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Abstract

This thesis proposes a reconfigurable computer architecture based on cellular autómata ca-
pable of improving computing performance by exploiting the massive parallelism from its
individual's interaction. Studies, in the last 15 years, proved that the complexity of the syn-
thesis tools needed to exploit this parallelism increased as the architecture granularity was
finer. An architecture based on cellular autómata represents the finest granularity. Studies
have proved that cellular autómata granularity can be handle or programmed using genetic
algorithms. It is time for a viable reconfigurable computing architecture based on cellular
computing to be proposed.

The architecture is oriented to exploit nature's parallelism while using the semiconductor
technology available nowadays. The philosophy behind is to make the hardware as simple
as it may be, and make the software as complex as it is required to be in order to perform
valuable computations. An evolutive approach is used to handle the software complexities.
A road to make this computer architecture feasible is suggested. The first steps towards the
implementation of useful cellular automaton computer architecture were explored, including
the physical media selection, topology defmition, basic programming tools development,
and search for a cell's rule computationally efficient and universal. Examples on how this
architecture can compute simple Boolcan functions are presented.

• Keywords: computer architecture, reconfigurable computing, cellular autómata, cel-
lular computing, and parallel computing.
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Chapter 1

Introduction

Humans, capable of computing on their own, invented tools to facilítate this task. The
abacus and algebra are examples. In time these tools evolved into computéis and computer
sciences. The complexity and reach of these tools has increased in time, becoming harder to
handle.

Common computer architectures are the result of many years of constant refinement.
The need for faster algorithm execution has increased computer hardware complexity, and
increased the number of computing elements used. In time all kinds of computers architec-
tures have emerged. These computer hardware can be classified according to the simplicity,
parallelism and locality of its elements. Figure 1.1 illustrates computing artifacts cataloged
under this classification. Cellular Computing, the ultimate computer architecture illustrated
in the figure, accomplishes vast paralle.'ism with the simplest computing elements interacting
locally.

; Distributed Computing Cellular Computing

Shared Memory
Parallel Computer

.
Q)I

General Purpose
Sequential Computer

Neural Networks

. Complex Simple
Finite State Machine

Figure 1.1: Cellular Computing.
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1.1 Traditional Computers
Today's computéis are mostly based on the fifty-year oíd Von Neumann architecture. This
architecture matches human's thinking nature of solving problems in a sequential approach,
due to lack of resources to perform common activities. For example, humans are required to
perform a sequential set of steps to build a sand castle because they have only 2 hands and
a couple of eyes. Von Neumann architecture based devices are conceived as execution tools
of the sequential set of steps or instructions that we usually visualize to solve problems. Von
Neumann computéis can be inteiconnected to peifoim paiallel computing; but the natuie
of these computing elements remains sequential.

The computei industiy impiovements come fiom incieasing eithei the efficiency of com-
puting elements of the numbei computing elements.

• Complex Instruction Set Computers - The fiíst types of commercially successful
computéis weie developed to execute piogiams wiitten by humans. Piogiammeis weie
supplied with a rich set of instiuctions.

• Reduced Instruction Set Computers - The advent of compiléis enabled the cie-
ation of computéis with a simple but efficient instiuction set. Computei haidwaie was
no longei defined diiectly by the piogiammei's abilities. The paiallelism is gatheied
at instiuction level.

• Parallel Computers - The incieasing need of computei powei leads to the use of
seveial cooidinated computing elements and the cieation of computéis with seveial
functional units.

1.2 Reconfigurable Computers
One of the latest tiends in the computei industiy is called Reconfiguiable Computing. This
computing appioach tiies to take advantage of the haidwaie paiallelism foi data piocessing
by embedding the algoiithms in a flexible haidwaie. The Field Piogiammable Gate Anays
(FPGAs) aie the core technology that has made Reconfiguiable Computing possible [1][2].
Instead of solving a pioblem using a sequential set of instiuctions oveí a CPU, Reconfiguiable
Computing uses the capability of today's Field Piogiammable Gate Anays to peifoim the
desiied behavioi connecting haidwaie piimitives.

1.3 Cellular Computers
Natuie is concunent as events may occui simultaneously in time but in diffeient places.
These events aie intenelated in a causal and spatial sense as a consequence of the space and
time invaiiance of physical laws. The quantum theoiy states that the univeise is disciete
at ceitain physical level and the lelativity theoiy states that nothing can tiavel beyond the
speed of iight. Thus a computei model based on the above mentioned constiains is lequiíed
to effiently exploit natuie's paiallelism. The cellulai autómata aie such models, and Cellular
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Computing is the ñame used to describe this type of computing architecture. A comparison
between cellular computing models and traditional computéis is shown in Table 1.1.

Aspect
Orientation
Execution
Programming
Processing
Memory
Hardware
Software
Scalability

Traditional
Human

Sequential
Algorithmic
Centralized
Centralized

Complex
Complex

Hard

Cellular
Physical
Parallel

Behavioral
Distributed
Distributed

Simple
Highly Complex

Easy

Table 1.1: Traditional vs Cellular Computing

The main characteristic of cellular autómata are the massive parallelism, the element's
simplicity, and the locality of the element's interactions. The difficulty of designing a cellular
computei lies on how to program it. A solution to this problem may be found in nature.

A computer architecture based on cellular autómata would be reconfigurable. Recon-
figurable computing has shown better performance compared with traditional computing in
several data processing applications[3].

1.4 Living Computers
The human beings emerged from a matter and energy evolutive process. An evolutive process
has also created our perception of the universe. The ideas conforming the human's percep-
tion are going through a constant reproduction, mutation, and selection process. A person
communicating an idea to other people is an eífort resulting in the generation of instances
of the idea in terms of each person's context.

When a person communicates an idea to other people, the idea is instantiated in every-
one's mind, as a relation of the ideas that each one already has. Different perceptions créate
mutated ideas and relating oíd ideas creates new ideas again. When an idea is not useful
any more it is forgotten and dies.

Computer Science, a revolutionary idea with significant impact in the world, has been
broadly developed for 500 years. The act of computing has been performed since the begin-
ning of life by any organism that has to solve a problem to ensure its own existence. As an
example, a mouse is capable of moving objects to reach food. The act of solving a problem
or computing a solution can be conceived as changing the state of reality to increase the sur-
vival opportunity of the computing entity. The field of genetic algorithms has successfully
applied these concepts in the solution of problems on many áreas [4].
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1.5 Problem Description
The parallelism is abundant in nature but difficult to exploit. Computers are designed with
a lot of legacy ideas behind, ideas that may shadow some better solutions. The cellular
autómata computing model promises to use this parallelism efficiently. A physical imple-
mentation of the cellular automaton, required to efficiently exploit the parallelism, has to
simple enough to perform the most basic task with a small number of cells. A major imped-
iment of cellular autómata is the difficulty of using their complex behavior to perform useful
computations.

The software for cellular autómata computer architecture will be extremely complex to
human interpretation. Its complexity can be compared with living organism's DNA infor-
mation. The compiling tool used to genérate the cellular autómata software will have no
precedence.

1.6 Objective and Contributions
The objective of this thesis is to propose a computer architecture based on cellular autómata.
The architecture is developed having in mind physical implementation. A fixed rule cellular
automaton is used to simplify the architecture's hardware. The hardware complexity is
transferred to the software layer using genetic algorithms to handle the software complexity.
The computer complexity is laid in software instead of the hardware.

A method to program the architecture is proposed. The architecture and program-
ming method are tested with simple problems. The proposed architecture and programming
paradigm are the main contributions. Some concepts are defined for the first time, such as
cellular autómata boundary stimulus, mobility rate, retention rate, and genetic algorithm
based compiler. Other concepts are opened for further research. One of the main difficulties
of traditional computers is the memory bottleneck problem of the Von Neumann architec-
ture. This problem could disappear in the proposed architecture, because the memory would
be distributed all over the cellular autómata like in data flow architectures. The performance
of such architecture could be superior to traditional computer architectures in highly parallel
applications.

1.7 Development Stages
The following path is suggested in the development of a general-purpose computer based on
cellular autómata.

1. Choose a physical media for cellular autómata.

2. Define the architecture topology.

3. Develop the compiler.

4. Specify the cell behavior.
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5. Design and evolve an operating system.

6. Achieve a self-containing system.

The first four aspects are explored in the present document.

1.8 Document Organization
This document starts with a background explanation in chapter 2 of the basic concepts
needed on reconfigurable computing, cellular autómata and genetic algorithms. The related
work to these concepts is introduced. In chapters 3 and 4, the proposed architecture and
compiler are defined in detail, with explanations on the main considerations followed. Chap-
ter 5 describes the methodology followed to define the architecture parameters, and presents
the results obtained. The last chapter includes the conclusions and describes the future
work.



Chapter 2

Background

2.1 Cellular Autómata
John Von Neumann and Stanislaw Ulam conceived cellular autómata in theory in the late
40's. Cellular autómata started to be used in the study and simulation of complex systems in
the late 60's. Recently the cellular autómata have been successfully used to solve problems[5].

CelluJar autómata are discrete dynamical systems often described as discrete counterpart
to partial differential equations, which describe continuous dynamical systems. Discrete
means a finite countable number of states for the space, time and cellular automaton prop-
erties. The basic idea is to describe a complex system by simulating the interaction of cells
following a simple behavior. In other words, do not describe a complex system with complex
equations, but let the complexity emerge by interaction of simple individuáis following simple
equations.

