF.
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For example, Figure 3.8(b) illustrates the result of an operation that puts Object E
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X constrained DOF and assuming that Object B was manipulated before Ob-
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Figure 3.8: Type of alignment constraints resulting from propagation.

The assembly operation applied to the manipulated object, which produces new direct

dependencies, only fires up the constraint propagation process. After it starts, propaga-

tion of constraints makes explicit some indirect dependencies among the environmental

objects, which were implicit before the operation. These new dependencies could then

propagate additional joining, inherited, and shared constraints among other environ-

mental objects. Therefore, a constraint propagation scheme had to be used for ensuring

that all the indirect dependencies are found.

The constraint propagation scheme, used in this dissertation, was developed based on

the following knowledge:

Direct dependency Object B directly depends on Object A if Object B participates

in insert relations or contact relations with Object A and Object A was an envi-

ronmental object during the manipulation of Object B.

Indirect dependency Object B indirectly depends on Object A if Object B partici-

pates in insert relations or contact relations with other objects that relates directly

or indirectly with Object A through the same constrained DOF, and Object A was

an environmental object during the manipulation of Object B.
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Propagation Scope The constraint propagation has to be limited to nodes that repre-

sent objects, that directly or indirectly affects the successful execution of insertion

operations and make-contact operations. These objects have to participate in re-

lations that include constrained DOF common to those described in the new direct

dependencies of the manipulated object.

Prevalence of dependencies among environmental objects The past dependen-

cies defined among current environmental objects are maintained by the environ-

mental objects of a new assembly operation.

Renewal of dependencies for the manipulated object Since the level of constraint

among objects can grow or decrease as a result of an assembly operation, when

an object is manipulated more than one time, its past dependencies with environ-

mental objects have to be actualized every time that it is manipulated.

Completeness of a direct-dependency graph (Ddg) All the objects in a graph

constructed only from the complete set of direct dependencies, depends on each

other. This graph is complete because there is no object outside it that have a

dependency (direct or indirect) with an object included in it.

The generation of indirect dependencies for the environmental objects is not mono-

tone. The discovery of new dependencies fires up additional propagation of constraints.

This situation naturally requires of a search mechanism that includes backtracking.

The constraint propagation method takes advantage of the knowledge described as the

completeness of a direct-dependency graph. After the direct dependencies of the ma-

nipulated object with respect to the environmental objects are determined, the objects

included in a direct dependency graph can be found, and indirect dependencies can be

defined among objects that are not related directly.

Not all the indirect dependencies are relevant for visual sensing. The indirect depen-

dencies that are relevant are only those that relate with critical dimensions for a future

assembly task, when these critical dimensions are not enforced by the direct dependen-

cies existing before the manipulation of the environmental objects is performed.

Since an environmental object could be manipulated several times before the task that

made an indirect dependency relevant, the constraint propagation method has to deter-

mine the manipulation step where vision will be useful for preventing any possible error

with respect to the critical dimensions.

The constraint propagation method is applied for each assembly step. It starts deter-

mining all the face contacts in which the manipulated object participates, and finishes

when all the direct dependencies for the manipulated object and the new indirect de-

pendencies for the environmental objects are deduced.
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3.3 Dependency Relations and Their Propagation

In the preceding sections, the critical dimensions of an assembly task are described as

DOF associated with the coordinate axes of a reference frame defined in a convenient

way, but what does it make a definition of such a reference frame convenient?.

If a reference frame is arbitrarily selected, for example as the reference frame of the world

or as the reference frame of one of the objects involved in the task, there is a risk of

finishing with more critical dimensions than strictly necessary. Such situation is clearly

illustrated in Figure 3.9(c) where the critical dimensions for Object 2 were determined.

If instead of aligning the reference frame as depicted it were aligned as in the other two

illustrated cases, the result would be two critical dimensions, one associated with X axis

and another with Y axis. However, after orienting the reference frame in such a way

that Y axis is aligned with the contact surface between the two environmental objects,

the critical dimensions were reduced to only one associated with its X axis.

Based in a similar reasoning, a method was developed to define convenient orientations

for coordinate frames of reference to describe the critical dimensions of an assembly

task.

3.3.1 A Reference Frame to Describe Dependency Relations

Since the critical dimensions describe the dependencies of the configuration of the object

that is manipulated in the task upon the configuration of its assembly environment, there

will be one reference frame for each environmental object on which it depends. This

means that there will be a reference frame associated with each arc in the ICdg.

Because contacts considered in this work are of type surface-surface and since a task

can produce several contacts (or several constraint relations in the case of insertion), the

method obtains the reference frame by applying the Gram-Schmidt procedure [95] to a

set of normal vectors that describe the orientation of surfaces that directly or indirectly

participate in a new contact state.

The Gram-Schmidt procedure finds orthonormal vectors q1,q2, ...,qk, from a set of inde-

pendent vectors a1, a2, ..., ak ∈ <n, s.t span(q1,q2, ...,qk) = span(a1, a2, ..., ak), where

span(v1,v2, ...,vk) = {α1v1+α2v2+ ...+αkvk|αi ∈ <}. These resultant vectors describ-

ing an orthonormal basis will represent axes of the reference frame for the representation

of the critical dimensions of an assembly step.

A method that implements the Gram-Schmidt procedure finds the qi’s recursively as:

• q̃1 := a1
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• q1 := q̃/‖q̃‖ (normalize)

• q̃2 := a2 − (qT
1 a2)q1 (remove q1 component from a2)

• q2 := q̃2/‖q̃2‖ (normalize)

• q̃3 := a3 − (qT
1 a3)q1 − (qT

2 a3)q1 (remove q1 and q2 component from a3)

• q3 := q̃3/‖q̃3‖ (normalize)

• etc.

However, since a1, a2, ..., ak will commonly be dependent, it will be found that q̃j = 0

for some aj’s which means that aj is linearly dependent on a1, a2, ..., aj−1. In this case,

it is necessary to modify the algorithm in such a way that when it encounters that

q̃j = 0, it skips to next vector aj+1 and continue. The general Gram-Schmidt procedure

is implemented as:

1: procedure Gram-Schmidt

2: r ← 0

3: for i← 1, k do

4: ã← ai −
∑r

j=1 qjq
T
j ai

5: if ã 6= 0 then

6: r ← r + 1

7: qr ← ã/‖ã‖
8: end if

9: end for

10: end procedure

All the reference vectors – the vectors representing relevant alignment constraints, which

are used in the orthonormalization process –, if any exist, have to be computed before

applying the Gram-Schmidt procedure. This means that the reference frames will be

computed until all the nominal assembly plan had been processed, then it will be the

last step of the preventive vision analysis. As will be explained in the next chapter, this

process is the first step of the sensor planning method. The reference axes directions

are defined by the order in which the reference vectors are processed.

3.3.2 Obtaining Reference Vectors

As mentioned before, when an assembly operation joins two or more environmental

objects through contacts with the manipulated object, indirect dependencies among

these environmental objects has to be represented through reference vectors.
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The first step of a method for obtaining reference vectors is to identify all the contacting

face pairs of the manipulated object with its environment to form two groups: one group

Gm for maintained contacting face pairs and one group Gn for new contacting face

pairs. Each contacting face pair describe a constraining vector. The constraining vector

described by a contacting face pair is a normal vector that describe the orientation of

an environment object’s face. Inside each group, constraining vectors with exactly the

same orientation or exactly the opposite orientation are grouped. Each group orientation

describe a vector further referred as an alignment vector.

Determining the reference vectors for an environmental object is difficult because its

participation in the insert or contact configuration could be indirect, s.t. it only restricts

the feasible configurations of other environmental objects that directly or indirectly

participate in the current task. Even if an environmental object directly participate in

the configuration for the current task, the difficulty resides in identifying its roll in the

current task, discovering its motion freedom during its last manipulation, and realizing

the possible propagation of additional alignment constraints to other environmental

objects.

Every environmental object in the insert configuration and/or contact configuration,

required by the task, has to be analyzed for reference vectors with respect to the other

environmental objects that are in contact with the manipulated object, further referred

as objects of reference. The analysis is performed in the inverse order of manipulation,

s.t. the first object to analyze is the most recently manipulated object before the current

task. The analysis is effected for each alignment vector ai of Gn, considering one at the

time.

Since, commonly, an analyzed object already participate in contact relations with other

environmental objects, that conformed its own assembly environment, in its last manipu-

lation, its feasible configurations during the current task are restricted by such relations.

Then, in getting the reference vectors for this environment object the following three

cases are considered:

First case: before the current task, either the environmental object does not partici-

pate in any contact with its assembly environment or all the contacts in which it

participates are described by vectors nj in orthogonal directions to the considered

alignment vector, s.t. ∀nj{ai · nj = 0}.

In this case, the alignment vector a reference vector for the environmental object.

The orthogonal contacts are ignored because they do not affect the environmental

position in the alignment direction, but as will be explained later, they could be

used to eliminate critical dimensions for rotation.

Figure 3.9(a) depicts an example of this case since environmental Object B does

not participate in any contact with other environmental objects.
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Figure 3.9: Obtaining reference vectors to deduce a reference frame for the description
of critical dimensions.

Second case: before the current task, at least one of the contacts in which the envi-

ronmental object participates is described by a vector nj in a parallel direction to

the considered alignment vector, s.t. ∃nj{ai · nj = ‖ai‖‖nj‖}.

In this case, since the position of the analyzed environmental object is completely

determined with respect to the alignment direction due to the parallel contact,

there is not need to include new reference vectors.

Figure 3.9(b) presents an example of this case since the contact of environmental

Object B with its environmental Object A is in the same direction as the future

contact with manipulated Object M.

Third case: before the current task, any of the contacts in which the environmental

object participates is described by a parallel vector to the current alignment vector,

although at least one of the contacts has a vector nj with a component parallel to

the alignment direction, i.e. ∀nj{(ai · nj = 0) ∨ (ai · nj ≤ ‖ai‖‖nj‖)}.

In this case, the reference vectors are obtained as orthogonal vectors to normal

vectors describing faces contacting other environmental objects when such vectors
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have components in the direction of the critical vector. Then, for each contact of

the environmental object, a reference vector ri is computed as:

1: qj ← nj/‖nj‖
2: r̃i ← ai − (qj · ai)qj

3: ri ← r̃i/‖r̃i‖

where ri 6= 0̃.

Figure 3.9(c) is an example of this case since the contact of environmental Object B

with environmental Object A does not completely determine its final Y position.

If the face of Object B contacting Object A would not have been considered, the

resultant reference frame would be oriented as the other two examples and the only

critical dimension would be that associated with its Y axis. Then, when assembling

Object B a conflict between aligning and contacting requirements would appear.

To fulfill both requirements a new critical dimension associated with X axis had

to be defined, but that is not evident only from the new indirect dependencies

produced by the future task of moving to contact of manipulated Object M. Using

the new frame aligned with the contacting surface this problem is solved.

However, when in the this case, multiple contacts exist between Objects A and

B, before defining or modifying their dependency relation the need of maintaining

the new reference vector has to be evaluated. The reference vector should be

discarded if any other contact has a component aligned with it, s.t. ri · nj 6= 0,

because this contact impedes motions aligned with such reference vector, as shown

in Figure 3.9(d).

3.3.3 Additional Propagation by Configuration Conditioning

Environmental objects are analyzed for the deduction of new critical dimensions when

they participate directly or indirectly in insert configurations or in contact configurations

as described in Section 3.2.2. Both second case and third case of the method described

above are based on the pre-existence of non-orthogonal contacts of an environmental

object analyzed with other environmental objects, but this description does not specify

if these contacts are with respect to the object of reference for the deduction of new

indirect dependencies, or if there are contacts with other environmental objects not

considered originally.

The actions described in the second and third cases apply as described when the non-

orthogonal contacts of the analyzed object, Object B, happen with an object of reference,

like Object A shown in Figures 3.9(b) and 3.9(c).

If in the third case, there are contacts of Object B against another environmental object,
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Figure 3.10: Contacts requiring additional propagation of alignment constraints.

Object C, a new indirect dependency arc should be added to the ICdg between these (B

→ C ). If this arc already exists, the new reference vector should be included as part of

it. In addition, in both, second case and third case, the constraint propagation process

should continue, but now to analyze a possible new dependency between Objects A

and C. This additional propagation of alignment constraints is needed since Object C

was not considered originally because it does not participate directly as an element

of the insert configuration or contact configuration that fired the propagation process.

Figure 3.10(a) illustrates this situation where a new indirect dependency of Object B

on Object C has been produced when analyzing a possible dependency relation with

Object A; assuming that Object C was assembled before Object A, a new dependency

of Object A on Object C was also deduced.

Same as before, when there are multiple contacts in the third case, before including new

reference vectors in the relation between Objects B and C, the need for each has to

be evaluated using the information of the other contacts, as explained before. Figure

3.10(b) presents an example in which a possible reference vector between Object B

and Object C has been discarded; in this example, it is assumed that Object A was

assembled before than Object C. The additional propagation of alignment constraints

is not affected when reference vectors are discarded.

The additional propagation of alignment constraints between Objects A and C requires

of the recursive execution of the following two steps:

1. Determine the new environmental object to analyze. This object, A or C, is the

object that was manipulated later, the other was part of its environment in such

assembly step.

2. Repeat the process of obtaining new reference vectors for the new environmental
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object to analyze.

3.3.4 Rotational Considerations

Although the basis created from the reference vectors describe critical dimensions for

pure translation, a rotation error could have a similar translational effect in critical

directions, and has to be considered when determining the critical dimensions of an

assembly operation. However, representing general rotational freedom is more difficult

than representing translational freedom and consequently complicates the description

of their critical dimensions.

As mentioned in Chapter 2, in this work, the followed approach takes advantage of

the constraining effect of contacts for determining the rotation references. Also, the

centers of rotation of polygonal objects in 2D-assembly is situated in the origin of their

coordinate frame, and the critical rotation axes pass through the origin of the coordinate

system of the polyhedral objects that represent the assembly parts.

Analysis for Planar Assembly

For planar assembly – assembly in 2D space – a simple contact fixes the attitude of

an object. When an assembly task puts the manipulated object in contact with mul-

tiple environmental objects, its successful execution depends on the correct orientation

of the most recently manipulated environmental objects respect to the orientation of

the other environmental objects assembled before than them. Then after determining

the environmental objects that conform the direct insert configuration or direct contact

configuration for a task, these objects are inserted in a priority queue Er. The priority

of an object is proportional to the number of the last assembly step in which each it was

manipulated. The recursive method to determine if the attitude of an environmental

object has to be observed, for a possible adjustment with respect to other objects, work

as follows:

1: procedure RotationDependency-2D

2: if Er contains only one object then

3: Finish

4: end if

5: Extract the first object obj of Er

6: Create a list Ce with other objects assembled before that obj contacting it.

7: if Ce is empty then

8: Add a dependency relation for obj with respect to each object in Er

9: Call RotationDependency-2D to process the rest of Er
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10: else

11: Add the objects in list Ce into Er, if they are not already in this priority

queue

12: Call RotationDependency-2D to process the rest of Er

13: end if

14: end procedure

Analysis for Assembly in 3D-space

The method for determining critical rotation axes for environmental objects in 3D-

assembly works in a similar way to that for planar assembly. However, some steps must

realize a more complex geometric reasoning, because of the topology of spatial contacts

and because in this case, the method deals with multiple rotation axes and not only a

rotation center.

Since after a single face contact two possible rotation axes are fixed, in the case of

propagating rotation constraints to environmental objects the following situations can

apply:

1. Before the task, the analyzed environmental object obj is not in contact with

any other environmental object. In this case, two critical rotation axes should

be defined to align its contacting faces accordingly to the alignment vector of the

task. These critical rotation axes define a basis with the alignment vector.

Figure 3.11(a) presents an example of this case. In the example, the objects are

assembled in the order: A ⇒ B ⇒ C. Object C is the manipulated object, and

objects A and B conform its direct contact configuration. Assuming that all the

objects have coordinate frames aligned as depicted, the alignment vector is aligned

with the Z axis. For this task vision is not required for the manipulated object,

only the force compliant skills have to be used to assure the position of the object

with respect to its Z position, and its orientation with respect to X and Y critical

rotation axes. Since environment object B was the most recently manipulated

object, and it does not participate in contacts before the task, to assure a correct

environment configuration, its configuration will depend on the configuration of

environmental object A; specifically its position with respect to the Z axis, and its

orientation with respect to X and Y axes, which describe its critical dimensions.

All the critical dependencies are illustrated in the ICdg.

2. Before the task, obj only participates in contacts with other environmental objects,

in its own manipulation environment, that are described by orthogonal vectors to

the alignment vector of the task. Moreover, in case of multiple contacts, all of

them have exactly the same direction or exactly the same opposite direction. In
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Figure 3.11: Obtaining critical rotation axes.
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this case, there is only one critical rotation axis that should be aligned in the

direction of the contacts.

Figure 3.11(b) exemplify this case. In this example, the task and its direct envi-

ronment configuration is the same as those of the example for the first case. The

important element in this example is the addition of an new environmental object,

Object E, which is assumed to be assembled before Object A. Since Object E par-

ticipates in a simple contact relation with Object B, and this contact is described

by a vector aligned with Y axis which is orthogonal to the alignment vector of the

task, the method arrive to the following conclusions:

• Use force compliance for controlling the Y position of Object B and its orien-

tation with respect to X and Y axes, based in the configuration of Object E.

• Observe the Z position and Y orientation of Object B with respect to Ob-

ject A. The X orientation which it is also critical for succeeding in the task,

was eliminated because it is enforced by the contact with Object E.

• Observe the X orientation of Object A with respect to Object E because

Object E fixes this orientation for Object B.

3. Before the task, obj participates in at least one contact with other environmental

object, in its own manipulation environment, that is described by a parallel vector

to the alignment vector of the task. Since this contact fixes the correct attitude

of the object, there is not a critical rotation axis for this situation.

Figure 3.11(c) presents an example of this case. In this example, the task and

its direct environment configuration is also the same as those of the example for

the first case. Same as the example of the second case, there is a new Object E

assembled before than Object A, but in this case the contact between Objects B

and E is in the same direction as the alignment vector. Then, Object E does not

need to be observed because its critical position and orientation parameters are

enforced by Object E. However, the complete alignment dependency is propagated

resulting in a having to observe the position and orientation of Object A with

respect to Object E.

4. Before the task, obj only participates in contacts with other environmental objects

that are described by vectors that are neither orthogonal nor parallel to the align-

ment vector. However, in case of multiple contacts, all of them have exactly the

same direction or exactly the same opposite direction. In this case, there is only

one critical rotation axis that should be aligned in the direction of the contacts.

Figure 3.11(d) illustrates an example of this case. Again, the task and direct

environment configuration are the same of the other examples, and the Object E

is the first assembled object that participates in a contact relation with Object B.



3.4. SENSING ANALYSIS FOR ROBOTIC ASSEMBLY: PUTTING IT TOGETHER71

However, in this example the contact is neither orthogonal nor parallel to the

alignment vector. Then the Z position of Object B depends on two factors:

one, the Z position of Object E, and two, the Y ′ position of Object B with

respect to the introduced coordinate frame illustrated in the tilted plane between

objects B and E. This Y ′ position must be observed. Then, since Object A is

assembled after Object E, its Z position and X and Y orientation must to be

observed to verify a correct assembly configuration for the task.

5. Before the task, obj participates in multiple non-parallel contacts with other en-

vironmental objects that are described by vectors that are neither orthogonal nor

parallel to the alignment vector. In this case, there is not a critical rotation axis

for this situation, as exemplified in

Finally, Figure 3.11(e) exemplifies this last case. This example presents the same

task and direct environment configuration of the others cases and includes the

environmental object E, but in addition, it includes a fifth object, Object F, which

is assumed to be assembled before than Object E. In this example, the critical

configuration of Object B is completely fixed by objects E and F. Only the contacts

have to be verified by force, which is indicated by the solid lines between Object B

and objects E and F. The relations to observe are the Z position and X and

Y orientation of Object A with respect to Object E or Object F, and the same

dimensions of Object E with respect to Object F.

As can be noted, these cases also appear in the analysis for critical dimensions for

translation. The first and second cases of the rotation analysis correspond to the first

case of the translation analysis; the third case for rotation corresponds to the second case

for translation; the fourth case for rotation corresponds to the third case for translation;

and the fifth case for rotation corresponds to the case of elimination of reference vectors

for translation.

The process for the propagation of alignment constraints that determine new indirect

rotation dependencies among environmental objects is also the same as that followed to

determine indirect translation dependencies. A possible propagation has to be analyzed

always that an environmental object that configure the environment of a current task

is in direct contact with other environmental objects that do not.

