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Abstract

A detailed analytical traffic model for all-optical wavelength division multiplexing (WDM) pho-
tonic packet-switched router is presented and the requirements for buffer size are analyzed. Also
it is known that due to the topology, packets may generate traffic bottlenecks produced by a ten-
dency of the routing scheme to send packets with different destinations through preferred paths.
This effect increases the traffic load and, hence, the probability of blocking at the output links
of specific routers in the network and, therefore, a large buffer depth is required or an increment
in the number of fibers per link. Furthermore, the relationship between traffic features at optical
level and node modelling is addressed in order to outline analytical models to assess node perfor-
mance. An analytical representation of traffic correlation, alongside with forwarding and buffering
at switching nodes is discussed in order to support performance assessments such as packet loss
probability. The statistical features, e.g. marginal distribution and correlation structure, of traffic
reaching an output buffer in a time-slotted photonic packet switching node is investigated. Packet
arrival patterns are generated through a well-known on-off analytical model with short-range de-
pendence that accounts for packet forwarding as well. The purpose here is to find out how far the
analytical model is from representing relevant characteristics present in self-similar traffic traces.
An approach is proposed for modelling buffers under bursty traffic. Finally, is given a model for
optical router with non-balanced input/output and correlated bursty traffic.
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Chapter 1

Introduction

The development of optical fibers opened a new era in the history of telecommunications and the
bandwidth availability, provided by this optical transmission medium, enabled the recent growth
of new communication-based services. The increasing pressure on access network to provide
broadband connections will initiate additional growth of data traffic from customers, which must
be supported by the transport network (WAN and MAN). In principle, this continuous increase
in traffic volumes is not an issue for the optical fiber itself, since its capacity has still to be fully
exploited. However, it poses huge challenges for switching in transport networks. The problem
is not only the volume of traffic to be switched but also the urgent need for traffic management
strategies to be put in place.

Most of domestic and small businesses are still unable to afford the so-called broadband
connections, and are restricted to interfaces bit rates much below the ones used in their LANs;
therefore is now imperative to make available the bandwidth from backbones and thereby recover
vast investments made recently in expanding its capacity. Conversions between optical and
electrical domains might only happen at edge nodes of the optical network.

Telecommunications companies have been deploying transport network for the sole purpose
of serving voice channels, transmission equipment are designed for this use. In order to build
the widespread network that is the Internet today; circuits tapping into different levels of the
transport network based on Synchronous Digital Hierarchy (SDH1,SONET) are leased by ISPs,
organizations, and governments to interconnect their packet routers. ATM has been keeping, for
the time being, its niche in WANs not only for its traffic management capability but also because
it is able to transport non-best-effort services, e.g. VoIP. Deterministic multiplexing functions
performed by SDH are not efficient for bursty data traffic. Datacom architects have envisaged the
opportunity of using optical networks to solve some limitations of IP in WANs as well as creating
a slimmer network stack by approaching IP to WDM.

Optical network is regarded as just one more layer where labels (packets header) may even
correspond to wavelengths. Setting up a lightpath consists of mapping a particular pair input-
wavelength to output-wavelength.
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Another challenge is the nature of Internet traffic itself. High variability along with temporal
correlation extending for very long periods has been detected nearly a decade ago from LANs [24]
to WANs [32]. This effect is often called self-similarity due to the resilience of traffic variance
regardless of the aggregation factor making buffering ineffective as a means of contention resolution
when low packet loss probability is required.

One of the major problems in the design of all-optical packet-switching routers [4] is reduction
of the number of components and the number of components a signal has to traverse without
affecting the teletraffic performance of a network. The number of components in a router is driven
by the degree of blocking probability desired. Packets may be lost when they contend for resources.
Blocking occurs when two or more competing packets at the input of a router desire the same
output. Buffering [35], multipath routing [6], wavelength translation [7], [2], and link dimensioning
[8] are some of the techniques that can be used to solve the conflict of packets. Notice, however,
that many solutions are possible by combining different amounts of each component in this three-
dimensional space. Some cases studied in the literature are in Figure 1.1.

Figure 1.1: Contention resolution: three-dimensional space representation

The most utilized is buffering, which actually makes use of time domain, delaying contending
packets until empty time-slots are available to proceed their transmission. Alternatively, con-
tending packets could be routed through alternative links (deflection routing) to eventually reach
their destinations provided there are on a connected network. Finally, the most recent proposal
coming along with photonic switching technology is to change the wavelength a packet is carried
upon. The teletraffic performance and the optimization of the number of components in a router
have been analyzed assuming an isolated node [10]. Usually, a uniform distribution is assumed to
assign the outlet destination to the incoming packets. The consequence of this kind of assumption
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is that router architectures require a balanced buffer depth per outlet. Therefore, due to this
assumption, the number of components used in the router increases. Due to the nonuniform
network traffic behavior [9], routers require asymmetric buffering capacity to solve contention.
Here is presented a wavelength division multiplexing (WDM) packet-switched router model that
adequately represents the queueing behavior of the traffic in irregular mesh networks. Models that
can effectively describe the behavior of the traffic in terms of a minimum number of parameters
are of great practical significance. Several efforts have been demonstrated in [2] and [12] to model
regular mesh networks under uniform traffic.

The information of the traffic matrix (source-destination load distribution), network topology,
and routing tables, give us packet-forwarding probabilities of the routers, which are associated
with routing in the node and consist of the proper selection of output wavelength and fiber both
for transiting and for locally generated packets.

Router dimensioning is used to quantify the buffer size and the number of output fibers to
achieve a specific probability of packet loss per router. We focus on two router architectures: the
output optical buffers are completely partitioned (CP) among the outlets, and the shared buffer.
The analytical results are compared to simulation results assuming correlated traffic. Also, we
assume that the router operations are time slotted and synchronous, and fixed size packets are
aligned at the node inputs. Each router performs access and routing functions. Access consists
of the possible transmission of up to n wavelengths, of which the node is source. We assume full
wavelength conversion, i.e., every packet can be converted to any of the available wavelengths.

1.1 Objective

The objective of this thesis is to develop an optical router traffic model under correlated traffic
which takes into account load imbalances due to network topology, in order to analyze buffer
performance.

1.2 Justification

There is already a network traffic model that consider independent traffic (packets) [5], and an
electronic router model that considers correlated and imbalanced traffic [27], here is wanted to give
an optical router model that can be included in a network model in order to manage correlated
traffic considering load imbalances because of interconnections between all nodes in a network.
This router model is not available yet in scientific literature. Also the traffic of today applications
is highly correlated, such as Ethernet packets. The idea that routers analyzed be optical is due to
there is no need to electronic conversion. That is what we expect for reducing costs in network and
for exploitation of optical transparency (to transmission bit rate) .
All optical networks is expected to be in use during next future and this model will have direct
applications to those networks, giving a really useful model.
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1.3 Final Product

The final item is a model mentioned in the objective, and will be supported by simulations.

1.4 Summary

The present work is composed of five chapters, in the first chapter, we have the objectives and an
introduction about what motivated the realization of this work. The second chapter is a background
in which we talk about concepts like routing scheme and architecture, packet traffic characteristics.
The third chapter has the router model, for traffic analysis, correlation and performance assessment
for buffering, considering an isolated node. The fourth chapter considers an optical router model
for correlated an non-uniform traffic. We conclude with the fifth chapter where conclusions and
future work are given.

4



Chapter 2

Background

To begin with, we introduce fundamental concepts, their relation and the ones we concentrate.

2.1 Definitions

• Dimensioning: in general, it is a management function that solves the problem of assigning
capacities to the resources such that for the given demand, the quality of service and perfor-
mance metrics are within acceptable levels considering that the topology of the network and
the external demand are known. Some of this resources may include the number of fibers, the
number of channels per link, components such as router optical memories in the switching
matrix, etc.

• Irregular Network: is a mesh network where nodes can have any input and output degree.
A regular network is a mesh network where the nodes degree (input/output) is the same.

• Transparent Network: is a network where the main focus is to maximize signal trans-
mission without electronic regeneration. Once interconnections are made optically, it is
reasonable to think of a fully-optical central stage in order to eliminate expensive electri-
cal/optical/electrical conversions and bit rate limitations. Ultimately, the same argument
could be applied to input and output stages extending, as a result, optics from inlets to
outlets making a transparent photonic switching node.

• Optical Cross Connector (OXCN): optical nodes that conduce traffic, with multiple
inputs and outputs, it could be a router or switch.

• WDM: Wavelength Division Multiplexing, this implies multi-mode fibers.

• Traffic source: it can be a people making a phone call, an ON/OFF source can be a
computer terminal connected to the Internet.

• ON/OFF periods: periods in which it is maintained or not, a phone call or a packet
transmission.
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2.2 Routing scheme and router architecture

Optical packets must be routed through a network from the origin and through intermediate nodes
(OXCN) to reach the destination. The general optical WDM network which we consider is shown
in Figure 2.1. It is a mesh network in which signals on n different wavelengths, λ1...λn, are used
to carry cell traffic between the optical network nodes.

Wavelength division multiplexing (WDM) has been proposed as a way of increasing the capacity
in future optical networks. Furthermore, WDM networks are likely to use optical switching to
avoid the bottlenecks of electronics as well as to increase the transparency of optical networks.
The absence of an effective way to store cells in the optical domain, reduces the realistic buffer
capacity of optical packet switches. The optical buffer is realized by fiber delay-lines. By exploiting
the wavelength dimension, using WDM and employing tuneable optical wavelength converters
(TOWC’s), the required number of fiber delay-lines in optical packet switches can be reduced.