Cellular autómata are discrete space and time logical universes, obeying their own "local"
physics. Space in cellular autómata is partitioned into discrete elements called "cells" and
time progresses in discrete steps. "Local" means that the state of a cell at time t + 1 is
a function only of its own state and the states of its immediate neighbors at time í, this
function is commonly known as the cell's rule. Each cell is in one of a finite number of states
at a specific time. The physics of this logical universe is deterministic meaning that the
future evolution is uniquely determined once a rule and an initial state of cellular autómata
have been chosen.

Each finite automaton consists of a finite set of cell states E, a finite input alphabet a,
and a transition function A, which is a mapping from the set of neighborhood states to the
set of cell states. Letting N be the number of neighbors:

A : EN -+ E

A cellular automaton is a cí-dimensional lattice with a finite automaton residing at each
lattice site. Each automaton takes as input the states of the autómata within some finite
local región of the lattice, defined by a neighborhood. Typical 2-dimensional neighborhoods
are shown in Figure 2.1. In Von Neumann's neighborhood any new state of cell at (i, j)
depends on the previous state of cells at (i,j — 1), (i — 1, j), (i + 1, j) and (¿, j + 1). In
Moore's neighborhood any new state of cell at (i, j) depends on the previous state of cells
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at (i - 1, j - 1), (i, j - 1), (i + l,j- 1), (i - 1, j), (i + 1, j), (i -l,j + 1), (i, j + 1) and

í-lj+l 'tH 1¿+1

Von Neumann Moore

Figure 2.1: Frequently used 2D neighborhoods.

If all the cells in the cellular automaton share the same transition function we have a
homogeneous cellular automaton. The transition function of this type of cellular automaton
is named cellular automaton's rule.

A one-dimension cellular automaton is commonly used to ¿Ilústrate how cellular autómata
work[6]. Figure 2.2 shows a one-dimensional cellular autómata transition function. The ver-
tical axis represents time progression starting from the top. The cellular automaton config-
uration is recorded in each time instant. The horizontal axis represents the one-dimensional
space field. In this example neighbors, the one on the left, the one on the right and the cell
itself define the cell's neighborhood. The cellular automaton initial configuration consists
on a single black cell in the middle. Figure 2.3 shows the first time steps of evolution, and
Figure 2.4 shows the result after 100 step.

Figure 2.2: One-dimensional cellular autómata transition function example.

-1*""

Figure 2.3: First time steps of the one-dimension cellular automaton example.
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Figure 2.4: Result on the one-dimension cellular automaton after 100 step.

2.2 Reconfigurable Computing
Algorithms implemented in hardware run faster than if they were executed by software over
the same hardware technology.

KU j ̂

Rl — ̂
LD A.RO R2 — L^.
ADD A,R1 p*
ADD A,R2 R3

ADD A,R3

4

•i

rr -f

Software Algorithm Hardware Algorithm

Figure 2.5: Hardware implemented algorithm vs Software implemented algorithm

Xilinx developed the first Field Programmable Gate Array (FPGA) in 1985. The FP-
GAs are electronic devices that can be programmed to implement a defined logic behavior.
Field Programmable Gates Arrays make Reconfigurable Computing possible. Reconfigurable
Computing is the presence of both hardware, that can be reconfigured to implement specific
computing functionality (i.e. FPGA), and software with the ability to change the hardware
data-path for optimizing the performance. A typical FPGA topology is shown on Figure 2.6.

IOB IOB IOB IOB

IOB CLB CLB CLB CLB

IOB CLB CLB CLB CLB

IOB CLB CLB CLB CLB

Figure 2.6: Typical FPGA topology.
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An FPGA can be considerad as a cellular automaton with a complex cell defined by the
Control Logic Blocks (CLBs) and a non-homogeneous and almost global neighborhood as
a consequence of the complex interconnection network. This interconnection network uses
a big portion of the silicon die área. This fact suggests that cellular autómata with local
neighborhood and a simple rule will achieve higher transistor densities because no global
communication interconnections are needed.

2.3 Genetic Algorithms
All genetic algorithms work on a population, a collection of several alternative solutions, to
the given problem[4][7][8]. Each individual in the population is called a string, or chromo-
some, in analogy to chromosomes in natural systems. Often these individuáis are coded as
binary strings, and the individual characters or symbols in the strings are referred as genes.
In each genetic algorithm iteration a new generation is evolved from the existing population
in an attempt to obtain better solutions.

The population size determines the amount of information stored by the genetic algo-
rithm. The genetic algorithm population is evolved over a number of generations. An
evaluation function or fitness function is used to determine the fitness of each candidate
solution. The fitness is an indicator of how suitable is an individual to solve a problem. The
evaluation function is usually user-defined, and problem specific.

Individuáis are selected from the population for reproduction, with the selection biased
toward more highly fit individuáis. Selection is one of the key operators on genetic algorithms
that ensure survival of the fittest. The selected individuáis form pairs, called parents.

• Crossover - It is the main operator used to reproduction. It combines portions of two
parents genotypes to créate two new individuáis that may inherit a combination of the
features of the parents. For each pair of parents, crossover is performed with a high
probability.

• Mutation - It is an incrementa! change made to each member of the population
with very small probability. Mutation enables the introduction of new features into a
population. Mutation is performed probabilistically. The probability of a gene change
in known as mutation probability.

The Simple Genetic Algorithm

The simple genetic algorithm is illustrated in Figure 2.7 flowchart diagram. The simple ge-
netic algorithm is composed of individuáis or chromosomes, and three evolutionary operators:
selection, crossover, and mutation. The chromosomes are binary coded. Each chromosome
is an encoded solution to the problem, and each individual has an associated application
dependent fitness. The initial population can be either randomly generated or user supplied.
A highly fit population is evolved through several generations by selecting, and crossing
two individuáis with a given mutation rate to improve the population. Selection is done
probabilistically biased towards more highly fit individuáis maintaining the population as an
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unordered set. Distinct generations are evolved, and the process of selection, crossover, and
mutation are repeated until all individuáis in a new generation are defined. Then the oíd gen-
eration is discarded. New generations are evolved until some stopping criterion is met. The
genetic algorithm may be limited to a fixed number of generations, or it may be terminated
when all individuáis in the population converge to the same string or no improvements in
fitness valúes are found after a given number of generations. Since selection is biased toward
more highly fit individuáis, the fitness of the overall population is expected to increase in
successive generations. However, the best individuáis may appear in any generation.

T
Genérate initial population

Evalúate each individual

Select inidividuals with repetitions, such
that the probability of selection of each
individual is proportional to its fitness

t

Pair the individuáis randomly to form parents

With a high probability, perform crossover
on the paire to genérate two offspring. If
crossover is not performed, then the parents
are copied unchanged to the offspring

t

Mutate the individuáis with a small probability

Replace all individuáis of the previous
generation with the offspring

No ,,- Stopping
\. criteria met?

Yes
t

Figure 2.7: Simple genetic algorithm flowchart.

10
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The genetic operators and their significance can now be explained. The description will
be in terms of a traditional genetic algorithm without any problem-specific modifications.
The operators to be discussed are the selection operator, the crossover operator, and the
mutation operator.

Selection

The objective of the genetic algorithm is to converge to an optimal individual, and selection
pressure is the driving forcé that determines the rate of convergence. A high selection pressure
will cause the population to converge quickly, possibly at the expense of a sub optimal result.

• Roulette wheel selection - The roulette wheel selection is a proportionate selection
scheme, the slots of a roulette wheel are sized according to the fitness of each individual
in the population. An individual is selected by spinning the roulette wheel and noting
the position of the marker. The probability of selection an individual is therefore
proportional to its fitness.

• Stochastic universal selection - The stochastic universal selection is a less noisy ver-
sión of roulette wheel selection, N equidistant markers are placed around the roulette
wheel, where N is the number of individuáis in the population. ./V individuáis are se-
lected in a single spin of the roulette wheel, and the number of copies of each individual
selected is equal to the number of markers inside the corresponding slot.

• Tournament selection - A number N of individuáis are taken at random from the
population without replacement. The one with higher fitness is copied to the target
population the others are set aside. When the population is empty it is refilled with
the original population. The process is repeated until the target population size is
collected. Therefore the best individual will be selected ./V times, and the worst will
not be selected at all.

Crossover

Once two chromosomes are selected, the crossover operator is used to genérate two offspring.
One-point, two-points and uniform crossovers are commonly used. In one-point crossover
a position is selected at random between the first and the Z/th gene, where L is the chro-
mosome length. The two parents are crossed at the selected point. See Figure 2.8. In
two-point crossover a second position is selected at random. The crossover genes are those
in between the two points. In uniform crossover, each chromosome position is crossed with
some probability, typically one-half.

11
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Parent 1: 1 1 O
Parent 2: O O O

Offspring 1 : 1 1 0
Offspring2: 0 0 0

1 1 0 1 0 0 0
1 0 0 0 1 0 1

1 0 0 0 1 0 1
1 1 0 1 0 0 0

Figure 2.8: One-point crossover.

Parent
Parent

Offspring
Offspring

1:
2:

1:
2:

1
0

1
0

1
0

1
0

0
0

0
0

1
1

1
1

1
0

0
1

0
0

0
0

1
0

0
1

0
1

1
0

0
0

0
0

0
1

0
1

Figure 2.9: Two-point crossover.