3.4 Sensing Analysis for Robotic Assembly: Putting

It Together

Summarizing all the previous sections, a method was developed to plan sensing strategies

for robotic assembly. This method includes force sensing requirements to control and



72 CHAPTER 3. PREVENTIVE VISION FOR ROBOTIC ASSEMBLY

correct the execution of assembly operations with objects in contact and visual sensing

operations to prevent the appearance of critical deviations that would make subsequent

assembly operations fail.

The sensing requirements for an object result from an analysis of the operations where

it is manipulated by a robot arm, and from an analysis of its roll as an environmental

object in insertion relations and contact relations with other environmental objects.

The force sensing requirements are deduced by recognizing assembly steps that include

make-contact, slide, and insert assembly skill primitives. A force sensing requirement

specify the type of assembly skill primitive to implement, the configuration of contacts

to produce, and its critical dimensions. This information could be used by the force

compliance skills.

A configuration of contacts is described as a list of pairs of faces. Every pair describe a

surface-surface contact relation. In the case of a make-contact skill, the pairs describe

faces that are expected to enter in contact; in the case of a slide skill, the pairs describe

the sliding faces; and in the case of an insert skill, the pairs describe the constraining

and constrained faces.

The visual sensing requirements are deduced by recognizing assembly steps that include

insert assembly skill primitives and assembly steps that define contact relations of the

manipulated object with multiple environmental objects.

A high-level outline of the sensing analysis method can be described as follows:

1. Create the CAD models for the assembly parts.

2. Load the CAD models and the nominal assembly plan to create the sequence of

assembly steps.

3. For each assembly step:

(a) Identify the new contact-state relation.

(b) Determine the contact-state transition.

(c) Extract force sensing requirements for the manipulated object.

(d) Actualize the ICdg.

• Identify new visual sensing requirements for the manipulated object.

• Propagate new alignment constraints, if exist, that require of preventive

vision for the environmental objects.

4. Compute the reference frames for each dependency arc of the ICdg.

5. Reconstruct the assembly plan including force and vision sensing requirements.
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3.5 Experiments and Discussion

A computer application of the proposed method has been implemented in C++. The

CAD models of the objects are created with a constructive solid modeling (CSG) tool

known as VANTAGE [41](specifically a C++ version created at Carnegie Mellon Uni-

versity by the author of this dissertation and fellow George V. Paul) that gives the

additional benefit of direct access to its basic data structures, the topological features

of the objects, its geometric functions, and its graphical interface.

A nominal assembly plan for this application is described by a sequence of assembly

steps specified in a lisp-like syntax. Every assembly step specify the type of assembly

operation, the name of an assembly part to be manipulated, the name of the VANTAGE

object that represent the model of the assembly part, and the motion parameters as a

list of six values (three for translation and three for rotation).

The method and program were intensively tested. To test the method, the program

was presented with many nominal assembly plans devised to include some assembly

operations that did not required of any type of feedback, some assembly operations that

did require only of force sensing operations or only of visual sensing operations, and

some assembly operations that required of both types of sensing, force and vision.

In all the test cases, the method behave as expected. The application that implements

the method successfully identified the assembly steps that needed of sensing feedback

information and the type of force and visual feedback operations and information re-

quired.

Next, we present three cases solved using the proposed method, to illustrate its behavior.

Every case and their solutions are depicted by five figures that present:

1. the VANTAGE commands used to define the models of the assembly parts in-

volved,

2. the description of the nominal assembly plans,

3. a graphic sequence of the assembly steps (as displayed by the system),

4. an illustration of the final ICdg, and

5. the new assembly plans including the sensing feedback operations.

3.5.1 Experimental Case 1

In this case there is only one type of object involved, body1. body1 is a rectangular

parallelepiped (a kind of box). Its CSG model is constructed with the VANTAGE
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command presented in Figure 3.12. VANTAGE produces rectangular parallelepipeds

with the CUBE primitive. The origin of the object’s coordinate frame is situated in its

center of geometry.

// BODY1
(csgnode body1 cube (30 100 40) (0 0 0 0 0 0))
// BODY1
(csgnode body1 cube (30 100 40) (0 0 0 0 0 0))

Figure 3.12: VANTAGE model of parts for test case 1

The nominal assembly plan containing the sequence of assembly steps for the case is

presented in Figure 3.13. There are five objects of the same type of body1 involved,

block1, block2, block3, block4, and block5. An assembly plan file first specify the name

of the file that contains the VANTAGE commands that construct the models of the

objects, one for each kind of assembly part. Then it specify commands that describe

the sequence of manipulation of the assembly elements. The current version of the pro-

gram only accepts three manipulation commands: create-fixed-object, which introduces

environmental object, not manipulated by the robot, and that are fixed during the full

assembly; create-assembled-object, which introduces new objects manipulated by the

robot; and move-object, which is used to manipulate an object that was already intro-

duced to the assembly scene. The system assumes that an object that is manipulated

by the first time comes from a completely unconstrained contact state, an S contact

state.

// Load the models of assembly parts

load-models: case1.model.van

// Sequence of assembly

create-assembled-object: block1 body1 (-60 0 0 0 0 0)
create-assembled-object: block2 body1 (60 0 0 0 0 0)
create-assembled-object: block3 body1 (0 0 0 0 0 0)
create-assembled-object: block4 body1 (-30 0 0 0 0 0)
move-object: block1 (-120 0 0 0 0 0)
create-assembled-object: block5 body1 (30 0 0 0 0 0)

Figure 3.13: Nominal assembly plan for test case 1

create-fixed-object and create-assembled-object commands create new polyhedral ob-

jects from the model specified in the command. They compute the new configuration

of the object by applying a 3D-transformation to the configuration of the model of ref-

erence. The 3D-transformation matrix is computed from six parameters included in the

manipulation command, three for translation (the first three) and three for rotation (the

last three).
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In this first case, four of the five objects are assembled with a single assembly step. Then,

the plan contains a sequence of six assembly steps, five described by create-assembled-

object commands and one described by a move-object command.

Figure 3.14: Sequence of assembly steps for test case 1

The system graphically illustrate each assembly step described in the plan. Figure 3.14

presents the sequence shown by the computer application. The assembly plan presents

a kind of domino manipulation scheme where objects are juxtaposed, to form a line

only through move and insert assembly skills. The figures of each step depict the object

in three intensities. A black object represents the manipulated object. It also manage

two gray levels to differentiate environmental objects in contact with the manipulated

object (in a darker level) and other environmental objects (in a softer level).

For illustration convenience, none the test cases presented in this document includes a

work table, then assuming that after the robot ungrasp an object, this object stays in

its resultant pose, floating in the space. Another assumption is that all the objects have

a coordinate frame aligned with the global coordinate frame for assembly.

Description and commentaries as the sensing analysis advance in each assembly step of

the assembly plan for this case are:

Step 1: The block1 object is moved to a completely unconstrained position, describing

a S ⇒ S transition. Skills graph presented in Figure 2.7 indicates that this type of

assembly task requires of using the move assembly skill with respect to the three

dimensions, and neither force nor vision feedback operations are required.
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Step 2: The block2 object is, similarly to block1, moved to a completely unconstrained

position. No sensing requirements are added for this task either.

Step 3: The block3 object is manipulated in the same manner as the preceding two

objects, same conclusions in this case. However, this step completes the direct

environment configuration, with block1, for the next assembly step.

Step 4: The block4 object is inserted between block1 and block3, then requiring of

being visually observed. The step describe a S ⇒ B transition, where the con-

strained dimensions is that associated with the X axis of the coordinate frames

of reference. Since insertion usually requires of force control, from Table 2.1, a

requirement is extracted for force compliance skills to detect contacts, keep La

contacts, configuration control.

122 1336 4 1’5 4 5

x
x x

xx xx

direct insertion dependency
direct contact dependency
indirect insert or contact dependency
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number
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Figure 3.15: ICdg for test case 1

Vision must also be used to verify the insert configurations with respect to X

DOF. Then a direct dependency relation of block4 with respect to block1 and

block3 is added to the ICdg of the task, as can be observed in the final ICdg

illustration of Figure 3.15. This direct dependency relation is propagated to define

an indirect dependency relation of block3 with respect to block1. All the three new

dependencies include the same critical dimensions one for position associated with

a translation with respect to the X DOF, and two for orientation associated the

critical rotation axes aligned with the Y and Z axes.

To reduce the cluttering of the images presented, the only critical dimensions

shown are those for translation, the critical dimensions for rotation can be obtained

supported by Figure 2.15.
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Step 5: In this step, block1 is detached from block4 with a simple translation in the

X direction. The assembly operation does not require of any type of sensing

when ignoring that block1 should first be grasped by the robot arm, as in fact

it was. In a real situation the robot’s actions without grasped objects should be

considered. For these transit tasks, the robot hand (gripper) should be considered

as the manipulated object, and in case of a two-fingered gripper hand as the robot

used for in the experimental setup, every grasp task should be classified as an

insertion task requiring of using vision and force sensing. But, in this example,

this step does not include any new dependency; it only include a new node to the

ICdg for block1.

Step 6: In this last step of the plan, block5 is inserted between block2 and block3.

Again, the analysis for this step arrive to similar conclusions as those of the fourth

step, but with block5 as the manipulated object, and making block3 to depend on

the configuration of block2 which was assembled before than it.

The most important addition of this step, as can be observed in the ICdg, is

the discovery of the indirect dependency of block2 on block1. This dependency, as

expected, is with respect to the configuration of block1 before than it was manipu-

lated by the second time. Without visually verifying the right X distance between

block1 and block2, and its relative orientations, block3 could not be configured to

succeed in the two insertion tasks, described in steps 4 and 6. This is an example

of what was called a propagation of shared constraints.

Finally, the system presents a synthesis of the sensing analysis results as a modified

assembly plan, which describe the identified transition of contact states, the assembly

skill primitives implied by the task, the force compliance skills to use and the visual

sensing requirements. Since every assembly step performs some kind of movement, an

assembly skill primitive is given for each translational DOF. The force compliance skills

and visual requirements are specified with respect to the DOF that require feedback

information, the critical dimensions for force and visual sensing.

Figure 3.16 present the modified assembly plan resulting from the sensing analysis over

the nominal assembly plan of the first experimental case. As can be noted, since only

move and insert assembly skill primitives are required by the tasks, force sensing is

only required in the insertion tasks performed during assembly step 4 to insert block4

between block1 and block3, and during assembly step 6 to insert block5 between block2

and block3. Vision should be also used in this steps. And as depicted in the final ICdg,

vision also must be used in the second step to verify the position and orientation of block2

with respect to block1, and in the third step to verify the position and orientation of

block3 with respect to block1 and/or block2. In both cases the critical dimension is

associated with the X DOF for translation. The critical dimensions for rotation are
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ASSEMBLY STEP: 1
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 2
ASSEMBLY PART: block2
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING:
   Alignment(block1: Tx)

ASSEMBLY STEP: 3
ASSEMBLY PART: block3
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING:
   Alignment(block1: Tx, block2: Tx)

ASSEMBLY STEP: 4
ASSEMBLY PART: block4
Contact State Transition: S->B
ASSEMBLY SKILL PRIMITIVES
   Insertion Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING:
   Tx(block1,block3): dc-skill,kc-skill,cc-skill
VISION SENSING:
   Insertion(block1,block3: Tx)

ASSEMBLY STEP: 5
ASSEMBLY PART: block1
Contact State Transition: A->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 6
ASSEMBLY PART: block5
Contact State Transition: S->B
ASSEMBLY SKILL PRIMITIVES
   Insertion Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING:
   Tx(block2,block3): dc-skill,kc-skill,cc-skill
VISION SENSING:
   Insertion(block2,block3: Tx)

Figure 3.16: assembly plan with sensing operations for test case 1

also determined, but they do not apply in the assembly plan because, for this examples,

they are not included in the ICdg, either.

3.5.2 Experimental Case 2

The second test case includes three types of polyhedral objects; body1, body2, and body3.

All of them are kind of rectangular blocks of different sizes. The model of each type of

object is described in a VANTAGE file, presented in Figure 3.17, where it can be noted

that each type of object is created with a single CSG command that uses the CUBE

primitive.

The nominal assembly plan is composed by nine assembly steps performed over six dif-

ferent assembly parts. Assembly parts block1, block2, and block3 are polyhedral of type

body1 ; assembly parts block4 and block5 are polyhedrons of type body2 ; and assembly

part block6 is of type body3.

The sequence of assembly steps for this case is presented in Figure 3.18. It presents a

type of puzzle task where five of the six objects are assembled in a single step. The

other four steps are applied to block1.
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// BODY1
(csgnode body1 cube (30 30 40) (0 0 0 0 0 0))

// BODY2
(csgnode body2 cube (30 110 40) (0 0 0 0 0 0))

// BODY3
(csgnode body3 cube (90 40 40) (0 0 0 0 0 0))

Figure 3.17: VANTAGE models of parts for test case 2

// Load the models of assembly parts

load-models: case2.model.van

// Sequence of assembly

create-assembled-object: block1 body1 (-30 -30 0 0 0 0)
create-assembled-object: block2 body1 (-30 15 0 0 0 0)
create-assembled-object: block3 body1 (30 0 0 0 0 0)
create-assembled-object: block4 body2 (-60 10 0 0 0 0)
create-assembled-object: block5 body2 (60 10 0 0 0 0)
move-object: block1 (-30 -30 90 0 0 0)
move-object: block1 (-30 15 90 0 0 0)
move-object: block1 (30 0 90 0 0 0)
create-assembled-object: block6 body3 (0 65 0 0 0 0)

Figure 3.18: Nominal assembly plan for test case 2

Figure 3.19 graphically illustrate the nine assembly steps. As can be seen, the objects

are not form a line, as the plan of case 1, however, as depicted in its final ICdg depicted

in Figure 3.20, all the critical dimension of the tasks are associated with the X DOF.

The execution of the plan require of the move, make-contact, and insert assembly skill

primitives. It should be noted that when a pre-assembled object is moved, it appears

two times in the figure that presents the assembly step; a soft gray level image showing

where it was before the task and a black image in its actual position as a manipulated

object.

Description and commentaries as the sensing analysis analysis advance in each assembly

step of the assembly plan for this case are:

Step 1: block1 is moved in free space to its initial assembly position. There is not need

of any kind of sensing to perform this task.

Step 2: block2 is moved in free space to the vicinity of block1, but not touching it. This

block is aligned with block1, just displaced in Y direction. Due to the absence of
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Figure 3.19: Sequence of assembly steps for test case 2

contacts, the system ignores the future significance of the X alignment of the

block1 with block2.

Step 3: block3 is moved in free space to its final configuration. Again, the absence of

contacts makes the system ignore the real importance of block3 configuration.

Step 4: block4 is moved in free space until if enters in contact with block1 and block2.

This task require to use the make-contact assembly skill primitive in the X di-

rection, a guarded motion that could need of force control to correct the contact

configuration. The critical dimension for translation is associated with the X

DOF, while the critical dimensions for rotation are described by the Y and Z

rotation axes.

This task also indirectly joins block1 with block2, making significant its require-

ment for positional alignment with respect to X DOF, and its rotation alignment

with respect to Y and Z axes. These represent critical dimensions that have to be

observed when the block2 is manipulated in the assembly step 2. This is illustrated

by the dashed arrow that joins block2 with block1 in the final ICdg.
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Figure 3.20: ICdg for test case 2

Step 5: block5 is moved to contact with block3. The contact direction is also aligned

with the X axis. This task requires of the make-contact assembly skill primitive

that use force compliance skills to detect the contact and correct the contact

configuration. The critical dimensions to control by force are the same as those of

the previous step.

Steps 6, 7, and 8: In these steps, the block1 is moved to different positions, but since

block1 does not participate in new contacts, and inclusive, it breaks its previous

contact with block4 in step 6, there is not need to add new force or visual sensing

requirements.

Step 9: block6 is inserted between block4 and block5. Since all insertion task must be

observed, this task requires of using vision to verify the correct alignment of block6

with respect to block4 and block5. And since the constrained motion due to the

insertion is aligned with X axis, the X DOF represents the critical dimension for

translation and the critical rotation axes are aligned with the Y and Z axes.

The most important result of the method in this task is realizing that although

to succeed in the insertion block4 and block5 has to be aligned and positioned

correctly, what has to be observed is the position and orientation of block3 with

respect to block1 and/or block2. The evident reason is that the configurations of

block1 and block2 completely fix the configuration of block4 with respect to the

critical dimensions, and that block3 fixes the configuration of block5. And since

the contacts are parallel to the alignment vector of the tasks in both cases, as
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described for the second case of the translation analysis and for the third case of

the rotation analysis, there is not need to observe block4 nor block5.

ASSEMBLY STEP: 1
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 2
ASSEMBLY PART: block2
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING
   Alignment(block1: Tx)

ASSEMBLY STEP: 3
ASSEMBLY PART: block3
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING
   Alignment(block1: Tx, block2: Tx)

ASSEMBLY STEP: 4
ASSEMBLY PART: block4
Contact State Transition: S->A
ASSEMBLY SKILL PRIMITIVES
   Make-contact Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING
   Tx(block1,block2): dc-skill,cc-skill

ASSEMBLY STEP: 5
ASSEMBLY PART: block5
Contact State Transition: S->A
ASSEMBLY SKILL PRIMITIVES
   Make-contact Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING
   Tx(block3): dc-skill,cc-skill

ASSEMBLY STEP: 6
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 7
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 8
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 9
ASSEMBLY PART: cover1
Contact State Transition: S->B
ASSEMBLY SKILL PRIMITIVES
   Insertion Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING:
   Tx(block4,block5): dc-skill,kc-skill,cc-skill
VISION SENSING:
   Insertion(block4, block5: Tx)

ASSEMBLY STEP: 1
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 2
ASSEMBLY PART: block2
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING
   Alignment(block1: Tx)

ASSEMBLY STEP: 3
ASSEMBLY PART: block3
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING
   Alignment(block1: Tx, block2: Tx)

ASSEMBLY STEP: 4
ASSEMBLY PART: block4
Contact State Transition: S->A
ASSEMBLY SKILL PRIMITIVES
   Make-contact Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING
   Tx(block1,block2): dc-skill,cc-skill

ASSEMBLY STEP: 5
ASSEMBLY PART: block5
Contact State Transition: S->A
ASSEMBLY SKILL PRIMITIVES
   Make-contact Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING
   Tx(block3): dc-skill,cc-skill

ASSEMBLY STEP: 6
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 7
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 8
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 9
ASSEMBLY PART: cover1
Contact State Transition: S->B
ASSEMBLY SKILL PRIMITIVES
   Insertion Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING:
   Tx(block4,block5): dc-skill,kc-skill,cc-skill
VISION SENSING:
   Insertion(block4, block5: Tx)

ASSEMBLY STEP: 1
ASSEMBLY PART: block1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 2
ASSEMBLY PART: block2
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING
   Alignment(block1: Tx)

ASSEMBLY STEP: 3
ASSEMBLY PART: block3
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING
   Alignment(block1: Tx, block2: Tx)

ASSEMBLY STEP: 4
ASSEMBLY PART: block4
Contact State Transition: S->A
ASSEMBLY SKILL PRIMITIVES
   Make-contact Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING
   Tx(block1,block2): dc-skill,cc-skill

Figure 3.21: Assembly plan with sensing operations for test case 2

Figure 3.21 synthesize all the conclusions, graphically illustrated in the ICdg, of the

step-by-step analysis of the assembly sequence, showing that only three steps require of

visual sensing (steps 2, 3, and 9), and three steps require of force sensing (steps 4, 5, and

9). Steps 2 and 3 require of preventive vision to verify indirect alignment constraints,

while step 9 requires vision for insertion. Steps 4 and 5 requires of force control realize

guarded motions, while step 9 requires force control to complete an insertion operation.
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3.5.3 Experimental Case 3

This third and last test case presents a more realistic assembly task that is performed

with more complex parts. It includes four types of polyhedral objects. The CSG model

of the objects is constructed with VANTAGE commands that use the CUBE primitive

and binary operations for union and difference. Figure 3.22 presents the VANTAGE file

that includes the commands to create the CSG model of the polyhedral objects.