Figure 2.1: WDM WAN Backbone Network

The decision of the path to be followed is made by a control unit, which most often is imple-
mented with electronic techniques. The routing algorithm is closely related to the network topology
and, thus, to the type of switching routers in use. Routers in irregular meshed networks use prede-
fined lookup tables to forward- arriving packets. Usually, a shortest path or least number of hops
algorithm is used to define the optimum output at every router in the network. There is normally
a single path and, therefore, one output for every packet that arrives to the router. Analysis of the
router performance in terms of packet loss, number of delay lines, size of the router, and number
of wavelengths has been studied for the case of single-path routing and uniform-router traffic [10].
The router architecture, demonstrated in [11], is the architecture used in this analysis and is shown
in Figure 2.2.
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Figure 2.2: WDM packet switch with buffers realized as fiber delay-lines and with tuneable wave-

length converters to address free space in the buffers. T corresponds to the duration of a packet.

The demultiplexer (DEMUX) selects the packets arriving on wavelengths λ1, ..., λn, on each
of the N input fibers. Optical- to-electrical interfaces located after the DEMUX are used to read
the packet headers by which the destination and thereby switch outlet can be found. Also, after
the demultiplexer, tunable WCs are utilized to solve blocking of packets by addressing free space
in the fiber delay-line output buffers. The space switch consists of optical gates that control the
flow of packets to the designated output and fiber-delay lines in the output buffer, the size of the
space switch is Nxn · N(B/n). Fiber-delay lines provide the packet buffering and are present at
the output of the router [10]. In Figure 2.2, B is the number of cell positions in the buffer, n is
the number os wavelengths, N the number of in- and out-lets and B/n the number of fiber-delay
lines, each capable of storing n packets. There is at least one inlet to inject up to n packets into
the network and at least one outlet to absorb up to n packets from the network. Logically, the
router has the functions of packet dropping (absorption), adding (injection), wavelength switching
(conversion), routing (space switch), and buffering. Observe that architecture in Figure 2.2 has
completely partitioned buffers because fiber-delay lines are distributed among the outlets.

In Figure 2.3 we see the physical layout of fiber delay-line buffer architecture. Architectures
with buffers dedicated to each outlet require a smaller number of wavelengths in comparison to
shared buffers. Efforts must be gathered towards understanding traffic features in order to keep
the buffer depth as low as possible. Noise accumulation, power splitting, fiber non-linearities,
crosstalk, amplitude and phase fluctuation in the switch fabric are some of degrading effects
taking place at physical layer. The performed analysis here considered does not take into account
influences of physical layer on packet loss performance.
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Figure 2.3: Physical layout of fiber delay-line buffer architecture. B is the number of cell positions

in the buffer, n the number of wavelength channels per in- and out-let, N is the number of physical

in- and out-lets while T is the duration of a cell.

2.3 Traffic of packets at electronic layers

Teletraffic theory is being changed to a great extend during the last decades. It is often argued that
models that were extensively used in telephony do not account for features of today’s data-oriented
network. Telephony network uses circuit-switched technology and traffic is basically modelled as
Poisson arrivals (connection requests) and exponential holding time per connections; leading to
what is called Erlang distribution for blocking probability when establishing a new connection [28].
Hence, one is able to properly design network elements that are to be shared by many subscribers,
e.g. switching centers modules and trunk lines. In packet switched networks, on the other hand,
the aim is to design buffers with the purpose of reaching an acceptable packet loss probability by
solving packet contention.

Temporal correlation between packets has been one of salient feature present throughout the
history of packet switching technology. The first efforts to model the bursty behavior of data
networks let to the concept of packet trains discussed in [23]. Comprehensive statistical charac-
terization studies were pursued in [25] until a major breakthrough happened in early 90s when
Long-Range Dependence (LRD), also known as self-similarity, has been identified in Ethernet traf-
fic [24]. Self-similarity could be summarized as follows. The observation of traffic sources indicates
a very large variance associated to the amount of traffic generated. In addition, this traffic pos-
sesses high levels of time-correlation spreading across long periods. Consequently, the effectiveness
of buffering in reducing packet loss (due to contention) is considerably weakened and so is the
aggregation at the core network of the photonic router as a means of smoothing traffic variance
and improving link utilization.

2.3.1 Burstiness

A bursty traffic source is one that generates traffic in (random) clusters. Bernoulli traffic have
clusters of traffic and is more bursty than a deterministic source. However because this perceived
burstiness can be smoothed through aggregation (unlike self-similar soruces) bernoulli traffic is not
considered to be truly bursty [36].
When several sources are supplying bursts of packets at the same time, the load is thus larger
and queue length increases (with respect to non bursty sources), the tail probability for buffer
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occupancy decreases slowly (instead of linear decrease). A buffer size of B may be sufficient to
achieve a certain probability of packet loss if traffic is non-bursty but would be too small for bursty
traffic. Thus larger buffers will be needed if sources are bursty in order to achieve the same buffer
occupancy performance level.

2.3.2 Causes of long-range dependence

In voice connections generally one part speaks while the other remains mute. Therefore, the
production of packets is a clear alternation between bursty and silent periods. It is perfectly
foreseeable that this dependence is expected, on average, not to last for very long time span once it
is due to the bursty nature of human conversation itself. This leads to temporal-correlation among
generated packets that, in contrast with voice over packets, may persist over very long periods of
time.

2.3.3 Traffic features

The statistical background to understand the features of modern traffic sources is briefly discussed
here. It has two basic objectives: to clarify the relevant issues on traffic characterization, and to
introduce few basic mathematical tolls used for trace analysis in this work.

2.3.4 Section arrivals and duration, packet inter-arrival time, arrival counting,

and heavytailness

Arrival of section requests can be still modelled as Poisson arrivals just like connection requests
in telephony for human generated requests such as telnet and FTP [32]. However, sections time
distribution on the Internet, whatever origin, presents slow decay. This contrasts with connection
duration (holding time), well represented by exponential distribution in telephony. This sort of
probability distribution is often called heavy-tail and is defined as in

Prob{U ≥ u} ≈ u−αL(u) as u −→∞ and α > 0 (2.1)

with 1 ≤ α ≤ 2 and L(u) being a slowly-varying function (e.g. logarithm or constant such as
limt−→∞L(tx)/L(t) = 1). One may interpret Equation (2.1) as follows: most connection lasts very
little but the bulk of the traffic volume is composed by few long-living connections [38]. Another
consequence of heavytailness associated to section duration is that the longer the period of observed
activity, the more certain that it will persist into the future [30]. In light-tail distributed process
(such as exponential) the expected duration is the same regardless of its elapsed time. The IP
network is not slotted in time. As a result, some prefer to associate the high variability of heavy-
tail distributions to the interval between arrivals (inter-arrival time). On the other hand, for ATM
traffic, which works on a slotted-time basis, the variance is often related to the number of arrivals
(or amount of bytes) in a multiple of the time-slot interval. Traffic will be regarded as a time-
discrete stochastic process X(t) comprising arrivals (e.g. bits, bytes or packets) per time interval.
It must be said that the heavy-tail feature does not necessary imply self-similarity
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2.3.5 Stationarity

A discrete stochastic process X(t) is considered stationary whenever its joint statistical features for
any set of samples are all the same regardless of the time-reference frame adopted for observation.
Under a less restrictive definition, if at least the two first moments are time-invariant, one may
define the autocorrelation coefficient r(k) using µX = E[X] and σ2

X = E[(X − µ)2] as the mean
and variance, respectively as follows

r(u, v) = E[(Xu − µ)(Xv − µ)]/σ2
X (2.2)

r(u, v) = r(u + k, v + k) u, v, k ∈ {0, 1, 2, ...} (2.3)

r(u, v) = r(0, u− v) = r(k) (2.4)

If the autocorrelation function also satisfies the translation invariance, leading to the auto-
correlation function being defined only by the relative difference between temporal samples as
in Equation (2.4), this process is classified as wide-sense stationary (also known as second-order
stationarity) [28].

2.3.6 Long-range dependence and second-order self-similarity

A wide-sense stationary process X(t) is long-range dependent (LRD) if r(k) is non-sumable (i.e.∑
k |r(k)| −→ ∞), meaning that samples are still related to each other no matter how far apart they

are, which means that correlations decay to zero so slowly that they are not sumable. An exact
(second order) self-similar process is characterized by the Hurst factor H (0.5 < H < 1) shown in
Equation (2.5), that is the Autocorrelation Coefficient of Fractional Gaussian Noise Process, which
represents the self-similarity phenomenon [1].

r(k) =

{
[(k + 1)2H − 2k2H + (k − 1)2H ] 0 < k < ∞
1 k = 0

(2.5)

Experimental measurements can be compared with Equation (2.5) for identification of LRD in
traces. For a finite number of samples, say Z, the correlation coefficient can be obtained as in
Equation (2.6)

r̂(k) =
∑Z−k

i=1 [X(ti − µ̂X)][X(ti − tk)− µ̂X ]
(Z − k)σ̂2

X

(2.6)

where µ̂X and σ̂X are temporal mean and (unbiased) variance estimation from the finite traffic
trace calculated as shown in Equation (2.7) [28]

µ̂X =
1
Z

Z∑

i=1

X(ti) σ̂2
X =

1
Z − 1

Z∑

i=1

[X(ti)− µ̂X ]2 (2.7)

By increasing the observation window (time-scale) in which a stochastic process is analyzed, one
may see the effects of long-range dependence manifesting its graphical fractal-like behavior. This is
due to the slow reduction of variance as the process is viewed in coarser scales. A convenient way to
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assess this (and estimate the Hurst factor) is by constructing a new stochastic process comprising
of non-overlapping blocks of X(t) containing m ∈ {1, 2, ...} samples as shown in Equation (2.8).