Parent 1: 1 1 O 1 1 O 1 O O O
Parent 2 : 0 0 0 1 0 0 0 1 0 1

Offspring 1 : 0 0 0 1 1 0 1 1 0 1
Offspring 2 : 1 1 0 1 0 0 0 0 0 0

Figure 2.10: Uniform crossover.

12
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Mutation

As new individuáis are generated, each gene is mutated with a given probability. A mutation
of a binary coded genetic algorithm mutation can be done flipping a bit. In a non binary
coded genetic algorithm, mutation involves randomly generating a new alphabet character
in a specified position.

2.4 Related Work
The proposed architecture relates to the Complex Adaptive Systems theory. This theory
studies the emergent phenomena of systems made of many interacting elements. Complex
Adaptive Systems theory includes topics such as neural networks, chaos theory, information
physics, cellular autómata, and genetic algorithms. Only a few publications on genetic algo-
rithms and cellular autómata were related with the proposed architecture and the proposed
programming methodology.

The bibliography of Reconfigurable Computing is mostly focused on applications requir-
ing existent hardware. The Plástic Cell Architecture[9] is the publication related to new
hardware approaches. All related works differ with each other in objectives and contribu-
tions. The relationship between the objectives and contributions of each previous work, and
this thesis is pointed out in the following sections. The differences of the previous works and
this thesis highlight and clarines the thesis contributions.

2.4.1 The Plástic Cell
The use of cellular autómata in reconfigurable computing has been studied recently[9]. A
new architecture reference based on programmable logic devices called Plástic Cell Archi-
tecture is proposed. The Plástic Cell Architecture is described as a reference for imple-
menting a mechanism of fully autonomous reconfigurability. This reconfigurability is a fur-
ther step toward general-purpose reconfigurable computing introducing variable-grain and
programmable-grain parallelism to wired logic computing. The Plástic Cell Architecture is
a fusión of an SRAM-based FPGA and cellular autómata, where the cellular autómata are
dedicated to support the run time activities of the circuits configured on the architecture.
The Plástic Cell Architectures follows the object-oriented paradigm, in that the circuits are
regarded as objects. These objects can be described in a hardware description language that
features the semantics of dynamic module instantiation.

The fundamental difference of the Plástic Cell Architecture and the architecture proposed
in this thesis is the design philosophy. The Plástic Cell Architecture follows a top-down design
philosophy, while the architecture proposed in this thesis follows a bottom-up approach. This
means that the Plástic Cell Architecture defines the high level details "global behavior" prior
the low level definition "local behavior". This restrictions implies a cellular autómata cell
with complex behavior oriented to facilitate the development of programming and synthesis
tools. Higher element density can be obtained using the approach followed in the present
thesis. The advantage are simpler cells, but at the expense of more a complex programming

13
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problem. The architecture proposed is going to exhibit as emergent phenomena some of the
high level attributes embedded in the Plástic Cell Architecture.

2.4.2 Universal Cellular Autómata
Wolfram has preved the existence of cellular autómata with universal computing capabilities[6j.
He suggests that the existence of universal cellular autómata is in fact common, and that if a
cellular automaton has the universality property then it should be able to emulate any other
cellular automaton. Perder, Sipper, and Zahnd show the development of cellular autómata
capable of instantiating universal computers and capable of performing self-reproduction[10].
However the universal computer proposed is sequential. This means that the massive paral-
lelism of the cellular autómata is not exploited. Margolus found universal cellular autómata
based on physical models[ll]. The approach used in these models is to mimic some natural
phenomena and identify model's computational capability. The approach followed by the
current thesis is to identify models with computational capabilities that can be implemented
in physical artifacts, using an available technology.

2.4.3 Cellular Autómata Machines
The most successful cellular autómata hardware has been the Cellular Autómata Machines
(CAM)[12j. Cellular Autómata Machines are designed with off-the-shelf components as a
hardware accelerator to simúlate cellular autómata; the hardware is not a cellular automa-
ton itself. Conventional computer are ill suited to run cellular autómata models, and so
discourage their development. Nevertheless examples of physical models for which the best
computational models are cellular autómata exist. Low-cost cellular autómata multipro-
cessor are possible arranging the same quantity and quality of hardware as one might find
in low-end workstations, obtaining large cellular autómata calculations as good as any ex-
isting supercomputer. This machine architecture is of performance at cellular autómata
calculations much superior to that of existing supercomputers, but vastly inferior to what a
fully parallel cellular autómata machine could achieve. The proposed architecture will be a
genuine cellular autómata implementation.

2.4.4 VLSI Design using Genetic Algorithms
Genetic algorithms have been successfully used in the development of VLSI designs tools[8].
Even commercially available Electronic Design Automation (EDA) software is starting to
use genetic algorithms. The use of genetic algorithms to layout integrated circuits, and to do
FPGA technology mapping is of special interest because the cellular autómata programming
problem faced in this thesis is related to technology mapping and layout problem of EDA.

2.4.5 Evolving Cellular Autómata with Genetic Algorithms
A genetic algorithm was used to evolve cellular autómata for two computational tasks: den-
sity classification and synchronization[5]. In both cases the genetic algorithm discovered rules
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that gave rise to sophisticated emergent computational strategies. These strategies are an-
alyzed using a "computational mechanics" framework in which "particles" carry information
and interactions between particles effects information processing. The genetic algorithms are
used to find cell rules that will allow the cellular autómata to solve particular problems. The
initial configuration of the cellular automaton represents the data and the cellular automaton
rule is the program. When this rule is placed in a cellular automaton and executed repeti-
tively, the cellular automaton will end up with a configuration in its cells that represents the
solution to the problem that the rule was designed to solve. Mitchell does not considered im-
plementation issues. These experiments demónstrate that with genetic algorithms, cellular
autómata can be commanded to perform useful massively parallel computing. This finding
is the starting point to try using genetic algorithm to program the proposed architecture.
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Chapter 3

Architecture

The proposed cellular autómata architecture has a homogeneous neighborhood with a fixed
rule. A homogeneous neighborhood was selected because heterogeneous cellular autómata
do not have a single rule or connectivity scheme making them more complex and harder
to implement. If the architecture is supposed to be of a general purpose, then the cellular
autómata rule shall be universal.

3.1 Input/Output
A cellular automaton with a finite number of cells and array-like ordered cells always define a
cellular autómata boundary. The cell's neighbors in this boundary are undefined. The miss-
ing communication links of these elements are used as the I/O interface of the architecture.
An example is shown in Figure 3.1.

I/O I/O I/O I/O

Figure 3.1: Cellular autómata input/output interface boundary.

3.2 Programming and Execution
The data and program are stored in the configuration of the cellular autómata (current
state of the cells). Most of the computer models based on cellular autómata assume an
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arbitrary state on each cell as the initial state [11] [6] [12]. Thus, each cell is connected to the
external world to obtain the initial state breaking the local nature of cellular automaton.
Another approach is to have a rule with a transition state from the programming stage to
the processing stage to enter data and program from the outermost cells as an Information
stream[9]. However these program/data cell behavior requires a cell with complex rule. This
work proposes a simpler rule to make the programming and processing stages emerge as a
cellular autómata global behavior. Thus, global behaviors are important elements for the
cellular autómata rule selection.

The program is entered from the outermost cells boundary in the programming cycle.
After the iterations, these outer stimuli take the cellular automaton to the target configura-
tion state. The cellular automaton enters into the execution cycle and starts processing data
stimulus received in the input/output boundary after reaching the target configuration state.
The processing result is finally placed in the input/output boundary after an appropriate
processing time. See Fig. 3.2.

Programming Cycle

Program Cellular ^Inputs OutputsAutómata

Program Execution Cycle

Input Data CellularInputs . OutputsAutómata
Output Data

Figure 3.2: Cellular autómata programming and execution cycles.

The cellular automaton has no distinction between data and program information. This
fact opens the door to a general-purpose computing, in the same way that the Von Neumann
architecture did by allowing the data and program to reside in the same memory space.

3.3 Physical Media
Truly cellular autómata architecture should be implemented in a natural cellular lattice in
order to exploit nature's parallelism. The selected physical media imposes restrictions to
the architecture. Table 3.1 illustrates some examples of physical media, in most cases the
technology to construct cellular autómata is under development.
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Physical Media
Organic Tissue
Crystalline Structure
Polymer
Quantum Elements
Silicon Integrated Circuits

Technology
Development
Development
Development
Development

Mature

Table 3.1: Physical media and technology.

The most feasible implementation of cellular autómata with the current technology is in
silicon integrated circuits. The CMOS silicon integrated circuits fabrication process enforces
the use of 2 dimensional cellular autómata lattice with rectangular components. Digital
instead of analog elements are useful due to their deterministic behavior. The transistor
density of such architecture would be superior to any other computer architecture.

3.4 Cellular Autómata Topology
The cellular autómata neighborhood that fits best with a 2D rectangular lattice is the Von
Neumann neighborhood. Each cell has communication only with the upper, lower, left and
right neighbors. The cell is kept simple to obtain the highest density. The communication
between cells is 1-bit wide. The cell behavior is modeled by a 4-input, and 4-output combi-
national function with no hidden states. The total number of possible input combinations is
24, and the total number of possible output combinations is 24. The cell's behavior can be
fully represented in a 16-entry lookup table with each input mapped to one of 16 possible
output valúes.

