INSTITUTO TECNOL.OGICO Y DE ESTUDIOS SUPFRIORES DE MONTERREY

ESEDEIA OE ERADUADOS

ESTUDIO DE REACCIONES DE POLIMERIZACION
 A. TRIOXANO
 B. ACRILAMIDA

TESIS

 ORTAR MLORAOO ACADEMEO DE MA FSTHO FEV DENGIAS ZSPECIA IOAO FISICO-QUMICA PRESENTAOA FOR

MIGUEL SAL OMA TERRAZAS

$$
1966
$$

INSTITUTO TECNOLOGICO Y DE ESTUDIOS SUPERIORES DE MONTERREY

 ESCUELA DE GRADUADOS
"ESTUDIO DE REACCIONES DE POLIMERIZACION"

A) TRIOXANO
B) ACRILAMIDA

TESIS

```
PRESENTADA COMO REQUISITO PARCIAL PARA OPTAR AL
    grado academico de Maestro en Ciencias
        ESPECIALIOAD FISICO-QUIMICA
```

PRESENTADA POR
MIGUEL SALOMA TERRAZAS
1966.
Agradezco sinceramente al Dr. Ernesto Ureta, Asesor DE ESTA TESIS; SU VALIOSA ASISTENCIA.
Al instituto Tecnolobico y de Estudios Superiores de Monterrey y la Compa-nia Syntex, S.A., por el Financiamiento Económico.

RESUMEN

Parte 1.- Polimerización del Trioxano usanoo iniciadores de IIPO ANIÓNICO.

Los iniciadores estudiados fueron: fenil-sodio -FENIL-POTASIO Y NAFTIL-POTASIO.

La acción de tales iniciadores fué negativa, tal acción se trata de expligar en función del carácter débilmente básico del trioxano, que en cierta forma se contrapo ne con dichos iniciadores.

PARTE 11.- POLIMERIZACIÓN DEL TRIOXANO EN SUSPENSIÓN.
Se estudió la acción de tres ácidos diferentes (ácido sulfúrico, ácido tricloroacético, ácido acético), como iniciadores en la polimerización del trioxano en suspensión, usando vaselina líquida como medio de dispersión y dióxido de titanio como "agente de suspensión".

PARTE $111 .-$ Estudio de la relación concentración de inicia DOR-PESO MOLECULAR EN LA POLIMERIZACIÓN EN SOLUCIÓN DE LA ACRILAMIDA.

La investibación se llevó a cabo, usando persulfato de potasio como iniciador y dentro de un rango de con centraciones (iniciador) que varió de $1.1 \times 10^{-4} \mathrm{~A} \quad$ - -
$23.4 \times 10^{-4} \quad \frac{\text { MOLES }}{\text { LITRO }}$.
Los pesos moleculares promedio se determinaron por viscosimetría. la relación empirica encontrada fué:

$$
\frac{1}{[1]^{\frac{1}{2}}}=1.5 \times 10^{-4} M_{N}-15
$$

INDICE

PAGINA
RESUMEN. 111indice de figuras.vil.
INDICE DE GRAFICAS. VIII
INTRODUCCION 1
reactivos 3
PARTE 1
1).- Estudio de la polimerizacion oel trioxano USANDO SODIO NAFTALENO Y POTASIO-NAFTALENO como iniciadores 5
2),- investigación de la acción oe fenilmpota-m sio como iniciador en la polimerización - del trioxano. 9
Sifutesis del cloruro de amilo. 2
Pugificación del benceno 12
Preparacion del renilmpotasio. 12
intento de fqlimeaización. 16
PARTE II
1).- Pglimerización del Tbioxang en Suspensión. 19
a).- Polimerizagión del trioxano en suspen SION USANDO COMO INICIADOR ACIDO SULFÚ ficge 25
b).- Polimerización del trioxano en sus PENSIÓN, USANDO COMO INICIADOR ÁCI DO tricloroacético.27
c).- Polimerización del trioxano en sus PENSIÓN, USANDO ACIDO ACÉTICO COMO INICIADOR.28
2). - Caracterización de los polímeros obteni dOS EN LA POLIMERIZACIÓN DEL TRIOXANO. 28

PARTE I\|

Estudio de la relación concentración de iniCIADOR PESO MOLECULAR EN LA POLIMERIZACIÓN EN SOLUCIÓN DE LA ACRILAMIDA 35

Parte experimental 37
Det. de peso molecular 38
Discusión y Conclusiones. 43
Bibliografía 53
Curriculum Vitae. 56

INDICE DE FIGURAS

NUMERO

PAGINA
1.- Aparato para la polimerización deTrioxano.7
2.- Aparato para la Purificación del Cloruro oe Amilo. 11
3.- Aparato para la purificación de - Benceno 13
4.- Aparato para la purificación de -Fenil-Potasio 15 .

INDICE DE GRAFICAS

NLMERO

PAGINA

$$
\begin{array}{lll}
\text { 1.- } & \text { Concentración Vs. Nsp./C (Determina } \\
& \text { Ción de Viscosioad Intrinseca). . . } & 42 \\
\text { 2.- } & \text { Log. } \frac{1}{[1]} \frac{1}{2} \text { vs. Log. Mn } & 50 \\
\text { 3.-- } & \text { Peso Lolecuiar Prom. (Mn) vs. Con-- } \\
& \text { Centración de Inioiador) ([1]) . } & 51 \\
\text { 4.- } & \text { Log. }[1]^{\frac{1}{2}} \text { vs. Log. Mn. } & 52
\end{array}
$$

INTRODUCCION

El presente trabajo de investigación consta de TRES PARTES:
a).- Estudio de la polimerización del trioxano USANDO VARIOS INICIADORES DE TIPO. ANIÓNICO.
b).- Polimerización del trioxano en suspensión -
c).- Relación empírica entre la concentración de iniciador y el peso molecular promedio, en la polimerización en solución de la acerila MIDA.
a).- La polimerización del trioxano en sus diferentes tipos usando iniciadores de tipo catiónico, tales сомо $\mathrm{Fe} \mathrm{Cl}_{3} \mathrm{SN} \mathrm{CL}_{4}, \mathrm{BF}_{3}, \mathrm{SBCL}_{5} \mathrm{H}_{2} \mathrm{SO}_{4}$, YOdo, ALCL_{3} y TICL_{4}; en la cual se ha relacionado acidez del iniciador con el peso molecular promedio obtenido (25), así como la influen. cia del agua en tales sistemas de polimerización, ha sido AMPLIAMENTE INVESTIGADA.

No encontrándose referencias de que iniciadores de tipo aniónico se usaran en la polimerización del trio-xano y sabiendo que iniciadores del mismo tipo, son capa-ces de polimerizar el formaldehido (24), hacian interesante investigar el comportamiento de tales iniciadores frente al trioxano.
b).- Las grandes ventajas de la polimerización EN SUSPENSIÓN SOBRE LA POLIMERIZACIÓN EN MONÓMERO PURO, CO MO SON ENTRE OTRAS, QUE EL GRAN CALOR DE POLIMERIZACION PUEDE SER DISIPADO EFICIENTEMENTE, ASí COMO QUE SE PUEDEN obtener productos granulares facilmente filtrables, y el CONOCIMIENTO DE QUE ÁCIDOS FUERTES, TALES COMO EL CLORURO DE ZINC; GLORURO FÉRRICO ETC., DEPOLIMERIZAN AL TRIOXANO RÁPIDAMENTE A FORMALDEHIDO MONOMÉRICO, EL CUAL CUANDO ES producido de esta manera, es extremadamente reactivo y que EN AOSENCIA DE UN COMPUESTO ACEPTOR DE FORMALDEHIDO, EL MO nómero polimeriza a polioximetileno de alto peso molecular (18).

Hicieron que se planeara una investigación para ENCONTRAR EL MEDIO DE DISPERSIÓN ADECUADO PARA LLEVAR A CA BO LA POLIMERIZACIÓN EN SUSPENSIÓN, ASÍ COMO LOS INICIADOres Ácidos más efectivos en ese medio.
c). - La negesidad de controlar el peso molecular PROMEDIO EN LA POLIMERIZACIÓN EN SOLUCIÓN DE LA ACRILAMI-DA, DIO ORIGEN A QUE SE ESTUDIASE LA RELACIÓN EMPÍRIGA ENTRE EL PESO MOLECULAR PROMEDIO Y LA CONGENTRACIÓN DE INI-® CIAOOR.