X{m} =
1
m

tm∑

i=tm−m+1

X(i) (2.8)

Each block produces a single sample by averaging m samples of the original process. This
is somehow equivalent to observing X(t) in a time scale that is m coarser than the original.
Notice that limm−→∞X{m} = µX consequently σ2

X{m} −→ 0 as m increases towards infinity.
Plotting the new variance against the aggregation factor using a log-log scale, one can use the
slope (S) for Hurst parameter estimation Ĥ = (S + 2)/2, although this method does not allow
interval of confidence measurements. It is worth looking at the two extreme values for H, with
H −→ 0.5 the variance of X{m} reduces at the same rate m increases, which actually means
that the stochastic process is completely uncorrelated. This lack of correlation can be confirmed
by the fact that in Equation (2.5) where r(k) = 0 for H = 0.5 and k > 1, meaning that no
self-similarity will be present as the time scale of observation is increased and the variance is
quickly smoothed by aggregation. On the other hand, for H −→ 1 the variance stays virtually the
same regardless of the aggregation factor m. This is explained by the autocorrelation r(k) = 1, ∀ k.

The process X is exactly second order self-similar if for positive integer m, are satisfied Equa-
tion (2.9) and (2.10)

V AR(X{m}) = σ2m−γ 0 < γ < 1 (2.9)
r{m}(k) = r(k) k ≥ 0 (2.10)

for which, the Hurst parameter H is given in Equation (2.11)

H = 1− γ/2 (2.11)

The process X is called asymptotically second order self-similar if for all k large enough, is
satisfied Equation (2.12)

lim
m−→∞ r{m}(k) −→ r(k) (2.12)

where r(k) is given by Equation (2.13)

lim
k−→∞

r(k) ≈ k−γL(t) (2.13)

self-similarity also implies variances decay slowly as in Equation (2.14)

lim
m−→∞V AR(X{m}) ≈ cm−γ (2.14)

where c is a constant.

In summary, the aggregated version depends upon the correlation structure of the original
samples. Therefore, long-range dependence implies (second order) self-similarity. In other words,
if samples are strongly related to each other the aggregation will result in a process very similar
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to the original one (in distribution). This also explains the presence of self-similarity MANs and
WANs since aggregation does little to decrease variance when sources bear long-range dependence.

2.3.7 Statistics for aggregation in time

Let X(t) represent the evolution in time of the volume of incoming traffic. This stochastic process
produces random variables X1, X2, ... when sampled at a given regular time-interval t = t1, t = t2
... respectively. The aggregation of m samples so that F = X1 + X2 + ...Xm, produces a sample
of Θ(t) which represents the evolution of the aggregated traffic, where m the number of time-
intervals collected from the original stochastic process. The expectancy (ensemble average E[.])
of this aggregation is a straightforward multiplication, shown in Equation (2.15), of the original
expectancy by the number of samples that has been grouped regardless of statistical dependence
[14].

E[Θ] = mE[X] (2.15)

However, the general calculation for variance, here represented by Var[.], is given by the sum-
mation of the autocovariance matrix [26] composed of m x m elements, that is, the summation all
combinations of m elements in the correlation coefficient, as stated in Equation (2.16).

var[Θ] =
∑

Covxx = var[X]
m∑

u=1

m∑

v=1

r(u, v) (2.16)

If arrivals are uncorrelated, the correlation coefficients are null except for u = v. Therefore the
variance grows linearly with m as u = v is satisfied m times. In the case of a wide-sense stationary
and exact (second order) self-similar process, one may use the autocorrelation function given in
Equation (2.5) and substitute it in Equation (2.16). Realizing that r(u, v) = r(|u − v|) due to
the wide-sense stationarity, the double summation produce m occurrences of zero, and 2(m − k)
of each value of k (k ∈ {1, 2, ..., m − 1}), the time-aggregation variance is then calculated as in
Equation (2.17).

var[Θi] = var[Xi]{m +
m−1∑

k=1

(m− k)[(k + 1)2H − 2k2H + (k + 1)2H ]} = var[Xi]m2H (2.17)

The simple relationship between variance and aggregation revealed by Equation (2.17) is at the
root of self-similar stochastic processes. An exact (second-order) self-similar process proportion-
ally maintains its variance, according to the Hurst factor, regardless of the observation interval.
Although the proof of Equation (2.17) is trivial (see Appendix). So, it is shown the equivalence
of Equation (2.16) and Equation (2.17), named covariance matrix and self-similar property respec-
tively, for an exact (second-order) self-similar process. Variance-plot performs gathering in time
from the original trace but instead of simply collecting arrivals, variance-plots use a mean value,
i.e. multiply the aggregate by 1/m. As a result, the variance of new samples is the variance of the
aggregate times 1/m2.
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2.4 Traffic models for node performance evaluation

The relationship between packet arrival patterns and outputs they are forwarded to has strong
influence on node performance and therefore modelling must account for it as accurately as
possible. Effects such as bursty arrivals, hot-spot, and temporal/spatial correlation and contention
in nodes operating under time-slotted system are illustrated in Figure 2.4. The numbers inside the
packets represent outlet ports used to despatch them. Assuming that the node shown in Figure 2.4
is only able to forward one packet per output in a time-slot, arrivals beyond this limit have to be
either discarded or treated by a technique of contention resolution discussed above. For instance,
packets arriving in the sixth time-slot on input 1 and 4 are contending for the same output. In
addition, notice that packets on inlet 4 arrive in a cluster of three packets all destined to output
3 while the burst(various packets in sequence) on input 1 has packets headed for different outlets.
In case packets are arriving in such clusters on a regular basis, time-correlation feature is present
in the arrival pattern. This correlation may last for few time-slots or even go through very long
periods of time. It has been shown that temporal correlation has a major influence on decreasing
buffer efficiency in reducing packet loss probability [13][17][21][31][37]. Moreover, a given port (or a
group of them) may receive, on average, more packets than the reminder ports. In the illustrative
example given in Figure 2.4, traffic loads on inlets 1 and 4 are higher than on 2 and 3 while outlets 3
and 4 receive most of the arrivals. These traffic imbalances (also known as hot-spots) certainly pose
more complex challenges to the mechanisms of contention resolution. The more packets are headed
for a given output the fewer are destined to the remainder for a switch with finite number of inputs.

Figure 2.4: Traffic Features: Arrival Patterns.

It is not difficult to conclude that many interrelated phenomena have to be taken into account for
modelling traffic features and forwarding in order to evaluate node performance properly. Ideally,
packets in transit on a network must arrive to the destination node as soon as possible and should
not be lost. However, due to the intrinsic nature of this kind of switching technology, this packet
may have to contend for the same resources with other packets at some node in the path between
source and destination. As a result, some packets have to wait in buffers, follow different paths
or even have to be discarded. Therefore, a basic metric to evaluate packet switching nodes must
involve the rate packets are lost due to contention.
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Figure 2.5: Traffic Features: Classification and complexity.

2.4.1 Model complexity

An illustrative classification system comprising traffic features and forwarding model for packet
switching nodes is presented in Figure 2.5. There is also a vertical scale indicating the complexity
associated with the modelling of various traffic characteristics at different node parts. The
common sense indicates that the more complex is the model the closest to the real behavior it
becomes. Therefore, limit approaches could be devised, named here simple and complete. For the
former, one may develop a model to evaluate node performance considering the incoming traffic
as totally uncorrelated (random) and packets evenly distributed among outlets (independent
forwarding). On the other extreme, there is a complete model that would include long-range
temporal correlation in the incoming traffic representation. This kind of traffic often produces
bursts that are composed of packets going to the same output. Therefore, correlated routing must
be considered in order to model the routing of those bursts accordingly; otherwise independent
forwarding would alter the correlation structure.

Notice that the analytical effort that must be put into the development of the complete model
can be prohibitive while the simplest model might produce results of little practical interest.
Nonetheless, this dilemma may be avoided when one considers that there is a whole range of
options in between these two extreme models that could well produce reasonable results. A
compromise solution between performance and model complexity might be archived by choosing
only relevant aspects in describing the problem under study. For an output buffered node, the
fact of having an incoming correlated and non-balanced traffic is completely irrelevant unless
the packets are to be forwarded to the same output. In conclusion, a fairly simple analytical
model accounting for short-range dependence with correlated forwarding and balanced loads (in-
put and output) may produce acceptable traffic characterization for output buffered photonic nodes.