The right side of Figure 3.3 shows the graphic convention used to represent a cell. The i
label is located over the place from were the input signal is read, o label is situated over the
place were the output data of the cell will be set. Each input and output is differentiated by
an integer suffix starting from zero in the upper most position. The left side of Figure 3.3
shows a 3 x 3 cellular automaton. The cellular automata's I/O labels are placed on the CA
boundary in the same way as in the cell representation, but the integer suffix starts from
zero in the upper-left most position.
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«10

«2 ¿8 «7 %

Figure 3.3: Cell and cellular autómata graphic representation convention.

3.5 Cell Behavior
The local and global behaviors of homogeneous cellular autómata are defined by the cell's
state transition function commonly known as the cellular automaton's rule. A description
of the local and global behaviors used in chapter 5 as rule selection criteria follows. Keep in
mind that in order to improve element density the cellular autómata cell shall be as simple
as possible.

3.5.1 Local Behaviors
Local behaviors are characteristics that the cellular autómata cell has by itself. The cell's
local behaviors depend on the cell's rule exclusively. A description of the local behaviors of
interest follows. Each local behavior includes a test procedure coded in Java to verify if a
cell's rule has the local behavior. The test procedure assumes that the cell's rule is encoded in
an input to output lookup table, int Mapping[16]. Each possible input combination has a
unique integer representation that is used as the lookup table índex (¿0 is the least significant
bit and ¿4 is the most significant bit). The lookup table has a corresponding output valué
for each input. The output is an integer number that represents each of the possible output
combinations (o0 is the least significant bit and 04 is the most significant bit). The input
space size and output space size are defined as follow.

int InputStateSpaceBitSize = 4;
int OutputStateSpaceBitSize = 4;
int InputStateSpaceSize = 16;
int OutputStateSpaceSize = 16;

• Rotation Invariability - A rotation invariant rule is defined as a rule that behaves
equally after been rotated in any topological possible way.
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public boolean isRotationlnvariantO

int or, ir;
/* Assume the rule is rotation invariant by default. */
boolean answer = true;
/* Check each possible input entry. */
for (int i = 0; (i < InputStateSpaceSize) ftft answer; i++)

ir = i;
or = Mapping[i];
/* Check each possible rotation. */
do

/* Rotate the input. */
ir = (ir*2) '/. InputStateSpaceSize + (ir*2) / InputStateSpaceSize;
/* Rotate the output. */
or = (or*2) '/, InputStateSpaceSize + (or*2) / InputStateSpaceSize;
/* If the output of the rotated input is not equal

to the original output rotated */
if (Mapping[ir] != or)
-C

/* then the rule is not rotation invariant. */
answer = false;

} while ((ir != i) && answer);

return answer;
}

• Reversibility - A reversible rule has the property of relating each input state to
a unique non-repeatable output state. This means that from any cellular autómata
configuration it is possible to go backwards in time.

public boolean isReversibleO

/* Assume the rule is reversible by default. */
boolean answer = true;
boolean[] used = new boolean[OutputStateSpaceSize];
/* Mark each output combination as unused. */
for (int i = 0; i < OutputStateSpaceSize; i++)

used[i] = false;

/* Check each possible input entry. */

20



3.5. Cell Behavior CHAPTER 3. ARCHITECTURE

for (int i = 0; (i < InputStateSpaceSize) && answer; i++)
{

/* If the input entry output combination is not marked as used*/
if (!used[Mapping[i]])
{

/* mark the output as used. */
used[Mapping[i]] = true;

}
else /* If the output combination is already marked as used */
{

/* the rule is not reversible. */
answer = false;

return answer;
}

Valué Conservation - A Valué Conservative rule is defined as a function that has the
same number of O's and l's in the outputs as in the inputs for all possible inputs tran-
sition valúes. The valué conservation local behavior is particularly important because
it implies that the amount of O's and l's is conserved giving us some means to control
the amount of activity that happens in the cellular automaton. This characteristic can
be compared with the energy conservation law that rules our universe.

public boolean isValueConservativeO

/* Assume the rule is valué conservative by default. */
boolean answer = true;
/* Check each possible input entry. */
for (int i = 0; (i < InputStateSpaceSize) && answer; i++)

/* If the hamming magnitud (number of l's) in the input entry
is not equal to the hamming magnitud of the output
combination then */

if (getHammingMagnitud(i) != getHammingMagnitud(Mapping[i]))

/* the rule is not valué conservative. */
answer = false;

return answer;
}

• Valué Symmetry - In a valué symmetric function,

fj(Ín-l,...,Íl,Ío) - /¿(¿n-1, •••,«!, ¿o)
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for each j = 0,1,. . . m.

public boolean isValueSymmetricO
-C

int ivc,ic,icv;
/* Assume the rule is valué symmetric by default. */
boolean answer = true;
/* Check each possible input entry. */
for (int i = 0; (i < InputStateSpaceSize) &ft answer; i++) {

/* Obtain the complement of the output combination. */
ivc = OutputStateSpaceSize-1 - MappingCi];
/* Calcúlate the complement of the input combination. */
ic = InputStateSpaceSize-1 - i ;
/* Obtain the output of input combination complement. */
icv = Mapping[ic];
/* If complement of the output combination is not equal to

the output of input combination complement then */
if (icv != ivc)
{

/* the rule is not valué symmetric. */
answer = false;

return answer;
}

Complement Invariability - In a complement invariant function,

for each j = O ,1 , . . . m.

public boolean isComplementlnvariantO
{

int ivc,ic,icv;
/* Assume the rule is complement invariant by default. */
boolean answer = true;
/* Check each possible input entry. */
for (int i = 0; (i < InputStateSpaceSize) ftft answer; i++)
{

/* Obtain the output combination. */
iv = MappingCi];
/* Calcúlate the complement of the input combination. */
ic = InputStateSpaceSize-1 - i ;
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/* Obtain the output of input combination complement. */
icv = Mapping[ic] ;
/* If complement of the output combination is not equal to

the output of input combination then */
if (icv != iv)
{

/* the rule is not complement invariant . */
answer = false;

return answer;

Axial Symmetry - A rule with axial symmetry has the property of behaving in the
same way after rotating any of its spatial axes by 180 degrees. The difference with a
rotation invariant rule in a 2D lattice is that the rotation invariant rule behaves equally
when the normal axis is rotated.

/* Note: This test procedure is only valid on rotation invariant rules. */
public boolean isAxialSymmetricO
{

int left, right;
/* Assume the rule is complement invariant by default. */
boolean answer = true;
int j;
/* Check each possible input entry. */
for (int i = 0; (i < InputStateSpaceSize) && answer; i++)
{

/* Obtain the input valué on the right. */
right = i ft 0x2;
/* Obtain the input valué on the left. */
left = i k 0x8;
/* Swap the left and right input valúes. */
j = (i & Oxl) | (i & 0x4) I (left » 2) | (right « 2);
/* If the output O remains changes when the left and

right input valúes are swapped then
if ((Mapping[i] & Oxl) != (Mapping[j] & Oxl))
{

/* the rule has no axial symmetry. */
answer = false;

return answer;
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• Mobility Rate - The number of possible single bit changes in the input state that
result on a bit change in an output bit for all possible input states. This property has
influence on the cellular autómata ability to move data.

/* Note: This test procedure is only valid on rotation invariant rules. */
public int getMovilityRateO
{

/* The bit changes couníer is set to 0. */
int count = 0;
/* Check each possible input entry. */
for (int i = 0; i < InputStateSpaceSize; i++)
{

/* Check each input bit on the input entry. */
for (int j = 1; j < (1 « InputStateBitSize); j = j « 1)
{

/* If output O changes when the input bit is
toggled then */

if ((MappingCi " j] & Oxl) != (Mapping[i] & Oxl))
{

/* add one to the bit changes counter. */
count++;

/* Return the total number of two-entry Karnaugh groups that
produce an output change. */

return count / 2;
}

Retention Rate - The number of possible single bit changes in the input state that
does not result on a bit change in an output bit for all possible input states. This
property has influence on the cellular autómata ability to hold the program.

/* Note: This test procedure is only valid on rotation invariant rules. */
public int getRetentionRateO {

/* The bit changes counter is set to 0. */
int count = 0;
/* Check each possible input entry. */
for (int i = 0; i < InputStateSpaceSize; i++)

/* Check each input bit on the input entry. */
for (int j = 1; j < (1 « InputStateBitSize); j = j « 1)

/* If output O does not change when the input bit is
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toggled then */
if ((MappingCi ' j] fe Oxl) == (Mapping[i] & Oxl))
{

/* add one to the bit no changes counter. */
count++;

/* Return the total number of two-entry Karnaugh groups
that does not produce an output change. */

return count / 2;
}

3.5.2 Global Behaviors
The selected rule will have repercussion on the cellular autómata processing and storage
capabilities. The rule selection in chapter 5 shall be oriented to find cellular autómata rules
with these capabilities by enclosing them in desirable global behaviors.

• Program Retention - The programmed behavior shall not change when the data is
entered.

• Data Mobility - Ability of data to move within the cellular automaton without
change.

• Data Independence - Data streams should not interact unless some kind of interac-
tion is wanted.

3.6 Implementation
When a rule is finally selected it defines most of the integrated circuit hardware because it
can be synthesized once, and the resulting layout can be copied in a mesh pattern to fill
all die área. The way in which cell communication takes place shall be delineated. Two
approaches are suggested.

3.6.1 Synchronous
• Global Clock - A global clock signal is distributed to each cell. Some cells will update

its outputs with a high level phase, why others will respond to the low level phase of
the clock signal in a chess check board layout.