REACTIVOS

Trioxano.- Matheson Coleman \& Bell
Naftaleno.- Eastman Organic Chemicals
SOD 10.- J.T. BAKER
Potasio.- J.T. BaKER
Nitrógeno. - Nitrógeno S.A., 99.99\% de pureza. alcohol n-amilico:- J. T. Baker Ciem. Co. Piridina.- J. T. Baker Chem Co.

Cloruro de tionilo.- J. T. Baker Chem. Co.
Carbonato de sodio.- J.t. Baker Chew Co.
Hidruro de litio y aluminio.- Metal hydrides inc.
Benceno.- J.t. Baker Chem. Co.
Metanol.- Productos Químicos Monterrey, S.A.
Tetrahidrofurano.- Eastman Org. Chem.
Vaselina.- J.t. Baker, Chem. Co.
$\mathrm{H}_{2} \mathrm{SO}_{4^{-}}$- Productos Químicos MTY., S. A.
Kaoline-E. Merck.
Ba S O4.- J.T. Baker Chem. CO.
Carbón act.- Unión Carbide.
Dióxido de Titanio.- J. T. Baker Chem. Co.
ac. Tricloroacético.- J.T. Baker Chem. Co.
Ac. Acético.- J.T. Baker Chem. Co.
P. Clorofenol.- Fisher Scientific Co.
tetracloroetano.- Matheson Coleman, Bell. Fenol.- J.t. Baker Chem. Co. acrilamida.- Eastman Organic Chemicals. Alcohol isopropilico.- Metheson Coleman Bell. Persulfato de Potasio.- J.t. Baker Chemical Co.

PARTE 1

1) ESTUDIO DE LA POLIMERIZACIÓN DEL TRIOXANO USANDO SO- -DIO-NAFTALENO Y POTASIO-NAFTALENO COMO INICIADORES.

En conocimiento de que los radicales iónicos aro máticos, tales como el sodio-naftaleno, inician la polimeRIzACIÓN DE ESTIRENO, BUTADIENO Y OTROS MONÓMEROS (11) Y CUYA INICIACIÓN Implica un proceso de transferencia de -electrones (12), se pensó en investigar su efectividad para iniciar la polimerización del trioxano.

Esta investigación se llevó a cabo de la siguien TE MANERA:
a).- Estudio de la acción del sodio-naftaleno PRODUCIDO EN EL MISMO SITIO DE LA REACCIÓN, A dos diferentes concentraciones, sobre el TRIOXANO.
B).- Estudio de la acción oel potasio-naftaleno PRODUCIDO EN EL MISMO SITIO DE LA REACCIÓN sobre el trioxano.
c).- Estudio de la acçión del potasio-naftaleno PRODUCIDO CON SODIO Y POTASIO EN EL MISMO sitido de reacción, sobre el trioxano.

A continuación se detalla el procedimiento expeRIMENTAL.

Parte experimental.-

a).- En un aparato como el de la figura núm. - uno se procedib a poner 2g. de trioxano (0.02 moles) 0.12g. (0.001 moles) de naftaleno y 0. 023g. (0.001 moles) de so-वIqEN EL TUBO 3; el aparato se conectó a la bomba de va- cfo y se lleno de nitrogeno, luego de lo cuál se procedio a calentar dicha parte con un baño de agua, observíndose UNA PARCIAL FUSIÓN, YA QUE QUEDABA SIN FUNOIR EL SODIO, POR lo cual se uso un baño de aceite.

Al calentar $\simeq 180.0 \mathrm{C}$ la mezcla comenzó a reflu- Jar: al cesar el calentamaento, se observo en las pequeñas ESFERITASDESODIO UNA COLORACIÓN VERDE (DEBIDO A L'A FORMA-ción de sodió naftaleno. después de un períooo de calenta MIENTO DE APROXIMADAMENTE 10 A 15 minutos Y al dejar en- FRIAR, LA MEZCLA DE SOLIDIFICO, QUEDANDO ENTRAMPADAS LAS ES feritas de sodio, persistiendo la coloración verde. En seguida se volvió a galentar con el baño de aceite a una temPERATURA APROXIMADA DE $192^{\circ} \mathrm{C}$ POR UNOS 10 MINUTOS Y AL EN- FRIARSE, SE OBSERVG DE NUEVO LA FORMACIÓN DE UN SOLIDO - blanco opalescente; el calentamiento se repitio por terce-ra vez, observindose resultados similares a los anteriores.

EL SÓlido blanco fué parcialmente soluble en - -

Fig.\# Aparato para la Polimerización de Trioxano.

AGUA, PERO SOLUBLE EN METANOL, HECHO INDICATIVO DE LA AU-SENCIA DE MATERIAL POLIMÉRICO,

Una segunda experiencia consistió en usar la mio tad de la cantidad de sodio y naftaleno que se usó en la PRIMERA: EL TRATAMIENTO FUE SIMILAR A LA ANTERIOR. LOS RE sultados obtenidos fueron semejantes a los de la primera EXPERIENCIA.
b).- Manipulindose de manera similar a las anteRIORES EXPERIENCIAS, SE USARON 20. DE TRIOXANO (O. 02 MOLES), 0.128 o. de naftaleno (0.001 moles) y 0.039 e. de potasio (0.001 moles). La temperatura máxima a la cual se lleva la mezcla de reacción fut de $2145^{\circ} \mathrm{C}$ observándose una colo RACIÓN ROJIZA Y PEQUENAS ESFERITAS dEL mETAL QUE QUEDÓ SIN reaccionar. El producto de la reacción fué soluble en meTANOL.
c).- Procediéndose de manera identica a las ante RIORES SE PUSO EN EL TUBO 3 de reacción, la misma cantidad de reactivos que en la experiencia (a) y además 0.039 e.-- (0.001 moles) de potasio. El aparato se conectó a la bomba de vaclo y posteriormente se llenó de nitróoeno, lue go de lo cual se procedió a calentar con un bano de agua, OBSERVÁNDOSE A LOS POCOS MINUTOS UNA COLORACIÓN VERDE QUE gradualmente se obscurecio. No se consumieron totalmente
el sodio y potasio. la mezcla se siguió calentando por unos 15 minutos, sin un cambio aparente.

Al enfriarse, se formó una mezcla sólida rojiza, conjuntamente con unos cristales alancos en forma de agu-jas, adheridas a las partes superiores del tubo. Luego de lo cual se procedió a calentar por espacio de 10 minutos, con subsecuentes enfriamientos, a las temperaturas de 140, 170 y $180^{\circ} \mathrm{C}$, observándose inicialmente una coloración ana-ranjada en la mezcla de reacción. Unas esferitas del me-tal, que quedó sin reaccionar, tenían una coloración ver-de, que poco a poco se fué difundiendo a la mezcla; otras de las esferitas de metal eran de color negro. El mate- rial fué soluble en metanol, lo cual indica que no hubo po limerización.
2) INVESTIGACIÓN DE LA ACCIÓN DE FENIL-POTASIO COMO INICIADOR EN LA POLIMERIZACIÓN DEL TRIOXANO.

De consideraciones similares a las del potasio-naftaleno, se investigó la acción del fenil-potasio, como posible iniciador en la polimerización del trioxano. Parte experimental.-
A). - SINTESIS Y PROCEDIMIENTOS DE PURIFICACIÓN.

Sintesis del Cloruro de amilo (10).- El cloru-ro de n-amilo, libre de 2-3 cloropentanos, fué preparado -
tratando el alcohol n-amilico con cloruro de tionilo en PRESENCIA DE PIRIDINA.

UNA SOLUCIÓN DE 440 B. (5 MOLES) DE ALCOHOL N-AMI LICO EN 435 G. (5.5 MOLES) DE PIRIDINA FUÉ tratada, MANTENIENOO A - $10^{\circ} \mathrm{C}$ La temperatura CON 772.5 G. (6.5 mOLES) dE cloruro de tionilo. La mezcla de beacción fué calentada a $104^{\circ} \mathrm{C}$. durante 6 horas (el dióxido de azufre fué liberado A $73-104^{\circ} \mathrm{C}$), al término de los cuales la mezcla de reac- CIÓN FUÉ VERTIDA SOBRE 1000 o. DE HIELO SEPARÁNDOSE DE ESTA FORMA DOS CAPAS COLOR CAFE.

La capa de haluro fué lavada con una solución de carbonato de sodio al 10\%, secada y luego fraccionada, reCOOIENDOSE LA FRACCIÓN QUE DESTILA A $106^{\circ} \mathrm{C}$. (735 MMA DE mercualo).