The relative importance of performance metrics is entirely up to the application. Real-time
services, e.g. telephony, may be sensitive to delay while mission-critical applications, e.g. exchange
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of control/management information, must rely on nodes with very low packet loss probability.
Moreover, the metrics mentioned above are generally taken from first-order statistics of a stochastic
process. Therefore, one may have to consider different metrics for different applications that utilize
the packet network to transport information. Nevertheless, the analysis performed in this works
considers first-order metrics only.

2.4.2 Analytical and numerical models

Analytical models are complex and time-consuming to develop. In addition, assumptions and
simplifications have to be made in order to keep its analytical tractability. Numerical models,
on the other hand, can significantly reduce analytical effort with the advantageous feature of
better description of the real problem. The downside, however, lies in the prohibitively long time
taken to assess performance indicators such as low packet loss probability levels (e.g. 10−7 and
below). New simulation techniques, such as faster processors may keep on tilting the balance in
favor of numerical solutions. Nevertheless, proper validation of numerical results is troublesome,
as many outcomes are necessary in order to improve the interval of confidence of such results
[28]. Alternatively, simplified analytical model can at least as performance, bounds providers in
validating numerical methods and results. Conversely, few time-consuming computations using
numerical models are often used to endorse analytical approaches that, once validated, are ready
to be extensively used to, for example, assess low packet loss probabilities.
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Chapter 3

Router Model

In this chapter we turn into the router model under correlated traffic.

3.1 Analysis of traffic forwarding and buffering for node perfor-

mance assessment

An analytical representation of traffic correlation, alongside with forwarding and buffering at switch-
ing nodes, is discussed in this Chapter in order to support performance assessments such as packet
loss probability. The statistical features, e.g. marginal distribution and correlation structure, of
traffic reaching an output buffer in a time-slotted photonic packet switching node is investigated
in the first part of this Chapter via analysis and simulation. Packet arrival patterns are generated
through a well-known on-off analytical model with short-range dependence that accounts for packet
forwarding as well. The purpose here is to find out whether traffic features of such a simplified
analytical approach are equivalent to all-inclusive numerical models and how far it is from repre-
senting relevant characteristics present in self-similar traffic traces. Results indicate that the model
under analysis is accurate and may even produce more severe test conditions to buffering than
self-similar traffic. The understanding developed helps interpreting results from the second part
of the Chapter, which deals with the analysis of performance when the traffic finally goes through
buffers. A generic and exact approach is proposed for modelling buffers under bursty traffic.

3.2 Introduction

Performance estimation through mathematical models plays a central role in the design of present
communication systems. The future photonic packet switching network will be no exception.
However, a better understanding of traffic that will be processed by such nodes is still needed.
The design of fundamental functions, e.g. contention resolution through buffering, depends upon
this knowledge. It is often argued that traffic temporal correlation represented through models
with Short-Range Dependence (SRD) is an obsolete method, since modern traffic sources actually
possess long-range dependence (LRD) in their correlation structure. Nonetheless, one should seek
a balance between simplicity and accuracy regarding the models utilized to represent the physical
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entities involved in the analysis of performance.

A simple illustration is given in Figure 3.1 for the case analyzed in this Chapter. The number
of delay-lines provided to sort out contention is represented by b. Each wavelength (sometimes
referred as channel in this work) is loaded at ρ (0 ≤ ρ ≤ 1) which can also be interpreted as the
probability of finding a busy time-slot. Each source is assumed to have identical load. The major
concerns of this Chapter are:

• to model traffic generation and understand the traffic features reaching an output node. The
traffic in this case is composed by sections of traffic coming from N inputs (each of them
bearing n wavelengths) that are forwarded to the observed output. The analysis will be
focused on any one particular output line.

• to assess the effectiveness of buffering under both uncorrelated and correlated traffic.

Figure 3.1: Illustration for output buffering and main issues discussed in this Chapter

This Chapter looks into traffic features of a simple model (bursty on-off) that is able to take into
account correlation features at arrival and forwarding levels and is particularly suited for output
buffered nodes, like the one considered in this job. Marginal distribution, correlation structure, load
distribution, and aggregation features are the characteristics studied via analysis and numerical
simulation. Another point to be discussed here is to what extend claims that this sort of model
overestimates node performance, due to the lack of LRD, are consistent. The detailed understanding
developed here paves the way for performance assessment of nodes using output buffers under traffic
with and without time correlation (and tuneable wavelength conversion). A well-known approach
for modelling uncorrelated traffic buffering is initially presented to be generalized for the case of
time-correlated arrival. If a given performance target is to be met, the traffic features and number
of wavelengths utilized will dictate buffer depth which also affects switch matrix cross-point count
as packets have to be directed to b elements in order to reach outlet without conflict.

17



3.3 Previous work

Analytical models representing traffic temporal-correlation with SRD have been in use since first
investigations of voice over packets, e.g. [15] [16]. After the introduction of Asynchronous Transfer
Mode (ATM) technology, these models have been extensively studied and upgraded in the view of
new traffic sources bearing temporal correlation using this multimedia-oriented transport platform.
There are two basic areas of study regarding the analytical model in this area. The first concerns
the modelling of traffic sources themselves while the second addresses the transit and buffering
of packets in switching nodes, involving the understanding of traffic gathering at outlets due to
packet forwarding process and its influence on buffering performance. Studies analyzing traffic
superposition of correlated sources can be found in [22], [29], and [39] while investigations into
buffer performance are carried out in [3], [18], [19], and [27].

The study presented in this Chapter is based on model for source representation and traffic
forwarding developed in [19] while buffer modelling and performance from [10], which is a general-
ization from [18] for use of TWC/WDM. This Chapter uses [3] to extend the model developed in
[10] providing an exact and clear solution for performance evaluation of correlated traffic. Regard-
less of being a widely used model, little is known about traffic features produced by this method
regarding the relevance of various factors that compose traffic statistics reaching output buffers.
The validity of such a model when LRD is present, instead of SRD, needs to be assessed.

3.4 Model for packet source and forwarding

Next, it is shown the model for the traffic sources and the forwarding process for allocating incoming
packets to a given destination.

3.4.1 Source model

The model considers the input traffic per wavelength as a two-state system, more specifically
High and Low for the representation used in Figure 3.2. Sources are independent and identically
distributed (i.i.d.) and they are either producing a continuous stream of packets while in High state
or no traffic at all during Low state (or generating packets for other outputs). The synchronism of
the network ensures that all packets arrive at the beginning of the time slots [20]. The transition
probabilities RHL and RLH stand for High to Low and Low to High respectively. Each source emits
intermittently bursts of consecutive packets, where the burst length l is geometrically distributed
(geometric source) according to

l(i) =

{
RHLRi−1

LH i > 0
0 otherwise

(3.1)

Each source spends, on average, 1/RLH on Low state and 1/RHL time-slots on High state. The
latter is the mean burst length β, also known as burstiness. Applying local balance boundary to
the source model shown in Figure 3.2 one finds Equation (3.2) as demonstrated in the Appendix.

Prob[state = High] = RLH/(RLH + RHL) (3.2)
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3.4.2 Forwarding model

Balanced input and output loads are assumed. The forwarding process considers that, in the
long term, the incoming traffic is equally distributed among the output ports. An ingenious way
is utilized in [19] to addresses forwarding via a hybrid representation between independent and
correlated approaches discussed in previous Chapter. This is done by evenly distributing the input
load among outputs in the long term but each burst generated is forwarded in a correlated way
to a given output. Consequently, one only needs to keep track of sources addressed to the tagged
output. As packets are exclusively released in the High state, Prob[state = High] = ρ/N and
from Equation (3.2) the probability of transition from Low to High can be calculated as stated in
Equation (3.3)

RLH =
(

ρ

N
RHL

)
/

(
1− ρ

N

)
(3.3)

Temporal evolution for the number of sources in High state addressed to the tagged output
is modelled by a Markov chain, illustrated in Figure 3.2, in which any transition among the
Si(0 ≤ i ≤ nN) states is allowed.

For each source, the transition probabilities are taken as geometric distributed with mean
RHL and RLH for sources leaving state H and state L respectively. As a result, the number of
input sources in state H and addressed to the outlet under observation in a given time slot is a
binomial distribution, where i represents the current number of sources in High state while j also
stands for that quantity a time-slot ahead. An auxiliary variable z is brought in to represent all
possible combinations regarding transitions of individual sources, finally allowing the calculation
of transition probability from i to j (i, j ∈ {0, 1, ..., nN}) in a compact expression [19] as shown
Equation (3.4).

Qij = Prob[S(T + 1) = Sj\S(T ) = Si] =
min(i,nN−j)∑

z=max(0,i−j)

∆L(z, i)∆H(z − i + j, nN − i) (3.4)

∆L(u, v) =

(
v

u

)
Ru

HL(1−RHL)v−u; ∆H(u, v) =

(
v

u

)
Ru

LH(1−RLH)v−u

The resulting arrival pattern, represented here by a discrete stochastic process A(t), at a given
output is the summation of individual contributions in each time-slot as illustrated in Figure 3.3
for three inputs that have packets addressed for the tagged outlet. The marginal distribution and
two random variables from temporal samples of such a stochastic process Aτ and Aτ+k, (taken at
T = τ and T = τ + k respectively), are also shown.

3.5 Marginal distribution

Two methods for obtaining the marginal distribution for traffic reaching an output buffer are
discussed here, namely, steady-state solution for the Markov chain representing state of input
sources, and convolution of individual contributions within a time-slot.
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Figure 3.2: Analytical model. (a) Source representation.