// BODY
(csgnode a1 cube (170 20 20))
(csgnode a2 cube (15 15 20) (0 0 10 0 0 90))
(csgnode a3 cube (8 8 20) (-75 0 0 0 0 0))
(csgnode a4 cube (8 8 20) (75 0 0 0 0 0))
(csgnode a5 difference (a1 a2))
(csgnode a6 difference (a5 a3))
(csgnode body difference (a6 a4))

// COVER
(csgnode b1 cube (170 20 10) (0 0 -2.5 0 0 0))
(csgnode b2 cube (30 20 20) (0 0 2.5 0 0 0))
(csgnode b3 cube (15 15 20) (0 0 -7.5 0 0 90))
(csgnode b4 cube (8 8 10) (-75 0 -2.5 0 0 0))
(csgnode b5 cube (8 8 10) (75 0 -2.5 0 0 0))
(csgnode b6 union (b1 b2))
(csgnode b7 difference (b6 b3))
(csgnode b8 difference (b7 b4))
(csgnode cover difference (b8 b5))

// BAR
(csgnode bar cube (170 15 15) (0 0 0 0 0 0))

// BOLT
(csgnode d1 cube (15 15 10) (0 0 0 0 0 0))
(csgnode d2 cube (8 8 25) (0 0 -12.5 0 0 0))
(csgnode bolt union (d1 d2))

Figure 3.22: VANTAGE models of parts for test case 3

The first type of object, called body, is a rectangular block that includes two holes to

its sides for inserting bolts, and a slot in the middle for inserting a bar. The body of

body is constructed with the CSG CUBE primitive. The holes and the slot in the body

are gotten through difference operations with respect to other blocks that describe the

desired form and size.

The second and more complex type of object, called a cover, is a rectangular block with

a rectangular bump and an slot in the middle, and two holes that go through the full

body of the cover to both of its sides. The body and the form and size of the bump, of

the slot, and of the holes are created with the CSG CUBE primitive. To construct the

cover its body is united to the bump with a union binary operation, and the slot and
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holes are formed as difference with the blocks that describe their form and size.

// Load the models of assembly parts

load-models: case3.model.van

// Sequence of assembly

create-assembled-object: body1 body (0 50 0 0 0 0)
create-assembled-object: body2 body (0 -50 0 0 0 0)
create-assembled-object: bar1 bar (0 0 50 90 0 0)
move-object: bar1 (0 0 14 90 0 0)
move-object: bar1 (0 0 10 90 0 0)
create-assembled-object: cover1 cover (0 50 50 0 0 0)
move-object: cover1 (0 50 21.5 0 0 0)
move-object: cover1 (0 50 17.5 0 0 0)
create-assembled-object: bolt1 bolt (-75 50 50 0 0 0)
move-object: bolt1 (-75 50 40 0 0 0)
move-object: bolt1 (-75 50 30 0 0 0)
move-object: bolt1 (-75 50 25 0 0 0)

Figure 3.23: Nominal assembly plan for test case 3

The third object, called bar, is a simple rectangular block created with a CSG CUBE

primitive.

The fourth object, called bolt, is constructed as the union of two rectangular blocks

created with the CSG CUBE primitive; the first block describes its elongated body, and

the second its head. The nominal assembly plan , presented in Figure 3.23, describe a

sequence of twelve steps that include two bodies (body1 and body2 ), one bar (bar1 ), one

cover (cover1 ), and one bolt ( bolt1 ). body1 and body2 are assembled in single assembly

operations; next, bar1 is assembled in three steps; next, cover1 is also assembled in

three steps; and finally, bolt1 is assembled in four steps.

Every assembly step is graphically illustrated in Figure 3.24.

Description and commentaries as the sensing analysis analysis advance in each assembly

step of the assembly plan for this case are:

Step 1: body1 is moved in free space to its final configuration. It does not require of

any type of sensing operation.

Step 2: body2 is moved in free space to its final configuration. The relevance of its

alignment with body1 is still not evident since it still does not participate in any

contact relation.

Step 3: bar1 approaches to the bodies in preparation for the insertion operation of

the next step. Since this step is also in free space it does not include sensing

requirements.



3.5. EXPERIMENTS AND DISCUSSION 85

Figure 3.24: Sequence of assembly steps for test case 3
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Step 4: bar1 is inserted in the slots of body1 and body2. As all insertion tasks, this step

requires of visual verification with respect to the constrained DOF that in this case

is aligned with the X axis. Also the orientation of the manipulated object has to

be visually verified with respect to the Y and Z critical rotation axes. Force is

also required to control and complete the insertion.

This step evidences the importance of aligning body2 with respect to body1 such

that their slots get also aligned. This visual requirement is discovered by a prop-

agation of joining constraints, that recognizes the X DOF as a critical dimension

for translations and Y and Z axes as critical rotation axes, for the assembly step

2.

Step 5: This step concludes the assembly of bar1 letting it resting over the bottom of

the slots of the bodies. This operation presents a typical task that require of the

slide assembly skill primitive to control the slide operation against the walls of

insertion slots. It also should to perform the guarded motion required by make-

contact assembly skill primitive.

The task does not require of vision, only requires of force compliance with respect

to the critical dimensions which are associated with X DOF in translation with Y

and Z critical rotation axes for the slide operation, and the Z DOF in translation

andX critical rotation axis for the make-contact operation. The Y critical rotation

axis that would be required by a manipulated object completely unconstrained

manipulated object is eliminated as established by the second case of the rotation

analysis.

Step 6: cover1 approaches bar1 in preparation for the next insertion operation. This

step is in free spaces, requires of using the move assembly skill primitives, but does

not introduces new sensing requirements.

Step 7: cover1 is moved so that bar1 gets inserted in its slot. As all the insertion tasks,

this task also requires of vision with respect to the alignment reference which is the

X position. As illustrated in the final ICdg of Figure 3.25, the critical dimensions

for the task are the X DOF for translation and Y and Z critical rotation axes.

Step 8: In this task, cover1 is slided down the bar1 ’s walls to rest over body1 top side.

This task is another operation including an slide assembly skill primitive with

respect to X DOF and a make-contact assembly skill primitive with respect to Z

DOF. The main difference between this step and step 5 is that cover1 slides over

bar1 and finishes resting in a different object, body1, which is depicted by three

solid lines in the ICdg, instead of the two lines used for the step 5.

Step 9: bolt1 is moved in free space to an approach position for the next insertion

operation. This step does not require of sensing operations.
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Figure 3.25: ICdg for test case 3

Step 10: The inferior part of bolt1 is inserted in one of the holes of cover1. The

difference of this insertion operation and all the other insertions is that it has two

critical dimension for translation, associated with the X and Y DOF, and three

critical rotation axes aligned with all the coordinate axes.

Step 11: bolt1 is inserted in one hole of body1. This is an interesting task because as

can be noted in the final ICdg, it is not considered as all the other insertion tasks.

This singular insertion task does not require of using vision, it only requires of

using force compliance, and this is because the insertion of bolt1 is obviated by

the alignment of cover1 with body1. The hole in body1 is implicitly considered

as an extension of the hole of cover1 because the system did not have to be

programmed to deal specifically for this singular cases.

Step 12: In this last step of the assembly plan, bolt is slided into the holes of cover1

and body1 until the bottom of its head rest in the top side of the cover. This step

requires only of force compliance to perform the slide and make contact tasks.

The critical dimensions for translation are associated with X and Y of body1 and

X, Y , and Z DOF of cover1. The critical rotation axes are associated with all the

coordinate axes.

Figure 3.26 synthesizes the sensing analysis results in a new assembly plan with sensing

requirements. Four assembly steps (steps 1, 3, 6, and 9) do not require of any sensing;

five steps (steps 2, 4, 7, 8, and 10) requires of visual operations, three of them (steps 4,
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ASSEMBLY STEP: 1
ASSEMBLY PART: body1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 2
ASSEMBLY PART: body2
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz
VISION SENSING
   Alignment(body1: Tx,Tz)

ASSEMBLY STEP: 3
ASSEMBLY PART: bar1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 4
ASSEMBLY PART: bar1
Contact State Transition: S->B
ASSEMBLY SKILL PRIMITIVES
   Insertion Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING
   Tx(body1,body2): dc-skill,kc-skill,cc-skill
VISION SENSING
   Insertion(body1, body2: Tx)

ASSEMBLY STEP: 5
ASSEMBLY PART: bar1
Contact State Transition: B->D
ASSEMBLY SKILL PRIMITIVES
   Make-contact Skill: Tz
   Move Skill: Ty
   Slide Skill: Tx
FORCE SENSING
   Tx(body1,body2): kc-skill
   Tz(body1,body2): dc-skill,cc-skill

ASSEMBLY STEP: 6
ASSEMBLY PART: cover1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 7
ASSEMBLY PART: cover1
Contact State Transition: S->B
ASSEMBLY SKILL PRIMITIVES
   Insertion Skill: Tx
   Move Skill: Ty,Tz
FORCE SENSING:
   Tx(bar1): dc-skill,kc-skill,cc-skill
VISION SENSING:
   Insertion(bar1: Tx)

ASSEMBLY STEP: 8
ASSEMBLY PART: cover1
Contact State Transition: B->D
ASSEMBLY SKILL PRIMITIVES
   Make-contact Skill: Tz
   Move Skill: Ty
   Slide Skill: Tx
FORCE SENSING
   Tx(bar1): kc-skill
   Tz(body1,bar1): dc-skill,cc-skill
VISION SENSING
   Alignment(body1: Ty)

ASSEMBLY STEP: 9
ASSEMBLY PART: bolt1
Contact State Transition: S->S
ASSEMBLY SKILL PRIMITIVES
   Move Skill: Tx,Ty,Tz

ASSEMBLY STEP: 10
ASSEMBLY PART: bolt1
Contact State Transition: S->E
ASSEMBLY SKILL PRIMITIVES
   Insertion Skill: Tx,Ty
   Move Skill: Tz
FORCE SENSING:
   Tx(cover1): dc-skill,kc-skill,cc-skill
   Ty(cover1): dc-skill,kc-skill,cc-skill
VISION SENSING:
   Insertion(cover1: Tx,Ty)

ASSEMBLY STEP: 11
ASSEMBLY PART: bolt1
Contact State Transition: E->E
ASSEMBLY SKILL PRIMITIVES
   Slide Skill: Tx,Ty
   Move Skill: Tz
FORCE SENSING:
   Tx(body1,cover1): kc-skill
   Ty(body1,cover1): kc-skill

ASSEMBLY STEP: 12
ASSEMBLY PART: bolt1
Contact State Transition: E->H
ASSEMBLY SKILL PRIMITIVES
   Slide Skill: Tx,Ty
   Move Skill: Tz
FORCE SENSING:
   Tx(body1,cover1): kc-skill
   Ty(body1,cover1): kc-skill
   Tz(cover1): dc-skill,cc-skill

Figure 3.26: Assembly plan with sensing operations for test case 3
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7, and 10) for insertion; and finally, seven steps require of force compliance, three for

insertion (steps 4, 7, and 10), four for sliding (steps 5, 8, 11, and 12), and three for

contacting (steps 5, 8, and 12).

The system correctly identified the features that describe the critical assembly relations

that, as mentioned before, are related with the most complex operations and those where

most commonly failure happens during the robotic execution of an assembly plan.
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Chapter 4

Sensor Planning for Visual
Verification

This chapter presents a method to determine the best sensor configurations to use for

observing an assembly part before the execution of an assembly operation. The objects

to observe are determined by the sensing planner described in Chapters 2 and 3. The

sensor planning method evaluates a predefined set of viewpoints to define an order based

on the ability of each sensor configuration to maximize a measure of success an assembly

step.

Known as sensor planning in the context of computer vision [100], the problem is to

develop strategies to automatically determine a set of sensing parameter values that

will achieve a task with a certain degree of satisfaction from given information about

the environment as well as information about the task that the vision system is to

accomplish.

The goal of a sensor planning module is gathering the best information to decide con-

fidently if it is convenient to continue executing the plan and if any adjusting action

is required to increase the possibilities of success during the execution of an assembly

plan. The expected outcome from this module, as part of a system that automatically

generates sensing strategies for robotic assembly, can include the sensor locations, its

settings, and even its planned motions (active vision) [5]. Additionally, in reconfigurable

environments, the illumination system can be planned [92] [67].

The biggest challenge for a sensor planner in computer vision is to understand and

quantify the relationship between objects to be viewed and the sensors observing them.

In this relationship between the object and the viewer, one of the most important tasks

is to determine the viewpoints, because it is the viewpoint the main responsible for the

quality of the image which directly affects the accuracy of the vision task.

The sensing analysis module described in Chapters 2 and 3, identify a group of op-

91
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erations, from a nominal assembly plan, that require the use of vision to determine

the configuration of some assembly elements. These configurations will be used during

the execution of the assembly plan to adapt the actions of the manipulator. In the

structured and well-known environments where robotic assembly plans are executed,

frequently, the sensor planner can ignore the object recognition and global localization

tasks, and concentrate on the refinement of the expected poses of the assembly elements.

After this, the refined poses of the objects can be used to reconfigure the scene, ver-

ify the contact configurations among the objects, and accordingly, perform preventive

adjustments on the configurations of manipulated objects.

In general, there are an infinite number of possible configurations of a sensor for taking

images that would be used to localize target objects in an assembly scene. However,

in this dissertation the potential viewpoints are limited to a finite set of viewpoints

positioned on the surface of a discretized viewing sphere. This spherical representation is

both simple and efficient to model the sensor configurations. A geodesic tessellation was

chosen to take advantage of its uniform distribution of points. The potential viewpoints

are localized in the center of each tessel and oriented through the center of the viewing

sphere. An object to be observed is localized in the center of the sphere (see Figure 4.1).

Figure 4.1: Spherical representation used to model the sensor configurations.

Since the sensing analyzer determine the visual sensing requirements from a geometric

reasoning process fired by the intention to succeed in the execution of the assembly tasks,

the purpose of the method described in this chapter is to determine an ordering of the

finite set of viewpoints based in their ability to help in the reduction of critical errors in

each assembly operation. This means that the ordering of viewpoints to see the same

object can vary from task to task. The purpose of the method is not selecting the best

viewpoint, because that is decided by another method that construct the complete visual
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strategy for an assembly plan. Such method takes advantage of the results obtained by

the sensor planner, but also consider other important factors such as external visual

occlusion and sensor motion. The visual strategy planner is presented in Chapter 5.

Since uncertainty can not be completely eliminated from vision data, an strategy has

been developed to quantify the expected uncertainty for every potential viewpoint.

4.1 Assembly Uncertainty

Uncertainty is ubiquitous during an assembly plan execution and its the main cause of

its failure. Then, uncertainty is the main assembly factor to analyze, model, and reduce,

for improving the opportunities to succeed in each assembly operation. Every assembly

task has an explicit or implicit tolerance to error that depends, mainly, on the type of

task and task geometry involved. Then certain quantity of uncertainty can be tolerated.

The uncertainty has an additive nature during the assembly plan execution. Thus, a

natural strategy for dealing with it is: quantify the tolerance of the assembly operations

and their accumulated uncertainty; if the accumulated uncertainty is bigger than the

tolerance of a current task, use a sensing feedback operation to reduce the uncertainty.

The sensing operation will produce information that can be used, first to reduce the

accumulated uncertainty, and second to detect deviations from the plan that require

of a different action, possibly to correct the deviation, select an alternative sequence of

tasks, or abort the assembly execution. Thus a new plan can be obtained by introducing

sensing steps and conditional branches.

But, the sensory data includes its own amount of uncertainty which means that task

uncertainty can not be completely eliminated. Task uncertainty as well as sensory

uncertainty are parametric, in a sense that its amount differ with respect to different

parameters. For this dissertation, the most relevant parameters are those associated

with the critical dimensions of a task. Then, when determining the configuration of

a sensor for a sensing operation, the best viewpoints are those that allow a sensor to

get information for the parameters associated with the critical dimensions, that include

less potential error (uncertainty) than is tolerated. If this is not possible for some, or

inclusively all, the critical dimensions, the best viewpoints are those that minimize the

exceeding sensory uncertainty over task tolerance on critical parameters – parameters

associated with the critical dimensions of the task.
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4.1.1 Uncertainty in Robotic Assembly

To deal with the problem of uncertainty in the robotic execution of assembly plans, when

there are not sensors to get feedback information, the robot and its environment has

to be engineered so that everything will work. Tasks where uncertainty is an intrinsic

property (e.g. pick-and-place) have to include additional and specific implements to

eliminate it or at least reduce it to a range within the planned tolerances (e.g. using

fixtures).

The cost of surrounding the robot with hard automation devices to eliminate the uncer-

tainty factor, seriously restricts its flexibility and ability to adapt to changes and then

also reduces its industrial applicability. Moreover, the hard automation devices have to

be planned [17], designed and added as a new element in the assembly planning process,

which is also an important problem [21].

An alternative to the elimination of uncertainty by including additional assembly ac-

cessories is to manipulate and integrate the sources of uncertainty into the assembly

planning process. This means that uncertainty will persist as a planning factor and

deviations from the plan will occur. The type of task and magnitude of the deviation

will determine its consequences. Then, there are two main approaches to deal with it:

one, uncertainty can be handled using so-called robust methods, or two, uncertainty can

be controlled using sensors. A robust method is one that assumes a bounded amount

of uncertainty in each aspect of a problem, but does not assign probabilities to values

within the allowed interval [26]. A robust solution works no matter what the actual

error value is, provided it is within the assumed interval.

This dissertation follows the second alternative. It uses sensors to control the uncertainty

with respect to the critical dimensions of the task. How the sensors and uncertainty

will be represented and used in the programming system will depend on the mechanism

selected for controlling uncertainty by using the sensors in the final program.

4.1.2 Sources of Uncertainty and Errors

There are many sources of uncertainty, however, the most relevant in the case of assembly

plan execution are:

• Uncertainty in the assembly device (robot arm) and its operations.

• Discrepancies between the physical objects and their geometric representations.

• Uncertainty in the sensory information obtained from the selected sensors.
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Robot and Task Uncertainty

Robots as mechanical devices can perform their actions with limited precision, depend-

ing in the type of robot, type of motion, servo mechanisms, differences in operating

temperature and weight, and type of applied control mechanisms. As a result, random

errors – fluctuations around one value – and systematic errors – error that has constant

sign and size, are involved. Good calibration techniques are needed to filter out the

systematic errors.

A robot command is transformed to multiple local commands for each of its component

parts. The composed discrete precision of each part will determine the global uncertainty

of the robot action, if it is not applied a compensation mechanism, the uncertainty will

present an additive behavior that will determine partially the resulting deviation in a

commanded action as part of the assembly plan.

Additionally, the resulting uncertainty from the robot actions depend on the task un-

certainty. The task uncertainty is determined by the complexity of the task and the

discrepancies among the expected configurations of the assembly elements and the ac-

tual configurations when the task is performed. It is evident that some tasks are more

difficult to perform for the robot, e.g. moving to place is easier than grasping an object.

It has to be clear too that if the expected conditions for the task are not met, the result

of its execution could differ, e.g. grasping an object that is not where it is supposed to.

When a difference between the expected configuration and an actual configuration of

the assembly parts is critical, s.t. it can easily cause the failure of the task, a mechanism

to control such deviations is recommended, e.g. using feeders, fixtures, etc. or sensing

and potentially correcting the deviations. The second alternative was chosen in this

study.

If a sensing mechanism is selected to detect configuration differences, its uncertainty will

be determined by the sensing strategy. The robot action uncertainty should be added

to the sensing uncertainty before computing the actual success probability of the task.

Object Representation Uncertainty

Inclusive if the assembly plan were developed using real objects, the implicit variability

in the fabrication process of the assembly parts could include discrepancies between the

geometric features of the reference object for planning and the actual assembled parts.

There are several approaches for dealing with uncertainty in the geometry of objects in

the assembly context [24][50][12].

Such variability in the shape dimensions of the assembly elements affects the uncertainty

of the tasks. It can be considered as a deviation from the expected configurations for
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the task, but in this case, such deviation can not be corrected.

The model uncertainty directly affects the success opportunity for the task. This op-

portunity is originally determined by the geometric tolerances of the task, which are

computed from the geometry of the objects. Thus, a change in the geometry of the

objects immediately is reflected in the success of the task. The impossibility to correct

the model error of the assembled parts will in some cases make impossible to perform

the task, e.g. a reduced dimension of a hole in a peg-in-hole assembly task. In such a

case, failure is guaranteed and it is recommended to be detected to avoid useless cor-

rection actions. In other cases, it can improve the probabilities of success by increasing

the tolerances of the task, e.g. a bigger hole for an insertion task.

Failure in assembly plan execution can be determined in different ways. A common

way is trying to perform the task a limited number of times and after failing to succeed,

failure is declared and the task is aborted. If the success is quantified and represented as

a region, failure can be determined using sensory information when the sensed deviation

minus the expected uncertainty of the sensing strategy still exceeds the full tolerance

for the task in a critical parameter.