PUBIFIGAGIÓN y DESIILACIÓN Ab ALTO YACIO.- EL CLQRURO OE AMILO YA PRACCIONADO, OBTENIDO POREL PROCEDI-MIENTO ANTERIOR, SE PURIFICO DE LA SIGUIENTE MANERA:

En el matraz del aparato mostrado en la figura 2; $5 E$ PUSO EL CLORURO DE AMILO Y UN POCO DE HIDRURO DE LItio r aluminioi esta mezcla se congelo con aire liquido e inmediatamente el sistema se coneotó a la bomba de vacio durante 2-5 minutos, esta operación se efectuó para elimi-

Fig.\#2 Aparato para lo purificación del cloruro de amilo.

NAR LOS GASES DEL SISTEMA.

Posteriormente, se procedió a descongelar la -mezcla, se agito (por medio de un agitador magnético) y nuevamente se congeló ésta, conectándose luego a la bomba de vacio., Después de estas dos operaciones, se agitó la mezcla durante dos días efectuanoo después su destilación al vacio, para lo cual se calentó ligeramente el matraz 1 Y SE ANADIO alre liquido al "dedo frío" 2 ; los vapores de cloruro de amilo se congelaron en el dedo, cambiando des-pués el aire líquido que este contenfa por agua caliente, se fundió el cloruro de amilo y se depositó en el matraz 3. procediéndose a llenar las ámpulas 5, el cloruro de amilo destante se pasó al matraz 4 el cual posteriormente, se cerró a la flama y se desprendió de la linea de vacio.

PURIFICACIÓN DEL RENGENO. - EN UN MONTAJE COMO EL de la figura 3, se pone benceno en el matraz 1, al cual se le añaderon trozos pequeños de sodio y potasio, reflujándose durante 24 horas.

Preparación pel Fenil-Potasio.-

Fig. \#3 Aparato para la purificación de benceno.

Los compuestos organoalcalinos parecen provenir, según lo muestran Gilman y Kirby (9), de la metalación por medio del amil-potasio y no por la acción de metales alcalinos o sus aleaciones sobre el benceno.

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CL}+\mathrm{K} \rightarrow\left(\mathrm{C}_{5} \mathrm{H}_{11}\right)^{(-)} K^{(+)} \\
& \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{C}_{5} \mathrm{H}_{11} K \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} K+\mathrm{C}_{5} \mathrm{H}_{12}
\end{aligned}
$$

Conectando a la línea de vacio el aparato mos- TAADO EN LA PIGURA 4 SE EFECTUARON LAS SIOUIENTES OPERACIQ NES 8

Se puso una relación aproximada $2: 1$ de sodio y potasio (2.04 o. y 1.25 o. hespectivamente) en la parte 3 del aparato; se eliminó todo el alar por medio de la bomba de vaclo y ensequida se calentó esa porción hasta fundir la mezela la cual se depobita, libre de impurezas, en el matazz 2.

El benceno, previamente purificado se destiló a el mataaz 2 hasta aproximadamente 125 ml. yi por último se destilaron al mismo recipiente aproximadamente 2ml, de cle ruro de amilo que ya se habia preparado y se mantenfa en ampolletas cerradas al vacio. esta mezcla se aoitó durante una noche observíndose al principio que se desarrolla -

Fig.\#4 Aparato para la preparación de fenil-potasio.

UN COLOR AZUL EL CUAL, A MEDIDA QUE LA AGITACION CONTÍNUA, SE VA TORNANDO MORADO: POSTERIORMENTE SE SEPARAN DOS FA- SES: UNA LIQUIDA Y OTRA SÓLIDA.

CONSIDERANDO QUE EL FENIL-POTASIO NO ES TOTALMEN TE SOLUBLE EN BENCENO, SE LE DESTILA A LA MEZCLA DE REAC-CIÓN UN POCO DE TETRAHIDROFURANO SECO, PARA DISOLVERLO.

SE SEPARÓ EL APARATO DE LA LINEA DE VACIO, CE- RRÁNDOLO CON LA FLAMA Y SE PROCEDIO A LLENAR LAS AMPOLLE-E TAS 4 Y LA PARTE SUPERIOR DEL MISMO, HACIENDO PASAR LA MEZ CLA DE REACCIÓN A TMAVES DE UN. FILTRO DE VIDRIO POROSO QUE ESTABA ACONDICIONADO EN EL APARATO, OBTENIENDOSE UN LIQUIDO MMARILLO GRISTALINO.
D)- INTENTO DE POLIMERIZAGION.

EL ESTUDIO DE POLIMERIZACIÓN SE LLEVÓ A CABO EN EL APARATO MOSTRADO EN LA FIGURA 1, EL CUAL SE HALLABA COMECTADO A LA BOMEA DE VACIO.

EN EL TUBO 1 SE PUSO EL TRIOXANO MIENTRAS QUE EL "dedo fafo' 2 se lleno con aine liquido, a continuación se CALENTO LIGERAMENTE EL TRIOXANO EL CUAL, AL SUBLIMARSE,SE DEPOSITÓ EN LA PAREO FRIA DEL DEDO: ENTONCES SE PROCEDIÓ A CAMBIAR AIRE LIQUIDO (CONTENIOO EN EL DEDO FRIO) POR AOUA CALIENTE, PARA FUNOIR EL TRIOXANO Y DEPOSITARLO EN EL TUBO
3. Finalmente se mompió la ímpula 4 que contenia el fe- -nil-potasio vertiendo su contenido en el tubo 3, pudiendo observar inicialmente una decoloración de la solución de -FENIL-POTASIO QUE, POSTERIORMENTE, AL ENTRAR EN CONTACTOCON MAYOR GANTIDAO DE TRIOXANO LA SOLUCION ADQUIERE UN COlor amarillo de aspecto lioeramente turbio. se dejó reposar durante 20 minutos, se tomaron dos muestras para averi guar si se habla efectuado uma polimerización (solubilidad en metanol), obteniendo resultados negativos.

PARTE 11.

1) POLIMERIZACION DE TRIOXANO EN SUSPENSION.

Trabajos desarrollados por Walker (18) mostraron que cuando el trioxano es calentado en un sistema sustan-. cialmente anhidro, en presencia de ácioos fuertes, tales como el sulfúrico, clorhidico o materiales Acidos,tales -como el cloruro de zinc, cloruro férrico, etc., es rápida-mente depdoimerizado a formaldehido monomérico, el cual -cuando es producido de esta manera, es extremadamente reac tivo y en ausencia de un compuesto aceptor de formaldehido, el monbmero polimeriza a polioximetileno de alto peso molecular.

Basado en lo anterior y tratando de obtener un -producto de mejores caracteristicas, se seleccioné un proceso de polimerizacion que favoreciese o ayudase a tal fin, - sin apartarse substaneialmente del principio anteryor, o -sea, el de una polimerzacion sin disolventes. Como es sabl do, la polimerización en suspensión (un monómero o mezcla de monómeros disperados por una fuerte noitación mecínica, en ootas suspendidas en una segunda fase líquida, en las -que ambos, monómero y pol ímero son esencialmentecinsolubles) tiene brandes ventajas sobre la polimerización en monómero puro como son entre otras, que el oran calor de polimeriza-

CIÓN PUEDE SER DISIPADO EFICIENTEMENTE, ASI COMO QUE SE PUEDEN OBTENER PRODUCTOS GRANULARES FACILMENTE FILTRABLES. Por lo que se refiere al mecanismo de polimerización, éste es el mismo que el de la polimerización en monbmero puro, tal como lo mostraron Trommsdorff, Kohle y Lagally (19).

Trabajos relacionados al respecto (polimerización EN SUSPENGION) NO SE ENCONTRARON, YA QUE ESTOS HAN SIDO POCO USADOS FIIERA DEL CAMPO DE LOS MONÓMEROS VINILICOS O ETILENI cos.

PARTE EXPERIMENTAL.-

La fase líquioa que se selecciono para la disperSION, FUÉ VASELINA Y EL INICIADOR ÁCIDO SULFÚRICO.

LoS estudios de polimerización se llevaron a cabo EN VASOS DE PRECIPITADO DE 250 ML . Y SE USO AGITACIÓN MECAniga. La relación en peso de vaselina-trioxano, se varió de 5:1 a 10:1 (25 ML. de Vaselina y 2 a 4 Gr. de trioxano).