3.5.1 Analysis via Markov chain

The steady-state solution for the temporal evolution of number of sources in High state can then
be found by solving the Equation system presented in Equation (3.5). The underlined S and q are
the state and transition probabilities, in vector and matrix form respectively; e is a unitary column
vector, i.e. e = [11 . . . 1]T , with nN+1 elements while ? stands for matrix product.

{
S = S ∗Q

S ∗ e = 1
(3.5)

Once packets are released with probability 1 (µH = 1) for sources at High state, vector S may be
seen as the marginal distribution for the discrete-valued stochastic process A(t), i.e. S = pA(a) =
Prob[A = a], a ∈ {0, 1, 2, ..., nN}.

3.5.2 Analysis via Central Limit Theorem (CLT)

Provided that the traffic addressed to a given output is simply a summation of independent
random variables ${i}, with $ ∈ {0, 1} which are temporal samples from ξ{i}(t) coming from
i ∈ {1, 2, ..., nN} inputs within a time-slot as shown in Figure 3.4, one is able to find out the
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Figure 3.3: Analytical model. (b) Illustration for traffic reaching an output buffer.

marginal distribution at the outlet under analysis by convoluting (convolution is represented by
the symbol ⊗) the individual contributions from each input as stated as follows

PA(a) = P {1}
ς ($)⊗ P {2}

ς ($)⊗ · · · ⊗ P {nN}
ς ($) (3.6)

For the assumptions that have been made, the probabilities of sending either one or no packet
to the tagged output is given by Equation (3.7). One should expect this distribution to go through
intermediate profiles, e.g. Poisson-like, while with a limited number of sources before reaching
Gaussian shapes for nN −→∞.

Pς(0) = Prob[$ = 0] =
(

1− ρ

N

)
; Pς(1) = Prob[$ = 1] =

ρ

N
(3.7)

Analyzing CLT under balanced load presented and i.i.d. sources in Equation (3.7) and Equa-
tion (3.6) one can find Equation (3.8).

PA(a) =

(
nN

a

) (
ρ

N

)a (
1− ρ

N

)nN−a

(3.8)

Although the binomial distribution in Equation (3.8) is widely used, e.g. [10] [18], calculations
using Equation (3.6) allow generalized cases, such as forwarding hot-spot, to be analyzed. Moreover,
it provides a proof for the memoryless nature of the marginal distribution despite the presence of
time correlation in each source composing the total arrivals.
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3.6 Correlation structure

It is of great interest the correlation structure present in such aggregation of time-correlated but
independent sources. An exact and simple method is developed to perform this investigation. In
addition, an analytical calculation to obtain variance-plot charts is also introduced.

3.6.1 Correlation coefficient function

Provided that A(t) is a stationary process, the two samples k time-slots apart, k ∈ {1, 2, ...,∞},
A0 and Ak, have the same marginal distribution pA(a) but they may not be independent. In order
to evaluate the correlation coefficient between them, the joint probability density pAo,Ak(ao, ak)
is needed. Figure 3.4 illustrates the relationship between time samples that is exploited in order
to calculate the joint probability. The arrows represent transition probabilities given by Equa-
tion (3.4).

Figure 3.4: Correlation coefficient analytical calculations

The joint density is then obtained by multiplying pA(a) by the conditional probabilities of
transition (given by Q) for each step forward in time. If Q is stationary this may be represented as
in Equation (3.9) where (·) stands for scalar product and PP is a square matrix composed nN + 1
repetitions of pA(a), as shown in Equation (3.10).

PA1Ak
= PP · [Q(t1\t0)] ∗ · · · ∗Q(tk\tk−1)] = PP · [Q]k (3.9)

PP =



← PA(0) →

...
← PA(nN) →


 (3.10)

Finally, the correlation coefficient can be found via covariance calculation [26], as stated by
Equation (3.11), where E[.] represents the average over the ensemble.

rA(k) =
E[Ao, Ak]−E[A]2

E[A2]−E[A]2
(3.11)
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3.6.2 Traffic aggregation analysis for variance-plots

It is evident that an aggregated version of A(t) directly depends upon the correlation structure
of its original samples. As discussed in previous Chapter, another way to see the aggregation
process needed for variance-plots is as a summation of m correlated random variables, which is
then multiplied by 1/m in order to obtain an averaged value over m samples. As a result, the
analytically evaluated variance of A[m], represented here by V ar(A[m]]), is the variance of this
gathering of m samples multiplied by 1/m2 as seen in Equation (3.12).

V ar[A[m]] =
1

m2

{
m∑

u=1

m∑

v=1

E[Au, Av]− E[A]2
}

(3.12)

In order to produce the variance plot required for H estimation, the variance obtained in
Equation (3.12) must be normalized by the initial variance (m = 1). Assuming that the stochastic
process is wide-sense stationary, one obtains the normalized variance, NV (m), as in Equation (3.13).

NV (m) =
V ar[A[m]]
V ar[A[1]

=
1

m2

m∑

u=1

m∑

v=1

rA(|u− v|) =
1

m2

[
m + 2

m−1∑

u=1

(m− u)rA(u)

]
(3.13)

Substituting the limits of correlation coefficient in Equation (3.13), it is shown in Appendix
that convergence to 1/m and 1 happens, as it would be expected, for uncorrelated and maximally
correlated traffic respectively.

3.7 Model Evaluation

Traffic features generated by the model presented above (called here basic model with hybrid
forwarding) are checked against numerical simulation. In addition, complex features, which are not
included in the model such as correlated forwarding, is investigated to find out how they affect the
traffic features at output buffers. Comparisons are performed in a framework that is generally used
to analyze self-similar traffic. This is done in order to provide a clear judgement whether traffic
features are underrepresented in the analytical model studied here. An ad hoc numerical simulator
generates traces with 105 samples for a node with 16 ports and 4 wavelengths per fiber with the
purpose of validating the analytical study and providing some insight into the traffic features where
analytical investigation would be rather complex. The offered load (ρ), from each 16x4 independent
sources, is 0.8. A mean burst length (β) with 16 time-slots was chosen for the results presented.

3.7.1 Basic model with hybrid forwarding

For this case the offered load represented is actually 0.8/16, as seen in Equation (3.8), due to the
forwarding approach utilized. The marginal distribution is shown in Figure 3.5 for both analytical
and numerical models. It is also provided a Poisson density function with the same mean found in
the trace. It is clear that the model generates Poisson-like densities for this node size and offered
load. As expected, both methods for evaluating the marginal distribution produce the same result.
This proves the number of active sources is a memoryless process.
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Figure 3.5: Model Evaluation: Marginal Distribution

Temporal correlation properties are exposed by autocorrelation function and aggregation anal-
ysis, shown in Figure 3.6 and 3.7 respectively. However, Figure 3.6 presents the autocorrelation
obtained by the analytical procedure described in Equation (3.9) - (3.11) and numerical evaluation
of traces.

It is evident the excellent agreement between them. One can observe in Figure 3.6 that the
correlation is negligible for lags over 60 time-slots.

On the other hand, Figure 3.7 shows that the variance for the aggregated version of this traffic
remains virtually unchanged (H = 0.96) until the observation period exceeds the mean burst length
(16 time-slots) then a steep reduction takes place as the trace becomes practically uncorrelated
after that point. This is the explanation for the good fitting to a line to H = 0.5 shown by trace
versions with aggregation factor larger than 56 time-slots. The best fitting for the whole range
studied (m = 1000) would produce an estimated Hurst factor H = 0.82. However, when the
autocorrelation function is also analyzed, it is easy to conclude that this is a meaningless result
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Figure 3.6: Model Evaluation: Autocorrelation

since traffic correlation present in this trace is short-range only. Nonetheless, it must be said that
the trace has stronger correlation properties than an equivalent self-similar trace with H = 0.82
for lags below 29 time-slots.

3.7.2 Strictly correlated forwarding

If it is considered strictly correlated forwarding, the whole burst is always headed for a given
outlet. For this reason it is required to perform “Traffic Shaping”. The way packets are assigned to
allocated time-slots influences the correlation structure of the traffic. One may assign the payloads
in a sequential and deterministic form within the number of time-slots allocated for each aggregate
as in Figure 3.8.

On the other hand, an alternative way would involve a random assignment instead, as shown
in Figure 3.9.
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Figure 3.7: Model Evaluation: Variance-plot

However, this sequential assignment is not a wide sense stationary process since the time invari-
ance for the autocorrelation does not hold for this case. Instead this process is a cycle-stationary
stochastic process since it arises from the repetition of a stationary process at every aggregate size
time-slots. Alternatively, one should look at this process through an averaged version of correlation
coefficient function. The sequential assignment provides bursts generation for strictly correlated
forwarding. A sequential placement of packets in time causes no penalty to (mean) node perfor-
mance provided that, on average, the load is well distributed amongst wavelengths. With respect
to the autocorrelation coefficient for sequential allocation, the deterministic placement of packets
at the begging of each group of time-slots produces periodic peaks nN lags apart (the width of
peaks indicates the range of dependance); on the other hand, the lack of packets at the end of nN
time-slots gives rise to the negative correlation; an averaged version of this autocorrelation is the
one expected by analytical methods, this autocorrelation coefficient is shown in Figure 3.10 and the
variance is also shown in Figure 3.11 where the convergence to H = 0.5 is reached when increasing
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Figure 3.8: Traffic shaping: Sequential

Figure 3.9: Traffic shaping: Random

the aggregation factor m.
When packets are allocated randomly across the time-slots, no correlation is present in the traffic

and the variance of the aggregated process is always similar to H = 0.5 as shown in Figure 3.12
and Figure 3.13.