• Local Synchronization Signáis - Each cell is synchronized only with its neighbors,
resulting in global synchronization because they are all interconnected. The cellular
autómata step time is driven by the boundary.
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3.6.2 Asynchronous
An asynchronous approach results after placing the combinational logic that executes the
cell's rule connected directly with the input of the combinational logic of the neighbor cells
without any kind of buífering. This approach has broad implications so it is leaved behind
for future research.

3.7 Machine Language
The machine language of the proposed architecture is the set of all possible stimuli that
the cellular automaton can receive on the input boundary. The machine language is not
explicitly designed, it emerges as the global behaviors of the selected rule executed in the
cellular automaton.

A machine instruction I[t] is defined as the stimulus space vector entered to the cellular
automaton at a given time instant.

I[t] = (»„[*], ¿i[í], Í2[í], . . . , *n-2[<], tn-l[í])

where n is the number of I/O boundary communication links.
A program is then the set of machine instructions applied in time to the cellular automa-

ton to make it behave as desired.

P= (/[O],/[!],...,/[#-2],![#-!])

where N is the total number of instructions (time steps) required to program the cellular
automaton.

The convention used to represent programs in following examples, is to write them in
binary representation, separating each instruction with a single space, starting the program
with the first instruction in time /[O] and starting each instruction with the first input in the
boundary space i0.

3.8 Programming and Execution Example
This section shows an example of how to load a program and execute it. The example's
purpose is to clarify how the architecture actually works. The example uses a 5 x 5 cellular
automaton with a fixed homogeneous rotation invariant rule. The rule's seed number is
48336. The procedure used to select the cellular automaton's rule is detailed in chapter 5.
Figure 3.4 shows the rule's state transition table, were each possible input state is mapped
to next cell's output state.
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O

\7

E

X
Figure 3.4: Rule 48336 state transition table.
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The example consists of a simple program. The architecture will be commanded to
execute a two input NAND Boolean function. The function returns the result on output o5,
using as input the data entered at locations ¿14 and i^. The desired behavior was translated
to cellular automaton programming stimulus (machine instructions) using the procedure
detailed in chapter 4. The resulting object code is presented on table 3.2, it has only one
machine instruction.

t
0

I[t]
10000000000100111101

Table 3.2: Machine code for the 2-input NAND Boolean function.

The example is divided in three steps.

1. Apply programming stimulus
The first step is to feed the object code in the cellular automaton. The cellular au-
tomaton shall be in a known initial state. In this case the cellular automaton cells have
O's in all their outputs. See Figure 3.5. The object code depends on this condition to
work properly.

t = o

Figure 3.5: Cellular automaton initial configuration.

The last stimulus entered is kept constant from now on. Only the input termináis
¿14 and ¿i» will eventually change. The instruction is kept in the cellular automaton's
input boundary during various time steps until the cellular automaton reaches a steady
state. The steady state is actually the result of executing the NAND function on the
default input data in the last machine instruction programmed.

05 = ¿18*14 = 10 = 1 (3.1)

The output terminal o5 exhibits the previous result by time t — 5. The programming
sequence is showed in Figure 3.6. The cellular automaton goes into steady state in
time í = 12.

2. Enter test data and verify results
In order to verify that the cellular automaton behaves correctly, all possible input data
combinations will be introduced. The output signal o5 can be compared against the
2-input NAND Boolean function truth Table 3.3.
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t = 4

t = 7

t = 5

t = 8

t = 3

«18

Figure 3.6: Cellular automaton programming example.

Table 3.3: Truth table of the 2-input NAND function.
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The answer is not generated immediately after a new input combination is entered. It
takes a delay time of 9 steps to observe the expected answer. The output takes the
valué of the NAND function evaluated with input valúes at ¿ig, 5 steps earlier, and ¿14,
9 step earlier. Equation 3.2 summarizes this notion.

05[*] = »i8[í - 5]¿i4[í - 9] (3.2)

Figures 3.7, 3.8, 3.9 and 3.10 show the evolution in time of the cellular automaton for
in each input combination.
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The first input combination, ¿ig = O and ¿14 = O, is entered at time t = 13. See
Figure 3.7. Only iu changes since it was equal to 1 at time t — 12. This single change
leads to 8 steps of cellular automaton activity from t = 13 to t — 20. The cellular
automaton is considered in steady state at t — 21, because no configuration change
is visible at t = 22. The valué on output o5 is considered the desired result once the
cellular automaton reaches steady state at í = 21, this valué can be verified with the
first row OÜ = 1 in Table 3.3.

t= 13

Figure 3.7: Cellular automaton execution example 05 — ¿is«i4 = 00 = 1.
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The second input combination, i^ — O and ¿14 = 1, is entered at time t = 23. See
Figure 3.8. Only zi4 changes since it was equal to O at time t — 22. This single change
leads to 11 steps of cellular automaton activity from t = 23 to t = 33. The cellular
automaton is considered in steady state at t = 34, because no configuration change
is visible at t = 35. The valué on output o5 is considered the desired result once the
cellular automaton reaches steady state at t — 34, this valué can be verified with the
second row 01 = 1 in Table 3.3.

t = 23

05

t = 35

«14
«18 ^ 4 <1 4

^ 4 W 4í

Figure 3.8: Cellular automaton execution example o5 = ¿is«i4 = 01 = 1.
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The third input combination, i\s — 1 and ¿14 = O, is entered at time t — 36. See Figure
3.9. Both inputs ¿jg and ¿14 changed since they had O and 1 respectively at t = 35.
This change leads to 9 steps of cellular automaton activity from t = 36 to t = 44. The
cellular automaton is considered in steady state at t — 45, because no configuration
change is visible at t — 46. The valué on output o5 is considered the desired result
once the cellular automaton reaches steady state at t — 45, this valué can be verified
with the third row TU = 1 in Table 3.3.

t = 36

Figure 3.9: Cellular automaton execution example o5 — i\siu — 10 = 1.
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The last input combination, ¿18 = 1 and ¿14 = 1, is entered at time t = 47. See Figure
3.10. Only ¿14 changes since it was equal to O at time t = 46. This single change
leads to 9 steps of cellular automaton activity from t = 47 to t = 55. The cellular
automaton is considered in steady state at t = 56, because no configuraron change
is visible at t = 57. The valué on output o5 is considered the desired result once the
cellular automaton reaches steady state at t = 56, this valué can be verified with the
last row TT = O in Table 3.3.

Figure 3.10: Cellular automaton execution example o5 = i\%iu = 11 = 0.
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3. Program unloading
The last step of the current example will show how the cellular automaton configuration
can be restored to initial state. This probes the cellular autómata capability of been
reconfigured, meaning that cellular automaton configuration can be changed once it is
already configured. Applying new stimulus to the inputs performs the reconfiguration.
There are two reconfiguration stages. The first stage consists on a set of stimulus that
shall return the cellular automaton to a known initial configuration. In the second
stage the programming stimulus of the new configuration are applied, just as if it was
programmed for the first time.
In this example the cellular automaton will be returned to the initial configuration
applying zeros on all the inputs, Figure 3.11. This configuration flush property is a
direct consequence of using a cell rule with the Valué Conservation local behavior.

t = 58

t = 61

t -64

t = 59

t = 62

t = 60

t = 63

Figure 3.11: Cellular automaton program unloading example.

This chapter introduced the guideline concepts of the proposed architecture, but many
details have not been defined yet. Further research is needed to understand the implications
of such decisions. The following chapter will describe a programming methodology that can
be used to start programming the architecture. This activity will be a cornerstone in the
definition of the missing characteristics.
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Chapter 4

Compilar

The compiler's objective is to transíate the user's algorithms into a set of bits required to
configure the target architecture. The proposed architecture has no instruction set. The
machine language for the proposed architecture emerges from the cell's interaction of the
cellular automaton. The compiling task, determine a set of bits to make cells interaction
result in a specific behavior, becomes very complex. Traditional compilers and programming
tools are unable to perforan this complex task. This chapter presents the approach based on
a genetic algorithm to perform such a complex compiling task.

4.1 A Compiler based on Genetic Algorithms
The genetic algorithm takes an important role in the compiler tool chain for this type of
architecture. The genetic algorithm's objective is to find the machine language code that
makes the cellular autómata behave as wanted. A comparison between the proposed genetic
algorithm compiler and traditional compiler is shown in table 4.1.

Characteristics
Can handle cellular autómata complexity
Deterministic
Amount of computational resources needed
Correctness

Traditional
No
Yes

Low/ Médium
Always

Genetic Algorithm
Yes
No

High
Not always

Table 4.1: Comparison between a traditional compiler and the proposed genetic algorithm
compiler.

The proposed genetic algorithm based compiler will not always return correct solutions
in a strict logical sense. The fact that it will return candidate solutions is good enough for
the scope and objectives of the present research. Future work can be addressed to overeóme
this disadvantage.

36



4.2. Genetic Algorithm CHAPTER 4. COMPILER

4.2 Genetic Algorithm
Figure 4.1 shows the flow chart of the proposed genetic algorithm. The algorithm starts with
a random initial population. Each individual represents a possible solution to the problem in
the form of machine language object code. The population's individuáis are evaluated. The
genetic algorithm evaluates an individual giving and indicator of its performance. Evaluation
results are the guideline to créate a new population with higher survival probabilities assigned
to best individual's genotypes. If the genetic algorithm's ending criteria is meet the algorithm
will return the population at hand. Otherwise it will genérate a new population applying
the tournament, crossover, resizing and mutation genetic operators.