LaS PRIMERAS OBSERVACIONES GENERALES AL RESPECTO FUERON: EL ÁCIDO SULFÚRICO CONCENTRADO (98\%) REACCIONA CON LA VASELINA IMPARTIÉNDOLE UN GALOR AMARILLO; AL AQREGAR EL ACIDO SULFÚRICO A LA SUSPENSION SE DESPRENDía UNA CANTIDAD APRECIABLE DE FORMALDEHIDO: ESTO ERA NOTORIO, CONFORME AUMEN taba la temperatura; el polimero obtenido fue de color amam RILLO.

Posteriormente, se usb una relación molar menor de ÁCIDO SULFÚRICO, $A \simeq 75^{\circ}$, USANDO 4.0 G. DE TRIOXANO Y 1 ML . DE ÅCIDO SULFÚRICO AL 49% EN 25 ML . DE VASELINA.

Primeramente se añadi8 el trioxano; después de su total fusión se agregó el ícido sulfúricóy no se obtuvo - POLIMERIZACIÓN; GRAN PARTE DEL TRIOXANO SE SUBLIMÓ O SE DESPRENDIO COMO FORMALOEHIDO.

Despues se procedib en forma inversa: a 25 ml . de Vaselina $75^{\circ} \mathrm{C}$ se les agrego 1 ml . de ácido sulfúrico al 49% y en sebuida 3.5 g. oe trioxano, observańdose en menos de un MINUTO LA FORMACIÓN DE UN PRECIPITADO BLANCO Y EL DESPRENDIMIENTO DE FORMALDEHIDO DETECTADO PORISU OLOR GARACTERISTICO; ALGO dE TRIOXANO SE SUBLIMA Y CONDENSA EN LAS PAREDES DEL VA so. Desputs de 7 minutos oe calentamiento se observo una ma Sa blanca admerioa al fondo del vasoi la consistencia de la MASA BLANCA ERA DURA.

En Pruebas posteriores similares a las anteriores, SE FUE DISMINUYENDO LA CANTIDAD DE TRIOXANO (3.0, 2.5 y 2.0 6.) OBSERVANDO EN LA ÚLTIMA, FORMACIÓN DE GRXNULOS BLANCOS, APRO XIMADAMENTE A 1 MINUTO DE INICIADA LA REACCIÓN; AL AUMENTAR la agitación para tratar de mantenerlos en suspensión, estos (LOS GRÁNULOS) AL inGIOIR CONTRA LAS PAREDES DEL VASO SE ADHI rieron a ellas. No se observó la formación de cristales de

TRIOXANO EN LA PARTE SUPERIOR DEL VASO. DESPUES DE 40 MINU TOS EL PREGIPITADO TIENE CONSISTENCIA GOMOSA Y UN COLOR -LIGERAMENTE PARDO, DESPRENDIENDOSE UN INTENSO OLOR PICANTE (formaldehido). habiéndose comprobado que es posible lle-VAR A CABO POLIMERIZACIONES DE TRIOXANO EN EL SISTEMA VASELI na dicido sulfurico, se tratb de mantener las particulas en SUSPENSIÓn, para lo cual se hizo uso de un magente de suspen sidn".

LOS AGENTES DE SUSPENSION PROBADOS FUERON:
A).- Koalín.
B).- Sulfato de bario.
c).- Carbón activado.
D).- DIÓxioo DE TITANIO.

A Continuación se pasa a detallar los resultados OBTENIDOS CON CADA UNO DE ELLOS.
a).- Koalin.- Los estudios se llevaron a cabo - USANDO UNA RELACIÓN VASELINA - TRIOXANO DE 10:1 (25 mL. DE VASELINAY 2 G. DE TRIOXANO, COMO INICIADOR A $=75^{\circ} \mathrm{C} 0 \mathrm{SEA}$ EN CONDICIONES SIMILARES A LAS ANTERIORES POLIMERIZACIONES.La rellación en peso de koalín usada varió de 0.01% a 1.00 \% (en base al medio de dispersión).

SE NOTO UN AUMENTO EN LA CANTIDAD DE ORANULOS - -
formados conforme se aument δ el porcentaje de Kaolíni sin Embargo, NO SE LOGRÓ EN NINGUNA POLIMERIZACIÓN MANTENER LA SUSPENSIÓN DURANTE TODO EL CURSO DE LA MISMA:

En polimerizaciones posteriores, en las que se USÓ MÁS DEL 1\% dE KAOLIN, LA CANTIDAD FUE dEMASIADO GRANDE ya que se sedimento en el. mondo del vaso,
e).- Sulfato de Bario.- En las polimerizaciones en las que se probó el sulfato de bario como agente de sus PENSIÓN, SE USÓ UNA RELAGIón yaselina-trioxano de 1.15 Y 0.21 MOLES DE ÁCIDO SULFÚRICO POR MOL DE TRIOXANO.

LOS RESULTADOS FUERON SIMILARES A LOS OBTENIDOS con el Kaolín.
c).- Carbón activado.- Al probarse esta subtancia COMO AGENTE DE SUSPENSIÓN EE USO UNA RELACIÓN VASELINA-TROXANO DE 15:1 Y 0. 21 MOLES DE ACIDO SULFÚRICO POR MOL OE -TRIOXANO COMO INICIADOR. EN UNA POLIMERIZACIÓN CON 0.02% DE CARBÓN ACTIVO, SE FORMO UNA SUSPENSIÓN, AUNQUE UNA PARTE minima se peg en las paredes del vaso, esto debido posiblem mente a una deficiente agitación:

EN LA POLIMERIZACIÓN USANDO 0.29\% dE CARBÓN ACTIvo Y UNA RELACIÓN VASELINA - TRIOXANO DE 12: 1 Y 0.16 mOLES
de Ácido sulfúrico por mol de trioxano a una temperatura APROXIMADAMENTE DE $75^{\circ} \mathrm{C}$ SE LLEGÓ A FORMAR UNA SUSPENSIÓN, aunque algo se adhirió a las paredes y el fondo del vaso.

AUNQUE los resultados obtenidos fueron más o menos buenos, el carbón activo tiene como inconveniente ev EL COLOR QUE IMPARTE AL POLÍMERO FORMADO.
D).- DÍ́XIDO DE TITANIO.-EL DIÓXIDO DE TITANIO SE ESTUDIÓ A DIFERENTES CONCENTRACIONES.
10.- Polimerización a $70^{\circ} \mathrm{C}$ con una relación vase LINA TRIOXANO DE $10: 1$ y 0.42 MOLES DE ÁCIDO SULFÚRICO CONCENTRADO POR MOL DE TRIOXANO, Y 0.25% DE DIÓXIDO DE TITANIO (base del medio de dispersión). Se apreció que la canTIDAD DE DIÓXIDO dE tITANIO FUÉ demasiado grande ya que ÉSTE SE SEOIMENTÓ EN EL FONDO.
20. - Polimerización a $-70^{\circ} \mathrm{C}$ con una relación va SELINA - TRIOXANO dE 10:1 y 0.21 moles de sulfúrico al 49\% POR MOL DE TRIOXANO, CON 0.31% DE DIÓXIDO DE TITANIO; CON esta relación se formaron perlitas que después de un corto tiempo se adhirieron a las paredes y fondo del vaso.
30.- Polimerización a $-32^{\circ} \mathrm{C}$ a una relación vase LINA - TRIOXANO DE $15: 1$ y 0.21 mOLES dE SULFÚRICO AL 49\% POR MOL DE TRIOXANO, CON . 02% DE DIÓXIDO DE TITANIO; ÉSTE

SE DISPERSÓ TOTALMENTE, FORMÁNDOSE PEQUENOS GRÁNULOS; LOGRÓ FORMARSE UNA SUSPENSION AL AGREGAR EL TRIOXANO: AL CABO DE MEDIA HORA CASI TODO EL TRIOXANO HABIA POLIMERIZADO, LOS gránulos de polimero se agruparon, una parte oel polimero QUEOठ ADHERIDO A LAS PAREDES Y FONDO DEL VASO.
40.- EN la cuarta polimerización se encontró la relación apropiada para llevar a cabo la suspensión. La prueba se realizó a una temperatura de $\simeq 75-80^{\circ} \mathrm{C}$; una rela CIÓN VASELINA-TRIOXANO DE 15:1; 0.21 mOLES dE SULFÚRICO AL 49\% POR MOL DE TRIOXANO, USÁNDOSE 0.029% DE DIOXIDO DE TITANIO.

Para lograr una buena dispersión del dióxido de TITANIO EN EL MEOIO (VASELINA) ES NECESARIO SACARLO PREVIA MENTE $\left(150^{\circ} \mathrm{C}\right)$.