As far as statistical traffic features are concerned, no significant difference is noticed between the
hybrid model and the strictly correlated forwarding by sequential assignment taking into account
marginal densities, aggregation and autocorrelation functions.

3.8 Discussion

Once the model under analysis has proved to be accurate enough in representing important traffic
features, issues related to performance assessment are now briefly discussed, allowing some impor-
tant conclusion to be drawn regarding node performance evaluation.

3.8.1 Correlation span and performance

Before assessing buffer performance, one should carefully examine the traffic features reaching
the buffer in order to better interpret outcomes of such experiments. The results presented in
Figure 3.14 are for summation of the correlation coefficients (from lags 1 to 100) against node size for
different burstiness and offered load. This procedure is used here to obtain concise results regarding
correlation behavior against all variables of the problem under analysis. A clear indication, provided
by Figure 3.14, is that little difference is to be expected from assessments of nodes size over 16
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Figure 3.10: Autocorrelation by sequential assignment

ports, as far as influence of correlation on performance is concerned. Lower levels of traffic produce
higher levels of correlation. Less sensitive is the correlation to changes of node size for the case of
low offered load. The higher the burstiness the wider the difference between curves for low and
high offered load.

Although it is clear that this traffic model only produces SRD, the correlation length is un-
bounded as Figure 3.14 demonstrates when β is increased. Therefore, the inclusion of long-range
dependence may only have minor importance in the context of the present study. More evidences
to support this argument can be found in [21] and [40]. Moreover, the levels of short-range depen-
dence match (or even exceed) the correlation levels from exact self-similar traffic within the range
that might be realized by the optical buffer, as shown in Figure 3.6 and 3.7.
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Figure 3.11: Variance by sequential assignment

3.8.2 Marginal distribution and performance

The marginal distribution for the model under analysis is expected to converge to a Poisson like
distribution (which converges to Gaussian for large means). The convergence of distributions is
generally studied via Quantile-Quantile plots [33] or simply displaying the cumulative distributions
together. Nevertheless, these charts only provide a qualitative, and therefore subjective, apprecia-
tion of the convergence. A simple summation of squared difference is proposed in Equation (3.14)
for comparing the analytical evaluated marginal distribution and a Poisson probability density
function using the same mean.

∆Poisson =
∑

i

[pdf model(i)− pdf Poisson(i)]2 (3.14)

The results presented in Figure 3.15 show the well-known convergence to a Poisson density
when the node size is increased. The more wavelengths are in use the faster is this convergence.
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Figure 3.12: Autocorrelation by random assignment

This result is, however, insensitive to burstiness variations. For nodes larger than 8x8 the marginal
density quickly converges to Poisson regardless of number of wavelengths. Although the results
presented in Figure 3.15 is only for ρ = 0.8, the lower the offered load the faster is this convergence.

In summary, results from performance evaluation for nodes more than 16x16 ports with a given
buffer depth are expected not to vary much (for a given burstiness) since both correlation structure
and marginal distribution remain practically unchanged for such node size.

3.9 Performance assessment for buffering

The traffic produced by the model under analysis is now used to evaluate the effectiveness of
buffering in reducing contention in photonic switching. Although most of the results shown in this
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Figure 3.13: Variance by random assignment

section are already known, a contribution is made toward an exact method to evaluate performance
of WDM nodes under correlated traffic.

3.9.1 Bufferless nodes

The first architecture to be evaluated actually possesses no buffer. This fact provides an interesting
reference for further comparisons since performance is only dependent on features associated to the
marginal distribution. The system is unable to realize any temporal correlation due to the lack
of memory of past events. In order to deal with contending packets, only WDM and TWC can
be used, and, as a result, the switch packet loss probability (PLP ) calculation is straightforward
in Equation (3.15). Arrivals headed for a given output that exceed the number of wavelengths
available are simply lost. This is traduced by the tail integration of pA(a).
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PLP =
1
nρ

∫ ∞

a>n
PA(a)da =

1
nρ

nN∑

j=n+1

PA(j) (3.15)

Whenever contention takes place, wavelength conversion makes possible the use of another
wavelength for transmitting contending packets unless all wavelengths are already taken. It is easy
to foresee that performance of bufferless nodes will not reach satisfactory levels unless the load
per wavelength is very low. In Figure 3.16 performance evaluation is shown, along with numerical
validation, considering nodes operating under both shared and non-shared load regimen. For
the former each wavelength added to the system takes a share of the load transported (ρ/nN),
while latter maintains individual loads (ρ/N) unaffected after inclusion wavelengths. As a result,
negligible improvements are found for unshared regimen. Little sensitivity is observed for both load
regimes regarding node sizes due to convergence of the marginal distribution as discussed previously.
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Figure 3.15: Comparison: marginal with Poisson distribution for ρ = 0.8

However, as expected, better results are obtained for shared load regimen. By using 11 wave-
lengths one can have nodes with PLP lower than 10−10. Although results concerning packet loss
probability are very encouraging, overall throughput for load-shared architecture is expected to
be very low since the traffic transported by wavelength must be low. The purpose of including
buffering is to add one more degree of freedom in managing contention, improving performance for
unshared load and keeping node total throughput high.

3.9.2 Buffer performance under uncorrelated traffic

The number of fiber-delays at each output is represented by b, as shown in Figure 3.1. However, the
actual storage capacity of this set of fiber-delays can be improved if one considers that n packets can
occupy each physical position in this buffering system simultaneously. This is possible due to the
use of wavelength conversion and WDM bringing the storage capacity up to B = nb. The stochastic
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Figure 3.16: Performance Evaluation for bufferless nodes ρ = 0.8

process representing temporal evolution of buffer occupancy is specified from the stochastic process
for packet arrival A(t) arrival, buffer depth B, and number of wavelengths n serving the queue
system. Where min{u, v}and max{u, v} stand for the minimum and maximum functions between
u and v respectively as shown

Θ(T ) = min{max{[Θ(T − 1) + A(T )− n], 0}, B} (3.16)

A given temporal sample of this process is evidently confined between 0 and B. The marginal
distribution for this random variable is pΘ(θ) = Prob[Θ = θ] with θ ∈ {0, 1, 2, ..., B}. For
the sake of convenience, this probability density function is represented q in a vector form, i.e.
q = [q0 = pΘ(0)...qB = pΘ(B)]. A Markov chain representing Equation (3.16) would have its
boundaries (given by max and min functions) as in Figure 3.17.

Therefore, from Equation (3.16) the transition probability between states [10], [18], represented
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Figure 3.17: Illustration for the boundaries for the Markov chain used to represent buffer state.

by Pij , for this Markov chain is given in Equation (3.17) where i is the state at T and j is the state
at T + 1,

Pij = Prob[Θ(T + 1) = j|Θ(T ) = i] =





∑n−i
l=0 PA(l) 0 ≤ i ≤ n, j = 0

PA(j − i + n) 0 ≤ i ≤ n, 1 ≤j≤ B − 1
PA(j − i + n) n + 1 ≤ i ≤ B, i− n ≤j≤ B − 1∑nN

l=B−i+n PA(l) 0 ≤ i ≤ B, j = B
0 otherwise

(3.17)
The steady-state solution of the Markov chain is found by solving the Equation system presented

as follows, where e is a unitary row vector with B + 1 elements
{

q = q ∗ P
q ∗ e = 1

(3.18)

For a specific outlet the average number of packets that leave the queue in a time-slot is denoted,
1 − ρ0λ, where ρ0λ is the mean number of packets that are not used [10] at the given outlet. The
mean number of packets that arrive at the queue in each time-slot is found to be, ρ. We are now
able to determine the switch packet success probability, PSP = 1−PLP (PLP is the switch packet
loss probability), which is the number of successfully transmitted packets, 1− ρ0λ, divided by the
mean number of packets that enter the queue in each time slot, ρ. From the distribution of packets
in the queue the mean number of unused wavelengths can be calculated as

ρ0λ =
n∑

i=0

n−i∑

j=0

PA(j)qi · [n− (i + j)] (3.19)

Finally we can write the switch packet loss probability (PLP ) as

PLP = 1− PSP = 1− n− ρ0λ

nρ
(3.20)

where PSP is the Packet Success Probability.

The model presented above actually is a queuing system with n servers (G/D/n/nb). The
exploitation of the wavelength domain is now analyzed.
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Multiple server and buffer depth multiplication

In order to find out the effect of multiple server and delay sharing, here is shown Figure 3.18.
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Figure 3.18: Packet Loss Probability versus number of fiber-delays (buffers) for nodes using WDM

It can be seen good results when delay sharing by WDM is implemented [10]. Using ten fiber-
delays and n = 4, for example, the packet loss probability is decreased by 6 orders of magnitude,
as can be seen in Figure 3.18. This is because the traffic load to the tagged output is also increased
when n grows but no significant change is noticed for the marginal distribution. As a result,
more wavelengths allow more packets to share the same fiber-delay benefiting the total buffer depth.
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Buffer depth requirements for a performance target

The evaluation of buffer depth reduction (for PLP < 10−10) versus number wavelength channels
for light and heavy load per wavelength are presented in Figure 3.19 and 3.20 respectively. As it
might be expected, the required buffer depth for a given PLP approximately decreases at 1/n, due
to the multiplication by n of buffer positions. As anticipated, no significant change in performance
is noticed for nodes larger than 16x16.
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Figure 3.19: Required buffer depth, for packet loss probability less than 10−10, versus number of

wavelength per fiber: ρ = 0.4

Another feature not seen before, will be shown below. The evaluation of buffer depth (for
PLP < 10−10) versus load is presented in Fig. 3.21 for one channel per fiber.