Sensory Uncertainty

Sensory uncertainty comes from the sensors used and the strategy for using the obtained

information to determine the descriptors of the observed elements that describe the state

of the task. The sensor have a limited and approximated capacity to get specific world

features. It is limited because it is affected by factors as the illumination, that reduce

its detection capability, and approximated because it is affected by several factors (e.g.

calibration, noise, etc.) that modify the precision of the feature descriptors that finally

produce.

After the sensor features have been obtained, they are further converted into object

features. This adds uncertainty to the final result of the sensory feedback operation by

propagating the sensor uncertainty to the process of object feature description. The

specific way to propagate the initial sensor uncertainty and the strategy to model and

minimize its effect will depend on the technique used to compute the object descriptors.

The usefulness of the sensory information will depend on its accuracy. If the degree of

uncertainty in the estimated parameters is less than the detected deviation from the

plan, then it can be used to perform a recovery action and improve the opportunities of

succeeding in the assembly task execution.
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4.2 Evaluation of Visual Sensing Strategies

In the present work, vision is used to localize rigid objects in an assembly scene. The

observed pose information is used to verify the fulfillment of some alignment constraints

determined as critical in the successful execution of an assembly operation. To realize

this verification it is necessary to know the poses of several objects. Therefore, a vi-

sual sensing strategy for this purpose has to determine a sequence of the best sensor

configurations to perform the object localizations.

Figure 4.2: Precision of object localization tool for position estimation of a peg object.

In general the uncertainty in the results produced by a vision system depend upon

several factors that make them better for observing some DOF than others. For example,

Figure 4.2 depicts a graph that illustrates the precision of the object localization tool

used in this dissertation when determining the position of a peg object and the camera

is moved around the object, as illustrated in Figure 4.3. The graph clearly shows that

the precision is different for each coordinate axis and that it changes when the viewpoint

is modified.

One immediate application of the results of the preventive sensing analysis of Chap-

ter 2 and 3 is in determining which DOF are critical for an assembly step and has to be

observed in order to reduce its uncertainty. This information is used for deciding which

viewpoint is the most convenient for localizing an object.
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Figure 4.3: Distribution of viewpoints.

4.2.1 Evaluating Viewpoints

If the pose estimation of objects is accurate enough, adjustment actions can be proposed

that will make the task succeed; if not, at least the error can be reduced making easier

the job for corrective actions.

Since the goal of using vision is to succeed in the execution of an assembly task, the

criteria to decide the best viewpoint to use for observing and localizing an object must

tell something about its effect on the success of the task. Such success depends on

the tolerance to errors in the execution of the assembly steps and the accuracy on the

measures obtained from the visual localization tool.

Mating parts and assembly operations are usually devised including certain amount of

clearance to support some margin of error during assembly. This tolerance to error is

a dimensional phenomena, making the task better to support the error with respect

to some dimensions than others. As mentioned above, errors in a task are commonly

characterized by differences in the configuration and shape of the assembly elements,

differences in the configuration of the environment, differences in the grasping configura-

tions of the manipulated objects, and deviations from the planned trajectories of motion

for the robot. All of them can finally be reduced to differences on expected poses of the

assembly elements at determined periods of time. If the amount of error tolerated by a

task is geometrically modeled for each of the pose parameters of such elements, a region

of tolerated error can be obtained for every of these objects in each assembly operation.

If the pose of every assembly element is kept inside of its region of tolerated error, the
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assembly operation is expected to succeed.

Vision localization tools usually work on noisy, incomplete, and uncertain information,

and obtain a pose estimation of an observed object that is just an approximation to

the true pose. The error in the estimated pose of the observed object is another di-

mensional phenomena. It affects differently to different dimensions. Since the goal of

object localization is to determine the pose of an object, then the approximation will be

reflected by different amounts of error with respect to each pose parameter. Moreover,

the magnitude of the error in each pose parameter will change even when the localiza-

tion tool is used to localize the same object in images obtained with the sensor from

the same viewpoint. The error do not depends only on the viewpoint. If the object

localization’s error with respect to each pose parameter is geometrically modeled, a re-

gion of uncertainty for the localization tool can be obtained for the sensor in each of

the considered viewpoints. If a deviation from a planned pose is bigger than the error

in the pose estimation of the sensor, a correction could be applied to effectively reduce

it. If not, at least can be used to eliminate the error addition effect.

If the sensing uncertainty of the sensor and the error tolerance of the task are repre-

sented and quantified in the same parametric space, e.g. configuration space, a success

probability for an assembly operation can be predicted for each possible sensor config-

uration. These probabilities can then be used to define an order of preference on the

viewpoints considered in a vision operation for an assembly task.

4.2.2 Quantifying success

The underlying idea of configuration space in Robot Motion Planning is to represent

the robot as a point in an appropriate space – the robot’s configuration space – and

to map the obstacles in this space [58]. The mapping transforms the Robot Motion

Planning in a problem of finding a line in free-space – space not occupied by an obstacle

– that joins an initial point (associated with an initial robot pose) with a final point

(associated with a target robot pose).

In this dissertation, the underlying idea for getting a measure of success, when per-

forming visual verification of alignment constraints, is to represent a target object for

localization as a point in a space of critical dimensions – a critical configuration space –

and to map the tolerance to error of the task and the uncertainty of the sensor in this

space. This mapping transforms the problem of computing a measure of success into

the problem of computing the portion of a sensing uncertainty region that falls inside

of an error tolerance region for the task (see Figure 4.4).

If the problem of computing a measure of success of a visual sensing strategy is simplified

to the determination of a viewpoint to localize a target object in an accurately known
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Figure 4.4: Predicted Success Probability.

environment, its computation can be formulated as follows:

Participant Objects. LetM be a target rigid object for localization – the manipulated

object – in an Euclidean spaceW , called the world, represented as RN , with N = 2

or 3. Let E1, . . . , Em be m fixed rigid objects distributed inW – the environmental

objects. Assume that the locations of every Ei are accurately known. In addition,

let FM, FE1 , . . . ,FEm , and FW be Cartesian frames embedded in M, E1, . . . , Em,

and W , respectively. Since the M and the Ei’s, for all i ∈ [1,m], are rigid by

definition, every point in them has a fixed position with respect to their embedded

Cartesian frames. But the position of an object’s point in W depends on the

position and orientation of its embedded frame relative to FW .

Configuration Space. Since a specification of the position of every point in an ar-

bitrary object A relative to a fixed reference frame is known as a configuration

of A , a specification of the position τ and orientation Θ of FA with respect to

FW is a configuration q of A. The configuration space of A is the space CA of all

the configurations of A. A point a on A at configuration q is denoted by A(q)

in W . A configuration q of A in RN can be described as a list of d independent

parameters, with d = 3 (if N = 2) and d = 6 (if N = 3), which corresponds to

representing CA as Rd.

Critical Configuration Space. In Chapter 3 was concluded that it is convenient to

introduce a Cartesian frame Ft, aligned in accordance with the task at hand, to
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determine the critical dimensions for a task that requires of using vision. The

critical dimensions are identified as a subset of the d independent parameters as-

sociated with Ft. In a similar fashion to that used to describe the configuration

space of A, a critical configuration qC of A is a specification of the position and

orientation of FA with respect to Ft. This specification only includes the parame-

ters associated with the critical dimensions of the task. The critical configuration

space of A is the space CC
A of all the critical configurations of A.

Task Tolerance Region. The tolerance of a task t to errors in a planned pose of an

object A is mapped to CC
A as a region TA(t) that includes the critical configurations

of A that guarantee the success of the task execution.

Sensor Uncertainty Region. The variability in the values of the pose parameters of

an object A, obtained by using the localization tool on images captured with the

optical sensor in a particular viewpoint v is mapped to CC
A as a region UA(v) that

includes the critical configurations in which A is observed from v, when it really

is at the origin of CC
A .

Predicted Success Probability. A predicted success probability Psp for task t, after

the pose of the manipulated object M is adjusted, when M was localized with

the sensor in the viewpoint v, is computed as

PspM(t,v) =
‖TM(t) ∩ adjust(UM(v))‖

‖UM(v)‖
(4.1)

∩ is a region intersection operator and ‖ . . . ‖ is an operator that quantifies the

size of the subspace occupied by a region (length in one dimension, area in two

dimensions, volume in three dimensions, and so forth). adjust(. . .) is a function

that maps a region of critical configurations into another resulting from correcting

the pose of an object A assumed to be localized in each critical configuration qC
of its UA.

As described in Chapter 3, visual verification of assembly conditions is recommended

for three cases:

1. To determine a possible preventive adjustment in the pose of the manipulated

object for an insertion operation.

2. To determine a possible preventive adjustment in the pose of a manipulated ob-

ject that participates, directly or indirectly, in the success of a future insertion

operation, as part of the environment.
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3. To determine a possible preventive adjustment in the pose of a manipulated object

that participates, directly or indirectly, in the success of a future make-contact

operation, as part of the environment.

Usually, an assembly operation that requires of visual verification will include inquiries

about the poses of several objects: the manipulated object and some environmental

objects. In the present work, a visual sensing strategy for an assembly operation is

composed by a set of viewpoints to use for localizing each object participating in a

visual verification task. In this way, the selection of a particular visual sensing strategy

will define the objects to observe and the viewpoints to utilize for their localization.

4.3 Modeling and Quantifying Task Tolerance To

Errors

In order to compute Psp values for the viewpoints on a viewing sphere of an object that

has to be localized before the execution of an assembly step, a tolerated error in its pose

estimation has to be represented and quantified.

As described above, a task tolerance region T is a representation of the allowed pose

error of an assembly element during the execution of a robotic manipulation. This region

is described with respect to some critical dimensions determined during the sensing

analysis stage. A T can be calculated from the CAD models of the objects participating

in a dependency relation among objects that was identified as requiring the use of visual

verification.

Uncertainty and errors during the execution of an assembly operation will produce a

difference between the actual pose and the planned pose of an object. Such difference

from the planned pose could be tolerated by the assembly operation or not. A tolerated

object-pose error is a distance in which an object can be displaced in a particular direc-

tion and the angle that it can be rotated with respect to a particular axis of rotation

without causing the failure of an assembly operation. The object-pose error is traduced

as local displacements in the topological features of the object. Success is guaranteed if

the displacement of the features caused by uncertainty falls inside its tolerance region.

A T describes a subspace of configurations for a manipulated object. An estimation of its

shape can be obtained from the geometric tolerances of the task. This T can be described

as a system of inequalities that describe its sub-space of tolerated configurations.

The inequalities are parametric descriptions of allowed object motions. Every combina-

tion of features participating in a contact or insertion relation define a possible redundant

constraint inequality. For example, figure 4.4 depicts the shape of this region for the case
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of inserting a peg with square cross-section into a square hole; if the critical dimensions

are reduced to one for rotation, which is aligned with the insertion direction, and two for

translation, which are orthogonal to the insertion direction. Two of the three rotational

degrees of freedom are ignored even when they would be critical in the general case. The

depicted region is described by eight non-redundant inequalities, two for each vertex of

the cross section of the peg [64].

An assembly state is described by a set of relations among topological features of the

mating elements. Since the type of relations considered in this thesis are surface-to-

surface relations, a tolerance represents a distance between a constrained surface and

a constraining surface. If this distance is exceeded, features of the manipulated object

will seem to penetrate into features of the environment.

4.3.1 Quantifying Error Tolerance in Critical Dimensions

In the description of the sensing analysis method of chapters 2 and 3 was mentioned

that information in the ICdg will be used to construct a criteria for planning the sensor

configuration, but it was not explained how. This section complements that affirmation

and describe some additional information associated with the dependency arcs of an

ICdg.

Each arc in an ICdg define critical alignment dependencies between two objects. This

dependencies represented by reference vectors would finally represent the critical dimen-

sions of the manipulation task for the dependent objects. When this dependencies are

deduced, some additional information is also collected for helping in the sensor planning

process. This information is used to compute the region of tolerance to error for the

task. The following two additional information items are associated with each ICdg arc:

• Lists of points, further referred as inequality points, that are used to get constraint

inequalities that describe the region, and

• Constraining planes which limit the displacement of the inequality points as result

of errors in the configuration of the dependent object.

The tail of an ICdg arc identify the constrained object of an alignment constraint,

while its head identify the constraining object. Then, if for any reason the constraining

object’s configuration changes, the constrained object’s configuration should be adjusted

accordingly. For this reason, the inequality points are located on (real or virtual) surfaces

of the constrained object, while the constraining planes are planes associated with (real

or virtual) faces of the constraining object.
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Constraining planes and planes where inequality points reside are parallel to each other.

The distance between these constraining and constrained planes describe allowed trans-

lational errors with respect to a reference vector. These translational errors are also

propagated during the propagation of alignment constraints.

There is difference between the way the above information elements are obtained for

insertion tasks and the way used for environmental constraining. Insertion tasks usu-

ally include some predefined level of tolerance, described as the distance between the

constrained faces of the manipulated object and the constraining faces of the environ-

ment. On the contrary, environmental objects are expected to accurately conform the

contacting and insertion scenes. However, if error is not tolerated in the pose of envi-

ronmental objects, then there is not possibility of success (Psp = 0), and decisions for

sensor configurations have to rely only on knowledge about the sensing uncertainty of

the sensor in the different viewpoints.

For those cases, the following two alternatives were considered to evaluate the view-

points:

1. Use only a criteria based on the size of the uncertainty region, and

2. Introduce an artificial distance describing the translational error for environmental

objects.

The benefit of the first alternative is that it does not include an artificially designated

quantity to compute the task tolerance region. However, this alternative has two im-

portant drawbacks: First, that it ignores the relevance of the specific geometry of the

task; and second, that a mechanism has to be developed for the fusion, in some cases,

of the two non-homogeneous measures obtained for a same viewpoint.

The first problem is very significant in the case of rotation errors, because the distance

traveled by a point in a rigid object, when this object is rotated, is proportional to the

straight distance from its rotation reference. Which means that rotation makes different

points on the object translate different distances, as depicted in the example presented

in Figure 4.5. Then the effect of the same rotational errors when assembling objects

with different geometry in the same environment configuration, or when assembling the

same objects in environments with different geometries would vary.

The second problem becomes relevant when the object to be observed is the manipulated

object of a task that require of using insert assembly skill primitives and this manipulated

object will participate in subsequent tasks as part of the environment. Again, the

problem rises because the specific geometry of the task is ignored, and then, it is difficult

to find a relation between the size of uncertainty region of the sensor, which is the

only element considered when the object conform the environment of other task, and a

predicted success probability for its insertion when is manipulated by a robot.
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Y
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θ

Figure 4.5: Effect of rotation errors in constraining relations.

The drawback of the second alternative is what was mentioned as the benefit of the first

alternative: adding an artificial tolerance to error. However, this addition solve both

drawbacks of the first alternative allowing to compute a tolerance region and use the

same criteria for manipulated and environmental objects. Because the benefit of this

alternative was considered to exceed its drawback, this was the chosen one. Since the

purpose of this method is to determine the best viewpoints, it was considered as more

important getting an homogeneous comparison base.

The obtainment of the set of inequalities that define the error tolerance region of a

task is based in the displacement produced in the inequality points as a consequence of

uncertainty in the pose of a manipulated object. These particular points are vertices

that describe polygonal faces on restricted surfaces, of the manipulated object, due to

an assembly task. The new equations of constraint for an object are generated by the

two following steps:

1. Determine the inequality points and the constraining planes.

2. Obtain inequalities based on tolerated motion of inequality points.

4.3.2 Deducing Inequality Points and Constraining Planes for
Insertion

In the case of an insertion operation, the task includes some pre-conceived clearance

as a separation between constrained and constraining surfaces. The task tolerance

region (T ) for the insertion of polyhedral objects into polyhedral slots is obtained as a

function of the distance between vertices and surfaces of the participant objects in the
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operation. This distance represents the planned clearance for a task and determines the

translational errors associated with each reference vector.

The deduction of the inequality points for insertion is realized in the following two

sub-steps:

Sub-step 1: Determining insertion planes

An insertion plane for insertion is used to formulate the criterion to select the inequality

points. An insertion operation is considered successful if the set of inequality points

cross the insertion planes determined for the task. An insertion plane is oriented in the

direction of insertion, s.t. its normal vector, described with respect to the coordinate

frame of the manipulated object, is obtained as

nins = TMd (4.2)

where d is a unitary vector in world coordinates that describe the direction of insertion,

and TM is an homogeneous transformation matrix to convert from world coordinates to

the manipulated object coordinates.

Insertion
Plane

Closest
Features

Figure 4.6: Insertion plane in an insertion operation.

To complete a formal description of an insertion plane as

nins · x = oins (4.3)

the orthogonal distance oins to the plane from the origin of the manipulated object’s
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frame need to be computed. This computation is based on the resulting configuration of

the scene after the insertion task. Since, commonly, only a portion of the manipulated

object is inserted in an assembly step, an insertion plane is placed in a position that

delimits this portion in the insertion direction, as shown in the example of Figure 4.6.

The movement constraint defined by the insertion is a result of new relations between

pairs of surfaces where a portion of an environmental surface almost contacts a portion of

a surface of the manipulated object. These portions are computed as polygonal regions

of intersection, and are described by list of points, for each new surface pair. Figure 4.7

depicts an example of this. The shadowed region in the figure, defined by the list of

points p1, p2, p3, p4, describe the region of intersection of top face of Object A, labeled

as SA, with the bottom face of Object B, labeled as SB. In the case of insertion tasks,

the constraining face pairs are deduced by using a threshold that define the maximum

distance between faces that make the task critical.

p1

p3
p4

p2

A

B
SA

SB

Figure 4.7: Intersection region computation for contacting planar surfaces.

An insertion plane has to be placed over the first vertex vf of a set of vertices of

an intersections’ list, when these vertices are ordered in agreement with the insertion

direction, i.e. vf = vi if nins · vi ≤ nins · vj for all vj 6= vi. Having determined this

special vertex, the searched orthogonal distance to the plane is computed as

oins = nins · vf . (4.4)

An insertion plane has to be obtained for each pair of constraining surfaces because

the distance between different pairs of surfaces can vary, and also the distance of the

inequality points from the origin of the manipulated object’s coordinate frame.

Sub-Step 2: Determining inequality points and constraining planes

Sets of inequality points should be deduced for each insertion plane. The inequality

points are those vertices of new restricted surfaces in the manipulated object that have
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been effectively inserted in an environmental configuration. Though, in general is dif-

ficult to determine these points exactly, in agreement with the decided form of getting

the inequalities, it was decided to denote as inequality points to all vertices on the con-

strained face of the manipulated object and all points in the intersection, which were

over the insertion plane before the insertion task and below the insertion plane after the

insertion. This means that every point in this group with coordinates vM before the

insertion task and coordinates v′M after the insertion will be considered an inequality

point if

(vM · nins ≤ oins) ∧ (v′M · nins ≥ oins). (4.5)

The alignment dependency of a manipulated object on environmental objects would not

be complete if there are not alignment references fixed on those environmental objects.

These alignment references are the constraining planes. A constraining plane must be

defined for each set of inequality points. Since there is a set of inequality points for each

pair of constraining and constrained faces, the constraining plane is described by the

face of the environmental object participating in the pair.

p1

p3

p4

p2

A B

p1

p3

p4

p2

M

X

Y

Z

X

Y
Z

Constraining Planes

X

Y

Z

p1

p3

p4

p2

Figure 4.8: Inequality points and constraining planes for an insertion task.

Figure 4.8 illustrate the result of an insertion operation showing the inequality points

as lists of four points on the dark shadowed part over the manipulated object M and

the constraining planes over the surfaces of environmental objects A and B.
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4.3.3 Deducing Inequality Points and Constraining Planes for
Environmental Objects

The inequality points for environmental objects are found in the constraining surfaces

of the environmental objects that conform the direct environment configuration for an

assembly task that cause a propagation of alignment constraints. The inequality points

associated with each of these objects are those that conform the list of vertices that

define the intersection region of constraining face pairs.

The same inequality points are used for the environmental objects that participate in an

indirect way. The rationale for this is that if an indirect alignment constraint is violated

this will eventually affect the position and/or orientation of environmental objects that

directly conforms the environment of the task that provoked the propagation process

that added such indirect alignment constraint.

Since the inequality points of an environmental object that indirectly affects the envi-

ronment configuration of a task are points over a surface of other objects, they have to

be transformed to its own coordinate reference. This works like a virtual extension of

its geometry by adding new faces implicitly described by the inequality points. Then

this object can be treated as if it were directly participating in the critical constraining

relation.