HABI ÉNOOSE CONSEQUIDO LA FORMACIÓN DE UNA SUSPEN SIón APROPIADA EN VASELINA USANDO DIOXIDO DE TITANIO COMO agente de suspensión la siguiente parte del trabajo consis TIO EN PROBAR DIFERENTES INICIADORES:
A).- Acido sulfúrico a diferentes relaciones mola RES.
B).- Acido TricloroacEtico.
c).- ACIDO ACETICO.

A).- Polimerización del trioxano en suspensión usando COMO INICIADOR ÁCIDO SULFÚRICO.

Las pruebas de polimerización desarrolladas con el ác. sulfúrico como iniciador fueron a diferentes concen traciones en agua y tetrahidrof urano, a una misma temperatura y tiempo de polimerización.

A continuación se detallan cada una de las polimerizaciones y los resultados obtenidos (Tabla 1) y finalmente las técnicas seguidas en la experimentación.

Condiciones de polimerización: Temperatura am- biente ($\cong 29^{\circ} \mathrm{C}$); Tiempo de polimerización: 1 hora; 0.029\% de dióxioo de titanio y una relación vaselina-trioxano de 15:1.

En las. pruebas en las que se usó tetrahidrofura. no se tuvieron los siguientes resultados: (Tabla 2). Se usarón estas relaciones molares con el fin de comparar su comportamiento con respecto a las anteriores pruebas.

Nótese que la relación 0.042 moles de ácido sulfúrico por mol de trioxano con ácido sulfúrico al 19.6\% se obtuvo el mayor porcentaje de polimerización.

El procedimiento para la separación del polimero fué el siguiente: la vaselina se separa por decantación, -

TABLA \# 2

\% Promedio oe polimerización obtenido a diferentes relacio nes molares de ácido sulfúrico en tetrahidrofurano y trioXANO.

Moles de acido Sulfúrico/Mol de Trioxano \% Promedio dé
Polimerización
0.042 (ac. Sulfúrico 19.6% En TETRAHIDRO $\begin{gathered}\text { furano }\end{gathered}$
0.019 (" 8.9\% ") 16.81
después de escurrir el vaso perfectamente, se le agrega 25 ml. de éter de petróleo, se agita por un tiempo, se decanta y se vuelve a mgregar una cantidad igual de éter -agitando como en la vez anterior y finalmente decantando. De esta manera se elimina la vaselina del polímero. Poste riormente se le agrega 25 ml. de metanol, se agita y se FILTRA EN UN GRISOL DE VIDRIO POROSO; SE LAVA CON APROXIMA damente 10ml. de metanol Y se seca a peso constante bajo UNA LÁMPARA DE RAYOS INFRARROJOS ($\approx 55^{\circ} \mathrm{C}$).

EL POLIMERO OBTENIDO ES UN POLVO BLANCO INSOLU-ble en agua.
B).- POLIMERIZACION DEL TRIOXANO EN SUSPENSIÓN USANDO COMO INICIADOR ÁCIDO TRICLORO ACÉTICO.

LAS CONOICIONES DE POLIMERIZACIÓN FUERON LAS SIm GUIENTES:
1.- Relación vaselina-trioxano 15:1;0.029 de DIÓXIDO DE TITANIO; TEMPERATURA AMBIENTE ($\left.=31^{\circ} \mathrm{C}\right)$; TIEMPO de polimerización: 1 hora y 0.0206 moles de acido de tri-m CLOROACÉTICO POR MOL DE TRIOXANO.

La cantidad de material insoluble en metanol fué INSIGNIFICANTE; EN VISTA DE LO ANTERIOR SE PROCEDIÓ A REPE TIR LA ANTERIOR POLIMERIZACIÓN EN LAS MISMAS CONDICIONES:

CAMBIANDO ÚNICAMENTE EL TIEMPO DE POLIMERIZACIÓN A 5 HORAS: el resultado fué el mismo.

En estas pruebas de polimerización el ácido triCLOROACETICO PRIMERAMENTE SE DISOLVIO EN LA VASELINA, LUEGO DE LO CUAL SE AGREGO EL DIÓXIDO DE TITANIO Y FINALMENTE EL TRIOXANO.
c).- POLIMERIZACIÓN DEL TRIOXANO EN SUSPENSIÓN, USANDO ÁCIDO ACÉTICO COMO INICIADOR.

Se usó una relación vaselina - Trioxano de 15:1; 0.029% de DÍ́xIDO de titanio, temperatura ambiente - - - ($\approx 30^{\circ} \mathrm{C}$); TIEMPO OE POLIMERIZACIÓN: 1 HORA; 0.394 MOLES DE ÁCido acético/mol de trioxano. No se obtuvo polimero. al REPETIRSE LAS ANTERIORES CONDICIONES A UN TIEMPO DE 5 HO-ras se obtuvieron. resultados semejantes.
2.- Caracterización de los polimeros obtenidos EN La POLIMERIZACIÓN DEL TrIoxano.

Para la caracterización de los polimeros obTENIDOS EN LAS ANTERIORES POLIMERIZACIONES SE TRATO DE DETERMINAR SU VISCOSIDAD INTRINSECA, LA CUAL PERMITE CALCU-LAR EL PESO MOLECULAR: SEGÚN LA ECUACIÓN GENERAL: - - [N] - K M^{A} (no se encontraron en la literatura valores de K y a, pero de todas maneras se deseaba tener por lo menos

UNA IDEA APROXIMADA DE LOS PESOS MOLECULARES.
LOS disolventes usados para la determinación de viscosidad fueron los siguientes:
A).- P-GLOROFENOL A $60^{\circ} \mathrm{C}\left(\begin{array}{lll}1 & \text { Y }\end{array}\right)$
B).- P-CLOROFENOL CONTENIENDO 2\% EN PESO DE α PINE NO A $60^{\circ} \mathrm{C}(3,4$ y 5$)$
c).- TETRACLOROETANO-FENOL EN RELACIÓN 3:1 A -$60^{\circ} \mathrm{C}$ (6).
D).- TETRACLOROETANOfFENOL A DIFERENTES RELACIO-E NES.

A continuación se detallan los resultados obtenidos con gada uno de ellos.
A).- P-CLOROFENOL A $60^{\circ} \mathrm{C}$. EL DISOLVENTE NO AC- tuó a la temperatura ambiente, Cuando se calento a $90^{\circ} \mathrm{C}$ SE CONSIGUIO UNA CASI TOTALIDAD DISOLUCIÓN, PERO ÉSTA TOMO UN COLORISPARDO OBSCURO.
B).- Tratando deconseguir una disolución complemTA SE PROB6 EL P-CLOROFENOL CONTENIENDO 2\% EN PESO DE α PI-N NENO, SUU COMPORTAMIENTO FUE SEMEJANTE AL P-CLOROFENOL PU- RO. NO OBSTANTE ELLO SE PROBÓ LA DISOLUCIÓN EN LA DETERMInacion de la viscosidad intrinseca.
C).- EN ESTE DISOLVENTE TAMPOCO SE CONSIGUIO DISOL

VER COMPLETAMENTE LA MUESTRA DE POLIMERO. TAMBIÉN SE TRAtó de determinar viscosidad intrinseca de las disoluciones OBTENIDAS ENCONTRÁNDOSE RESULTADOS SIMILARES A LOS ANTERIQ RES.
D).- Puesto que la cantidad de polfmero disuelto en la mezcla de tetracloroetano-fenol en la relación 3:1era mayor que en cualquiera de los anteriores disolventes ensayados, se pensó que variando la proporción de la mez-cla, se podrla encontrar la adecuada para llevar a cabo la DISOLUCIÓN COMPLETA.

Las melaciones que se probaron fueron: 1:1, 2:1, 4:1 5:1 Y CON NINQUNA SE OBTUVO UNA DISOLUCIÓN COMPLETA, AÚN EN LOS CASOS EN QUE SE CALENTÓ HASTA $150^{\circ} \mathrm{C}$ Y POR TIEMPOS MAYORES DE 4 HORAS.

DETERMINACIÓN DE LA VISCOSIDAO INTRINSECA.- LA VISCOSIDAD INTRINSECA [N] ESTÁ DADA POR

$$
\begin{aligned}
& {[N]=\operatorname{LIM}_{C \rightarrow 0} N_{1 N H}=\operatorname{Lim}_{C \rightarrow 0} N_{S P} / C} \\
& N_{1 N H}=L N \quad N_{R E L} / C \quad N_{S P}=N_{R E L}-1 \\
& N_{\text {inh }}-\text { Viscosidad inherente } \\
& N_{\text {SP }}=\text { Viscosidad específica }
\end{aligned}
$$

$$
\begin{aligned}
N_{R E L} & =\text { VISCOSIDAD RELATIVA } \\
C & =\text { CONCENTRACIÓN. }
\end{aligned}
$$

La viscosidad intrinseca se obtiene graficando va LORES DE VISCOSIDAD INHERENTE CONTRA CONCENTRACIÓN Y EXTRA POLANDO A CONCENTRACIÓN CERO.