Initial ^ c
F'!ne!f +*<( End?^ ^" Tournament >~ Crossover ^i Resize ^" MutationPopulation Evaluation \

XYes

Final
Population

Figure 4.1: Genetic algorithm.

4.3 Genotype Coding
The cellular autómata programs are coded in a bit vector (the genotype) starting the program
with the first instruction in time /[O] and starting each instruction with the first input in
the boundary space i0. See section 3.7. A variable size genotype is used to store programs,
because programs may be of diíferent lengths. The initial population is set at random, with
a random number of instructions on each individual, and random bit valúes. The initial
object code size is uniformly distributed between 1 and 5 machine instructions.

4.4 Genetic Operators
The genetic operators modify the population to induce the evolution of a solution. Only the
resize and crossover operators are non-standard. A description of the genetic operators used
follows:

• Tournament - This operator scrambles the population in a circular list, and passes a
fixed size window in all possible places of the list. In each window place, the individuáis
within the window are compared and a new population is created adding a copy of the
individual with best fitness.

• Crossover - The population is scrambled on a list. Individuáis are paired starting
from the beginning of the list. Couples are selected at a fixed crossover rate. The
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Parent 1:
Parent 2:

Offspring 1:
OíFspring 2:

1
1
1
1

1 0
0 0
0 0
1 0

1 1
1 0
1 0
1 1

0 1
0 0
0 1
0 0

0
1
0
1

0

0

0 0

0 0

0 1

0 1

0

0

1
1

1
1

Figure 4.2: Crossover example with variable size genotypes.

first instruction is the reference to align the couple of genotypes. A cross point is
picked at random somewhere in the middle of the individual with shorter genotype
(genotype boundaries position are also considered). All the bits before the cross point
are interchanged between the couple members. See an example in Figure 4.2. In the
example, the cross point is located to the right of ¿4(0]. All the bits on the left of the
cross point are swapped to genérate the offspring.

• Resize - Individuáis are resized at a fixed resize rate. Size increment and decrement
are equally possible. Genotype growth is done duplicating the last machine instruction
at the end of the genotype. Genotype shrink is performed eliminating the first machine
instruction.

• Mutation - Each bit on each genotype of the population is toggled at a fixed mutation
rate.

4.5 Evaluating Function
The genetic algorithm evaluating function must return an indicator or fitness amount on
how well an individual behaves as desired. The indicating valué is obtained by correlating
in time the cellular autómata output with the desired output after applying a random data
test signal in the cellular autómata inputs, see the block diagram in Figure 4.3. The use of
large test signáis is encouraged to obtain similar fitness valúes after each try, and to test the
program under a broader input sample space.

Program

f
^ Cellular Oca

Autómata y
¡ !

Random Signal . _ ,
Generator | Data j Correlator ¡ ^ Fitness

! •
. Target Behavior A^- °

Simulator Og

Figure 4.3: Evaluating function block diagram.
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The source code is entered as a part of the evaluating function. It is coded in the
Target Behavior Simulation block of Figure 4.3. The Target Behavior Simulator drives the
genetic algorithm to find machine language (object code) that closely emulates the target
behavior. The desired behavior is expressed in the Target Behavior Simulator as coded
Boolean functions. These type of functions are enough to describe the test behaviors needed
in this research.

The fitness is measured as the correlation peak in time,

fitness = max I 2J °sW © °ca[k — t] I (4.1)
U=-oo /

where os is the simulator output, n^ is the cellular automaton output, and maxQ is a
function that returns the máximum valué of the argument evaluated in all possible time
instants. For example max(sin(í)) = 1. If test signáis of variable length are used, the fitness
shall be normalized dividing equation 4.1 by the test signal length,

fitnessnormalized = max os[k] ® Oca(k

where T is the set of time valúes, and n is the number of elements in T.
The length in time of the random signal ensures that the cellular automaton preserves the

same behavior. It is important to reset the cellular autómata and reload the same program
several times to guarantee that the input data has no effect in the fitness. The fitness is
calculated as the arithmetic mean of all the executions. See Figure 4.4. This flow chart
shows that the final fitness valué is the result of testing the same program with many input
conditions.
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Start

t

Reset tries counter

Reset the CA

Load the program
to the CA

Increment tries
counter

Genérate random
input data

No

Enter input data
to the CA

Calcúlate fitness

Number of
tries done?

i Yes

Calcúlate mean
fitness valué

T
End

Figure 4.4: Evaluating function flowchart diagram.

40



4.6. Compiling Procedure CHAPTER 4. COMPILER

4.6 Compiling Procedure
The genetic algorithm compilation procedure is shown in Figure 4.5. A verification stage
is suggested after executing the genetic algorithm to ensure an acceptable solution. This
verification stage can be done by executing some test cases, or by performing a correctness
probé as explained in section 5.4.

Inputs
-Desiredtargetbehavior ^ Set topology ^ Code target
- Tcpology parameter parameter behavior
- Genetic algorithm parameters

Verify genetic Run the genetic Set genetic algorithm
algorithm best solution algorithm parameters

Outputs
Machine language program
Program fitness
Verification resulte

Figure 4.5: Genetic algorithm compiling procedure.

Figure 4.6 shows eight samples of the fitness evolution in time of the genetic algorithm
after 20 generations. The genetic algorith was coded to solve the NAND function in section
5.5 using the same genetic algorithm parameters (Table 5.4). Only 3 samples reached almost
optimal solutions, because those populations were able to construct the genotype Information
required to solve the problem. One hundred runs of the genetic algorithm were performed
to obtain statistical regularity, the mean p, and standard deviation a are presented in Figure
4.7. The fitness of the population evolves as expected. The standard deviation is significant
as a consequence of the big selective pressure imposed in this genetic algorithm test. A
tournament window of 5 individuáis was used. The figures prove that the genetic algorithm
is finding solutions in less than 20 generations. Optimal solutions are within // + a after 20
generations.

The programming methodology proposed in this chapter will be used in the following one
to test different cellular autómata rules. The results of such tests will help to ultimate some
of the decails that where leftover in the previous chapter, in particular the definition of the
cell's rule.
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Figure 4.6: Fitness evolution samples.
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Figure 4.7: Evolution in time of the fitness mean and standard deviation.
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Chapter 5

Methodology and Results

5.1 Research Platform
The rule analysis, rule search and simple programs tests of the following sections were per-
formed on a Linux Pentium 4 workstation running at 2 GHz with 512 MB of RAM.

The cellular automata's, genetic algorithm and program verification packages were pro-
grammed in the Java language. A PostgreSQL datábase was created to store all the rule
analysis, rule search and tests data. The following Java packages were developed:

• gaf - The Genetic Algorithm Framework, an application independent package to exe-
cute genetic algorithms.

• careco - The Cellular Automaton Reconfigurable Computing package. This package
simulates the cellular automaton, analyzes the cellular automaton rules and uses the
gaf package as a compiler.

• symbolic - The Symbolic Boolean logic package was developed to verify the genetic
algorithm solutions in a strict logic sense.

5.2 Rule Search
The proposed architecture is based on a cellular automaton with a fixed rule. A rule defining
the possible local behaviors, global behaviors and cellular automaton's computational effi-
ciency must be selected carefully. The architecture topology presented in section 3.4 defines
the space of possible rules from were one shall be selected. The criteria to select the fixed
rule presented in this chapter made possible to select one rule from the large number of rules
available for a cell with n inputs and m outputs. The number k of possible rules can be
obtained from the equation shown beiow. The total number of rules is 264 for a cell with
m — 4 outputs and n — 4 inputs.

k = 2m2" (5.1)
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5.2.1 Rotation Invariance Selection Criterion
The first cñterion focused on searching for the rotation invariant rules. The function for
a specific output defines the function for all the other outputs under this criterion. The
following equations show the rotation invariant function assignment.

00 =

Oí =

02 =

03 =

(5.2)

(5.3)
(5.4)
(5.5)

A 16-bit number, known as seed, is assigned to output OQ, in order to represent a rule
in the rotational invariant rule space. The truth table shown in Table 5.1 illustrates the
seed assignment for each cell output and the definition of the other outputs using rotation
invariant mapping. An example of a rule's seed is illustrated in Table 5.2.

Í3

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

¿2

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

ii
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

¿0

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

03
«o
«2

S4

«6

«8

«10

«12

«14

Si

S3

«5

«7

«9

Sil

Sl3

«15

02

S0

«4

S8

«12

Si

S5

S9

«13

«2

«6

«10

«14

S3

«7

«11

«15

Oí

«0

«8

«1

S-3

S2

«10

S3

Sil

S4

Sl2

S5

«13

«6

«14

«7

«15

00

S0

Si

S2

S3

«4

S5

«6

«7

S8

Sg
«10

Sil

«12

Sl3

Sl4

Sl5

Table 5.1: Rotation invariant mapping.

Seed

4660

Binary Representation
Sl5
0

«14
0

Sl3
0

«12
1

«11
0

«10
0

«9
1

«8
0

«7
0

«6
0

«5
1

«4
1

S3

0
«2

1

«1

0
«0
0

Table 5.2: Rule seed example.

The total number of rules k shows a significant reduction after applying the rotation
invariability criterion. The new number of rotation invariant rules, calculated using the
equation shown below, is 216 for a cell with m — 4 outputs and n = 4 inputs.
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(5.6)

5.2.2 Local Behaviors Selection Criterion
The second criterion to select the rule takes account of the local behaviors previously defined
in section 3.5.1, the selection of these behaviors is based on the need to reduce as much as
possible the rule search space. The criterion is to select rules that satisfy two or more of the
following local behaviors: reversible, valué symmetric, valué conservative and complement
invariant. The axial symmetry local behavior was not included to reduce the number of rules
under test.