A
B

M

C

M

X

Y

A
B

X

Y

p1

p4

p3

p2

d

Figure 4.9: Indirect effect of violating a propagated alignment constraint.

Figure 4.9 presents an example of this situation, where an error in the configuration

of Object A directly affects the configuration of Object B, which, in turn, affects the

insert configuration that forms with Object C. Object B is the environmental object

that directly participate in the insert configuration. This situation will eventually make

that an insertion operation of manipulated object M can not be performed.

Two constraining planes for each constrained environmental surface, implicitly described
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by inequality points, are situated to a constant distance defined as a global parameter

for the assembly plan. One constraining plane to each side of the constrained plane.

Both planes are fixed, as in the case of insertion, to the environment objects on which

the analyzed object depends. This also works, like in the case of the inequality points,

virtually extending the geometry of those objects.

The fixing of constraining planes to objects on which other objects depend is not strictly

necessary for computing the region of tolerance to error. That step is needed for having

references to compute the correction of the configuration of the object in function of the

configuration of the other objects during the actual execution of the assembly plan.

4.3.4 Obtaining Task Tolerance Inequalities

Each inequality point will be associated with one constraining plane located in an en-

vironmental object. From each association one possible redundant inequality will be

obtained. A constraining plane divides the assembly space into two subspaces, a con-

strained subspace and an unconstrained subspace. A constraining plane restricts the

magnitude and form of motion of an inequality point by keeping it in the unconstrained

subspace. The deduction of the following inequalities assumes that the configuration of

a constraining plane is known exactly.

Getting a Task Tolerance Inequality

X
Y

Z

X
Y

Z

X’ Y’

Z’

vM

v’M

n’E

nE

vE dEdM
-

Figure 4.10: Elements of Task Tolerance Inequalities.

As depicted in Figure 4.10, the inequality point vM delimits its margin of motion error by

its orthogonal distance to the environmental surface SE. Before the assembly operation,

the uncertainty effect might displace the inequality point to a position v′M , which could

be obtained from its planned position as
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v′M = ∆TMvM (4.6)

where the homogeneous transformation matrix ∆TM is described by

∆TM =

[
∆R ∆t

0 0 0 1

]
. (4.7)

Its elements are detailed in Appendix A. This matrix quantifies the allowed rotational

error, codified as matrix ∆R, and the allowed translational error, described by vector ∆t,

in the manipulated object pose.

Each inequality has the form

dM − dE ≤ 0 (4.8)

which represents the difference between distance dM , representing the signed distance

from the origin of the manipulated object’s frame to the projection of the displaced

vertex vb′M over an axis defined by the normal vector n′E to the environmental plane SE,

and distance dE, representing the orthogonal distance from the origin of the manipulated

object’s frame to the environmental plane.

Distance dM is computed as

dM = v′M · n′E (4.9)

for which it is needed to apply a change of coordinate frame reference to normal vector

nE using

n′E = TMT−1
E nE (4.10)

where the homogeneous transformation matrices TM y TE describe the manipulated

object pose and the environmental object pose, respectively.

Distance dE is computed as

dE = v′E · n′E (4.11)

where v′E is any vertex on the environmental plane, usually a vertex, subject to a change

of coordinates similar to the normal vector case, i.e. its new coordinates are computed

by
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v′E = TMT−1
E vE. (4.12)

Considering Critical Dimensions of a Task in 2D-Assembly

In general, the form exposed in the preceding section for computing a constraining

inequality is correct; however, it does not consider the critical dimensions of the task.

The critical dimensions of an assembly operation are important when obtaining its task

tolerance inequalities because they describe the most sensitive DOF of the step and

those that should be corrected.

Object M

Object BObject A

C

BA

Y, θ

Y, θ

Y, θ

ICdg

p1

Object A Object B

p1

X

Y

θ

p2

te

Figure 4.11: A multiple contact configuration where the dependent object is completely
unconstrained.

To illustrate this, the process for obtaining constraint inequalities in 2D-assembly is

analyzed. The constraining relation caused by a make-contact operation in which a

manipulated object enters in contact with multiple environmental objects is used as the

illustration instrument. Every critical relation between a constrained plane described

by inequality points and a constraining plane describing the tolerance to error can be

processed in the same way.

Figure 4.11 presents an example of this. In this figure, there are three objects, the

manipulated object M, and the environmental objects A and B. All objects share the

same coordinate frame of reference, Fw, and the contacting surfaces are aligned with

Y axis. The assembly order adds Object A before than Object B, then when Object M

is moved to contact, a joining constraint dependency is generated for Object B with

respect to Object A. The critical dimensions, the Y DOF for translation and the origin

of the reference frame for rotation, are presented in the ICdg also in Figure 4.11. Since

in this case, the dependency is between environmental objects, an artificial constraining

plane is defined to a te distance from the plane described by the inequality points, p1

and p2.
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In this case, the constraint inequality for a inequality point p is computed as

(p′ − p)y ≤ te (4.13)

where p′ is inequality point p perturbed by uncertainty. The subscript y refers to the

Y coordinate of the difference, since the contact is oriented in the Y direction. Since p′

coordinates are computed by

p′ = ∆Tp = ∆Rp + ∆t =

[
x′

y′

]
=

[
x cos(dθ)− y sin(dθ) + dx
x sin(dθ) + y cos(dθ) + dy

]
(4.14)

where x, y, and z are the position coordinates of p; dθ is the rotation error angle

caused by uncertainty; and dx and dy are the translation error displacements caused by

uncertainty. The constraint inequality is obtain as

(∆Tp− p)y =
[

0 1 0
]
(∆Tp− p) ≤ te (4.15)

Then, the constraint inequality generated from p for this case is:

x sin(dθ) + y cos(dθ) + dy − y ≤ te. (4.16)

The error that should be corrected is described by y′ − y in translation and θ′ − θ in

rotation.

Figure 4.12 depicts two examples of task tolerance regions for an environmental object B

in a make-contact operation as that illustrated in Figure 4.11. Two constraining planes

are symmetrically located to both sides of the constrained plane described by two in-

equality points. Each plane is located at a distance te of 1. Then, each region is described

by four constraint inequalities. The regions have a curved rhombus shape. The smaller

region (darker rhombus region) is described by inequality points in positions (5, 5) and

(−5, 5) which produce the following inequality constraints

CstrIneq 1 = 5 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ 1
CstrIneq 2 = −5 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ 1
CstrIneq 3 = 5 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ −1
CstrIneq 4 = −5 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ −1.

(4.17)

The bigger region is described by inequality points in positions (2, 5) and (−2, 5) which

produce the following inequality constraints
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dq: rotation error

CstrIneq 2

CstrIneq 6

CstrIneq 5

CstrIneq 1

CstrIneq 4

CstrIneq 8

CstrIneq 7

CstrIneq 3

dy:
translation

 error

Figure 4.12: Examples of Task Tolerance Regions for two initially unconstrained envi-
ronmental objects in a make-contact operation.

CstrIneq 5 = 2 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ 1
CstrIneq 6 = −2 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ 1
CstrIneq 7 = 2 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ −1
CstrIneq 8 = −2 sin(dθ) + 5 cos(dθ) + dy − 5 ≤ −1.

(4.18)

As noted, the only difference in the two situations is the X position of the inequality

points. This demonstrate the relevance of the position of inequality points and illus-

trates the redundancy of some constraint inequalities; if the four inequality points were

used to construct a single task tolerance regions, inequalities CstrIneq 5, CstrIneq 6,

CstrIneq 7, and CstrIneq 8 become redundant.

A slight complication could appears when each object have its own coordinate frame,

and there is a coordinate frame for the assembly, as it effectively is in this work. The

pose of each object is described by a homogeneous transformation with respect to the

assembly frame.

In this case, to get the tolerance error te the constraining plane have to be described

with respect to coordinate frame of object B by applying a change of reference with

transformation matrix

TAB = TBT−1
A (4.19)
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where TB is the transformation matrix that describe the pose of Object B and T−1
A is

the inverse of the transformation matrix that describe the pose of Object A.

If, additionally, the constrained and constraining planes are not orthogonal to any of the

coordinate axis of Object B, the alignment should be forced in order to get the constraint

inequality. In this case the convention is to align the planes with respect to the Y axis.

This alignment is done after computing the uncertainty-perturbed coordinates of the

inequality points. The new constraint inequality equation is

(p′aligned−paligned)y = (Ralign(ψ)[p′−p])y = (Ralign(ψ)[∆T(dθ, dt)p−p])y ≤ te (4.20)

where Ralign is a rotational matrix that align the unit normal vector nc of the constrained

plane with the Y axis of the perturbed object by rotating it an angle

ψ = cos−1(j · nc) (4.21)

where j is unit vector in the direction of Y axis.

Developing Inequality 4.20, the resulting constraint inequality is

sin(ψ)(x cos(dθ)− y sin(dθ) + dx− x)+
cos(ψ)(x sin(dθ) + y cos(dθ) + dy − y) ≤ te

(4.22)

It can be seen that Inequality 4.22 is consistent with Inequality 4.16 for ψ = 0.

In the cases covered above, Object B is not in contact with any other environmental

object, and that is why the critical dimensions are the translation with respect to Y

axis and the orientation. Since a simple contact in 2D-assembly fix the orientation of

an object, if Object B is in contact with another object, as illustrated in Figure 4.13,

its critical dimensions for vision will decrease.

In Figure 4.13, the contact between Object B and the third environmental object,

Object C is parallel to the constrained and constraining planes. This, as explained by

the third case of the method for the propagation of alignment constraints of Chapter 3,

means that both critical dimensions for Object B are fixed by its contact relation with

Object C. This is the reason for the absence of a direct arc between nodes A and B

in the ICdg illustration. This absence means that if Object C is exactly aligned with

Object A, there is not possibility of error in the Y position and orientation of Object B.

The above conclusion can be realized from an analysis of the effect of errors in the

potential critical dimensions of a task. Also from Chapter 3 description, it should

be understood that a critical dimension for vision is associated with a DOF that was
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Figure 4.13: A multiple contact configuration where the dependent object critical con-
figuration is completely fixed by a third environmental object.

completely unconstrained before a task and gets completely constrained after the task.

Then, a relatively small error with respect to this DOF could violate a condition for

successfully achieving a required contact configuration. Then, the potential critical

dimensions of a task are all the unconstrained DOF.

In the example illustrated in Figure 4.13, Object B can only move, without breaking

the contact with Object C, with respect to the X axis. Then X DOF would be the

only potential critical dimension for vision. Since a motion in a X direction would not

perturb the position of the inequality points in the Y direction, their constraint could

not be violated. Then the X DOF is not a critical dimension for this task.
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Figure 4.14: A multiple contact configuration where the dependent object is in a contact
relation which is orthogonal to the constraining plane.

Figure 4.14 presents another example where the configuration of environmental object B,

an object that directly participate in a multiple contact configuration, is restricted by

the third environmental object C. But in this case, the contact is aligned with the X

axis of the coordinate frame of Object B. Here, the only potential critical dimension is

the Y DOF. Since a motion in such direction could violate the constraint, Y is a critical
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dimension, and its constraint inequality is

dy ≤ te (4.23)

As can be noted, Inequality 4.23 does not include variables related with coordinates of

the inequality points. In such cases, only one constraint inequality is required, since the

rest of the inequality points will produce redundant inequalities.
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Figure 4.15: A multiple contact configuration where the dependent object is in a contact
relation which is inclined to the constraining plane.

Figure 4.15 presents another example of constrained configuration for environmental

object B, but in this case the contact with Object C is not parallel nor orthogonal to

the constrained and constraining planes. Then, the only potential critical dimension is

aligned with the X ′ axis of a new coordinate frame, further referred as a contact frame

because is aligned with the contact between objects B and C. X ′ DOF is a critical DOF

because is oblique to the constraining plane and an error in its value could violate the

recognized constraint.

To get the constraint inequality for this case, an error with respect to X ′ DOF has to

be converted to an error with respect to Y DOF. This is done as

∆T = R−1
correct∆T′Rcorrect (4.24)

where Rcorrect is a transformation matrix that describe the rotation required to align

the coordinate frame of Object B with the contact frame, and ∆T′ is a transformation

matrix describing the effect of translation with respect to X ′ axis. Then
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∆T =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1


 1 0 dx′

0 1 0
0 0 1


 cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0
0 0 1


=

 1 0 dx′ cos(φ)
0 1 −dx′ sin(φ)
0 0 1


(4.25)

where φ is the angle that the constrained and constraining planes should be rotated to

be aligned with the Y axis of the contact frame, and dx′ is a potential error with respect

to X ′ DOF.

The resulting constraint inequality for oblique constraining contacts with respect to the

constraining planes is

−dx′ sin(φ) ≤ te (4.26)

Again, the constraining relation of Object B with respect to Object C only allows

translation of inequality points, and then, only one constraint inequality is required

because all points produce the same inequality.

Inequality 4.26 can also be used to describe the parallel case (φ = 0 in Figure 4.13) and

the orthogonal case (φ = −π/2 in Figure 4.14).

Finally, if neither the constrained and constraining planes nor the contact between

an analyzed object and another environmental object are aligned with Y axis of the

coordinate frame of the analyzed object, the constraint inequality is obtained as

dx′ cos(φ) sin(ψ)− dx′ sin(φ) cos(ψ) ≤ te (4.27)

where as mentioned before ψ is the angle that align the constrained and constraining

planes with the Y axis.

Considering Critical Dimensions of a Task in 3D-Assembly

The analysis for the assembly in 3D-space is similar to the analysis presented above for

the 2D case. The main difference is due to the complexity added by the rotation with

respect to sets of orthogonal rotation axes. The general form of a 3D rigid transformation

matrix is presented in Appendix A.

For getting the constraint inequalities in 3D-assembly, the convention is to align the

constrained and constraining planes with the Z axis of the analyzed object. The general

form of a 3D constraint inequality is
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(p′ − p)z = (∆Tp− p)z =
[

0 0 1
]
(∆Rp + ∆t− p) ≤ te (4.28)
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Figure 4.16: A multiple contact configuration where the dependent object is completely
unconstrained.

For an object that does not participate in contacts with other environmental objects,

as Object B in Figure 4.16, all the DOF are potentially critical; however, only three are

really critical: translation with respect to Z axis and rotation with respect to X and

Y axes. The constraint inequality for this case is

−x sin(dβ) + y cos(dβ) sin(dα) + z cos(dβ) cos(dα) + dz − z ≤ te (4.29)

where dα is the error angle with respect to X rotation axis; dβ is the error angle with

respect to Y rotation axis; dz is the translation error displacement in the Z direction;

and x, y, and z are the position coordinates of an inequality point.

Figure 4.17 depicts examples of task tolerance regions for an environmental object B in

a make-contact operation as that illustrated in Figure 4.11. Two constraining planes are

symmetrically located to both sides of the constrained plane described by four inequality

points. The inequality points are located in positions (5, 5, 5), (−5, 5, 5), (5,−5, 5),

and (−5,−5, 5). Each plane is situated at a distance te of 2. Then, Task Tolerance

Region is described by the following eight constraint inequalities
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Figure 4.17: Examples of constraint inequalities for an initially unconstrained environ-
mental object in a make-contact operation.

CstrIneq 1 = −5 sin(dβ) + 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ 2
CstrIneq 2 = 5 sin(dβ) + 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ 2
CstrIneq 3 = −5 sin(dβ) + 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ −2
CstrIneq 4 = 5 sin(dβ) + 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ −2
CstrIneq 5 = −5 sin(dβ)− 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ 2
CstrIneq 6 = 5 sin(dβ)− 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ 2
CstrIneq 7 = −5 sin(dβ)− 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ −2
CstrIneq 8 = 5 sin(dβ)− 5 cos(dβ) sin(dα) + 5 cos(dβ) cos(dα) + dz − 5 ≤ −2

(4.30)

To reduce the complexity of the image, only the first four constraint inequalities are

shown in Figure 4.17. The resulting region is a curved polyhedron with eight curved

triangular faces. The illustrated four constraints inequalities describe a kind of tube

with a cross section similar to that of the task tolerance region for the 2D-case. The

other four constraints describe a similar tube that intersects the first one to get the task

tolerance region for this case.

As in 2D-assembly if the constrained and constraining planes are not orthogonal to the
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Z coordinate axis of the analyzed object, Object B in the examples, the alignment

should be forced in order to get the constraint inequality. This alignment is done after

computing the uncertainty-perturbed coordinates of the inequality points. The new

constraint inequality equation is obtain by

(p′aligned − paligned)z = (Ralign(ψx, ψy, 0)[∆Tp′ − p])z

= (Ralign(ψx, ψy, 0)[∆R(dα, dβ, dγ)p + ∆t− p])z ≤ te
(4.31)

where Ralign is a rotation matrix that aligns the normal vector nc of the constrained

plane with the Z axis of the perturbed object. Ralign is obtained as product of two

rotation matrices. First, a rotation matrix that rotates nc, with respect to the X axis,

to align it with the XZ plane. The rotation angle is

ψx = tan−1

(
ync

znc

)
(4.32)

where ync and znc are Y and Z coordinates of nc. Then, a rotation matrix to finish the

alignment with the Z axis by using the rotation angle

ψy =
π

2
− cos−1(xnc) (4.33)

where xnc is the X coordinate of nc.

Developing Inequality 4.31, the resulting constraint inequality is

− sin(ψy)(x cos(dγ) cos(dβ) + y(− sin(dγ) cos(dα) + y cos(dγ) sin(dβ) sin(dα))
+z(sin(dγ) sin(dα) + cos(dγ) sin(dβ) cos(dα)) + dx− x)+

cos(ψy) sin(ψx)(x sin(dγ) cos(dβ) + y(cos(dγ) cos(dα) + sin(dγ) sin(dβ) sin(dα))
+z(− cos(dγ) sin(dα) + sin(dγ) sin(dβ) cos(dα)) + dy − y)+

cos(ψy) cos(ψx)(− sin(dβ)x+ y cos(dβ) sin(dα) + z cos(dβ) cos(dα) + dz − z) ≤ te
(4.34)

Inequality 4.34 is quite more complex than Inequality 4.29, and reduces to this when

ψx = 0 and ψy = 0. Something that should be noted is that the inequality expression

also includes dγ which is the error angle with respect to the Z rotation axis, and dx

and dy which are the translation error displacements with respect to axes X and Y .

The reason for this is that the object localization result describe errors with respect to

the object’s coordinate frame, and since the constraining relation is not aligned with it,

errors in any configuration parameter of the object can displace the inequality points in

a critical direction.
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Figure 4.18: A multiple contact configuration where the dependent object critical con-
figuration is completely fixed by a third environmental object.

In 3D-assembly, when a constrained object is in contact with another environmental

object, as Object B is in contact with Object E in the example of Figure 4.18, three of

its six possible DOF are fixed. In the illustrated case, the Z position and the α and β

orientation of Object B are defined by Object E, which is assumed that was assembled

before than Object B. Then the only possible critical dimensions for Object B are its

X and Y position and its orientation with respect to the Z axis.

Now, since the constrained and constraining planes are orthogonal to the Z axis and

none of the possible critical dimensions for object B appear in Inequality 4.29, object B

does not have critical dimensions, and do not require of preventive vision.
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Figure 4.19: A multiple contact configuration where the dependent object is in a contact
relation which is inclined to the constraining plane.

Figure 4.19 presents another example of constrained configuration for environmental

object B, but in this case the contact with Object C is not parallel nor orthogonal to

the constrained and constraining planes. Then, assuming a contact frame aligned with

the contact, as illustrated in the example, the potential critical dimensions are related
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with displacements in the X ′ and Y ′ directions and rotations with respect to the Z ′

axis. The X ′ and Y ′ axes can be oriented arbitrarily, but should form a basis with Z ′

axis, which is described by the contact direction between objects B and C.

To get the constraint inequality for this case, the errors with respect to the contact

frame have to be translated to errors with respect to coordinate frame of Object B. This

is done as

∆T = R−1
correct∆T′Rcorrect (4.35)

where Rcorrect is a transformation matrix that describe the rotation required to align the

coordinate frames, and ∆T′ is a transformation matrix describing the effect of errors in

the critical dimensions.

Rcorrect can be obtained in two steps: first, the unit vector representing the Z axis is

aligned with the Z ′ axis (the contact direction) using the combined rotation strategy

described before to align the constrained plane with the Z axis. φx, the alignment angle

for the X ′ rotation, is obtained as ψx, and φy, the alignment angle for the Y ′ rotation,

is obtained as ψy. To compute these values, the coordinates of a unit vector in the

Z direction has to be converted to contact frame coordinates.