It can be seen that no significant change in performance is noticed for nodes larger than 16x16.
The greater the load, the greater the buffer depth; the greater N , the greater the buffer depth. A
buffer size of 17 delay-lines will carry a load of 0.5 for support a packet loss probability less than
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10−10 for 16 fibers.

3.9.3 Buffer performance under time-correlated traffic

The results presented so far for buffered nodes under uncorrelated traffic provide performance
upper bounds for switching node performance since no temporal dependence is present in the
traffic correlation structure. As a result, the sequential placement of packets has to be used at
the expense of creating time correlation and, as far as buffering is concerned, creating a more
demanding traffic profile. Here we focus on a shared buffer.

Some alterations are necessary in the model previously discussed in order to allow it to take
into account time-correlation. The Markov chain representing the buffer state, in this case, should
also hold the number of inputs in High state [3], comprising therefore (nN + 1) x (B + 1) elements
as the vector holding the probability density for buffer occupancy as given in

nN∑

i=0

q0i = q0

nN∑

i=0

qBi = qB

q = [
︷ ︸︸ ︷
q00 · · · q0nN · · · · · · ︷ ︸︸ ︷

qB0 · · · qBnN ] (3.21)

The transition matrix between buffers states, now represented by Π, still has (B + 1) x (B + 1)
elements as shown in

Π =




π0,0 · · · π0,B

...
. . .

...
πB,0 · · · πB,B


 (3.22)

However, each element of this matrix is itself a sub-matrix with (nN +1) x (nN +1) components
[3]. This sub-matrix takes into account the transition among source states, as it can be seen in

πi,j =




P
{0}
ij Q0,0 · · · P

{0}
ij Q0,nN

...
. . .

...
P
{nN}
ij QnN,0 · · · P

{nN}
ij QnN,nN


 (3.23)

where Qmw is the transition probability from m to w for the number of sources at ON state
producing packets, and is given by

Qmw =
nN−m∑

i=0

nN∑

j=0

Tm(i)Sm(j)δw,m−j+i =





∑min(m,nN−w)
j=m−w Tm(w −m + j)Sm(j) , if m >= w

∑min(w,nN−m)
i=w−m Tm(i)Sm(m− w + i) , if m <= w

(3.24)

where Tm(i) (or Sm(j)) represents the probability that i (or j) sources pass from the OFF state
to the ON state (or viceversa), given that m of them are in ON state. Hence, we can see
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Tm(i) =
(nN−m

i

)
Ri

LH(1−RLH)nN−m−i

Sm(j) =
(m

j

)
Rj

HL(1−RHL)m−j (3.25)

Notice that P
{c}
i,j = Prob[Θ(T ) = j|Θ(T − 1) = i, C = c] is the same transition probabilities

shown in Equation (3.17) but the number of sources in High state conditions the arrival probability.
For the particular case of on-off sources, the probability of having i arrivals when c sources addressed
to the tagged output are in High state can be straightforwardly represented as given next, since as
the amount of packets released is deterministic once the number of active sources is set.

P
{c}
A (a) = PA(a|c) =

(
c

a

)
µa

H(1− µH)c−a; for µH = 1 we have: P
{c}
A (a) =

(
c

a

)
0c−a = δa,c (3.26)

The steady state solution for buffer occupancy is found solving the next Equation system where
e is again a unitary column vector but in this case with (nN + 1) x (B + 1) elements

{
q = q ∗Π
q ∗ e = 1

(3.27)

Once q is found, the source states must be collapsed, as shown in Equation (3.21), and therefore
Equation (3.19) - (3.20) can be applied in order to work out the packet loss probability for correlated
traffic, i.e. ρ0λ is given by

ρ0λ =
n∑

i=0

n−i∑

j=0

nN∑

k=0

p
{k}
A (j)qik(n− (i + j)) (3.28)

Burstiness intensity and buffer depth

Results in Figure 3.22 and 3.23 investigate the influence of burstiness on efficiency of buffers in
reducing packet loss probability for light and heavy traffic loads, respectively.

It is clear the performance degradation due to the presence of time-correlation among arrivals.
The slow decrease of packet loss versus buffer depth shows that even large buffers are not able to
take the performance to reasonable values as temporal correlation increases. It can be seen that
the offered load has little effect when the burstiness factor is high.

Node size and buffer depth

The effect of the switch size and the buffer performance for two values of burstiness is shown
in Figure 3.24 and 3.25.

The larger is the switch the worse is the performance. But no major change is noticed for nodes
larger than 16x16, alike the uncorrelated case, except when burstiness is changed. Recall that in
this case both marginal distribution and correlation structure influence performance. Node size
shapes both correlation (via Low period -see Equation (3.3)) and marginal distribution as seen in
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Figure 3.14 and Figure 3.15. Regardless to the fact that for large node sizes no change is noticed
in the correlation span, the High period (β) still affects the length of correlation and, therefore,
buffering performance.
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Figure 3.20: Required buffer depth, for packet loss probability less than 10−10, versus number of
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Figure 3.21: Required buffer depth, for packet loss ratio less than 10−10 versus load.
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Figure 3.22: Packet Loss Probability versus buffer depth using burstiness as a variable parameter:
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Figure 3.23: Packet Loss Probability versus buffer depth using burstiness as a variable parameter:

load per channel 0.8
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Figure 3.24: Packet loss probability versus buffer depth using switch size as parameter under offered

load 0.8: Burstiness=2
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Figure 3.25: Packet loss probability versus buffer depth using switch size as parameter under offered
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Chapter 4

Correlated and Non-uniform traffic

Optical Router Model

Now we consider correlated and, input/output non-uniform traffic. Non-uniform input traffic
means that traffic is not evenly distributed among sources, while non-uniform output traffic is
related to the fact that output links may have different probabilities of being selected by sources,
which is given by routing probabilities in the matrix traffic. A similar model is given in [27], which
deals with an electronic router having speed-up constraints for the number of packet sources that
can be gathered by the switch. Instead, we consider an optical router that doesn’t have such a
constraint, and introduces WDM.

4.1 Introduction

Router architectures with output buffering have optimum throughput performance. Switch fabrics
with only input buffering, limit the maximum throughput of the switch.

The input traffic to nodes is usually a multiplexed traffic from several previous sources and
thus can be modelled by an uncorrelated (random) traffic. This modelling is especially appropriate
when the speed of the sources is lower than the line speed of the router. In this case two adjacent
cells of the same source may appear far apart (uncorrelated). However, if the speed of the sources
is comparable to the line speed of the router, then the random assumption may not be appropriate,
for optical routers there is no such limitation of line speed. In this case, correlated traffic is assumed.

Each input traffic process is modelled as an Interrupted Bernouli Process (IBP). This traffic
model captures some traffic characteristics such as burstiness and ON/OFF activity periods.
The traffic sources may have different traffic parameters and different routing probabilities. The
imbalanced loading assumption models real situations.

We use a decomposition and aggregation process. We analyze node performance, while allowing
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imbalanced traffic sources modelled by IBPs, where all cells that belong to a burst are routed to
the same output queue. Imbalanced output loading is also assumed.

4.2 Router and traffic model

We are considering a discrete-time model of an optical router. The router is a nonblocking NxN ,
and each output port has a dedicated queue of size B cells, each input fiber contains z wavelengths
for carrying a packet each wavelength. The time is slotted in units of cell service time. The switch
fabric selects all cells with the same output address and places them at their output buffer in one
time slot. A cell leaves its queue after receiving service of one time slot duration. Cells are serviced
according to the first-in-first-out (FIFO) strategy. A cell arriving at a queue which is full will
be lost. Each input traffic source i, i = 1, ..., zN , is modelled by an interrupted Bernoulli process
(IBPi) with parameters αi and βi as shown in Figure 4.1.

Figure 4.1: Markov chain describing the input traffic for source i.

The IBP alternates between two time periods. During a silence period no packets arrive at the
inputs. During an active period packet arrive in every time slot. The steady-state probability that
any slot contains a packet ρi is given by

ρi =
β̄i

β̄i + Īi
(4.1)

where β̄i is the mean burst length (= 1/RHLi) and Īi is the mean idle period (= 1/RLHi). Mean
burst length or burstiness index of the input traffic is also denoted by rb(i).