La determinación de la viscosidad intrínseca debe estar basada sobre un mínimo de tres mediciones de visCOSIDAD INHERENTE O ESPECIFICA A DIfERENTES CONCENTRACIO-NES: ES PREFERIBLE HACER 4 ó 5 mEDICIONES. LAS CONCENTRACiones deben ser de 0.1 a 0.5 g. por 100 ml. de disolvente.

DEIERMINACIÓN DE VISCOSIDAD BELAIIVA.- LA VISCOSIdAD RELATIVA PUEDE SER TOMADA COMO LA RELACIÓN DEL TIEMpo de flujo de la solución de un polimero a la del solvenTE PURO, EN EL MISMO VISCOSimetro Y LA MISMA TEMPERATU-RA.

Las mediciones de la viscosidad relativa se efec tUARON CONVENIENTEMENTE EN UN BAÑO A TEMPERATURA CONSTANTE.

Se usaron viscosimetros Cannon-Fenske serie 150. Estos viscosimetros Ostwald modificados, fueron desarrolla dos por los Dres. M. R. Fenske y M. R. Cannon de la Univer sidad del Estado de pensylvania.

Procedimiento (7).- Pesar una muestra seca de po límero de más o menos 125 mg. según la concentración que se desee, en un frasco Erlen-Meyer de 50ml. de boca ancha CON TAPÓN ESMERILADO. AGREGAR 25 mL . DE SOLVENTE POR ME-dio de una pipeta, se agita y se calienta.

Cuando la muestra se ha disuelto, filtrar a traVÉS DE UN CRISOL DE VIDRIO POROSO SIN APLICAR SUCCIÓN, RECIBIENDO EN UN VASO de 50 mL .

Pipetear 5 ml. de solvente y verterlo en el viscosimetro. Sumergir el viscosimetro en el baño de tempera tura constante en una posición vertical sujetándolo con UNAS PINZAS. ESPERAR A QUE EL VISCOSímETRO PERMANEZCA EN el baño lo suficientemente para que el contenido alcance la temperatura del baño; ordinariamente son 5 minutos su-ficientes.

Después que el disolvente ha obtenido la tempera tura del baño, aplicar presión a la parte superior del bra ZO ANCHO DEL VISCOSIMETRO O SUCCIÓN AL CAPILAR, hASTA QUE EL LIQUIdo haya llenado el primer bulbo y esté alrededor de 1 Cm. arriba de la marca entre los bulbos. Verificar SI no hay burbujas entrampadas. permitir que el liquido flura libremente Y determinar el tiempo que taroa el menis CO EN PASAR DE LA MARCA SUPERIOR A LA INFERIOR. REGISTRAR
este tiempo como el tiempo de flujo deldisnlventef volver A REPETIR LA OPERAGIÓN ANTERIOR Y MEOIR EL TIEMPO, EL CUAL deberá concordar con el primero dentro de 0. 2 segundos; si NO ES ASÍ, CONTINUAR HASTA QUE TRES TIEMPOS DE FLUJO CON-cuerden dentro de 0.2 segundos.

De la solución filtrada anterior, pipetear 5 mb. que se verterán en el mismo viscosfmetro, el cual ha sioo EAVADO Y SECADO; PONERLO EN EL BAÑO DE TEMPERATURA CONSTAN te, permitir que se llegue a la temperatura de equilibrio Y DETERMINAR EL TIEMPO DE FLUJO COMO SE DESCRIBIO ANTERIOR menteg degerán obtenerse valores que concuerden dentro de los 0.2 segundos; la viscosidad relativa está dada por la SIOUIENTE RELACIÓN:

$$
N_{R E L}=\frac{T}{T_{O}}
$$

T_{0} - tiempo de flujo del solvente en sequndos t-tiempo de flujo de la solución en segundos

AL PROCEDER A LA DETERMINACIÓN DE VISCOSIDAD RELATIVA A diferentes concentraciones de alqunas de las mues tras (B Y C) SE ENCONTRÓ UNA DIFERENCIA MINIMA EN TIEMPO ENTRE LA DEL SOLVENTE PURO Y LA DISOLUCIÓN A UNA CONCENTRA CIÓN DE $0.500 \mathrm{GR} / 100 \mathrm{ML}$, APROXIMADAMENTE 1.50 SEGUNOOS Ydesde luego a una concentración menor ya no se aprecia di-
ferencia alguna. Todo lo cual hace imposible la determina ción de la viscosidad intrínseca.

PARTE 111
ESTUDIO DE LA RELACION CONCENTRACION DE INICIADOR - PESO MOLECULAR EN LA POLIMERIZACION EN SOLUCION DE LA ACRILAMIDA

Puesto que la longitud de la cadena cinética -(V), representa el número promedio de monómeros reaccionan do con un dado centro activo, desde su iniciación a su ter minación y cuya expresión matemática, para una polimerización por radicales libres está dada por:

$$
\left.V=\left[\begin{array}{llll}
K_{P} / 2 & (F & K_{D} & K_{T}
\end{array}\right)^{\frac{1}{2}}\right][M] /[1]^{\frac{1}{2}}
$$

$K_{p}=$ constante de la velocidad de terminación.
f = factor que representa la fracción de radicales prima rios que inician cadenas.
K_{D} - constante de velocidad pero la descomposición de los radicales por molécula de iniciador.
K_{e} - constante de la velocidad de terminación.
[M] - concentración de monómero moles/lt. [1] - concentración del iniciador Moles

Y asumiendo que la terminación ocurre por combinación de radicales; cada molécula de polimero formado en una polimerización iniciada por un mono-radical, consistirá de dos cadenas cinéticas, generadas por dos radicales -

PRIMARIOS, DIFERENTES ENTRE SI.

$$
\bar{X}_{N}=2 v \quad Z_{N}=\begin{aligned}
& \text { NÚMERO PROMEDIO OE LA } \\
& \\
& \text { POLIMERIZACIÓN. }
\end{aligned}
$$

Esta consideración té́rica ha sido investigada EN DIFERENTES SISTEMAS DE POLIMERIZACIÓN; COMO EN LA DEL ESTIRENO NO DILUIDO, USANDO COMO INICIADOR PERÓXIDO DE EEN ZOILO (14), EN LA QUE SE ENCONTRÓ GRANDES DESVIACICNES, A MUY ALTAS O BAJAS CONCENTRACIONES DE INIGIADOR: EN LA POLI MERIZACIÓN DEL METILMETRACRILATO NO DILUldO (15), EL GRADO de polimerización es muy cercano a 2 para ciertos iniciado RES, PERO NO PARA OTROS: PARA EL ACETATO DE VINILO LOS GRA DOS DE POLIMERIZACIÓN OBTENIDOS, SON MENORES A DOS VECES la longitud de la cadena cinética.

POR ESTO, ERA INTERESANTE INVESTIGAR EL COMPORTA miento al respecto, en la polimerización en solución de la ACRILAMIDA, INICIADA CON PERSULFATO DE POTASIO.

Era interesante conocer la posibilidad de contro Lar el peso molecular de la poliacrilamida, ya que el po-LIACRILATO DE SODIO, OBTENIDO A PARTIR DE ELLA, SE ESTUOIA ría en polimerizaciones en suspensión (agente de suspen- SIÓN).