The second alignment step, should perform a rotation with respect to the Z ′ axis to

align the rest of the axes, X and Y with X ′ and Y ′, respectively. This is done by using

the rotation angle

φz = − tan−1

(
y′X
x′X

)
(4.36)

where x′X and y′X are the coordinates of the unit vector describing the X axis after

applying the alignment rotation for the Z axis.

Then, the constraint inequality for this cases is obtained by

R−1
correct(φx, φy, φz)


cos(dγ′) − sin(dγ′) 0 dx′

sin(dγ′) cos(dγ′) 0 dy′

0 0 1 0
0 0 0 1

R−1
correct(φx, φy, φz)p− p


z

≤ te

(4.37)

where dγ is a potential error angle with respect to the Z ′ axis, dx′ and dy′ are the

potential error displacements with respect to the X ′ and Y ′ axes, respectively.

The resulting constraint inequality for oblique constraining contacts with respect to the

constraining planes is



124 CHAPTER 4. SENSOR PLANNING FOR VISUAL VERIFICATION

−x cos(φy) sin(φx) sin(dγ′) + x cos(φy) cos(φx) sin(φy) cos(dγ′)− y sin(φy) sin(dγ′)
−y cos(φx) sin(φx) cos(dγ′) cos(φy)

2 + dy′ cos(φx) sin(φy) sin(φz)
+dx′ cos(φx) sin(φy) cos(φz) + y sin(φx) cos(φy)

2 cos(φx) + z cos(φx)
2 cos(φy)

2

+dx′ sin(φx) sin(φz) + z cos(dγ′)− x sin(φy) cos(φx) cos(φy)
−dy′ sin(φx) cos(φz)− z cos(φx)

2 cos(dγ′) cos(φy)
2 − z ≤ te

(4.38)

The convenience of choosing good alignments for the contact frame can be realized from

the reduction of the complexity in the formula of the constraint inequality for aligned

cases. For example, in the case presented in Figure 4.19 the X and X ′ axes are already

aligned, then to align the rest of the axes is only necessary to rotate with respect to

X ′ axis. The constraint inequality for this case is

−x sin(φx) sin(dγ′) + y(− cos(φx) cos(dγ′) sin(φx) + sin(φx) cos(φx))
+z(sin(φx)

2 cos(dγ′) + cos(φx)
2)− dy′ sin(φx)− z ≤ te

(4.39)
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Figure 4.20: A multiple contact configuration where the dependent object is in a contact
relation which is orthogonal to the constraining plane.

And, if additionally the contact is orthogonal to the Z axis, φx = π/2, as in the example

depicted in Figure 4.20, the constraint inequality gets reduced to

−x sin(dγ′) + z cos(dγ′)− dy′ − z ≤ te. (4.40)

When the configuration of an analyzed object is constrained by two of more aligned

contacts, its motion freedom is reduced to simple translation. The constraint inequality

for this case is

dx′ cos(φx) sin(φy) cos(φz) + dx′ sin(φx) sin(φz) ≤ te (4.41)



4.4. MODELING AND QUANTIFYING SENSING UNCERTAINTY 125

where the contact frame is aligned in such a way that the potential translation error

is aligned with the X ′ axis. Something to note is that this inequality does not include

the coordinate values of the inequality points, which means that only one inequality is

necessary to represent the full constraint.

Finally, if neither the constrained and constraining planes nor the contact between

an analyzed object and another environmental object are aligned with Z axis of the

coordinate frame of the analyzed object, the general constraint inequality is obtained as

(Ralign[R−1
correct∆T′Rcorrectp− p])z ≤ te (4.42)

but its developed form is no added in this document for obvious reasons.

4.4 Modeling and Quantifying Sensing Uncertainty

For this dissertation, the sensing uncertainty region is a representation of the expected

error in the description of the pose of an object when obtained from a visual sensing

mechanism. This region is a product of the variability on the results of the pose re-

finement process realized using a localization tool with images obtained from a sensor

in predefined configurations. The size and shape of this uncertainty region depends on

the type, configuration and calibration of sensor; the type, structure, and brightness

of illumination; the shape, size, and photometric properties of the objects to localize;

and the technique used for localization. Is a highly dimensional problem as has been

demonstrated experimentally.

4.4.1 Experimental Testbed

In this dissertation, a description of the visual uncertainty of the sensor was developed

to compute the Psp criteria used for ordering potential viewpoints for localizing the

objects in assembly tasks. An empirical approach was selected to quantify a model of

uncertainty for the used object localization method. The experimental testbed for this

task is described below.

The Sensor

An active-camera mechanism composed by a pan-tilt computer-controllable camera and

a Cartesian robot-arm was selected to perform the visual sensing strategies generated

by the sensing analyzer using the best feasible viewpoints determined by the sensor

planner(see Figure 5.1). In this mechanism, a camera is fixed to the robot hand. The
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robot moves the camera without rotation to achieve its target position. The pan-tilt

mechanism of the camera is used to achieve its target orientation.

A detailed description of the active sensor, its configuration, calibration, and use will

be presented in Chapter 5.

The Illumination

The output’s quality of a system depends on the quality of its input. A vision system

then depends on the quality of its images. The distribution of light sources is one of the

fundamental factors that determine the image’s quality of a three-dimensional object.

Other factors include the object’s shape and reflectance properties, its attitude with

respect to the imaging system, and its pose in space.

The detection of specific features on an image rely on the intensity of the picture cells

(pixels) that forms it. The intensity of a pixel is determined by the amount of light

falling in a specific region (irradiance) of the camera’s captor surface. The irradiance

of a point in the image is related to the amount of light radiated by the objects in the

scene (radiance).

This dissertation does not deals with illumination planning, but recognizes that it is a

very important factor that affects the accuracy of the localization process; importance re-

alized in hundreds of experiments performed under many illumination conditions. Most

of the experiments with real images where performed putting the target object for local-

ization within a reconfigurable illumination environment, where lights were uniformly

distributed over an illumination sphere. The sources of illumination were specifically

(manually) selected to enhance the relevant features of the observed objects (its edges).

The Object Localization Tool

To deduce the configuration of the assembly objects in the scene a model-based lo-

calization tool (2DTM ) is used. 2DTM localize 3D-object models in one or multiple

2D-intensity images by performing M-estimation [33] with dynamic correspondences.

This tool was originally developed and programmed by Mark D. Wheeler as part of

is Ph.D. Dissertation at Carnegie Mellon University [108]. However, the version used

in this dissertation, include adjustments and modifications to both the software and

procedures to get the models of the objects to look for in an assembly scene.

The models of the objects are described as collections of 3D points on the object’s

surface which often create edges when visible in intensity images; these points are further

referred as edgel generators. The edgel generators are matched to identified 2D contrast

points that compose intensity edges in the image, further referred as intensity edgels.
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Using these correspondences, an error measure for the pose of the model is defined by

measuring a 3D distance between the matching features. The error is minimized by using

a robust statistical M-estimator that adjust the values for the model pose parameters. A

process of pose refinement is performed by dynamically modifying the correspondences

and minimizing the new error measures.

A more detailed description of the 2DTM tool, its adjustment and modeling methods

are given in appendix C.

4.4.2 Modeling and Quantifying Sensing Uncertainty

To generate a measure of the expected uncertainty in the results of the localization tool,

the first step is to understand its behavior based in the recognition of the most important

variables and their interdependencies. A starting point was the precision graph showed

in Figure 4.21. The graph presents a common uncertainty pattern when localizing

3D objects from single intensity images of the world scene. The results describe good

accuracy with respect to coordinate axes that are parallel to the image plane and high

uncertainty with respect to directions aligned with the optical axis of the camera.

viewpoint

error

X position

Y position

Z position

Peg object

Hole object

Figure 4.21: Precision in the localization of peg and hole objects.

In this respect, an extensive experimentation was performed with 2DTM to understand

its behavior under different conditions and using different objects. Localization experi-

ments were realized using real images taken with the active camera mechanism moving
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the camera around the target object, and many more using a rotary table to rotate

the target object with a stationary camera. Most of the experiments were realized over

two real objects, a peg object and a hole object; their VANTAGE images are shown in

Figure 4.22.

(a) Peg object. (b) Hole object.

Figure 4.22: Real experimental objects.

Also, the localization tool was tested with synthetic images generated directly from the

CAD models of the peg, the hole, and other objects. Finally, the system was tested using

simple patterns of lines to analyze the specific behavior over similar directed elements.

The basic experimenting strategy was to situate a target object in a predefined pose

and then apply the localization system to randomly perturbed initial pose estimates.

The perturbation was realized within predefined bounded values of translational and

rotational uncertainty. The uncertainty space was sampled a predefined number of

times (around 200 times for each pose) and statistical descriptors were calculated.

From the results of the experiments, it was realized that, even with a localization tech-

nique utilizing robust M-estimators, the system keeps its highly-dimensional nature that

makes it very difficult to understand and model analytically. However, from an analysis

of its behavior, the following qualitative conclusions have been reached:

• The attributes used in the determination of the correspondences have demon-

strated to be insufficient to overcome the problems emerging from the 2D nature

of the sensor, as illustrated by the uncertainty pattern of Figure 4.21. The system

has the ability to accurately resolve for object features that lie in a plane parallel

to the image plane, but less accurately for the depth of the features. The graph

was obtained from experiments realized as illustrated in Figure 4.3. The camera

was located at 70 different viewpoints while rotated 180 degrees around the target

objects. The stable error pattern of coordinate Z is explained because all the
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viewpoints were localized at the same height. When the camera moves around

the target object, what changes drastically is the orientation of the camera with

respect to axes X and Y . The highest errors for a coordinate estimation, say X

coordinate, happen when the axis of the other coordinate, say Y , is orthogonally

aligned with the optical axis of the camera, and viceversa. Contrariwise, the small-

est errors in a coordinate estimation happen when the axis of such coordinates are

orthogonal to the optical axis of the camera.

• The pose refinement process realized by the system can also correct the orientation

errors within planes parallel to the image plane better than the orientation errors

in planes that include the center of projection of the camera.
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Figure 4.23: Precision of 2DTM with respect to the axis parallel to the direction of
multiple lines.

• A set of experiments with simple patterns of parallel lines showed that the error

with respect to an axis in a parallel direction to the lines has an static nature

(Figure 4.23) while the error with respect to an axis in an orthogonal direction

grows with the number of lines (Figure 4.24).

• The effect of the distance among lines depends on the size of the expected un-

certainty in the initial pose estimate, showing a maximum when proportional

distances are half the size of the expected error (Figure 4.25). For distances big-

ger than the expected uncertainty, the error tends to disappear. Bigger distances

among the lines also reduces the uncertainty in depth.

• The uncertainty grows when the focal length of the camera is reduced and dimin-

ishes when the camera gets closer to the objects. The expected uncertainty grows

when the error in the initial pose estimate increase (Figure 4.26).
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Figure 4.24: Precision of 2DTM with respect to the axis orthogonal to the direction of
multiple lines.

Summarizing, the quantity of error in the final estimation depend on many factors

related mainly with the size of the expected error in the initial pose estimate, the

illumination conditions, the level of occlusion, the configuration of the edge features in

the object geometry, the object position and attitude with respect to the camera, the

focal length and distance from the camera, and the type and parameter values of the

robust estimator.

The realization of most of the experiments that derived in the above qualitative anal-

ysis of the localization tool uncertainty was motivated by a search for a method to

analytically compute an expected visual uncertainty for the sensor. The features con-

sidered were basically geometric features extracted from models of target objects for

localization, and intrinsic and extrinsic parameters of the camera calibration model. An

approach using aspects, counters of visible edgels, distances and orientation of lines, and

camera calibration data, was tried, but no consistent patterns were recovered.

Since the most persistent pattern recognized was that illustrated in the graph of Fig-

ure 4.21, it was decided to use an n-dimensional ellipsoid in configuration space to ap-

proximate and represent the sensing uncertainty. The ellipsoid parameters are obtained

from the statistical analysis of precision descriptors obtained by using 2DTM to localize

objects in the center of a viewing sphere, with a camera in each potential viewpoint.

Since the precision on the localization results depend on the pose relation between the

observed object and the camera, the size and shape of the uncertainty ellipsoid changes

with the sensor configuration.

The method used to get the uncertainty ellipsoid is based in principles of orthogonal
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Figure 4.25: Precision of 2DTM for position estimation of 3 lines when the distance
among lines changes.

regression. The axes of the ellipsoid are aligned with lines that are the best approxi-

mation to the data in the sense that the sum of the squares of the orthogonal distances

to the line is minimized. The method is also known as eigenvector fit and is a result of

a principal component analysis. Next, the foundations of the method are explained for

getting the best fit line to a set of n 2D-points. The method can be easily extended to

n-dimensional space.

The method establishes the fact that any line minimizing the sum of orthogonal distances

must pass through the mean (or center of gravity) of the points. Then without loss of

generality, it can be assumed that the set of n given points has zero mean. If every

ith point (xi, yi) is denoted by the vector pi, and its perpendicular distance to the line

is denoted by di. The line can be characterized through the origin by its unit normal

vector N. Then the method must minimize the error denoted by the sum of squares of

the perpendicular distances. Since a perpendicular distance is computed as Ntpi, the

method must minimize

n∑
i=1

d2
i (N) =

n∑
i=1

(Ntpi)
2 = Nt

n∑
i=1

(pip
t
i)N (4.43)

The symmetric matrix

S =
n∑

i=1

(pip
t
i) (4.44)
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Figure 4.26: Precision of 2DTM when the initial error is duplicated.

is the scatter matrix of the n given points. The best line is therefore characterized by

the unit normal vector N that minimizes NtSN. This quadratic form is minimized

by taking N to be the eigenvector of S associated with the smallest eigenvalue. Since

distinct eigenvectors of symmetric matrix are orthogonal, the best fitting line is in the

direction of the principal eigenvector of S, that is, the eigenvector associated with the

largest eigenvalue.

The same strategy is used to obtain the rest of the principal axes of the ellipsoid as the

eigenvectors associated with the rest of the eigenvalues. Additionally, the radii of the

ellipsoid are calculated as scaled values of the standard deviations of the error points in

the directions of the principal axes.

The algorithm for getting the description of the uncertainty ellipsoid, then, is the fol-

lowing:

1. Perform a series of n object localization experiments over a target object to get n

estimated poses from a viewpoint.

2. Subtract the true pose of each estimated pose to get a set of n error vectors.

3. Compute the mean of each vector element for the set of n error vectors.

4. Standardize the error vectors by subtracting the means of each element.

5. Compute the scatter matrix with the set of standardized error vectors.
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6. Find the eigenvectors of the scatter matrix.

7. Rotate each standardized error vector to align the basis described by the eigen-

vectors of their scatter matrix with the coordinate frame of the target object.

8. Compute the standard deviation with respect to each axis.

The same process is repeated for each different viewpoint. The description data required

for the computation of the criterion used to order the viewpoints are the principal axes

of the ellipsoid (the eigenvectors) and the standard deviations. The standard deviations

are used as scale factors for defining the size of the ellipsoid. These scale factors are also

used to describe a bounding box that contains the uncertainty ellipsoid. This bounding

box is used for the computation of the Psp values.

X Coordinate Error

2.5 Std.Devs.

1 Std.Devs.

Y Coordinate
Error

(a) 2D fitted ellipses.

X Coordinate Error

2.5 Std.Devs.

Z Coordinate
Error

Y Coordinate Error

(b) 3D fitted ellipsoid.

Figure 4.27: Uncertainty ellipsoids.

Figures 4.27(a)-(b) presents examples of 2D and 3D ellipsoids fitted to sets of 2D and

3D error vectors, by following the proposed algorithm.

To align a 2D tilted ellipsoid (an ellipse) with the coordinate frame of the target object,

the error vectors must be rotated an angle computed as

θ = tan−1
(
ey

ex

)
(4.45)

where ex and ey are the X and Y coordinates of the unit eigenvector associated with

the largest eigenvalue.
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The form of the tilted uncertainty ellipse is

(x cos(θ)− y sin(θ))2

k σ2
x

+
(x sin(θ) + y cos(θ))2

k σ2
y

= 1 (4.46)

where σx and σy are the standard deviation with respect to each coordinate of the

aligned ellipse, and k is a scale factor. Experimentally was observed that a k = 2.5 gave

good results.

Aligning a 3D ellipsoid is more difficult. It has to be done in two steps: first, the

axis described by the eigenvector associated with the largest eigenvalue is aligned with

a coordinate axis of the target object, say the Z axis, with a sequence of a rotation

with respect to X axis followed by a rotation with respect to the Y axis. And second,

complete the alignment of the other two axes through a rotation with respect to Z axis.

The rotation angles are computed as

α = tan−1
(

ey

ez

)
β = − tan−1

(
ex√
e2
y+e2

z

)
γ = − tan−1

(
e′
2y

e′
2x

) (4.47)

where α, β, and γ are the X, Y , and Z rotation angles, respectively; ex, ey, and ez are

the X, Y , and Z coordinates of the eigenvector associated with the largest eigenvalue;

and e′2x and e′2y are the rotated X and Y coordinates of the eigenvector associated with

the second largest eigenvalue. The rotated coordinates are computed by multiplying the

coordinates with the rotation matrix Ry(β)Rx(α).

The equation of the tilted 3D ellipsoid is

(cos(γ) cos(β) x+(− sin(γ) cos(α)+cos(γ) sin(β) sin(α)) y+(sin(γ) sin(α)+cos(γ) sin(β) cos(α)) z)2

k σ2
x

+
(sin(γ) cos(β) x+(cos(γ) cos(α)+sin(γ) sin(β) sin(α)) y+(− cos(γ) sin(α)+sin(γ) sin(β) cos(α)) z)2

k σ2
y

+
(− sin(β) x+cos(β) sin(α) y+cos(β) cos(α) z)2

k σ2
z

= 1

(4.48)

where σx, σy, and σz are the standard deviations with respect X, Y , and Z coordinates

of the aligned ellipsoid.

In the case of the 6-dimensional ellipsoid, the solution used was to construct two 3D

ellipsoids, one for translation and one for rotation.
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4.5 Predicted Success Probability

The decision for the best viewpoints to actually use during the visual verification of

the assembly conditions has to wait until the assembly setup is ready to perform the

assembly. The workspace of the specific sensing camera mechanism to use for the vision

tasks is limited by a set of kinematic constraints. This limitation eliminates some of the

modeled viewpoints considered during the sensor planning stage.

A Psp value express the goodness of a particular viewpoint for performing an object

localization task to verify critical alignment relations of its target object with respect

to another reference in its assembly environment.

A program to implement the proposed strategy for the evaluation of visual sensing

strategies was developed. In this section, the strategy is tested for a peg-in-hole oper-

ation. For this experiment, the assembly conditions were simplified by assuming that

the exact position of the hole object is known. Then for the realized experiments, the

goal was reduced to determine the actual pose of the peg. In the case that the hole

pose were unknown, before determining the adjustment of the peg’s pose, the pose of

the hole object had to be deduced from observation.

4.5.1 Peg-in-Hole Experiments

A peg-in-hole robot operation was performed using a t-shape peg object with an inserting

square cross-section. The peg is inserted into square holes of different dimensions.

Experimental Process

• Getting the correct inserting parameters:

1. Define a pose for the hole object and fix it to the work table.

2. Move the peg object to its correct insertion pose. This pose is where the peg

is positioned and aligned in such a way that it can be successfully inserted

into the hole object by a simple straight descending motion.

3. Store the hole and the peg poses.

• Computing the sensing uncertainty descriptors:

1. Select the camera poses to be used during the experiments.

2. Calibrate the camera in each selected pose.

3. Move the peg object to its correct insertion pose.

4. Take an image of the scene from each camera pose.
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5. Compute the uncertainty descriptors for each camera pose by localizing the

peg object in the scene image using the localization tool.

• Performing the peg-in-hole experiments (for each selected camera pose):

1. Move the camera to the selected pose.

2. Repeat the following n times:

(a) Move the peg to the correct insertion pose.

(b) Perturb randomly the peg’s pose. The new pose is obtained by computing

random bounded values for translation and rotation parameters and then

applying them to the correct pose. The bounding limits are decided based

on an expected initial pose error.

(c) Take an image of the new scene.

(d) Find the peg in the scene image with the localization tool.

(e) Compute the difference between the expected (correct) and observed

(sensed) poses.

(f) Compute and apply a corrective motion.

(g) Perform the descending insertion operation as a guarded motion. The

task is perform using velocity control and sensing continuously force data.

As soon as a change in the force pattern is detected, the insertion task

is aborted.