An application program, called careco.RuleAnalyze, analyzed the rotational invariant
rule space, and found the rules with two or more local behaviors. The application stores the
results in the Rule Properties datábase, the flowchart diagram is shown in Figure 5.1. The
application starts analyzing Rule O of the rotation invariant rule space. Each local behavior
test is performed on the rule, and the results are stored in the rule properties datábase. Then,
the next rule seed is generated and the rule analyzed. The carece .RuleAnalyze application
keeps going until there are no more possible rules to analyze.

Local Behavior
Reversible
Valué Conservative
Valué Symmetric
Complement Invariant
Axial Symmetric

Counted
1536
192
256
256

4096

Tested
224
128
128

0
40

Table 5.3: Rule count and number tested rules per local behavior.

The application to analyze the rule obtained the rotation invariant space statistics illus-
trated in Table 5.3. The table shows the number of rules per local behavior in the rotation
invariant rule space. The first column shows the ñame of the local behavior test performed.
The count of rules that passed the local behavior test is in the second column. A total of 224
rules passed the second criterion; the statistics of these rules are shown in the third column.
The rules that passed the second criterion will go through final selection tests. Note that all
the rules that comply with the second criterion are reversible.
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Start

Seed = 0

Reversibility test

i
Valué Conservation test

Yes

Valué Symmetry test

I
Complement Invariance test

i
Axial Symmetry test

i
Mobility Rate test

i
Retention Rate test

i
Seed = Seed + 1

t

Is Seed in rotation
invariant space?

1 No

End

Rule Properties
Datábase

Figure 5.1: Rule analysis flowchart diagram.
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Figure 5.2 shows the mix of local behaviors in the rotational invariant rule space. Only
the 3.6% of the tested rule space had four of the local behaviors: reversible, valué symmetry,
valué conservative and axial symmetry. Rules with complement invariant behavior (0.4%)
were discarded; they had no match with the other behaviors included in the second criterion.
The total number of rules k is reduced to 224 rules after applying the second criterion.

O
R
C
S
A
I

Rotation invariant space (100 %).
Reversible rules (2.3%).
Valué conservative rules (0.3%).
Valué symmetric rules (0.4%).
Axial symmetric rules (6.3%).
Complement invariant rules (0.4%).

Figure 5.2: Rotation invariant rule space.

5.2.3 Global Behaviors Selection Criterion
The last criterion uses a rule score to select a single rule for the cellular autómata architecture.
The rule with the highest score is selected. The rule score is obtained after running a set
of test programs on the cellular automaton for each of the 224 rules that passed the second
criterion. The rule score is the sum of the máximum fitness of the last generation of each test
program. The test programs, shown in Figure 5.3, valídate the global behaviors described in
section 3.5.2: data independence, program retention, and data mobility. The programs will
move data from one place to another. The information on each signal shall be independent
when more than one signal is involved. The complement function is used to manifest the
simplest data processing form. An application named carece.RuleTests tries the test
programs on the previously selected rules. The programs that handle one signal where
tested with 4x4 cells cellular autómata, while the programs that handle more than one
signal use 5x5 cells cellular autómata.
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T

T

Figure 5.3: Test programa.
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A genetic algorithm is run twice for every rule. The genetic algorithm reads in the rule
and test program and outputs a fitness result, using the parameters usted in Table 5.4. These
parameters were selected based on the experience gathered after many triáis. The length of
the test signáis in the genetic algorithm evaluating function depends on the number of input
signáis, 100 samples for one input signal, and 50 samples for two input signáis.

Parameter
Population
Tournament
Finish criteria
Crossover rate
Resizing rate
Mutation rate
Test signal length

Valué
100 individuáis
5 individuáis
20 generations
90%
30%
7%
100/50 samples

Table 5.4: Genetic algorithm parameters.

The genetic algorithm results are stored in the Rule Tests datábase see Figure 5.4. The
careco.RuleTests application starts coding the first test program in the Target Behav-
ior Simulator at the genetic algorithm evaluating function. Then the application makes a
datábase query to obtain all the rules that passed the second criterion. The genetic algorithm
runs twice on each rule. The genetic algorithm result are stored in the Rule Test datábase.
Once all rules are tested, the next test program is coded in Target Behavior Simulator and
the process is repeated until all test programs are tried.

Table 5.5 shows careco.RuleTests results analysis per local behavior. The first column
refers to the local behavior property analyzed. The second column presents the average
score of the rules per local behavior property. The third column shows the rules máximum
score per local behavior. All tested rules have the reversible local behavior property, thus
the reversible local behavior row presents the statistics of all tested rules. The table shows
that in general rules with valué symmetry local behavior perform below average, while valué
conservative rules perform above average.

Local Behaviors
Reversible
Valué Conservative
Valué Symmetric
Axial Symmetric

Average Score
561.54
612.44
499.03
596.98

Máximum Score
1083.45
1083.45
892.85

1083.45

Table 5.5: Average and máximum scores per local behaviors.
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Start

Code the first
test program

Query the list
of rules to test

Rule = First rule
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Run Counter = 1

Execute the GA

f

Store GA data

Increment Run Counter r^ More runs needed?
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Rule = next Rule
No

Code the next
test program Yes

Is it the last Rule?

j Yes

More test
programs to try?

t
End

No

Rule Properties
Datábase

Rule Test
Datábase

Figure 5.4: Rule test flowchart diagram.
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The rules with higher scores are shown in Figure 5.6. Most of the high score rules
have the valué conservative local behavior property. Another common property in top score
rules is the balance between mobility rate and retention rate. Both rates are almost the
same. The valué symmetry and complement invariance local behaviors seem to influence in
a negative way the rule's performance, because almost none of the top score rules have those
properties. The rules 62658 and 48336 had the highest scores. It can be preved that both
rules are equivalent. One is the complement of the other, so any one can be selected. Rule
48336 was chosen. It should be notice that this rule does not have all the local behaviors
used in the selection criterion.

Seed
62658
48336
63600
55536
61920
51896
61668
59512
55984
59960
47344
62116
61666
57832
62912
62660
56528
64592
62672
49980

R
V
V
V
V
V
x/
V
V
V
V
V
v/
x/
V
V
V
V
V
V
V

vs
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V
V

CI
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

ve
v/
v/
v/
v/
v/
V
V
V
V
V
V
V
V
V
VV
V
V
V
X

AS
v/
V
X

X

X

X

X

X

X

X

V
X

v/
X

X

X

X

X

V
V

MR
16
16
12
12
12
16
12
16
16
16
12
16
12
16
12
12
12
12
12
24

RR
16
16
20
20
20
16
20
16
16
16
20
16
20
16
20
20
20
20
20
8

Score
1083.45
1079.55
1035.2
1028.9
1024.1
1001.45
998.85
990.1
989.4
988.85
957.1
949.25
941.8
935.8
926.3
912.95

910
901.95
892.85
888.2

R
VS
CI

ve
AS

MR
RR

Reversible
Valué Symmetry
Complement Invariant
Valué Conservative
Axial Symmetry
Mobility Rate
Retention Rate

Table 5.6: Rules with the highest scores.
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5.3 Rule 48336
The rule 48336 has the following local characteristics: reversible, valué conservative and axial
symmetry. The valué symmetric local behavior does not seem to play an important role in
the rule's ability to solve the test programs. The input to output rule mapping is shown in
the left side of Table 5.7. A rule 62658 upside down mapping is shown on the right side of
the same table. Its easy to see that one rule is the complement of the other.

Rule 48336 Rule 62658
?3 ^2 ^1 ^0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

03
0
0
1
1
0
1
1
0
0
0
0
1
0
1
1
1

02

0
1
0
1
0
0
0
1
0
1
1
0
0
1
1
1

Oí

0
0
0
0
0
1
0
1
1
1
0
1
1
0
1
1

00

0
0
0
0
1
0
1
1
0
0
1
1
1
1
0
1

¿3
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

¿2
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0

¿1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0

io
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

03
1
1
0
0
1
0
0
1
1
1
1
0
1
0
0
0

Oí
1
0
1
0
1
1
1
0
1
0
0
1
1
0
0
0

Oí
1
1
1
1
1
0
1
0
0
0
1
0
0
1
0
0

00

1
1
1
1
0
1
0
0
1
1
0
0
0
0
1
0

Table 5.7: Mapping of rule 48336 and rule 62658.