El estudio se llevó a cabo a seis oiferentes con

CENTRACIONES DE INIGIADOR, MANTENIENDO CONSTANTE LAS DE--más variables. las oeterminaciones de peso molecular (pro MEDIO EN PESO), SE HICIERON POR MEDIO DE MEOICIONES DE VIS cosidad intrínseca, la cual se relaciona con el peso moleCULAR POR MEDIO de la ecuación: (17)

$$
\begin{aligned}
& {[N]=3.73 \times 10^{-4} \mathrm{M}^{0: 06}} \\
& {[N]=\text { VISCOSIDAD INTRINSECA }} \\
& M=\text { PESO MOLECULAR }
\end{aligned}
$$

Parte experimental:-

POLIMERIZACIÓN DE LA ACRILAMIDA (17).- EN UN MAtraz de tres bocas de un litro, equipado con agitador, entrada de gas, termómetro y condensador, se pone 51.8 g. de ACRILAMIDA Y 414.7 g. de agua destilada. La solución de ACRILAMIDA ES AGITADA Y CALENTADA A 68° bajo una rápida co rriente de nitrógeno. Posteriormente se agregan 7.7 g. de alCohol isopropilico y la cantioad de persulfato de potanSIO ADECUADA, QUE EN ESTE GASO PARTIGULAR VARIÓ dE 0.015 G. A:0:300 g. la temperatura de reacción se eleva a - -75-800 Y ES MANTENIDA CALENTANOO POR MEOIO DE UN BAÑO dU-rante 2 horas. El producto se obtiene en la forma de una SOLUCIÓN INCOLORA DE MUY ALTA VISCOSIDAD. EL POLIMERO ÉS
precipitado en metanol y lavado bien con el mismo, secándo lo al vacío a $50^{\circ} \mathrm{C}$.

A continuación se detalla la gantidad de iniciador que se usó en cada una de las polimerizaciones.

DETERMINACION DE PESO MOLECULAR.-
Se lleva a cabo determinando la viscosidad in-trinseca en una solución in de nitrato de sodio a $30^{\circ} \mathrm{C}$. Siguiendo el procedimiento que se detalla en la parte $\|$

En la tabla 3 se detallan los valores obtenidos en la determinación de viscosidad relativa a diferentes concentraciones para cada uno de los polimeros obtenidos.

Los valores de $N_{\text {sp }} / C$ graficados contra concentra ción y extrapolados a concentración cero para cada polime-
ro es mostrado en la Gráfica número 1.

La Tabla \# 4 muestra los valores de viscosidad Intrinseca, peso molecular y concentraciones del iniciador EN MOLES POR LITRO.

TABLA \# 3.
VISCOSIDAD DE LOS POLIMEROS Y $N_{\text {SP }} / C$ a diferentes concentraciones.
Concentración de la Viscosidad Viscosidad MUESTRA SOLUCION EN G/100 ML. RELATIVA ESPECIfica NSP/C (C) (N_{SP})

1

2

3

4

5

6
0.500
0.333
0.250
0.125
2.51
1.88
1.64
1.29
1.51
0.88
0.64
0.29
3.02
2.67
2.56
2.32
0.500
0.333
0.250
0.125
2.30
1.79
1.56
1.24
1.30
0.79
0.56
0.24
2.60
2. 39
2.24
0.500
0.333
0.250
0.125
1.96
1.60
1.44
1.20
0.96
0.60
0.44
0.20
1.92
1.82
1.76
1.54
0.500
0.333
0.250
0.125
1.91
1.56
1.42
0.91
1.82
$0.56 \quad 1.70$
0.42
1.66
0.19
1.46
0.500
1.85
1.53
1.39
1.20

0.85	1.70
0.53	1.61
0.39	1.56
0.20	1.54

0.500
1.85
1.53
1.38
1.16
0.85
0.53
0.38
0.16
1.70
0.333
0.250
0.125
1.61
1.52
1.23

TABLA \#4

Viscosidad intrinseca y Peso molecular Promedio de los Polimeros Obtenidos a Diferentes Congentraciones de -INICIADOR.

Muestra	(N)	Peso Molecular promedio	Concentración DEL INICIADOR en Moles/Litro
\# 1	2.10	4.81×10^{5}	0.00011
\#2	1.90	4.14×105	0.00037
\# 3	1.60	3.19×10^{5}	0.00074
\# 4	1.50	2.89×10^{5}	0.00117
\# 5	1.46	2.77×10^{5}	0.00149
\# 6	1.34	2.43×10^{5}	0.00234

GRAFICA NO. 1
CONCENTRACION VS. Nsp/C
(DETERMINACION DE VISCOSIDAD INTRINSECA)

DISCUSION Y CONCLUSIONES

PARTE 1

LOS RESULTADOS OBTENIDOS EN LOS INTENTOS DE POLIMERIZACIÓN IÓNIGA DEL TRIOXANO, CON NAFTIL-SODIO, NAFTIL POTASIO PUEDEN EXPLICARSE, GASADOS EN LOS TRABAJOS SOBRE Las polimerizaciones iónicas de monómeros vinflicos oe ma yo y Wallino (20), que aunque no se trata de la misma gla SE de monómero que en este caso, sirve de base para su in terpretación. Tales trabajos mostraron que en monómeros VINfLICOS, LOS SUBSTITUYENTES MÁS ELECTROPOSITIVOS CONFIE ren una carga negativa sobre la insaturación o carbones insaturados, favoreciendo la polimerización catiónicai POR OTRA PARTE, LOS SUBSTITUYENTES ELECTRONEGATIVOS TIENden a jalar electrones del grupo etilénico, favoreciendo LA POLIMERIZACIÓN ANIÓNICA.

Estudios de la depolimerización de soluciones ACUOSAS DE TRIOXANO A $40^{\circ} \mathrm{C}$ CON RCIDO PERCLÓRICO SOLO Y EN presencia de perclorato de sodio, desarrollados por paul (21), FUERON CONSISTENTES CON LA HIPÓTESIS DE QUE EL TRIOXANO FUNCIONA COMO UNA BASE DÉBIL Y QUE LA ETAPA DETERMI NANTE CONSISTE EN UNA LENTA TRANSPOSICIÓN Y DESCOMPOSI- CIÓN DEL IÓN ACIDO CONJUGADO.

SIENDO EL NAFTIL-SODIO, NAFTIL-POTASIO Y FENIL-

POTASIO INICIADORES DE TIPO ANIÓNICO, SE CONTRAPONEN EN CIERTA FORMA CON EL CARÁCTER BÁSICO DEL TRIOXANO, INHIBIEN DOSE UA ACCIÓN DEL INICIADOR PARA ROMPER EL ANILLO DEL TRIOXANO Y POSTERIOR POLIMERIZACIÓN.

EL ESTUDIO DESARROLLADO SE JUSTIFICA, POR EL HECHO DE QUE ALQUNOS MONÓMEROS CON CIERTO CARÅGTER BRSICO -SON POLIMERIZADOS POR INICIADORES ANIÓNICOS, COMO ES EL CA SO DE LA CAPROLACTAMA (22).

Cabe tambitn mencionar que el formaldehido monó MERICO SE PUEDE POLIMERIZAR USANDO INICIADORES ANIÓNICOS (24).

PARTE 11

EL ESTUDIO QUE SE DESARROLLO DESPUES DE INVESTIgar la posibilidad de llevar a cabo polimerizaciones del TRIOXANO EN SUSPENSION USANDO ACIDO SULFÚRICO COMO INICIADOR, FUE PROBAR UN ACIDO ORGÁNICO FUERTE Y OTRO DEBIL, COMO LO SON EL TRICLOROACETICO Y ACETICO RESPECTIVAMENTE:

El hecho de usar un ícido sulfúrico diluidoo, fué CON EL FIN DE NO OBTENER UN MATERIAL PLASTICO COLOREADO, debido a la acción oel sulfúrico sobre la vaselina, por om TRO LADO TRATANDO DE MANTENER EL SISTEMA ANHIORO, PERO AL MISMO TIEMPO LO SUFICIENTEMENTE POLAR PARA FAVORECER LA -POLIMEHIZACIÓN, SE USÓ TETRAHIDROFURANO.

El aSPECTO SIGNIFICATIVO EN ESTE CASO ES LA de UN MAYOR PORCENTAJE DE POLIMERACIÓN, CUANDO SE USA UNA RElación molar menor de ícido sulfúrico/trioxano, existiendo UNA RELACION DEFINIDA (0.042), DESPUES DE LA CUAL EL POR-W CENTAJE COMIENZA A DISMINUIR.