(h) Annotate whether the insertion operation succeeded or failed.

3. Compute and store the success ration for the current camera pose.

Calibration of the Assembly Relations

The correct execution of the above experiments depend on a quantified knowledge of

the relations among the experimental elements: robots, camera, parts to assemble, and

the assembly reference (world). Then a set of calibration processes must be performed.

Each calibration giving values to a parameterized relation.

The tasks are established with respect to an special assembly reference known as the

world coordinate system. However, since their execution is performed through com-

manded motions of the assembly robot, their relations have to be parameterized and

the value of the parameters obtained by calibration.

To perform the assembly, a revolute robot of six degrees of freedom, a FAROT DD Fu-

jitsu robot arm was used. This is a quite precise robot that allows commanding motions

in several modalities with respect to several coordinate references. It was decided to

command the robot’s motions by six parameters (x, y, z, α, β, γ) that define the absolute
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Figure 4.28: FAROT DD Fujitsu arm and its base coordinate system.

position and orientation of the robot hand (a parallel jab gripper) with respect to the

robot local coordinate frame located on its base (see Figure 4.28).

The robot transformation is computed as

pr = Tr pg = Rr pg + tr (4.49)

where Rr is a rotation matrix that re-orients the local coordinate system of the gripper

with respect to the base frame of the robot, pg is a 3D point with coordinates defined

with respect to the local gripper frame, and tr is a 3D vector that defines the final

position of the hand.

When the hand is in its home position (0, 0, 0, 0, 0, 0) the axis for γ rotation is assumed

to be perfectly aligned with the Z axis of the robot frame. Then Rr can be calculated

as

Rr = Rz(α)Ry(β)Rz(γ) (4.50)
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which gives the matrix cos(α) cos(β) cos(γ)− sin(α) sin(γ)
sin(α) cos(β) cos(γ) + cos(α) sin(γ)

− sin(β) cos(γ)

− cos(α) cos(β) sin(γ)− sin(α) cos(γ)
cos(α) sin(γ)− sin(α) cos(β) sin(γ)

sin(β) sin(γ)

cos(α) sin(beta)
sin(α) sin(beta)

cos(β)

 .

(4.51)

From the above matrix, the rotation angles can be extracted as

α = arctan 2(r12, r02) (4.52a)

β = arctan 2(
√
r2
02 + r2

12, r22) (4.52b)

γ = arctan 2(r21, − r20). (4.52c)

Now the problem is how to parameterize the important relations to transform required

object poses in world coordinates to robot commands. To do this in general, it is needed

to determine the following relations:

• World to assembly robot transformation (Twr),

• Gripper to robot transformation (Tgr),

• Object to world transformation (Tow), and

• Object to gripper transformation (Tog).

Now, if some relations can be fixed, it is possible to reduce at least some relations. For

example, for these experiments, the peg-object was fixed to the gripper and, then, the

requirements to compute Tgr and Tog were reduced.

Object to World Transformation

The Tow transformation is obtained directly from the required object pose. In the

performed experiments, the object pose which were determined by the localization tool

is represented by a seven elements vector pe = (x, y, z, u, v, w, θ)T where the first three

p = (x, y, z)T defines its world position, r = (u, v, w)T a unit vector representing a

rotation axis, and θ a rotation angle defines its world attitude.

In this case the conversion from the pose parameters to the homogeneous transform

matrix Tow is performed in three steps:
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1. Its attitude representation is converted into a unit quaternion q [29] as

q =

[
cos( θ

2
)

r sin( θ
2
)

]
(4.53)

2. The unit quaternion q = (qs, qu, qv, qw)T is converted into matrix form as

Rog =

 q2
s + q2

u − q2
v − q2

w 2 (qu qv − qs qw) 2 (qu qw + qs qv)
2 (qu qv + qs qw) q2

s − q2
u − q2

v − q2
w 2 (qv qw − qs qu)

2 (qu qw − qs qv) 2 (qv qw + qs qu) q2
s + q2

u − q2
v − q2

w

 (4.54)

3. Tog is composed as

Tog =

[
Rog tog

0̂ 1

]
(4.55)

where tog is the 3D column vector containing the object position p.

World to Robot Transformation

The Twr relation is calibrated by localizing the peg object in different poses with respect

to the world reference and using the parameters commanded to the robot for moving

the peg.

To perform the peg localization, an implicit stereo approach was used as follows:

1. Two camera poses were selected and calibrated with respect to the world coordi-

nate system.

2. A set of robot motions were selected and stored taking care that the peg is inside

the visible region of both cameras.

3. An image of the peg was taken for each pose from each camera pose.

4. The localization tool was used to localize the peg in each par of images and the

pose was stored.

A set of points on each standard axis of the object were selected for calibration. The

world coordinates for each point are computed as:

pwi = Tow poi (4.56)
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where pwi and poi are the ith corresponding points in world and object coordinates,

respectively.

The world to robot relation is modeled as usual by

Twr pwi = Rwr pwi + twr = pri (4.57)

where Rwr is a rotation matrix, twr is a translation vector, and pri is the ith point in

robot coordinates.

Since the values for the points with respect to the robot reference are not known, one of

the object poses (e.g. the first one) can be used as auxiliary to eliminate the unknowns

in which it is not interested in, the robot points in this case.

The n object poses and the selected m object points generates a system of m (n − 1)

equations of the form

R−1
ri (Rwr pwi + twr − tri) = R−1

r0 (Rwr pw0 + twr − tr0) (4.58)

where pwi and pw0 are the corresponding object points in world coordinates in the

(i+1)th and first object poses; and Rri, tri, Rr0, and tr0 are the rotation matrices and

translation vectors obtained from the commanded robot motions for the (i+1)th and

first object poses, respectively.

The system is solved by minimizing the squared error calculated from the distance

between the resultant points in both sides of the equations.

Experimental Results and Discussion

A generate-and-test approach was used to perform the experiments. A set of potential

viewpoints were explicitly selected and the strategy was applied. Figure 4.29 presents

the success ratios for inserting the peg object in holes of increasing sizes. This values

were obtained by performing the task with real objects. The success ratio is computed

by actually counting the number of times that the task succeed. A task is considered

successful if the peg is displaced a predefined distance without detecting a force pattern

associated with a contact in the opposite direction of the insertion. The graph shows as

is expected that a bigger hole allows better success ratios.

The Figure 4.30 depicts the Psp values computed by constructing the uncertainty ellip-

soids from the actual variability observed in the peg pose during the real experiments.

Two and a half standard deviations were used to compute the radii of the principal axes

describing the uncertainty ellipsoid. Then these were used to compute the Psp values
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Figure 4.29: Success Ratio from Real Experiments.

shown in the graph.
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Figure 4.30: Psp from Real Experiments by using 2.5 Standard Deviations.

As it can be clearly appreciated the proposed Psp measure presents a similar pattern

to that of the real success ratio with approximated magnitudes. Even in the cases

where the magnitudes of the experimental and theoretic measures differ, the important

relative relations among camera poses, which will be used to order the viewpoints, are

maintained.

The same experiments were repeated using synthetic images instead of real intensity
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Figure 4.31: Success Ratio from Experiments with Synthetic Images.

images. Figures 4.31 and 4.32 present the success ratio and Psp values obtained in this

cases. Again, the Psp measures show a similar behavior to the computed success ratio,

but this time computed by simulating the execution of the insertion task. Though the

synthetic results show more relaxed patterns, the tendencies are comparable to those of

the real case. This even when strong assumptions where made to create the synthetic

images, which considered perfect illumination, absence of noise, reduced occlusion, and

empty surroundings (background).

Finally, Figure 4.33 presents the results of similar insertion experiments performed by

placing a peg object in the center of a tessellated viewing sphere. The viewpoints were

located in the center of each triangle and oriented through the center of the sphere.

Four sizes of square holes were analyzed. The uncertainty ellipsoids were computed

from synthetic images of the peg object, and the insertion experiments were simulated.

The Psp results are shown in a gray-scale coded representation in Figures 4.33(b)-(e),

where lighter colors are used to represent higher predicted success probabilities. Perfect

white triangles represent viewpoints where its uncertainty region is completely inside of

the error tolerance region of the task.

Even under the simulation assumptions, as would be expected in real situations, the

best viewpoints start in positions orthogonal to the insertion plane and the Psp values

decrease when the angle between the viewing direction and the inserting direction grows.
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Figure 4.32: Psp from Experiments with Synthetic Images by using 2.5 Standard Devi-
ations.
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(a) Viewing Sphere.
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Figure 4.33: Predicted Success Probability for Peg-in-Hole Task.



Chapter 6

Conclusions

This thesis has investigated several issues related to the use of geometric information

about the models of component objects of assemblies and the process of contact forma-

tion among such objects for tackling the automatic planning of sensing strategies.

The studies and experiments conducted during this research have led to the develop-

ment of novel methods for enabling robots to detect critical errors and deviations from

a nominal assembly plan during its execution. The errors are detected before they cause

failure of assembly operations, when the objects that will cause a problem are manip-

ulated. Having control over these objects, adjustment actions could be commanded

expecting to correct the errors.

Chapters 2 and 3 propose a sensing analyzer that determine which tasks require of using

force and vision feedback operations. It also determines what is the critical information

that has to be collected and which objects contain such information. Chapter 4 proposes

a sensor planner that evaluates potential viewpoints for the camera to be used for

localizing the objects that contain critical information for the assembly tasks. The

criteria used is computed partially by an analytical method and partially by an empirical

method. This order is one of the main factors for constructing a full visual sensing

strategy for robotic assembly. Chapter 5 presents an active camera mechanism that was

developed to perform visual localization tasks and a method that is proposed to obtain

the actual preventive visual strategy for the complete assembly plan.

6.1 Contributions

The main contributions of this thesis are the following:

• A method to systematically deduce assembly skill primitives and force compliance

skills requirements for assembly tasks.

181



182 CHAPTER 6. CONCLUSIONS

• Introduction of a graph representation that codes the sensing requirements of an

assembly plan.

• A method to propagate direct and indirect translational and rotational dependen-

cies among environmental objects.

• A method to analytically describe a region of tolerated error for assembly tasks.

• An algorithm to quantify and represent the uncertainty of a template matching

localization tool that works on intensity-images.

• A method to evaluate potential viewpoints to locate the camera for localization

tasks.

• Development of an active camera mechanism for visual verification tasks.

• A method to construct preventive vision strategies for a complete assembly plan.

Below, each contribution is expanded in more detail.

6.1.1 Automatic Deduction of Skills

In this thesis, a method is proposed for systematically deduce force compliance skills

required for monitoring and controlling the execution of tasks that involve contacts

between the object manipulated by the robot arm in the task and the objects that

conform its direct environmental configuration.

First, the method recognizes the assembly tasks from transitions in the contact relations

of the manipulated object. For this purpose each DOF of the manipulated object is

cataloged as maintaining DOF, detaching DOF, or constraining DOF. Then, it identify

and associate an assembly skill primitives with each DOF in accordance with a possible

change in their constraining conditions. Knowing the assembly skill primitives, the force

compliance skills are extracted from the mapping table 2.1.

Even though this research does not deals with assembly task planning, the deduction

and use of four assembly skill primitives obviated the force compliance skill deduction

and the deduction of some preventive vision requirements. Whereas the force compliance

skills set was reduced to a minimum of three, the selected skills were considered enough

for the type of tasks expected in the nominal assembly plans and for the purpose of

reducing the potential critical dimensions for vision. However, they are associated with

each DOF of the manipulated object, which means that for some tasks several skills have

to be performed concurrently. Such combination of tasks is what makes force control

difficult to implement, and that is the reason why the force compliance skills could be
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further decomposed into multiple force compliance primitives. Implementing the force

compliance skills was not part of the goals for this thesis, however, a basic facility was

implemented to perform the real experiments for getting the success ratio data in the

sensor planning module.

6.1.2 Representation of Sensing Requirements

In this thesis, the ICdg representation has been introduced to express direct and indi-

rect critical dependencies among assembly elements, caused by insertions and contacts

between the manipulated objects of the assembly operations and their environments.

The ICdg is constructed while analyzing the contact formation process. The addi-

tion of new constraint dependencies to the ICdg is fired by the recognition of insertion

operations and multiple-contact operations. Then, direct constraint dependencies are

propagated among the environmental objects. The final ICdg codes the complete set of

critical alignment constraints, and then expresses the force and vision sensing require-

ments for the analyzed assembly plan.

This structure simplified the deduction of the real critical dimensions of a task by

making explicit the true relevance of certain alignment relations between objects in the

environment. It is also concise and easy to visualize. The most important information

is stored in its dependency arcs. Such information not only indicates which tasks need

of some type of sensing, it also contain the data required to construct the criteria for

evaluating the sensor configurations. The ICdg is the central data structure also during

sensing execution because it describe the dependencies in relative terms. If an object,

on which some other objects depend, does not finish in its absolute prescribed pose, all

the other objects depending in it should be adjusted accordingly.

The utility of the ICdg was demonstrated during the programming of the sensing ana-

lyzer by simplifying the codification and debugging process and during the experiments

as an instrument for verifying the correctness of the results.

6.1.3 Propagation Scheme of Critical Dependencies

In this thesis, a method is proposed to propagate alignment constraint dependencies

among the objects that conform the assembly environment. The method extends the

strategy proposed in [64] which limited its preventive vision strategy to verify the con-

figuration of inserted objects.

Recognizing the importance of having a correct environment configuration to succeed

in the execution of a task that involve multiple objects, the propagation of critical
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dependencies allow to anticipate potential problems that could irremediable affect the

success execution of subsequent assembly operations.

This propagation scheme represents the heart of this dissertation work because it pro-

vides the basis for the rest of the contributions and work. The main purpose of this thesis

is to help in the successful execution of robotic assemblies by automatically planning

sensing strategies to prevent critical errors. Then, the propagation of critical dependen-

cies makes explicit the most important tasks in an assembly plan. This helps to redefine

its success criteria not only in terms of its current effects in a single operation but in

terms of its global effects in the success of the plan execution.

The results of this propagation process can not only be used to prescribe sensing re-

quirements, it also can be used to judge when is recommendable to use some support

devices for assembly and even when to perform assembly re-planning. The idea is to

reduce the sensing requirements, specially of preventive vision, and assembly plans that

require a lot of visual verification tasks denote re-sequencing opportunities.

The propagation method was extensively evaluated against test cases presented to its

computer implementation. Many of the cases were purposely designed to confront the

system with complex interrelationships even for humans. The system behave correctly

in all the test cases. Inclusive, in some occasion it finished with unexpected results, but

after a deeper analysis it was realized that its decisions where correct.

6.1.4 Analytical Description of Regions of Tolerated Error

A method has been proposed to analytically deduce the descriptions of inequalities that

implicitly describe a region of tolerated error. When an error displaces a manipulated

object to a pose that still is inside of this region, the task is expected to succeed.

The proposed method computes sets of inequality points that are used to describe criti-

cal constraining relations for analyzed objects. It also recognize, for the case of insertion

tasks, and define, for the case of environmental object configurations, constraining refer-

ences that together with the inequality points are used to obtain the critical inequalities

that implicitly describe the task tolerance region.

Though uncertainty affects all visual parameters, the constraining effect of contacts

and insertion configurations is used to concentrate only in the effects of uncertainty in

the critical dimensions of a task because this are related to the DOF that have to be

adjusted.

A detailed analysis was realized for 2D-assembly (planar case) and 3D-assembly. The

analysis was facilitated by decomposing the constraining effect of multiple constraining

conditions to simple constrained plane to constraining plane cases. General Inequality
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formulas were developed and special cases were reviewed. The special cases helped to

test the consistency of, in some cases, very complex formulas.

6.1.5 Modeling and Quantification of Sensing Uncertainty

An algorithm that implements an empirical method to determine the form and orienta-

tion of six-dimensional ellipsoids is proposed to model and quantify the uncertainty of

a tool that localize 3D objects from single intensity-images of the assembly scene.

The sensing strategy use a robust technique that works much better for free-form objects

than for simple polyhedral objects, as those involved in the present work. An orthogonal

regression method is used to determine the orientation of a commonly tilted ellipsoid,

and a statistical precision estimator is used as a scaling factor to describe the size of its

principal axes.

Extensive experimentation over real images of test objects obtained from a testbed

including an active camera mechanism, a computer-controllable rotary table, and a

computer-controllable reconfigurable illumination environment; and over simulated im-

ages of multiple objects and patterns of lines was realized. The experimental results

showed that the problem of uncertainty modeling for the selected sensor and sensing

strategies is highly dimensional. As consequence it was decided to approximate its shape

and size using an empirical algorithm. The error pattern described by the object pose

refinement experiments supported the decision.

6.1.6 Ordering of Camera’s Viewpoints

A method is proposed to compute a criterion – the predicted success probability or Psp

– for ordering a set of potential viewpoints in which a camera can be located to perform

object localization tasks. The measure is the result of a combination of the region

of error tolerance of a task and the uncertainty ellipsoid associated with a particular

viewpoint located in the center of a tessel of a discretized viewing sphere.

The method segments the uncertainty ellipsoid into homogeneous elements converting

the computation of the Psp in a counting problem. The method basically computes the

portion of uncertainty ellipsoid that falls inside the region of tolerated error for a task.

For the experiments, the number of segments for DOF was selected arbitrarily as a

constant, and only one point is selected for each elementary partition. This specific

point is tested to fall inside of the uncertainty ellipsoid and in the unconstrained subspace

described by the set of constraining inequalities. If the point pass this test, it is counted,

consequently increasing the Psp for the viewpoint. The complexity of the task tolerance
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region description and the high dimension of the uncertainty ellipsoid supported the

decision for the method.

Real experiments of assembly operations were realized to test the Psp criterion. The

ordering of viewpoints described by the success ratio obtained in the experiments seems

agreed with the ordering of viewpoints described by the Psp values. Obviously, the exact

Psp value differ from the exact success ratio because it is obtained by an approximated

method that additionally depends in a scaling factor statistically decided. However,

the important product is the relative ordering among viewpoints. Experiments with

simulated images were also realized over each tessel of the discretized viewing sphere

and intuition agrees with the ordering results.

6.1.7 An Active Camera Mechanism

An active vision mechanism is proposed to perform visual verification tasks. This mech-

anism allows the camera move around the assembly scene to recollect visual information

required to prevent errors and deviations that could cause failure in the execution of as-

sembly operations. The active camera was also used during the experimentation phase.

A method is proposed to calibrate the different elements of the active camera and

move the camera to commanded poses. A calibration model for the active camera was

developed accordingly.

The features of each component of the active mechanism has to be modeled and cali-

brated to reduce the error in locating the optical center of the camera over a planned

viewpoint. Object pose estimation errors will be directly affected by the active camera

calibration model, its quantification, the uncertainty on the actions of the robot that

translate the camera and the uncertainty on the pan/tilt mechanism. Exact analyti-

cal formulations were developed to adjust the calibration model and pose of the active

camera; however, the approximated nature of the calibration models added to errors in

the tasks.

It is also important to have in mind that errors caused by approximated camera calibra-

tion models is compensated by changes in values of intrinsic parameters, which means

that a change only in the camera pose will need of adjustment on both the extrinsic pa-

rameters and the intrinsic parameters. This was evident in the experiments performed.

Also from the experiments, it was realized that a more elaborated model of the pan/tilt

mechanism result in more complex adjustment formulations. And for the camera uti-

lized, this complication was not justified by the improvement in the accuracy of the

camera.
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6.1.8 Computation of Preventive Vision Strategies

Finally, a method is proposed to construct a complete visual strategy for an assembly

plan. This method decide the specific sequence of viewpoints to use for localizing the

objects that were specified by the visual sensing analyzer.

The proposed method transforms the problem of deciding a sequence of camera motions

into a multi-objective optimization problem that is solved in two phases: a local phase

that reduce the set of potential viewpoints to small sets of viewpoints with the best Psp

values of the kinematically feasible viewpoints for the active camera; and a global phase

that decides a single viewpoint for each object in a task and then stitch them together

to form the visual sensing strategy for the assembly plan. Additionally to the Psp

values, the multi-objective optimization method try to minimize a measure of the level

of occlusion from the considered viewpoints and the distance that the camera has to

be moved. A dynamic programming approach was selected to perform the optimization

process.

6.2 Future Directions

We conclude with a discussion of the limitations and suggested improvements of the

work presented in this dissertation.

6.2.1 Sensing Planning

The limitations of the sensing planner proposed in this dissertation are related with the

assumptions about the type of objects, the type of contacts, and the type of nominal

assembly plans. The objects are assumed to be rigid polyhedral objects participating in

face contact relations, and the nominal assembly plans are described as single sequences

of mating operations involving only one manipulated object at the time.