The simplified output functions of the rule 48336 are presented in Table 5.8. The rotation
invariant property is reflected on the output functions, they all have the same structure. The
axial symmetry property is also present because i\ and ¿3 can be swapped without altering
the output function, both valid output expression are shown at the bottom of each output
Karnaugh map.
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"̂-\̂ ^ «i«o
*3*2 ^^~\̂

00
01
11
10

00

0
1
1
0

01

0
0
1
0

11
0
1
1
1

10

0
1
0
1

^^-^^^ «1*0
¿3*2 ^~^-~^

00
01
11
10

00

0
0
1
1

01

0
1
0
1

11
0
1
1
1

10

0
0
1
0

«3*2*1 + *3*2*0 + «2*1 *0 + *3*2*1
«3*2*1 + Í2ÍIÍO + *3*2*0 + «3*2*1

Oí = «3*2*0 + «3*1*0 + «3*2 *1 + *3*2*0
Oí = «3«2«0 + «3*2*1 + «3*1 *0 + «3*2*0

"~^\^^ íl¿0

*3*2 ^"~~---\
00
01
11
10

00

0
0
0
0

01

1
0
1
1

11
1
1
1
0

10

0
0
1
1

^^\^^ «1*0
*3*2 ^""~\̂

00
01
11
10

00

0
0
0
0

01

0
1
1
0

11
1
0
1
1

10

1
1
1
0

02 = «3*1*0 + *2*1*0 + «3 «2*0 + *jj*l«0
02 = *3*1*0 + «3*2*0 + «2 «1«0 + «3«1«0

Os = «2«1*0 + *3*2«1 + *3«1«0 + «2*1*0
°3 = *2*1*0 + *3*1*0 + *3 «2«'l + «2*1 «O

Table 5.8: Output Karnaugh maps for rule 48336

The best solutions to the test programs for rule 48336 are shown in Table 5.9. The first
column shows the test programs. The second column has the máximum fitness obtained.
The third column presents the genotype that generated the máximum fitness. The máximum
possible fitness is 46 for single signal test programs, and 91 for double signal test programs.
Most of the test programs performed cióse to the máximum fitness possible. Integer fitness
valúes are likely to be strictly correct solutions.

Program
013 = «1

013 = *'l

06 = *2

06 = *2

09 = «2

09 = *2

012 = «2!

012 = «2!

012 = «25

012 = *2!

O? = «17

07 = *17

017 = ¿7

017 = Í7

Fitness
46

45.8
43.6
46
46
45
91
90

62.5
56.95

Genotype
0110100100100010
1100011111100001
0011000001111111
0010111111010000
0001000010001000
1001100110000001 1101100000000001
00010010100001110100
10100000000001111011 10100000000001111111
00001000001100000000
11001100000000010011 11111101100000010011

Table 5.9: Best solutions for rule 48336.
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5.4 Program Verification
To have machine language code performing as expected under every circumstance is one of the
most important drawbacks on using genetic algorithms. This issue can be treated by applying
a verification stage on the genetic algorithm solutions. The verification stage consists on a
strict Boolean logic conformity check of the solution program with the target behavior. The
verification is performed by simulating the cellular automaton with symbolic logic. In the
symbolic cellular automaton simulation, the program is represented with constants while the
data is represented with symbolic valúes. The cell outputs are obtained evaluating the rule
function using the symbolic input from neighbor cells and from the boundary. The output
equations are simplified in each cellular automaton time step. The output locations of the
cellular automaton are going to have Boolean expressions showing the cellular automaton
actual behavior as time goes on. If this behavior is equal to the target behavior and it remains
steady in time then the solution is correct in a strict logical sense. The test programs in
Figure 5.3 were correctly verified for rule 48336.

5.5 Simple Programs
Simple Boolean programs helped test the rule 48336. These programs include the imple-
mentation of 2-input Boolean functions: AND, OR, XOR, NAND and XOR. The genetic
algorithm had difficulties to find a solution with fixed input/output locations. It became
clear that the genetic algorithm should not be restricted to find solutions with fixed in-
put/output locations. The workaround was to include the input/output data locations in
the genotype, coded as a header or preamble to the machine code. In this way the genetic
algorithm found the place were the input/output data signal should be. Table 5.10 shows the
obtained results. The first column has the Boolean expression tested. The second column
shows the máximum fitness obtained. The next three columns tell the location of the inputs
and the outputs. The last column shows the genotype that obtained the máximum fitness.
The fitness valúes obtained are near the máximum possible valué (100). Indicating a cellular
automaton behavior cióse to the target behaviors. The ÑOR function was the only function
with an irregular behavior under some circumstances. The state of the cellular automaton
was traced manually after applying random input data to determine this irregular behavior.

Function
c = ab
c = a + b
c = a®b
c = ab

c = a + b

Fitness
92.4
91.8
93

91.4

84.8

a
Í3

io
¿5

¿18

¿3

b
¿5

ii
Í3

¿14

¿19

C

04

014

Olí

05

019

Machine Code
0001101001000100000100010000000111101110
00001101000010001111 11110000000001111111
11011100000101000101 11111100000000000101
10000000000100111101
0110111110010000001101110111101101000000
0011011111110000000000110111111100000001

Table 5.10: Simple Boolean logic functions for 5 x 5 cellular autómata using rule 48336.

The time delay of the solution is associated with the máximum Manhattan distances
between the inputs cells and the output cell. The Manhattan distance is defined as the
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distance between two points measured along axes at right angles. In a plañe with pi at
(xi,yi) and p2 at (ar2,y2), it is \xi - x2\ + \y\ - j/2|.

A 2-bit counter program was used to test memory related global behaviors in the cellular
automaton. The genetic algorithm required modifications to handle the memory behavior
and the lack of inputs. The random signal generator was removed in the genetic algorithm's
evaluating function. The target behavior simulator was configured as a 2-bit counter with a
two-step period. The Table 5.11 shows the genetic algorithm best result.

Function
2-bit counter

Outputs
018 016

Fitness
90

Genotype
00001111100110000100

Table 5.11: Simple memory function for 5 x 5 cellular autómata using rule 48336.

The programming and execution sequence of the 2-bit counter solution is shown in Figure
5.5. The cellular automaton starts with all zeros initial configuration. The programming
instruction is entered at time t — 0. The cellular automaton setup takes 6 time steps. The
counting sequence starts at time í = 6. Each count takes 2 time steps. The sequence starts
repeating itself at time t = 15, because cellular automaton's configuration is the same as in
t = 7. Once a cellular automaton returns to a previous configuration state it will repeat the
same sequence forever, unless the input stimulus changes.

Table 5.12 shows the output in time of the solution. A setup time of 6 steps is noticed
in the second column. The third column shows the firsts execution cycles.

t
018 [t]
oieW

1 2
0 0
0 0

3 4
0 0
0 0

5 6
1 1
1 0

7 8
1 1
0 1

9 10
1 0
1 0

11
0
0

12
0
1

13 14
0 1
1 0

15
1
0

16
1
1

17 18
1 0
1 0

Table 5.12: 2-bit counter output in time.

The symbolic program verifier could not be used to verify the long-term correctness of
the found solutions, because the expression simplifier wasn't able to simplify some of the
expressions. Further development is needed.

55



5.5. Simple Programs CHAPTER 5. METHODOLOGY AND RESULTS

t - O t -1

t = 3

t = 6

_!_•
t - 9

t = 12

t = 15

t = 2

t = 4

t = 7

t= 10

t= 13

t= 16

t = 5

t = 11

t= 14

t = 17

Figure 5.5: 2-bit counter programming and execution.

56



5.6. Results Validity CHAPTER 5. METHODQLQGY AND RESULTS

5.6 Results Validity
The results obtained are not the ultímate possible results. They are only a sample of what
could be obtained following the proposed procedure in the time frame of the present research.
Other good solutions may be there, and time should be spent searching for them. The rule
test selection criteria can be changed to consider a broader rule search space. The genetic
algorithms can be tuned to increase the population diversity of the solution programs.

5.7 Applications
The cellular automaton programs present in this chapter are not useful for any real life ap-
plication. In the current stage of development the proposed cellular autómata architecture
could only be used to genérate high quality random signal and test patterns. In the near fu-
ture the proposed architecture could be used to simúlate arbitrary cellular autómata, leading
to the first massively parallel Cellular Autómata Machine. The application would be able to
simúlate, in real-time, physical models such as turbulence and optics.
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Conclusions and Future Work

The main contribution of this document is the new approach of how to exploit parallelism at a
physical level using the mature technologies already available. The simulations results of the
prototype presented in this work support the feasibility of the new proposed approach. The
development scheme proposed in section 1.7 can be the common framework and guideline to
do further research. Specific contributions are:

• Simulations demonstrated that global behaviors like program retention, data mobility
and data independence were present in some of the rules explored under the proposed
cellular autómata topology.

• The valué conservation local behavior plays an important role in the cellular autómata
ability to exhibit program retention, data mobility, and data independence global be-
haviors. These behaviors are essential for the proposed programming and execution
methodology.

• The research results also proved that a compiler based on genetic algorithms could
make cellular autómata behave as desired by applying stimulus on the cellular autómata
boundary.

• A unique rule was able to evolve simple Boolean functions and simple memory behav-
iors.

• It was concluded that the cellular autómata input/output data boundary locations
should not be forced to specific locations. There may be no solution to some in-
put/output placement configurations.

Future research work should focus on developing better programming methodologies and
tools. Genetic algorithm should be improved in order to obtain better solutions in less time
as trying to reuse previously related solutions. The genetic algorithm should be oriented
to find correct solutions in a strict logical sense and solutions with optimal performance
and resource allocation. A possibility is to merge the symbolic verification and the genetic
algorithm evaluating function.

Many of the médium and high-level components of the computer shall be adapted to
use the cellular autómata computing resources in an efficient way. The operating system
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will be of fundamental importance to achieve general-purpose computing architecture. The
OS would have to perform many tasks generally associated to hardware. The proposed
architecture is considered completely defined only with a completely developed operating
system. The operating system tasks shall include:

• Data structures handle.

• Resources allocation management.

• Dataflow management.

• I/O management.

The development of the operating system should take place in parallel with the refine-
ment of the development tools. The maturity of these tools is essential for the proposed
architecture, and is the main área for further research. Research efforts should be mainly
focus on this área.
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