El proceso de polimeración tiene aspectos partio CUALRES EN EL SENTIDO DE QUE LA FASE A POLIMERIZAR EN SUSPENSIÓN NO ES LIQUIDA COMO ES LO CARACTERISTICO EN ESTE TL PO DE POLIMERIZACISN, SINO SÓlida. DE ahi que aunque WalKER REPORTA (18) QUE EL TRIOXANO POLIMERIZA CUANDO SE CALIENTA EN UN SISTEMA SUBSTANCIALKENTE ANHIDRO, EN PRESENCIA de ícidos fuertes, en este caso la polimerizacion es favo-

RECIDA EN CIERTA FORMA POR LA PRESENCIA DE UNA GANTIDAD relativa de agua, Esto puede explicarse por el hegho de QUE es más efectivo el ataque del ácido sobre el trioxano DISUELTO, QUE EN SU ESTADO SOLIDO, COMO PUDO OBSERVARCE en las pruebas llevadas a cabo a altas relaciones molares DE ÁCIDO CONCENTRADO, EN LAS QUE SE NOTÓ GRÁNULOS OUROS QUE AL ROMPERSE MOSTRABAN SER CRISTALES DE TRIOXANO RECUBIERTOS DE MATERIAL POLIMERIZADO.
E. hecho de que aún usíndose Ácido diluido el. trioxano no únicamente se convierta en formaldehido monomerico (23) sino que torma un polimero, puede deberse a que las pequenas ootas de trioxano disuekto por la accion del agua y degolimerizado por el sulfúrico, la concentración de formaldehido reactivo sea muy elevada, lo cual fa VORECE SU POSTERIOR POLIMERIZACIÓN.

LOS RESULTADOS OBTENIDOS CON TETRAHIDROFURANO SE PUEDEN EXPLIGAR EN RAZÓN DE UN MENOR PODER DE DISOLU-~ CION SOBRE EL TRIOXANO, ASI COMO UN MENOR PODER DE IONIZA CIón SOBRE EL ÁCido SULFÚRICO, LO CUAL DA POR RESULTADO un bajo porcentaje de polimerización al usarse en la misma relación que el ácido diluido.

La razón de que el ácido tricloroacético no tuviese una acción semejante a la del sulfúrico siendo un -
ácido fuerte, estriba en el hecho de que el Acido tricloro ACETICO ES SOLUBLE EN EL MEDID DE DIPERSIÓN, MIENTRAS QUE el sulfúrico no lo es, lo cual hace que la concentración EFECTIVA DEL ACIDO TRICLOROACÉtICO SEA MENOR Y SU ACCIÓN SE PIERDA EN tan grande dilución.

Los resultados mostrados por el acido acetico -SON RACIONALIZADOS EN FUNCIÓN DE SU BAJA ACIDEZ.

PARTE 111

En este estuolo se trató de encontrar empirim camente una relación entre el peso molecular promedio y LA CONCENTRACIÓN DEL INICIADOR; CURIOSAMENTE LA RELA- Ción que guardó una correlación líneal rue aquella que SE OBTUVO CUANDO SE GRAFICO LOG $\frac{1}{\left[\frac{1}{2}\right.}$ VS. LOC DEL PESO MOLECULAR PROMEDIO EN PESO (GRÁFIGA \#2), VEANSE GRÅFICAS 3 Y 4 EN LAS QUE SE GRAFICARON DIFERENTES PARÁME- TROS.

Al. HECHO DE QUE LA ECUACIÓN ENCONTRADA SE A-JUSTE A LA ECUACIÓN V $\quad\left[K_{P} / 2\left(F K_{D} K_{T}\right)^{\frac{1}{2}}\right][M] /[1]^{\frac{1}{2}}$ NO SE LE DA NINGUNA SIGNIFICACION TEORICA, PORQUE, CLARA MENTE DURANTE EL PROCESO DE POLIMERIZACIÓN, LA CONCENTRA CIÓN DE MONÓMERO NO SE MANTIENE CONSTANTE;Y PORESA RA-ZÓN, EN LAS CONDICIONES DE LOS EXPERIMENTOS, UNA GRAFICa de log. del Peso molecular promedio contra loo $\frac{1}{[1]} \frac{4}{2}$ no tiene porque ser recta.

La linea obtenida es en realioad una curva, COMO SE PUEDE VER POR LA PORCIÓN DEL ÚLTIMO PUNTO, PERO LA primera parte parece recta porque se trata de un intervalo muy pequeño.

Se recomienda que se estudie la cinetica de -esta reaceión para establecer claramente la presencia o ausencia de reacciones de thansferencia de cadena.

La ecuación de la relación empfrica peso Mole Cular promedio contra $\frac{1}{[1]^{\frac{1}{2}}}$ es la siguiente:

$$
\frac{1}{[1]^{\frac{1}{2}}}=1.5 \times 10^{-4} M N-15
$$

Mn - Peso Molecular promedio en peso
[1] - Concentración del iniciador ($\frac{\text { Moles }}{\text { Litro }}$)
Los valores miximo y minimo de concentración con los que se determino la anterior relación fueron: 23.4×10^{-4} y $1.1 \times 10^{-4} \frac{\text { MOLES }}{\text { LITRO }}$ RESPECTIVAMENTE.

2

 (1)

BIBLIOGRAFIA

1.- De Fazic C.A. y Kray R.J. Pat. U.S. 3,071,564 (1963)

Citado por Chem. Abst. 58,6998d
2.- Baccarada M., butta E. y Gulusti P. J. Polymer Sci 953-65 (1964) Citado por Chem. Abst. 60,81380
3.- Schnizer A.N. Pat. U.S. 2,989,511 (1961) Citado por Chem. Abst. 55, 24120h
4.- Societa Italiana Resina Pat. Ital, 623,830 (1961) Citado por Chem. Abst. 59,88960.
5.- Research Institute for Production Development Pat. Fr. 1,361,136 (1964) Citado por Chem. Abst. 62,5358e.
6.- Kucera Me, Lanikova J. y Spousta E. Pat. Fr. 1, 351,228 (1964) 61 16189e. Citado por Chem. Abst. 61,16189e.
7.- Sorenson W. R. "Preparative Methods of Polyner Chemis-try" Intersciencie Publishera Lto. Londo, P. 38 (1961).
8.- Walker J.f., "Formaldehyoe", 3a. Ed. Reinholo Publ. Corp. London, P. 486 (1964).
9.- Gilman H. y Kirby R.H., Melative Reactivities of Orbanometallic Compounds. XII Orientation in Metalation". J. AM. CHEM. Soc. 58, 2074 (1936).
10.- Whitmore F.C., et. al, "Isomerization during the prepa ration of n-Amyl Chloride" J. Am. Chem. Soc. 60,2540 (1938).
11.- SCOTt, N.D. Pat. U.S. 2, 181, 771 (1939) CItado POR Chem. Abst. 34,21045
12.- Lipkin, D., Paul D.E., y Townsend J. y Weissman S. I. "Observations on a Class of Free Radicals Derived -from Aromatic Compounds". Science 117, 534 (1953).
13.- Flory P.J., "Principles of Polymer Chemistry". Cornell University Press Ithaca, New York, P. 133 (1953).
14.- Mayo F.R., Grego R. A. y Matheson m. S. "Chain Transfer in the Polymerization of Styrene VI. Chain Transfer with Styrene and Benzoyl Peroxide; the Efficiency of Initiation and the mechanism of Chain Termination". J. AM, CHEM. SOC. 73,1691 (1951).
15.- Johnson D.H. y Tobolsky A.V., "Monoradical and Dira-dical polymerization of Styrene". J. am. Chem. Soc. 74,938 (1952).
16.- Matheson M. S., Auer E.E., Bevilacqua E.B. y Hart. E. J. "Rate Constants in free Radical polymerization --II.- Vinyl acetate". J., Am. Chem. Soc. 71,2610 - (1949).
17.- Sorenson W. r. y Campbell T. W. "Preparative methoos of Polymer Chemitry". Interscience Publishers Inc. Lon-DON, P. 179 (1961).
18.- Walker J.E., Pat. U.S. 2, 304, 431 (1942) Citado por Chem. Abst. 37,28471
19.- Trommsdorf E. e t. al. Makromol Chem, 1, 169 (1948). Citado por Chem. Abst. 42,6576 b
20.- Mayo F. R. y Walling C., "Copolymerization" Chem. Revs. 46,191 (1950).
21.- Paul M.A., "A Kinetic Salt effect on the acid-cata- lyzed Decomposition of Trioxane". J. Am. Chem. Soc. 74,141 (1952).
22.- Hall Jr. H. K., "Structural Effects on the polymeriza tion of Lactams". J. Am. Chem. Soc. 80,6404-9 (1958). 23.- Walker J.F. y Chadwick A.F., "Trioxane as a Source of Formaldehyoe". Ind. Eng. Chem. 39,974-7 (1947).
24.- Japan Synthetic Chemical Industry Co., ltd. Pat. Brit. 970,031 (1964) Citado por Chem. Abst. 61,14810e.
25.- Jaacks V., Kern W., "Polyoxymethylene XX initiators for the polymerization of Trioxane". Makromol Chem. -62,1-17 (1963).