An obvious extension in this respect is one that allows curved objects. To extend the

approach to curved objects it is recommendable to extend the type of allowed con-

tact configurations. The usual strategy is to describe the contacts by sets of contact

points. This will require to increase the number of contact-state relations and to con-

sider possible singular configurations as those described in [99]. The number and type

of contact-state transitions should increase accordingly.

Today, there is a tendency through multi-agent collaborative systems where several au-

tonomous entities perform tasks concurrently, which initially would seem to require of

a much more complex strategy than the strategy described in this document. How-
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ever, if some of the obvious potential interference problems are resolved, the approach

could be applied as described. Additional complexity sources could come from the in-

clusion of several active cameras, grasping stability problems, and model uncertainty in

subassemblies.

6.2.2 Sensor Planning

The limitations of the sensor planning approach is also determined by the assumptions

in the geometry of the objects for the computation of the task tolerance region, and

the type of sensor and sensing strategy in the computation of the sensing uncertainty

region.

To extend the approach to include curved objects, a new analysis and formulation of

constraint inequalities should be performed; however, since the geometry of mechanic

parts tends to standardized shapes, some specific formulations could be easily added

to describe regions composed by usual curved objects with common curved shapes, e.g.

cylinders.

Something that was not realized during this research was an study of the effect of using

viewpoints different from those selected in the tessellated viewing sphere. Checking

the common continuous and soft variation patterns in the uncertainty of the object

localization tool it is expected that uncertainty in viewpoints located in the vicinity of an

studied viewpoint have similar uncertainty regions. Then a relaxation method could be a

possible strategy to transform the finite number of viewpoints into an continuous sphere.

Unfortunately, this is not always the case. Then, the problem would be to determine

how many viewpoints to study and where to locate such viewpoints to interpolate the

uncertainty regions for intermediate viewpoints. The same phenomena appears in the

case of the success ratios and Psp values.

Another interesting question is related with the effect of using multiple images from

different positions of the camera, or even, from different cameras or optical sensors. The

problems becomes in one that requires of sensor fusion solutions. If the images are taken

with the same camera, the problem becomes in the usual problem of active vision of

deciding which is the best next sensor position.

6.2.3 Sensing Execution

Most of the ideas and proposed methods were tested individually. An interesting exper-

imental study and something that would be good to see pursued is related to practical

sensing decisions during the actual execution of complete assembly plans. A representa-

tion of the actual poses of the involved objects has to be maintained during execution.
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Such representation would also be uncertain, then a model of actual uncertainty has also

be maintained. These models together with the critical dependency relations codified

in the ICdg, should be used to decide when is a good idea to perform some sensing

operations to actualize the models because the adjustments in the configurations of

manipulated objects will depend on a confidence measure of its outcome. This is also

important to decide which objects to use as a reference for adjustment when an object

depends on several objects over the same critical dimensions. But, before of doing this

a more elaborated facility to perform force control must be implemented.
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Appendix A

Representation of Rigid
Transformations

A.1 2D Rigid Transformations

2D rigid transformations can be represented by using 3x3 homogeneous matrices as:

T =

[
R t
0̄ 1

]
(A.1)

where t is the 2D translation vector (tx, ty)
T and

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(A.2)

which performs a rotation around the origin of the coordinate frame. Substituting, we

obtain the full 2D rigid transformation matrix as

T =

 cos(θ) − sin(θ) tx
sin(θ) cos(θ) ty

0 0 1

 (A.3)

.

A.2 3D Rigid Transformations

3D rigid transformations can be represented by using 4x4 homogeneous matrices as:
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T =

[
R t
0̄ 1

]
(A.4)

where t is the 3D translation vector (tx, ty, tz)
T and

R = Rz(γ) ·Ry(β) ·Rx(α) (A.5)

is a 3x3 rotation matrix computed from the basic 3D rotational matrices:

Rx(θ) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (A.6)

which performs a rotation around the X coordinate axis,

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (A.7)

which performs a rotation around the Y coordinate axis, and

Rz(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (A.8)

which performs a rotation around the Z coordinate axis. Substituting, we obtain the

full rigid transformation matrix as

T =


cβ cγ sα sβ cγ − cα sγ cα sβ cγ + sα sγ tx
cβ sγ sα sβ sγ + cα cγ cα sβ sγ − sα cγ ty
−sβ sα cβ cα cβ tz

0 0 0 1

 (A.9)

where c stands for cosine, s stands for sine, and α, β, and γ are the rotation angles with

respect to the X, Y, and Z axis respectively.



Appendix B

Assembly Planning Terminology

The terms and definitions below are mostly personal preferences. Many are not standard.

Binary plan A binary plan is one which requires two hands, i.e., no step requires three

or more parts or subassemblies to move in different directions simultaneously.

Component A component is a part or a subassembly. Other authors either allow a

subassembly to be a single part, allow a part to be a subassembly, or always say

”part or subassembly”. I find a separate term more intuitive.

Global or extended motion A global motion is a motion over an infinite distance. A

part or a subassembly is said to be globally free if it can be removed to infinity.

Linear plan A linear plan inserts parts one at a time. That is, it never forms subassem-

blies. Obviously any planner that generates linear plans can be used to generate

nonlinear ones if the user selects the subassemblies.

Local motion A local motion is a motion over an infinitesimal distance. A part or

a subassembly is said to be locally free if it can move an infinitesimal distance

without colliding with other parts.

Mating operations A mating operation consists of putting together two (or more)

parts or subassemblies. This is a slightly higher-level operation description than

pick-and-place operations. Usually some relative motion by which the parts can

be joined will be known, but it may not necessarily be known which of the mating

parts is held and which is moved.

Monotone plan A sequential plan is monotone if each step ends with all moved parts

in their final position i.e. each subassembly, once constructed, is final. This

means that parts are never put into temporary positions. This constraint makes
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planning a lot easier, both because it avoids the problem of finding useful tem-

porary positions, and because it vastly decreases the search space size. However

non-monotone plans are quite commonly used in building assemblies with moving

parts. Warning: ”Non-monotone planning” means something completely unre-

lated to ”non-monotone plans” in the AI literature. Do not call a planner which

generates non-monotone plans is a non-monotone planner.

Number of hands The number of hands required to perform a given step in an assem-

bly sequence is defined as the number of parts or subassemblies that are moving

with respect to one another. For example, if a single part or subassembly is being

removed from the rest of the assembly, then two hands are required: one for the

moving part or subassembly, and one for the fixed partial assembly. If the fixed

partial assembly is merely resting on a table, then, the table acts as a “hand” in

this context.

Part A part is one of the primitives that must be combined into the assembly in the

plan. Some parts may actually be assemblies, like ball-bearings, which have al-

ready been built when supplied to us. But since they are already built, and we

don’t intend to disassemble them, we treat them as parts and call them parts. Note

that some authors do not count fasteners (e.g., nuts, bolts, rivets) as full-fledged

parts but only as attributes on a connection between two parts.

Partial assembly Any subset of parts that occurs at any point in time during an

assembly plan is called a partial assembly. Single parts may be partial assemblies.

Pick-and-place operations A pick-and-place operation moves a part to a given goal

position. Usually the trajectory along which the part is moved will be described.

Plan Obviously a plan is a description of how an assembly is to be built. It is important

to note, however, that plans generally do not describe all details of the assembly

process. Since many details are not specified by the plan, there can be many

different processes which can be considered valid executions of a given plan. The

level of detail in plans varies widely between assembly planners.

Sequential plan A plan is sequential if it can be decomposed into a sequence of steps

such that during each step only one component is in motion. This is also called

”two-handed”. Note that a plan is sequential if it can be executed in this manner.

Often it is possible to do two steps in a parallel plan at the same time, as when a

pit-crew changes two tires of a race car at the same time. This is still sequential

because the simultaneous operations are independent and could be done sequen-

tially. A plan is only non-sequential if two or more parts must be simultaneously

inserted in a coordinated motion along different trajectories. Such plans are un-

usual in practice, but not unknown. This usage is consistent with Natarajan’s
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definition of handedness. An assembly is n-handed if the minimum number of

hands required to build it is n.

Stack plan An stack plan is one in which all the motions occur in a single direction,

usually up-and-down. Circuit boards, for example, often have stack plans. An

assembly for which a stack plan exists is called a stack assembly.

Steps and operations Just about any interesting plan consists of a collection of step

or operations which must be performed, and some information about the order

in which those steps or operations must be performed. Usually operations are

described either as insertion operations or mating operations.

Subassembly An assembly or subassembly is a partial assembly of one or more parts

that is built by the insertion of one or more parts or subassemblies. The distinc-

tion between ”assembly” and ”subassembly” is contextual. We build an assem-

bly from subassemblies, and then that assembly may become a subassembly in a

higher-level assembly. Note that the distinction between ”partial assembly” and

”subassembly” is pretty much unique to me. Most authors use ”subassembly”

for both. but I feel the distinctions between the two is important for generating

good plans. For example, while disconnected partial assemblies often occur in real

plans, disconnected subassemblies are virtually unknown.

Totally-ordered assembly sequence A totally-ordered assembly sequence is one in

which the operations are executed as they were uniquely-specified. Many plans

represent only partially-ordered operations, giving just those sequencing constraints

that are necessary.
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Appendix C

The 2DTM Object Localization Tool

To deduce the configuration of the assembly objects in the scene is used a model-based

tool (2DTM) that localize 3D object models in one or multiple 2D intensity images

by performing M-estimation with dynamic correspondences. This tool was originally

developed and programmed by Mark D. Wheeler as part of is Ph.D. Dissertation at

Carnegie Mellon University [108]. However, some adequations and modifications to

both the software and procedures to get the models of the objects had to be realized.

The models of the objects are described as a collection of 3D points on the object’s sur-

face which often create edges when visible in intensity images; these points are further

referred as edgel generators. The edgel generators are matched to identified 2D contrast

points that compose intensity edges in the image; these are further referred as intensity

edgels. Using these correspondences, an error measure for the pose of the model is

defined by measuring a 3D distance between the matching features. The error is min-

imized by using a robust statistical M-estimator that adjust the values for the model

pose parameters. A process of pose refinement is performed by dynamically modifying

the correspondences and minimizing the new error measures.

The same procedure can be applied using multiple intensity images, and solving for pose

without computing depth. In this case, during each iteration of the algorithm the model

edgels generate correspondences with the intensity edgels in every image and the error

measure to minimize is composed by the increased number of correspondences. By using

multiple images, the localization is expected to become more robust and accurate.

Several types of image features have been used to approach the problem of 3D object

localization: pixels, regions, interest points, edge curves, and edgels are some examples.

Some of the reasons to use intensity edgels is that they are the most reliable, well-

understood, practical, and most popular using present day techniques.

Points in the scene are detected as intensity edgels when discontinuities on the objects

due to the surface orientation, surface reflectance, and geometry occur. Unfortunately,
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other sources of image discontinuities exist that are not intrinsic to objects, like dig-

italization noise and casted shadows, that depend on the sensor and the illumination

system. However, intrinsic edge discontinuities are still detectable in a wide range of

situations and can be accurately predicted.

The edgel model was designed having in mind its effect in the localization process.

Though, Wheeler developed a method to automatically extract the object models from

a set of range and intensity images, in the case of this work, the edgel generators are

derived from CAD models.

C.1 3D-2D Object Representation

The model edgels are represented as a collection of oriented points in three dimensions

in the coordinate system of the object, where each edgel has a local visibility criteria

associated with it.

The original model was designed to represent free-shape objects that were composed by

three types of edgels: surface edgels resulted of reflectance and color discontinuities on

the surface of the object, convex edgels resulted of discontinuities of surface normals,

and occluding-contours edgels resulting of boundaries at points on a smooth surface

where geometry discontinuities are detected from a particular viewing direction.

In the case of polyhedral objects, the occluding contours coincide with edges produced

by normal discontinuities and are visible from the set of viewing directions that allow

seeing only one of the edge generator faces. Thus, for polyhedral objects, the original

analysis to determine occluding-contours edgels can be eliminated.

The 2DTM model contains a set of counters that describe the number of each type of

edgels contained by the model and the description of each 3D edgel. Each 3D edgel is

described by a set of photometric and geometric attributes.

The most obvious photometric attributes of an edge are the intensities on either side

of the edgel, but they were not used because intensities are difficult to predict under

variance in the illumination. The reflectance ratio is the only photometric attribute

included in the model and it is used when the correspondences for surface edgels are

determined. This parameter was selected because it was showed to be invariant to

light source conditions and orientations (except for cases of shadowing and specular

reflection) [70] when computed from adjacent surface patches with similar reflectance

properties and surface normals that are nearly the same. These requirements are not

fulfilled by the convex and occluding-contour edgels of the model. The reflectance ratio

α is defined as
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α =
Ileft − Iright

Ileft + Iright

(C.1)

where Ileft and Iright are the intensities to both sides of the edgel or surface patch

boundary.

The attribute values were computed when building the model from real images by av-

eraging the observed intensities from different directions and under several illumination

conditions. Since, here, the model is not obtained from real images, the reflectance ratio

has to be obtained from an additional analysis of the reflectance properties of the object

or be ignored.

The construction process for the 3D-2D model representation for 2DTM from CAD

models of the assembly parts can be summarized in four steps:

1. Create the VANTAGE CSG model of the assembly parts. If some parts include

marks, use the marks model construction tool to describe these.

2. Obtain the boundary representation (B-REP) of the CSG models of the assembly

parts. A program was devised that extracts the information of the geometric

features of the objects from its CAD models.

3. Create a triangulated representation from the boundary representation of the as-

sembly parts. A program is used that subdivide every polygonal face of a polyhe-

dral object into a triangular grid.

4. Create the 3D edgel generators from the boundary and triangulated representa-

tions of the assembly parts. The boundary representation is used to extract the

edges of the faces that form the polyhedral objects. This edges are segmented.

Every edge segment is a edgel generator. A visibility representation for every edgel

generator is stored with it. The triangulated representation of the objects is used

as a tool to construct the visibility representation of each edgel generator.

C.2 3D-2D Object Localization

The goal is to localize 3D objects that are expected to be in the scene from 2D intensity

images. An rough initial estimate of the object’s pose is known and since most probably

it includes a certain amount of error, an iterative process of pose refinement will be

performed to correct the initial estimation. This scenario is common while performing

assembly tasks; known objects in known configurations are expected to pass for a se-

quence of known transitions. The initial estimate required by the localization system

can be extracted from the assembly plan.
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2DTM is a method that solves the problem in three steps:

1. Determine the model edgels visibility: which parts (edgels) of the object are visible

from the current viewpoint.

2. Determine the Model-to-Image Correspondences: model edgels are connected or

related to the image edgels based on a similarity metric in 2D image space.

3. Performs the pose optimization: minimize a 3D error measure using a robust

statistical estimator.

The first correspondences will usually be incorrect-especially with large initial pose

errors. For localization to work, the above steps are iteratively applied and the visible

edgels and its correspondences are dynamically determined. Under the assumption

that wrong correspondences has a random pulling effect on the object’s pose and true

correspondence a consistent one, the model is expected to move in the correct direction.

As the model moves through its correct pose more true correspondences are expected

to appear with the consistent effect of better the object’s pose estimation.

If the wrong correspondences has a consistent wrong tendency and there are not enough

true correspondences to counteract the wrong trend the result can worsen the initial

error. As in the general case of the correspondence-based optimization methods, the

accuracy of the final results depend in the correctness of the identified correspondences.

C.2.1 Edgel Visibility

The first step is to determine from all the model’s edgels which are visible from the

current viewpoints. The objects can be subject to self-occlusion (some parts of the

object occlude some others) and/or external occlusion (different objects occlude parts

or all the objects). Determining exactly which parts of the object are occluded can

be done using methods as ray-casting or z-buffering, but it is computationally very

expensive. Since the visibility test will be performed for every iteration during the pose

refinement process, an approximated but efficient representation of the visibility of each

edgel under the possible viewing directions was selected for determining edgel visibility

under possible self-occlusion. The system ignores external occlusion.

When self-occlusion is not possible, a simple and efficient convex visibility test based on

the normal directions associated with the edgels and the viewing directions is defined.

In the case of surface edgels the visibility test evaluates if the surface (object’s face)

where the edgel point lies is visible and its computation is
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visiblesurface(x) =

{
true ni · v > cosθ
false otherwise

(C.2)

where ni is the normal direction of the surface, v is the viewing direction for the edgel

point x, and θ is an angle near 90 degrees which is the maximum orientation angle of

the surface such that a rigid edgel on the surface will be detected.

A convex edgel point is declared visible if any of the adjacent surfaces (object’s faces)

that generate the edge where it lies is visible from the current viewpoint. The edgel

point visibility computation is

visibleconvex(x) =

{
true (nleft · v > cosθ) ∨ (nright · v > cosθ)
false otherwise

(C.3)

where nleft and nright are the normals of the left and right generator surfaces, respec-

tively.

When self-occlusion is possible, the visibility test is transformed so that it can be per-

formed by consulting a visibility look-up table (LUT). To create the visibility LUT, the

space of possible viewing directions is tessellated into discrete bins representing sets of

viewing directions. All the viewing directions of a particular bin are considered equiv-

alent for the visibility computation. Separated LUTs are allocated for each edgel point

in the model. Each bin in the visibility LUT contains a binary value indicating whether

the point is visible or not from the set of viewing directions which map to the given bin.

All the possible viewing directions are represented as points on the surface of Gaussian

sphere. In the case of surface edgel points only a hemisphere needs to be considered

since the other will always be occluded.

The selection of the tessellation strategy and the mapping of the viewing directions to

the visibility LUT’s bins was selected based on the following criteria:

• The bins should cover approximately uniform areas of the hemisphere.

• The mapping from viewing directions to bins must be efficient.

A latitudinal/longitudinal discretization of the hemisphere is employed as the tessel-

lation strategy using stereographic projection for the mapping (see fig. C.1a). The

projection of the viewing direction v = [x y z]T to 2D stereographic coordinates [f g]T

is computed by

f =
x

z + 1
(C.4)
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g =
y

z + 1
(C.5)
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Figure C.1: Mapping of viewing directions to a latitudinal/longitudinal tessellated hemi-
sphere by stereographic projection.

C.2.2 Model-to-Image Edgel Correspondence

A local search is used to find the nearest-neighbor correspondences based in a 2D dis-

similarity measure computed as

∆(x,y) = ‖x− y‖ (C.6)

where x and y are the image coordinates of two points being compared. The nearest-

neighbor search is implemented using the k-d tree data structure [28].

Since using only the position coordinates in 2D edgel images is a very weak strategy to

get good correspondences, additional geometric and photometric attributes are used.

The 2D normal of the projected 3D edge that contain the candidate edgel is included

as a geometric attribute. The normals are represented as 2D unit vectors. Two entries

are used for each edgel to cope with the ambiguity on normal direction.

The reflectance ratio computed as
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α =
Ileft− Iright
Ileft+ Iright

(C.7)

where Ileft and Iright are the intensities to both sides of the edgel or surface patch

boundary, is the photometric attribute used to determine correspondences for surface

edgels. The reflectance ratio is the photometric attribute used to determine correspon-

dences for surface edgels. The reflectance ratio was showed to be invariant to light source

conditions and orientation (except for cases of shadowing and specular reflection) for

two adjacent surface patches when its normals are nearly the same [70].

C.2.3 Pose Optimization

From the initial rough pose estimate of the object model, the program performs an itera-

tive process of pose refinement by considering the problem in an optimization framework.

Since many outliers are expected in the set of correspondences, the process use a robust

M-estimator to solve for the pose of the object. It minimizes

E(p) =
∑

i∈V (p)

ρ(zi(p)) (C.8)

where zi is the error of the ith point (edgel) in the model, ρ(z) is the robust M-estimator,

and V (p) is the set of visible model edgels at pose p with respect to the known camera

parameters.

A gradient-descent search is used to minimize E(p). The error for each correspondence

is formulated as the perpendicular distance between the 3D edgel and the line of sight

of the image edgel, s.t. as the shortest motion of the 3D edgel to align it with the image

edgel. It is computed as

zi = ‖yi − yc
i‖2. (C.9)

where zi is the 3D error for the ith edgel correspondence, yi are the coordinates for the

3D edgel, and yc
i are the coordinates of the 3D projection of the image edgel, which is

computed as

yc
i = (ui · v)v. (C.10)

where ui are the coordinate of the image edgel and v the viewing direction (see Fig-

ure C.2)
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Figure C.2: 3D error computation for a edgel correspondence.