4.3 Model analysis by aggregation

Since we consider a completely partitioned output buffer, we can look at a particular output buffer,
say 1. The state of the discrete-time queueing model of the buffer is described immediately after
the beginning of each time slot by the vector (ω; n1) = (ω1, . . . , ωzN , n1) where w ∈ Sw is a vector
describing the state of the zN arrival processes and n1, is the number of cells in output buffer
1;O ≤ n1 ≤ B. wi is a subvector (xi, yi) where x is the activity state of the ith arrival source and
y is the destination port of the burst. xε{0, 1}; state 0 represents a silence and state 1 represents
a burst. yε{1, 2. . . . , N}.
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In the following we describe the procedure for generating W , the transition matrix of the vector
ω. Let Qi be the transition matrix of the ith arrival process. W (ωa, ωb) is the transition probability
from state ωa = ((xa

1, y
a
1), . . . , (xa

zN , ya
zN ) to the state ωb = ((xb

1, y
b
1), . . . , (x

b
zN , yb

zN ). Then, with the
assumption that the zN arrival processes are independent, W (ωa, ωb) can be calculated by using
the following equation

W (ωa, ωb) =
zN∏

i=1

Qi((xa
i , y

a
i ), (xb

i , y
b
i )) (4.2)

where for 1 ≤ j, k ≤ N

Qi((1, j), (1, j)) = 1−RHLi (4.3)

Qi((1, j), (0, j)) = RHLi (4.4)

Qi((1, j), (1, y)) = 0, y 6= j (4.5)

Qi((0, j), (0, j)) = 1−RLHi (4.6)

Qi((1, j), (1, k)) = RLHidik (4.7)

Note that πw[(ω)], the steady-state probability of state (ω), can be obtained by

πW (ω) =
zN∏

i=1

πi[(xi, yi)] (4.8)

where πi(xi, yi) is the steady state of (xi, yi) for the ith source, so π(0, j) = (1 − ρidij) and
πi(1, j) = ρidij for iε{1, 2, . . . , zN} and jε{1, 2, . . . , N}. This forces all cells in a burst to be
switched to the same output queue.
The state space associated with one output buffer can be reduced by aggregating the zN arrival
processes, as defined by the transition matrix W , into one arrival process, with transition matrix
W ∗. The state space of the aggregated arrival process is k, k = 0, 1, . . . , zN . If the aggregated
arrival process is in state k = i, then there are i cells arriving at output buffer j. For simplicity
we may assume j = 1.

The transition matrix W ∗ of the aggregated process can be induced from W as follows: let Sw

be the state space associated with W , and let Sw∗ . be the aggregated state space. Then each state
in Sw∗ , say k = i, represents the aggregation of all states in Sw with exactly i arrivals destined to
queue j. The transition probability, W ∗(i, i′), between state i and state i′ in the induced space can
be calculated from

W ∗(i, i′) =
∑

ωaεG π(ωa)
∑

ωbεG′ W (ωa, ωb)∑
ωaεG π(ωa)

(4.9)

where G = {ωa; fj(ωa) = i}, G′ = {ωb; fj(ωb) = i′} where fj denotes the map from Sw to
Sw∗ such that fj(ωa) = k, k ≤ zN , if k bursts are directed to output port j. The steady-state
probability of a state k in the induced space is given by

π∗W (k) =
∑

ωaεG

πW (ωa) (4.10)
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The state of the output buffer j driven by the aggregated source can now be described by (k, n),
where k is the number of cells arriving to the queue j immediately after the beginning of the slot
and n is the queue length of queue j at that time. We assume that the service time is one slot and
that arrivals have to wait one slot before service starts. The queue length immediately after the
end of the slot is therefore min{(n − z, 0)+ + k, B}. The transition probability between any two
states of the queue and the aggregated source is

P ∗((k, n); (k′, n′)) = W ∗(k, k′)χ{n′ = min{(n− z, 0)+ + k, B}} (4.11)

where (k′, n′) is the state of queue j in the next slot and χ. is an indicator function. P ∗ is a
transition matrix for the state space {(k, n) : 0 ≤ k ≤ zN, 0 ≤ n ≤ B}.

Once W ∗ has been found, the steady-state probabilities Π∗(k, n) of the queue driven by the
aggregated process can be obtained by numerically solving the linear system of equations π∗P ∗ = π∗.

4.4 Router Performance

The cell loss probability defined as the ratio between the expected number of lost cells and the
expected total number of arrivals, can be obtained by

Ploss = 1− C1 − C2

C3
(4.12)

where C1 is the expected number of cells accepted by the switch fabric and destined to output
j. C2 is the expected number of cell losses due only to finite buffer. C3 equals to traffic load.
C1 =

∑
k

∑
n kΠ∗(k, n) and C2 =

∑
k

∑
n[max(n − z, 0) + k − B]+π∗(k, n). The queue length

distribution π∗(n) can be found from π∗(k, n) summing over all k’s.

Figure 4.2 shows the Packet loss probability at three output links for a router with traffic load
ρi = 0.9, burstiness= 4, number of delay lines from 1 to 10, and routing probabilities given bellow

0.35 0.45 0.2
0.333 0.333 0.333
0.25 0.25 0.5

Figure 4.3 shows the Packet loss probability at traffic load of 0.5. As we can see, the number
of delay lines is reduced when the packet loss probability increases, and viceversa. The greater
the traffic load the greater the number of delay lines, in order to maintain a certain packet loss
probability.
Here we showed small values of N and n because the high memory space and amount of cal-
culations required in order to compute packet loss probability, i.e. W matrix has dimensions of
(2N)nNx(2N)nN .
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Chapter 5

Conclusions and Future work

An extensive study into the traffic features of a convenient analytical model to be applied to
time-slotted output-buffered photonic nodes was performed. Statistical tools were developed, in
an analytical framework, allowing comparisons with self-similar traffic. It is important to highlight
that this model may evaluate node performance under more strict conditions than by using the
so-called self-similar models. The improvements achieved by exploiting the wavelength domain in
photonic packet switching were demonstrated through analytical models considering both random
and correlated (on-off) traffic. WDM enable switch capacity multiplication and reduction in buffer
depth.

When correlated traffic is considered, required elements (channels number, router optical
memory, routers number) in a network increases with respect to that of independent traffic.
Performance degradation is present when due to marginal distribution as correlation span appears
to reach a saturation level, for the range of interest, after the aggregation of many sources is
performed. In order to maintain a packet loss probability, the number of delay lines must be
increased if burstiness is increased, and viceversa. If we have a fixed memory size, when burstiness
increases, the packet loss probability decreases and viceversa.

The results also showed that hot-spot traffic largely affects the switch performance.

The models here analyzed have shown to be accurate, and they provide us useful models to
analyze buffer performance with memoryless sources that introduces Short-Range Dependence for
input and output non-uniform traffic.

As future work, it must be considered a model that deals with Long Range Dependence, by
means of sources with long memory and Heavy-Tailed distributed, in order to evaluate buffer
performance in optical routers.
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Appendix A

Demonstrations

A.1 Proof of equation (2.17)

Equation (2.17) is shown below

var[Θi] = var[Xi]{m +
m−1∑

k=1

(m− k)[(k + 1)2H − 2k2H + (k − 1)2H ]} = var[Xi]m2H

Looking into the terms within the summation one can observe the following pattern:

Notice that each base only appears at most in three values of k since k +1, k, and k− 1. Terms
with same base cancel each other when multiplied by (m−k) and added, except for the ones within
circles. Therefore the summation is reduced to

m2H − 2(m− 1) + (m− 2) = m2H −m
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By adding the term of out the summation in 2.11 one finally obtains

var[Xi]m2H

A.2 Proof of Equation (3.2)

Considering steady state probabilities, and observing for balance equations we have

∑

j

Pij = 1

so, RLL = 1−RLH and RHH = 1−RHL

as n −→∞,

Pij(n) −→ πj ∀i

Π = {πj} and
∑

i πi = 1

πj =
∑

i Pijπi

1−RLH RLH

RHL 1−RHL

then

πL = P00πL + P10πH

πH = P01πL + P11πH

and

πL + πH = 1

solving the above equation system we finally obtain

πH = RLH
RLH+RHL

A.3 Proof of Equation (3.4)

Following the steps described in [20] we can see that:
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Qij = Prob[S(T + 1) = Sj |S(T ) = Si]

= I(j≥i)
∑min(N−i,j)

k=j−i [
(N−i

k

)
Rk

LH(1−RLH)N−i−k

( i
k−j+i

)
Rk−j+i

HL (1−RHL)j−k]

+ I(j<i)
∑min(i,N−j)

k=i−j [
( i
k

)
Rk

HL(1−RHL)i−k

( N−i
k−i+j

)
Rk−i+j

LH (1−RLH)N−k−j ]

=
∑min(i,N−j)

k=max(0,i−j)[
( i
k

)
Rk

HL(1−RHL)i−k

( N−i
k−i+j

)
Rk−i+j

LH (1−RLH)N−k−j ]

where

I(x) =

{
1 , if x is true
0 , otherwise

A.4 Proof of convergence of Equation (3.13)

NV (m) = 1
m2 [m + 2

∑m−1
u=1 (m− u)rA(u)]

For rA(u) = 0 and u > 1 it is easily seen that

NV (m) = 1
m

For rA(u) = 1 and u > 0 the summation becomes

∑m−1
u=1 (m− u) =

∑m−1
u=1 m−∑m−1

u=1 u = m(m− 1)− (m−1)(m)
2 = (m)(m−1)

2

Above is done, taking into account:

∑n
i=1 i = n(n+1)

2

Therefore, one has the following result

NV (m) = 1
m2 [m + 2(m−1)m

2 ] = 1
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